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Abstract 

The microwave properties of high temperature superconducting crystals in the resistive states are theoretically investigated. The single 
crystals in the shapes of platelet and cylinder in parallel field configuration are considered. The microwave responses are analyzed from the 
associated effective r.f. magnetic permeabilities. The influence of the anisotropic resistivity on the microwave response is stressed in an 
anisotropic superconductor. The results indicate the importance of thin edges of the platelet crystal to the microwave properties. In the isotropic 
superconductor, a relationship between the responses of a square rod and a cylinder is found. The results show that the microwave properties 
of a cylinder can be essentially replaced by those of a square rod and vice versa. Also the geometric effect on the response is illustrated in the 
isotropic superconductor. 
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1. Introduction 

The microwave measurements provide some fundamental 
and practical information about the superconductors. The 
physics of superconducting state as well as the quasiparticle 
excitation can be extracted through the measurement of com- 
plex surface impedance, Z, = R, +jX,, where R, is the surface 
resistance and X, the surface reactance. According to well- 
known two-fluid theory [ 11, R, is closely related to the ther- 
mally excited quasiparticles, whereas X, is related to the 
penetration depth h(T) . In practical applications, the surface 
impedance also predominantly determines the performances 
of superconducting devices [ 241. 

In microwave measurements of high temperature super- 
conducting single-crystal platelets, two configurations are 
usually considered [C-9]. One is the perpendicular config- 
uration in which the microwave magnetic field is perpendic- 
ularly applied to the main flat surfaces, namely, parallel to 
c-axis. In this configuration, the electrodynamics of a super- 
conductor are less anisotropic and usually treated as isotropic 
for convenience. However, it involves a large demagnetizing 
field and is hard to deal with analytically. The other one is 
the parallel field configuration where the field is parallel to 
the &plane. The electromagnetic properties are thus aniso- 
tropic, especially in the Bi:2212 system. As reported in the 
literature, the normal-state anisotropic resistivity ratio pclpnb, 
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is about 10’ for this system [ 10,111. The field penetration 
depth through thin edges is then 300 times larger than that of 
main surfaces. Also, in mixed state the broadening ofresistive 
transition below T, is strongly anisotropic [ 81. The effects 
of thin edges on microwave losses are therefore should be 
possibly taken into account. 

-4lthough the surface impedance is widely used to study 
the microwave properties of superconductors, it is not easy 
to calculate theoretically for a superconducting rectangular 
rod or cylinder. Another relevant quantity applied in micro- 
wave analysis is the effective dimensionless a.c. magnetic 
permeability, p = ,IL’ - j,u”, which usually contains the infor- 
mation about the intrinsic features of superconductors 
together with the extrinsic ones, the sample dimension and 
geometry [ 12-161. Recently, Gough and Exon [9] consid- 
ered the normal-state microwave response in an anisotropic 
high-T, superconducting crystal platelet in the parallel 
magnetic field. They derived the a.c. permeability from the 
assumption that superconductor is regarded as a linear sys- 
tem. The linear a.c. response is obtained from the integration 
of the impulse response. The impulse response, however, is 
obtained from the derivative of the unit step response. This 
is a familiar theorem commonly used in the linear system. 
Based on this calculated permeability, the authors pointed out 
the importance of the thin edges of a platelet on the micro- 
wave properties of anisotropic superconductors. 
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The purpose of this paper is to give a comparative study 
in normal-state response. We present a new expression for 
the permeability for an anisotropic rectangular rod. The influ- 
ence of thin edges on microwave absorption is discussed for 
both anisotropic and isotropic superconductors. Special con- 
sideration of an isotropic square rod and cylinder reveals an 
interchangeable relationship of responses between these two 
geometries. By making use of the measured data in aniso- 
tropic resistivities for the extremely anisotropic high-T, sys- 
tem Bi:2212, our theoretical results in permeability are 
essentially in accord with the experimental report on surface 
impedance. Based on the a.c. permeability given in this work 
for the anisotropic superconductor, we will also briefly dis- 
cuss the generalization of the simple picture proposed by 
Geshkenbein [ 171 in interpreting the irreversibility line in 
mixed state. 

2. Calculation of dimensionless a.c. permeability 

Consider aresistiveplatelet with length 2b, width 2a, thick- 
ness 2c oriented in parallel field, as depicted in Fig. 1, which 
also shows the cross-section of platelet. We assume that the 
length is much larger than the thickness. This assumption 
permits us to ignore the demagnetizing field. The electro- 
dynamics of the resistive sample is described by anisotropic 
magnetic flux diffusion equation: 

(1) 

where pc and pa are the resistivities along the c-axis and in 
the ab-plane (the &-plane is assumed to be nearly isotropic). 
Eq. (1) is easily derived from Maxwell’s equations. By 
letting, x’ = (pa/p,) “4~, y’ = (p,lp,) ““y and U- ’ = peff = 
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Fig. 1. The single-crystal platelet in the parallel field configuration where 
the microwave field is applied parallel to four planes of the platelet. The 
right shows the cross section of the platelet crystal where the x-z plane 
corresponds to the Cu-0 ab-plane and the y-direction to the crystallographic 
c-axis. 

(PCPJ “‘inadditiontoh=h(x,y) exp(jwt),Eq. (1) reduces 
to 

$+$-p h(x’, y’) =0 (2) 

where k2 = jwpOa, The above equation, subject to the conti- 
nuity boundary conditions for magnetic field at x’ = &- 
(PCJPC) ‘14a and y’ = + (p,/p,) 1’4c, describes a well-known 
electrodynamic problem. The exact solution for Eq. (1) is 
thus given by 

where 

qn = (n + 1/2)rr, n = 0, 1,2,3, . . . and ho is the amplitude of 
perturbed microwave magnetic field. The complex power per 
unit length in z-direction is readily calculated from the Poynt- 
ing theorem, namely 

P,,=iho exp( -jwt)$Edl 

c a 

=-$wpoho exp( -jot) 
il 

h(x, Y, 4 dx dy 
--c--a 

J~&?(2a> (2~) m 2 
2 nFo(n+ 1/2)2,rr2 

x tanh(kG) +tanh(k,,c) 

ks kYC 
(4) 

The prefactor jwpoh2( 2a) (2~) /2 is the (reactive) power 
flowing into the equivalent volume of free space per unit 
length. This can be well understood by considering the crystal 
as an isotropic insulator. In this limit, the summation in Eq. 
(4) converges to unify for a finite ratio a/c. The effective 
a.c. magnetic permeability for an anisotropic rectangular rod 
is thus defined as 

p=p,'-jpLA 

co 2 
=nFo(,+ 1/2)2~2 (5) 

The imaginary part, ,u”, indicates microwave loss and 
determines performance of superconducting device. The real 
part p’, however, is closely related to theresonancefrequency 
when the sample is used as a part of resonant circuit. In order 
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to numerically investigate the behavior of ,LL, it is convenient 
to express k, and ky in terms of anisotropic skin depths 82 = 
2pJ F~FCOW and 8: = 2p,l~Ow, the results are 

l/2 

+ j2S;,’ 

1'2 (n+1/2)*T* 0 ( 
l/2 

k,= k +j26;* 
PL2 a2 

The permeability in Eq. (5) obviously incorporates the 
material anisotropy and sample dimensions. It describes the 
microwave response of superconductor not only in the nor- 
mal-state but also in mixed state, especially in the regime of 
thermally assisted flux flow (TAFF) . In TAFF, the basic 
assumption is the existence of a linear resistivity, i.e. Ohm’s 
law. Based on this idea, Kes et al. [ 161 and Geshkenbein et 
al. [ 171 have separately calculated the permeability for an 
isotropic slab. In fact, we have generalized the simple picture 
proposed by Geshkenbein et al. [ 171 to more general consid- 
eration because the permeability in Eq. (5) obviously incor- 
porates all possible features due to anisotropy. The detailed 
description will be given in the part III later. 

In addition, the derivation here appears to be easier and 
more direct than that given by Gough et al. [ 91. The method 
described in their work is, in reality, not suitable for both 
anisotropic and isotropic cylinders because of the complica- 
tion of the diffusion equation in cylindrical coordinates. A 
careful consideration reveals that the exact solution for an 
anisotropic cylinder is not possible. Nevertheless, the per- 
meability for an anisotropic cylinder is easy to obtain. In an 
isotropic cylinder, Eq. (2) can be transformed, in terms of 
cylindrical coordinates, as 

( 
$+$? 

1 
h(r) =o (6) 

The exact solution for h(r) can be obtained with the aid 
of the boundary condition at r = p (the radius of cylinder), 
with the result 

(7) 

where lo is the modified Bessel function of first kind with 
order zero, i= k-’ = 6/( 1 +j) is the complex penetration 
length, and 6 = (21 opOa) “’ is the skin depth of an isotropic 
cylinder with conductivity v’. The complex power P,, (per 
unit length) flowing into the isotropic cylinder is thus given 
by 

(8) 

where I, is the modified Bessel function of first kind with 
order one. Again the prefactor jwpOh,h,2(Tp2) /2 represents 
the power flowing into the equivalent free-space volume per 

unit length. Accordingly, the associated complex a.c. per- 
meability for cylinder is 

The complex a.c. permeability is experimentally measur- 
able in the microwave cavity perturbation method [ 91 and is 
commonly used in the analysis of microwave and a.c. prop- 
erties of superconductors not only experimentally but theo- 
retically. In this work, we shall try to investigate the 
relationship between the permeabilities of an isotropic cyl- 
inder and a square rod. 

3. Results and discussion 

The permeability of anisotropic square rod, Eq. (5), can 
be expressed as 

m 2 
‘L(x’ ’ =ngoz 

tanh(q:X2/Y2+jX2/2)1’2 

i (q,2X2/Y2+jX2/2)1’2 

+tanh(q~Y2/Xz+jY2/2)1’2 
(q,2Y2/X2+jY2/2)“’ 

where X= 2cf 8, and Y= 2a/& rely on frequency and tem- 
perature implicitly. The overall behavior of the imaginary 
part of ,u(X, Y) is displayed in Fig. 2 where the surface plot 
is given as functions of X and Y. As can be seen in this figure, 
a minimum loss peak (0.366) occurs at X= Y, namely, 
2c/S, = 2a/6, (see also in Fig. 3 for better observation). This 
is referred as an equivalent square rod. Other than that, the 

Fig. 2. The surface plot of imaginary part of permeability as functions of X 
and Y for an anisotropic rectangular platelet in Eq. ( 10). The X and Y are 
both taken from 0 to 10 for illustrative purpose. 
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___ Slab _ 

------- Square rod - 

Fig. 3. The imaginary and real parts of permeabilities as a function of c/S, 
for both an anisotropic slab and a square rod. The peak value in ,LL” is 0.417 
for a slab, whereas it is 0.366 for a square rod. The variation is about 13% 
for the maximum peak of a slab. 

peak value in $’ will be greater than 0.366. Specifically, in 
the slab limit (defined as a -+ ~0 and thickness 2c), the per- 
meability becomes 

I . ,, tanh((l +j>c/S,> 
/-hlab=~ -JP = (1 +j)cl& (11) 

which attains a maximum loss peak (0.417) in ,u” as shown 
in Fig. 3 where comparison with an equivalent square rod is 
made. The microwave absorption in a slab is mainly due to 
the main flat surfaces, that is, the absorption due to thin edges 
is ignored. Meanwhile the $-peak occurs at c = 1.1276, 
(refer to Fig. 3), correspondingly, peak frequency is propor- 
tional to a-axis resistivity, a consequence of anisotropy. This 
feature is also shown in the static Meissner response based 
on the two-fluid model [ 181. With the fact that the normal- 
state resistivities for high-T, cuprates are linearly dependent 
on temperature, the frequency of $’ peak in slab is thus also 
linear with temperature. We can easily verify this by calcu- 
lation of $’ from Eq. ( 11) . Simple manipulation yields 

1 sinhX-sinX 
“‘=%oshX+cosX (12) 

which reaches a maximum when X= 2.254. The nature of the 
loss peak is usually argued as the skin size effect [ 171. Based 
on the above results, we conclude that the inclusion of micro- 
wave absorption from the thin edges has effectively decreased 
the loss peak. In other words, the effect of consideringmicro- 
wave losses from all four planes parallel to the field is always 
to reduce the peak in microwave loss relative to that calcu- 
lated across two main parallel faces alone. Thus it can be 
roughly argued that the field penetration through thin edges 
decreases the gradient of magnetic flux density originally 
penetrating through main surface, which in turn will lower 
the current density flowing in the cross-section according to 
Ampere’s law. The microwave absorption is consequently 

decreased markedly. The results illustrate the importance of 
thin edges on microwave losses. Care should therefore be 
taken when considering the single-crystal platelet in micro- 
wave applications. By the way, the permeability of a slab in 
Eq. (11) derived from Eq. (5) (by letting a + 03) was also 
treated by Gough et al. [ 91. They considered a slab limit from 
the assumption of pc = 0, i.e. the penetration depth through 
thin edge (along a-direction) is zero. However, it is a quite 
non-physical assumption and solely mathematical treatment, 
because the conductivity of a high temperature superconduc- 
tor in the normal-state is by no means zero. Therefore in order 
to reduce to the permeability of a slab from Eq. (5)) one must 
use a * a instead of pc = 0. 

In Fig. 4, we plot the imaginary and real parts of permea- 
bility in Eq. (5) as a function of temperature for an extremely 
anisotropic high-T, superconductor system, Bi:2212 [ 191. 
The normal-state resistivities are pa = 4.6 X 10m7T (a cm) 
and p,=p,(5+(3/0.46)X104T-*)X104 (Qcm) [lo]. 
The thickness and width are taken to be, 2a= 1.5 mm and 
2c = 10 p,m, respectively. The figure shows some good con- 
sistency with the measured microwave surface impedance 
reported by Exon et al. [ 191. It indicates the validity of our 
derivation based on anisotropic resistive model. Also, the 
anisotropic resistivity ratio permits us to determine aspect 
ratio, a/c, for obtaining the minimum loss peak. The range 
is found to be 228-386 for Bi:2212 system. One can thus 
design a platelet with suitable dimensions which has a mini- 
mum loss peak in the temperature range of interest. 

We next examine the geometric effect on microwave 
response in the isotropic superconductors. For an isotropic 
rectangular rod (p,= p,), the minimum loss peak (0.366) 
also occurs at the real square rod in shape (a = c) The max- 
imum loss peak (0.417) remains for a slab. As described 
previously, for strongly anisotropic superconductor, Bi:2212, 

0.6 
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I 
At o = 6.28x1 1 GHz 

- 0.6 
3 
z 

0.4 i 

T(K) 
Fig. 4. The temperature-dependent imaginary and real parts of the permea- 
bility of an anisotropic platelet in Eq. (5). The surface resistance and reac- 
tance are taken from Ref. [ 191. The material parameters and dimensions are 
given in the text. Good consistency between theoretical and experimental 
results is observed. 
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Fig. 5. (a) The imaginary parts of the permeabilities for an isotropic cylinder 
in Eq. (9) and a square rod in Eq. ( 10) at various aspect ratiosp. The aspect 
ratio is defined in the figure. (b) The real parts of the permeabilities for an 
isotropic cylinder in Eq. (9) and a square rod in Eq. (10) at various aspect 
ratios p. 

the minimum $’ peak occurs at the equivalent square rod, 
namely cla = SC/S, = (p,lp,) I” = l/300. For a sample with 
typical width 2a = 1 mm, one has thickness 2c = 3 pm, cor- 
responding to a thin platelet. However, in order to obtain the 
minimum $’ peak in an isotropic platelet, the thickness 
should be taken to be as large as the width (namely, the thick 
platelet). If one still takes, say, 2a = 1 mm and 2c = 3 pm in 
the isotropic one, one finds that the peak height in p” is very 
close to that for the slab which in turn means the effects of 
thin edges are obscure. Relatively speaking, it indicates that 
the effect of thin edges on the pi’ peak in an isotropic platelet 
is not as significant as for an anisotropic platelet. Neverthe- 
less, they actually do influence the microwave properties 
appreciably. This point was ignorediin the work of Gough et 
al. [9]. Fig. 5(a) and (b) demonstrate the imaginary and 
real parts of permeabilities for both cylinder in Eq. (9)) and 
square rod (a = c and SC = S, = S) in Eq. (5) or ( lo), respec- 
tively. We have used the aspect ratio, p, defined as the ratio 
of the half-width to the radius of the cylinder, i.e. p = alp. As 

can be seen, the overall permeability of a cylinder essentially 
coincides with that of a square rod when p = 1. Equivalently 
this means that the cross-sectional area ratio of a cylinder to 
a square rod is n/4 = 0.785 instead of unity by intuition. The 
only small discrepancy between the two geometries is the 
peak value in $‘. Fig. 5 (a) shows that the loss peak in the 
cylinder is slightly greater than that in the square rod. Other 
than that, the microwave permeability of a cylinder can be 
approximately replaced by that of a square rod and vice versa 
provided that aspect ratio, p, is taken to be about one. We can 
further verify this by considering the limits of the radius and 
the side length being much larger than the skin depth. For 
a/ 6> 1 (in square rod), the permeability for an isotropic 
square rod can be simplified, from Eq. ( lo), as 

where the identity 

&2g 
odd 

has been used to simplify this result. The power absorption 
in Eq. (4) leads to 

p Jupohc? 
a” TX8aS(l-j) (14) 

Similarly, in the limit of p/6>> 1 for cylinder. The per- 
meability in Eq. (9) becomes 

(15) 

Accordingly, the power absorption described in Eq. (8) is 
given by 

p Jwdkf 
a” ~X2~rpp6( 1 -j) (16) 

Based on Eqs. ( 13) and ( 15), to make ,LL,,~~~~ = pCyln, one 
would find that a = p, namely the aspect ratio p = 1. The 
previous argument from numerical results shown in Fig. 5 is 
thus evidently confirmed. Another feature is of note, i.e. from 
Eqs. (14) and (16) the total microwave power loss per unit 
length is proportional to the product of the circumference and 
the skin depth for both the square rod and cylinder in these 
limits. 

The a.c. absorption for high temperature superconductors 
in the mixed state was previously discussed within the frame- 
work of TAFF by Geshkenbein et al. [ 171. According to the 
idea of TAFF, the authors simply treated the isotropic super- 
conducting slab as a normal conductor and proposed a simple 
picture to argue that the transition in p’ and the peak in ,LL” 
are due to the skin size effect, namely the skin depth is of the 
order of the size of sample. The frequency at the peak, oP is 
proportional to the static resistivity in half-thickness of the 
slab. Also, the position of $’ peak determines the onset of 
the irreversibility of superconductors in the mixed state [ 201. 
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Based on these facts and with the aid of our derivation in Eq. 
(5) together with the results in Figs. 2 and 3, one would 
conclude that the irreversibility line should closely rely on 
the size and geometry of the sample. In addition, the irre- 
versibility line is frequency dependent because the onset of 
the irreversibility line is shifted to higher frequency in the 
square rod. This frequency dependence was previously 
observed experimentally [21]. In other words, the onset of 
irreversible behavior in the H-T diagram connects with the 
field orientation and the sample dimension as well. To sum 
up, our general consideration here has explicitly extended the 
physical picture proposed by Geshkenbein et al. [ 17,221. 

4. Conclusion 

The microwave properties of a normal-state supercon- 
ducting single-crystal platelet have been examined based on 
the dimensionless a.c. permeability calculated from the solu- 
tion of anisotropic diffusion equation. The role of thin edges 
in microwave response is clearly illustrated. The microwave 
dissipation peak is depressed due to the inclusion of field 
penetration through thin edges of platelet and has a minimum 
loss peak in the shape of square rod. In the extreme case, the 
slab, a maximum loss peak is attained. By feeding the meas- 
uredresistivities into thepermeability, one finds agood accor- 
dance with the measured surface impedance. In the isotropic 
superconductor, we also illustrate the influence of thin edges 
on microwave response. A special examination on permea- 
bilities of the isotropic cylinder and square rod reveals an 
interesting relationship of their responses, namely that the 
responses of these two geometries can be essentially inter- 
changed if necessary. Our derivation presented here can also 
be applied to relate the irreversibility line in the mixed state 
with the sample dimensions as well as the material anisotropy. 
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