Contents

Abstract (in Chinese)	I
Abstract (in Engilsh)	II
Acknowledgement	V
Contents	VII
Table Captions	X
Figure Caption	•••••
Chapter 1 Introduction	1
1.1 Background	1
1.1.1 Cu Dual Damascene Process and Cu-CMP	1
1.1.2 W-plug process and W-CMP	3
1.1.3 The Role of the Electrostatic Forces (Electrochemical double layer)	6
1.1.4 Abrasion Modes	7
1.2 Motivation	8
1.2.1 Part of Copper	8
1.2.2 Part of tungsten	9
Chapter 2 Study of suspension stability of Nano-particle with	n Organic
Additive	15
2.1 Introduction	15
2.2 Experimental	16
2.2.1 Size and zeta potential measurement	16
2.2.2 CMP Process	17
2.3 Results and discussions	21
2.3.1 Titration in the neutral slurry	21
2.3.2 Surface morphology after buffing	22
2.4 Summary	23
Chapter 3 Evaluation of W-CMP performance with varying DI wat	er dilution
	39
and hydrogen peroxide concentration	
3.1 Introduction	
3.1 Introduction 3.2 Experimental	39 <u>4</u> 0
 3.1 Introduction 3.2 Experimental 3.2.1 Size and zeta potential measurement 	
 3.1 Introduction	
 and hydrogen peroxide concentration. 3.1 Introduction. 3.2 Experimental. 3.2.1 Size and zeta potential measurement. 3.2.2 Tafel & EIS (electrochemical impedance spectroscope) Measurement 3.2.3 CMP Process. 	
 and hydrogen peroxide concentration. 3.1 Introduction. 3.2 Experimental. 3.2.1 Size and zeta potential measurement. 3.2.2 Tafel & EIS (electrochemical impedance spectroscope) Measurement 3.2.3 CMP Process. 3.2.4 ESCA Analysis. 	

3.3.1 Zeta potential and abrasive size	46
3.3.2 Electrochemical results	47
3.3.3 Electrical evaluation	49
3.4 Summary	49
Chapter 4 Conclusions	76
Reference	
Vita	82

Table Caption

Table.1-1 Properties of low resistivity metals	14
Table.2-1 Zeta potential of alumina abrasives in neutral solution with ionic	carboxylic
acids	37
Table 2-2 IEP of different composed slurry	
Table.2-3 Polishing parameters for surface morphology evaluation	
Table 3-1 Part I: Dilute ratio with 1-6 parts of DI water	51
Table 3-2 Part II: Concentration of hydrogen peroxide	51
Table 3-3 Content distribution of experimental part1	52
Table 3-4 Content distribustion of experimental part2	52
Table 3-5 Electrical evaluation without H2O2	53
Table 3-6 Electrical evaluation with H2O2	53
Table 3-7 Corrosion current of Tafel plot in experimental part1	53
Table 3-8 EIS equivalent circuit in experimental part1	53
Table 3-9 Corrosion current of Tafel plot in experimental part2	54
Table 3-10 EIS equivalent circuit in experimental part2	54

Figure Caption

Figure.1-1 Comparison of intrinsic gate delay and interconnect delay (RC) as	s a
function of feature size	.11
Figure.1-2 Dual damascene process	.12
Figure 1-3. Electrochemical double layer	13
Figure.2-1 (a) Schematic diagram of the Westech Model 327M CMP polisher	.24
(b) Platen assemblies of the Westech Model 327M CMP polisher	25
Figure 2-2 Tafel plot of copper corrosion in malonic acid	26
Figure 2-3 Copper pourbaix diagram	26
Figure 2-4 Zeta potential of alumina abrasives in neutral solution with ionic	
carboxylic acid	27
Figure 2-5 Zeta potential & 2^{nd} particle size distribution of 0.3μ Al ₂ O ₃ aqueous	
suspension with 0.01M Citric acid additive	.28
Figure 2-6 Zeta potential & 2^{nd} particle size distribution of 0.05μ Al ₂ O ₃ aqueous	
suspension with 0.01M Citric acid additive	.28
Figure 2-7 Zeta potential & 2^{nd} particle size distribution of 0.3μ Al ₂ O ₃ aqueous	
suspension with 0.01M malonic acid additive	29
Figure 2-8 Zeta potential & 2^{nd} particle size distribution of 0.05μ Al ₂ O ₃ aqueous	
suspension with 0.01M malonic acid additive	29
Figure 2-9 Zeta potential & 2^{nd} particle size distribution of 0.3μ Al ₂ O ₃ aqueous	
suspension with 0.01M tataric acid additive	30
Figure 2-10 Zeta potential & 2^{nd} particle size distribution of 0.05μ Al ₂ O ₃ aqueo	ous
suspension with 0.01M tataric acid additive	30
Figure 2-11 Polished Cu AFM (0.3µ Al ₂ O ₃ , 0.01M Citric acid)	.31
Figure 2-12 Polished Cu AFM (0.05µ Al ₂ O ₃ , 0.01M Citric acid)	.32
Figure 2-13 Polished Cu AFM (0.3µ Al ₂ O ₃ , 0.01M Malnoic acid)	.33
Figure 2-14 Polished Cu AFM (0.05µ Al ₂ O ₃ , 0.01M Malnoic acid)	.34
Figure 2-15 Polished Cu AFM (0.3µ Al ₂ O ₃ , 0.01M Tataric acid)	.35
Figure 2-16 Polished Cu AFM (0.05µ Al ₂ O ₃ , 0.01M Tataric acid)	.36
Figure 3-1 W-H2O pourbaix diagram	55
Figure 3-2 Three electrode test cell schematic	.56
Figure 3-3 A schematic diagram of an ESCA spectrometer	.57
Figure 3-4 Zeta potential of experimental part1	.58
Figure 3-5 Particle size of experimental part1	58
Figure 3-6 Zeta potential of experimental part2	.59
Figure 3-7 Particle size of experimental part2	59
Figure 3-8 Titration of Raw	.60
Figure 3-9 Titration of 1:1 with2%H2O2	.60

Figure 3-10 Titration of 1:2 with2%H2O26	51
Figure 3-11 Titration of 1:3 with2%H2O26	51
Figure 3-12 Titration of 1:4 with2%H2O26	51
Figure 3-13 Titration of 1:5 with2%H2O26	52
Figure 3-14 Titration of 1:6 with2%H2O26	52
Figure 3-15 Equivalent circuit of EDL and surface coating	53
Figure 3-16 Tafel of experimental part16	54
Figure 3-17 EIS of experimental part16	54
Figure 3-18 Tafel of experimental part26	55
Figure 3-19 EIS of experimental part26	55
Figure 3-20 pH changing to compare corrosion current	6
Figure 3-21 pH changing to observe EIS	6
Figure 3-22 pH changing to compare corrosion current	7
Figure 3-23 pH changing to observe EIS	57
Figure 3-24 Survey of experimental part16	8
Figure 3-25 Multiplex of oxygen in the experimental part16	i8
Figure 3-26 Multiplex of tungsten in the experimental part16	9
Figure 3-27 Survey of experimental part26	9
Figure 3-28 Multiplex of oxygen in the experimental part27	0
Figure 3-29 Multiplex of tungsten in the experimental part27	0
Figure 3-30 Fitting to find the WO3 around the BE of oxygen in 1:3 w/o H2O27	'1
Figure 3-31 Fitting to find the WO3 around the BE of tungsten in 1:3 w/o H2O27	1
Figure 3-32 Fitting to find the WO3 around the BE of oxygen in 1:3 with 29	%
H2O27	'2
Figure 3-33 Fitting to find the WO3 around the BE of tungsten in 1:3 with 24	%
H2O27	'2
Figure 3-34 Polishing rate of experimental part17	73
Figure 3-35 Polishing rate of experimental part27	73
Figure 3-36 Via chain structure flow7	74
Figure 3-37 Via chain structure top view7	'5