Active region

Buffer oxide

Figure 3.1 Key process flows of T-gate TFTs.

ANTINI DA

Figure 3.1 Key process flows of T-gate TFTs.

Figure 3.1 Key process flows of T-gate TFTs.

Figure 3.1 Key process flows of T-gate TFTs and surface scan graph.

RECIPE DATA A	MALYSIS	CONFIG	CALIB	DIAG	EXIT		17 A	pr 05 18	45
Dent ID		L	L			R			
Part ID	-	X1000 A					17 Apr	05 18:43	
DATA	5								-
Edge 61.1046um									
StpHd 62.1196um									
Height 3011 A	0			1					
Width 54.92 um					1				
Cursors									
H+ -3010	1		*	red .		-	*****		
Pos 30.95 85.8	7							La	
Lev 70.6 86.	9								
	-5								
Recipe									
ZEROMARK									
Length 200us									
Speed 10	s								
Direction ->									
Repeats 1								u	1
Sty Force 15.0mg	-10	2	50	8 2 6	10	Ø	150		
IN Cutoff OF		Roughness			10				
SW Cutoff Defaul		Noughiess						-	
Table X 107589u	1							Tencor P-	-1
¥ 116171	1	F1:Recipe	F2:	Summar	y F3	Replot	F4:5	ave	

Figure 3.1 Key process flows of T-gate TFTs surface scan graph.

Figure 3.1 Key process flows of T-gate TFTs.

Figure 3.1 Key process flows of T-gate TFTs.

	Vth	mobility	I _{on}	$\mathbf{I_{off}}$	I_{on}/I_{off}
Conventional TFT	39	12.08	1.01E-04	1.23E-10	8.26E+05
T-gate TFT;d=100nm	41.1	10.54	7.10E-05	1.06E-10	6.67E+05
T-gate TFT;d=150nm	42.3	9.47	6.74E-05	9.54E-11	7.07E+05
T-gate TFT;d=200nm	43.5	59.1 P	6.36E-05	9.21E-11	6.91E+05

Table 3.1 The electrical characteristics of CTFTs and TGTFTs before plasma treatment.

	Vth	mobility	I _{on}	I _{off}	I _{on} /I _{off}
Conventional TFT	22.7	19.55	1.97E-04	6.64E-11	2.9E+06
T-gate TFT;d=100nm	29.4.	16.07	1.39E-04	5.5E-11	2.5E+06
T-gate TFT;d=150nm	30	15.9	1.27E-04	4.08E-11	3.1E+06
T-gate TFT;d=200nm	30.6	15.22	1.18E-04	6.18E-11	1.9E+06

Table 3.2 The electrical characteristics of CTFTs and TGTFTs after plasma treatment.

Figure 3.2 (a) Transfer characteristics for comparison of CTFT and TGTFT with difference offset oxide thickness before plasma treatment.

Figure 3.2 (b) Transfer characteristics (linear scale) for comparison of CTFT and TGTFT with difference offset oxide thickness before plasma treatment.

Figure 3.3 Leakage current, measured at Vg = - 4 V, for CTFT and TGTFT with W/L = 20/6 and different offset oxide thickness.

Figure 3.4 The Id – V_D characteristics curve for CTFT and TGTFT with W/L = 10/8 measured at Vg = 20 V.

Figure 3.5 (a) The Id – V_D characteristics curve for CTFT before and after the application of hot- carrier stress (W/L = 10/8 measured at Vg = 20 V).

Figure 3.5 (a) The Id – V_D characteristics curve for TGTFT before and after the application of hot- carrier stress (W/L = 10/8 measured at $V_{DS} = 0.1$ V).

Figure 3.6 (a) Comparison of degradation rate of ON-state current after hot carrier stress (stress condition: V_g = 18 V, V_{DS} = 42 V) with W/L = 10/8.

Figure 3.6 (b) Comparison of degradation rate of subtrhreshold swing after hot carrier stress (stress condition: V_g = 18 V, V_{DS} = 42 V) with W/L = 10/8.

Figure 3.7 Transfer characteristics for comparison of CTFT and TGTFT with difference offset oxide thickness after plasma treatment 2hr.

Figure 3.8 The pathway for hydrogen migration from a gaseous source to the active channel region of (a) conventional TFTs and (b) TGTFTs.

Figure 3.9 (a) Extraction of trap-state density (Nt) by the modified Levinson theorem for CTFT and TGTFT before plasma treatment.

Figure 3.9 (b) Extraction of trap-state density (Nt) by the modified Levinson theorem for CTFT and TGTFT after plasma treatment 2hr.

Figure 3.10 Transfer characteristics (with linear scale) for comparison of CTFT and TGTFT with difference offset oxide thickness after plasma treatment 2hr