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摘要 

    因為在大多數的應用中，不同的接收者會有不同的承受量，故可調整性

(scalability)在今天的多媒體傳輸中是一個重要的特性。用於畫面之間的小波轉換

編碼(Interframe Wavelet Video Coding)是一個新的視訊編碼方式且能提供良好的

可調整性。因此這個編碼方式在近年來受到不少矚目，而且已經有很多的研究和

改良來增進它的效能。 

    在很多環境下，人眼都是視訊品質的最後判斷所在。然而，在設計視訊編碼

時要包含人類視覺卻很困難。我們必須要能把客觀的“數學上的不同＂轉換成主

觀的“視覺上的不同＂，也就是說，我們必須要把普通的“量化錯誤＂轉換成

“人類視覺上的加重錯誤＂。 

    在位元控制法(rate control algorithm)中，每個在用於畫面之間的小波轉換編

碼的截斷點(truncation point)都有自己相關聯的失真(distortion)和位元長度(bits 

length)。而每個截斷點的斜率(slope)就是把失真的差異(distortion difference)除以

位元差異(bit difference)所得到的商。在最佳化理論中(optimization theory)，擁有

較高斜率的截斷點有較高的優先權被傳送。在本論文中，我們提出一個方法，就

是說我們把每個截斷點的斜率乘上一個由人類視覺系統算出來的比重。故這個經

過視覺加重的斜率會成為位元控制法中判斷的標準。我們的模擬會指出最後的重

建影像有較低的最高訊號雜訊比(PSNR)和較佳的視覺品質。 
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Abstract 
  Scalability is an important feature in today’s multimedia transmission because in 

many applications receivers have very different capabilities. Interframe wavelet video 

coding is a new video coding algorithm that can achieve fine-scale scalability. 

Therefore, it has received a lot of attention recently and many research and 

development projects have been conducted to improve its performance.  

For most entertainment purposes, human eyes are the final judge of the video 

quality. However, it is rather sophisticated to include the human perception in the 

video codec design. We need to transform the objective “mathematical difference” 

into the subjective “visual difference”, i.e., we need to convert the ordinary 

“quantization error” to the “human-visual weighted error”.  

In the rate control algorithm, each truncation point in the interframe wavelet video 

coding has its associated distortion and bits length. The slope of each truncation point 

is the quotient of the distortion difference divided by the bit difference. Based on the 

optimization theory, the truncation point with a larger slope should have a higher 

priority to transmit. In this study, we propose a method that we weight the truncation 

point slope by a weighting factor, which is derived based on the human visual system. 

Thus, the visually-weighted slopes become the criterion in rate control. Our 

simulations indicate that the reconstructed frames may have lower PSNR but higher 

visual quality.  
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Chapter 1 
Introduction 

Digital video compression technology has an explosive growth in the past 20 years. 

The invention of digital video products, such as VCD and DVD, is due to the 

advances of the digital compression technology. Owing to the rapid development of 

the internet transmission, it is also important to transmit the video data through the 

network. Due to the different network bandwidth and different receiver storage 

capacity, many methods have been investigated to solve the problem of transmitting 

the compressed video bitstream through the internet. The concept of “scalability” is 

one of the methods that solve this problem. The “scalability” means that the bitstream 

can be truncated and decoded anywhere on the bitstream; thus, we can generate the 

bitstream only once then truncate it to meet the requirements. 

However, in a traditional scalable video system, because of the lower compression 

efficiency and course-step in scalability (typically, 2 or 3 layers), its adaptation is not 

yet so popular. The new technique of fine-granularity scalability is introduced recently 

[1]. Ohm proposed a motion-compensated t+2D frequency coding structure [2]. This 

coding structure is suitable for scalable video coding with many fine steps. Woods 

proposed a coding technique called “interframe wavelet video coding” [3]. This 

coding technique can offer fine-granularity SNR, temporal and spatial scalability at 

the same time, while it still maintains acceptable compression efficiency. 

The main concept of interframe wavelet video coding is subband coding. It 

removes the temporal redundancy by using the motion-compensated (wavelet) 

filtering technique along the temporal axis. Then it uses the spatial wavelet 
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decomposition to the temporal wavelet-filtered output frames. Then we can use the 

bit-plane coding scheme to code wavelet coefficients and calculate the slope of each 

fractional bit-plane truncation point to achieve optimal rate control. By this rate 

control scheme, we can achieve fine-granularity scalability [4]. 

The quality measure that often be used to determine the quality of images is PSNR. 

But human eyes have different sensitivity on different regions and frequency bands, 

the image that has high PSNR value may not have high visual quality. Human eyes 

usually have higher sensitivity on the low frequency bands and lower sensitivity on 

the high frequency bands. For the different region, human eyes usually have higher 

sensitivity in the flat region than in the texture region. We can incorporate human 

visual system (HVS) to encode each subband to achieve higher visual quality. 

In this research, we propose a rate control algorithm based on HVS to achieve high 

visual quality. We apply HVS on spatial frequency and luminance component. There 

two weighting factors, intra-subband weighting factor and inter-subband weighting 

factor, that we found will be introduced. The final reconstructed images will have 

higher visual quality, especially in large flat region. The PSNR of final reconstructed 

images will be lower. In the future, we will extend this algorithm to temporal 

frequency and chrominance component. 

The thesis is organized as follows. In Chapter 2, we will introduce the basic 

concept and the scalability of scalable video coding. Then we will introduce the 

program we used in Chapter 3. We will introduce some basic idea of HVS in Chapter 

4. The algorithm we developed is introduced in Chapter 5 and Chapter 6 is the 

conclusion and future work. 



 

Chapter 2 
Scalable Video Coding 
2.1 Introduction 

  Digital Video is now very popular in our daily life. For example, DVD and VCD are 

all digital video. If the digital video has high quality, it usually has a large amount of 

data. So it needs large bandwidth to transmit or large space to store. To solve this 

problem, we need to compress the digital video in order to make its data size smaller. 

Digital video compression technique has been developed in the past three decades and 

much research has been done to analyze the digital video sequences. Several video 

standards have been developed, for example, MPEG-2, and H.261. Based on different 

theoretical foundations, we can classify the video coding into two groups as shown in 

Figure 2-1. 

 
Figure 2-1 Classifications of video coders. 

  From Figure 2-1, we can see that video coders can be classified into “model based” 
 3
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and “signal based” two groups. If the video coding algorithm is based on object 

modeling and analysis of object parameters, it belongs to model based video coding. 

Model based video coding algorithms usually need a profound analysis of the video 

contents and are quite complicated. Because of inefficiency and complexity of video 

object content analysis, model based video coding algorithms are often not so popular. 

  On the other hand, the signal based video coding algorithms consider the objects as 

the combination of the set of basic signals. So they often use filters to decompose the 

video sequences into different basic signals. The signal decomposition of these 

algorithms has two spatial dimensions (horizontal and vertical) and one temporal 

dimension. Both spatial and temporal decomposition are used to remove in-between 

redundancies. We usually use discrete cosine transform (DCT) or discrete wavelet 

transform (DWT) to do spatial decomposition and motion compensated temporal 

filtering (MCTF) or motion compensated prediction (MCP) to do temporal 

decomposition. 

The motion compensated approaches decompose the source output into different 

frequency subband using block transforms. But decomposition of the source output 

into blocks will generate coding artifacts at the block edges called blocking effects. 

Another approach, which can avoid this blocking artifact, is the subband video coding.  

The subband video coding transforms the total frame into different subbands in spatial 

and temporal domain, so it can remove blocking effect. 

2.2 Subband Video Coding 

  Subband video coding uses subband filters to remove the spatial and temporal 

redundancies of the video sequences. Generally speaking, the behavior of the spatial 

and temporal signals of a video sequence is quite different. For temporal signal, if 

something moves fast in the video sequence, then the video sequence has high 



 

frequency temporal signal component. The spatial signal will be only considered in 

the still image. If a still image has many edges or different luminance component in a 

small area, then it has high frequency spatial signal component. Spatial signal has 2 

dimensions (horizontal and vertical) and temporal signal has 1 dimension, so the 

decomposition of spatial signal is often done twice. Typical 3-D subband signal 

decomposition is shown in Figure 2-2. 
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Figure 2-2 Typical 3-D subband decomposition. 

  After spatial and temporal decomposition, the data are sent to quantize and coding. 

After coding, the coded data is packaged and transmitted to the receiver to decode. 



 

Because human eyes have different sensitivity on different frequency subbands, we 

can quantize the frequency subbands with higher sensitivity by smaller step size and 

other frequency subbands by larger step size. Thus we can get the reconstructed video 

sequence with higher visual quality but lower PSNR value. We will introduce the 

temporal decomposition and spatial decomposition in next two subsections. 

2.2.1 Temporal Subband Decomposition 

  Temporal subband decomposition can be simply done by use a low pass filter and a 

high pass filter along the temporal axis. The filter used more often is Haar filter. But 

the result is not usually good because the energy is not compacted very well. The 

result is shown in Figure 2-3. We can see that the output of the low-pass filter would 

be a blurred image, a moving average of the original video sequence, and the output 

of the high-pass would be the difference of the original video sequence. 

 

Figure 2-3 The temporal filtered images using Haar filter (left: low pass, right: high 

pass). 

  Kronander used motion compensated technique to solve this problem [5]. For two 

consecutive frames, we use forward block motion estimation first and backward block 

motion estimation second. The forward motion compensated reconstructed frame is 

then used to do temporal filtering with the second frame to generate subband image. 

Then the backward motion compensated reconstructed frame is used to do temporal 

filtering with the first frame. The result frames has better energy compaction as shown 
 6



 

in Figure 2-4. There may be a mismatch between these two vectors and it will cause 

the spatial inhomogeneity. The mismatch often occurs in the covered and uncovered 

area on the frame, as shown in Figure 2-5

 

Figure 2-4 Temporal filtering with motion compensation (left: low pass, right: high 

pass). 

covered

uncovered

covered

covered

uncovered

uncovered

 

Figure 2-5 Vector mismatch caused by moving and zooming objects. 

  Ohm proposed a method to solve the spatial inhomogeneity [2]. He showed that it 

is possible to overcome the mismatch of motion trajectories by using the concept of 

connected and unconnected pixels. In the proposed algorithm, each pixel is classified 

as covered, uncovered or connected by using the information derived from the motion 

vector map. Then Haar filter is used to do temporal filtering to find the high-pass 

coefficients and the low-pass coefficients. If the integer pixel accuracy motion 

estimation is used, this method can achieve perfect reconstruction. 
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  Hsiang and Woods proposed an invertible half-pixel motion estimation 

three-dimensional analysis/synthesis system for video coding [6]. If we assume that 

dx and dy are the horizontal and vertical displacement vector between previous and 

current frames, and they can be pixel or half pixel. Then we can classify the motion 

compensated blocks into four different kinds, as shown in Figure 2-6. The motion 

compensated blocks would map to different location of the image, but would lie in 

horizontal, vertical, diagonal, or overlapped position. Therefore, temporal Haar 

filtering can be done along those directions to achieve half-pixel-accurate motion 

estimation.  
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Figure 2-6 The spatial lattices of two consecutive frames after motion estimation. The 

black circle is the pixel being processed. The gray pixels and arrows 

indicate the direction of filtering. (a)class EO:2dx even and 2dy odd, 

(b)class OE: 2dx odd and 2dy even, (c)class OO: 2dx odd and 2dy odd, 

(d)class EE: 2dx even and 2dy even. 
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  Pesquet-Popescu and Bottreau proposed a lifting scheme to do temporal filtering 

[7]. By separating the process of deducting the low-pass and high-pass frequencies, 

interpolation filters can be used without interfering with the filtering process. 

  Temporal filtering techniques are still being researched and developed. The goal of 

the temporal filter is make the energy compacted well.  

2.2.2 Spatial Subband Decomposition 

Spatial decomposition is done along horizontal and vertical directions. The still 

image is separated into the spatial subband then each subband is encoded 

independently. The image is reconstructed from the low subband data to high subband 

data. The major differences are how to choose the analysis and synthesis filters. In 

other words, that is how to choose the decomposition signal. The performance of the 

filter will affect the quality of the reconstructed images. 

The most popular spatial subband decomposition is the wavelet transform. Wavelet 

transform is a type of localized time-frequency analysis; therefore, the transform 

coefficients reflect the energy distribution of the source signal in both space and 

frequency domains. Figure 2- 7 shows an example of the spatial decomposition. 

 

Figure 2- 7 Spatial decomposition (left: transformed image, right: frequency partion). 
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2.2.3 Coding 

  Shapiro proposed a coding algorithm called “Embedded image coding using 

zerotrees of wavelet coefficients (EZW)” [8]. It is a simple but effective coding 

structure. It arranges the coded data in the order of importance so it is suitable for 

progressive transmission.  

  Taubman proposed a coding algorithm called “Embedded Block Coding with 

Optimized Truncation of the embedded bit-stream (EBCOT)” [9]. This is a coding 

algorithm that JPEG2000 used. It is a fractional bit plane coding and can match the 

requirement of the rate control. 

  Woods proposed a coding algorithm called “Embedded Zero Block Coding 

(EZBC)” [10]. It combines the advantages of the zero-tree/-block coding and context 

modeling of the subband/wavelet coefficients. 

2.3 Interframe Wavelet Video Coding 

2.3.1 Introduction 

  The efficient family of interframe wavelet video codecs was proposed by Woods 

and his coworkers [6] [10] [12] and can achieve rate/SNR, spatial, and temporal 

scalability. It was first presented by Woods et al for the MPEG digital cinema 

encoding tool [11]. Many research and development have been made to improve the 

performance of the interframe wavelet video coder today. In the rest of this thesis, if 

not specifically stated, the interframe wavelet coding algorithm referred is the latest 

version proposed by Woods and Chen [12]. 

  The interframe wavelet coder is one kind of motion compensated 3-D subband 

coder. 3-D is 2 spatial dimensions (horizontal and vertical) and 1 temporal dimension. 

This coding algorithm is also known as the “Motion Compensated Temporal 



 

Filtering – Embedded Zero Block Coding (MCTF-EZBC or MC-EZBC)”. This 

coding algorithm uses motion compensated temporal filtering techniques when doing 

temporal subband decomposition. After temporal subband decomposition, each 

produced frame is spatially subband decomposed by wavelet transform. After 

temporal and spatial decomposition, the wavelet coefficient is coded by embedded 

zeroblock coding techniques [10]. Then we can package and truncate the coded 

bitstream and transmit it to the receiver and decode. The architecture of the interframe 

wavelet video coder is shown in Figure 2-8. 

Spatial
Analysis

MCTF
(analysis) EZBC Packetizer

Motion
Estimation

Motion Field
Encoding

Spatial
Synthesis

MCTF
(synthesis) EZBC Depacketi

zer

Motion Field
Decoding

Encoder

Decoder

Input
Video

Output
Video

 
Figure 2-8 The interframe wavelet video coder. 

The processing unit is GOP (group of pictures) and the frame number of each GOP 

is 2n, where n is the number of levels of temporal subband decompositions that are 

done on the GOP. When doing temporal subband decomposition, the motion vector 

map between two consecutive frames is first constructed. Then motion compensated 

temporal filtering is applied to the two consecutive frames to generate the temporal 

high-pass frame and the temporal low-pass frame. 

After first temporal decomposition, the GOP would contain 2n-1 temporal high-pass 

frames and 2n-1 temporal low-pass frames. Then 2n-1 temporal low-pass frames would 

be collected to do temporal decomposition again. These 2n-1 temporal low-pass frames 

 11



 

would transform to 2n-2 temporal high-pass frames and 2n-2 temporal low-pass frames. 

The temporal decomposition is iteratively done until there is only one temporal 

low-pass frame. After finishing temporal decomposition, we can get a temporal 

filtering pyramid as shown in Figure 2-9. 

GOP 
(Group of Pictures)
Corresponding to 
temporal level=4
decomposition

Temporal Low-pass frame

Temporal High-pass frame

Frames that remain after
temporal decomposition

MCTF

MCTF

MCTF

MCTF

Video Sequence

 

Figure 2-9 Temporal filtering pyramid. 

  After temporal decomposition is done, the 2n frame GOP would contain 2n-1 

temporal high-pass frames and one temporal low-pass frame. These frames are called 

residual frames. The spatial subband decomposition is then applied to each frame to 

create wavelet coefficients of each spatial subband. The wavelet coefficients is then 

coded by embedded zeroblock coding method, and then entropy-coded by arithmetic 

coding with context modeling [10]. 

2.3.2 Motion Compensation Temporal Filtering 

The interframe wavelet video coding uses motion compensated temporal filtering 

(MCTF) to do temporal subband decomposition and the goal of motion compensated 

temporal filtering is to compact the video sequence temporal energy. 
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The first step of MCTF is motion estimation and there two things need to do in this 

step. First is using “hierarchical variable size block matching (HVSBM)” to do 

backward motion estimation. Second is detecting covered and uncovered pixels based 

on the backward motion field [13].   

2.3.2.1 Hierarchical Variable Block Size Matching 

HVSBM is a hierarchical motion estimation scheme that can reduce computational 

complexity and generate smooth motion vector fields. HVSBM can create better 

motion estimation because of its variable block size. The motion compensated 

temporal filtering performance depends on how well the motion trajectory, which is 

constructed by the motion search, matches the moving objects in the video sequence.  

The motion vectors are first searched in the 64-by-64 size block. Then the block is 

split into four 32-by-32 subblocks. Motion vectors for subblocks are generated by 

refining the motion vector of the original block. This spawning process continues 

until the size of the subblock is 4-by-4. Figure 2-10 shows a 3 level HVSBM. 

Consequently, longer-range interaction is enforced at lower resolution (higher scale) 

levels, while shorter-range interaction is recovered at higher resolution (lower scale) 

levels. Finally we can get a five level motion vector quad-tree with one 64-by-64 

block size motion vector at the top and 256 4-by-4 block size motion vectors at the 

bottom [13]. 



 

initial motion vector tree

refining

refining refining

splitting

splitting

Level 1

Level 3

Level 2

initial motion vector tree

refining

refining refining

splitting

splitting

Level 1

Level 3

Level 2

 

Figure 2-10 A 3 level HVSBM showing 3 subband levels [13]. 

2.3.2.2 Detection of Covered and Uncovered Pixels 

There two reasons that this process is needed. One is that the motion estimation 

process may not be perfect because of the wrong motion trajectory; the other is that 

the temporal filtering is applied along the motion trajectory, so it depends on the 

linked condition of the pixel. 

  By the motion vectors we get from HVSBM, we can link every pixel in the 

predicted frame to another pixel in the reference frame. We can classify the linked 

condition of pixels on the predicted frame and reference frame. From Figure 2-11, we 

can see there 3 types of pixels in the reference frame and 3 types of pixels in the 

predicted frames. 

 14



 

y

t
xA B

backward motion estimation

uni-connected pixel

unreferred pixel

multi-connected pixel

A special case of
uni-connected pixel

A: reference frame

B: predicted frame

 

Figure 2-11 State of connection of each pixel [13]. 

  The 3 pixel types in the reference frame are: 1) uni-connected pixel, a pixel which 

is used as reference by only one pixel in the predicted frame, 2) unreferred pixel, a 

pixel which is not reference by any pixels in the predicted frame, 3) multi-connected 

pixel, a pixel which is used as reference by more than one pixel in the predicted 

frame. 

  The 3 pixel types in the predicted frame are: 1) first type of uni-connected pixel, a 

pixel whose reference pixel in the reference frame is uni-connected pixel, 2) second 

type of uni-connected pixel, a pixel whose reference pixel in the reference frame is 

multi-connected pixels that has better response to sum of absolute difference (SAD), 3) 

multi-connected pixel, the rest of the pixels in the predicted frame. 

  Forward motion estimation is done if there are more than half of the pixels are 

classified as multi-connected pixels in a block of the predicted frames. If motion 

estimation in this direction has smaller SAD error, we call this block is an uncovered 
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block and pixels in this block are said to be uncovered pixels. The unreferred pixels in 

the reference frame are marked as covered pixels, while the rest are connected. If the 

number of the unconnected pixels exceeding a threshold, the interframe wavelet video 

coder would assume that there is a scene-change in the video sequence and it would 

stop temporal filtering across the two frame pairs. Otherwise, when the test fails, and 

temporal filtering is done, all the pixels in the predicted frame are remarked as 

connected pixels. 

2.3.2.3 Motion Vector Pruning 

  The motion vector pruning process is done to delete unnecessary nodes from the 

quad-tree created by HVSBM. For the quad-tree, each node contains the estimated 

motion vector for that corresponding block. The motion vector pruning process 

initially generated motion vector bit estimation of each node. Then the difference of 

the bits used for the parent and child and difference of the SAD of the parent and 

child are calculated. Using these two parameters as the rate and distortion measure, 

the rate-distortion cost of every node is generated. An iterative loop is then done to 

prune the leaf nodes with the highest cost until a desired rate-distortion cost is 

achieved.  

2.3.2.4 Temporal Filtering 

  The interframe wavelet video coding uses the lifting scheme in temporal filtering 

[7], which can achieve perfect reconstruction even when sub-pixel motion estimation 

is used. Figure 2-12 shows the lifting scheme in temporal filtering and Figure 2-13 

shows the detection of connected and unconnected pixels. 



 

B

L

A

H  

Figure 2-12 Lifting scheme in temporal filtering. 

Reference Predicted

Unconnected Connected

Backward EstimationBackward Estimation

 

Figure 2-13 Detection of connected and unconnected pixels. 

  Assume that A and B are reference frame and predicted frame, and A~ is the 

interpolated frame of A. The notation [m, n] represents the pixel coordinates and 

 is the motion displacement from the predicted frame B points to a sub-pixel 

position in the reference frame A. In other words, B[m, n] is connected to A[m-

( nm ,dd )

md , 
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n- nd ] where md  and nd  are the closet integer to dm and dn.

  The temporal high-pass coefficients are calculated on the predicted frame by (1). 

The motion estimation would link every pixel in the predicted frame to another pixel 

in the reference frame; therefore, all pixels in the predicted frame are connected. 

[ ] [ ] [ ]( ) 2,~,, nm dndmAnmBnmH −−−= . 
(1)

The temporal low-pass coefficients are generated on the reference frame and the 

pixels on the reference frame can be classified as connected and unconnected. The 

low-pass coefficients of the connected pixel are calculated by: 

[ ] [ ] [ ]nmnnmmnm dndmAddnddmHdndmL −−++−+−=−− ,2,~, . 
(2)

The low-pass coefficients of the unconnected pixels are calculated by: 

[ ] [ ]nmAnmL ,2, = . 
(3)

When decoding, A can be reconstructed by: 

[ ] [ ] [ ]( ) 2,~,, nnmmnmnm ddnddmHdndmLdndmA +−+−−−−=−− . 
(4)

  After reconstruction of A, we can reconstruct B by: 

[ ] [ ] [ ]nm dndmAnmHnmB −−+= ,~,2, . 
(5)

In (4), we can see  and L H  are still necessary for the reconstruction of , and A

H only contains the information of interpolated pixels in A . But this interpolated 

information is also available in . So it is canceled out in L (4). Thus the interpolation 

algorithm has no influence on the perfect reconstruction [13]. 

2.3.3 Spatial Analysis 

Spatial wavelet transform is performed on every residual frame after motion 

compensated temporal filtering. If the video sequence is composed of YUV 

component, then spatial wavelet transform is performed on all the three components. 
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The coefficients of the used filters are shown in Table 2-1. 

index low pass filter high pass filter 

0 0.852699 0.788485 

0.377403 -0.418092 1±  

-0.110624 -0.040690 2±  

3±  -0.023849 0.064539 

0.037829  4±  

Table 2-1 The coefficients of filters. 

2.3.4 Embedded ZeroBlock Coding 

  After temporal and spatial decomposition, the coefficients are coded by “Embedded 

ZeroBlock Coding (EZBC)”. Because of the zeroblock coding and context modeling, 

this coding algorithm can achieve low computational complexity and high 

compression efficiency. 

  The coding process begins with the creation of the quad-tree based set partitioning 

data representations on bit-planes for each individual subband. The bottom of the 

quad-tree level is the pixel level and consists of the magnitude of each subband 

coefficients. Each quad-tree node of the next higher level is then set to the maximum 

value of its four corresponding nodes at the current level, as illustrated in Figure 

2-14(a). By recursively grouping the coefficients, the top quad-tree node would 

correspond to the maximum magnitude of all the coefficients from the same subband. 

  Then the bitplanes of subband coefficients from the most significant bit toward the 

significant bit is progressively encoded. If a node is significant, it is split into four 

descendent nodes. This procedure is recursively down until the bottom level, as 

illustrated in Figure 2-14 (b). Once a pixel is significant, its sign bit is coded. Each 

bitplane coding pass is finished with a bitplane refinement subpass which further 
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refines the significant subband coefficients from the previous bitplane pass. So we can 

send data in the order of their importance in this way. 

Significant nodeQuad-tree
Level 2

Quad-tree
Level 1

Quad-tree
Level 0
(Pixel level)

(a) Quad-tree bulit up (b) Quad-tree splitting

1

1 1

0 0

0 0 0 0

0 0

0 0 0 0

0 0 0 0

1 1

0: Significant node

1: Insignificant node

Codestream
1
1100
00010010

 

Figure 2-14 Quad-tree generation of the image [10]. 

2.3.5 Entropy Coding 

  This is the final process of encoding. At this time, the processed data contains 

motion information and the EZBC coded image data. Because HVSBM uses variable 

block size when doing motion estimation, the information of how the block sizes are 

arranged need to be coded. This information is contained in the quad-tree structure 

and coded in the map representation as shown in Figure 2-15. Then the map code is 

inserted in the encoded bit-stream. 

0: with child
1: no child

MAP Code: 0, 0001, 0000

 

Figure 2-15 Map representation of the quad-tree. 
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The motion vectors of the leaf node blocks are sent into the adaptive arithmetic 

coder following the raster scan shown in Figure 2-16. The scanning order is the 

recursive raster scan of the leaf nodes in the motion vector quad-tree. 

 

Figure 2-16 Motion vector coding scanning trail. 

The arithmetic coder initially sets the probability of all symbols to the same value. 

Then the symbol probability is updated after each symbol is encoded by accumulating 

the occurrence of the symbol during encoding. Combined with EZBC’s quad-tree 

representation of the image data, the strong statistical dependencies among bit-planes, 

resolution scale, and quad-tree levels are exploited [10]. 

2.4 Scalable Video Coding 

  Mass audiences have different viewing requirement and the bandwidth and capacity 

of each server on the network is different. So it is important to meet different 

requirement. The principle idea of the scalable video coding is that the encoded 

bitstream can be flexibly truncated to meet the requirements after the compressed 

bitstream has been generated. 

  Digital video can have many specifications, such as picture size, picture quality, 

and picture playback rate. Because different user may have different requirement on 

these specifications, the ability to scale and choose different combinations of these 
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video specifications is crucial for simultaneous distribution to disparate clients .The 

main concept of the scalable video coding is “generate-once, scale-many”. 

  Most people have more demand on the picture quality. There are three video 

scaling parameters that influence the viewing quality most: 1) the distortion of the 

picture, 2) the spatial resolution of the image, 3) the temporal resolution of the video. 

One major feature of the interframe wavelet coding is the ability to achieve all of the 

three mentioned video scalable features in one single coding algorithm. We will 

introduce these three scaling parameters in the following subsections. 

2.4.1 Rate/SNR Scalability 

The rate/SNR scalability is the ability that a single compressed bitstream can be 

decoded into different coding bit-rates/quality levels. 

The basic element of the interframe wavelet video coding encoded bitstream is 

GOP. It is composed by GOP header, the motion information, and the image data, as 

shown in Figure 2-17. The motion information is required to construct the motion 

fields that are used in the motion compensated temporal filtering so it is usually sent 

without any modifications. The image data is used to construct residual frames and it 

will be truncated to match the requested bit rate. 

GOP Header Motion Information Data Residual Image Data

Video
Header GOP GOP …… GOP

 

Figure 2-17 The interframe wavelet video coding encoded bitstream. 

The rate/SNR scalability is achieved by truncation the image data to match the 

required bit rate. In the EZBC process, the bit-stream is arranged in an embedded 

structure such that information bits are saved in accordance to the importance of the 

data. During the process of the encoding of the EZBC, the information of how many 
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bits are used in the subband is marked as a parameter file, indicating the truncation 

points of the encoded residual image data in the video bit-stream. 

When doing truncating, the total bit rate of the GOP header, motion information, 

and the image data must equal to or less than the required bit rate. So the truncating 

process will find the corresponding truncation point and read the image data before 

the truncation point then package. Figure 2-18 shows the rate/SNR scalability. 

GOP Header Motion Info. Residual Image DataGOP Header Motion Info. Residual Image Data

300kbps
PSNR=32.2 dB

500kbps
PSNR=34.6 dB

1000kbps
PSNR=38.2 dB

 

Figure 2-18 Rate/SNR scalability. 

2.4.2 Spatial Scalability 

  When performing spatial decomposition on the residual image, the image is 

down-sampled to lower resolutions. Therefore, the spatial scalability is inherent in the 

interframe wavelet video coder. However, the spatial scalability is not fine-tuned 

scalable. For an original frame size of m-by-n, the spatial scalability of the image is 

restricted to the size of m/2p-by-n/2p where p is an integer.  

The truncation process keeps the information of subbands that are lower than or 

equal to the required spatial resolution and truncates the other subbands. 

Upon decoding, the motion vectors of the motion information are scaled by the 

factor of p, regarding the rescaled size. The residual image data are then motion 

compensated temporal synthesized with the scaled set of motion vectors to reconstruct 
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the original sequence.  

 

Figure 2-19 Spatial scalability. 

2.4.3 Temporal Scalability 

  The interframe wavelet transform will create a temporal pyramid after MCTF. In 

order to reduce the amount of transform data, we can discard the temporal high-pass 

frame, as that shown in Figure 2-20(a). To achieve temporal scalability, the truncation 

process keeps the subset of images that are needed to generate the required level of 

temporal pyramid, as that shown in Figure 2-20(b). 
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Figure 2-20 Temporal scalability. 

  If motion estimated motion trajectory is not perfectly matched to the original video 

sequence, the temporal filtering process might generate some motion artifacts [14]. 
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Chapter 3 
3D Subband Video Coding 
Using Barbell Lifting 
  In 68th MPEG meeting (March, 2004, Munich), MSRA proposed its MCTF 

structure and 3D ESCOT entropy coder. The 3D ESCOT entropy coder performs 

almost as well as the 3D EBCOT that JPEG2000 used. Figure 3-1 shows the block 

diagram of this coding structure [15]. This proposed video coding algorithm has two 

different concepts. They are Barbell lifting and 3D ESCOT entropy coding. The 

motion estimation scheme of this video coding algorithm is not HVSBM but a motion 

estimation scheme used in H.264. We will describe them in the following subsections. 

 
Figure 3-1 The block diagram of the 3D subband video coding using Barbell lifting 

[15]. 

3.1 Barbell Lifting 

  MSRA proposes this Barbell lifting algorithm for doing temporal decomposition 

[15]. Barbell lifting uses a set of pixels instead of a pixel as the input, as that shown in 

Figure 3-2. The Barbell lifting can provide perfect reconstruction, sub-sample 

decomposition but still with critically sampled transformed coefficients. 
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t

S0 S1 S2

)(ˆ 000 Sfs =

1s

a a

)(ˆ 222 Sfs

0ŝ 2ŝ
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Figure 3-2 The Barbell lifting [15]. 

  Assume that S0, S1, and S2 are three consecutive frames in a video sequence. 

Functions  and  are called as Barbell functions and they can be any linear 

or non-linear functions that take any pixels in the same frames as variables. The 

Barbell functions can also vary from pixel to pixel. Therefore the basic Barbell lifting 

step is formulated as: 

()0f ()2f

210 ˆˆ sassat ×++×= , (6)

where  is a filter parameter. a

The Barbell lifting includes two stages. They are prediction stage and update stage. 

The prediction stage is applied to the video sequence first. It takes the original input 

frames to generate the high-pass frames, as shown in Figure 3-3. 
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Figure 3-3 The prediction stage of the Barbell lifting. 

Then the update stage uses the available high-pass frames and the even frames to 

generate the low-pass frames, as shown in Figure 3-4. 
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Figure 3-4 The update stage of the Barbell lifting. 

3.1.1 The Prediction Stage 
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Figure 3-5 The Barbell functions used in the prediction stage. 



 

Figure 3-5 shows some examples of Barbell functions used in the prediction stage and 

Figure 3-5(a) is the integer motion alignment case and the Barbell function of this 

case is: 

),( yyxxFf i Δ+Δ+= , (7)

where  is the motion vector of current pixel (x, y) and  is the previous 

frame. 

),( yx ΔΔ iF

Figure 3-5(b) is the fractional-pixel motion alignment case and the Barbell function of 

this case is: 

⎣ ⎦ ⎣ ⎦ ),(),( nyymxxFnmf
m n

i +Δ++Δ+= ∑∑α , (8)

where  denotes the integer part of ⎣ ⎦ xΔ  and yΔ . ),( nmα  is the factor of the 

interpolation filter. 

Figure 3-5(c) is the multiple-to-one mapping case and the Barbell function of this 

case is: 

∑∑ Δ+Δ+=
m n

nmi yyxxFnmf ),(),(α , (9)

where ),( nmα  is the weighting factor for each connected pixel. 

Figure 3-5(d) shows a special case that the current pixel (x, y) can use its motion 

vector  and the motion vectors of neighboring pixels to get multiple 

predictions from the previous frame and generate a new prediction. The Barbell 

function of this case is: 

),( yx ΔΔ

∑ ∑
±= ±=

Δ+Δ+=
1,0 1,0

),(),(
m n

nmi yyxxFnmf α , (10)

where ),( nmα  is the weighting factor.  

3.1.2 The Update Stage 

The prediction and update stages may has mismatch when pixels in different frames 

are aligned with motion vectors at fractional-pixel precision or without one-to-one 
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mapping. Generally speaking, the update and prediction stages use the same motion 

vector for saving overhead bits to code motion vectors, i.e., the motion vector of the 

update stage is the inverse one of the prediction stage. Figure 3-6 shows the mismatch 

problem. 

Fi Fj

(xm+1, yn+1)

(xm, yn)

(xm-1, yn-1)

(xm+Δxm, yn+Δyn)
(xm+1, yn+1)

(xm, yn)

(xm-1, yn-1)

(xm-2, yn-2) (xm-2, yn-2)
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Figure 3-6 The mismatch problem of motion in the prediction and update stages. 

As shown in Figure 3-6, the mismatch problem is that the prediction has the path 

from  to  but the update has the path from 

 to . 

( , )i m nF x y ( ,j m m n nF x x y y+ Δ + Δ )

( , )j m nF x y ( , )i m m n nF x x y y−Δ −Δ

  Barbell lifting can solve this mismatch problem. In the update stage, the obtained 

high-pass coefficients are likely distributed to those pixels that are used to calculate 

the high-pass coefficient in the prediction stage. Assuming that equation (9) is the 

Barbell function used in the prediction stage now. We can calculate the high-pass 

coefficients by combining equations (6) and (9). Then we calculate the high-pass 

coefficients by: 

∑∑∑ Δ+Δ++=
i m n

nmijiijj yyxxFnmyxayxFyxh ),(),,,(),(),( ,α , (11)

where ),,,(, nmyxjiα  is the Barbell parameter specified by the coordination x, y, m, n. 

Then we can calculate low-pass coefficients in the same way by: 
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∑∑∑ Δ+Δ++=
j m n

nmjjijii yyxxhnmyxbyxFyxl ),(),,,(),(),( ,α . (12)

It means that the high-pass coefficient will be added back exactly to the pixels that are 

predicted. 

For the above example, the predicted weight from  to  is 

non-zero. So in the proposed technique, the update weight from  to 

, which equals to the predict weight, is also not zero.  

),( 11 −− nmi yxF ),( nmj yxF

),( nmj yxF

),( 11 −− nmi yxF

3.2 Spatial Decomposition 

 
Figure 3-7 The frame after 3 level spatial decomposition. 

After temporal decomposition, the spatial decomposition is applied to each created 

residual frame. The filter used here is the Daubechies 9/7 filter and the analysis filter 

coefficients are shown in Table 3-1 [35]. The coefficients of the Daubechies 9/7 

synthesis filter are shown in Table 5-1 [35]. 

index Analysis low pass filter Analysis high pass filter 

0 0.6029490182363579 1.115087052456994 

0.2668641184428723 -0.5912717631142470 1±  

-0.07822326652898785 -0.05754352622849957 2±  

3±  -0.01686411844287495 0.09127176311424948 

0.02674875741080976 4±   
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Table 3-1 The coefficients of the Daubechies 9/7 analysis filters. 

  The spatial decomposition can also be done on the LH, HL, and HH subbands of 

the first level decomposition. Thus we can get the important information in those 

subbands and code them. 

3.3 Multi-Layer Motion Estimation and Coding 

The video coding algorithm proposed by MSRA dose not use HVSBM in motion 

estimation. It uses a motion estimation method adopted in H.264 but makes some 

changes to achieve motion information scalability. 

 

Figure 3-8 Multi-layer motion estimation and coding. 

  It uses multi-layer motion estimation and coding as shown in Figure 3-8. It 

generates an embedded bitstream for motion, which consists of one base layer and a 

few enhancement layers. A coarse motion field can be reconstructed from the base 

layer and can be successively refined by subsequent enhancement layers. The motion 

vectors of the base layer are large and coarse and may be used for low bit rates. The 

motion vectors of enhancement layer are small with details and often used for high bit 

rates. 

3.4 3D ESCOT 

After temporal and spatial decomposition, the generated coefficients will be coded 

with 3D Embedded Subband Coding with Optimal Truncation (3D ESCOT) [16]. The 
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3D ESCOT is in principle very similar to EBCOT used in JPEG2000 [9], which deals 

with 2D image coding. We can call 3D ESCOT as 3D EBCOT because it is an 

extension of EBCOT used to do 3D dimensional signal coding. 3D ESCOT can offers 

high compression efficiency and other functionalities, such as error resilience and 

random access. 

3D ESCOT takes advantages of the orientation-invariant property of wavelet 

subbands to reduce the number of context and codes each subband independently so 

each subband can be decoded independently. Because of this feature, 3D ESCOT can 

achieve flexible spatial/temporal scalability and R-D optimization can be done within 

subbands to improve compression efficiency. 

Each subband is divided into 3D coding blocks and these blocks are coded 

independently. 

For each coefficient x[i, j, k] at position [i, j, k], we assign it a binary-valued state 

variable σ[i, j, k], which indicates the significance of this coefficient. χ[i, j, k] is 

defined as the sign of the x[i, j, k]. It is 0 when the sample is positive and 1 when the 

sample is negative. σ[i, j, k] is initialized to 0 and toggled to 1 when the x[i, j, k]’s 

first non-zero bit-plane value is encoded. There are three coding operations and when 

they will be used depends on σ[i, j, k]. Zero coding (ZC) and sign coding (SC) will be 

used to code x[i, j, k] if σ[i, j, k] = 0 and magnitude refinement (MR) will be used if 

σ[i, j, k] = 1. We will introduce these three coding operations as follows. 

3.4.1 Zero Coding 

If a coefficient x[i, j, k] is not yet significant in the previous but-planes, i.e., σ[i, j, k] 

= 0, ZC is used to code the new information about whether it becomes significant or 

not in the current bit-planes. ZC uses significant information about x[i, j, k]’s 

immediate neighbors as the context to code the its own significant information. There 



 

are four types of neighbors as shown in Figure 3-9. 

Current sample

Horizontal Neighbor

Vertical Neighbor

Temporal Neighbor

Diagonal Neighbor

 

Figure 3-9 Four types of coding neighbors for zero coding. 

1.  Immediate horizontal neighbors. The number of these neighbors is 2 and the 

number of significant ones is denoted by h, 0≦h≦2. 

2. Immediate vertical neighbors. The number of these neighbors is 2 and the number 

of significant ones is denoted by v, 0≦v≦2. 

3. Immediate temporal neighbors. The number of these neighbors is 2 and the 

number of significant ones is denoted by a, 0≦a≦2. 

4. Immediate temporal neighbors. The number of these neighbors is 12 and the 

number of significant ones is denoted by d, 0≦d≦12. 

Table 3-2 shows the context assignment map of ZC. If the conditions of two or more 

rows are satisfied in the same time, the low-numbered context is selected. 

LLL and 

LLH 

sub-band 

h 2 1 1 1 0 0 0 0 0 0 0 

v x ≥1 0 0 2 1 0 0 0 0 0 

a x x ≥1 0 0 0 ≥1 0 0 0 0 

d x x x x x x x 3 2 1 0 

context 0 0 1 2 3 4 5 6 7 8 9 
 

LHH 

sub-band 

h 2 1 1 1 1 1 0 0 0 0 0 

v+a x ≥3 ≥1 ≥1 0 0 ≥3 ≥1 ≥1 0 0 

d x x ≥4 x ≥4 x x ≥4 x ≥4 x 

context 0 0 1 2 3 4 5 6 7 8 9 
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HHH 

sub-band 

d ≥6 ≥4 ≥4 ≥2 ≥2 ≥2 ≥0 ≥0 ≥0 ≥0 

h+v+a x ≥3 x ≥4 ≥2 x ≥4 ≥2 1 0 

context 0 1 2 3 4 5 6 7 8 9 
 

Table 3-2 Context assignment map for ZC. 

3.4.2 Sign Coding 

SC is called to code χ[i, j, k], which is the sign of coefficient x[i, j, k], if x[i, j, k] 

becomes significant in the current bit-plane. SC also utilizes high-order context-based 

arithmetic coding to compress the sign symbols. The context models of arithmetic 

coding are based on three quantities hs, vs and ts. They are defined as follows: 

(13)hs=min{1, max{-1, σ[i-1,j,k] × (1-2χ[i-1,j,k])+ σ[i+1,j,k]×(1-2χ[i+1,j,k])}}, 

 

(14)vs=min{1, max{-1, σ[i,j-1,k] × (1-2χ[i,j-1,k])+ σ[i,j+1,k] × (1-2χ[i,j+1,k])}}, 

 

ts=min{1, max{-1, σ[i,j,k-1] × (1-2χ[i,j,k-1])+ σ[i,j,k+1] × (1-2χ[i,j,k+1])}}. (15)

Table 3-3 shows the context assignment map and sign prediction map of SC. χ̂  is 

the sign symbol prediction under the given context and the symbol sent to the 

arithmetic coder is χ̂ ♁χ 

hs=-1 vs -1 -1 -1 0 0 0 1 1 1 

ts -1 0 1 -1 0 1 -1 0 1 

χ̂  0 0 0 0 0 0 0 0 0 

context 0 1 2 3 4 5 6 7 8 
 

hs =0 vs -1 -1 -1 0 0 0 1 1 1 

ts -1 0 1 -1 0 1 -1 0 1 

χ̂  0 0 0 0 0 1 1 1 1 

context 9 10 11 12 13 12 11 10 9 
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hs =1 vs -1 -1 -1 0 0 0 1 1 1 

ts -1 0 1 -1 0 1 -1 0 1 

χ̂  1 1 1 1 1 1 1 1 1 

context 8 7 6 5 4 3 2 1 0 
 

Table 3-3 Context assignment and sign prediction map for SC. 

3.4.3 Magnitude Refinement 

  MR is called to code new information about x[i, j, k] if σ[i, j, k] was switched to 1 

in the previous bit-plane, i.e., it becomes significant. It uses three contexts for 

arithmetic coding. 

1.  The context of x[i, j, k] is 0 if MR not yet used for x[i, j, k]. 

2. The context of x[i, j, k] is 1 if MR has been used for x[i, j, k] and x[i, j, k] has at     

least one significant neighbor by now. 

3. Otherwise, the context is 2. 

3.4.4 Fractional Bit-Plane Coding 

The practical coding gain of 3D ESCOT is higher than 3D SPIHT because SC and 

MR have high-order context modeling and the use of fractional bit-plane coding [16]. 

The fractional bit-plane coding can provides a practical means of scanning the 

wavelet coefficients within each bit-plane for rate-distortion (R-D) optimization at 

different rates. There are three different fractional bit-plane passes and the scanning 

order in each of them is along the i-direction firstly, then the j-direction and the 

k-direction lastly. 

3.4.4.1 Significance Propagation Pass 

 36

If the coefficients which are not yet significant but have “preferred neighborhood” 

are processed by this pass. A coefficient has a “preferred neighborhood” if and only if 
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the coefficient has at least one significant immediate diagonal neighbor for HHH 

subband or horizontal, vertical, temporal neighbor for the other types of subband. For 

these coefficients, we apply the ZC to code their significance information in the 

current bit-plane of this coefficient. If the coefficient becomes significant in the 

current bit-plane, then SC is used to code the sign. 

3.4.4.2 Magnitude Refinement Pass 

If the coefficient became significant in the previous bit-plane, it will be coded in 

this pass. The binary bits corresponding to these coefficients in the current bit-plane 

are coded by MR. 

3.4.4.3 Normalization Pass 

It is used to code the coefficients if it was not coded in the previous two passes. 

Because these coefficients are not yet significant, they are only processed by ZC and 

SC. 

3.5 Bitstream Truncation and Scalability 

  After 3D ESCOT on each subband, an embedded bitstream is generated for each 

subband. In order to satisfy the requested bit rate, bitstreams corresponding to 

different subbands will be truncated and multiplexed together to construct final 

bitstream then transmitted to the receiver. The rate control problem is how to truncate 

and multiplex bitstreams to create the final bitstream that achieves the best R-D 

optimization. 

  The basic problem of rate control is that given a target bit rate R0, how to construct 

a bitstream that satisfies the bit rate constraint and minimizes the overall distortion. 

Shoman and Gersho proposed a Lagrange’s theorem that can solve this problem [17]. 



 

Taubman extends this algorithm to the rate control of EBCOT [9].  

  EBCOT partitions the subbands representing the image into a collection of 

relatively small code-blocks, BBi, whose embedded bitstreams may be truncated to the 

rate . The contribution from Bi
n
iR B  to the distortion in the reconstructed image is 

denoted , for each truncation point n. Assuming that the distortion of each 

code-block is independent and additive. Thus the overall reconstructed image 

distortion D can be represented by: 

n
iD

∑=
i

n
i

iDD , (16)

where ni denotes the truncation point selected for code-block BBi. 
n
iD  is calculated by: 

∑
∈

−=
i

i
Bk

n
iib

n
i kskswD 22 ])[][( , (17)

where  is the 2D sequence of subband coefficients in code-block B][ksi B

i

i.  is 

the quantized representation of these coefficients associated with truncation point n, 

and  is the L2-norm of the wavelet basis functions for the subband, b

][ks n
i

bw i, to which 

code-block BiB  belongs.  

R-D optimization algorithm should select truncation points ni for each code-block 

BBi such that the sum of  or  meets the constraint imposed by Rin
iR in

iD max or Dmax 

and also the sum of  or  is the minimum value. They are described as 

follows: 

in
iD in

iR

∑ ==
i

n
i DDD i

min , given ∑ ≤=
i

n
i RRR i

max , (18)

or 

∑ ==
i

n
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min , given ∑ ≤=
i

n
i DDD i

max . (19)
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Recently, several R-D optimization algorithms have been proposed to solve this 



 

problem [18]. It is noticeable that all these algorithms are applicable to convex curves. 

Convex curves are the curves that the slopes are strictly decreasing. Some R-D 

optimization algorithms are based on Lagrange’s theorem, such as the Lagrange 

multiplier used in EBCOT [9]. Lagrange’s theorem states that the sum of continuous 

functions with boundary condition is optimized at the points with equal slopes as 

shown below: 

∑ +=+
i

n
i

n
i

ii RDRD )())()((
λλ

λλλλ . (20)

Any set of truncation points, { }, which minimizes λ
in ))()(( λλλ RD +  for some λ  

is optimal in the sense that the distortion cannot be reduced without increasing the 

overall rate or vice-versa. If we can find a value of λ  such that the truncation points 

minimize ))()(( λλλ RD +  yields max)( RR =λ , then this set of truncation points 

must be an optimal solution to the R-D algorithm based on Lagrange’s theorem. 

  Because the number of truncation points in a code-block is finite, we can not find 

the value of λ  such that )(λR  exactly equals to . However, since the 

code-block in EBCOT is very small such that the total number of truncation points is 

very large, we can find the smallest value of 

maxR

λ  such that max)( RR ≤λ . 

  In order to find the optimal truncation point sets  for any given λ
in λ , we need to 

know the rate-distortion (R-D) pair of each truncation points. λ  can be viewed as 

the R-D slope of the optimal truncation point sets. We can find the R-D slope of each 

truncation point by calculating the bitstrean length and distortion at that point. Thus 

we can construct an operational R-D curve for each code-block.  

1) Assume n is the number of the truncation points, and 0≦j≦n. 

2) For j = 0, 1, 2, …, n, 0 is the beginning of the code-block, not a truncation point. 

The R-D slope of each truncation point j is 1

1

−

−

−
−

=
Δ
Δ

j
i

j
i

j
i

j
i

j
i

j
i

RR
DD

R
D

, where  is the j
iR
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accumulative bit length of truncation point j in code block i and  is the 

accumulative distortion of truncation point j in code block i.  

j
iD

Generally speaking,  and 

the distortion when the coefficients of the code-block 

are all 0. We just need to package the truncation points with the R-D slope bigger than 

or equal to 

0... 021 =≥≥≥≥ −−
i

j
i

j
i

j
i RRRR

=≤≤≤≤ −− 021 ... i
j

i
j

i
j

i DDDD

λ , then we can achieve the optimal R-D. 

  In 3D ESCOT, the end of each fractional bit-plane is a candidate truncation point. 

The R-D slope of each truncation points can be obtained by calculating the bitstrean 

length and distortion [16]. Then we can construct an operational R-D curve for each 

subband and find its convex hull. All valid truncation points must lie on this convex 

hull such that the R-D optimality at each truncation point can be guaranteed. If the 

truncation point does not have a strictly decreasing R-D slope (i.e., it has larger 

distortion than the previous truncation point), it will be discarded. In order to find the 

best threshold value λ , we first set an arbitrary value of λ . If the R-D slope of this 

truncation point is bigger than or equal to λ , this truncation point will be packaged. 

After we process all of the truncation points, we obtain the final bitstream. If the bit 

rate of this bit-stream is larger than that of requested, the value of λ  will be set 

larger to find the final bitstream again. Otherwise, the value of λ  will be set smaller. 

We use this method recursively to find the final bitstream that has bit rate smaller than 

or equal to the requested bit rate. 
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Chapter 4 
Human Visual System 
4.1 Human Vision 

 

Figure 4-1 Cross-section of human eye [19]. 

Figure 4-1 shows the cross-section of a human eye [19]. Through the optics of the eye, 

the visual input is projected onto the retina, the neural tissue at the back of eye 

composed of the photoreceptor mosaic [20]. The photoreceptors sample the image and 

convert the input image to the signals that can be interpreted by the visual cortex of 

the brain. Photoreceptors have Rhodopsin which is very sensitivity to light. When 

Rhodopsin receives the energy of light, it will decompose into Vitamins A, Protein, 

and impulse signal. The impulse signal will be processed by the Bipolar cell and 

Ganglion cell then passed through optical nerves into the brain as shown in Figure 4-2 

[21]. The Vitamins A, Protein, and Nutrition will be combined together and converted 
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to Rhodopsin by the effect of Enzyme. Then the Rhodopsin can be used again. 

 

Figure 4-2 The process of the visual input signal [21]. 

  There two types of photoreceptors, rods and cones. Rods are relatively long and 

thin. They are used to view at lower several orders of magnitude of illumination, i.e., 

under scotopic conditions. Cones are relatively shorter and thicker and they are less 

sensitive than rods. They are used to view at the higher 5 to 6 orders of magnitude of 

illumination, i.e., under photopic conditions. The cones are concentrated in the fovea, 

the region of highest visual acuity, which covers approximately two degrees of visual 

angle on the retina. The cones are also responsible for color vision.  

There three types of cones. They are L-cones, M-cones, and S-cones. L-cones are 

also called Red cones and they are sensitive to long wavelengths. M-cones are also 

called Green cones and they are sensitive to medium wavelengths. S-cones are also 

called Blue cones and they are sensitive to short wavelengths. Figure 4-3 shows the 

relative sensitivity of each photoreceptor [21]. 
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Figure 4-3 Relative sensitivity of each photoreceptor [21]. 

4.2 Color Representation 

Colors do not exist in natural world. To human perception, colors are related to the 

wavelength of light. As describes above, the retina of human eye contains 3 different 

color receptors: red, green, and blue. The different cones have different sensitivity 

curve to light of different frequency. Thus, the combination of different sensitivity 

curve to light can produce different color recognition. Due to this structure of human 

eye, any color appeared to human eye can be specified by a weighted combination of 

three so-called primary colors RGB. For the purpose of standardization, the CIE 

(Commission Internationale de L'eclairage─ International Commission on 

Illumination) chooses the following specific wavelength values to the three primary 

colors: blue (B) = 435.8nm, green (G) = 546.1nm, and red (R) = 700.0nm. 

Trichromatic theory says that any color S can be represented as a combination of 
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these 3 primaries R, G, and B.  

S = Rs·R + Gs·G + BBs·B. (21)

Any 3 independent colors can be selected as primaries as long as one is not a mix 

of the other two. Different sets of primaries are related by linear transformations. 

  There several color models, such as CIE RGB, CIE XYZ, CIE YUV, and CIE 

L*a*b*. We introduce CIE RGB and CIE XYZ here. 

1. CIE RGB: 

1) R, G, B = three spectral primary source. 

2) Reference white: R = G = B = 1. 

3) There exist negative tristimulus values. 

4) The color is fully dependent on the wavelength. The three fixed RGB components 

acting alone cannot generate all spectrum colors (pure colors). This is an 

unresolved defect for color representation. 

2. CIE XYZ 

1) All color matching functions are positive. 

2) Y = luminance 

3) Reference white: X = Y = Z = 1. 

4) This model is modified from RGB model such that all spectral tristimulus values 

are positive. 

Generally Speaking, Each color space can transform to another space. Equation 

(22) is the transformation from CIE RGB to CIE XYZ and equation (23) is CIE XYZ 

to CIE RGB. 
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4.3 Contrast Sensitivity 

Human perception is more sensitive to the contrast of the luminance than the 

absolute value of the luminance. But due to the complexity of natural image, a 

common definition of contrast suitable for all conditions does not exist. Generally 

speaking, there are three types of contrast definitions widely used. 

  In the case of a periodic pattern of symmetrical deviations ranging from Lmin to Lmax, 

Michelson contrast is generally used: 

minmax

minmax

LL
LL

CM +
−

= . (24)

  When the pattern consists of a single increment or decrement LΔ  to an otherwise 

uniform background luminance L, Weber contrast is often used: 

L
LCW

Δ
= . (25)

  These two definitions of contrast are not appropriate for measuring the contrast of 

complex images. If there are some very bright or very dark points in the image, these 

points will determine the contrast of the whole image. Furthermore, human contrast 

perception varies with the local average luminance. Peli proposed a local band limited 

contrast measure to solve these problems [22]: 

),(
),(

),(
yxLP
yxBP

yxCi
i

i= , (26)

where  is the bandpass image of band i at location(x, y), and  

contains the energy below band i at location (x, y), i.e., the total response at this 

location of all the bands below the band i. Modifications of this contrast definition 

have been used in a number of vision models and are in good agreement with 

),( yxBPi ),( yxLPi
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psychophysical experiments on Gabor patches [38]. 

  We can describe contrast sensitivity as the function of spatial frequency. This 

function is called contrast sensitivity function (CSF). Contrast sensitivity is defined as 

the inverse of contrast threshold. The contrast threshold is the minimum contrast 

necessary for an observer to detect the target. 

Mannos and Sakrison first applied the HVS to image coding. They model the HVS 

as a nonlinear point transform followed by the modulation transform function (MTF) 

of the form [23]: 

(27)))114.0(exp()114.0192.0(6.2)( 1.1fffH −+= . 

Nill proposed a new type of MTF that can be used for DCT [24]: 

(28))18.0exp()45.02.0()( fffH −+= . 

Ngan et al proposed another new MTF [25]: 

(29))29.0exp()69.031.0()( fffH −+= . 

Except for the dependence on spatial frequency, the contrast sensitivity also 

depends on temporal frequency. Thus we can describe contrast sensitivity as the 

function of spatial frequency and temporal frequency. Kelly proposed a contrast 

sensitivity function (CSF) and it is generally used [26]: 

(30)
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3
log(3.71.6()

9.45
)2(4
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fff
ffffCSF +×

+−
=

π
π . 

From this CSF, we can see that human has lower sensitivity at low and high spatial 

(temporal) frequency but higher sensitivity at medium spatial (temporal) frequency. 

4.4 Masking Effect 

If a stimulus can be visible by itself but can not be detected due the presence of 

another stimulus, this effect is called masking effect. On the other hand, the opposite 
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effect, facilitation, occurs when a stimulus can not be visible itself can be detected due 

to the presence of another stimulus. Masking effect explains why similar coding 

artifacts are disturbing in certain regions of an image while they are hardly noticeable 

elsewhere. There two types of masking effect, spatial masking and temporal masking. 

Spatial masking is due to the non-uniformity of the background luminance. 

Because of this masking effect, the noise is more visible in the flat or texture-less 

areas and less visible in region with edges and textures. So the coding errors may be 

less visible around sharp edges. 

  Temporal masking is due to the temporal discontinuity in intensity, like scene 

change. The error visibility threshold is increased with the increasing interframe 

luminance difference. Sometimes, if moving objects are not tracked by eyes, the loss 

of perceived spatial resolution is substantial. 

4.5 Just-Noticeable Distortion 

  The definition of just-noticeable distortion (JND) is the visibility threshold of 

distortion and the reconstruction errors below this threshold are imperceptible [27]. 

Sometimes we use the inverse of the sensitivity as the threshold. Human eyes are 

more sensitive to luminance contrast than to absolute luminance value. The detecting 

ability of human eyes to the difference between objects and background depends on 

average value of background luminance. Weber’s law said that the ration of just 

noticeable luminance difference to stimulus’ luminance is almost constant if the 

luminance of a test stimulus is just noticeable from the surrounding luminance. The 

noise in the dark areas is less perceptible than that in the regions of high luminance. 

Because of JND, we can discard the signal below this threshold when transform the 

encoded bitstream. So we can decrease the amount of data. On the other hand, we can 

put some special signal like watermarking in the bitstream that will not be detectable. 



 

  The JND profile of a still image is a function of local signal properties, such as 

background luminance, activity of luminance changes and dominant spatial frequency. 

JND is defined below [28]: 

WyHxyxbgfyxmgfyxJNDS <≤<≤= 0,0))},,(()),,((max{),( 21 , (31)

where H and W denote the height and width of the still image. f1 represents the error 

visibility threshold due to texture masking and f2 represents the error visibility 

threshold due to average background luminance. mg(x, y) denotes the maximal 

weighted average of luminance gradients around the pixel at location (x, y) and bg(x, y) 

is the average background luminance around the pixel at location (x, y). 

mg(x, y) of the pixel at (x, y) is determined by calculating the weighted average of 

luminance changes around the pixel in four directions [29], as shown as follows: 
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i j
kk WyHxyxGjyixpyxgrad , (33)

where p(x, y) denotes the pixel at (x, y). Four operations, Gk(i, j) for k = 1,2,3,4 and i, j 

= 1,2,3,4,5 are shown in Figure 4-4 [29]. 

 

Figure 4-4 Operations for calculating the weighted average of luminance changes in 

four directions. 

The value of f1(mg(x, y)) is calculated as shown below: 
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WyHxyxmgyxmgf <≤<≤×= 0,0,),()),((1 β , (34)

where the value of β is get from a subject test and the value is 2/17. 

bg(x, y) of the pixel at (x, y) is calculated by a weighted low-pass operator, B(i, j), i, 

j = 1,2,3,4,5, as that shown in Figure 4-5 [29]. bg(x, y) is calculated by: 

∑∑
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i j
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Figure 4-5 The operator for calculating the average background luminance. 

The relationship of between visibility threshold and the average background bg(x, y) 

is shown in Figure 4-6 [28]. 

 

Figure 4-6 Error visibility thresholds due to background luminance in the spatial 

domain [28]. 

  Sometimes we want to get the JND on the spatial-temporal domain. We can 
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simplify the process to get this value by multiply spatial JND and temporal JND, as 

that shown below [28]: 

),,()),,((),,( 3 nyxJNDnyxildfnyxJND STS ⋅=− , (36)

where ild(x, y, n) is the average interframe luminance difference between the nth and 

(n-1)th frame at pixel (x, y), as shown below: 

2
)1,,(),,()1,,(),,(),,( −−+−−

=
nyxbgnyxbgnyxpnyxpnyxild  (37)

The empirical results of f3 for all possible interframe luminance difference are shown 

in Figure 4-7 [28]. 

 

Figure 4-7 Error visibility threshold in the spatial-temporal domain, which is modeled   

as a scale factor or interframe luminance difference and the JND value in 

the spatial domain [28]. 

It can be seen that the error visibility threshold increases with the increasing 

interframe luminance difference. This coincides with the temporal masking effect that 

the sensitivity of human vision is decreased after scene change and large temporal 

luminance difference. 
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Chapter 5 
Rate Control Algorithm 
Based on HVS 
5.1 Transform R-D Slope Representation 

  The R-D slope of the truncation point j in the code block i is usually represented in 

the value of 1

1
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 where  is the accumulative bit length of 

truncation point j in code block i and  is the accumulative distortion of truncation 

point j in code block i. Generally speaking, the value of 
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 is very large and the 

difference of this value at each truncation point is very large too. 

  We can transform the R-D slope of each truncation point to another representation 

type but keep their relative orders the same. We transform the value of j
i

j
i

R
D

Δ
Δ

 to an 

exponential representation and use the exponent as the new R-D slope value of each 

truncation point, as shown in equation (38). 
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  The new R-D slope of each truncation point is smaller and the relative difference of 

them is smaller too. The most important thing is that the relative order of the new R-D 

slopes of truncation points is kept the same as the original R-D slopes. We use this 

new value as the R-D slope value for each truncation point and do rate control on this 

new R-D slope. 
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5.2 Weighting Factor 

Human vision has different sensitivity on different spatial frequency, so we need to 

have higher fidelity on the low spatial frequency data, which has higher sensitivity 

and lower fidelity on the high spatial frequency data, which has lower sensitivity. For 

this reason, we can convert the mean-squared error (mse) distortion to the “visual 

distortion” in doing rate control. In other words, we can multiply the R-D slope of 

each truncation point by a weighting factor such that the value of weighted R-D slope 

is proportional to the importance to human vision. The target is that if we use the new 

R-D slope value to do rate control, we can probably achieve higher visual quality. 

Here, we present a weighting factor only for the Y component of each frame. 

Discrete wavelet transform can decompose a frame into different spatial subbands. 

Every subband has its own minimum visibility threshold and thus its own relative 

visual importance. For this reason, the weighting factor w can be decomposed into 

two weighting factors and they are intra-subband weighting factor w1 and 

inter-subband weighting factor w2. The weighting factor w is: 

21 www ∗=  (39)

5.2.1 Intra-Subband Weighting Factor 

  The intra-subband weighting factor w1 is used to decide the visibility of the 

truncation point in the same spatial subband. It does not consider the visibility of the 

truncation point in the other spatial subbands. To find the visibility of the error of a 

truncation point, we need to know the just-noticeable-distortion (JND) of that 

subband. 

  Watson gives the minimum threshold of luminance of each spatial subbands 

without masking effect [30]. This minimum threshold can be used only on the Y 

 52



 

component of the image. The minimum threshold y of luminance of each subbands is 

given by [30]: 

(40)2
0 ))log()(log()log()log( fgfkay θ−⋅+= , 

where the value of a is 0.495, k is 0.466, and f0 is 0.401. The value of  is 1.501, 1, 

and 0.534 for LL, LH/HL, and HH subbands. f is spatial frequency and the value is 

different for different viewing condition. Under the computer monitor viewing 

condition, the display resolution r is 16 pixels/degree.  

θg

  The size of our test sequence is 288 pixels in height and 352 pixels in width. The 

viewing distance is about 3.5 times of the height, i.e., 1000 pixels. The visual angle in 

height of this condition is 2*tan-1(288/(1000*2)) = 16.38 degree. The display 

resolution in height is 288/16 = 17.58 pixels/degree. The visual angle in width of this 

condition is 2* tan-1(352/(1000*2)) = 19.96 degree. The display resolution in height is 

352/20 = 17.6 pixels/degree. So the display resolution r is about 16 pixels/degree.  

The spatial frequency of each DWT level λ is  cycles/degree. λ−∗= 2rf Figure 

5-1 shows a frame after three level of DWT and the spatial frequency of each 

subbands. It also shows the minimum threshold y calculated by equation (40) when 

the maximum spatial frequency is 16.0 cycles/degree without masking effect of each 

subbands. 

We conclude the step of calculating the minimum threshold y as follows. 

1) Find out the corresponding spatial frequency of each level λ by . λ−∗= 2rf

2) Find out the corresponding value of  of each corresponding orientation. θg

3) Use equation (40) to calculate the minimum threshold y of each subband. 
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Figure 5-1 The level, orientation, spatial frequency, and minimum threshold of each 

           DWT subbands. 

After we get the minimum threshold of each subband, we need to consider the 

contrast masking effect of each subband. Peli proposed a definition of contrast that 

can be used in complex images [22], as shown in equation (26). The problem now is 

the contrast sensitivity for each subband. If we assume the local luminance to be 

constant across the whole image and equal to the average value of the coefficients in 

the lowest spatial subband [31], we can calculate the contrast at each location (i, j) in 

the frame in a simplified way by: 

)(
),(),(

subbandspatiallowestCE
jiCjic
−−

= , (41)

where  is the average of the coefficients in the lowest spatial 

subband and C(i, j) is the associated wavelet coefficient at location (i, j). In the case 

shown in 

)( subbandspatiallowestCE −−

Figure 5-1,  is the average of the coefficients in the )( subbandspatiallowestCE −−
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subband (3, LL). Then, c(i, j) is the contrast of the location (i, j) in the frame. 

  The visibility of a signal can be reduced by the presence of another signal, i.e., the 

contrast masking effect. The masking function is shown in Figure 5-2 and it can be 

the same for every subband [32].  
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Figure 5-2 The contrast masking function. 

  The contrast masking function can be formulated by: 

CT(CM) = CT0,     if CM < CM0, (42)

and 

CT(CM) = CT0(CM / CM0)ε, (43)
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where CM is the masking contrast value, CT is the threshold elevation value, ε is the 

slope. We can see that the contrast masking function is divided into a threshold range, 

where the target detection threshold is independent of the masking contrast, and a 

masking range, where it grows with the power of the masking contrast. The slope ε is 

one for all subbands, which corresponds to experimentally derived slopes for 

phase-incoherent (noise) masking [32]. We generally assume that CT0 = CM0 [33] and 
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it is confirmed by the experiments [34]. The values of CT0 and CM0 are all 1 [32]. 

  If we normalize both the test threshold and masking contrast axes by the test 

frequency’s threshold in a uniform field (i.e., 1/csf(f)), Figure 5-2 can be used to 

describe all frequencies, provided the test signal and masking signal are the same 

frequency [32]. The relationship between the threshold elevation CT (f, CM) and real 

threshold value T(f, C(f)) is [32]: 

CT (f, CM) = T(f, C(f))‧csf(f) = T(f, C(f)) / T(f, 0), (44)

where f is the spatial frequency [32].  Then, the relationship between the real 

masking contrast value C(f) and the masking contrast value CM is: 

CM = C(f)‧csf(f), (45)

We can see that when there is no masking contrast effect, the minimum value of real 

threshold value T(f, 0) is the inverse value of the corresponding contrast sensitivity 

function. We can get real threshold value T(f, C(f)) by dividing threshold elevation 

value CT (f, CM) by corresponding contrast sensitivity value csf(f) and it equals to the 

value y we get from equation (40) when C(f) is 0, i.e., no masking effect. The real 

masking contrast value C(f) of location (i, j) in the frame equals the value c(i, j) we 

get from equation (41). We can see that the minimum real threshold values of the 

pixels within the same spatial subband are all the same and equal to T(f, 0). Because 

of the different real masking contrast value C(f) at different pixel, each pixel may 

have its own real threshold value T(f, C(f)). 

  We can use the contrast masking function to find out the corresponding threshold 

value of each location (i, j) in a frame. Thus, we can find out the real threshold value 

of every pixel within the same subband and choose the smallest real threshold value 

as the real threshold value of the subband. But if there is one value has smallest real 

threshold value, i.e., T(f, 0), then we need to choose this value as the real threshold 



 

value of this subband and the masking contrast effect is of no use.  

We have done some experiments, i.e., we use DWT to decompose the Y component 

of a frame and use different quantization step sizes to quantize one subband without 

quantizing the other subbands. Then, we use IDWT to reconstruct the frame and see 

which size of the quantization step size will produce difference between the original 

and the reconstructed frame that can be detected by eyes. We found that the step size 

we get is usually larger than the value calculated by the methods described in the 

above, especially for the lower spatial frequency subbands. The reason is that there 

may be some pixel in a subband has minimum real threshold value T(f, 0), but it does 

not dominate the entire visual effect. For this reason, we choose the middle value of 

the real threshold value T(Cmiddle) of pixels within the same subband as the real 

threshold value of this subband. T(C) is the real threshold value of the pixel with real 

masking contrast value C and Cmiddle is the pixel has middle real masking contrast 

value among the pixels within the same subband. In other words, T(Cmiddle) is also the 

middle real threshold value among the pixels within the same subband. 

  In order to apply the real threshold values to HVS, we need to convert the real 

threshold values from the spatial domain to the wavelet domain. We need to estimate 

the size of the wavelet coefficient of each subband that produces the detectable spatial 

(impulse) response. To do this, we have a “worst case” formula that estimates the 

minimum coefficients detection threshold ),,( CtJND θλ  of the corresponding 

subband with level λ and orientation θ that can produce the detectable spatial response 

[31]: 

)1(2

)(),,( −⋅
= λ

θ

θλ
l

JND pi
CTCt , (46)

where T(C) is the real threshold value of the corresponding subband obtained in the 

above and  is either , , or  for the LL, HH, or LH/HL subbands, θi
2
lp 2

hp hl pp
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respectively.  is the maximum coefficient amplitude of the low pass synthesis 

filter and  is the maximum coefficient amplitude of the high pass synthesis filter. 

The DWT filer we used is Daubechies 9/7 filter and the synthesis filter coefficients 

are shown in 

lp

hp

Table 5-1 [35]. We can see that  is 1.115087052456994 and  is 

0.6029490182363579.  

lp hp

index Synthesis low pass filter Synthesis high pass filter 

0 1.115087052456994 0.6029490182363579 

0.5912717631142470 -0.2668641184428723 1±  

-0.05754352622849957 -0.07822326652898785 2±  

3±  -0.09127176311424948 0.01686411844287495 

 0.02674875741080976 4±  

Table 5-1 The coefficients of the Daubechies 9/7 synthesis filters. 

We use equation (46) to calculate ),,( CtJND θλ  of the decomposed subbands 

shown in Figure 5-1 and show the result in Figure 5-3. Please note that ),,( CtJND θλ  

shown in Figure 5-3 is calculated without contrast masking effect. It means that it 

equals to )0,,( θλJNDt . 

)0,,( θλJNDt is also the JND threshold of the corresponding subband, i.e., the 

maximum error that can be tolerated in the subband without considering masking 

effect. For uniform quantization, if the step size of the quantizer is Q, then the 

maximum possible error is Q/2 [30]. Thus we can use the quantizer with step size 

2* )0,,( θλJNDt  to quantize the corresponding subband, thus the reconstructed frame 

will not be distinguished from the original frame by human vision. 

We choose ),,( middleJND Ct θλ  as the minimum coefficients detection threshold for 

the corresponding subband. 
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Figure 5-3 )0,,( θλJNDt  of the frame shown in Figure 5-1. 

While the ),,( middleJND Ct θλ  of each subband is obtained, a perceptual distortion 

metric that also accounts for the spatial and spectral summation of individual 

quantization errors is needed. The probability summation model is adopted in the 

perceptual distortion metric [36] [37]. The probability summation model considers a 

set of independent detectors, one at subband location ),,,( yxθλ  [37]. ),,,( yxθλ  is 

the location (x, y) within the subband corresponding to level λ and orientation θ. The 

probability of detecting a distortion at location ),,,( yxθλ  is determined by the 

psychometric function, as shown below [37]: 

(47)
)

),,,(
),,,(exp(1),,,(

b

yxt
yxep

JND
yx

β

θλ θλ
θλ

−−= , 

where ),,,( yxe θλ  is the quantization error at location ),,,( yxθλ  and bβ  is a 

parameter whose value is chosen to achieve consistency between (39) and the 

experimentally determined psychometric function for a given type of distortion. We 
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choose the value of bβ  is 4 [36] [37]. ),,,( yxtJND θλ  is the minimum threshold 

value of location ),,,( yxθλ , but we set the minimum threshold value of all the 

coefficients within the same subband are the same and equals to ),,( middleJND Ct θλ . 

Thus, we use ),,( middleJND Ct θλ  to replace ),,,( yxtJND θλ , as shown below: 

(48)
)

),,(
),,,(exp(1

4

),,,(
middleJND

yx Ct
yxep

θλ
θλ

θλ −−= . 

  The highest visual acuity is limited to the size of the foveal region and covers 

approximately  of visual angle in HVS. Let  denote the area in the spatial 

domain that is centered at location (n1, n2) and covers  of visual angle. Then, the 

probability of detecting a distortion in this region is 

o2 )2,1( nnF

o2

)2,1( nnFP [37]: 

∏
∈

−−=
Fyx

yxF pP
nn

),,,(
),,,( )1(1

)2,1(
θλ

θλ . (49)

The probability summation scheme is developed based on two assumptions [36] [37].  

1) A distortion is detected in the foveal region if and only if at least one detector 

signals the presence of distortion. 

2) The probability of detecting a distortion of each detector is independent. 

We can substitute equation (48) into (49), thus we have [37]: 

(50)))(exp(1 4
)2,1()2,1( nnnn FF DP −−= , 

where 

4
1

4
),,,(

4

4
1

),,,(

4

)
)),,((

),,,(
()

),,(
),,,((

)2,1(
middleJND

Fyx

Fyx middleJND
F Ct

yxe

Ct
yxeD

nn θλ

θλ

θλ
θλ θλ

θλ

∑
∑ ∈

∈

== . 

(51)

  The maximum width, maximum height, and maximum depth of the code block in 

3D-ESCOT coding are 64, 64, and 4. Because we only consider one frame each time 

and ),,( middleJND Ct θλ  of different frame may not be the same, the depth of the code 

block is 1. Although human eyes can see the scenery in the visual angle about  o160
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to , human can only pay attention to the scenery in the visual angle about 

because of the structure of the fovea. If we assume the foveal region is the code block, 

the maximum visual angle of each code block is  in our condition. So we need to 

modify equation 

o180 o2  

o4

(51) to fit it to our condition. 

  From equation (51), we can see that the total “visual error distortion” is 

∑ ∑∑
−

=

−

=∈

=
1_

0

1_

0

4

),,,(

4 ),,,(),,,(
widthblock

x

heightblock

yFyx
yxeyxe θλθλ

θλ

 and the total “visual error 

distortion” that can be tolerated is block_height*block_width* . We 

think that the ratio of these two values can determine the visual error probability. So 

we rewrite equation 

4( , , )JND middlet Cλ θ

(51) into: 

4
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(52)

  The spatial subband may include more than one code block and each code block 

has its own height and width. If we consider just one code block a time, we can get: 

4
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4
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0
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4
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−
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(53)

where ),,( zH θλ  and ),,( zW θλ  represents the height and width of the z-th code 

block in spatial subband ),( θλ  and ),,,,( yxze θλ  is the error in the location (x, y) 

of the z-th code block in spatial subband ),( θλ .  

  We can combine equation (50) and (53) together, then we can get the intra-subband 

weighting factor w1 of the coding pass of the corresponding bitplane: 

))
)),,((*),,(*),,(

),,,,(
(exp(1 4

1),,(

0

1),,(

0

4

1
middleJND
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CtzWzH
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θλθλθλ

θλ
θλ θλ

∑ ∑
−

=

−

=−−= . 

(54)

and ),,,,( yxze θλ  is the total error of the coding pass of the corresponding bitplane. 

  We can see that intra-subband weighting factor w1 is different for every truncation 
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point even the truncation points are located in the same spatial subband, and w1 is 

frame-dependent. 

5.2.2 Inter-Subband Weighting Factor 

  Intra-subband weighting factor w1 is close to 1 when the bitplane is close to the 

most significant bitplane (large distortion). In other words, if we multiply the R-D 

slope of each truncation point by w1, the R-D slope of bitplane near the most 

significant bitplane may not change and the R-D slope of bitpane near the least 

significant bitplane becomes smaller. Thus, the visual quality is the same as that in 

original rate control algorithm at low bit rate. This means that we need to find out 

another weighting factor to decide the relative visual importance of the same bitplane 

in different spatial subbands. This is inter-subband weighting factor w2. 

  From equations (27), (28), (29), and (30), we can see that the sensitivity at different 

spatial frequency is very different. Thus, the difference between their associated 

inter-subband weighting factors should be large too. But we use equation (38) to 

represent the R-D slope of the truncation point, the relative difference between their 

inter-subband weighting factors becomes smaller too. 

  We use )0,,( θλJNDt  instead of ),,( middleJND Ct θλ  to calculate w2. The reason is 

that the spatial subband with lower )0,,( θλJNDt  usually has higher sensitivity. If we 

consider masking contrast effect, we can get ),,( middleJND Ct θλ  and ),,( middleJND Ct θλ  

is bigger than or equal to )0,,( θλJNDt . Thus, the associated intra-subband weighting 

factor w2 will be smaller. 

The )0,,( θλJNDt  of the lowest spatial subband is the smallest of all the subbands 

but its ),,( middleJND Ct θλ  is usually very large because of large contrast masking 

effect due to large wavelet coefficients in this subband. If we use ),,( middleJND Ct θλ  

 62



 

to calculated w2, we may think that the minimum spatial subband has lower w2. It is 

not the true based on our experiments. From our experiments, we found that the 

lowest spatial subband has the largest weighting. For this reason, we use )0,,( θλJNDt  

to calculate w2 for each spatial subband. 

  Assuming the )0,,( θλJNDt  of the lowest spatial subband is . 

For the frame showing in 

subbandspatiallowestJNDt −−−

Figure 5-3,  =  = 0.345. 

We find that  is the smallest 

subbandspatiallowestJNDt −−− )0,,3( LLtJND

subbandspatiallowestJNDt −−− )0,,( θλJNDt  of all the spatial 

subbands. The inter-subband weighting factor w2 of spatial subband ),( θλ  is: 

10

)
)0,,(

exp(
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θλJND
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t
t

w

−−−

+=  

(55)

From equation (55), we can see that the inter-subband weighting factor w2 is the 

same for all the truncation points within the same spatial subband and it is 

frame-independent. 

  Combing equations (39), (54), and (55) together, we can get the function of 

subband weighting factor w: 
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  We can use w to transform the original distortion to “visual distortion”, i.e., the 

weighted truncation points are in the order of visual importance. 
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Figure 5-4 The flow chart of calculating the subband weighting factor w. 

  Figure 5-4 shows the flow chart of calculating the subband weighting factor w. We 

need to transform the R-D slope of each truncation point to new R-D slope by 

equation (38). Then, we can get subband weighting factor of each truncation point by 

equation (56) and multiply it to the new R-D slope got from equation (38).Thus, we 

can obtain the R-D slope value based on “visual distortion”. 

We use the new weighted R-D slope to do rate control. If the truncation point has 

larger new weighted R-D slope, it has high probability to be packaged and transmitted. 

We show the experimental results in the next subsection and examine the correctness 

of the proposed rate control algorithm. 

5.4 Experimental Results 

  Here we show two types of the experimental results. One is the correctness of the 

proposed rate control algorithm and the other is the comparison between the original 

and proposed rate control algorithm.  

5.4.1 Correctness of the Proposed Rate Control Algorithm 
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  We propose a method to examine the correctness of the proposed rate control 

algorithm. We calculate the ),,( middleJND Ct θλ  of each spatial subband of the Y 

component of the frame. Then, we discard the coding pass (for 3D-ESCOT, each 

bitplane has 3 coding passes, except for the first bitpalne that has only 1 coding pass) 

of the bitplane that smaller than 2* ),,( middleJND Ct θλ  and calculate the smallest bit 

rate to transmit the necessary data, i.e., we use the quantizer based on HVS to 

quantize the wavelet coefficients and transmit. The bit rate is calculated under the 

assumption that we transmit 30 frames per second. We will compare the discarded 

coding pass of the original and proposed rate control algorithm at the same bit rate. 

We only check the Y component of the first frame for several test sequences. There 

are 64 code blocks in a frame. We will show the original frame, the HVS quantized 

frame (HVS quantizer), the frame reconstructed using the Microsoft original rate 

control algorithm (MS original), and the frame reconstructed using the proposed rate 

control algorithm (weighting scheme). We will compare the number of coding passes 

they discard to see the difference between them.  
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(a)Original 

 

(b)HVS quantizer, PSNR = 40.09dB, package size = 18702bytes 
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(c)MS original, PSNR = 42.08dB, package size = 18724bytes 

 

(d)Weighting scheme, PSNR = 39.79dB, package size = 18377bytes 

Figure 5-5 The four test frames for comparison of test frame I. 
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Figure 5-6 The truncated coding passes of test frame I. The required bit rate is 4.23M 

bytes per second if the frame rate is 30 frames/sec. 

 68



 

 

 

(a)Original 

 

(b)HVS quantizer, PSNR = 39.15dB, package size = 24853bytes 
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(c)MS original, PSNR = 40.80dB, package size = 24820bytes 

 

(d)Weighting scheme, PSNR = 39.01dB, package size = 24652bytes 

Figure 5-7 The four test frames for comparison of test frame II. 
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Figure 5-8 The truncated coding passes of test frame II. The required bit rate is 5.64M 

bytes per second if the frame rate is 30 frames/sec. 
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(a)Original 

 

(b)HVS quantizer, PSNR = 40.21dB, package size = 15675bytes 
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(c)MS original, PSNR = 41.90dB, package size = 15695bytes 

 

(d)Weighting scheme, PSNR = 39.97dB, package size = 15577bytes 

Figure 5-9 The four test frames for comparison of test frame III. 
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Figure 5-10 The truncated coding passes of test frame III. The required bit rate is 

3.54M bytes per second if the frame rate is 30 frames/sec. 
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(a)Original 

 

(b)HVS quantizer, PSNR = 39.88dB, package size = 21668bytes 
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(c)MS original, PSNR = 41.90dB, package size = 21570bytes 

 

(d)Weighting scheme, PSNR = 39.40dB, package size = 21608bytes 

Figure 5-11 The four test frames for comparison of test frame IV. 
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Figure 5-12 The truncated coding passes of test frame IV. The required bit rate is 

4.92M bytes per second if the frame rate is 30 frames/sec. 

  For the frames in Figure 5-5, we can not distinguish between these four frames. But 

the PSNR value of each of frame is different. We can find the same condition in 

Figure 5-7, Figure 5-9, and Figure 5-11. The quantizer that used in HVS quantizer is 

smaller than or equals to 2* ),,( middleJND Ct θλ . The PSNR values of the weighting 

scheme are lower than those of MS original but almost equals to the PSNR values of 

HVS quantizer. From Figure 5-6, we can see that the numbers of truncated coding 

passes of HVS quantizer and weighting scheme are very similar for each coding block. 

We can see the same condition in Figure 5-8, Figure 5-10, and Figure 5-12. For this 

reason, we believe that the proposed weighting scheme is correct. The package size of 

weighting scheme is usually smaller than that of MS original. (In Figure 5-11, the 

package size of weighting scheme is larger than that of MS original.) 

From above four test frames, we can see that the frame quantized by the quantizer 
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based on HVS is almost the same to the original frame. From the truncated coding 

passes of each test frame, we can see that human eyes can tolerate larger error in high 

spatial frequency than in low spatial frequency. We can see that the truncated coding 

passes of the reconstructed frames using the weighting scheme are very similar to 

those of the frames quantized by the quantizer based on HVS at the same bit rate. 

Because the bit rate for each test frame is very high, especially we only encode and 

transmit the Y component of the frame. We like to compare the performance on visual 

quality of these two rate control algorithms at lower bit rates. 

5.4.2 Comparison of Rate Control Algorithms 

  Here we compare the visual quality difference between two different rate control 

algorithms. We compare the performance under 500K bits per second and 1000K bits 

per second if the frame rate is 30 frames/sec. The frames to be tested are the same as 

the previous section. 



 

 

 

(a)MS original, PSNR = 27.44dB, package size = 2217bytes 

 

(b)Weighting scheme, PSNR = 27.13dB, package size = 2185bytes 
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(c)MS original, PSNR = 31.19dB, package size = 4371bytes 

 

(d)Weighting scheme, PSNR = 30.98dB, package size = 4317bytes 

Figure 5-13 The four test frames of frame I at low bit rates. (a) and (b) are 500K bits 

per second. (c) and (d) are 1000K bits per second. 
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  In Figure 5-13, we can see that the ocean of weighting scheme looks smoother than 

that of MS original. But the PSNR and the package size of the weighting scheme are 

all smaller than those of MS original. 



 

 

(a)MS original, PSNR = 24.71dB, package size = 2216bytes 

 

(b)Weighting scheme, PSNR = 24.43dB, package size = 2209bytes 
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(c)MS original, 27.61dB, package size = 4368bytes 

 

(d)Weighting scheme, 27.40dB, package size = 4383bytes 

Figure 5-14 The four test frames of frame II at low bit rates. (a) and (b) are 500K bits 

per second. (c) and (d) are 1000K bits per second. 

 82

  From Figure 5-14, we can see that the visual quality of weighting scheme is higher 

than that of MS original. The background of the weighting scheme looks smoother 

than that of the MS original. The PSNR of the weighting scheme is lower than that of 



 

MS original. 

 

(a)MS original, PSNR = 30.44dB, package size = 2203bytes 

 

(b)Weighting scheme, PSNR = 29.91dB, package size = 2197bytes 
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(c)MS original, PSNR = 34.02dB, package size = 4400bytes 

 

(d)Weighting scheme, PSNR = 33.95dB, package size = 4342ytes 

Figure 5-15 The four test frames of frame III at low bit rates. (a) and (b) are 500K bits 

per second. (c) and (d) are 1000K bits per second. 
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The visual quality of the frame in Figure 5-15(b) is clearly better than that of the 

frame in Figure 5-15(a). The wall and face looks smoother but the value of PSNR is 

lower. But the edge of the wall in Figure 5-15(b) is not so clear s that in Figure 5-15(a) 

because we truncate more signal in high spatial frequency subbed. The visual quality 
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of the frame in Figure 5-15(c) and that of the frame in Figure 5-15(d) is almost the 

same and their values of PSNR are almost the same, too. We found one thing that the 

visual quality of Figure 5-15(b) is better than that of Figure 5-15(a), but it does not 

look like the original frame. We can found some shadow regions on the wall and face 

in the original frame. We can also found shadow regions on the wall and face in 

Figure 5-15(a). The shadow regions on the wall and face in Figure 5-15(b) are not so 

clear. 



 

 

 

(a)MS original, PSNR = 23.70dB, package size = 2196bytes 

 

(b)Weighting scheme, PSNR = 23.14dB, package size = 2090bytes 
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(c)MS original, PSNR = 26.85dB, package size = 4287bytes 

 

(d)Weighting scheme, PSNR = 26.67dB, package size = 4272bytes 

Figure 5-16 The four test frames of frame IV at low bit rates. (a) and (b) are 500K bits 

per second. (c) and (d) are 1000K bits per second. 

  The wall and the floor of the frame in Figure 5-16(b) looks smoother than that of 

the frame in Figure 5-16(a). But the edge of the player and the letters on the wall of 

the frame in Figure 5-16(b) is not as clear as those of the frame in Figure 5-16(a). 

Also Figure 5-16(d) looks slightly better than Figure 5-16(c). The package size of 
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weighting scheme in Figure 5-16(b) is smaller than that of MS original in Figure 

5-16(a). But we can see that the difference is almost 100 bytes. The reason we think is 

the relative difference between R-D slopes of associated truncation points becomes 

larger. If we want to package more data, we must use large bit rate. 

5.5 Discussion 

  The proposed rate control algorithm can provide better visual quality, especially 

when there is a large and flat region in the test frames, such as the ocean in test frame 

I. But sometimes the visual quality of edges may become worse. The reason is that the 

visual weighting for high spatial frequency is smaller than the value it should have.  

  Because we use “human visual weighting error” instead of “quantization error” to 

do rate control, PSNR will become smaller. It proves that the frame with higher PSNR 

may not have higher visual quality. The weighting factor will make the relative 

difference between the R-D slopes of associated truncation points in MSB bitplane 

and those of associated truncation points in LSB bitplane larger. Thus, we need higher 

bit rate to package the same data. 

Because the human vision has high sensitivity at low spatial frequency (flat region) 

than high spatial frequency (edge), the proposed rate control algorithm packages more 

data of low spatial frequency and less data of high spatial frequency. Thus we can 

make the flat region smoother and but larger error in edges. Larger error in edges will 

not be detected by the eyes sometimes. The PSNR values of the frames reconstructed 

by proposed rate control algorithm are always smaller than those of the frames 

reconstructed by original rate control algorithm. This proves that the frame has higher 

visual quality may not have higher PSNR value.
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Chapter 6 
Conclusion and Future 
Work 
6.1 Conclusion 

  The interframe wavelet video coding is a compression technique that provides 

flexible and multi-purpose scalability. The single created by interframe wavelet video 

coding can provide rate/SNR, temporal, and spatial scalability.  

  The study on HVS is become more important in recent years. The data of HVS is 

usually obtained from experiments. Because HVS has different response under 

different conditions, this is hard to find out a global useful formula for CSF or JND 

that can be accepted extensively. 

  We propose a weighting factor that can be used to convert the distortion measure of 

a truncation points to a visual weighted one. It is the product of the intra-subband 

weighting factor and inter-subband weighting factor. They are summarized below. 

1) intra-subband weighting factor: It decides the visual importance of errors within 

the same subbands. The error smaller the JND of the corresponding subband has 

lower weighting because of the less importance to HVS. 

2) inter-subband weighting factor: It decides the visual importance of errors in 

different subbands. If the values of the errors in different spatial subbands are the 

same, they have different visual importance to HVS. The error in lower spatial 

subband often has higher visual importance. 
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6.2 Future Work 

  We notice there are a few work items can be future explored. 

1) The function of the minimum threshold provided by Watson is based on 9/7 linear 

phase filter [30]. We may need to derive a function that corresponding to the 

Daubechies 9/7 filter. 

2) We assume the local luminance is constant across the whole image but it is not 

correct. We like to find another model to estimate the local luminance. The 

estimation of masking effect in lower spatial subbands can be improved. The 

masking effect in lower spatial subbands is usually very large. If we can estimate it 

with higher precision, we can get better weighting factor to do rate control and 

decrease the probability of the occurrence of visual error. 

3) The proposed rate control algorithm is applicable to the luminance component of a 

picture. We like to extend it to the chrominance component. Watson suggests the 

minimum threshold function on chrominance [30] but the experiment results shows 

that visual responses on chrominance for different people is very different. 

4) The proposed rate control algorithm is now used only on one spatial decomposed 

frame. We like to extend it to temporal domain. There is no clear model of 

minimum temporal threshold because the human eyes may track the moving 

objects and the resolution of static objects can be low. Finding an adequate model 

for temporal human vision can be a difficult and unsolved problem.
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