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Abstract

Scalability is an important feature in today’s multimedia transmission because in
many applications receivers have very different capabilities. Interframe wavelet video
coding is a new video coding algorithm that can achieve fine-scale scalability.
Therefore, it has received a lot of attention recently and many research and
development projects have been conducted té improve its performance.

For most entertainment purposes, huuman eyes are the final judge of the video
quality. However, it is rather sophisticated to include the human perception in the
video codec design. We need to-transform the objective “mathematical difference”
into the subjective “visual difference”, i.e., we need to convert the ordinary
“quantization error” to the “human-visual weighted error”.

In the rate control algorithm, each truncation point in the interframe wavelet video
coding has its associated distortion and bits length. The slope of each truncation point
is the quotient of the distortion difference divided by the bit difference. Based on the
optimization theory, the truncation point with a larger slope should have a higher
priority to transmit. In this study, we propose a method that we weight the truncation
point slope by a weighting factor, which is derived based on the human visual system.
Thus, the visually-weighted slopes become the criterion in rate control. Our
simulations indicate that the reconstructed frames may have lower PSNR but higher

visual quality.
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Chapter 1
Introduction

Digital video compression technology has an explosive growth in the past 20 years.
The invention of digital video products, such as VCD and DVD, is due to the
advances of the digital compression technology. Owing to the rapid development of
the internet transmission, it is also important to transmit the video data through the
network. Due to the different network bandwidth and different receiver storage
capacity, many methods have been investigated to solve the problem of transmitting
the compressed video bitstream through the internet. The concept of “scalability” is
one of the methods that solve this problem. The “Scalability” means that the bitstream
can be truncated and decoded anywhere on the bitstream; thus, we can generate the
bitstream only once then truncate it to.meet-the-requirements.

However, in a traditional scalable video.system, because of the lower compression
efficiency and course-step in scalability (typically, 2 or 3 layers), its adaptation is not
yet so popular. The new technique of fine-granularity scalability is introduced recently
[1]. Ohm proposed a motion-compensated t+2D frequency coding structure [2]. This
coding structure is suitable for scalable video coding with many fine steps. Woods
proposed a coding technique called “interframe wavelet video coding” [3]. This
coding technique can offer fine-granularity SNR, temporal and spatial scalability at
the same time, while it still maintains acceptable compression efficiency.

The main concept of interframe wavelet video coding is subband coding. It
removes the temporal redundancy by using the motion-compensated (wavelet)

filtering technique along the temporal axis. Then it uses the spatial wavelet



decomposition to the temporal wavelet-filtered output frames. Then we can use the
bit-plane coding scheme to code wavelet coefficients and calculate the slope of each
fractional bit-plane truncation point to achieve optimal rate control. By this rate
control scheme, we can achieve fine-granularity scalability [4].

The quality measure that often be used to determine the quality of images is PSNR.
But human eyes have different sensitivity on different regions and frequency bands,
the image that has high PSNR value may not have high visual quality. Human eyes
usually have higher sensitivity on the low frequency bands and lower sensitivity on
the high frequency bands. For the different region, human eyes usually have higher
sensitivity in the flat region than in the texture region. We can incorporate human
visual system (HVS) to encode each subband to achieve higher visual quality.

In this research, we propose a rate control algorithm based on HVS to achieve high
visual quality. We apply HVS on spatial friequency'and luminance component. There
two weighting factors, intra-subband weighting factor and inter-subband weighting
factor, that we found will be introdueed. The final reconstructed images will have
higher visual quality, especially in large flat region. The PSNR of final reconstructed
images will be lower. In the future, we will extend this algorithm to temporal
frequency and chrominance component.

The thesis is organized as follows. In Chapter 2, we will introduce the basic
concept and the scalability of scalable video coding. Then we will introduce the
program we used in Chapter 3. We will introduce some basic idea of HVS in Chapter
4. The algorithm we developed is introduced in Chapter 5 and Chapter 6 is the

conclusion and future work.



Chapter 2
Scalable Video Coding

2.1 Introduction

Digital Video is now very popular in our daily life. For example, DVD and VCD are
all digital video. If the digital video has high quality, it usually has a large amount of
data. So it needs large bandwidth to transmit or large space to store. To solve this
problem, we need to compress the digital video in order to make its data size smaller.
Digital video compression technique has been developed in the past three decades and
much research has been done to analyze the_digital video sequences. Several video
standards have been developed, for exaniple, MPEG-2, and H.261. Based on different
theoretical foundations, we can-classify the-video coding into two groups as shown in

Figure 2-1.

-
@

Figure 2-1 Classifications of video coders.

From Figure 2-1, we can see that video coders can be classified into “model based”
3



and “signal based” two groups. If the video coding algorithm is based on object
modeling and analysis of object parameters, it belongs to model based video coding.
Model based video coding algorithms usually need a profound analysis of the video
contents and are quite complicated. Because of inefficiency and complexity of video
object content analysis, model based video coding algorithms are often not so popular.

On the other hand, the signal based video coding algorithms consider the objects as
the combination of the set of basic signals. So they often use filters to decompose the
video sequences into different basic signals. The signal decomposition of these
algorithms has two spatial dimensions (horizontal and vertical) and one temporal
dimension. Both spatial and temporal decomposition are used to remove in-between
redundancies. We usually use discrete cosine transform (DCT) or discrete wavelet
transform (DWT) to do spatial decomposition ‘and motion compensated temporal
filtering (MCTF) or motion= compensated: ptrediction (MCP) to do temporal
decomposition.

The motion compensated approaches.decompose the source output into different
frequency subband using block transforms. But decomposition of the source output
into blocks will generate coding artifacts at the block edges called blocking effects.
Another approach, which can avoid this blocking artifact, is the subband video coding.
The subband video coding transforms the total frame into different subbands in spatial

and temporal domain, so it can remove blocking effect.

2.2 Subband Video Coding

Subband video coding uses subband filters to remove the spatial and temporal
redundancies of the video sequences. Generally speaking, the behavior of the spatial
and temporal signals of a video sequence is quite different. For temporal signal, if

something moves fast in the video sequence, then the video sequence has high

4



frequency temporal signal component. The spatial signal will be only considered in
the still image. If a still image has many edges or different luminance component in a
small area, then it has high frequency spatial signal component. Spatial signal has 2
dimensions (horizontal and vertical) and temporal signal has 1 dimension, so the
decomposition of spatial signal is often done twice. Typical 3-D subband signal

decomposition is shown in Figure 2-2.

N

)

)

g

—y
N —

Figure 2-2 Typical 3-D subband decomposition.

After spatial and temporal decomposition, the data are sent to quantize and coding.

After coding, the coded data is packaged and transmitted to the iver to decode.

emporal Subban
Decomposition



Because human eyes have different sensitivity on different frequency subbands, we
can quantize the frequency subbands with higher sensitivity by smaller step size and
other frequency subbands by larger step size. Thus we can get the reconstructed video
sequence with higher visual quality but lower PSNR value. We will introduce the

temporal decomposition and spatial decomposition in next two subsections.

2.2.1 Temporal Subband Decomposition

Temporal subband decomposition can be simply done by use a low pass filter and a
high pass filter along the temporal axis. The filter used more often is Haar filter. But
the result is not usually good because the energy is not compacted very well. The
result is shown in Figure 2-3. We can see that the output of the low-pass filter would

be a blurred image, a moving average rf}@ _pye or1g1nal video sequence, and the output

of the high-pass would be the differenc al video sequence.
ehp f@fﬂiﬁm R video ==

Figure 2-3 The temporal filtered images using Haar filter (left: low pass, right: high
pass).

Kronander used motion compensated technique to solve this problem [5]. For two
consecutive frames, we use forward block motion estimation first and backward block
motion estimation second. The forward motion compensated reconstructed frame is
then used to do temporal filtering with the second frame to generate subband image.
Then the backward motion compensated reconstructed frame is used to do temporal

filtering with the first frame. The result frames has better energy compaction as shown
6



in Figure 2-4. There may be a mismatch between these two vectors and it will cause
the spatial inhomogeneity. The mismatch often occurs in the covered and uncovered

area on the frame, as shown in Figure 2-5

Figure 2-4 Temporal filtering with motion compensation (left: low pass, right: high

pass).

Figure 2-5 Vector mismatch caused by moving and zooming objects.

Ohm proposed a method to solve the spatial inhomogeneity [2]. He showed that it
is possible to overcome the mismatch of motion trajectories by using the concept of
connected and unconnected pixels. In the proposed algorithm, each pixel is classified
as covered, uncovered or connected by using the information derived from the motion
vector map. Then Haar filter is used to do temporal filtering to find the high-pass
coefficients and the low-pass coefficients. If the integer pixel accuracy motion

estimation is used, this method can achieve perfect reconstruction.
7



Hsiang and Woods proposed an

invertible

half-pixel motion estimation

three-dimensional analysis/synthesis system for video coding [6]. If we assume that

dx and dy are the horizontal and vertical displacement vector between previous and

current frames, and they can be pixel or half pixel. Then we can classify the motion

compensated blocks into four different kinds, as shown in Figure 2-6. The motion

compensated blocks would map to different location of the image, but would lie in

horizontal, vertical, diagonal, or overlapped position. Therefore, temporal Haar

filtering can be done along those directions to achieve half-pixel-accurate motion

estimation.
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Figure 2-6 The spatial lattices of two consecutive frames after motion estimation. The

black circle is the pixel being processed. The gray pixels and arrows

indicate the direction of filtering. (a)class EO:2dx even and 2dy odd,

(b)class OE: 2dx odd and 2dy even, (c)class OO: 2dx odd and 2dy odd,

(d)class EE: 2dx even and 2dy even.
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Pesquet-Popescu and Bottreau proposed a lifting scheme to do temporal filtering
[7]. By separating the process of deducting the low-pass and high-pass frequencies,
interpolation filters can be used without interfering with the filtering process.

Temporal filtering techniques are still being researched and developed. The goal of

the temporal filter is make the energy compacted well.

2.2.2 Spatial Subband Decomposition

Spatial decomposition is done along horizontal and vertical directions. The still
image is separated into the spatial subband then each subband is encoded
independently. The image is reconstructed from the low subband data to high subband
data. The major differences are how to choose the analysis and synthesis filters. In
other words, that is how to choose the decomposition signal. The performance of the
filter will affect the quality of thereconstructed:images.

The most popular spatial subband decomposition is the wavelet transform. Wavelet
transform is a type of localizéd time-frequency ‘analysis; therefore, the transform
coefficients reflect the energy distribution of the source signal in both space and
frequency domains. Figure 2- 7 shows an example of the spatial decomposition.

0 T

3

.v;,‘”,
Figure 2- 7 Spatial decomposition (left: transformed image, right: frequency partion).

9



2.2.3 Coding

Shapiro proposed a coding algorithm called “Embedded image coding using
zerotrees of wavelet coefficients (EZW)” [8]. It is a simple but effective coding
structure. It arranges the coded data in the order of importance so it is suitable for
progressive transmission.

Taubman proposed a coding algorithm called “Embedded Block Coding with
Optimized Truncation of the embedded bit-stream (EBCOT)” [9]. This is a coding
algorithm that JPEG2000 used. It is a fractional bit plane coding and can match the
requirement of the rate control.

Woods proposed a coding algorithm called “Embedded Zero Block Coding
(EZBC)” [10]. It combines the advantages, of the zero-tree/-block coding and context

modeling of the subband/wavelet coefficients:

2.3 Interframe Wavelet Video Coding

2.3.1 Introduction

The efficient family of interframe wavelet video codecs was proposed by Woods
and his coworkers [6] [10] [12] and can achieve rate/SNR, spatial, and temporal
scalability. It was first presented by Woods et al for the MPEG digital cinema
encoding tool [11]. Many research and development have been made to improve the
performance of the interframe wavelet video coder today. In the rest of this thesis, if
not specifically stated, the interframe wavelet coding algorithm referred is the latest
version proposed by Woods and Chen [12].

The interframe wavelet coder is one kind of motion compensated 3-D subband
coder. 3-D is 2 spatial dimensions (horizontal and vertical) and 1 temporal dimension.

This coding algorithm is also known as the “Motion Compensated Temporal

10



Filtering — Embedded Zero Block Coding (MCTF-EZBC or MC-EZBC)”. This
coding algorithm uses motion compensated temporal filtering techniques when doing
temporal subband decomposition. After temporal subband decomposition, each
produced frame is spatially subband decomposed by wavelet transform. After
temporal and spatial decomposition, the wavelet coefficient is coded by embedded
zeroblock coding techniques [10]. Then we can package and truncate the coded
bitstream and transmit it to the receiver and decode. The architecture of the interframe

wavelet video coder is shown in Figure 2-8.

— MCTF. > Spatla_l » EZBC > Packetizer —— -------1
Input (analysis) Analysis .
Video 1 i

Motion ,| Motion Field Encoder
Estimation Encoding
Output
Video MCTF | Spatial B Depacketi |[
[ e EZBC |« —
(synthesis) Synthesis zer
Motion I_:leld Decoder
Decoding

Figure 2-8 The interframe wavelet video coder.

The processing unit is GOP (group of pictures) and the frame number of each GOP
is 2", where n is the number of levels of temporal subband decompositions that are
done on the GOP. When doing temporal subband decomposition, the motion vector
map between two consecutive frames is first constructed. Then motion compensated
temporal filtering is applied to the two consecutive frames to generate the temporal
high-pass frame and the temporal low-pass frame.

After first temporal decomposition, the GOP would contain 2™ temporal high-pass
frames and 2™ temporal low-pass frames. Then 2™ temporal low-pass frames would

be collected to do temporal decomposition again. These 2™ temporal low-pass frames
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would transform to 2" temporal high-pass frames and 2" temporal low-pass frames.
The temporal decomposition is iteratively done until there is only one temporal
low-pass frame. After finishing temporal decomposition, we can get a temporal

filtering pyramid as shown in Figure 2-9.
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Figure 2-§ Terﬁporal ﬁlterihg pyramid.

After temporal decomposition is done, the 2" frame GOP would contain 2"’
temporal high-pass frames and one temporal low-pass frame. These frames are called
residual frames. The spatial subband decomposition is then applied to each frame to
create wavelet coefficients of each spatial subband. The wavelet coefficients is then
coded by embedded zeroblock coding method, and then entropy-coded by arithmetic

coding with context modeling [10].

2.3.2 Motion Compensation Temporal Filtering

The interframe wavelet video coding uses motion compensated temporal filtering
(MCTF) to do temporal subband decomposition and the goal of motion compensated

temporal filtering is to compact the video sequence temporal energy.
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The first step of MCTF is motion estimation and there two things need to do in this
step. First is using “hierarchical variable size block matching (HVSBM)” to do
backward motion estimation. Second is detecting covered and uncovered pixels based

on the backward motion field [13].

2.3.2.1 Hierarchical Variable Block Size Matching

HVSBM is a hierarchical motion estimation scheme that can reduce computational
complexity and generate smooth motion vector fields. HVSBM can create better
motion estimation because of its variable block size. The motion compensated
temporal filtering performance depends on how well the motion trajectory, which is
constructed by the motion search, matches the moving objects in the video sequence.

The motion vectors are first searched.in the 64-by-64 size block. Then the block is
split into four 32-by-32 subblocks.,Motion vectors for subblocks are generated by
refining the motion vector of the"original-block. This spawning process continues
until the size of the subblock™is 4-by-4.~Figure 2-10 shows a 3 level HVSBM.
Consequently, longer-range interaction is enforced at lower resolution (higher scale)
levels, while shorter-range interaction is recovered at higher resolution (lower scale)
levels. Finally we can get a five level motion vector quad-tree with one 64-by-64
block size motion vector at the top and 256 4-by-4 block size motion vectors at the

bottom [13].

13



Level 1 4
refining
v
splitting o~
Level 2 / ______ >
2
refining refining
v v

initial motion vector tree

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

Figure 2-10 A 3 level HVSBM showing 3 subband levels [13].

2.3.2.2 Detection of Coveredand-Uncovered Pixels

There two reasons that this process is:needed. One is that the motion estimation
process may not be perfect because of the wrong motion trajectory; the other is that
the temporal filtering is applied"along the motion trajectory, so it depends on the
linked condition of the pixel.

By the motion vectors we get from HVSBM, we can link every pixel in the
predicted frame to another pixel in the reference frame. We can classify the linked
condition of pixels on the predicted frame and reference frame. From Figure 2-11, we
can see there 3 types of pixels in the reference frame and 3 types of pixels in the

predicted frames.
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Figure 2-11 State of connection of.each pixel [13].

The 3 pixel types in the refetence frame are: 1) uni-connected pixel, a pixel which
is used as reference by only one pixel in-the-predicted frame, 2) unreferred pixel, a
pixel which is not reference by any pixels m the predicted frame, 3) multi-connected
pixel, a pixel which is used as reference by more than one pixel in the predicted
frame.

The 3 pixel types in the predicted frame are: 1) first type of uni-connected pixel, a
pixel whose reference pixel in the reference frame is uni-connected pixel, 2) second
type of uni-connected pixel, a pixel whose reference pixel in the reference frame is
multi-connected pixels that has better response to sum of absolute difference (SAD), 3)
multi-connected pixel, the rest of the pixels in the predicted frame.

Forward motion estimation is done if there are more than half of the pixels are
classified as multi-connected pixels in a block of the predicted frames. If motion

estimation in this direction has smaller SAD error, we call this block is an uncovered
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block and pixels in this block are said to be uncovered pixels. The unreferred pixels in
the reference frame are marked as covered pixels, while the rest are connected. If the
number of the unconnected pixels exceeding a threshold, the interframe wavelet video
coder would assume that there is a scene-change in the video sequence and it would
stop temporal filtering across the two frame pairs. Otherwise, when the test fails, and
temporal filtering is done, all the pixels in the predicted frame are remarked as

connected pixels.

2.3.2.3 Motion Vector Pruning

The motion vector pruning process is done to delete unnecessary nodes from the
quad-tree created by HVSBM. For the quad-tree, each node contains the estimated
motion vector for that corresponding block. The motion vector pruning process
initially generated motion vector'bit. estimation. of each node. Then the difference of
the bits used for the parent and child and difference of the SAD of the parent and
child are calculated. Using these two parameters as the rate and distortion measure,
the rate-distortion cost of every node is ‘generated. An iterative loop is then done to
prune the leaf nodes with the highest cost until a desired rate-distortion cost is

achieved.

2.3.2.4 Temporal Filtering

The interframe wavelet video coding uses the lifting scheme in temporal filtering
[7], which can achieve perfect reconstruction even when sub-pixel motion estimation
is used. Figure 2-12 shows the lifting scheme in temporal filtering and Figure 2-13

shows the detection of connected and unconnected pixels.
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Figure 2-12 Lifting scheme in temporal filtering.
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Figure 2-13 Detection of connected and unconnected pixels.

Assume that 4 and B are reference frame and predicted frame, and A is the
interpolated frame of 4. The notation [m, n] represents the pixel coordinates and

(d,.d,) is the motion displacement from the predicted frame B points to a sub-pixel

position in the reference frame A. In other words, B[m, n] is connected to A[m- c?m,
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n- 47,1 ] where c?m and 67,1 are the closet integer to d,, and d,

The temporal high-pass coefficients are calculated on the predicted frame by (1).
The motion estimation would link every pixel in the predicted frame to another pixel

in the reference frame; therefore, all pixels in the predicted frame are connected.
H[m,n]:(B[m,n]—Z[m—dm,n—dn])/\/E (D

The temporal low-pass coefficients are generated on the reference frame and the
pixels on the reference frame can be classified as connected and unconnected. The

low-pass coefficients of the connected pixel are calculated by:

L[m—c?m,n—c? ]zﬁ[m—gm +d, n—d, +dn]+\/5A[m—67m,n—c7n]. ()

The low-pass coefficients of the unconnected pixels are calculated by:
L[m,n] = \/EA[m,n]. 3)

When decoding, 4 can be reconstructed by:

A[m—gm,n—gn]z(Lm—d ,n—c?n]—lfl[m—gm +d n—d, +dn])/x/5' 4)

After reconstruction of A, we can reconstruct B by:

B[m,n]= x/EH[m,n]+ Z[m -d

m? n-— dn ] (5)
In (4), we can see L and H are still necessary for the reconstruction of 4, and
H only contains the information of interpolated pixels in 4. But this interpolated

information is also available in L. So it is canceled out in (4). Thus the interpolation

algorithm has no influence on the perfect reconstruction [13].

2.3.3 Spatial Analysis

Spatial wavelet transform is performed on every residual frame after motion
compensated temporal filtering. If the video sequence is composed of YUV

component, then spatial wavelet transform is performed on all the three components.
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The coefficients of the used filters are shown in Table 2-1.

index low pass filter high pass filter
0 0.852699 0.788485
+1 0.377403 -0.418092
+2 -0.110624 -0.040690
+3 -0.023849 0.064539
+4 0.037829

Table 2-1 The coefficients of filters.

2.3.4 Embedded ZeroBlock Coding

After temporal and spatial decomposition, the coefficients are coded by “Embedded
ZeroBlock Coding (EZBC)”. Because. of ithe zeroblock coding and context modeling,
this coding algorithm can achieveylow computational complexity and high
compression efficiency.

The coding process begins with the-creation of the quad-tree based set partitioning
data representations on bit-planes for each "individual subband. The bottom of the
quad-tree level is the pixel level and consists of the magnitude of each subband
coefficients. Each quad-tree node of the next higher level is then set to the maximum
value of its four corresponding nodes at the current level, as illustrated in Figure
2-14(a). By recursively grouping the coefficients, the top quad-tree node would
correspond to the maximum magnitude of all the coefficients from the same subband.

Then the bitplanes of subband coefficients from the most significant bit toward the
significant bit is progressively encoded. If a node is significant, it is split into four
descendent nodes. This procedure is recursively down until the bottom level, as
illustrated in Figure 2-14 (b). Once a pixel is significant, its sign bit is coded. Each

bitplane coding pass is finished with a bitplane refinement subpass which further

19



refines the significant subband coefficients from the previous bitplane pass. So we can

send data in the order of their importance in this way.

0: Significant node

) anifi q
(l?:\ij 2tree T ‘ Significant node I 1: Insignificant node
Cod
Quad-tree ‘ Q L1 1o estream
Level 1 O @ . 1100
I \ l 00010010
Quad-tree  |()|() @ @ olololo
Level O
(Pixel level) O . ‘ @ oO(1]1]0
01000 olofo]o
01000 olofo]o
(a) Quad-tree bulit up (b) Quad-tree splitting

Figure 2-14 Quad-tree generation of the image [10].

2.3.5 Entropy Coding

This is the final process of encoding. At this§ time, the processed data contains
motion information and the EZBC coded image data. Because HVSBM uses variable
block size when doing motion estimation, the information of how the block sizes are
arranged need to be coded. This information is contained in the quad-tree structure
and coded in the map representation as shown in Figure 2-15. Then the map code is

inserted in the encoded bit-stream.

{ 0: with child

3 ) 1: no child
=
K 7 v /
;/ < MAP Code: 0, 0001, 0000

Figure 2-15 Map representation of the quad-tree.
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The motion vectors of the leaf node blocks are sent into the adaptive arithmetic
coder following the raster scan shown in Figure 2-16. The scanning order is the

recursive raster scan of the leaf nodes in the motion vector quad-tree.

\
Nl

/

1~

Figure 2-16 Motion vector coding scanning trail.

The arithmetic coder initially sets the probability of all symbols to the same value.
Then the symbol probability is updated after each symbol is encoded by accumulating
the occurrence of the symbol iduring encoding. Combined with EZBC’s quad-tree
representation of the image data, the strong statistical dependencies among bit-planes,

resolution scale, and quad-tree levels are exploited [10].

2.4 Scalable Video Coding

Mass audiences have different viewing requirement and the bandwidth and capacity
of each server on the network is different. So it is important to meet different
requirement. The principle idea of the scalable video coding is that the encoded
bitstream can be flexibly truncated to meet the requirements after the compressed
bitstream has been generated.

Digital video can have many specifications, such as picture size, picture quality,
and picture playback rate. Because different user may have different requirement on

these specifications, the ability to scale and choose different combinations of these
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video specifications is crucial for simultaneous distribution to disparate clients .The
main concept of the scalable video coding is “generate-once, scale-many”.

Most people have more demand on the picture quality. There are three video
scaling parameters that influence the viewing quality most: 1) the distortion of the
picture, 2) the spatial resolution of the image, 3) the temporal resolution of the video.
One major feature of the interframe wavelet coding is the ability to achieve all of the
three mentioned video scalable features in one single coding algorithm. We will

introduce these three scaling parameters in the following subsections.

2.4.1 Rate/SNR Scalability

The rate/SNR scalability is the ability that a single compressed bitstream can be
decoded into different coding bit-rates/quality levels.

The basic element of the interframe 'wavelet video coding encoded bitstream is
GOP. It is composed by GOP lieader, the motion information, and the image data, as
shown in Figure 2-17. The motion information is required to construct the motion
fields that are used in the motion compensated temporal filtering so it is usually sent
without any modifications. The image data is used to construct residual frames and it

will be truncated to match the requested bit rate.

GOP Header| Motion Information Data Residual Image Data
Video GOP GOP | .. GOP
Header

Figure 2-17 The interframe wavelet video coding encoded bitstream.
The rate/SNR scalability is achieved by truncation the image data to match the
required bit rate. In the EZBC process, the bit-stream is arranged in an embedded
structure such that information bits are saved in accordance to the importance of the

data. During the process of the encoding of the EZBC, the information of how many
22



bits are used in the subband is marked as a parameter file, indicating the truncation
points of the encoded residual image data in the video bit-stream.

When doing truncating, the total bit rate of the GOP header, motion information,
and the image data must equal to or less than the required bit rate. So the truncating
process will find the corresponding truncation point and read the image data before

the truncation point then package. Figure 2-18 shows the rate/SNR scalability.
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\
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/0

300kbps 500kbps ... 1000kbps
PSNR=32.2 dB T PSNR=34.6dB.._ PSNR=38.2 dB
GOP Header|Motion Info. Residual Ima:ge Data

Figure 2-18 [Raté/él;lR écalgbility.
2.4.2 Spatial Scalability "

When performing spatial decomposition on the residual image, the image is
down-sampled to lower resolutions. Therefore, the spatial scalability is inherent in the
interframe wavelet video coder. However, the spatial scalability is not fine-tuned
scalable. For an original frame size of m-by-n, the spatial scalability of the image is
restricted to the size of m/2”-by-n/2” where p is an integer.

The truncation process keeps the information of subbands that are lower than or
equal to the required spatial resolution and truncates the other subbands.

Upon decoding, the motion vectors of the motion information are scaled by the
factor of p, regarding the rescaled size. The residual image data are then motion

compensated temporal synthesized with the scaled set of motion vectors to reconstruct
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the original sequence.

Figure 2-19 Spatial scalability.

2.4.3 Temporal Scalability

The interframe wavelet transfor_m-.:Wiil 'créétfe .a temporal pyramid after MCTF. In
order to reduce the amount of transform !Tq'ata,-- we Qélp discard the temporal high-pass

frame, as that shown in Figure 5_2-'.20(a). To achieve tel;hporal scalability, the truncation

process keeps the subset of imag'és-thét are needed to generate the required level of

temporal pyramid, as that shown in Fig-ure 2-50(b).
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(b) The GOP of the temporal scaled sequence
Figure 2-20 Temporal scalability.
If motion estimated motion trajectory is not perfectly matched to the original video

sequence, the temporal filtering process might generate some motion artifacts [14].

25



Chapter 3
3D Subband Video Coding
Using Barbell Lifting

In 68" MPEG meeting (March, 2004, Munich), MSRA proposed its MCTF
structure and 3D ESCOT entropy coder. The 3D ESCOT entropy coder performs
almost as well as the 3D EBCOT that JPEG2000 used. Figure 3-1 shows the block
diagram of this coding structure [15]. This proposed video coding algorithm has two
different concepts. They are Barbell lifting and 3D ESCOT entropy coding. The
motion estimation scheme of this video coding algerithm is not HVSBM but a motion

estimation scheme used in H.264. We will describe them in the following subsections.

S A g

OO0

\ 4
\ 4

A
>

Figure 3-1 The block diagram of the 3D subband video coding using Barbell lifting

[15].
3.1 Barbell Lifting

MSRA proposes this Barbell lifting algorithm for doing temporal decomposition
[15]. Barbell lifting uses a set of pixels instead of a pixel as the input, as that shown in
Figure 3-2. The Barbell lifting can provide perfect reconstruction, sub-sample

decomposition but still with critically sampled transformed coefficients.
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Figure 3-2, The Barbell lifting [15].

Assume that Sy, S;, and S,rare three| consecutive frames in a video sequence.
Functions f,() and f,() are-walled as Barbell functions and they can be any linear
or non-linear functions that také.any pixels in‘the same frames as variables. The
Barbell functions can also vary from pixel to pixel. Therefore the basic Barbell lifting
step is formulated as:

t=axs§,+s +axs,, (6)
where a is a filter parameter.

The Barbell lifting includes two stages. They are prediction stage and update stage.
The prediction stage is applied to the video sequence first. It takes the original input

frames to generate the high-pass frames, as shown in Figure 3-3.
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Figure 3-3 The prediction stage of the Barbell lifting.
Then the update stage uses the available high-pass frames and the even frames to

generate the low-pass frames, as shown in Figure 3-4.

L || ﬁ'o:gvo(Ho)_ || L

Figure 3-4 The update stage of the Barbell lifting.

3.1.1 The Prediction Stage

o o © (xxl,y£1)
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Figure 3-5 The Barbell functions used in the prediction stage.
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Figure 3-5 shows some examples of Barbell functions used in the prediction stage and
Figure 3-5(a) is the integer motion alignment case and the Barbell function of this
case is:

f=E(x+Axy+Ay), ()
where (Ax,Ay) is the motion vector of current pixel (x, y) and F, is the previous
frame.

Figure 3-5(b) is the fractional-pixel motion alignment case and the Barbell function of

this case is:
[ =22 almm)F,(x+|[Ax [+ m,y+ Ay [+n), (®)

where |_ J denotes the integer part of Ax and Ay. a(m,n) is the factor of the
interpolation filter.
Figure 3-5(c) is the multiple-to-one mapping casé. and the Barbell function of this

case is:

[ =22 almmE (x+ax,, y+Ay,), ©)

m n

where «a(m,n) is the weighting factor for each connected pixel.

Figure 3-5(d) shows a special case that the current pixel (x, y) can use its motion
vector (Ax,Ay) and the motion vectors of neighboring pixels to get multiple
predictions from the previous frame and generate a new prediction. The Barbell

function of this case is:

f=Y DalmnF(x+Ax,,y+Ay,), (10)

m=0,+1n=0,%1

where a(m,n) is the weighting factor.

3.1.2 The Update Stage

The prediction and update stages may has mismatch when pixels in different frames

are aligned with motion vectors at fractional-pixel precision or without one-to-one
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mapping. Generally speaking, the update and prediction stages use the same motion
vector for saving overhead bits to code motion vectors, i.e., the motion vector of the
update stage is the inverse one of the prediction stage. Figure 3-6 shows the mismatch

problem.

(xm+]’ yn+]) Q

(xm+l’ yn+1)

O
L@ (ot AXg, Yot AY,)

(Xm,yn) Q"—/ (xm!yn)
(xm'ﬁxm' yn'Ayn) '/O

s Vur) O O Kpes Yur)

(Xp20 Vp2) O O X2 V2

F, F,

Figure 3-6 The mismatch problem of motiofi.in the prediction and update stages.

As shown in Figure 3-6, the-mismatch problem is:that the prediction has the path

from F(x,,y,) to F,(x,+Ax

m

;). #Ay ) but the update has the path from

F/(x,,y,) to F(x,—Ax,,y,—Ay,).

m

Barbell lifting can solve this mismatch problem. In the update stage, the obtained
high-pass coefficients are likely distributed to those pixels that are used to calculate
the high-pass coefficient in the prediction stage. Assuming that equation (9) is the
Barbell function used in the prediction stage now. We can calculate the high-pass
coefficients by combining equations (6) and (9). Then we calculate the high-pass

coefficients by:
hj(xay) = Fj(an’) + Zzzaiai,j(xayaman)E(x+ Axm’y + Ayn), (11)
where ¢, ;(x,y,m,n) is the Barbell parameter specified by the coordination x, y, m, n.

Then we can calculate low-pass coefficients in the same way by:
30



L(x,y)=F/(x,y)+ Zzzb,aﬁj(x,y,m,n)hj(x+ Ax,,y+Ay,). (12)
j om n

It means that the high-pass coefficient will be added back exactly to the pixels that are

predicted.

For the above example, the predicted weight from F(x,_,,y,,) to F,(x,,»,) is

non-zero. So in the proposed technique, the update weight from F,(x,,y,) to

F(x,_,,y,),which equals to the predict weight, is also not zero.

3.2 Spatial Decomposition

Figure 3-7 The frame after:3 level spatial decomposition.
After temporal decomposition, the spatial decomposition is applied to each created
residual frame. The filter used here is the Daubechies 9/7 filter and the analysis filter
coefficients are shown in Table 3-1 [35]. The coefficients of the Daubechies 9/7

synthesis filter are shown in Table 5-1 [35].

index Analysis low pass filter Analysis high pass filter
0 0.6029490182363579 1.115087052456994
+1 0.2668641184428723 -0.5912717631142470
+2 -0.07822326652898785 -0.05754352622849957
+3 -0.01686411844287495 0.09127176311424948
+4 0.02674875741080976
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Table 3-1 The coefficients of the Daubechies 9/7 analysis filters.
The spatial decomposition can also be done on the LH, HL, and HH subbands of
the first level decomposition. Thus we can get the important information in those

subbands and code them.

3.3 Multi-Layer Motion Estimation and Coding

The video coding algorithm proposed by MSRA dose not use HVSBM in motion
estimation. It uses a motion estimation method adopted in H.264 but makes some

changes to achieve motion information scalability.

v

Figure 3-8 Multi-layer motion estimation and coding.

It uses multi-layer motion estimation and coding as shown in Figure 3-8. It
generates an embedded bitstream for motion, which consists of one base layer and a
few enhancement layers. A coarse motion field can be reconstructed from the base
layer and can be successively refined by subsequent enhancement layers. The motion
vectors of the base layer are large and coarse and may be used for low bit rates. The
motion vectors of enhancement layer are small with details and often used for high bit

rates.

3.4 3D ESCOT

After temporal and spatial decomposition, the generated coefficients will be coded

with 3D Embedded Subband Coding with Optimal Truncation (3D ESCOT) [16]. The
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3D ESCOT is in principle very similar to EBCOT used in JPEG2000 [9], which deals
with 2D image coding. We can call 3D ESCOT as 3D EBCOT because it is an
extension of EBCOT used to do 3D dimensional signal coding. 3D ESCOT can offers
high compression efficiency and other functionalities, such as error resilience and
random access.

3D ESCOT takes advantages of the orientation-invariant property of wavelet
subbands to reduce the number of context and codes each subband independently so
each subband can be decoded independently. Because of this feature, 3D ESCOT can
achieve flexible spatial/temporal scalability and R-D optimization can be done within
subbands to improve compression efficiency.

Each subband is divided into 3D coding blocks and these blocks are coded
independently.

For each coefficient x[i, j, k]-at,position |1+, k], we assign it a binary-valued state
variable o[i, j, k], which indicates the-significance of this coefficient. [i, j, k] is
defined as the sign of the x[i, j, k]." Tt is.0. when the sample is positive and 1 when the
sample is negative. o[i, j, k] is initialized to 0 and toggled to 1 when the x[i, j, k]’s
first non-zero bit-plane value is encoded. There are three coding operations and when
they will be used depends on [, j, k]. Zero coding (ZC) and sign coding (SC) will be
used to code x[i, j, k] if o[1, j, k] = 0 and magnitude refinement (MR) will be used if

oli, j, k] = 1. We will introduce these three coding operations as follows.

3.4.1 Zero Coding

If a coefficient x[1, j, k] is not yet significant in the previous but-planes, i.e., o[, j, k]
=0, ZC is used to code the new information about whether it becomes significant or
not in the current bit-planes. ZC uses significant information about x[i, j, k]’s

immediate neighbors as the context to code the its own significant information. There
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are four types of neighbors as shown in Figure 3-9.

@ Current sample

O Horizontal Neighbor

@ Vertical Neighbor

@ Temporal Neighbor

(O Diagonal Neighbor

Figure 3-9 Four types of coding neighbors for zero coding.

1. Immediate horizontal neighbors. The number of these neighbors is 2 and the

number of significant ones is denoted by h, 0 =h=2.

2. Immediate vertical neighbors. The number of these neighbors is 2 and the number
of significant ones is denoted by v, 0 =v=2.

3. Immediate temporal neighbors: The number of these neighbors is 2 and the
number of significant ones i§ denoted:byraz0=a=2.

4. Immediate temporal neighbors. ‘The-number of these neighbors is 12 and the

number of significant ones is denoted by d, 0 =d = 12.

Table 3-2 shows the context assignment map of ZC. If the conditions of two or more

rows are satisfied in the same time, the low-numbered context is selected.

LLL and || h 211 |1 {1{0{0|0 |O]0O|0]O0
LLH \% x[>21]0 [0(2|1/0 0{0|0
sub-band | | 5 x|x [21]0]olo][>1]0]0]0]0
d X|x |x |[x|[x|x|x [3]2]1]|0
context |00 |1 [2|3|4|5 |6|7|8|9
LHH h 211 (1 |1 (1 |1]0 (O |O |O
sub-band | | v+a X[23 21210 [0|>3]>]|>1|0
d X|X |[24|x |24|x|x |>4|x |>4
context |00 |1 |2 |3 |45 |6 |7 |8




HHH d >6 (>4 |24 |22 |22 [>2|20|>0|>0|>0
sub-band | | h+v+a |x |>3|x |>4|>2|x [>4|>2|1 |0
context |0 |1 |2 |3 |4 |5 |6 |7 |8 |9

Table 3-2 Context assignment map for ZC.

3.4.2 Sign Coding

SC is called to code y[i, j, k], which is the sign of coefficient x[i, j, k], if x[1, j, k]
becomes significant in the current bit-plane. SC also utilizes high-order context-based
arithmetic coding to compress the sign symbols. The context models of arithmetic
coding are based on three quantities hs, vs and t;. They are defined as follows:

he=min{1, max{-1, o[i-1,j,k] x (1-2x[i-1,j.k])+ o[i+1,j.k]x(1-2x[i+1,j.kD}},  (13)

ve=min{1, max{-1, o[i,j-1,k] x (L2x[ij-1.k])+F6[ij+1.k] x (1-2¢[i,j+L.k])}}, (14)

tS:min{la max{—l, G[lajak_l] X (I-ZX[lajak'l])+ G[lajak+1] X (I_ZX[17J5k+1])}} (15)
Table 3-3 shows the context assignment map and sign prediction map of SC. 7 is
the sign symbol prediction under the given context and the symbol sent to the

arithmetic coderis 7 @Dy

he=1 || v, dAf-1]-1]0 oo |1 |1 |1
t 200 |1 [-1]0 1 |-1]0 1
b4 0 /0 [0 [0 |0O]O0O]|O |00

context |0 |1 |2 |3 (4 |5 |6 |7 |8

hs=0 || v, dl-1(-110 0 0o |1 |1 |1
t, 00 |1 [-1]0 |1 [-1]0 |1
b4 0lo0 oo o |1 |1 |1 |1

context |9 |10 |11 |12 |13 |12 |11 |10 |9
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hs =1 Vs -1 |-1]-1 10 (0O ]O |1 |1 |1

ts -110 |1 (-1 (0|1 |-1]0 |1

|1 |1 {1 {1 {11111

context |8 |7 |6 |5 |4 |3 |2 |1 |0

Table 3-3 Context assignment and sign prediction map for SC.

3.4.3 Magnitude Refinement

MR is called to code new information about x[i, j, k] if o[i, j, k] was switched to 1
in the previous bit-plane, i.e., it becomes significant. It uses three contexts for
arithmetic coding.

1. The context of x[1, j, k] is 0 if MR not yet used for x[4, j, k].
2. The context of x[i, j, k] is 1 if MR has been used for x[i, j, k] and x[i, j, k] has at
least one significant neighbor:by now.

3. Otherwise, the context is 2.

3.4.4 Fractional Bit-Plane Coding

The practical coding gain of 3D ESCOT is higher than 3D SPIHT because SC and
MR have high-order context modeling and the use of fractional bit-plane coding [16].
The fractional bit-plane coding can provides a practical means of scanning the
wavelet coefficients within each bit-plane for rate-distortion (R-D) optimization at
different rates. There are three different fractional bit-plane passes and the scanning
order in each of them is along the i-direction firstly, then the j-direction and the

k-direction lastly.

3.4.4.1 Significance Propagation Pass

If the coefficients which are not yet significant but have “preferred neighborhood”

are processed by this pass. A coefficient has a “preferred neighborhood” if and only if
36



the coefficient has at least one significant immediate diagonal neighbor for HHH
subband or horizontal, vertical, temporal neighbor for the other types of subband. For
these coefficients, we apply the ZC to code their significance information in the
current bit-plane of this coefficient. If the coefficient becomes significant in the

current bit-plane, then SC is used to code the sign.

3.4.4.2 Magnitude Refinement Pass

If the coefficient became significant in the previous bit-plane, it will be coded in
this pass. The binary bits corresponding to these coefficients in the current bit-plane

are coded by MR.

3.4.4.3 Normalization Pass

It is used to code the coefficients if it was not. coded in the previous two passes.

Because these coefficients are not yét significant, they are only processed by ZC and

SC.

3.5 Bitstream Truncation and Scalability

After 3D ESCOT on each subband, an embedded bitstream is generated for each
subband. In order to satisfy the requested bit rate, bitstreams corresponding to
different subbands will be truncated and multiplexed together to construct final
bitstream then transmitted to the receiver. The rate control problem is how to truncate
and multiplex bitstreams to create the final bitstream that achieves the best R-D
optimization.

The basic problem of rate control is that given a target bit rate Ry, how to construct
a bitstream that satisfies the bit rate constraint and minimizes the overall distortion.

Shoman and Gersho proposed a Lagrange’s theorem that can solve this problem [17].
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Taubman extends this algorithm to the rate control of EBCOT [9].
EBCOT partitions the subbands representing the image into a collection of

relatively small code-blocks, B;, whose embedded bitstreams may be truncated to the

rate R. The contribution from B; to the distortion in the reconstructed image is

denoted D;', for each truncation point n. Assuming that the distortion of each

code-block is independent and additive. Thus the overall reconstructed image

distortion D can be represented by:

D=>'D!", (16)
where n; denotes the truncation point selected for code-block B; D;" is calculated by:

D! =w; Y (s,[Kl=s/Tk])’, (17)

keB;
where s.[k] is the 2D sequence of subband coefficients in code-block B;. s/[k] is
the quantized representation of these icoefficients associated with truncation point n,
and w, is the L2-norm of the wavelet basis functions for the subband, b;, to which
code-block B; belongs.
R-D optimization algorithm should select truncation points »; for each code-block

B; such that the sum of R or D" meets the constraint imposed by Ryax OF Dyax

and also the sum of D/ or R is the minimum value. They are described as

follows:

1

> D"=D=D,, ,given » R"=R<R,__, (18)

i
or

2 R"=R=R,, . given 3D/ =D<D,, . (19)

Recently, several R-D optimization algorithms have been proposed to solve this
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problem [18]. It is noticeable that all these algorithms are applicable to convex curves.
Convex curves are the curves that the slopes are strictly decreasing. Some R-D
optimization algorithms are based on Lagrange’s theorem, such as the Lagrange
multiplier used in EBCOT [9]. Lagrange’s theorem states that the sum of continuous
functions with boundary condition is optimized at the points with equal slopes as
shown below:

(D(A)+ AR(A) =Y. (D! +AR]"). (20)

Any set of truncation points, {7/}, which minimizes (D(1)+ AR(1)) for some A

is optimal in the sense that the distortion cannot be reduced without increasing the
overall rate or vice-versa. If we can find a value of A such that the truncation points
minimize (D(A)+ AR(A)) yields R(A)=R

then this set of truncation points

must be an optimal solution to the R-D-algorithm based on Lagrange’s theorem.
Because the number of truncation points in a code-block is finite, we can not find

the value of A such that R(#A). exactly equals to R_, . However, since the

code-block in EBCOT is very small such that the total number of truncation points is

very large, we can find the smallest value of A4 suchthat R(1)<R_, .
In order to find the optimal truncation point sets n. for any given A, we need to

know the rate-distortion (R-D) pair of each truncation points. 4 can be viewed as
the R-D slope of the optimal truncation point sets. We can find the R-D slope of each
truncation point by calculating the bitstrean length and distortion at that point. Thus
we can construct an operational R-D curve for each code-block.

1) Assume 7 is the number of the truncation points, and 0 =;j =n.

2) Forj=0,1,2,...,n 0 is the beginning of the code-block, not a truncation point.

AD/ D/ —D/J

l 1

AR/ R/ —R/7'’

1 1 1

The R-D slope of each truncation point j is where R/ is the
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accumulative bit length of truncation point j in code block i and D/ is the

accumulative distortion of truncation point j in code block i.

Generally speaking, R/>R/™'>R/Z>.>R’=0 and

1

D/ <D/ <D/? <..< D] =the distortion when the coefficients of the code-block

are all 0. We just need to package the truncation points with the R-D slope bigger than
or equal to A, then we can achieve the optimal R-D.

In 3D ESCOT, the end of each fractional bit-plane is a candidate truncation point.
The R-D slope of each truncation points can be obtained by calculating the bitstrean
length and distortion [16]. Then we can construct an operational R-D curve for each
subband and find its convex hull. All valid truncation points must lie on this convex
hull such that the R-D optimality;at each truncation point can be guaranteed. If the
truncation point does not have a.strictly decreasing R-D slope (i.e., it has larger
distortion than the previous truncation point)sit.-will be discarded. In order to find the
best threshold value A, we first sét an.arbitrary value of A. If the R-D slope of this
truncation point is bigger than or equal to A, this truncation point will be packaged.
After we process all of the truncation points, we obtain the final bitstream. If the bit
rate of this bit-stream is larger than that of requested, the value of A4 will be set
larger to find the final bitstream again. Otherwise, the value of 4 will be set smaller.
We use this method recursively to find the final bitstream that has bit rate smaller than

or equal to the requested bit rate.
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Chapter 4
Human Visual System

4.1 Human Vision

IRIS

CORNEA
PUPIL Ak
LENS) yisuAL AXIS ___
- OPTIC AXIS
OPTIC—{
DISK OPTIC
NERVE
RETINA
SCLERA

Figure 4-1 Cross-section of human eye [19].
Figure 4-1 shows the cross-section of a human eye [19]. Through the optics of the eye,
the visual input is projected onto the retina, the neural tissue at the back of eye
composed of the photoreceptor mosaic [20]. The photoreceptors sample the image and
convert the input image to the signals that can be interpreted by the visual cortex of
the brain. Photoreceptors have Rhodopsin which is very sensitivity to light. When
Rhodopsin receives the energy of light, it will decompose into Vitamins A, Protein,
and impulse signal. The impulse signal will be processed by the Bipolar cell and
Ganglion cell then passed through optical nerves into the brain as shown in Figure 4-2

[21]. The Vitamins A, Protein, and Nutrition will be combined together and converted
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to Rhodopsin by the effect of Enzyme. Then the Rhodopsin can be used again.

Ganglion cell layer Bipolar cell layer Fhaotorecaptor layer

Light _:> Amacrme EBipolar H-:lnzcnntal
cell call call
Figure 4-2 The process of the visual input signal [21].

There two types of photoreceptors* "r'dc'l-s":élhd.cones. Rods are relatively long and

f'.-
| o= [

thin. They are used to view at lower sevé;l'p}.orders of magnitude of illumination, i.e.,
under scotopic conditions. Cones are irelatlvely short;br and thicker and they are less

i _..,.

sensitive than rods. They are used: to Vlew at the htgher 5 to 6 orders of magnitude of
illumination, i.e., under photopic conaltioris:. The cones are concentrated in the fovea,
the region of highest visual acuity, which covers approximately two degrees of visual
angle on the retina. The cones are also responsible for color vision.

There three types of cones. They are L-cones, M-cones, and S-cones. L-cones are
also called Red cones and they are sensitive to long wavelengths. M-cones are also
called Green cones and they are sensitive to medium wavelengths. S-cones are also

called Blue cones and they are sensitive to short wavelengths. Figure 4-3 shows the

relative sensitivity of each photoreceptor [21].
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Figure 4-3 Relative sensiti\'/it_yz of each photoreceptor [21].

4.2 Color Representation & o |

Colors do not exist in natural v&;(;fla.‘~To humér-l.‘perception, colors are related to the
wavelength of light. As describes above, the retina of human eye contains 3 different
color receptors: red, green, and blue. The different cones have different sensitivity
curve to light of different frequency. Thus, the combination of different sensitivity
curve to light can produce different color recognition. Due to this structure of human
eye, any color appeared to human eye can be specified by a weighted combination of
three so-called primary colors RGB. For the purpose of standardization, the CIE
(Commission Internationale de L'eclairage— International Commission on
[llumination) chooses the following specific wavelength values to the three primary
colors: blue (B) = 435.8nm, green (G) = 546.1nm, and red (R) = 700.0nm.

Trichromatic theory says that any color S can be represented as a combination of
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these 3 primaries R, G, and B.

S=RyR+ G¢G + ByB. 21

Any 3 independent colors can be selected as primaries as long as one is not a mix

of the other two. Different sets of primaries are related by linear transformations.

There several color models, such as CIE RGB, CIE XYZ, CIE YUYV, and CIE

L*a*b*. We introduce CIE RGB and CIE XYZ here.

1.
D
2)
3)

4)

1)
2)
3)

4)

CIE RGB:

R, G, B = three spectral primary source.

Reference white: R=G =B =1.

There exist negative tristimulus values.

The color is fully dependent on the wavelength. The three fixed RGB components
acting alone cannot generate all spectrum rcolors (pure colors). This is an
unresolved defect for color fepresentation:

CIE XYZ

All color matching functions are positive:

Y = luminance

Reference white: X=Y=7Z=1.

This model is modified from RGB model such that all spectral tristimulus values

are positive.

Generally Speaking, Each color space can transform to another space. Equation

(22) is the transformation from CIE RGB to CIE XYZ and equation (23) is CIE XYZ

to CIE RGB.
X 2365 -0.515 0.005 R (22)
Y |=/-0.897 1426 -0.014|G].
Z —0.468 0.089 1.009 | B
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R 0.490 0.177 0.000 X (23)
G|=10310 0813 0.010] Y |.
B| 10200 0.010 0.990| Z

4.3 Contrast Sensitivity

Human perception is more sensitive to the contrast of the luminance than the
absolute value of the luminance. But due to the complexity of natural image, a
common definition of contrast suitable for all conditions does not exist. Generally
speaking, there are three types of contrast definitions widely used.

In the case of a periodic pattern of symmetrical deviations ranging from L,,;, t0 Ly,
Michelson contrast is generally used:

L. —L

— “max min . (24)
" Lmax 1) Lmin
When the pattern consists of a‘single, increment or decrement AL to an otherwise

uniform background luminance-L, Weber contrast is often used:
e == (25)

These two definitions of contrast are not appropriate for measuring the contrast of
complex images. If there are some very bright or very dark points in the image, these
points will determine the contrast of the whole image. Furthermore, human contrast
perception varies with the local average luminance. Peli proposed a local band limited

contrast measure to solve these problems [22]:

BP,(x,y)

26
LP(x,y)’ 20

Ci(x,y) =
where BP (x,y) is the bandpass image of band i at location(x, y), and LP(x,y)
contains the energy below band i at location (x, y), i.e., the total response at this

location of all the bands below the band i. Modifications of this contrast definition

have been used in a number of vision models and are in good agreement with
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psychophysical experiments on Gabor patches [38].

We can describe contrast sensitivity as the function of spatial frequency. This
function is called contrast sensitivity function (CSF). Contrast sensitivity is defined as
the inverse of contrast threshold. The contrast threshold is the minimum contrast
necessary for an observer to detect the target.

Mannos and Sakrison first applied the HVS to image coding. They model the HVS
as a nonlinear point transform followed by the modulation transform function (MTF)

of the form [23]:

H(f)=2.6(0.192+0.114 f)exp(-(0.114 /)"") (27)

Nill proposed a new type of MTF that can be used for DCT [24]:

H(f)=(02+045/)exp(~0.18f) (28)

Ngan et al proposed another new:MTF [25]:

H(f) = (031+0.697)exp(-0.29 /) (29)

Except for the dependence on«spatial frequency, the contrast sensitivity also
depends on temporal frequency. Thus we can describe contrast sensitivity as the
function of spatial frequency and temporal frequency. Kelly proposed a contrast
sensitivity function (CSF) and it is generally used [26]:

—4n(f, +2/)) (30)

CSF(f,. /) =47 [, ], exp( 459

)% (6.1+7.3 ).

10g(§)

s

From this CSF, we can see that human has lower sensitivity at low and high spatial

(temporal) frequency but higher sensitivity at medium spatial (temporal) frequency.

4.4 Masking Effect

If a stimulus can be visible by itself but can not be detected due the presence of

another stimulus, this effect is called masking effect. On the other hand, the opposite
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effect, facilitation, occurs when a stimulus can not be visible itself can be detected due
to the presence of another stimulus. Masking effect explains why similar coding
artifacts are disturbing in certain regions of an image while they are hardly noticeable
elsewhere. There two types of masking effect, spatial masking and temporal masking.

Spatial masking is due to the non-uniformity of the background luminance.
Because of this masking effect, the noise is more visible in the flat or texture-less
areas and less visible in region with edges and textures. So the coding errors may be
less visible around sharp edges.

Temporal masking is due to the temporal discontinuity in intensity, like scene
change. The error visibility threshold is increased with the increasing interframe
luminance difference. Sometimes, if moving objects are not tracked by eyes, the loss

of perceived spatial resolution is substantial.

4.5 Just-Noticeable Distortion

The definition of just-noticeable=distortion (JND) is the visibility threshold of
distortion and the reconstruction errors‘below this threshold are imperceptible [27].
Sometimes we use the inverse of the sensitivity as the threshold. Human eyes are
more sensitive to luminance contrast than to absolute luminance value. The detecting
ability of human eyes to the difference between objects and background depends on
average value of background luminance. Weber’s law said that the ration of just
noticeable luminance difference to stimulus’ luminance is almost constant if the
luminance of a test stimulus is just noticeable from the surrounding luminance. The
noise in the dark areas is less perceptible than that in the regions of high luminance.
Because of JND, we can discard the signal below this threshold when transform the
encoded bitstream. So we can decrease the amount of data. On the other hand, we can

put some special signal like watermarking in the bitstream that will not be detectable.
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The JND profile of a still image is a function of local signal properties, such as
background luminance, activity of luminance changes and dominant spatial frequency.
JND is defined below [28]:

JND; (x, y) = max{f,(mg(x,y)), f,(bg(x,y)},0 < x <H,0< y <W, (31)

where H and W denote the height and width of the still image. f; represents the error
visibility threshold due to texture masking and f> represents the error visibility
threshold due to average background luminance. mg(x, y) denotes the maximal
weighted average of luminance gradients around the pixel at location (x, y) and bg(x, y)
is the average background luminance around the pixel at location (x, y).

mg(x, y) of the pixel at (x, y) is determined by calculating the weighted average of

luminance changes around the pixel in four directions [29], as shown as follows:

mg(x,y) = max {erad, ()}, (32)

and

w

5
1Z:Z:p(x—3+i,y—3+j)-Gk(x,y),OSx<H,0£y<W, (33)

rad, (x,y)=—
grad, (x,y) 1622

where p(x, y) denotes the pixel at (x, y). Four operations, Gy(i, j) for k=1,2,3,4 and i, j

=1,2,3,4,5 are shown in Figure 4-4 [29].

O(0[0[0][0] OJO[E[0]0 070 Gl o Bl LI¢[-1[0
131831 O[B3I[0[0 ETEIEDL 310(-3] 0
0100 0 1[3]01-3|-1 -IT- 31 0[&|0[-8] 0
-1{-3[-8]-3]-1 0[0[-3(-8]0 0-8]-3| 0} 0 013(0([-3[0
olo[dj0[0 O{0-1|0|0 ofof-i[0(0 I[O0[-I[0
G! G: Gs Ga‘

Figure 4-4 Operations for calculating the weighted average of luminance changes in
four directions.

The value of f;(mg(x, y)) is calculated as shown below:
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fi(mg(x,y)) =mg(x,y)x fO0<x<H0<y<W, (34)
where the value of f is get from a subject test and the value is 2/17.
bg(x, y) of the pixel at (x, y) is calculated by a weighted low-pass operator, B(i, j), i,

j=1,2,3,4,5, as that shown in Figure 4-5 [29]. bg(x, y) is calculated by:
1

5 5
5 L P34y =34 ) BUNOSx<HOSy<W. (39

i=l j=I

bg(x,y) =

11|11

11212]2]1

112]012(1

T{21212]1

If1j1f1}1
B

Figure 4-5 The operator for calculating the average background luminance.
The relationship of between visibility threshold and the average background bg(x, y)
is shown in Figure 4-6 [28].

Wisibility Threshold

v 32 64 a6 128 160 196 224 255
Backpround Luminance

Figure 4-6 Error visibility thresholds due to background luminance in the spatial
domain [28].

Sometimes we want to get the JND on the spatial-temporal domain. We can
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simplify the process to get this value by multiply spatial JND and temporal JND, as
that shown below [28]:

JND; ,(x,y,n) = f,(ild(x,y,n))- JND¢(x, y,n), (36)
where ild(x, y, n) is the average interframe luminance difference between the nth and

(n-1)th frame at pixel (x, y), as shown below:

ild(x,y,n) = p(x,y,n)— p(x,y,n—1) +2bg(x, y,n)—bg(x,y,n—1) (37)

The empirical results of f3 for all possible interframe luminance difference are shown

in Figure 4-7 [28].

6.0 -
[y 48 -
36 -
24 4
1.2 ’/
T
=255 o 255

Interframe Luminance Difference

Figure 4-7 Error visibility threshold in the spatial-temporal domain, which is modeled
as a scale factor or interframe luminance difference and the JND value in
the spatial domain [28].

It can be seen that the error visibility threshold increases with the increasing

interframe luminance difference. This coincides with the temporal masking effect that

the sensitivity of human vision is decreased after scene change and large temporal

luminance difference.
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Chapter 5
Rate Control Algorithm
Based on HVS

5.1 Transform R-D Slope Representation

The R-D slope of the truncation point j in the code block i is usually represented in

AD! D/?—-D/ - : .
L~ le ijl where R’ is the accumulative bit length of

i i i

the wvalue of

truncation point j in code block i and_ Dyl lis'the accumulative distortion of truncation

J
i

point j in code block i. Generally speaking; the value of is very large and the

i

difference of this value at each truncation-peint-is very large too.

We can transform the R-D slope ‘of each.truncation point to another representation

J
i

to an

type but keep their relative orders the same. We transform the value of

i

exponential representation and use the exponent as the new R-D slope value of each
truncation point, as shown in equation (38).

AD/ (38)
0.5+2° = logz(AR’, )

J
i

The new R-D slope of each truncation point is smaller and the relative difference of
them is smaller too. The most important thing is that the relative order of the new R-D
slopes of truncation points is kept the same as the original R-D slopes. We use this
new value as the R-D slope value for each truncation point and do rate control on this

new R-D slope.
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5.2 Weighting Factor

Human vision has different sensitivity on different spatial frequency, so we need to
have higher fidelity on the low spatial frequency data, which has higher sensitivity
and lower fidelity on the high spatial frequency data, which has lower sensitivity. For
this reason, we can convert the mean-squared error (mse) distortion to the “visual
distortion” in doing rate control. In other words, we can multiply the R-D slope of
each truncation point by a weighting factor such that the value of weighted R-D slope
is proportional to the importance to human vision. The target is that if we use the new
R-D slope value to do rate control, we can probably achieve higher visual quality.
Here, we present a weighting factor only for the Y component of each frame.

Discrete wavelet transform can decompose a frame into different spatial subbands.
Every subband has its own minimum yisibility threshold and thus its own relative
visual importance. For this reason, the weighting factor w can be decomposed into
two weighting factors and they ~are “intra-subband weighting factor w; and
inter-subband weighting factor w,. The‘weighting factor w is:

w=w kW, (39)

5.2.1 Intra-Subband Weighting Factor

The intra-subband weighting factor w; is used to decide the visibility of the
truncation point in the same spatial subband. It does not consider the visibility of the
truncation point in the other spatial subbands. To find the visibility of the error of a
truncation point, we need to know the just-noticeable-distortion (JND) of that
subband.

Watson gives the minimum threshold of luminance of each spatial subbands

without masking effect [30]. This minimum threshold can be used only on the Y
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component of the image. The minimum threshold y of luminance of each subbands is

given by [30]:

log(y) = log(a) + k - (log(f) ~log(g, /1))’ (40)
where the value of a is 0.495, k is 0.466, and f, is 0.401. The value of g, 1is 1.501, 1,
and 0.534 for LL, LH/HL, and HH subbands. f'is spatial frequency and the value is
different for different viewing condition. Under the computer monitor viewing
condition, the display resolution r is 16 pixels/degree.

The size of our test sequence is 288 pixels in height and 352 pixels in width. The
viewing distance is about 3.5 times of the height, i.e., 1000 pixels. The visual angle in
height of this condition is 2*tan™(288/(1000*2)) = 16.38 degree. The display
resolution in height is 288/16 = 17.58 pixels/degree. The visual angle in width of this
condition is 2* tan'(352/(1000%2)) = 19.96'degree. The display resolution in height is
352/20 = 17.6 pixels/degree. So-the display resolution r is about 16 pixels/degree.

The spatial frequency of each DWT level'A is’ f =r=*2"" cycles/degree. Figure
5-1 shows a frame after three level“of IDWT and the spatial frequency of each
subbands. It also shows the minimum threshold y calculated by equation (40) when
the maximum spatial frequency is 16.0 cycles/degree without masking effect of each
subbands.

We conclude the step of calculating the minimum threshold y as follows.

1) Find out the corresponding spatial frequency of each level L by f =r*27",
2) Find out the corresponding value of g, of each corresponding orientation.

3) Use equation (40) to calculate the minimum threshold y of each subband.
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2.0 2.0 (LLH)
0.835 | 1.359 8.0
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4.0 4.0
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spatial frequency
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(L,HL) (1,HH)
8.0 8.0
3.034 7.027

Figure 5-1 The level, orientation, spatial frequency; and minimum threshold of each
DWT subbands.

After we get the minimum threshold of each subband, we need to consider the
contrast masking effect of each subband. Peli proposed a definition of contrast that
can be used in complex images [22], as shown in equation (26). The problem now is
the contrast sensitivity for each subband. If we assume the local luminance to be
constant across the whole image and equal to the average value of the coefficients in
the lowest spatial subband [31], we can calculate the contrast at each location (7, j) in

the frame in a simplified way by:
C@, J)

s
lowest—spatial —subband )

(i, ) = (41)

EC
where  E(C, o spatiasuvbana ) 1S the average of the coefficients in the lowest spatial
subband and C(i, j) is the associated wavelet coefficient at location (7, j). In the case

shown in Figure 5-1, E(C,,.q gpaiar-surbana) 18 the average of the coefficients in the
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subband (3, LL). Then, c¢(i, j) is the contrast of the location (i, j) in the frame.
The visibility of a signal can be reduced by the presence of another signal, i.e., the
contrast masking effect. The masking function is shown in Figure 5-2 and it can be

the same for every subband [32].

A

threshold elevation

9]
3

Cid mask contrast*csf

Figure 5-2 The contrast masking function.
The contrast masking function can be formulated by:

Cr(Cy) = Cry, if Cu < Cho, (42)

and
Cr(Cy) = Cro(Cu/ CMO)g, (43)
where C, is the masking contrast value, Cr is the threshold elevation value, ¢ is the
slope. We can see that the contrast masking function is divided into a threshold range,
where the target detection threshold is independent of the masking contrast, and a
masking range, where it grows with the power of the masking contrast. The slope ¢ is
one for all subbands, which corresponds to experimentally derived slopes for

phase-incoherent (noise) masking [32]. We generally assume that Cry = Cyy [33] and
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it is confirmed by the experiments [34]. The values of Cry and Cyy are all 1 [32].

If we normalize both the test threshold and masking contrast axes by the test
frequency’s threshold in a uniform field (i.e., 1/csf(f)), Figure 5-2 can be used to
describe all frequencies, provided the test signal and masking signal are the same
frequency [32]. The relationship between the threshold elevation Cr (f, Cy,) and real
threshold value 7(f, C(f)) 1s [32]:

Cr (f; Co) = T(F, CO) + es/1) = T(f, C() / T(f 0), (44)
where f is the spatial frequency [32]. Then, the relationship between the real
masking contrast value C(f) and the masking contrast value Cyy is:

Cu = C() « csf(), (45)
We can see that when there is no masking contrast effect, the minimum value of real
threshold value 7(f, 0) is the inyerse value-of the corresponding contrast sensitivity
function. We can get real threshold value 7(f, C(f))-by dividing threshold elevation
value Cr (f, Cy) by corresponding contrast sensitivity value csf(f) and it equals to the
value y we get from equation (40) when €(f) is 0, i.e., no masking effect. The real
masking contrast value C(f) of location (i, j) in the frame equals the value c(i, j) we
get from equation (41). We can see that the minimum real threshold values of the
pixels within the same spatial subband are all the same and equal to 7, 0). Because
of the different real masking contrast value C(f) at different pixel, each pixel may
have its own real threshold value 7(f, C(f)).

We can use the contrast masking function to find out the corresponding threshold
value of each location (7, j) in a frame. Thus, we can find out the real threshold value
of every pixel within the same subband and choose the smallest real threshold value
as the real threshold value of the subband. But if there is one value has smallest real
threshold value, i.e., T(f, 0), then we need to choose this value as the real threshold
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value of this subband and the masking contrast effect is of no use.

We have done some experiments, i.e., we use DWT to decompose the Y component
of a frame and use different quantization step sizes to quantize one subband without
quantizing the other subbands. Then, we use IDWT to reconstruct the frame and see
which size of the quantization step size will produce difference between the original
and the reconstructed frame that can be detected by eyes. We found that the step size
we get is usually larger than the value calculated by the methods described in the
above, especially for the lower spatial frequency subbands. The reason is that there
may be some pixel in a subband has minimum real threshold value 7(f, 0), but it does
not dominate the entire visual effect. For this reason, we choose the middle value of
the real threshold value 7(C,4a.) of pixels within the same subband as the real
threshold value of this subband. 7(€) is the real threshold value of the pixel with real
masking contrast value C and «Cyyqdie 1S the pixel has middle real masking contrast
value among the pixels within the same subband. In other words, 7(Cyiqae) 1s also the
middle real threshold value among the pixels within the same subband.

In order to apply the real threshold values to HVS, we need to convert the real
threshold values from the spatial domain to the wavelet domain. We need to estimate
the size of the wavelet coefficient of each subband that produces the detectable spatial
(impulse) response. To do this, we have a “worst case” formula that estimates the
minimum coefficients detection threshold ¢,,(4,0,C) of the corresponding
subband with level A and orientation 0 that can produce the detectable spatial response
[31]:

£ (4,6.C) = —E) (46)
1

200-1)
Z ’

where T(C) is the real threshold value of the corresponding subband obtained in the

above and i, is either p’, p;, or p,p, for the LL, HH, or LH/HL subbands,
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respectively. p, is the maximum coefficient amplitude of the low pass synthesis
filter and p, is the maximum coefficient amplitude of the high pass synthesis filter.

The DWT filer we used is Daubechies 9/7 filter and the synthesis filter coefficients

are shown in Table 5-1 [35]. We can see that p, is 1.115087052456994 and p, is

0.6029490182363579.
index Synthesis low pass filter Synthesis high pass filter
0 1.115087052456994 0.6029490182363579
*1 0.5912717631142470 -0.2668641184428723
+2 -0.05754352622849957 -0.07822326652898785
+3 -0.09127176311424948 0.01686411844287495
+4 0.02674875741080976

Table 5-1 The coefficients of the Daubechies 9/7 synthesis filters.

We use equation (46) to calculate £, (4,6,C). of the decomposed subbands
shown in Figure 5-1 and show the resultan-Figure 5-3. Please note that ¢, (4,0,C)
shown in Figure 5-3 is calculated without contrast masking effect. It means that it
equals to ¢,,(4,0,0).

tp(4,0,0)1s also the JND threshold of the corresponding subband, i.e., the
maximum error that can be tolerated in the subband without considering masking
effect. For uniform quantization, if the step size of the quantizer is Q, then the
maximum possible error is O/2 [30]. Thus we can use the quantizer with step size
2%t ,p(4,0,0) to quantize the corresponding subband, thus the reconstructed frame
will not be distinguished from the original frame by human vision.

We choose ¢,,,(4,0,C, ,,.) as the minimum coefficients detection threshold for

the corresponding subband.
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(3,LL)| (3,LH)
2.0 2.0
0.345 | 0.803 (ZAL(;_I )
(3HL) | (3,HH) :
1.727
2.0 2.0 (LLH)
0.803 | 2.419 8.0
4513
(2,HL) (2,HH)
4.0 4.0
1.727 6.204 (level, orientation)
spatial frequency
tJND
(LHL) (1,HH)
8.0 8.0
4513 19.329

Figure 5-3 1, (4,0,0). of the frame shown in Figure 5-1.
While the ¢,,,(4,0,C,....) of each subband is obtained, a perceptual distortion
metric that also accounts for-the spafial and spectral summation of individual
quantization errors is needed. The probability-summation model is adopted in the
perceptual distortion metric [36] [37]. The probability summation model considers a
set of independent detectors, one at subband location(A4,6,x,y) [37]. (4,6,x,y) is
the location (x, y) within the subband corresponding to level A and orientation 0. The
probability of detecting a distortion at location (A4,0,x,y) is determined by the

psychometric function, as shown below [37]:

| e(.0.x.y) [ (47)
‘tJND(/lseaxay)‘ ’

Puoxy = 1 —exp(

where e(4,0,x,y) is the quantization error at location (4,0,x,y) and S, is a
parameter whose value is chosen to achieve consistency between (39) and the

experimentally determined psychometric function for a given type of distortion. We
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choose the value of g, is 4 [36] [37]. t,,,(4,0,x,y) is the minimum threshold
value of location (A,6,x,y), but we set the minimum threshold value of all the
coefficients within the same subband are the same and equals to ¢,,,(4,0,C,,...) -
Thus, we use ¢,,(4,60,C, ....) toreplacet,,(1,0,x,y), as shown below:

(48)

| e(r.0,x.y) |
‘ L (4,0,C i)

p(ﬂ,ﬁ,x,y) = 1 - eXp( ) .

The highest visual acuity is limited to the size of the foveal region and covers

approximately 2° of visual angle in HVS. Let F, ,, denote the area in the spatial

domain that is centered at location (n/, n2) and covers 2° of visual angle. Then, the

probability PF( - of detecting a distortion in this region is [37]:

P == 105, ) (49)

(2.0,%.7)eF

The probability summation scheme.is developed based on two assumptions [36] [37].

1) A distortion is detected in the foveal-region if and only if at least one detector
signals the presence of distortion.

2) The probability of detecting a distortion of each detector is independent.

We can substitute equation (48) into (49), thus we have [37]:

PF(”‘“) =1- exp(_(DF(nl.nZ) )4) P (50)
where
| 0,3y [ Dle2. 0,50 (51)
e s Uy x: n ,0,x,y)e —
DF(nl.nZ) =( z “ )4 =((ﬂ'9 <l )4

Lo (A0, C i) (o (4,0,C e ))4 |

The maximum width, maximum height, and maximum depth of the code block in

(4,0.x,y)eF

3D-ESCOT coding are 64, 64, and 4. Because we only consider one frame each time

and 7,,(4,0,C, .. ) of different frame may not be the same, the depth of the code

block is 1. Although human eyes can see the scenery in the visual angle about 160°
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to 180°, human can only pay attention to the scenery in the visual angle about 2°
because of the structure of the fovea. If we assume the foveal region is the code block,
the maximum visual angle of each code block is 4° in our condition. So we need to
modify equation (51) to fit it to our condition.

From equation (51), we can see that the total “visual error distortion” is

4 block _width—1 block _height—1 4
Z|e(/1,9,x, y)| = z z |e(/1,6’,x, y)| and the total ‘“visual error

(1,0,x,y)eF x=0 y=0

distortion” that can be tolerated is block height*block width*t,(1,0,C,..)". We

think that the ratio of these two values can determine the visual error probability. So

we rewrite equation (51) into:

block _ width—1 block _ height—1 4
> |e(2,6,x,)| 1 (52)

D — ( x=0 y=0 )4
(1.6) ; . 7
block _height * block ~width*(t ,(1,0,C,..0.))”

The spatial subband may include'moré than one code block and each code block

has its own height and width. If we censider just one code block a time, we can get:

W (A,0,2)5VH(A,0,2)-1 \
> N e, 0, z,x, )| 1 (53)
x=0 y=0 )Z

H(ia 09 Z) * W(ﬂ"ea Z) * (tJND (ﬂ”e’ Cmiddle ))4 ’

D(iﬂ,z) =(

where H(A,0,z) and W(A,0,z) represents the height and width of the z-th code
block in spatial subband (4,6) and e(A,6,z,x,y) is the error in the location (x, y)

of the z-th code block in spatial subband (4,86).

We can combine equation (50) and (53) together, then we can get the intra-subband

weighting factor w; of the coding pass of the corresponding bitplane:

W(4,0,2)-1 H(4,0,2)-1

Z |e(/1, 0,z,x, y)|4 (54)

w, =1—exp(—( =0 i~ )
1 H(2,0,2)*W(2,0,2)* (t 1p (4, 0,Cigu )

and e(A4,0,z,x,y) is the total error of the coding pass of the corresponding bitplane.

We can see that intra-subband weighting factor w; is different for every truncation
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point even the truncation points are located in the same spatial subband, and w; is

frame-dependent.

5.2.2 Inter-Subband Weighting Factor

Intra-subband weighting factor w; is close to 1 when the bitplane is close to the
most significant bitplane (large distortion). In other words, if we multiply the R-D
slope of each truncation point by w;, the R-D slope of bitplane near the most
significant bitplane may not change and the R-D slope of bitpane near the least
significant bitplane becomes smaller. Thus, the visual quality is the same as that in
original rate control algorithm at low bit rate. This means that we need to find out
another weighting factor to decide the relative visual importance of the same bitplane
in different spatial subbands. This i$ inter-subband.weighting factor w,.

From equations (27), (28), (29),,and (30), we can see that the sensitivity at different
spatial frequency is very different.i Fhus,-the, difference between their associated
inter-subband weighting factors should. be large too. But we use equation (38) to
represent the R-D slope of the truncation point, the relative difference between their
inter-subband weighting factors becomes smaller too.

We use ¢,,,(4,0,0) instead of 7,,(4,6,C,,.) to calculate w,. The reason is
that the spatial subband with lower ¢, (4,0,0) usually has higher sensitivity. If we
consider masking contrast effect, we can get ¢,,(4,6,C, .,.) and ¢,,(41,60,C, ...)
is bigger than or equal to ¢,,(4,0,0). Thus, the associated intra-subband weighting
factor w, will be smaller.

The ¢,,(4,0,0) of the lowest spatial subband is the smallest of all the subbands
but its ¢,,(4,0,C, ,..) is usually very large because of large contrast masking

effect due to large wavelet coefficients in this subband. If we use ¢,,,(4,0,C, ...)
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to calculated w,, we may think that the minimum spatial subband has lower w;. It is

not the true based on our experiments. From our experiments, we found that the

lowest spatial subband has the largest weighting. For this reason, we use ¢,,,(4,8,0)

to calculate w; for each spatial subband.
Assuming the ¢,,(4,0,0) of the lowest spatial subband is ¢

JND—lowest—spatial—subband *

For the frame showing in Figure 5-3, 7y, iovesspatiar—subbana = Lvp (3, LL,0) = 0.345.

We find that 7, e gpaiar-suvana 18 the smallest 7,,,(1,0,0) of all the spatial

subbands. The inter-subband weighting factor w, of spatial subband (4,6) is:

( tJND—lowest—spatial—subband ) (5 5)
t o (4,0,0)
10

exp
w, =1+

From equation (55), we can seé that the.inter-subband weighting factor w; is the
same for all the truncation points within the same spatial subband and it is

frame-independent.

Combing equations (39), (54), and (55) together, we can get the function of

subband weighting factor w:

W(A8.2)-1 H(%8.2)-1 4 L IND—towest—spatial —subband
ST a0z n ) axp( ettt (50
w=w, *w, = (1-exp(~( ON*(A+ AR )
H(A,0,2)*W(4,0,2)*(t )y, (1,0,C,00.)) 10

We can use w to transform the original distortion to “visual distortion”, i.e., the

weighted truncation points are in the order of visual importance.
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5.3 Rate Control
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Figure 5-4 The flow chart of calculating the subband weighting factor w.

Figure 5-4 shows the flow chart of calculating the subband weighting factor w. We
need to transform the R-D sloperof each truncation point to new R-D slope by
equation (38). Then, we can get.subband-weighting factor of each truncation point by
equation (56) and multiply it to the new:R=D slope got from equation (38).Thus, we
can obtain the R-D slope value based on “visual distortion”.

We use the new weighted R-D slope to do rate control. If the truncation point has

larger new weighted R-D slope, it has high probability to be packaged and transmitted.

We show the experimental results in the next subsection and examine the correctness

of the proposed rate control algorithm.

5.4 Experimental Results

Here we show two types of the experimental results. One is the correctness of the
proposed rate control algorithm and the other is the comparison between the original

and proposed rate control algorithm.

5.4.1 Correctness of the Proposed Rate Control Algorithm
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We propose a method to examine the correctness of the proposed rate control
algorithm. We calculate the 7,,(4,6,C,.,.) of each spatial subband of the Y
component of the frame. Then, we discard the coding pass (for 3D-ESCOT, each
bitplane has 3 coding passes, except for the first bitpalne that has only 1 coding pass)
of the bitplane that smaller than 2*¢,,(4,6,C,,,.) and calculate the smallest bit
rate to transmit the necessary data, i.e., we use the quantizer based on HVS to
quantize the wavelet coefficients and transmit. The bit rate is calculated under the
assumption that we transmit 30 frames per second. We will compare the discarded
coding pass of the original and proposed rate control algorithm at the same bit rate.
We only check the Y component of the first frame for several test sequences. There
are 64 code blocks in a frame. We will show the original frame, the HVS quantized
frame (HVS quantizer), the frame reconstructed.using the Microsoft original rate
control algorithm (MS original); and the frame reconstructed using the proposed rate
control algorithm (weighting scheme).-We will. compare the number of coding passes

they discard to see the difference between them:
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(b)HVS quantizer, PSNR = 40.09dB, package size = 18702bytes
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(d)Weighting scheme, PSNR = 39.79dB, package size = 18377bytes

Figure 5-5 The four test frames for comparison of test frame I.
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(a)Original

_at LR RNy,

(b)HVS quantizer, PSNR = 39.15dB, package size = 24853bytes
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(c)MS original, PSNR = 40.80dB, package size = 24820bytes

(d)Weighting scheme, PSNR = 39.01dB, package size = 24652bytes

Figure 5-7 The four test frames for comparison of test frame II.
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(a)Original

(b)HVS quantizer, PSNR = 40.21dB, package size = 15675bytes
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sl

(d)Weighting scheme, PSNR = 39.97dB, package size = 15577bytes

Figure 5-9 The four test frames for comparison of test frame III.
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rate is 30 frames/sec.

test- frame I1I. The required bit rate is
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(b)HVS quantizer, PSNR = 39.88dB, package size = 21668bytes
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(d)Weighting scheme, PSNR = 39.40dB, package size = 21608bytes

Figure 5-11 The four test frames for comparison of test frame IV.
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Figure 5-12 The truncated coding:.passes of test frame IV. The required bit rate is

4.92M bytes per s¢cond if the frame rate is 30 frames/sec.

For the frames in Figure 5-5, We can notdistinguish between these four frames. But
the PSNR value of each of frame"is different: We can find the same condition in
Figure 5-7, Figure 5-9, and Figure 5-11. The quantizer that used in HVS quantizer is
smaller than or equals to 2*¢,,(4,60,C, ...)- The PSNR values of the weighting
scheme are lower than those of MS original but almost equals to the PSNR values of
HVS quantizer. From Figure 5-6, we can see that the numbers of truncated coding
passes of HVS quantizer and weighting scheme are very similar for each coding block.
We can see the same condition in Figure 5-8, Figure 5-10, and Figure 5-12. For this
reason, we believe that the proposed weighting scheme is correct. The package size of
weighting scheme is usually smaller than that of MS original. (In Figure 5-11, the

package size of weighting scheme is larger than that of MS original.)

From above four test frames, we can see that the frame quantized by the quantizer
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based on HVS is almost the same to the original frame. From the truncated coding
passes of each test frame, we can see that human eyes can tolerate larger error in high
spatial frequency than in low spatial frequency. We can see that the truncated coding
passes of the reconstructed frames using the weighting scheme are very similar to
those of the frames quantized by the quantizer based on HVS at the same bit rate.
Because the bit rate for each test frame is very high, especially we only encode and
transmit the Y component of the frame. We like to compare the performance on visual

quality of these two rate control algorithms at lower bit rates.

5.4.2 Comparison of Rate Control Algorithms

Here we compare the visual quality difference between two different rate control
algorithms. We compare the performance under 500K bits per second and 1000K bits
per second if the frame rate is 30 frames/sec.-The frames to be tested are the same as

the previous section.
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(b)Weighting scheme, PSNR = 27.13dB, package size = 2185bytes
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(d)Weighting scheme, PSNR = 30.98dB, package size = 4317bytes

Figure 5-13 The four test frames of frame I at low bit rates. (a) and (b) are 500K bits

per second. (¢) and (d) are 1000K bits per second.

In Figure 5-13, we can see that the ocean of weighting scheme looks smoother than
that of MS original. But the PSNR and the package size of the weighting scheme are

all smaller than those of MS original.
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(a)MS original, PSNR = 24.71dB, package size = 2216bytes

(b)Weighting scheme, PSNR = 24.43dB, package size = 2209bytes

81



(c)MS original, 27.61dB, package size = 4368bytes

(d)Weighting scheme, 27.40dB, package size = 4383bytes

Figure 5-14 The four test frames of frame II at low bit rates. (a) and (b) are 500K bits

per second. (¢) and (d) are 1000K bits per second.

From Figure 5-14, we can see that the visual quality of weighting scheme is higher
than that of MS original. The background of the weighting scheme looks smoother

than that of the MS original. The PSNR of the weighting scheme is lower than that of
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MS original.

(a)MS original, PSNR = 30.44dB, package size = 2203bytes

(b)Weighting scheme, PSNR = 29.91dB, package size = 2197bytes
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(c)MS original, PSNR = 34.02dB, package size = 4400bytes

(d)Weighting scheme, PSNR = 33.95dB, package size = 4342ytes

Figure 5-15 The four test frames of frame III at low bit rates. (a) and (b) are 500K bits

per second. (c) and (d) are 1000K bits per second.

The visual quality of the frame in Figure 5-15(b) is clearly better than that of the
frame in Figure 5-15(a). The wall and face looks smoother but the value of PSNR is
lower. But the edge of the wall in Figure 5-15(b) is not so clear s that in Figure 5-15(a)

because we truncate more signal in high spatial frequency subbed. The visual quality
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of the frame in Figure 5-15(c) and that of the frame in Figure 5-15(d) is almost the
same and their values of PSNR are almost the same, too. We found one thing that the
visual quality of Figure 5-15(b) is better than that of Figure 5-15(a), but it does not
look like the original frame. We can found some shadow regions on the wall and face
in the original frame. We can also found shadow regions on the wall and face in
Figure 5-15(a). The shadow regions on the wall and face in Figure 5-15(b) are not so

clear.
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(b)Weighting scheme, PSNR = 23.14dB, package size = 2090bytes
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(d)Weighting scheme, PSNR = 26.67dB, package size = 4272bytes

Figure 5-16 The four test frames of frame IV at low bit rates. (a) and (b) are 500K bits

per second. (¢) and (d) are 1000K bits per second.

The wall and the floor of the frame in Figure 5-16(b) looks smoother than that of
the frame in Figure 5-16(a). But the edge of the player and the letters on the wall of
the frame in Figure 5-16(b) is not as clear as those of the frame in Figure 5-16(a).

Also Figure 5-16(d) looks slightly better than Figure 5-16(c). The package size of
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weighting scheme in Figure 5-16(b) is smaller than that of MS original in Figure
5-16(a). But we can see that the difference is almost 100 bytes. The reason we think is
the relative difference between R-D slopes of associated truncation points becomes

larger. If we want to package more data, we must use large bit rate.

5.5 Discussion

The proposed rate control algorithm can provide better visual quality, especially
when there is a large and flat region in the test frames, such as the ocean in test frame
I. But sometimes the visual quality of edges may become worse. The reason is that the
visual weighting for high spatial frequency is smaller than the value it should have.

Because we use “human visual weighting error” instead of “quantization error” to
do rate control, PSNR will become smaller. It proves that the frame with higher PSNR
may not have higher visual quality. The weighting factor will make the relative
difference between the R-D slopes of associated truncation points in MSB bitplane
and those of associated truncation points in-I.SB bitplane larger. Thus, we need higher
bit rate to package the same data.

Because the human vision has high sensitivity at low spatial frequency (flat region)
than high spatial frequency (edge), the proposed rate control algorithm packages more
data of low spatial frequency and less data of high spatial frequency. Thus we can
make the flat region smoother and but larger error in edges. Larger error in edges will
not be detected by the eyes sometimes. The PSNR values of the frames reconstructed
by proposed rate control algorithm are always smaller than those of the frames
reconstructed by original rate control algorithm. This proves that the frame has higher

visual quality may not have higher PSNR value.
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Chapter 6
Conclusion and Future
Work

6.1 Conclusion

The interframe wavelet video coding is a compression technique that provides
flexible and multi-purpose scalability. The single created by interframe wavelet video
coding can provide rate/SNR, temporal, and spatial scalability.

The study on HVS is become more important in recent years. The data of HVS is
usually obtained from experiments. Because. HV.S has different response under
different conditions, this is hard to find out a global-useful formula for CSF or JND
that can be accepted extensively.

We propose a weighting factor that can be‘used to convert the distortion measure of
a truncation points to a visual weighted one. It is the product of the intra-subband
weighting factor and inter-subband weighting factor. They are summarized below.

1) intra-subband weighting factor: It decides the visual importance of errors within
the same subbands. The error smaller the JND of the corresponding subband has
lower weighting because of the less importance to HVS.

2) inter-subband weighting factor: It decides the visual importance of errors in
different subbands. If the values of the errors in different spatial subbands are the
same, they have different visual importance to HVS. The error in lower spatial

subband often has higher visual importance.
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6.2 Future Work

We notice there are a few work items can be future explored.

1) The function of the minimum threshold provided by Watson is based on 9/7 linear
phase filter [30]. We may need to derive a function that corresponding to the
Daubechies 9/7 filter.

2) We assume the local luminance is constant across the whole image but it is not
correct. We like to find another model to estimate the local luminance. The
estimation of masking effect in lower spatial subbands can be improved. The
masking effect in lower spatial subbands is usually very large. If we can estimate it
with higher precision, we can get better weighting factor to do rate control and
decrease the probability of the occurrence of visual error.

3) The proposed rate control algorithm israpplicable. to the luminance component of a
picture. We like to extend it-to ‘the chrominance component. Watson suggests the
minimum threshold function on chrominance [30] but the experiment results shows
that visual responses on chrominance for different people is very different.

4) The proposed rate control algorithm is now used only on one spatial decomposed
frame. We like to extend it to temporal domain. There is no clear model of
minimum temporal threshold because the human eyes may track the moving
objects and the resolution of static objects can be low. Finding an adequate model

for temporal human vision can be a difficult and unsolved problem.
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