
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

AMR 編碼及 IEEE 802.16a 標準之 Reed-Solomon

解碼器於數位訊號處理器之實現

DSP Implementation of AMR Speech Coding

and the Reed-Solomon Decoder in

IEEE 802.16a Standard

研 究 生：陳志楹

指導教授：杭學鳴 博士

中 華 民 國 九 十 四 年 六 月

AMR 編碼及 IEEE 802.16a 標準之 Reed-Solomon

解碼器於數位訊號處理器之實現

研究生: 陳志楹 指導教授: 杭學鳴博士

國立交通大學
電子工程學系 電子工程研究所

摘要

近年來，多媒體與無線通訊已成為市場上非常重要的發展趨勢，IEEE 802.16a

通訊標準主要在於實現無線網路上能夠傳輸高品質的多媒體的目標，在本篇論文

中，我們將會實現語音與 Reed-Solomon 編碼機制於 TI DSP 平台上。

本篇論文的重點之一，在於多媒體編碼的部分，我們將討論第三代無線通訊

系統中所採用的語音標準「適應性多速率編碼(AMR)」，它提供了多樣的編碼模

式來因應各種通道所產生的影響；另一個重點為 IEEE 802.16a 無線通訊標準中前

向誤差改正編碼機制的部分，由於 Reed-Solomon 編碼高度的修正能力，因而被

IEEE 802.16a 採用於前向誤差改正編碼的程序之一。

在論文中，首先我們將簡單描述 AMR 語音標準與 IEEE 802.16a FEC 部分的

演算法與架構，並且針對數位訊號處理器(DSP)平台的特性，改善 AMR 語音編碼

與 Reed-Solomon 解碼器的執行效率，進而實現於 DSP 平台上。我們的實現平台核

心為德州儀器公司所發展的數位訊號處理器，程式經過改進後，AMR 語音編碼器

在 DSP 平台上可以達到每秒 22.78K 位元的處理速率，解碼器則可達到每秒 31.84K

位元，而在 IEEE 802.16a 中 Reed-Solomon 解碼器的部分，在 DSP 平台上甚至可

以達到每秒 176.4K 位元的處理速度，但這些測試數據都包括電腦與 DSP 之間資料

傳輸所花費的時間，若扣除後將會更加快速。此外，我們也對原先的程式加以比

 I

較，在 AMR 編碼方面進步了 65.94%，在 Reed-Solomon 解碼器方面也比原先實現

的版本進步了 96.44%。

 II

DSP Implementation of AMR Speech Coding

and the Reed-Solomon Decoder in

IEEE 802.16a Standard

Student: Chih-Ying Chen Advisor: Dr. Hsueh-Ming Hang

Department of Electronics & Institute of Electronics
National Chiao Tung University

Abstract

Multimedia and wireless communication have been two very important trends in

the recent years. Transmitting high quality multimedia data over wireless channel is

the target of the IEEE 802.16a standard. In this thesis, we will implement a speech

coding scheme and a Reed-Solomon coding scheme on TI DSP.

One focus of this thesis is Adaptive Multi Rate (AMR), the speech coding

standard of 3GPP. It provides various coding modes match the channel error rates.

Another focus of this thesis is the Forward Error Correction (FEC) scheme of the

IEEE 802.16a wireless communication standard. The Reed-Solomon coding is

adopted by the IEEE 802.16a because of its high capability of correcting errors.

We first describe the basic structure and algorithm of the AMR speech coding

and the FEC in IEEE 802.16a. Then, we adopt and modify fast scheme to accelerate

the programs of the AMR speech codec and Reed-Solomon decoder to match the

architecture of the DSP baseboard. We further implement them on the DSP platform,

which contains the Texas Instruments (TI) TMS320C6416 digital signal processor

 III

(DSP). The processing rate of the AMR codec on the DSP platform reaches 22.78

Kbytes/sec for the encoder and 31.84 Kbytes/sec for the decoder. And the

Reed-Solomon decoder reaches up to 176.4 Kbytes/sec. Moreover, those processing

rates includes of the data transfer time between the host and the DSP board. It can be

much faster if the data transfer time is excluded. In addition, the AMR speech codec

after our improvement is 65.94% faster for the encoder and 61.31% faster for the

decoder than the original one. The Reed-Solomon decoder is 96.44% faster than the

original one.

 IV

誌謝

 首先要感謝我的指導教授杭學鳴博士這兩年來的悉心指導，使我能夠順利完

成這篇論文。在研究的過程中，有停滯不前的時候也有迷惘的時候，老師總是以

關心和體諒代替苛責，適時的給予指導，促使我能夠克服在研究中所遇到的瓶

頸；而在有所突破時，也不忘給予勉勵。除了與研究相關的課題，老師也不斷地

鼓勵我們涉獵其它相關領域，厚實未來作進一步研究的基礎。除此之外，老師也

總是能夠關心並體諒我們在生活上的種種問題，使我能夠在研究與生活中取得良

好的平衡。此外，還要感謝張錫嘉老師，在研究上給予許多的協助並引領我正確

的研究方向，讓我受益良多，同時也使我的研究得以順利進行，在此特地感謝老

師如此耐心的指教。

 在這裡也要感謝通訊電子與訊號處理實驗室，提供了充足的軟硬體資源，讓

我在研究中不虞匱乏。也感謝實驗室全體成員，營造了一個充滿活力與和諧的環

境氣氛，讓彼此能夠分享研究生活的點點滴滴、歡樂與苦澀。感謝楊政翰與陳繼

大學長，在研究的過程不吝提供經驗與鼓勵，也感謝蔡家揚學長，適時提供技術

上的支援，解決了許多我在研究上遇到的困難，也讓我學到解決各類問題的正確

方式，另外還要感謝王盈閔、董景中、陳昱昇與洪朝雄等同學百忙之中提供研究

工作與課業上的協助，使得論文能夠順利的進行。

最後，要感謝的是我的家人，不論在生活上或求學上都給了我最大的鼓勵與

支持，讓我能夠心無旁騖的從事研究工作，遇到挫折時更讓我能夠有勇氣去面

對。沒有家人在背後的付出，也就沒有今天的我，在此，謹獻上最高的謝意與歉

意。

 謝謝所有陪我走過這一段歲月的師長、同儕與家人，謝謝！

 V

Content

1 Introduction 1

2 Adaptive Multi-Rate of Speech Coding 4
2.1 The Overview of AMR...4
2.2 Principles of the Encoder..6

2.2.1 Pre-processing ...7
2.2.2 Linear Prediction ...7

2.2.2.1 Windowing and auto-correlation ..7
2.2.2.2 Levinson-Durbin algorithm ..10
2.2.2.3 LP to LSP Conversion ..10
2.2.2.4 Monitoring resonance in the LPC spectrum.......................12

2.2.3 Open-loop pitch analysis ...13
2.2.4 Impulse response computation (all modes)13
2.2.5 Target signal computation (all modes) ..14
2.2.6 Adaptive codebook..14

2.2.6.1 Adaptive codebook search..14
2.2.6.2 Adaptive codebook gain control (all modes)......................16

2.2.7 Algebraic codebook...16
2.2.7.1 Algebraic codebook structure...17
2.2.7.2 Algebraic codebook search...17

2.2.8 Quantization of adaptive and fixed codebook gains..........................19
2.2.8.1 Adaptive codebook gain limitation.....................................19
2.2.8.2 Quantization of codebook gains ...19

2.2.9 Memory update (all modes)...21
2.3 Functional description of the decoder ..22

2.3.1 Decoding and speech synthesis ...22
2.3.2 Post-processing..25

2.3.2.1 Adaptive post-filtering (all modes).....................................25
2.3.2.2 High-pass filtering and up-scaling......................................26

2.4 Bit Allocation ...27

 VI

3 Overview of IEEE 802.16a FEC Scheme 29
3.1 Introduction to IEEE 802.16a Standard..29
3.2 IEEE 802.16a FEC Specifications..30

3.2.1 Randomizer..31
3.2.2 Forward Error Correction Coding ...32

3.2.2.1 Reed-Solomon Code Specification.....................................34
3.2.2.2 Convolutional Code Specification......................................34
3.2.2.3 Interleaver...36

3.3 Implementation Issues of the FEC Scheme..37
3.3.1 Reed-Solomon Code..37

3.3.1.1 Encoding of Shortened and Punctured Reed-Solomon
Codes ...37

3.3.1.2 Decoding of Shortened and Punctured Reed-Solomon
Codes ...40

3.3.2 Convolutional Code...43
3.3.2.1 Encoding of Punctured Convolutional Code43
3.3.2.2 Viterbi Decoding of Punctured Convolutional Code..........44
3.3.2.3 Bit Interleaved Soft Decision Viterbi Decoding.................48
3.3.2.4 Viterbi Decoding of Tail-Biting Convolutional Code50
3.3.2.5 The Butterfly Structure in the Trellis Diagram...................50

4 DSP Implementation Environment 52
4.1 The DSP Chip...52

4.1.1 Central Processing Unit ...55
4.1.2 Memory ...56
4.1.3 Peripherals ...57

4.2 The DSP Baseboard..58
4.3 DSP Transmission Mechanism...59
4.4 Features of TI TMSC6000 Family DSP for Optimization62

4.4.1 Code Development Flow...62
4.4.2 Pipeline Structure of the TI TMSC6000 Family63
4.4.3 Software Pipelining ...65
4.4.4 Program-Level Optimization...68

5 Implementation and Acceleration of AMR Speech Coding on TI DSP Platform 70
5.1 AMR Codec Acceleration ..71

5.1.1 AMR Code Profile...71
5.1.2 Acceleration by Using the Intrinsics ...75
5.1.3 Compiler Level Improvement ...80

5.2 AMR Codec on C64x DSP Platform..82

 VII

5.2.1 Structure of AMR Implementation..82
5.2.2 Execution Flow of AMR Implementation...83
5.2.3 Performance Analysis..88

5.2.3.1 AMR Encoder Performance Analysis.................................89
5.2.3.2 AMR Decoder Performance Analysis91

6 Implementation and Acceleration of 802.16a Reed-Solomon Decoder on TI
DSP Platform 94
6.1 Acceleration on Reed-Solomon Decoder ...95

6.1.1 Profiling the Original RS Decoder ..95
6.1.2 Modifications of RS Decoder ..97

6.1.2.1 Syndrome Computation Improvement97
6.1.2.2 Chien Search Improvement ..99

6.1.3 Performance Analysis..101
6.2 Remainder Decoding Algorithm for RS Decoder ..104

6.2.1 Remainder Decoding Algorithm ...105
6.2.2 Program Flow and Performance Analysis107

6.3 DSP Implementation of Reed-Solomon Decoder and Viterbi Decoder112
6.3.1 Structure of RS Decoder and Viterbi Decoder Implementation......112
6.3.2 Execution Flow of RS Decoder and Viterbi Decoder112

6.3.2.1 DSP Program Flow for RS Decoder................................. 112
6.3.2.2 DSP Program Flow for Viterbi Decoder........................... 115

6.3.3 Performance Analysis..115

7 Conclusions and Future Work 117
7.1 Conclusion..117
7.2 Future Work..118

Bibliography 120

 VIII

List of Figures

Figure 2.1 Simplified block diagram of the CELP speech synthesis model3
Figure 2.2 Simplified block diagram of the adaptive multi-rate encoder.........................6
Figure 2.3 LP analysis windows...9
Figure 2.4 Simplified block diagram of the adaptive multi-rate decoder.......................23

Figure 3.1 IEEE local and metropolitan area networks standards family30
Figure 3.2 Channel coding structure in transmitter side (top) and receiver side (bottom)

...31
Figure 3.3 PRBS for Data Randomization ...31
Figure 3.4 Creation of OFDMA randomizer initialization vector..................................32
Figure 3.5 Forward Error Correction structure in transmitter side (left) and receiver

side (right) ...33
Figure 3.6 Convolutional Encoder of Rate 1/2...35
Figure 3.7 Block Diagram of the RS Encoder Program...39
Figure 3.8 The Linear Feedback Shift Register Structure of RS Encoder39
Figure 3.9 Block Diagram of a Conventional RS Encoder ..40
Figure 3.10 Block Diagram of the RS Decoder Program...42
Figure 3.11 Syndrome Computation Circuit ..42
Figure 3.12 Block Diagram of the Convolutional Encoder Program.............................44
Figure 3.13 State Transition Diagram Example ...45
Figure 3.14 Trellis Diagram Example for a Viterbi Decoder ...46
Figure 3.15 Survivor path of the Trellis Diagram ..47
Figure 3.16 Block Diagram of the Viterbi Decoder Program...47
Figure 3.17 Structure of the Viterbi Algorithm ..47
Figure 3.18 Partition of the 16-QAM Constellation...49
Figure 3.19 Block Diagram of the Suboptimal Tail-Biting Viterbi Decoder..................50
Figure 3.20 Butterfly Structure Showing Branch Cost Symmetry.................................51

 VIII

Figure 4.1 The Block Diagram of TMS320C6x DSP Chip..54
Figure 4.2 The TMS320C64x DSP Chip Architecture and Comparison with Ancient

TMS320C62x/C67x Chip..54
Figure 4.3 Innovative Integration’s Quixote DSP Baseboard Card................................58
Figure 4.4 The Architecture of Quixote Baseboard..59
Figure 4.5 Block Diagram of DSP Streaming Mode ..61
Figure 4.6 Code Development Flow ..63
Figure 4.7 (a) The Original Loop. (b) The Loop After Applying Software Pipelining ..65
Figure 4.8 (a) Execution Record of the Original Loop. (b) Execution Record of the

Software Pipelined Loop ...66

Figure 5.1 Structure of AMR Speech Codes Implementation on the Host and DSP83
Figure 5.2 (a) Graphical Interface of the AMR Encoder Implementation. (b) A

Snapshot of Running the Program...85
Figure 5.3 (a) Graphical Interface of the AMR Decoder Implementation. (b) A

Snapshot of Running the Program...86
Figure 5.4 the Flowchart of the AMR Encoder Implementation....................................87

Figure 6.1 the C Code of the Syndrome Computation in the Lee Decoder....................98
Figure 6.2 the Plot of the Decoding Cycle versus SNR ...103
Figure 6.3 the Plot of the Correct Decoding Ratio versus SNR...................................104
Figure 6.4 Implementation of LFSR with the Intrinsics... 110
Figure 6.5 the Interface of our RS Decoder implementation 113
Figure 6.6 the Flowchart of our RS Decoder Implementation 114
Figure 6.7 the Interface of the Viterbi Decoder Implementation.................................. 115

 IX

List of Table

Table 2.1 Bit allocation of the AMR coding algorithm for 20ms frame28

Table 3.1 Mandatory Channel Coding per Modulation..34
Table 3.2 The Inner Convolutional Code with Puncturing Configuration35
Table 3.3 Bit Interleaved Block Sizes and Modulo ..36

Table 4.1 Completing Phase of Different Type Instructions ..64

Table 5.1 Profile of AMR Encoder Provided by 3GPP ..73
Table 5.2 Profile of the Top Ten Encoder Functions Called Most (Except for the

Functions Containing Value Assignment Only) ..74
Table 5.3 Profile of AMR Codec Arithmetic Functions (Not Counted are Value

Assignments or Function Calling Only)..76
Table 5.4 Profile of AMR Arithmetic Functions Listed in Table 5.3 after Acceleration 79
Table 5.5 Profile of Different Improved Versions of AMR Encoder..............................80
Table 5.6 Profile of Different Improved Versions of AMR Decoder..............................81
Table 5.7 Code Size of the AMR Encoder for Different Acceleration Level88
Table 5.8 Code Size of the AMR Decoder for Different Acceleration Level.................88
Table 5.9 Execution Time of the DSP Implementation under Different Source Rate for

Each Test Sequence ...89
Table 5.10 Execution Time of the DSP Implementation under Different Source Rate

for Each Test Sequence (ms/frame: the Processing Time for one frame, %:
Improvement Percentage)..90

Table 5.11 Execution Time of the DSP Implementation under Different Source Rate
for Each Test Sequence (the List Representation is the Same as Table 5.10)90

Table 5.12 Execution Time of the DSP Implementation under Different Source Rate
for Each Test Sequence..91

Table 5.13 Execution Time of the DSP Implementation under Different Source Rate

 X

for Each Test Sequence (ms/frame: the Processing Time for one frame, %:
Improvement Percentage)..92

Table 5.14 Execution Time of the DSP Implementation under Different Source Rate
for Each Test Sequence (the List Representation is the Same as Table 5.13)92

Table 6.1 Profile of the Lee RS Decoder..96
Table 6.2 Improvement of Syndrome Somputation..99
Table 6.3 Profile Chien Search without the Intrinsics and Compiler Optimization101
Table 6.4 Profile Chien Search with _gmpy4 and file-Level Optimization101
Table 6.5 Simulation Profile for RS Decoder...102
Table 6.6 the Decoding Ratio and Cycle under the Channel with Different SNR103
Table 6.7 Comparison of the Remainder Decoding Algorithm and the Lee Decoder

(without the Intrinsics) ..107
Table 6.8 Profile of the Improved Remainder Decoding Algorithm108
Table 6.9 Profile of our Implementation for RS Decoder and Viterbi Decoder 115

 XI

Chapter 1

Introduction

Digital wireless transmission of multimedia contents is one of the important trends

in the consumer electronics field in the present. Due to the demand for wireless

communication of multimedia contents, the high compression ratio with high quality is

an important issue for multimedia transmission. Multimedia service contains many

different types of contents such as data, audio, video, image, and the traditional speech.

These services would have poor quality if they are overly compressed with non-efficient

source coding or cannot be recovered from the errors introduced by the noisy channel.

According to channel condition, it is desirable to adjust the source and channel coding

rate to provide a better overall performance.

The international organization of 3GPP has adopted the concept above into its

standard. For the traditional speech coding, it defines a set of technical specifications,

which include the codecs of G.723.1 and AMR (Adaptive Multi Rate). Both G.723.1

and AMR are CELP based coders. However, AMR has a better speech quality than

G.723.1 at about similar data rate. AMR also offers multiple modes for joint

source/channel coding, providing flexibility for different QoS(Quality of Service).

For the efficient channel coding, the OFDM modulation technique for wireless

communication has been the main stream in the recent years. IEEE has completed

several standards such as IEEE 802.11 series for LAN (Local Area Network) and IEEE

802.16 series for MAN (Metropolitan Area Network) based on OFDM technique. The

 1

advantage of digital wireless communication is based on a fact that it is convenient for

consumers to receive or transmit digital contents without connecting to transmission

lines. However, one major problem is that the transmission channel is not noisefree. The

transmission signals are easily interfered and distorted by several different types of

noise sources such as the crowd traffic, bad weather, the obstacle of buildings, etc. To

improve the robustness of the wireless communication against the noisy channel

condition, the FEC (Forward–Error-Correcting Coding) and FED

(Forward–Error-Correcting Decoding) mechanism is necessary to reduce channel errors

and is adopted by almost every commercial communication standards, including the

IEEE 802.16a. Our study focuses on the Reed-Solomon coding included in the

FEC/FED of the IEEE 802.16a standard, which specifies the air interface of fixed

broadband wireless access systems for providing multiple accesses. The Reed-Solomon

coding adds the resistance directly to the front end multimedia from the channel efforts.

It has been wildly used and investigated because of its high capability of correcting both

the random and burst errors and its efficient decoding algorithm of existence.

 In this thesis, we implement the AMR speech codec and the Reed-Solomon coding

scheme of IEEE 802.16a standard on II Quixote DSP/FPGA board. We first review the

algorithm of the AMR codec and the whole FEC/FED scheme of IEEE 802.16a in detail.

Then, we simulate their procedure by the C codes to accelerate their execution

efficiency. Finally, we implement the AMR codec and the Reed-Solomon coding

algorithm on our DSP platform. The AMR encoder can reach a processing rate of 14.05

ms/frame, and the AMR decoder can reach a processing rate of 2.43 ms/frame. The

Reed-Solomon decoder even achieves a processing rate of 176.4 Kbytes/s after our

improvement and implementation.

In Chapter 2, the concept and the major algorithm blocks of AMR are introduced.

Due to the limited space, we only present the issues that are important for

comprehending the structure of speech compression, such as ACELP model, LSP, and

codebook formation.

 2

In Chapter 3, we briefly introduce the forward error correction scheme of the IEEE

802.16a standard. Furthermore, we also describe the algorithm to be implemented.

In Chapter 4, we give a brief description of our implementation environment; it

includes both the II’s Quixote DSP baseboard, its transmission mechanism between host

PC and target DSP, and the techniques used to accelerate the programs.

In Chapter 5, we profile and accelerate the AMR codec program before

implementing on the TI C6x DSP. We first describe the technique used to accelerate our

C code step by step. Then the structure and the execution flow of its DSP

implementation shall be introduced in detail.

In Chapter 6, we first discuss the original Reed-Solomon program required for

speeding up. Secondly, the acceleration steps we have done on the Reed-Solomon

decoder are discussed in detail. Finally, the DSP implementation of the improved

program and the Viterbi decoder in IEEE 802.16a FED scheme is also described.

Finally, we give some observations and conclusions. Possible subjects for future

works are also included.

 3

Chapter 2

Adaptive Multi-Rate of Speech Coding

2.1 Overview of AMR

AMR (Adaptive Multi-Rate) is a new concept for achieving a high speech quality

while maintaining an efficient spectrum usage. A trade-off between speech quality and

system capacity can be achieved for a variety of radio channel and operating conditions.

It is a successful joint source/channel combined codec standard. The system allows

channel mode (HR or FR) and codec mode (combination of speech and channel bit-rates)

to vary in order to suit traffic and channel conditions. The channel mode consists of two

different transmission bit rate: 22.8 kbit/s (Full rate) and 11.4 kbit/s (Half rate) and can

be switched in order to increase channel capacity, replacing for example one full-rate

channel with two half-rate channels, while maintaining a certain lower limit for the

speech quality. These AMR handovers occur much less frequently than the codec mode

changes, probably a few times per minutes [1].

For each channel mode (HR or FR), the codec mode, i.e. bit partitioning between

speech and channel bit-rates, can be varied rapidly to track the channel error rate or the

channel’s C/I. The changes must occur quite immediately (several times a second), with

no perceptible speech degradation. The process is equivalent to Link Adaptation.

Besides the basic source and channel codec for speech signal payload, the AMR system

 4

concept further includes channel state tracking and in-band transmission of adaptation

data.

The AMR coder consists of eight source codecs with bit-rates of 12.2, 10.2, 7.95,

7.40, 6.70, 5.90, 5.15 and 4.75 kbit/s. The codec is based on the code-excited linear

predictive (CELP) coding model. In this model, the excitation signal at the input of the

short-term LP synthesis filter is constructed by adding two excitation vectors from

adaptive and fixed (innovative) codebooks. The speech is synthesized by feeding the

two properly chosen vectors from these codebooks through the short-term synthesis

filter. The optimum excitation sequence in a codebook is chosen using an

analysis-by-synthesis search procedure in which the error between the original and

synthesized speech is minimized according to a perceptually weighted distortion

measure. The structure of the CELP speech synthesis model is shown in figure 2.1

[2][3]. For details, more information can be obtained in [14][15][16].

A(z)
1 s(n)^

+

v(n)

c(n)

u(n)

gc

fixed
codebook

adaptive codebook gp

LP synthesis

post-filtering s'(n)^

Figure 2.1: Simplified block diagram of the CELP speech synthesis model.

 5

2.2 Principles of the Encoder

The AMR coder operates on speech frames of 20ms corresponding to 160 samples

at the sampling frequency of 8000 sample/s. At each 160 speech samples, the speech

signal is analyzed to extract the parameters of the CELP model (LP filter coefficients,

adaptive and fixed codebooks’ indices and gains). A 10th order linear prediction (LP), or

short-term, synthesis filter is used which is given by [3]:

∑=
−+

== m

i
i

iazA
zH

1
ˆ1

1
)(ˆ

1
)((2.1)

where are the (quantified) linear prediction (LP) parameters, and m=10

is the predictor order. The long term, or pitch, synthesis filter is given by:

,,...,1,ˆ miai =

,
1

1
)(

1
T

p zgzB −−
= (2.2)

where T is the pitch delay and is the pitch gain. The pitch synthesis filter is

implemented using the so-called adaptive codebook approach. Then the following

operations are repeated for each sub-frame:

pg

The target signal x(n) is computed by filtering the LP residual through the

weighted synthesis filter W(z)H(z) with the initial states of the filters having been

updated by filtering the error between LP residual and excitation. The impulse response,

h(n) of the weighted synthesis filter is then computed.

Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using

the target x(n) and impulse response h(n), by searching around the open-loop pitch lag.

Fractional pitch with 1/6th or 1/3rd of a sample resolution (depending on the mode) is

used. The target signal x(n) is updated by removing the adaptive codebook contribution

(filtered adaptive codevector), and this new target, , is used in the fixed algebraic

codebook search (to find the optimum innovation).

)(2 nx

The gains of the adaptive and fixed codebook are scalar quantified with 4 and 5

bits respectively or vector quantified with 6-7 bits (with moving average (MA)

 6

prediction applied to the fixed codebook gain). The different functions of the encoder is

presented in figure 2.2.

2.2.1 Pre-processing

Two pre-processing functions are applied prior to the encoding process: high-pass

filtering and signal down-scaling. Down-scaling consists of dividing the input by a

factor of 2 to reduce the possibility of overflows in the fixed-point implementation. The

high-pass filter serves as a precaution against undesired low frequency components with

a cut off frequency of 80Hz.

2.2.2 Linear Prediction

The LP analysis and quantization for the 12.2 kbit/s mode follows that of the GSM

EFR coder, i.e. two LP filters are computed for each frame. These filters are jointly

quantized with split matrix quantization (SMQ) of 1st order MA-prediction LSF

residuals. For all the other modes, one LP filter is estimated per frame. Split VQ (SVQ)

of 1st order MA-prediction LSF residuals are performed with 3 subvectors of dimension

3, 3, and 4.

2.2.2.1 Windowing and auto-correlation

For 12.2 kbit/s, LP analysis is performed twice per frame using two different 30ms

asymmetric windows. Asymmetric windows have been proved to own better

quality-delay performance then symmetric window [4]. The first window has its weight

concentrated at the second subframe and it consists of two halves of Hamming windows

with different size.

 7

windowing
and

autocorrelation
R[]

Levinson-
Durbin

R[] A(z)

A(z)

LSP
quantization

compute target
for

innovation

update filter
memories for
next subframe

Open-loop pitch search Adaptive codebook
search

Innovative codebook
search

Filter memory
update

interpolation

subframes
LSP A(z)

LSP

compute
weighted
speech

(4 subframes)

find
open-loop pitch

find best
innovation

fixed
codebook

gain
quantization

A(z)^

x(n)

pitch
index

code
index

frame subframe

s(n)
compute target
for adaptive
codebook

To
find best delay

and gain

x(n)

compute
impulse
response

A(z)^

A(z)
h(n)

h(n)

A(z)

LPC analysis
(twice per frame)

A(z)

(twice per frame)

x (n)
2

quantize
LTP-gain

compute
adaptive

codebook
contribution

LSP
indices

LTP
gain

index

gain index
fixed codebook

interpolation
for the 4

subframes
LSP A(z)^

for the 4

Pre-processing

Pre-processing

compute
excitation

Figure 2.2: Simplified block diagram of the adaptive multi-rate encoder

 8

On the other hand, the second window has its weight concentrated at the fourth

subframe and it consists of two parts: the first part is half a Hamming window and the

second part is a quarter of a cosine function cycle [5]. No samples from future frames

are used (no lookahead). A diagram of the two LP analysis windows is depicted in

figure 2.3.

The auto-correlations of the windowed speech are computed

by:

,239,...,0),(' =nns

∑
=

=−=
239

'' ,10,...,0),()()(
kn

ac kknsnskr (2.3)

2 0 m s
5 m s

fram e (1 6 0 sam p les) s ub fram e
(40 sa m p le s)

fra m e n -1 fra m e n

t

Iw (n) IIw (n)

Figure 2.3: LP analysis windows

and a 60 Hz bandwidth expansion is used by lag windowing the auto-correlations using

the window:

,10,...1,
2

2
1exp)(

2

0 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= i

f
if

iw
s

lag
π

 (2.4)

where is the bandwidth expansion. The expansion on the autocorrelation

coefficients reduces the possibility of ill-condition in the Levinson algorithm (especially

in fixed point). It also reduces the underestimation of the formant bandwidth, which

could create undesirably sharp resonances. Further, is multiplied by the white

noise correction factor 1.0001 which is equivalent to adding a noise floor at –40 dB.

The operation reduces the possibility of ill-condition due to bandpass filtering of the

input [6].

Hzf 600 =

)0(acr

 9

2.2.2.2 Levinson-Durbin algorithm

The modified auto-correlations are used to obtain the direct form LP filter

coefficients by solving the set of equations. ,10,...,1, =kak

.10,...,1),()('
10

' =−=−∑ iirkira acack
1=k

 (2.5)

The set of equations is solved using the Levinson-Durbin algorithm.

[]

E r
i
a

k a r i j E

a k
j i

a a k a

E i k E i

LD ac

i

i j
i

acj
i

LD

i
i

i

j
i

j
i

i i j
i

LD i LD

() ' ()

' () / ()

() () ()

()

()

()

() () ()

0 0
1 10

1

1

1 1

1 1

0
1

1
0

1

1 1

2

=
=

=

= − − −

=
= −

= +

= − −

−

−
=
−

−
−
−

∑

for to do

 for to do

end

end

i

The final solution is given as The LP filter coefficients are

converted to the line spectral pair (LSP) representation for quantization and

interpolation purposes.

.10,...,1,)10(== jaa jj

2.2.2.3 LP to LSP Conversion

LP is not conducive to efficient quantization, because it has relatively high spectral

sensitivity. On the other hand, LSP has intimate relationship with the formant

frequencies. Also LSP’s can be quantized taking into account spectral features known to

be important in perceiving speech signals.

For the 10th order LP filter, the LSPs are defined as the roots of the sum and difference

polynomials [3]:

() () ()′ = + − −F z A z z A z11 1
1 (2.6)

 10

and

() () ()′ = − − −11 1F z A z z A z2 (2.7)

respectively. It can be proven that all roots of these polynomials are on the unit circle

and they alternate each other. has a root)('1 zF)(1 πω =−=z and has a root)('2 zF

)0(1 == ωz . To eliminate these two roots, we define the new polynomials:

() () () ∏
= 9,...,3,1i

−−− +−=+′= 211
11)21(1 i zzqzzFzF (2.8)

and

() () () ∏
= 10,...,4,2i

−−− +−=−′= 211
22)21(1 i zzqzzFzF (2.9)

where)cos(iiq ω= with iω being the line spectral frequencies (LSP) and they satisfy

the ordering property πωωω <<<<< 1021 ...0 .We refer to as the LSPs in the

cosine domain. Since both polynomials

iq

()F z1 and ()F z2 are symmetrical, it means only

the first 5 coefficients of each need to be computed. The coefficients of these

polynomials are found by the recursive relation(for I=0 to 4):

)()1(
)()1(

212

111

ifaaif
ifaaif

imi

imi

+−=+
−+=+

−+

−+ (2.10)

where m=10 is the predictor order. The LSPs are found by evaluating the polynomials

and at 60 points equally spaced between 0 andπ and checking for sign

changes. A sign change signifies the existence of a root and the sign change interval is

then divided 4 times to better track the root.

)(1 zF)(2 zF

The Chebyshev polynomials are used to evaluate and [8]. In this method

the roots are found directly in the cosine domain . The polynomials and

 evaluated at can be written as:

)(1 zF)(2 zF

}{ iq)(1 zF

)(2 zF ωjez =

)(2)(5 xCeF j ωω −= ,

 11

with

,2/)5()()4()()3()()2()()1()()(12345 fxTfxTfxTfxTfxTxC +++++= (2.11)

where)cos()(ωmxTm = is the mth order Chebyshev polynomials, and

are the coefficients of either or . The polynomial is evaluated at a

certain value of

5,...1),(=iif

)(1 zF)(2 zF)(xC

)cos(ω=x using the recurrence relation:

,...,3,2)()(2)(21 =−= −− kforxTxxTxT kkk (2.12)

and trigonometric representation on [-1, 1]

.11))arccos(cos()(≤≤−= xforxNxTN (2.13)

and then we obtain the following recursive relation:

for down to

end

k
x f

C x x f

k k k

=
− + −

= − +

= + +

4 1
2 5

5 2

1 2

1 2

λ λ λ

λ λ

()

() () / ,

k

with initial values λ5 1= and λ6 0= .

2.2.2.4 Monitoring resonance in LPC spectrum (all modes)

Resonances in the LPC filter are monitored to detect possible problem areas where

divergence between the adaptive codebook memories in the encoder and the decoder

could cause unstable filters in areas with highly correlated continuous signals. Typically,

this divergence is due to channel errors. The monitoring of resonance signals is

performed using unquantized LSPs .10,...,1, =iqi The LSPs are available after the LP

to LSP conversion. The algorithm utilizes the fact that LSPs are closely located at a

peak in the spectrum. First, two distances, and , are calculated in two

different regions, defined as

1dist 2dist

,8,...4),min(11 =−= + iqqdist ii and another as

 Either of these two minimum distance conditions must

be fulfilled to classify the frame as a resonance as a resonance frame and increase the

.3,2),min(12 =−= + iqqdist ii

 12

resonance counter. 12 consecutive resonance frames are needed to indicate possible

problem condition, otherwise the LSP_flag is cleared.

2.2.3 Open-loop pitch analysis

Open-loop pitch analysis is performed in order to simplify the pitch analysis and

confine the closed-loop pitch search to a small number of lags around the open-loop

estimated lags. Open-loop pitch estimation is based on the weighted speech signal

 which is obtained by filtering the input speech signal through the weighting

filter

)(nsw

)./(/)/()(21 γγ zAzAzW = Open-loop pitch analysis is performed as follows. In

the first step, 3 maxima of the correlation:

∑ −=
79

)()(wwk knsnsO
=0n

 (2.14)

are found in the three ranges:

i
i
i

=
=
=

3
2
1

:
:
: .143,...,72

,71,...,36
,35,...,18

The retained maxima ,3,...1, =iO
it

 are normalized by dividing by

,3,...1,)(2 =−∑ itns
nw iw respectively. The normalized maxima and corresponding

delays are denoted by .3,...,1),,(=itM ii The winner, , among the three

normalized correlations is selected by favouring the delays with the values in the lower

range. This is performed by weighting the normalized correlations corresponding to the

longer delays. This procedure of dividing the delay range into 3 clauses and favouring

the lower clauses is used to avoid choosing pitch multiples.

opT

2.2.4 Impulse response computation (all modes)

 13

The impulse response, , of the weighted synthesis filter)(nh

[])/()(ˆ/)/()()(21 γγ zAzAzAzWzH = is computed each subframe. This impulse

response is needed for the search of adaptive and fixed codebooks. The use of

unquantized coefficients gives a weighting filter that matches better the original

spectrum. The values of 1γ and 2γ modify the frequency response of the filter ,

and thereby the amount of noise weighting. It also deemphasizes the error at the formant

regions of speech spectrum.

)(zW

2.2.5 Target signal computation (all modes)

The target signal for adaptive codebook search is usually computed by subtracting

the zero input response of the weighted synthesis filter from the weighted

speech signal . This is performed on a subframe basis. An equivalent procedure

for computing the target signal is filtering of the LP residual signal through

the combination of synthesis filter and the weighting filter

)()(zWzH

)(nsw

)(nresLP

)(ˆ/1 zA)/(/)/(21 γγ zAzA .

After determining the excitation for the subframe, the initial states of these filters are

updated by filtering the difference between the LP residual and excitation. The residual

signal which is needed for finding the target vector is also used in the

adaptive codebook search to extend the past excitation buffer. This simplifies the

adaptive codebook search procedure for delays less than the subframe size of 40.

)(nresLP

2.2.6 Adaptive codebook

2.2.6.1 Adaptive codebook search

Adaptive codebook search is performed on a subframe basis. It consists of

performing closed-loop pitch search, and then computing the adaptive codevector by

 14

interpolating the past excitation at the selected fractional pitch lag. The adaptive

codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In

the adaptive codebook approach for implementing the pitch filter, the excitation is

repeated for delays less then the subframe length. In the search stage, the excitation is

extended by the LP residual to simplify the closed-loop search.

Closed-loop pitch analysis is performed around the open-loop pitch estimates on a

subframe basis. In the first (and third) subframe the range 3±opT is searched. For the

other subframes, closed-loop pitch analysis is performed around the integer pitch

selected in the previous subframes. The closed-loop pitch search is performed by

minimizing the mean-square weighted error between the original and synthesized

speech. This is achieved by maximizing the term [9]:

()R k
x n y n

y n y n

kn

k kn

= =

=

∑
∑

() ()

() ()
,0

39

0
39

 (2.15)

where is the target signal and is the past filtered excitation at delay k(past

excitation with . Note that the search range is limited around the open-loop pitch.

The convolution is computed for the first delay in the searched range, and

for the other delays in the search range

)(nx)(nyk

)(nh

)(nyk mint

maxmin ,...,1 ttk += , it is updated using the

recursive relation:

() () () ()y n y n u k h nk k= − + −−1 1 , (2.16)

where is the excitation buffer. Note that in search stage,

the samples , are not known, and they are needed for pitch delays less

then 40. To simplify the search, the LP residual is copied to in order to make the

relation in equation (38) valid for all delays.

,39),...,11143(),(+−=nnu

39,...,0),(=nnu

)(nu

Once the optimum integer pitch delay is determined, the fractions with a step of

1/6 (or 1/3) around that integer are tested [10]. The fractional pitch search is performed

by interpolating the normalized correlation in equation (37) and searching for its

 15

maximum. The interpolation is performed using an FIR filter based on a Hamming

windowed function truncated and padded with zero. The filter has its cut-off

frequencies (-3 dB) at 3600 Hz in the over-sampled domain.

xx /)sin(

Once the fractional pitch lag is determined, the adaptive codebook vector is

computed by interpolating the past excitation signal at the given integer delay k

and phase (fraction) t. The interpolation filter is also based on a Hamming windowed

 function truncated and padded with zero. The filter has a cut-off frequency

(-3dB) at 3600 Hz in the over-sampled domain.

)(nv

)(nu

xx /)sin(

The adaptive codebook gain is then found by:

g
x n y n

y n y n
gp

n

n

p= ≤=

=

∑
∑

() ()

() ()
, .0

39

0

39 0 1bounded by ≤ 2
 (2.17)

where () () ()y n v n h n= ∗ is the filtered adaptive codebook vector (zero state response

of to () ()H z W z ()v n). The computed adaptive codebook gain is quantified using

non-uniform scalar quantization in the range [0.0, 1.2].

2.2.6.2 Adaptive codebook gain control (all modes)

The average adaptive codebook gain is calculated if the LSP_flag is set and the

unquantized adaptive codebook gain exceeds the gain threshold . The

average gain is calculated from the present unquantized gain and the quantized gains of

the seven previous subframes. That is,

95.0=thGP

)}7(ˆ),...,1(ˆ),({ −−= ngngngmeanGP pppave , where n is

the current subframe. If the average adaptive codebook gain exceeds the , the

unquantized gain is limited to the threshold value and the GpC_flag is set to indicate the

limitation.

thGP

2.2.7 Algebraic codebook

 16

The algebraic codebook (innovation codebook) is for the secondary excitation

computation. The vectors contained in the excitation forms a very important part in the

CELP coding algorithm. They serve two main purposes: first, they provide the start-up

information to the LTP memory, and this includes any sudden changes in the speech not

adequately tracked by the LTP. Second, they supply the ‘filling in’ information that the

LTP omitted. This is especially the case during unvoiced region. In the figure shows the

general framework for innovation codebook driven by algebraic codes. Shaping

function F can be fixed or changed dynamically as illustrated.

2.2.7.1 Algebraic codebook structure

The algebraic codebook structure is based on interleaved single-pulse permutation

(ISPP) design. In this codebook, the innovation vector contains some non-zero pulses.

All pulses can have the amplitudes +1 or –1. The 40 positions in a subframe are divided

into a few tracks, where each track contains one or two pulses. Each pulse position in

one track is encoded with some bits and the sign of the first pulse in the track is encoded

with one bit. For two pulses located in the same track, only one sign bit is needed. This

sign bit indicates the sign of the first pulse. The sign of the second pulse depends on its

position relative to the first pulse. If the position of the second pulse is smaller, then it

has opposite sign, otherwise it has the same sign then in the first pulse.

2.2.7.2 Algebraic codebook search

The algebraic codebook is searched by minimizing the mean square error between

the weighted input speech and the weighted synthesized speech. The target signal used

in the closed-loop pitch search is updated by subtracting the adaptive codebook

contribution. That is,

() () () 39,...,0,ˆ2 =−= nnygnxnx p (2.18)

 17

where () () ()y n v n h n= ∗ is the filtered adaptive codebook vector and is quantified

adaptive codebook gain. If

pĝ

ck is the algebraic codevector at index k, then the algebraic

codebook is searched by maximizing the term :

() ()
A

C
Ek

k

Dk

t
k

k
t

k
= =

2 2
d c

c cΦ
, (2.19)

where is the correlation between the target signal d H x= t
2 ()x n2 and the impulse

response , H is a lower triangular Toepliz convolution matrix with diagonal

and lower diagonals

()h n

()h 0 () ()39,...,1 hh , and is the matrix of correlations of

. The vector d (backward filtered target) and the matrix

Φ = H Ht

()h n Φ are computed prior to

the codebook search. To simplify the search procedure, the pulse amplitudes are preset

by the mere quantization of an appropriate signal ()b n . This is simply done by setting

the amplitude of a pulse at a certain position equal to the sign of ()b n at that position.

 is the correlated signal corresponding to the ()b n ()d n .

Having preset the pulse amplitudes, the optimal pulse positions are determined

using an efficient non-exhaustive analysis-by-synthesis search technique. In this

technique, the term in equation (43) is tested for a small percentage of position

combination. During iterations, at least one pulse is located in a position corresponding

to the global maximum and one pulse is located in a position corresponding to one of

the 4 local maxima.

A special feature incorporated in the codebook is that the selected codevector is

filtered through an adaptive pre-filter which enhances special spectral

components in order to improve the synthesized speech quality. Here the filter

 is used, where T is the nearest integer pitch lag to the closed-loop

fractional pitch lag of the subframe, and

)(zFE

)1/(1)(T
E zzF −−= β

β is a pitch gain. β is given by the

quantified pitch gain bounded by [0.0, 1.0]. Note that prior to the codebook search, the

impulse response must include the pre-filter . That is,)(nh)(zFE

.39,...,),()()(TnTnhnhnh =−−= β The fixed codebook gain is then found by:

 18

gc
t

t=
x z
z z

2 (2.20)

where is the target vector for fixed codebook search and is the fixed codebook

vector convolved with ,

x2 z

()h n

() () () .39,...,0,
0

=−=∑
=

ninhicnz
n

i
 (2.21)

2.2.8 Quantization of adaptive and fixed codebook gains

2.2.8.1 Adaptive codebook gain limitation

If the GpC_flag is set, the limited adaptive codebook gain is used in the gain

quantization. The quantization codebook search range is limited to only include

adaptive codebook gain values less then . This is performed in the quantization

search for all modes.

thGP

2.2.8.2 Quantization of codebook gains

The fixed codebook gain quantization is performed using MA prediction with fixed

coefficients. The 4th order MA prediction is performed on the innovation energy. Let

 be the mean-removed innovation energy (in dB) at subframe n, and given by: ()E n

() () Eicg
N

nE
N

i
c −⎟

⎠

⎞
⎜
⎝

⎛
= ∑

−

=

1

0

221log10 , (2.22)

where is the subframe size, and N =40 ()c i is the fixed codebook excitation. E (in

dB) is the mean of the innovation energy and a pre-defined value. The predicted energy

is given by:

() ()∑ −=
4

ˆ~
i inRbnE

=1i
 (2.23)

 19

where are the MA prediction coefficients, and ib ()$R k is the quantified prediction

error at subframe k. The predicted energy is used to compute a predicted fixed

codebook gain (by substituting ′gc ()E n by ()~E n and by). First, the mean

innovation energy is found by:

gc ′gc

E
N

c jI
j

N
=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

−

∑10 1 2

0

1
log () (2.24)

and then the predicted gain is found by:

()()+ −E n E E0 05.′ =gc
I10

~
. (2.25)

A correction factor between the gain and the estimated gc ′gc is given by:

γ gc c cg g= ′ . (2.26)

Note that the prediction error is given by:

R n E n E n gc() () ~() ().= − = 20 log γ (2.27)

The correction factor γ gc is computed using a mean energy value E . The correction

vector γ gc is quantified using an individual codebook or jointly vector quantized with

adaptive codebook gain. If the correction factor γ gc is quantized individually, the

quantization table search is performed by minimizing the error

()2′ˆ cgccQ ggE −= γ . (2.28)

Otherwise, The gain codebook search is performed by minimizing the square of the

weighted error between original and reconstructed speech which is given by:

2
zyx ggE −−= cp . (2.29)

 20

An adaptor based on the coding gain in the adaptive codebook decides if the

coding gain is low. If this is the case, the correction factor codebook is searched once

more minimizing a modified criterion in order to find a new quantized fixed codebook

gain. The modified criterion is given by:

() ()222 ˆ −⋅+′⋅−⋅⋅−= αγαmod)1(excrescgcc EEggE c (2.30)

where and are the energy (the squared norm) of the LP residual and the

total excitation, respectively. The criterion is searched with the already quantized

adaptive codebook gain and the correction factor

Eres Eexc

gcγ̂ that minimizes (60) is selected.

The balance α decides the amount of energy matching in the modified criterion. This

factor is adaptively decided based on the coding gain in the adaptive codebook as

computed by:

ag LP

LP

= ⋅
−

10 10

2

2log
res

res v
 (2.31)

if the coding gain ag is less then 1 dB, the modified criterion is employed, except when

an onset is detected. An onset is said to be detected if the fixed codebook gain in the

current subframe is more then twice the value of the fixed codebook gain in the

previous subframe. A hangover of 8 subframes is used in the onset detection so that the

modified criterion is not used for the next subframes either if an onset is detected. The

balance factor α is computed from the median filtered adaptive coding gain. The

current and the ag-values for the previous 4 subframes are median filtered to get . agm

The α -factor is computed by:

()α = ⋅ − ⋅
>

< <
<

⎧

⎨
⎪

⎩
⎪

0
05 1 05

05

2
0

0
. .

.
ag

ag
ag

ag
m

m

m

m

2 (2.32)

2.2.9 Memory update (all modes)

 21

An update of the states of the synthesis and weighting filters is needed in order to

compute the target signal in the next subframe. After the two gains are quantified, the

excitation signal, ()u n , in the present subframe is found by:

() () () 39,..,0,ˆˆ =+= nncgnvgnu cp . (2.33)

The states of the filters can be updated by filtering the signal res n u nLP () ()−

(difference between residual and excitation) through the filters ()1 $A z and

() ()A z A zγ 1 γ 2 for the 40-sample subframe and saving the states of the filters). A

simpler approach which requires only one filtering is as follows. The output of the filter

()1 $A z due to the input res n u nLP () ()− is equivalent to () () (e n s n s n)= − $. So the

states of the synthesis filter are given by () 39,...,30, =nne . Updating the states of the

filter () ()A z A zγ 1 γ 2 can be done by filtering the error signal through this

filter to find the perceptually weighted error

()e n

() () () (nzgnygnxne cpw ˆˆ)−−= . Since the

signals , , and are available, the states of the weighting filter are

updated by computing for

()x n ()y n ()z n

()e nw 39,...,30=n .

2.3 Functional description of the decoder

The function of the decoder consists of decoding the transmitted parameters (LP

parameters, adaptive codebook vector, adaptive codebook gain, fixed codebook vector,

fixed codebook gain) and performing synthesis to obtain the reconstructed speech. The

reconstructed speech is then post-filtered and upscaled. The signal flow at the decoder is

shown in figure 2.5.

2.3.1 Decoding and speech synthesis

 22

The received indices of LSP quantization are used to reconstruct the quantified

LSP vectors. The interpolation is performed to obtain 4 interpolated LSP vectors

(corresponding to 4 subframes). For each subframe, the interpolated LSP vector is

converted to LP filter coefficient domain , which is used for synthesizing the

reconstructed speech in the subframe.

ka

LSP
indices

decode LSP

interpolation
of LSP for the
4 subframes

LSP

decode
adaptive
codebook

decode
innovative
codebook

pitch
index

code
index

decode
gains

A(z)^

construct
excitation

frame subframe post-processing

s'(n)^s(n)^
post filter

gains
indices

synthesis
filter

Figure 2.4: Simplified block diagram of the adaptive multi-rate decoder

The following steps are repeated for each subframe:

1. Decoding of the adaptive codebook vector: The received pitch index (adaptive

codebook index) is used to find the integer and fractional parts of the pitch lag. The

adaptive codebook vector is found by interpolating the past excitation (at

the pitch delay) using the FIR filter.

)(nv)(nu

2. Decoding of the innovative codebook vector: The received algebraic codebook

index is used to extract the position and amplitudes (signs) of the excitation pulses and

to find the algebraic codebook codevector . If the integer part of the pitch lag, T, is

less than the subframe size 40, the pitch sharpening procedure is applied which

translates into modifying by

)(nc

)(nc)()()(Tncncnc −+= β , where β is the decoded

pitch gain, , bounded by [0.0,1.0] or [0.0,0.8], depending on mode. pĝ

 23

3. Decoding of the adaptive and fixed codebook gains: In case of scalar quantization

of the gains the received indices are used to readily find the quantified adaptive

codebook gain, , and the quantified fixed codebook gain correction factor, pĝ gcγ̂ ,

from the corresponding quantization tables. In case of vector quantization of the gains,

the received index gives both the quantified adaptive gains, , and the quantified

fixed codebook gain correction factor,

pĝ

gcγ̂ .

4. Smoothing of the fixed codebook gain: An adaptive smoothing of the fixed

codebook gain is performed to avoid unnatural fluctuations in the energy contour. The

smoothing is based on a measure of the stationary of the short-term spectrum in the q

domain.

5. Anti-sparseness processing: An adaptive anti-sparseness post-processing

procedure is applied to the fixed codebook vector in order to reduce perceptual

artifacts arising from the sparseness of the algebraic fixed codebook vectors with only a

few non-zero samples per subframe. The anti-sparseness processing consists of circular

convolution of the fixed codebook vector with an impulse response. The selection of the

impulse response is performed adaptively from the adaptive and fixed codebook gains

[3].

)(nc

6. Computing the reconstructed speech: Before the speech synthesis, a

post-processing of excitation elements is performed. This means that the total excitation

is modified by emphasizing the contribution of the adaptive codebook vector. Adaptive

gain control (AGC) is used to compensate for the gain difference between the

non-emphasized excitation and emphasized excitation .)(nu)(ˆ nu

7. Additional instability protection: An additional instability protection is

implemented in the speech decoder which is monitoring overflows in the synthesis filter.

If an overflow has occurred in the synthesis part, the whole adaptive codebook memory,

 is scaled down by a factor of 4, and the synthesis filtering

is repeated using this down-scaled memory.

39),...,11143(),(+−=nnv

 24

2.3.2 Post-processing

2.3.2.1 Adaptive post-filtering (all modes)

As the encoding rate goes down, the SNR drops and the noise floor of this white

coding noise is elevated to such an extent that it is very difficult to keep it below the

threshold of audibility. In speech perception, the formants of speech are perceptually

much more important then spectral valley regions. A good strategy is to sacrifice valley

regions and preserve the formants. An important feature of the frequency response of

the adaptive post-filter is that the spectral envelope peaks corresponding to the formants

have roughly the same height. This feature ensures that the relative intensity of the

formants will remain roughly unchanged after post-filtering [12].

The adaptive post-filter is the cascade of two filters: a formant post-filter, and a tilt

compensation filter. The post-filter is updated every subframe of 5ms.

The formant post-filter is given by:

)/(ˆ
)/(ˆ

)(
d

n
f zA

zA
zH

γ
γ

= (2.34)

where is the received quantified (and interpolated) LP inverse filter (LP analysis

is not performed at the decoder), and the factors

)(ˆ zA

nγ and dγ control the amount of the

formant post-filtering.

To further reduce the low-pass effect, we added a first-order filter with a transfer

function to compensate for the tilt in the formant post-filter and is

given by:

)(zH t)(zH f

1−1)(−= zzH t µ (2.35)

 25

where is a tilt factor, with being the first reflection coefficient calculated

on the truncated () impulse response, , of the filter .

 is given by:

'
1ktγµ = '

1k

22=hL)(nh f)/(ˆ/)/(ˆ
dn zAzA γγ

'
1k

∑
−−

=

+==
1

0

'
1)()()(;

)0(
)1(iL

j
ffh

h

h
h

ijhjhir
r
r

k (2.36)

Adaptive gain control (AGC) is used to compensate for the gain difference between the

synthesized speech signal and the post-filtered signal . The gain scaling

factor

)(ˆ ns)(ˆ ns f

scγ for the present subframe is computed by:

∑

∑

=

== 39

0

2

39

0

2

)(ˆ

)(ˆ

n
f

n
sc

ns

ns
γ (2.37)

The gain-scaled post-filtered signal is given by:)(ˆ ' ns

)(ˆ)()(ˆ nsnns fscβ=' (2.38)

where)(nscβ is updated in sample-by-sample basis and given by:

scscsc nn γααββ)1()1()(−+−= (2.39)

where α is AGC factor.

2.3.2.2 High-pass filtering and up-scaling

The high-pass filter serves as a precaution against undesired low frequency

components. A filter cut-off frequency of 60 Hz is used. Up-scaling consists of

multiplying the post-filtered speech by a factor of 2 to compensate for the down-scaling

by 2 which is applied to the input signal.

 26

2.4 Bit Allocation

The bit allocation of the AMR codec modes is shown in Table 2.1. In each 20ms

speech frame, 95, 103, 118, 134, 148, 159, 204 or 244 bits are produced, corresponding

to a bit-rate of 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2 or 12.2 kbit/s. Note that the most

significant bits (MSB) are always sent first [3].

 27

Mode Parameter 1st
subframe

2nd
subframe

3rd
subframe

4th
subframe

total per
frame

 2 LSP sets 38
12.2 kbit/s Pitch delay 9 6 9 6 30

(GSM EFR) Pitch gain 4 4 4 4 16
 Algebraic code 35 35 35 35 140
 Codebook gain 5 5 5 5 20
 Total 244
 LSP set 26

10.2 kbit/s Pitch delay 8 5 8 5 26
 Algebraic code 31 31 31 31 124
 Gains 7 7 7 7 28
 Total 204
 LSP sets 27

7.95 kbit/s Pitch delay 8 6 8 6 28
 Pitch gain 4 4 4 4 16
 Algebraic code 17 17 17 17 68
 Codebook gain 5 5 5 5 20
 Total 159
 LSP set 26

7.40 kbit/s Pitch delay 8 5 8 5 26
(TDMA EFR) Algebraic code 17 17 17 17 68

 Gains 7 7 7 7 28
 Total 148
 LSP set 26

6.70 kbit/s Pitch delay 8 4 8 4 24
(PDC EFR) Algebraic code 14 14 14 14 56

 Gains 7 7 7 7 28
 Total 134
 LSP set 26

5.90 kbit/s Pitch delay 8 4 8 4 24
 Algebraic code 11 11 11 11 44
 Gains 6 6 6 6 24
 Total 118
 LSP set 23

5.15 kbit/s Pitch delay 8 4 4 4 20
 Algebraic code 9 9 9 9 36
 Gains 6 6 6 6 24
 Total 103
 LSP set 23

4.75 kbit/s Pitch delay 8 4 4 4 20
 Algebraic code 9 9 9 9 36
 Gains 8 8 16
 Total 95

Table 2.1: Bit allocation of the AMR coding algorithm for 20ms frame

 28

Chapter 3

Overview of IEEE 802.16a FEC Scheme

3.1 Introduction to IEEE 802.16a Standard

The IEEE 802.16a standard amends IEEE standard 802.16 by enhancing the

medium access control layer and providing additional physical layer specifications in

support of broadband wireless access at frequencies from 2 to 11GHz. The resulting

standard specifies the air interface of fixed (stationary) broadband wireless access

systems providing multiple services. The medium access control layer is capable of

supporting multiple physical layer specifications optimized for the frequency bands of

application. The standard includes a set of particular physical layer specifications

applicable to systems operating between 2 and 66 GHz. It supports point-to-multipoint

and optional mesh topologies [14].

This standard is a part of a family of standards for local and metropolitan area

networks. The relationship between the standard and other members of the family is

shown in Fig. 3.1 (The numbers in the figure refer to IEEE standard designations). The

family of standards deals with the Physical and the Data Link Layers as defined by the

international Organization for Standardization (ISO) Open Systems Interconnection

Basic Reference Model. The access standards define several types of medium access

technologies and the associated physical media, each appropriate for particular

applications or system objectives. Other types are under investigation [14].

 29

This thesis focuses on the Reed-Solomon decoder acceleration and the DSP

implementation issues of the Reed-Solomon and Viterbi decoder in the IEEE 802.16a

Forward Error Correction (FEC) Decoding scheme. Therefore, we will concentrate on

introducing the FEC specifications defined in IEEE 802.16a physical layer part in the

next section. In the last part of this chapter, we will show the block diagrams of the

program conventionally implemented and also described briefly some modification and

our contribution to improve the implementation structure by reducing the computational

complexity. The detail of our improvement will be described in the latter chapter.

Figure 3.1: IEEE local and metropolitan area networks standards family.

3.2 IEEE 802.16a FEC Specifications

The overall physical layer structure of the channel coding scheme is shown in Fig.

3.2, where the Reed-Solomon Code and the Convolutional Code are major parts of the

FEC scheme, and the randomizer and the interleaver are additional modules for further

improving the error performance of the FEC scheme. The detailed specifications of each

part are introduced in the following subsections, excluding the modulator, which is not

implemented in our research subproject.

 30

Reed-Solomon
Encoder

Convolutional
Encoder Interleaver

Reed-Solomon
Decoder

Convolutional
Decoder De-interleaver

Randomizer

De-randomizer

Modulator

De-modulator

Figure 3.2: Channel coding structure at the transmitter side (top) and the receiver side

(bottom).

3.2.1 Randomizer

Data randomization is performed on data transmitted on the downlink (DL) and

uplink (UL). The randomization is performed on each allocation (DL or UL), which

means that for each allocation of a data block (subchannels on the frequency domain

and OFDM symbols on the time domain) the randomizer shall be used independently. If

the amount of data to transmit does not match exactly the amount of data allocated,

symbol “0xFF” (“1” only) should be padded to the transmission block until the

allocated data are filled.

Figure 3.3: PRBS for Data Randomization.

The randomizer is a Pseudo Random Binary Sequence (PRBS) generator depicted

in Fig. 3.3. As shown in the figure, source bit randomization is performed by the

 31

modulo-2 adder and the Linear-Feedback Shift Register (LFSR) with characteristic

polynomial 1+X14+X15. Each data byte to be transmitted shall enter sequentially (msb

first) into the randomizer to make the “0” and “1” bits well-distributed in the output data

streams and hence improve the coding performance. The randomizer sequence is

applied only to information bits. Preambles are not randomized.

The shift-register of the randomizer shall be initialized for every 1250 bytes passed

through (if the allocation is larger then 1250 bytes).

In the downlink, the randomizer shall be re-initialized at the start of each frame

with the sequence

 (msb) 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 (lsb).

In the uplink, the randomizer is initialized with the vector created as shown in Fig.

3.4.

Figure 3.4: Creation of OFDMA Randomizer Initialization Vector.

3.2.2 Forward Error Correction Coding

Forward error correction is used to decrease bit error rate (BER) on noisy

communication channels. This is achieved by a method known as channel coding,

which adds redundant information to the transmitted data. With forward error correction,

transmission errors are corrected at the decoder, without requesting a retransmission.

Convolutional encoding and block coding are two major forms of channel coding. In

our IEEE 802.16a OFDMA project, both convolutional code and block code

(Reed-Solomon Code) are employed.

 32

The Forward Error Correction scheme used in the IEEE 802.16a standard, as

shown in Fig. 3.5, consisting of the concatenation of a Reed-Solomon outer code and a

rate-compatible convolutional inner code, is supported on both UL and DL. The input

data streams are first divided into RS (Reed-Solomon) blocks of which the size is

determined by parameter k defined in RS code specification, then encoded by a RS

encoder, and each RS coded block is then encoded by a convolutional encoder.

Convolutional code is one kind of sequential codes, but RS code is a block code.

Overall it makes the whole concatenated code a block-based coding scheme.

Concatenated Encoder

Reed-Solomon
Encoder

Convolutional
Encoder

Concatenated Decoder

Reed-Solomon
Decoder

Convolutional
Decoder

Figure 3.5: Forward Error Correction structure in transmitter side (left) and

receiver side (right).

In order to make the system more flexible and adaptable to the channel condition,

there are six coding-modulation schemes provided in the standard, as shown in Table

3.1(notice that 64QAM is an optional mode). The different coding rates are made by

shortening and puncturing the original RS code and with puncturing of the original

convolutional code. The shortened- and- punctured mechanisms in RS code can provide

different block size and hence different error-correction capability through the same RS

Codec (Coder / Decoder). Similarly, the convolutional code can provide variable code

rates through the same codec by applying the puncturing rule. Thus it can suit the

variable block size of the shortened-and-punctured RS code to achieve a desired overall

coding rate.

 33

Modulation
Uncoded Block

 Size (bytes)

Overall Coding

Rate

Coded Block

Size (bytes)
RS Code

CC Code

Rate

QPSK 18 1/2 36 (24,18,3) 2/3

QPSK 26 ~3/4 36 (30,26,2) 5/6

16-QAM 36 1/2 72 (48,36,6) 2/3

16-QAM 54 3/4 72 (60,54,3) 5/6

64-QAM 72 2/3 108 (81,72,4) 3/4

64-QAM 82 ~3/4 108 (90,82,4) 5/6

Table 3.1: Mandatory Channel Coding per Modulation.

3.2.2.1 Reed-Solomon Code Specification

The Reed-Solomon encoding is derived from a systematic RS (N=255, K=239,

T=8) code using GF(28),where N is the number of overall bytes after encoding, K is the

number of data bytes before encoding, and T is the number of data bytes which can be

corrected from errors. The galois field used in this code is generated by the field

generator polynomial: p(x) = x8 + x4 + x3 + x2 + 1, and the codeword is generated by the

code generator polynomial: g(x) = (x +λ0)(x +λ1)(x +λ2)…(x +λ2T-1).

This code is shortened and punctured to enable variable block sizes and variable

error-correction capability. When a block is shortened to K’ data bytes, the first 239 –

K’ bytes of the encoder block are filled with “0”s. When a codeword is punctured to

permit T’ bytes to be corrected, only the first 2T’ of the total 16 codeword bytes are

employed.

3.2.2.2 Convolutional Code Specification

After the RS encoding process, each RS block is then encoded by the binary

convolutional encoder, which has native rate 1/2, a constraint length K=7, and uses the

following generator polynomials to derive its two code bit outputs:

 34

G1 = 171OCT FOR X

G2 = 133OCT FOR Y

The generator is depicted in Fig. 3.6.

Figure 3.6: Convolutional Encoder of Rate 1/2.

Puncturing patterns and serialization order which is used to generate variable code

rates are defined in Table 3.2. In the table, a “1” denotes a transmitted bit and a “0”

denotes a removed bit, whereas X and Y correspond to Fig. 3.6.

 Code Rates

Rate 2/3 3/4 5/6

dfree 6 5 4

X 10 101 10101

Y 11 110 11010

XY X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

Table 3.2: The Inner Convolutional Code with Puncturing Configuration.

 Furthermore, a tail-biting mechanism is adopted in our convolutional code, by

initializing the encoder’s memory with the last data bits of the RS block being encoded.

 35

3.2.3 Interleaver

All encoded data bits are interleaved by a block interleaver with a block size

corresponding to the number of coded bits per the specified allocation, Ncbps (see Table

3.3) to protect the convolutional code from severe impact of burst errors and therefore

increase the coding performance. The interleaver is defined by a two step permutation.

The first permutation ensures that adjacent coded bits are mapped onto nonadjacent

carriers. The second permutation ensures that adjacent coded bits are mapped alternately

onto less or more significant bits of the constellation, thus avoiding long runs of lowly

reliable bits.

Modulation
Coded Bits per Bit Interleaved

Block (Ncbps)

Modulo

Used (d)

QPSK 288 16

16-QAM 576 18

64-QAM 864 16

Table 3.3: Bit Interleaved Block Sizes and Modulo.

Now let Ncpc be the number of coded bits per carrier, i.e. 2, 4 or 6 for QPSK,

16QAM or 64QAM, respectively. Let s = Ncpc/2. Let k be the index of the coded bit

before the first permutation at transmission, m be the index after the first and before the

second permutation and j be the index after the second permutation, just prior to

modulation mapping, and d be the modulo used for the permutation.

The first permutation is defined by the rule:

m = (Ncbps/d) * kmod(d) + floor(k/d), k = 0, 1, …, Ncbps – 1

The second permutation is defined by the rule:

J = s * floor(m/s) + (m + Ncbps – floor(d*m Ncbps))mod(s), m = 0, 1, …, Ncbps -1

 36

The de-interleaver, which performs the inverse operation, is also defined by two

permutations. Let j be the index of the received bit before the first permutation, m be the

index after the first and before the second permutation and k be the index after the

second permutation, just prior to delivering the coded bits to the convolutional decoder.

The first permutation is defined by the rule:

m = s * floor(j/s) + (j + floor(d*j/ Ncbps))mod(s), j = 0, 1, …, Ncbps -1

The second permutation is defined by the rule:

K = d * m – (Ncbps -1) * floor (d*m/ Ncbps), m = 0, 1, …, Ncbps -1

The first permutation in the de-interleaver is the inverse of the second permutation

in the interleaver, and conversely.

3.3 Implementation Issues of the FEC Scheme

Detailed explanation of the FEC coding and decoding algorithms is given in this

section. The block diagrams of our simulation programs are also provided in each

section. Also we will describe how we reduce the computational complexity on PCs.

3.3.1 Reed-Solomon Code

3.3.1.1 Encoding of Shortened and Punctured Reed-Solomon Codes

The Reed-Solomon code defined in IEEE 802.16a standard is a modified RS code

which is derived from the standard systematic (255, 239, 8) RS code as mentioned in

section 2.2.2. In this section, we first give an example to illustrate how the encoding

 37

process has been done. Secondly, the block diagram of our RS encoder program is

given too.

The (48, 36, 6) RS code is chosen from Table 3.2 as an example to show the details

of encoding process. Before talking about the encoding process, we must note one thing

that the galois field defined in the IEEE 802.16a standard is GF(28), it means that each

element, i.e. I238 ~ I0, R15 ~ R0, mentioned below denotes a byte (8 bits). First we let the

information data bytes which are inputs to the systematic (255, 239, 8) RS code be

represented as polynomial form shown below:

I(x) = I238x238 + I237x237 + ………+ I36x36 + I35x35 + …… + I1x + I0

= (I238, I237, … , I36, I35, … , I1, I0)

Then the resulting systematic (255, 239, 8) RS codeword is given by

C(x) = I(x)．x16 + R(x)

 = (I238, I237, … , I36, I35, … , I1, I0, R15, R14, … , R3, R2, R1, R0)

The remainder polynomial R(x) can be represented as below:

R(x) = I(x)．x16 mod g(x)

 = (R15, R14, … , R3, R2, R1, R0)

Where the exponent of x is derived from N – K = 16.

The encoding process shown above is the standard (255, 239, 8) RS code. In order

to match the (48, 36, 6) code requirement, shortening and puncturing are needed. In

other words, we have to modify the existing codeword further. Initially we set the first

(239 – 36) = 203 input data bytes to zero and pad with 36 information data bytes, for

example, the input data bytes becomes:

I(x) = (0, 0, 0, … , 0, I35, I34, I33,… , I2, I1, I0), totally 203 zeros in the beginning.

Then let the 239 data bytes be encoded by the standard (255, 239, 8) RS encoder,

after it has been encoded, we discard the last 4 bytes of the codeword. Finally we have

48 bytes codeword, for example, the 48 bytes codeword is shown as below:

 38

 C(x) = (I35, I34, I33,… , I2, I1, I0, R15, R14, … , R7, R6, R5, R4)

 Similarly, the other types of shortened-and-punctured RS code listed in Table 3.2

can be acquired by performing the same procedure as discussed above, except for the

(81, 72, 4) RS code which is derived from (80, 72, 4) shortened-and-punctured RS code

by inserting a zero byte in the beginning of codeword.

 The block diagram of our RS encoder is shown in Fig. 3.7, where the block named

as shortened-and-punctured block is to discard the first 203 zero bytes (shortening) and

the last 4 bytes (puncturing) of the RS codeword. The details of the LFSR block is

shown in Fig. 3.8, we employ the Linear Feedback Shift Register (LFSR) structure to

implement the RS encoder block diagram as shown in Fig. 3.9 [15].

Data

R0

g0

Figu

LFSRZero
InsertingSequence

Shortened
and

Punctured

RS
Encoded
Sequence

Figure 3.7: Block Diagram of the RS Encoder Program.

R1 R13 R14 R15

g1 g13 g14 g15

First K’ bytes close
Last 2T’ bytes open

I(x) followed by 2T’ zero

First K’ bytes bottom connected
Last 2T’ bytes top connected

Output Data

re 3.8: The Linear Feedback Shift Register Structure of RS Encoder.

39

M
U
L
T
I
P
L
Y

D
I
V
I
D
E

A
D
D

K

xd-1 p(x)

K

N

m(x)

N-K

g(x)
N-K+1

c(x)

Figure 3.9: Block Diagram of a Conventional RS Encoder.

3.3.1.2 Decoding of Shortened and Punctured Reed-Solomon Codes

In order to understand how to decode a shortened-and-punctured RS code, we also

take the (48, 36, 6) RS code as an example. First we acquire 48 data bytes from the

receiver side, prepending with 203 zero bytes and padding with 4 zero bytes in the end.

Then, we have a data block whose size equals 255 bytes. Afterwards we can employ a

standard (255, 239, 8) RS decoder to decode it with the last 4 zero bytes of the

codeword marked as erasures.

A (48, 36, 6) RS decoder consists of the following main steps:

1. Syndrome computation:

Insert 203 bytes of zero before the 48 bytes received data and insert 4 bytes of zero

in the locations marked as erasure then compute the syndromes.

∑
=

=
254

0i

ik
ik rS α , for , whereas the r161 ≤≤ k i is the received data after zero

inserting.

2. Erasure locator polynomial computation:

∑∏
==

Λ=−=Λ
s

j

j
j

s

j
j xxZx

01

)1()(, whereas the Zj is the jth erasure location and the s

is the number of erasures.

3. Find the error location polynomial coefficient by solving

 40

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Λ

Λ
Λ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

16

10

9

1

7

8

151478

9832

8721

S

S
S

SSSS

SSSS
SSSS

MMMMMM

L

L

 (1)

Then find the error location by finding the roots of Λ(x).

(When performing erasure and error decoding, the syndrome shown in (1) shall be

replaced by Forney syndrome : , for ∑
=

−+Λ=
s

j
jskjk ST

0
sdk −−≤≤ 11)

4. Find the error and erasure magnitude by solving

 (2)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

vv
v
v

vv

v

v

S

S
S

Y

Y
Y

XXX

XXX
XXX

MM

L

MMM

L

L

2

1

2

1

21

22
2

2
1

21

5. Let t denote the number of errors, s denote the number of erasures If 2s + t > T (T

= 6 in the case of (48, 36, 6) RS code), it means that the number of errors and

erasures exceed the amount that can be recovered by this RS code. Thus, the

received data bytes would be left unchanged.

For computing (1) and (2), there are two well-known and conventional algorithms

existing. One is called Euclidean’s algorithm, and the other is called Berlekamp-Massey

(BM) algorithm. The Euclidean’s algorithm is used to compute the eqns. (1) and (2).

The BM algorithm is used to compute eqn. (1).

Initiatively, we choose the BM algorithm to compute (1), and further simplify it by

eliminating the pre-computation of the Forney syndrome and the post-computation of

the errata locator polynomial in reference to the inverse-free Berlekamp-Massey

algorithm. The simplified one just simply initializes the BM algorithm with the erasure

locator polynomial and afterward the errata locator polynomial can be obtained in the

end of iteration of BM algorithm.

As the above described, the BM algorithm is used to find the coefficients of the

error/erasure locator polynomial while the chein search is used to solve its roots. It

 41

requires multiplication of each coefficient by all the elements in GF(28) and however,

the multiplication is much more complicated than the addition and requires a lot of

computational time. It makes the chein search one of the bottlenecks of the RS decoder.

To improve it, we choose an algorithm proposed as a novel algorithm for finding the

roots of a special class of polynomials together with chein search to speed up the RS

decoder by reducing the amount of multiplication. Moreover, we employ the Forney

algorithm to solve (2).

The block diagram of the RS decoder described above is shown in Fig. 3.10, where

the syndrome computation is done by employing the circuit shown in Fig. 3.11 then fed

to the BM algorithm, the chein search is performed after BM algorithm, and the forney

algorithm is for the purpose of computing the magnitude of the error/erasure.

Zero
Inserting and

Erasure
Marking

Received
Sequence

Syndrome
Computation

RS
Decoded
Sequence

Error/Erasure
Correction

No Chein Search
and Forney
Algorithm

Degree >
n-k?

Berlekamp
Massey

Algorithm

Bypass
Error/Erasure

Correction

Yes

Figure 3.10: Block Diagram of the RS Decoder Program.

Figure 3.11: Syndrome Computation Circuit.

 42

Except for the above algorithm, the alternative RS decoding algorithm is the

remainder decoding algorithm, which has been introduced in the early 1980’s. It is the

other major bottleneck for the RS decoding process to calculate syndromes and

sometimes we also need to have all syndromes independent of the number of errors in

the received codeword. Therefore, the remainder decoding algorithm becomes popular

because the prior computation of the syndromes is not required. This algorithm is

achieved through solving the constrained polynomials, the Welch-Berlekamp (WB)

equations, derived from the remainder of the received codeword divided by the

generator polynomial. In our case, we also use the remainder decoding algorithm with

WB equations to decode RS codes instead of BM algorithm together with syndrome

computation for comparison and for investigating this current popular decoding

algorithm.

3.3.2 Convolutional Code

3.3.2.1 Encoding of Punctured Convolutional Code

The convolutional code encoding structure is shown in Fig. 3.6. It consists of one

input bit, six memory elements (shift registers) and two output bits, which are generated

by first performing AND operations on the generator polynomial coefficients, then pad

the contents of the memory elements with the input bit, and then perform operation of

modulo 2(XOR) on each bit generated by the previous AND operation. For the purpose

to reduce computational complexity, we avoid performing XOR operation directly but

employing the table-lookup method to replace it. That is, we build a table that contains

all possible 7 bit (6 memory element bits plus 1 input bit) XOR results and store them in

memory. From the fact that the XOR operation is used frequently during the encoding

process, we can just search the XOR results in the table and avoid the computations thus

slightly speed up the encoding process.

 43

 According to the puncturing rule shown in Table 3.2, a “1” means a transmitted bit

and a “0” means a skipped bit. The X and Y in the table denote the two output bits

shown in Fig. 3.6. Note that the dfree has been changed from that of the original

convolutional code with rate 1/2, which is equal to 10. The operations stated above are

represented by a block diagram shown in Fig. 3.12. The input and output buffers shown

in this figure are used for reducing the number of times on memory access when

concerning DSP implementation. Since the convolutional encoder processes a piece of

1-bit input data each time step, if we do not setup buffers for input and output, we have

to do memory accessing frequently during the encoding period, which decreases the

processing rate on the TI DSP platform.

Data
Sequence

CC
Encoded
Sequence

Output
Buffer

Input
Buffer

bytes

bytes

7 Bits Shift
Register

bits

bits

Generator
Polynomials

7 Bits XOR
Table

Apply
Puncturing

Rule

Figure 3.12: Block Diagram of the Convolutional Encoder Program.

3.3.2.2 Viterbi Decoding of Punctured Convolutional Code

Viterbi algorithm is the most well known technique in convolutional decoding

process. The operation of Viterbi algorithm can be explained easily using the trellis

diagram, which is generated by the encoder with all possible inputs. As we know, the

convolutional encoder consists of the memory elements, one input bit and two output

bits. The output bits are decided by the suitable combinations (AND and XOR) of the

past input bits. The changes of the value in the memory elements are viewed as the

transition from one state to another. So we can model the encoder as a finite state

machine, which is useful in the analysis of trellis diagram. An example of the finite state

 44

machine is shown in Fig. 3.13, whereas x(n-1) and x(n-2) denote the previous input and

the input prior to the previous input, respectively. When we acquire a new input bit, the

state of memory elements is changed and the finite state machine generates the

corresponding output bits.

Figure 3.13: State Transition Diagram Example.

The trellis diagram can be derived from the state transition diagram. First, the finite

state machine output is constructed by the given input and the current state. We expand

the finite state machine to a trellis diagram by introducing the concept of time. The

trellis diagram is consisting of all the features of finite state machine and can be viewed

as the time axis expansion of the finite state machine diagram. A simple trellis diagram

is shown in Fig. 3.14 as an example. We can easily see all the state transition for any

possible input for every propagation time instance. In this trellis diagram, the upper

outgoing branch for each state corresponds to an input of 0, and the lower outgoing

branch corresponds to an input of 1. Each state has two incoming and two outgoing

branches. Each information sequence, uniquely encoded into an encoded sequence,

corresponds to a unique path in the trellis. Equivalently, for a given path through the

trellis, we can obtain the corresponding information sequence by reading off the input

 45

labels on all the branches that make up the path, and the procedure is also called

“Traceback”. The Viterbi algorithm is used to find the optimal path in the trellis

diagram that results in the minimum errors. Then we do the traceback procedure to

retrieve the information sequence, which has been the inputs to the encoder, and the

details are discussed below.

Figure 3.14: Trellis Diagram Example for a Viterbi Decoder.

The Viterbi algorithm computes the branch metric of each path at each stage of the

trellis. The metric is first calculated and stored as a partial metric for each branch as the

trellis traversed. Since there are two paths merge at each node, the path with a smaller

metric is retained while the other is discarded. This is based on the principle that the

optimum path must contain the sub-optimum survivor path just like as the one shown in

Fig. 3.15 [16]. The survivor path for a given state at time instance n is the sequence of

symbols closest to the received sequence up to time n. For the case of puncturing

convolutional code, the metric associated with the punctured bits are simply disregarded

in metric calculation stage. The overall operation discussed in the above constitutes the

computational core of the Viterbi algorithm and is so-called the Add-Compare-Select

(ACS) operation.

 46

Figure 3.15: Survivor path of the Trellis Diagram.

In conclusion, the Viterbi algorithm can be divided into four major steps, the first

step is the branch metric calculation and state metric loading, the second step is the

ACS, the third step is the state metric storing and path recording, and the last one is the

traceback. The block diagram of our Viterbi decoder program is shown in Fig. 3.16, and

the structure of the Viterbi algorithm is shown in Fig. 3.17. The extend received

sequence block shown in Fig. 3.16 is included for decoding the puncturing and

tail-biting convolutional code and will be discussed later in this subsection.

Received
Sequence

CC
Decoded
Sequence

Output
Buffer

Input
Buffer

bytes bits Initialize
States

Extend
Received
Sequence

SDD
Viterbi

Decoder

8 bytes

bytes

Figure 3.16: Block Diagram of the Viterbi Decoder Program.

Load Branch
and State
Metric

Add-
Compare-

Select

Record Path
and Store

State Metric
Traceback

Figure 3.17: Structure of the Viterbi Algorithm.

 47

Notice that we have named our Viterbi decoder in the block diagram as an SDD

Viterbi decoder, where the SDD stands for Soft-Decision-Decoding. In fact, there are

two kinds of decision types used in Viterbi decoding, one is called hard-decision, and

another is called soft-decision. If hard-decision is adopted, then the metric value we

used for calculating branch metric and state metric is the Hamming distance, which only

counts the bit errors between each trellis path and the hard-limited output of the

demodulator. For the case of soft-decision, the metric we used should be the Euclidean

distance between each trellis path and the soft-output of the demodulator. The major

difference on performance between these two decision types is the coding gain and the

computational speed. For hard-decision, the calculation of Hamming distance is a

simple XOR operation, On the other hand, the soft-decision in metric calculation

requires a floating-point arithmetic. The hard-decision based Viterbi decoder is much

faster than the soft-decision based algorithm. However, its coding gain will lose 2 to 3

dB compared to soft-decision decoding, and cannot satisfy the requirements of IEEE

802.16a standard [17]. Hence, the soft-decision decoding is adopted to implement our

Viterbi decoder.

3.3.2.3 Bit Interleaved Soft Decision Viterbi Decoding

In the specific FEC scheme defined by IEEE 802.16a, there is a block interleaver

between the convolutional code and modulator. Therefore, the optimal SDD should take

the joint trellis structure which consists of the convolutional code, the block interleaver

and the modulator into account. In consequence, it leads to a complicated solution to be

realized in practice. To be more practical, we consider a suboptimal solution based on a

bit-by-bit metric mapping and calculation concept, which is proposed in [18]. To begin

with, we can generalize our major problems to how to obtain the metric values used in

the SDD Viterbi decoder while concerning the de-interleaving process. Here we are not

going to discuss or prove the detailed algorithm that has already been well-defined in

[18], but just showing the procedure on acquiring metric values.

 48

According to the suboptimal solution, we first calculate the Euclidean distance

between the received symbol and its nearest reference modulated symbol with respect to

a decided bit “0” and “1”. Let us take 16-QAM modulation as example. Referring to Fig.

3.18, if a received symbol lies in the coordinate (2.5, 2.7) (represented by a square point

in the figure), then its branch metric of the first bit with respect to a decided bit “0”

should be the Euclidean distance between the received symbol and the rightmost

reference symbol whose in-phase coordinate is 3 and the result is |3 – 2.5|2 = 0.25. And

the branch metric with respect to a decided bit “1” should be |-1 – 2.5|2 = 12.25. The

branch metric of the second bit, third bit, and fourth bit of this received symbol can be

calculated in a similar way. Consequently, we have four pairs of branch metric for each

received symbol. Before sending them to the SDD Viterbi decoder, these pairs of

branch metric should be mapped to the corresponding bit position since the original

convolutional encoded sequence has been interleaved. In order to be consistent with the

newly defined branch metrics, our SDD Viterbi decoder should be modified to be able

to treat these de-interleaved (or to say “demapped”, alternatively) branch metric as the

input data sequence instead of the soft-demodulated symbol. Except for the branch

metric calculation step, all the other parts in a conventional SDD Viterbi decoder are

still the same.

Figure 3.18: Partition of the 16-QAM Constellation.

49

3.3.2.4 Viterbi Decoding of Tail-Biting Convolutional Code

 According to [17] and [19], the practical suboptimal tail-biting Viterbi decoder is

shown in Fig. 3.19, where the “SDD Viterbi Decoder” block denotes the Viterbi

decoder with puncturing mechanism and bit-interleaved SDD. The parameter α and

β are both chosen to be 24 to achieve the balance of computational complexity and the

performance of error correction based on the analysis done in [17].

Extend
Received
Sequence

SDD
Viterbi

Decoder

Extract the
portion of

decoded bits

r1,r2,…,rL(n/k),
rL(n/k)+1,…,r(L+α)(n/k),
r(L+α)(n/k)+1,…,r(L+α+β)(n/k)r1,r2,…,rL(n/k)

d1,d2,…,dL,
dL+1,…,dL+α,
dL+α+1,…,dL+α+β

Reordering
dα+1,dα+2,…,dL,…,dL+α

dL+1,dL+2,…,
dL+α,dL+α+1,…,dL

Figure 3.19: Block Diagram of the Suboptimal Tail-Biting Viterbi Decoder.

3.3.2.5 The Butterfly Structure in the Trellis Diagram

In order to reduce the computational complexity in the ACS part, we bring in the

concept of butterfly structure from the trellis diagram. The Symmetry in the trellis

diagram, which forms the butterfly structure, can be used to reduce the number of

branch metric calculations. Fig. 3.20 shows the butterfly structure associated with the

Viterbi decoder － pairing new states 2i and 2i+1 with previous states i and i+s/2,

where s is the number of total possible states. In our case of constraint length K=7, s

equals 64 (26). Even though there are four incoming branches, there are only two

different branch costs.

Path metrics for each new state are calculated using each incoming branch cost

plus the previous path cost associated with that branch. The maximum of the two

incoming path metrics is selected as the survivor. The butterfly computations consist of

 50

two “Add-Compare-Select” (ACS) operations and updating the survivor path history.

The two ACS operations are:

Sn(2i) = min {Sn-1 (i) + b , Sn-1(i+s /2) + a}, and

Sn(2i+1) = min {Sn-1 (i) + a , Sn-1 (i+s /2) + b}

After completing N stages of decoding, one of the M survivor paths is selected for

trace-back. Obviously, the number of branch metric calculation has been reduced

greatly by introducing the butterfly structure.

i

2i+1

i+32

2i

Branch Metric a

Branch Metric b

Figure 3.20: Butterfly Structure Showing Branch Cost Symmetry.

 51

Chapter 4

DSP Implementation Environment

Our project is a subproject of an integrated group project. The TI DSP is chosen to

be the platform of the whole system. The DSP baseboard we use is Innovative

Integration's (II’s) product in year 2003 called Quixote, which houses Texas

Instruments' TMS320C6416 DSP chip. In this chapter, the specification of the DSP chip

and the DSP baseboard and the data transmission process from the host PC to the target

DSP are described. Moreover, some important techniques and features which benefit

our acceleration work are also included.

4.1 The DSP Chip

The DSP chip we adopt is one in the TMS320C64x series. According to [21],

TMS320C64x series is also a member of the TMS320C6000 (C6x) family. The C6000

device is capable of executing up to eight 32-bit instructions per cycle and its core CPU

consists of 64 general-purpose 32-bit registers (for C64x only) and eight functional

units. The detailed features of the C6000 family devices include:

 Advanced VLIW CPU with eight functional units, including two multipliers

and six arithmetic units.

 Instruction packing (Reduce Code Size).

 Conditional execution of all instructions.

 52

 Efficient code execution on independent functional units.

 8/16/32-bit data support, providing efficient memory support for a variety

of applications.

 40-bit arithmetic options add extra precision for computationally intensive

applications.

 Saturation and normalization provide support for key arithmetic operations.

 Field manipulation and instruction extract, set, clear, and bit counting support

common operation found in control and data manipulation applications.

The block diagram of the C6000 family is shown in Fig. 4.1. The C6000 devices

come with program memory, which, on some devices, can be used as a program cache.

The devices also have varying sizes of data memory. Peripherals such as a direct

memory access (DMA) controller, power-down logic, and external memory interface

(EMIF) usually come with the CPU, while peripherals such as serial ports and host ports

are on only certain devices.

In the following subsections, the TMS320C64x DSP Chip is introduced further in

the manner of three major parts: Central processing unit (CPU), Memory, and

Peripherals.

 53

Figure 4.1: The Block Diagram of TMS320C6x DSP Chip.

Figure 4.2: The TMS320C64x DSP Chip Architecture and Comparison with Ancient

TMS320C62x/C67x Chip.

 54

4.1.1 Central Processing Unit

Besides the eight independent functional units and sixty-four general purpose

registers that has been mentioned before, the C64x CPU also consists of the program

fetch unit, instruction dispatch unit (attached with advanced instruction packing),

instruction decode unit, two data path (A and B, each with four functional units), test

unit, emulation unit, interrupt logic, several control registers and two register files (A

and B with respect to the two data paths). The architecture is illustrated in more detail in

Fig .4.2 [22]. Compared with the other C6000 family DSP chip, the C64x DSP chip

provides more available hardware resources. The additional features that are only

available on C64x are:

 Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every

clock cycle.

 Quad 8-bit and dual 16-bit instruction set extensions with data flow support

 Support for non-aligned 32-bit (word) and 64-bit (double word) memory

accesses.

 Special communication-specific instructions have been added to address

common operations in error-correcting codes.

 Bit count and rotate hardware extends support for bit-level algorithms.

The program fetch unit shown in the figure could fetch eight 32-bit instructions

(which implies 256-bit wide program data bus) every single cycle, and the instruction

dispatch and decode units could also decode and arrange the eight instructions to eight

functional units. The eight functional units in the C64x architecture could be further

divided into two data paths A and B as shown in Fig. 4.2. Each path has one unit for

multiplication operations (.M), one for logical and arithmetic operations (.L), one for

branch, bit manipulation, and arithmetic operations (.S), and one for loading/storing,

address calculation and arithmetic operations (.D). The .S and .L units are for arithmetic,

 55

logical, and branch instructions. All data transfers make use of the .D units. Two

cross-paths (1x and 2x) allow functional units from one data path to access a 32-bit

operand from the register file on the opposite side. There can be a maximum of two

cross-path source reads per cycle. There are 32 general purpose registers, but some of

them are reserved for specific addressing or are used for conditional instructions.

Most of the buses in the CPU support 32-bit operands, and some of them support

40-bit operands. Each functional unit has its own 32-bit write port into a

general-purpose register file. All functional units which end in 1 (for example, .L1)

write to register file A while all functional units which end in 2 (for example, .L2) write

to register file B. There is an extra 8-bit wide port for 40-bit write as well as an extra

8-bit wide input port for 40-bit read in four specific units (.L1, .L2, .S1 and .S2). Since

each unit has its own 32-bit write port, all eight functional units could be operated in

parallel in every single cycle.

The program pipelining is also an important technique to make instructions execute

in parallel and hence reduce the overall execution cycles. In order to make pipelining

work properly, we should have knowledge of the pipeline stages and instruction

execution phases. Since the program pipelining is highly related to the optimization of

DSP program, we left it to be discussed in next chapter and not go into detail here.

4.1.2 Memory

Internal Memory

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip)

memory is organized in separate data and program spaces. When off-chip memory is

used, these spaces are unified on most devices to a single memory space via the external

memory interface (EMIF). The C64x has two 64-bit internal ports to access internal

data memory and a single internal port to access internal program memory, with an

instruction-fetch width of 256 bits.

 56

Memory Options

Besides the internal memory, the C64x DSP Chip also provides a variety of

memory options:

 Large on-chip RAM, up to 7M bits.

 Program cache.

 2-level caches.

 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,

and other asynchronous memories for a broad range of external memory

requirements and maximum system performance.

4.1.3 Peripherals

In addition to the on-chip memory, the TMS320C64x DSP chips also contain

peripherals for supporting with off-chip memory options, co-processors, host processors,

and serial devices. The peripherals are direct memory access (DMA) controller,

Host-Port Interface (HPI), EMIF, Timers and some other units.

 The DMA controller transfers data between regions in the memory map without

the intervention by CPU. It could move the data from internal memory to external

memory or from internal peripherals to external devices. It is used for communication to

other devices.

 The Host-Port Interface (HPI) is a 16-bir wide parallel port through which a host

processor could directly access the CPUs memory space. It is used for communication

between the host PC and the target DSP.

 The C64x has two 32-bit general-purpose timers that are used to time events, count

events, generate pulses, interrupt the CPU and send synchronization events to the DMA

controller. The timer has two signaling modes and could be clocked by an internal or an

external source.

 57

4.2 The DSP Baseboard
The Quixote DSP Baseboard card is shown in Fig. 4.3 and the architecture is

shown in Fig. 4.4 [25]. Quixote consists of a TMS320C6416 600 MHz 32-bit

fixed-point DSP chip and a Xilinx two- or six-million gate Virtex-II FPGA in a single

board. Utilizing the signal processing technology to provide processing flexibility,

efficiency and deliver high performance. Quixote has 32MBytes SDRAM for use by

DSP and 4 or 8Mbytes zero bus turnaround (ZBT) SBSRAM for use by FPGA.

Developers could build complicated signal processing systems by integrating these

reusable logic designs with their specific application logic.

Figure 4.3: Innovative Integration’s Quixote DSP Baseboard Card

 58

Figure 4.4: The Architecture of Quixote Baseboard

4.3 Data Transmission Mechanism

 Many applications of the Quixote baseboards involve communication with the host

CPU in some manner. All applications at a minimum must be reset and downloaded

from the host, even if they are isolated from the host after that.

For user’s different requirements, it provides different levels of support to

efficiently accomplish. The simplest method supported is a mapping of Standard C++

I/O to the Uniterminal applet that allows console-type I/O on the host. This allows

simple data input and control and the sending of text strings to the user.

The next level of support is given by the Packetized Message Interface. This

allows more complicated medium rate transfer of commands and information between

 59

the host and target. It requires more software support on the host than the Standard I/O

does. For full rate data transfers Quixote supports the creation of data streaming to the

host, for the maximum ability to move data between the target and host. On Quixote

baseboards, a second type of busmaster communication between target and host is

available for use, it is the CPU Busmaster interface.

The primary CPU busmaster interface is based on a streaming model where

logically data is an infinite stream between the source and destination. This model is

more efficient because the signaling between the two parties in the transfer can be kept

to a minimum and transfers can be buffered for maximum throughput. In addition, the

Busmaster streaming interface is fully handshook, so that no data loss can occur in the

process of streaming. For example, if the application cannot process blocks fast enough,

the buffers will fill, then the busmaster region will fill, then busmastering will stop until

the application resumes processing. When the busmaster stops, the DSP will no longer

be able to add data to the PCI interface FIFO.

 However, in our application of AMR speech coding and RS coding scheme, the

data sequence is first divided into RS blocks (or speech frames for AMR) then

performed encoding and decoding procedure. Hence the continuous streaming may not

be suitable for our requirements. Alternatively, there is a data flow paradigm supported

for non-continuous data sequence called block mode streaming. For very high rate

applications, any processing done to each point may result in a reduction in the

maximum data rate that can be achieved. Since block mode does no implicit processing

on a point-by-point basis, the fastest data rates are achievable using this mode.

The DSP Streaming interface is bi-directional. Two streams can run simultaneously,

one running from the analog peripherals through the DSP into the application. This is

called the “Incoming Stream”. The other stream runs out to the analog peripherals. This

is the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there

is no direct access to analog peripherals from the host. The block diagram of the DSP

streaming mode is shown in Fig. 4.5 [25].

 60

DSP Stream

On the target, the

Outgoing Stream

peripheral librarie

of data between

instantaneous rat

transfers at 80~10

is somewhat depe

In addition

lower bandwidth

between host PC

Figure 4.5: Block Diagram of DSP Streaming Mode.

ing is initiated and started on the Host, using the Caliente component.

 DSP interface uses pair of DSP/BIOS Device Drivers, PciIn (on the

) and PciOut (on the Incoming Stream), provided in the Pismo

s for the DSP. They use burst-mode and are capable of copying blocks

target SDRAM and host bus-master memory via the PCI interface at

es up 264 MBytes/sec. Typical desktop machines routinely support

0 MBytes/sec. Besides, maximum throughput supported by the driver

ndent on the size of the buffers used in the driver pool.

to the busmaster streaming interface, the DSP and host also have a

 communications link for sending commands or side information

and target DSP.

61

4.4 Features of TI TMSC6000 Family DSP for

Optimization

 In this subsection, first the code development flow is presented to show how to

program a DSP efficiently and systematically by the handmade efforts only. Secondly,

the TI C6000 family pipeline structure is introduced for the ease to understand how the

processor arrange the pipeline stages and what instruction is more time consuming and

shall be avoided using if possible. Thirdly, an important techniques used by TI’s CCS

compiler to improve the program speed performance, which is so-called “software

pipelining”, is introduced and a simple example is given here to explain how we can

improve the program efficiency by software pipelining technique. At last, the important

option, the compiler level optimization, of TI’s CCS compiler is also involved for the

advanced improvement of our handmade codes.

4.4.1 Code Development Flow

 Traditional development flows in DSP industry have involved validating a C

model for correctness on a host PC or Unix workstation and then painstakingly porting

that C code to hand coded DSP assembly language. This is both time consuming and

error prone. The recommended code development flow involves utilizing the C6000

code generation tools to aid in optimization rather than forcing the programmer to code

by hand in assembly. These advantages allow the compiler to do all the laborious work

of instruction selection, parallelizing, pipelining, and register allocation. Fig. 4.6

illustrate the three phases in the code development flow [23]. Because phase 3 is kind of

too detailed and time consuming, most of the time we will not go into phase 3 to write

linear assembly code unless the software pipelining efficiency is hardly achieved or the

 62

unbalanced resource allocation is hardly solved by the compiler or adjusting only the C

code.

Write C Code

Compiler

Profiler

Efficient?

Complete

Yes

No

Phase 2:
Refine C Code

Refine C Code

Compiler

Profiler

Efficient?

Complete

Yes

Phase 1:
Develop C Code

No

More C
Optimization?

Yes

Write Linear Assembly

Assembler

Profiler

Efficient?

Yes

Phase 3:
Write Linear Assembly

Complete

No

Figure 4.6: Code Development Flow.

4.4.2 Pipeline Structure of the TI TMSC6000 Family

 Pipelining is an efficient way to increase the instruction throughput. There are

some features with regard to the TI C6000 family’s pipeline structure that can provide

the advantages of optimum performance, low cost, and simple programming. The

following are several useful features [21]:

 Increased pipelining eliminates traditional architectural bottlenecks in

program fetch, data access, and multiply operation.

 Pipeline control is simplified by eliminating pipeline locks.

 The pipeline can dispatch eight parallel instructions every cycle.

 Parallel instructions proceed simultaneously through the same pipeline

phase.

 63

 The pipeline structure of the C6000 family consists of three basic pipeline stages,

they are Fetch stage (PF), Decode stage (D), and Execution stage (E). At the F stage, the

CPU first generates an address, fetch the opcode of the specified instruction from

memory, and then pass it to the program decoder. At the D stage, the program decoder

efficiently routes the opcode to the specific functional unit which determined by the

type of instruction (LDW, ADD, SHR, MPY, etc). Once the instruction reaches E stage,

it is executed by its specified functional unit. Most instructions of the C6000 family fall

in the Instruction-Single-Cycle (ISC) category, such as ADD, SHR, AND, OR, XOR,

etc. However, the results of a few instructions are delayed. For example, the multiply

instructions - MPY (and its varieties) requires a delay length equal to one cycle.

One cycle delay means that the execution result will not be available until one

cycle later (i.e. not available for the next instruction to use). The results of a load

instruction – LDW (and its varieties) are delayed for 4 cycles. Branches instructions

reach their target destination 5 cycles later. Store instructions are viewed as an ISC from

the CPU’s perspective because of the fact that there is no execution phase required for a

store instruction but actually it still finish in 2 cycles later. Since the maximum delay

among all the available instructions is 5 cycles (6 execution cycles totally), it is intuitive

to split the execution stage (E) into six phases as shown in table 4.1.

Execution Phases
(Completing Phase)

Instructions' Category

E1 Instruction single cycle

E2 Multiply and its varieties

E3 Store and its varieties

E4

E5 Load and its varieties

E6 Branch to destination

Table 4.1: Completing Phase of Different Type Instructions.

 64

4.4.3 Software Pipelining

 Software pipelining is a technique for interleaving instructions from different

iterations to eliminate the dependency within one iteration and exploit instruction level

parallelism (ILP) in loops, so the delay slots can be filled and the functional units can be

used more efficiently. TI’s CCS compiler is also capable of this. Overall it makes the

loop become a highly optimized loop code and hence accelerate the program operating

speed significantly.

 For the ease to understand how software pipelining actually works, here we give an

example to illustrate it [26]. A simple for loop and its code after applying software

pipelining are shown in Fig 4.7(a) and 4.7(b). The loop schedule length is reduced from

four control steps to one control step for software pipelined loop. However the code size

of software pipelined loop is three times larger than the original code size in this

example. Fig. 4.8(a) and 4.8(b) show the execution records of the original loop and the

software pipelined loop, respectively.

 A[1] = E[-3] + 9;
A[2] = E[-2] + 9;
B[1] = A[1] * 5’
C[1] = A[1] + B[-1];
A[3] = E[-1] + 9;
B[2] = A[2] * 5;
C[2] = A[2] + B[0];
D[1] = A[1] * C[1];
for i = 1 to n-3 do
 A[i+3] = E[i-1] + 9;
 B[i+2] = A[i+2] * 5;
 C[i+2] = A[i+2] + B[i];
 D[i+1] = A[i+1] * C[i+1];
 E[i] = D[i] + 30;
End
E[n] = D[n] +30;
D[n] = A[n] * C[n];
E[n-1] = D[n-1] + 30;
B[n] = A[n] * 5;
C[n] = A[n] + B[n-2];
D[n-1] = A[n-1] * C[n-1];
E[n-2] = D[n-2] + 30;

for i = 1 to n do
 A[i] = E[i-4] + 9;
 B[i] = A[i] * 5;
 C[i] = A[i] + B[i-2];
 D[i] = A[i] * C[i];
 E[i] = D[i] + 30;
end

 (a) (b)

Figure 4.7: (a) The Original Loop. (b) The Loop After Applying Software Pipelining.

 65

(a) (b)

 A
 B C
 D
 E

 A
 B C
 D
 E

 A
 B C
 D
 E

……

The Original
Iteration

E
D

B C
A
A

B C
D

E

A

D
E

B C

D
E

A
B C

D
E

A
B C

D
E

A
B C

D
E

A
B C

Prologue

Loop Kernel
(Repeating
Schedule)

Epilogue

Figure 4.8: (a) Execution Record of the Original Loop. (b) Execution Record of the

Software Pipelined Loop.

In these figures, we can clearly observe that there are only two (B and C) of the

five instructions – A,B,C,D,E executed in parallel in original loop, while there are all

five instructions executed in parallel in software pipelined loop and hence the program

efficiency is improved significantly. We can also notice that the pipelined code can be

classified into three regions: prologue, loop kernel (repeating schedule) and epilogue.

The prologue is the “setup” to the loop. Running the prologue code is often called

“priming” the loop. The length of the prologue depends on the latency between the

beginning and ending of the loop code; i.e., the number of instruction and their latency.

The epilogue refers to the ending instructions, which must be completed at the end after

the loop kernel; it is kind of similar to the prologue and is optional, if necessary, it can

be rolled into the loop kernel. Prologue and epilogue of the software pipelined loop

occupy a large part of the code size, so there may be a trade-off issue between the speed

and area consideration that we have to take into account. But since the program memory

of the Quixote DSP baseboard is quite large and the original FEC code size is quite

small, it may not be a serious issue if we adopt software pipelining on our loops.

 66

 Concerning implementation on TI C6000 DSP family, C code loop performance is

greatly influenced by how well the CCS compiler can software pipeline our loop. The

compiler provides some feedback information for programmers to fine-tune the loop

structure. By understanding the feedback information, we can quickly tune our C code

to obtain the highest possible performance. The feedback is geared for explaining

exactly what all the issues with pipelining the loop were and what the results obtained

were. The compiler goes through three basic stages when compiling a loop, these stages

are [23]：

1. Qualify the loop for software pipelining.

2. Collect loop resource and dependency graph information.

3. Software pipelining the loop.

In the first stage, the compiler tries to identify what the loop counter (named trip

counter because of the number of trips through a loop) is and any information about the

loop counter such as minimum value (known minimum trip count), and whether it is a

multiple of something (has a known maximum trip count factor).

If factor information is known about a loop counter, the compiler can be more

aggressive with performing packed data processing and loop unrolling optimizations.

For example, if the exact value of a loop counter is not known but it is known that the

value is a multiple of some number, the compiler may be able to unroll the loop to

improve performance.

There are several conditions that must be met before software pipelining is allowed,

or legal, from the compiler’s point of view. These conditions are：

 It cannot have too many instructions in the loop. Loops that are too big

typically require more registers than are available and require a longer

compilation time.

 It cannot call another function from within the loop unless the called function

is inlined. Any break in control flow makes it impossible to software pipeline

as multiple iterations are executing in parallel.

 67

If any of the conditions for software pipelining are not met, qualification of the

pipeline will halt and a disqualification messages will appear. In this situation, software

pipelining will not be applied on our loop and hence the program operating speed will

be quite slow.

In the second stage, the compiler is collecting loop resource and dependency graph

information, it will derive the loop carried dependency bound, unpartitioned resource

bound across all resources, partitioned resource bound across all resources based on our

loop code and shows the resource partition table, which summarizes how the

instructions have been assigned to the various machine resources and how they have

been partitioned between the A and B side, after it has the information about the three

bounds.

In the third stage, the compiler attempt to software pipeline our loop based on the

knowledge it obtained from the previous two stages. The first thing the compiler

attempts during this stage, is to schedule the loop at an iteration interval (ii) equal to the

minimum value of the three bounds obtained in second stage. If the attempt was not

successful, the compiler provides additional feedback message to help explain why it

failed; i.e., register is live too long or did not find schedule, and the compiler will keep

proceeding to ii = (previous failed ii + 1) till it find a valid schedule and then the

software pipeline is done.

4.4.4 Program-Level Optimization

 Four optimization levels are provided by the CCS compiler. Program level is

the highest one of optimization available. With program-level optimization, all our

source files are compiled into one intermediate file giving the compiler complete

program view during compilation. It performs various loop optimizations, such as

software pipelining, unrolling, and SIMD, etc. and also other code size reducing like:

eliminating unused assignments, eliminating local and global common sub-expressions,

 68

and removing functions that are never called. It creates significant advantage for

determining whether two pointers access the same memory location to eliminate the

memory dependency in loops and lead to better schedules.

 69

Chapter 5

Implementation and Acceleration of AMR

Speech Coding on TI DSP Platform

As described in the previous chapter, we adopt the Texas Instruments (TI) digital

signal processor (DSP) for implementing our AMR (Adaptive Multi-Rate) codec and

RS (Reed-Solomon) decoder in the IEEE 802.16a wireless communication standard. In

this chapter, we focus first on one of our major topic of this thesis – the implementation

and acceleration of the AMR codec on the newly released II’s Quixote DSP baseboard.

At first, we introduce some special features of TI C6000 family DSP that is helpful

when doing compiler level optimization. Secondly, we proposed some simple and yet

practically useful techniques to speed up the computational performance of the AMR

codec for TI C64 family DSP. Then, we show the simulation profile, which is generated

by the TI’s Code Composer Studio (CCS) built-in profiler, of the AMR codec after the

acceleration. Finally, we describe the entire system structure and the operation of our

AMR codec implemented on the TI C64 DSP platform. Moreover, the presentation of

the execution time after our acceleration is also attached.

 70

5.1 AMR Codec Acceleration

 Follow the code development flow described in the previous chapter. Before

actually revising our program code, we should first generate a profile by using the CCS

built-in profiler to obtain exact execution cycles. Then we identify the parts of our

program that consume the most execution time based on the profile data. And hence we

concentrate on the most efficient method for speeding up them to make the whole

program faster. The acceleration steps of our AMR codec program before it being

implemented on TI DSP platform is discussed in the following subsections.

5.1.1 AMR Code Profile

There are two methods to use the standalone simulator for profiling [23]

 The –g option provides a profile of all of the functions in our application.

 If we are interested in only one or two functions or a region of code inside a

function, the clock() function can be used to time the region specified.

For the purpose to find which parts take the most operation time, we choose the

first method to compare all the functions in our AMR program. The source code we use

here is the adjusted one of the fixed-point version from the AMR speech codec series of

the 3GPP specification website. And the test sequences used to profile our code is also

obtained from there. The function and the usage of the source code involves are

described as follow.

The general command line syntax for the encoder program is

encoder [options] amr_mode input_filename bitstream_filename

or

encoder [options] -modefile=mode_file input_filename bitstream_filename

 71

 Basically, it contains the filenames of input and output files for user to specify, and

the format of the input speech file is 16-bit linear encoded PCM speech samples with

the 8 kHz sampling rate and the frame length of 160 samples. The frame of the encoder

output bitstreams are structured as

1 word frame type

244 words encoded speech parameter bitstream (one bit per word, each word

contains either 0x0001 or 0x0000), unused bits written as 0x0000

for modes < MR122

1 word mode information

4 words unused (written as 0x0000 by encoder)

In the first case of the syntax, “amr_mode”, which represents one of the eight

source rates of AMR codec, must be one of MR475, MR515, MR59, MR67, MR74,

MR795, MR102, and MR122. In the second case, the text file “mode_file” must contain

the mode names to be used. This mode is capable of switching its bit-rate every 20-ms

speech frame.

The option recognized by the encoder command line is “-dtx”, which is used to

enable DTX operation. The information that explains the DTX operation can be found

in the chapter 2.

The general command line syntax for decoder program is similar to the one for

encoder except for the predetermined mode:

decoder [options] bitstream_file output_file

 The structure of the input bitstream and output file for decoder are the same as the

output bitstream and input file described in the encoder section. The mode and frame

type for decoding also refers to the information contained in the received bitstream

unless the option “-rxframetype” is used to force RX frame type (instead of TX frame

type in the input file). However, this option is only useful for simulations.

 72

 We first profile this original version AMR program by the CCS simulator without

compiler-direct optimizations and handmade improvements. First we roughly segment

the AMR encoder procedure into a few major sections and the measure their operation

cycles by the CCS build-in profiler.

Procedure Cycles Percentage (%)
Pre-processing 148,205 1.46

Linear Prediction Analysis 1,509,708 14.85
Open-Loop Pitch Analysis 1,789,777 17.61

Impulse Response and Target Signal
Computation

857,060 8.43

Adaptive Codebook Search 1,745,931 17.18
Algebraic Codebook Search 3,265,651 32.13

Quantization of the Adaptive and
Fixed Codebook Gains

789,478 7.77

Memory Update 58,466 0.58

Table 5.1: Profile of AMR Encoder Provided by 3GPP

 As shown on Table 5.1, the algebraic codebook search part takes the most cycles in

the AMR encoder. Therefore, we further analyze this module to find which sub-module

uses the most percentage of operation time. It is found that the action of searching the

best codevector is the most time-consuming unit, and it takes about 54.42% of the

algebraic codebook search execution cycles. Then, we analyze the code structure of this

unit, and it is presented as the combination of value assignments and various basic

operations, such as addition, subtraction, multiplication, and division, etc. The other

functions are written in a similar style – a sequence of function calls of the mentioned

basic operations. Similar cases appear in the AMR decoder, too. Moreover, the profile

data for individual functions of the encoder, which is shown in Table 5.2, supports our

observation.

 73

Function
Name

Count
Average
Cycles

Total Cycles
Percentage

(%)
L_mult 101,960 46 4,690,160 19.00
L_add 84,888 38 4,057,107 16.44
L_mac 72,338 126 9,840,534 39.88

saturate 34,749 70 2,466,864 10.00
mult 20,545 128 2,640,418 10.70

L_sub 17,739 36 638,988 2.59
L_msu 15,133 124 1,881,897 7.63
round 10,016 113 1,132,027 4.59
add 7,110 116 824,760 3.34
sub 6,854 115 794,749 3.22

Table 5.2: Profile of the Top Ten Encoder Functions Called Most (Except for the

Functions Containing Value Assignment Only)

More exactly the most frequently called functions are the mathematical arithmetics

including mult (multiplication), add (addition), mac (multiplication and cumulation),

saturate (saturating the 32-bit input to a 16-bit value), sub (subtraction), msu

(multiplication and subtraction), round (rounding the 32-bit input to the MSB 16-bit

value). In Table 5.2, the letter “L” in the function names represents 32-bit outputs.

Although each individual arithmetic function has only a few operation cycles, the

considerable account of calling them results in the enormous cumulative time of

execution. Specially, “L_mac” occupies up to 39.88% of the whole encoding time

although it calls the functions of addition and multiplication only. Hence based on the

above obsevations, it is noticeable for us to accelerate the codes of the basic arithmetic

functions.

 74

5.1.2 Acceleration by Using the Intrinsics

Before introducing the acceleration methods we use, let us summarize our main

points in the previous section.

1. Referring to the profiling data and the discussion in the previous section, we

know that to focus on the arithmetic functions is the overriding work for

accelerating the AMR codec. Those arithmetic functions are called for

numbers of times by various procedures, so simply improving their codes is

quite efficient way to speed up more than one procedure and even the whole

AMR codec.

2. It matters that we accelerate the AMR codec by improving the coding style of

those arithmetic functions instead of changing the algorithm of the procedure

taking the most cycles. The reason is that the specification of the AMR speech

codec is fixed by the standard, and even the detail operations of any

procedure are defined. Not like the audio and video standards, algorithms of

the speech coding standard are always fixed and not flexible for us to modify.

The above points sufficiently support us to accelerate the AMR codec primarily by

the code improvement of the arithmetic functions. First, we profile those functions

before acceleration as shown in Table 5.3.

 75

Function Name Count Code Size
Average
Cycles

Total Cycles

saturate 34,749 152 70 2,466,864
abs_s 19 116 48 927

shl 327 320 110 35,970
shr 1,098 252 68 75,681

mult 20,545 124 128 2,640,418
L_mult 101,960 124 46 4,690,160
negate 162 76 32 5,184
L_add 84,888 148 47 4,057,107

L_negate 5 68 25 125
mult_r 240 148 136 32,826
L_shr 1,815 236 63 115,737
L_abs 180 96 37 6,696

norm_s 10 204 202 2,027
norm_l 103 180 287 29,648

Table 5.3: Profile of AMR Codec Arithmetic Functions (Not Counted are Value

Assignments or Function Calling Only).

 It is clear that the calling account is the most important factor that contributes the

total execution cycles. Each function takes a few cycles and has a simple structure

because it contains a couple of basic arithmetic operations. It seems that the most

obvious way to accelerate it without increasing the code size is using intrinsic functions

(or intrinsics).

The intrinsics, which are special functions provided by the C6000 compiler, map

directly to inline C64x instructions and hence result in no increase of the code size [23].

They can speed up the codes quickly and efficiently and are accessed by just calling

them as an ordinary function with a leading “_”. The intrinsics we use to accelerating

those arithmetic functions are introduced below [23].

 76

int _spack2(int src1, int src2) Two signed 32-bit values are saturated to 16-bit

values and packed into the return value.

int _abs2(int src2) Calculates the absolute value for each 16-bit

value.

int _sshl(int src2, uint src1) Shifts src2 left by the contents of src1, saturates

the result to 32 bits, and returns the result.

int _sshvr(int src2, int src1) Shifts src2 to the right of src1 bits. Saturates the

result if the shifted value is greater than

MAX_INT or less than MIN_INT.

int _mpy(int src1, int src2) Multiplies the 16 LSBs of src1 by the 16 LSBs

of src2 and returns the result.

int _smpy(int src1, int src2) Multiplies src1 by src2, left-shifts the result by

one, and returns the result. If the result is

0x80000000, saturates the result to

0x7FFFFFFF.

int _ssub(int src1, int src2) Subtracts src2 from src1, saturates the result

size, and returns the result.

int _sadd(int src1, int src2) Adds src1 to src2 and saturates the result.

Return the result.

int _abs(int src2) Returns the saturated absolute value of src2.

uint _norm(int src2) Returns the number of bits up to the first

nonredundant sign bit of src2.

The function names shown in the above are the intrinsics we use, where “int” and

“uint” represent the data types of integer and unsigned integer. The arithmetic

operations of the AMR codec program are of many different kinds, but the amount of

intrinsics C64x provided is a few. To accelerate every operation which takes excessive

 77

execution time, we need to modify its argument before calling it and/or add additional

simple operations to its output.

For example, a simple way to realize the calculation of a 16-bit absolute value is to

use “_abs2” because this instruction only imports the 16-bit LSBs of its two inputs even

if the input data type supported by the instruction is a 32-bit integer. Hence we can

import a zero and the value which needs to be calculated its absolute value as the two

inputs and truncate the output to a 16-bit LSB.

Another example is to realize the “negate” operation, which is to negate one 16-bit

value with saturation when the minimum negative input appears. Here, we use the

intrinsic “_ssub” to achieve this operation by subtracting the input value from zero.

However, the intrinsic is designed for the 32-bit operation and performs only the 32-bit

saturation instead of the 16-bit one. We shift the input to the left by 16 bits and then

shift back the output to the right by 16 bits after the intrinsic “_ssub” realizes the

“negate” operation. It corresponds to enlarging the 16-bit input to 32-bit to make it

suitable for the 32-bit operation of “_ssub” and recover the result after the intrinsic is

executed.

The “saturate” function is the operation to saturate a 32-bit value to 16 bits and has

to be speeded up to reduce its total execution cycles. By a way similar to the previous

cases, we have two choices of the intrinsics to perform the “saturate” operation. One is

the intrinsic of “_sshl”, which performs shift left and checks if the saturation happens.

Hence, it is immediate that we can use “_sshl” to shift the input to the left of 16 bits and

saturate the result, and then we have to shift back its output by hand. Alternatively,

“_spack2” is the other choice. Both of its 32-bit inputs are packed into one 32-bit value

after their 16-bit LSBs are satureated. Corresponding to the case of calculating 16-bit

absolute value, a zero and the input value are imported into the intrinsic “_spack2”, and

its output truncated to 16 bits is the outcome of the “saturate” function.

Previous examples are several of our works in using the intrinsics to accelerate the

arithmetic functions. The profile of the codes after improvement is shown in Table 5.4,

where their percentage of acceleration is also listed.

 78

Function
Name

Count Code Size
Average
Cycles

Total
Cycles

Improvement
Percentage (%)

saturate 34,749 96 35 1216285 50.70
abs_s 19 48 24 456 50.81

shl 327 268 85 27795 22.73
shr 1,098 148 44 48312 36.16

mult 20,545 100 82 1684690 36.20
L_mult 101,960 108 43 4384280 6.52
negate 162 56 26 4212 18.75
L_add 84,888 116 45 3887331 4.18

L_negate 5 40 16 80 36.00
mult_r 240 120 89 21360 34.93
L_shr 1,815 152 43 78045 32.57
L_abs 180 40 16 2880 56.99

norm_s 10 76 34 340 83.23
norm_l 103 64 25 2575 91.31

Table 5.4: Profile of AMR Arithmetic Functions Listed in Table 5.3 after

Acceleration

 Referring to Table 5.4, generally, using the intrinsics can achieve a high

acceleration gain even up to 91.31%, and the code size is also highly decreased

because some block of codes can be replaced with one intrinsic function. However,

between their codes there are still some arithmetic functions of insignificant

improvement efforts because a few flags, like “overflow” or “carry”, which discourage

the usage of the intrinsics. For example, the function “L_add” performs the saturation

after addition, and the intrinsic with this operation is also available. However, if the

constraints of saturation are matched, the output of addition is not only adjusted to the

maximum or minimum of an integer, but also the flag “overflow” is set by the function.

Hence, only the operation of the addition and saturation in the “L_add” can be

replaced with the intrinsic. The branch instructions for the judgment of saturation still

cannot be eliminated because there is a flag operation in the “L_add”. It is also the

restriction of the intrinsics that the user has to make sure that the properties of the

 79

target operations match well the intrinsics, otherwise, little improvement after

implementation.

5.1.3 Compiler Level Improvement

In the last part for acceleration of the AMR codec, we try to improve the speed of

our program by tuning the CCS compiler’s setting. The compiler is always more

conversant with the structure of DSP hardware than the programmers. Even if the

handmade improvement has been finished, the codes may not be suitable for software

pipelining.

In order to make the compiler work more efficiently, we try to set the “Opt. Level”

option to the “File” level [23]. It enables the compiler to comprehend the information of

the entire program. As described in the chapter 4, this setting can deal with certain

function calls inside a loop and eliminate the coding styles that disable the software

pipelining. The execution cycles after the file level optimization are presented in Table

5.5 and are also compared here to the non-optimized version of the codes with and

without the intrinsics.

Encoder Version Code Size Cycles
Improvement

Percentage (%)
Original 31,791,683 24,673,217 N/A

Modification with
Intrinsics

31,790,850 22,656,174 8.18

File-Level
Optimization

31,757,874 7,678,555 66.11

Table 5.5: Profile of Different Improved Versions of AMR Encoder

 80

Decoder Version Code Size Cycles
Improvement

Percentage (%)
Original 31,681,519 3,412,267 N/A

Modification with
Intrinsics

31,680,687 3,190,223 6.51

File-Level
Optimization

31,662,943 1,155,983 63.76

Table 5.6: Profile of Different Improved Versions of AMR Decoder

The lists of “Improvement Percentage” in Table 5.5 and Table 5.6 show the

improvement gain between the previous and present versions. Compared to the original

setting, the program is executed much more efficiently, and a large percentage of cycles

about 68.88% for the encoder and 66.12% for the decoder is reduced in the final version.

We also measure the processing cycles using the file-level optimization without

intrinsics. The improvement percentage decreases to 58.05% for the encoder and

57.15% for the decoder because of the reason below:

The intrinsic integrates multiple lines of codes into one instruction, and this

benefits the compiler to establish the software pipelines. Hence, the gain of the file-level

optimization without intrinsics may be lower, and, on the other hand, the intrinsics

without compiler-direct optimization obtain limited benefits because the software

pipeline disables without suitable function inlining.

 81

5.2 AMR Codec on C64x DSP Platform

5.2.1 Structure of AMR Implementation

 The code development environment is Visual C++ with Armada library provided

by II at the host end and Code Composer Studio (CCS) with Matador Pismo library at

the DSP end. We choose the GUI interface to import the input and show the results for

convenience and visualization.

The program located at the host end responses for the interface initialization, the

definition of button clicks, and the message handler. The message, which is one of the

data transmission mechanism supported by our DSP platform, is described previously in

Chapter 4. It is used for the transmission of small amount of data at low speed such as

signaling between the host and DSP. Thus, the message handler should include the

actions to reply to various kinds of messages. The other transmission mechanism we use

in our implementation is block-based data transfer, which is also described in Chapter 4

and it is responsible for the data transfer between the host and DSP end.

 The DSP program consists of the main function, the definition of thread, and also

the message handler. The thread, which is a class with the procedure we want to execute,

is the primary part at the DSP end. The DSP platform supports the execution of multiple

threads. Multi-thread execution benefits only when the processor is idle during the

program execution in the single-thread mode. In our case, the next data is fed to the

DSP right after the present data is processed completely. Hence this function is needless

to us. The structure described above is summarized by Figure 5.1.

 82

Main Function

GUI Interface

Interface Initialization

Event Handler Message Handler

Thread

User

Thread Tread
Definition

Message Handler

Block
Data Message

HOST

DSP

Figure 5.1: Structure of AMR Speech Codec Implementation on the Host and DSP

5.2.2 Execution Flow of AMR Implementation

 We focus on the implementation of the AMR encoder program first. Its interface is

shown in Fig. 5.2. This interface has one editorial text field and three buttons on the

right side. The text field on their left side is used to show state messages to users. We

can input a source rate in the editorial text field, which is supported by the AMR speech

 83

encoder, and the default is 4.75 kbit/s. The button “Coff File…” is used to choose the

path of the compiled bitstream file. The button “Download” is then clicked to download

the chosen bitstream. The message “Download Complete.” shall be shown in the left

text field when the whole bitstream has been downloaded. “Transfer” is the third button

for running the downloaded program, and the text field for importing the source rate is

disabled until “Transfer” is clicked again to stop the program. If the program is stopped

in the middle, and the source rate is changed by the user, our program is capable to

update the AMR coding mode for the speech frames of rest. Moreover, some

information, the number of blocks transferred, the byte rate, and the transferring state,

shall be shown below during running the program.

The flowchart of the AMR encoder processing is shown in Fig. 5.4. First, the GUI

interface should be initialized right after the program executing at the host end. All

objects on the interface like text editing boxes, buttons, or check boxes, etc. are mapped

to the parameters available to the program, and the events of objects also need to be

assigned to the functions defined by the programers. Then we have to choose the path of

compiled bitstream file of the AMR encoder program to download to the DSP

baseboard. Once the bitstream file is download completely, the DSP end sends a login

message to inform the host end, and we can start to execute our program by clicking the

button “Transfer”. The thread is generated when the data transfer begins. The imported

source rate is also read and saved to a parameter to specify the AMR encoder processing

mode. And the text field for importing the source rate is set non-active at the same time.

The thread is used to read inputs and write outputs to files. It also manages sending

blocks of data to DSP for encoding and receiving the processed blocks from DSP. Also

the mode information is transmitted together with the speech data to achieve higher

efficiency. At the host, one frame data is transmitted, and a flag which is set as long as

“Transfer” is clicked again to stop the transfer is also inspected for each loop. This flag

is used to decide whether the transfer is on or not. If the transfer is off, the flag shall be

set, and the text field is set active for users to specify a new coding rate. The speech

 84

frames of rest are encoding with the updated mode information after the transfer begins

again.

Figure 5.2: (a) Graphical Interface of the AMR Encoder Implementation. (b) A

Snapshot of Running the Program.

At the DSP end, the thread with our AMR encoding procedure is generated and

executed after the program bitstream is downloaded to the DSP baseboard completely.

The program in the thread is also initialized for the memory allocation. Then, it waits to

receive the data blocks from the host end. After the input data blocks are received, the

program performs the AMR encoding process and transmits back the coded data.

Finally, some parameters like the excitation signal of the previous frame shall be

updated for the next loop.

 85

The AMR decoder implementation is the same as that of the AMR encoder.

However, the AMR coding mode is fixed in the coded bitstream, and hence no input

text field on the interface is provided for the user to specify the AMR decoding mode.

Its interface is shown as Fig. 5.3. The program execution flow is also the same as the

encoder except that the encoder part is replaced by the decoder and the parts involving

the coding mode should be deleted, so we do not describe here again.

Figure 5.3: (a) Graphical Interface of the AMR Decoder Implementation. (b) A

Snapshot of Running the Program.

 86

start execution

interface
initialization

choose
bitstream path

download the
bitstream

“Download Complete.”
“Target logged in OK”

transfer on

new a thread

save the coding mode

read one frame from
the speech data

send data and mode

receive coded data

write to the file

transfer is
stopped?

stop program
kill the thread

Loop
Thread

yes

no

Host

Login ()

new a thread

memory
allocation

receive data and mode

process AMR speech
encoding

send coded data

update parameters

Loop

Execute()

Thread

DSP

Figure 5.4: the Flowchart of the AMR Encoder Implementation

 87

5.2.3 Performance Analysis

In this section, we present the execution time of our implementation for each

source rate supported by the AMR codec. We use the test sequences provided by 3GPP.

They are marked as “TSx” and described as follow [27]:

TS0: Synthetic harmonic signal. The pitch delay varies slowly from 18 to 143.5

samples. The minimum and maximum amplitudes are -997 and +971. 285 frames.

TS1: Female speech, active speech level: -19.4 dBov, flat frequency response, 301

frames.

TS2: Male speech, active speech level: -18.7 dBov, flat frequency response, 224

frames.

We first show the code size of the AMR codec downloaded to the DSP baseboard

at the different acceleration levels in Table 5.7 and 5.8.

Acceleration Level Total Code Size Improvement Percentage (%)
Original 17,449,709 N/A

Modification with Intrinsics 17,448,909 0.0046
File-Level Optimization 17,372,845 0.436

Table 5.7: Code Size of the AMR Encoder for Different Acceleration Level

Acceleration Level Total Code Size Improvement Percentage (%)
Original 17,337,934 N/A

Modification with Intrinsics 17,334,566 0.019
File-Level Optimization 17,280,686 0.311

Table 5.8: Code Size of the AMR Decoder for Different Acceleration Level

The total code size contains the on chip memory, L2 cache, and SDRAM.

Referring to Tables 5.7 and 5.8, it is shown that the code size dose not benefit much for

 88

all acceleration levels, and the code size is about 17.4 MB for the encoder and 17.3 MB

for the decoder.

Next we present the execution time for each test sequence under different source

rates and acceleration level. To make it perspicuous, we divide the result data into two

subsections, the encoder and decoder part, and also attach the improvement percentage

between the different acceleration level for each table.

5.2.3.1 AMR Encoder Performance Analysis

 We use the time or clock function to obtain the processing time for each test

sequence at the host end. The time function is inserted before sending data blocks and

after receiving coded blocks to count the coding duration. Hence this duration consists

of the AMR encoding time and the block transfer overhead. It is measured and sown as

follow:

1. the Original AMR Encoder (Provided by 3GPP)

Encoding Time (ms/frame) Source Rate
(bits/sec) TS0 TS1 TS2

4.75 42.06 42.19 42.11
5.15 33.31 33.34 33.40
5.9 37.21 37.33 37.29
6.7 43.89 44.12 43.86
7.4 41.36 41.52 41.44
7.95 43.19 43.62 43.55
10.2 43.25 43.39 43.23
12.2 45.01 45.15 45.25

Average 41.16 41.33 41.27

Table 5.9: Execution time of the DSP Implementation under Different Source Rate for

Each Test Sequence

 89

2. Improved AMR Encoder with Intrinsics

TS0 TS1 TS2 Source Rate
(bits/sec) ms/frame % ms/frame % ms/frame %

4.75 39.46 6.18 39.49 6.40 39.30 6.67
5.15 31.41 5.70 31.58 5.28 31.56 5.51
5.9 35.07 5.75 35.14 5.87 35.05 6.01
6.7 41.22 6.08 41.32 6.35 41.17 6.13
7.4 38.97 5.78 39.06 5.92 38.98 5.94
7.95 40.69 5.79 40.99 6.03 40.95 5.97
10.2 40.62 6.08 40.79 5.99 40.73 5.78
12.2 42.31 6.00 42.45 5.98 42.43 6.23

Average 38.72 5.93 38.85 6.00 38.77 6.06

Table 5.10: Execution time of the DSP Implementation under Different Source Rate for

Each Test Sequence (ms/frame: the Processing Time for one frame, %: Improvement

Percentage).

3. File-Level Optimization

TS0 TS1 TS2 Source Rate
(bits/sec) ms/frame % ms/frame % ms/frame %

4.75 14.09 64.29 14.07 64.37 14.13 64.05
5.15 11.18 64.41 11.25 64.38 11.17 64.61
5.9 12.83 63.42 12.81 63.55 12.83 63.40
6.7 15.00 63.61 15.04 63.60 15.02 63.52
7.4 14.34 63.20 14.37 63.21 14.31 63.29
7.95 14.93 63.31 15.07 63.23 15.02 63.32
10.2 14.69 63.84 14.74 63.86 14.67 63.98
12.2 15.28 63.89 15.24 64.10 15.24 64.08

Average 14.04 63.74 14.07 63.78 14.05 63.76

Table 5.11: Execution time of the DSP Implementation under Different Source Rate for

Each Test Sequence (the Lists Representation is the Same as Table 5.10).

 90

 The format of all the three test sequences is 8 kHz sampling rate, 16 bits/sample,

and 160 samples/frame speech. The duration of one frame is 20 ms. Referring to Tables

5.8, 5.9, and 5.10, it is observed that the coding time relates with the AMR coding mode

more than the different test sequences. The final AMR encoder implemented on the

DSP baseboard after our acceleration takes the coding time about 14.05 ms/frame and is

improved up to 65.94% with respect to the original for average. Hence it reaches the

coding speed of real time. Moreover, it is noted that the coding time shown in the three

tables contains the time of the data transfer between the host and DSP end, and the data

transfer time is measured alone about 0.28 ms/frame for average. Hence the pure AMR

encoding time is about 13.77 ms/frame.

5.2.3.2 AMR Decoder Performance Analysis

 We measure the AMR decoding time by the same method as the encoder.

1. the Original AMR Decoder (Provided by 3GPP)

Encoding Time (ms/frame) Source Rate
(bits/sec) TS0 TS1 TS2

4.75 6.25 6.29 6.26
5.15 6.33 6.22 6.26
5.9 6.33 6.22 6.26
6.7 6.40 6.39 6.26
7.4 6.18 6.12 6.04
7.95 6.32 6.36 6.35
10.2 6.15 6.29 5.99
12.2 6.57 6.39 6.30

Average 6.32 6.29 6.22

Table 5.12: Execution time of the DSP Implementation under Different Source Rate for

Each Test Sequence

 91

2. Improved AMR Decoder with the Intrinsics

TS0 TS1 TS2 Source Rate
(bits/sec) ms/frame % ms/frame % ms/frame %

4.75 5.90 5.60 5.92 5.88 5.81 7.19
5.15 5.90 6.79 5.86 5.79 5.90 5.75
5.9 5.94 6.16 5.92 4.82 5.86 6.39
6.7 5.97 6.72 5.89 7.82 5.90 5.75
7.4 5.84 5.50 5.82 4.90 5.72 5.30
7.95 5.94 6.01 5.96 6.29 5.99 5.67
10.2 5.66 7.97 5.89 6.36 5.68 5.18
12.2 6.05 7.91 5.95 6.89 5.94 5.71

Average 5.90 6.65 5.90 6.20 5.85 5.95

Table 5.13: Execution time of the DSP Implementation under Different Source Rate for

Each Test Sequence (ms/frame: the Processing Time for one frame, %: Improvement

Percentage).

3. File-Level Optimization

TS0 TS1 TS2 Source Rate
(bits/sec) ms/frame % ms/frame % ms/frame %

4.75 2.46 58.30 2.46 58.45 2.37 59.21
5.15 2.43 58.81 2.46 58.02 2.37 59.83
5.9 2.39 59.76 2.43 58.95 2.42 58.70
6.7 2.46 58.79 2.46 58.23 2.42 58.98
7.4 2.43 58.39 2.36 59.45 2.42 57.69
7.95 2.46 58.59 2.46 58.72 2.42 59.60
10.2 2.39 57.77 2.43 58.74 2.37 58.27
12.2 2.46 59.34 2.43 59.16 2.42 59.26

Average 2.44 58.64 2.44 58.64 2.40 58.97

Table 5.14: Execution time of the DSP Implementation under Different Source Rate for

Each Test Sequence (the Lists Representation is the Same as Table 5.13).

 92

 The final AMR decoder implemented on the DSP baseboard after our acceleration

takes the processing time about 2.43 ms/frame and is improved up to 61.31% with

respect to the original for average. It matches the real time requirement. The data

transfer time alone is also about 0.28 ms/frame. Hence, the pure AMR decoding time is

about 2.15 ms/frame.

 93

Chapter 6

Implementation and Acceleration of 802.16a

Reed-Solomon Decoder on TI DSP Platform

After introducing the AMR speech coding part, in this chapter, we are going to

discuss the second major topic – the implementation and acceleration of the specified

Reed-Solomon coding scheme on the same DSP platform. The AMR codec and the RS

coding scheme are both specified in the IEEE 802.16a wireless communication standard.

The AMR codec belongs to the source coding part, while the RS coding belongs to the

channel coding part. The RS coding scheme connects directly to the block of AMR

speech coding and provides it with the ability against channel errors. The acceleration

work of the RS code would be mainly focused on the decoder because it is more

complicated than the encoder.

At first, as the general flow of acceleration, the structure and profile of the original

RS decoder is introduced. Then we describe the algorithms proposed to obtain the

further improvement. Also, an alternative procedure for RS decoding, the remainder

decoding algorithm [30] [31] [35], is implemented for comparison with the former

system. Finally, we report the total effort of acceleration and the DSP implementation of

our system.

 94

6.1 Acceleration on Reed-Solomon Decoder

 We first generate a computational profile by using the CCS built-in profiler to

obtain the execution cycles. Then, we identify which parts of our program consume the

most execution time based on the profile data, and hence we pay our attention on these

parts to speed up the whole program. In the following subsections, the processing flow

of our RS decoder program on TI DSP platform is divided into several procedures to

improvement work.

6.1.1 Profiling the Original RS Decoder

 The starting point of our RS decoder is the version that has been improved using

several acceleration techniques on the well-known RS decoding flow. It was written by

Y.-T. Lee in 2004 for his MS thesis [20]. We call it the Lee decoder. The well-known

RS decoding flow has been described in Chapter 3, which consists of the four procedure

units:

 Syndrome computation

 Berlekamp-Massey algorithm (BM algorithm)

 Chien search

 Forney algorithm

The Lee decoder program we intend to accelerate uses a look-up table to realize the

Galois field multiplier and has improved the BM algorithm and Chien search by some

fast versions.

The inversion of discrepancy needed during the computation of the original BM

algorithm is complex and time-consuming due to the requirement of chain

multiplication. Hence the inverse-free BM algorithm is used to reduce the inversion

operations to one time. Compared to the original BM algorithm, the Lee decoder

program has greatly reduced the number of inversion operations.

 95

Two features of Chien search are used to improve it. One feature is early

termination. We can substitute elements to find the roots until the number of roots

match the order of the errata locator polynomial instead of substituting all the elements.

The other is skipping nonused position in Chien search. The inputs of different block

sizes defined in IEEE 802.16a standard should be padded with zeros in the (255, 239, 8)

RS encoding. Thus, we also have to pad the same zeros to the input at the RS decoder.

Therefore, the positions of zero padding are never wrong and cannot be the roots of the

errata locator polynomial. Those positions can be skipped in checking roots.

The improvement described above has been done in the version of RS decoder we

start with, and we call this version the Lee RS decoder for convenience. The profile of

the Lee RS decoder is shown in Table 6.1 without compiler level optimization.

Function Name Code Size Cycle
Percentage

(%)
Syndrome Computation 480 249,294 80.98

BM Algorithm 1,920 23,962 7.78
Worst Case 25,375 8.24Chien

Search Best Case
804

902 N/A
Forney Algorithm 1,064 9,211 2.99

Table 6.1: Profile of the Lee RS Decoder

 The “Percentage” in Table 6.1 represents the execution cycles of individual

functions in percentage of the whole RS decoder. The Chien search is discussed for two

cases because it may early terminate when the number of roots reaches the order of the

errata locator polynomial in the Lee RS decoder. The worst case represents that one of

the errors happens in the last position, and therefore we have to substitute all the

elements for finding the last roots. Respectively, the best case represents that no error

happens. It is clear that the possibility of the best case is very low. To insure real-time

operation, we focus mainly on the worst case, and the details will be discussed in the

following sections.

 96

 Referring to Table 6.1, it shows that the procedures of syndrome computation and

Chien search take the most execution time, and our acceleration work on them are

described in the next section.

6.1.2 Modifications of RS Decoder

6.1.2.1 Syndrome Computation Improvement

 The syndrome can be formally defined as follow:

 Si = R mod G where i = (0, 1, 2, 3, …, 15) for GF(28)

 The received codeword may be expressed in polynomial form as follow:

 Ri = r0XN-1 + r1XN-2 + … + rN-1

 Where the length of the received codeword is N. In our case of (255, 239, 8) RS

code, N equals to 255. Let the first 2T powers of beta be specified as shown below,

where beta = {β0, β1, …, β15}. The 16 syndromes are now expanded as follows:

 S0 = r0β0
N-1 + r1β0

N-2 + … + rN-2β0
 1+ rN-1

 S1 = r0β1
N-1 + r1β1

N-2 + … + rN-2β1
 1+ rN-1

 ……

 S15 = r0β15
N-1 + r1β15

N-2 + … + rN-2β15
 1+ rN-1

 It can be seen that computing the syndromes amounts to polynomial evaluation at

the roots as defined by beta. In the Lee RS decoder, this is done recursively using the

Horner’s rule. For example, the recursive computation of S0 is shown below:

 S0 = (… ((r0β0 + r1) β0 + r2) β0 + … rN-2) β0 + rN-1

According to the computation procedure shown in Figure 6.1, the C code

implementation involves two loops, an outer loop that iterates once for every syndrome

and an inner loop that iterates over all the field elements. In order to obtain a better

performance from the architecture, we unroll the inner loop.

 97

 for (j = 1; j <= 16; j++) {
 for (i = 0; i < 255; i++) {
 product = gf_mul_tab(Alpha_to[B0-1+j],s[j]);
 s[j] = product ^ data[i];
 }
 }

Figure 6.1: the C Code of the Syndrome Computation in the Lee Decoder

 We should choose a way to unroll the loop efficiently. Here is an approach similar

to that of a radix-4 FFT [28]. The received codeword is read starting at locations 0, N/4,

N/2, and 3N/4. Horner’s rule is now applied recursively to all four parts of the

syndrome polynomial using the input data read in all four locations (N/4 – 1) times. The

syndrome polynomials are thus segmented as shown below:

 s0 = r0β0
63 + r1β0

62 + … + r62β0
 1+ r63

 s1 = r64β0
63 + r65β0

62 + … + r126β0
 1+ r127

 s2 = r128β0
63 + r129β0

62 + … + r190β0
 1+ r191

 s3 = r192β0
63 + r193β0

62 + … + r255β0
 1+ r256

 The four segments use the same powers of beta, and it means that only one beta

value has to be read in one iteration for computing the terms of these four polynomials.

Then, these four segments has to be weighted and cumulated as follow to obtain the

syndrome we want:

 S0 = s0β0
192 + s1β0

128 + s2β0
64 + s3

 It should be noticed that our received codeword length is 255, so we have to assign

a zero to r0 to use this method. This method has the benefit in the reduction of the

memory access of beta values. It is also able to reduce the number of the inner loops.

The profile data of the modified syndrome computation is compared in Table 6.2.

 98

Version Code Size Cycle
Improvement

Percentage (%)
Lee Decoder RS Syndrome

Computation
480 249,294 N/A

Modified RS Syndrome
Computation

748 172,607 30.76

Using the Intrinsic _gmpy4 680 47,486 72.49
Improved with More Intrinsics 816 34,058 28.28

Compiler File-Level Opt. 564 5,503 83.84
Compiler File-Level Opt.

(Lee Decoder)
296 104,378 58.13

Table 6.2: Improvement of Syndrome Computation

 The list of the modified RS syndrome computation in Table 6.2 is the version using

the method we propose here, and it improves the original one up to 30.76% of cycles

without compiler-level optimization. The versions using the intrinsics are also listed in

Table 6.2, where “_gmpy4” is the intrinsic for Galois field multiplier [23], and the more

intrinsics means we further pack four symbols into a 32-bit integer by the other

intrinsics and perform four Galois field multiplications simultaneously. Finally we turn

on the file-level optimization and obtain the improvement percentage 97.79% compared

to the Lee decoder syndrome computation. The improvement percentage of the Lee

decoder syndrome computation is only 58.13% after the file-level optimization and is

lower than the syndrome computation with our modification.

6.1.2.2 Chien Search Improvement

 The Chien-search method is used to find the roots of an errata locator polynomial.

It requires multiplication for each term in calculating the errata locator polynomial.

Hence, we choose the Berlekamp-Rumsey-Solomon (BRS) algorithm together with the

Chien-search method proposed in [29] for our RS decoder. The new fast algorithm

makes the root-finding problem quite practical and efficient because it can eliminate a

 99

lot of multiplications and is structured regularly for compiler to achieve the software

pipeline more easily.

 The BRS algorithm is first described below, which is an algorithm in finding the

roots of a special class of polynomials as proposed by [29]. Before introducing the

algorithm, here are two definitions and a theorem that are needed for this algorithm:

 Definition 1: the polynomial L(y) over GF(2m) is called a p-polynomial for p = 2

iff

∑=
i

2
i

i

ycL(y)

where ci are restricted to GF(2m) and the exponents are restricted to be the powers of

two.

 Definition 2: a polynomial A(y) over GF(2m) is called an affine polynomial iff

A(y) = L(y) + β

where L(y) is a p-polynomial as defined previously and β∈GF(2m).

 Theorem 1: let y∈GF(2m) and let α0, α1, α2, …, αm-1 be a standard basis. If y is

represented in the standard basis, i.e., if

∑
−

=

=
1m

0k

k
kαyy

where yk∈GF(2), then

∑
−

=

=
1m

0k

k
k)L(αyL(y)

 Using Theorem 1, a simplified algorithm is proposed to find the roots of an affine

polynomial, which needs only to compute the eight values L(α0), L(α1), …, and L(α7)

instead of all the 255 elements needed in the Chien search. The elements of rest simply

need to be judged whether the term L(αk) should be cumulated or not according to each

yk. This is done by checking the k-th bit of the element y.

It can be observed that most of the Galois field multiplications are eliminated. It is

only needed to compute the eight terms imported with the standard bases. The BRS

algorithm is used only for solving affine polynomials. Hence, in our method, we first

arrange and sort our errata locator polynomial into an affine polynomial and the

 100

remainder, and then the value of the affine polynomial is obtained by the BRS algorithm

and the roots of the remainder is by the Chien search. If their values are equal for a

Galois field element, we can claim a root is found. Note that this method benefits only

when the order of the errata locator polynomial is not more than eleven [29].

Cycle
Function Version Code Size

Worst Case Best Case
Lee Decoder Chien Search 804 25,375 902

Modified Chien Search 1,268 14,013 4,248

Table 6.3: Profile of Chien Search without the Intrinsics and Compiler Optimization

Cycle
Function Version Code Size

Worst Case Best Case
Lee Decoder Chien Search 856 4,186 345

Modified Chien Search 960 1,100 183

Table 6.4: Profile of Chien Search with _gmpy4 and File-Level Optimization

 Table 6.3 and Table 6.4 show the comparison of the Lee decoder Chien search and

the modified one by the method we describe. In Table 6.3, it is the case without using

the intrinsics and any compiler-level optimization, where the modified one is more

efficient than the original in the worst case but is slower in the best case because the

overhead of codes is increased to rearrange our errata locator polynomial. However, the

best case is of very low probability. We apply the intrinsic “_gmpy4” and the file-level

optimization to the two functions, and shown as Table 6.4, the modified Chien search is

always more efficient than the Lee decoder Chien search. The improvement is up to

73.72% in the worst case and 46.96% in the best case because the most of Galois field

multiplications are substituted in the modified Chien search to achieve the software

pipeline more easily.

6.1.3 Performance Analysis

 101

 In this section, we present the simulation profile generated by the CCS built-in

profiler for our RS decoder specified in IEEE 802.16a. The results of all improvements

described formerly are also shown in the simulation profile, and the one which involves

the efforts of all the former improvements is called the modified RS decoder on the list.

Decoder Version Code Size Cycle
Improvement

Percentage (%)
Lee RS Decoder 5284 447,109 N/A

Using the Intrinsics 4936 238,050 46.76
Modified RS Decoder 5584 121,466 48.97

Compiler File-Level Opt. 5048 11,650 90.41
Compiler File-Level Opt.

(Lee RS Decoder)
4732 121,169 72.90

Table 6.5: Simulation Profile for RS Decoder

Referring to Table 6.5, the cycles of the RS decoder are measured under the worst

case condition, i.e., all elements are searched in the Chien search, and all the symbols

are decoded correctly. It can be observed that in the case without the file-level

optimization, the RS decoder with our improvement is accelerated up to 48.97% even

compared to the one with the intrinsics. Respectively, it is accelerated up to 72.83%

compared to the Lee RS decoder . The file-level optimization can further obtain 90.41%

of acceleration. The final speed corresponds to 1.85 Mbytes/sec. The improvement of

the Lee decoder only with the file-level optimization is also attached.

We also measure the speed and the ratio of correct decoding through the AWGN

channel of the different SNR. Here we generate random data for the input to the RS

encoder and pass the coded data through the convolutional coder and then the AWGN

channel. At the receiver end, the soft-decision Viterbi decoder recovers the received

data into the RS coded blocks. Then, we start to decode those RS blocks and count their

decoding time. The process in the above is repeated ten times to make the results more

accurate. The convolutional coder and Viterbi decoder used here are the ones designed

 102

in IEEE 802.16a standard and are described in Chapter 3. We focus on the RS decoding

cycles under different channel conditions, and the results are shown in Table 6.6. The

relationship is plotted as Fig. 6.2 for the decoding cycle versus SNR and Fig. 6.3 for the

correct decoding ratio versus SNR.

ES/N0 (dB) Correct Decoding Ratio (%) Decoding Cycle
7 100 11073

6.5 100 11574
6 96.43 12646

5.5 85.71 13181
5 67.86 14221

4.5 35.71 15030
4 7.14 15435

3.5 0 15269
3 0 15264

Table 6.6: the Decoding Ratio and Cycle under the Channel with Different SNR

Decoding Cycle

SNR (ES/N0)

Figure 6.2: the Plot of the Decoding Cycle versus SNR

 103

Correct Decoding Ratio

SNR (ES/N0)

Figure 6.3: the Plot of the Correct Decoding Ratio versus SNR

 It is clear that the decoding cycles are decreased and the correct decoding ratio is

increased as the SNR goes up. The reason for the decrement of the decoding cycles is

that because more error locations should be searched and more error values should be

corrected, processing time is higher. The Chien search shall go through all the elements

for the error locations but the Forney algorithm is not further executed when the number

of errors is reaching the decoding capability for our RS decoder. It is why the decoding

cycles of the zero correct decoding ratio are slightly less than some case with non-zero

correct decoding ratios in Table 6.6.

6.2 Remainder Decoding Algorithm for RS Decoder

 104

 The decoding algorithm for RS codes has been investigated for a long time. Both

the Berlekamp-Massey and Euclidean algorithms are well known, which solve the

key-equations for RS codes. Generally, the key-equation can be generated by syndrome

sequences, which are derived from the received codewords. Therefore, the syndromes

have to be calculated. However, the syndrome calculation takes a large amount of

execution time as shown in the profile data in the earlier sections. In 1983, L. Welch

and E. R. Berlekamp proposed a new decoding algorithm, the remainder decoding

algorithm [37], for RS codes without the need of computing the syndromes, and hence it

becomes an alternative and popular algorithm that it is worthy of our attention and study.

They presented a new key-equation and the solving algorithm for decoding RS codes. It

should be noted that the proposed key-equation is quite different from the conventional

key-equation which was proposed by E. R. Berlekamp [38]. In the next subsections, we

introduce the decoding flow for the remainder decoding algorithm and write the C codes

for it. The performance analysis of the system is also shown and is compared in the final

subsection.

6.2.1 Remainder Decoding Algorithm

 The remainder decoding algorithm represents a decoding algorithm, which dose

not compute the syndromes. There are two main points. One is that a new key-equation

has been derived. This is a relationship between the coefficients of remainder

polynomial and the errors occurring in a received codeword. It is very special that it is

quite different from the conventional key-equation. The other is that Welch and

Berlekamp have proposed an efficient algorithm, Welch-Berlekamp (WB) algorithm,

for solving the new key-equation. The solution technique we adopt is proposed in [32],

a modified version of the original WB algorithm. It is similar to but an improved

version of the WB algorithm. Here, we call it the modified WB algorithm for

convenience. Now, we shall briefly describe the decoding algorithm. However, the

 105

proof for this algorithm dose not be presented here, and it can be find in [30], [31], and

[35].

 At first, we re-encode the received codeword R(x) and yield the remainder

polynomial

r(x) = (R(x) mod g(x)),

where g(x) is the generator polynomial same as the one used in the encoder. A few

polynomials are derived for the remainder decoding as follows:

)(αg'
)N(α)W(αr j

j
j

j = , j = 0, …, d-2,

where rj is the j-th coefficient of the polynomial r(x), W(x) is the error-locator

polynomial, and N(x) is a unique polynomial whose degree is less than that of W(x).

The formal derivative applied here is defined as [30]

∏∑
≠
∈∈

−=

ki
Ek

k

Ei

i 1)x(αα(x)g'

where E is the set of indices for which ei, the error pattern in the position i, is nonzero,

0}e|{iE i ≠=

The RS decoding can then be formulated as a problem of solving the set of the key

equations

)(αg')rW(α)N(α j
j

jj = , for j = 0, …, d-2

Our goal is to find the unique pair of polynomials (W, N). The error locations

correspond to the roots of W(x), and we denote it as Zj. If Zj is a message location, then

the error values are given by the following equation:

)(ZW'
)N(Z

)β(ZY
j

j
jj =

where

∏ −

=
−

= 2d

0i j
ij

)Z(α
1)β(Z

The values of g’(αj) and β(Zj) can be calculated in advance when the specification

of the RS code system is fixed.

 106

6.2.2 Program Flow and Performance Analysis

In our program, first we re-encode the received codeword with the LFSR structure.

Then the algorithm proposed in [32] is used to solve the key equations for obtaining the

pair (W, N). Then the roots of the error-locator polynomial should be found. We can

apply the Chien search to solve this problem. Finally, the error values can be derived by

using the equation described in the previous subsections or the Forney algorithm. Here

we choose the Chien search and Forney algorithm to complete the last half of our

program flow, and hence it equals the last procedures used in the original RS decoder.

We only need to compare the re-encoding part to the syndrome computation and the

key-equation solving part to the Berlekamp-Massey algorithm. For the former, they

both compute the necessary information for RS decoding. For the latter, they both use

the information computed by the former to solve the constrained polynomial

congruence. It is noted that there is an additional procedure, the re-encoding, in the

remainder decoding algorithm although it is claimed that the syndrome computation is

not needed for the remainder decoding algorithm. The comparisons simulated by CCS

built-in profiler are presented as follow:

Procedure Code Size Cycle

Syndrome Computation 212 149,972
Re-Encoding 436 191,484

Inverse-Free BM Algorithm 1,716 14,046
Modified WB Algorithm 2,036 33,683

Table 6.7: Comparison of the Remainder Decoding Algorithm and the Lee Decoder

(without the Intrinsics)

 Table 6.7 is the comparison of the remainder decoding with the Lee RS decoder. In

Table 6.8, the re-encoding and the modified WB algorithm with the improvement of the

 107

intrinsics are compared to the Lee decoder. Both Table 6.7 and Table 6.8 are obtained

with the file-level optimization.

Procedure Code Size Cycle
Improved

Percentage (%)

Re-Encoding without Intrinsics 436 191,484 N/A
Re-Encoding with Intrinsics 996 2,926 98.47

Modified WB Algorithm
without Intrinsics

2,036 33,683 N/A

Modified WB Algorithm with
Intrinsics

2,208 2,672 92.07

Table 6.8: Profile of the Improved Remainder Decoding Algorithm

Referring to Table 6.7, it seems that the C code implementation of the remainder

decoding algorithm on the DSP platform is less efficient than that of the original RS

decoder. For the re-encoding, its structure consists of a LFSR and the calculation of

multiplying rj by g’(αj). The LFSR is implemented as the method of the syndrome

computation in the original RS decoder. However the multiplication of rj by g’(αj) adds

the complexity to the re-encoding procedure and leads to the fact that the re-encoding

takes more cycles than the syndrome computation. For the modified WB algorithm,

there are two primary factors reducing its performance:

 The over too-many memory accesses are caused by the operation of array.

The modified WB algorithm needs to initialize four arrays and imports six

arrays for operation while the inverse-free BM algorithm only needs to

initialize two arrays and imports three arrays for operation. Furthermore, it

contains the multiplication of polynomials, the swap of polynomials, and the

calculation of polynomials imported by some value. These operations cost a

large number of memory accesses, too.

 The poor structure of the modified WB algorithm is difficult to form software

pipelines by the compiler. To complete the operations described in the

 108

previous list, we have to call the other functions. However, the compiler dose

not do software pipelining for the loops which contain a loop or a function

call. Moreover, the structure of the loop content must be simple enough to

activate the software pipeline, but it seems that most loops in the modified WB

algorithm is more complicated than that in the inverse-free BM algorithm.

To eliminate the above shortcomings, the intrinsics are used here to reduce these

problems. In the re-encoding, it takes a large amount of time to add the previous value

of the register and to shift in each register in the LFSR, and it also increases the

dependency between the iterations. We employ adding register values and shifting

simultaneously as much as possible by the intrinsics as illustrated by Fig. 6.4.

The structure of LFSR used to implement the re-encoding procedure is shown as

Fig. 3.8 in Chapter 3. Referring to Fig. 6.4, at first we calculate the feedback symbol by

performing modulo-2 addition of the LFSR fifteenth register in the previous iteration

for the present iteration, and pack the feedback symbol for the present iteration into a

32-bit integer variable by using the intrinsics. We can pack the coefficients of RS

generator polynomial into the individual four 32-bit variables by the same method and

perform the multiplication on them with the feedback symbol in one iteration. These

four packages of results continue to perform the modulo-2 addition with the individual

32-bit variables packed with the fifteen registers of LFSR. Here, we call these variables

packed with the registers in the LFSR the register variables. Then we save the results

back to the register variables. At last, we use the intrinsics to right shift to each register

variable one symbol size (one byte) to the next register variable, and the symbol shifted

out of the end register variable is used for calculating the feedback symbol for the next

iteration.

 109

Figure 6.4: Implementation of LFSR with the Intrinsics

Thus each modulo-2 addition and Galois field multiplication in one iteration are in

paral

ed WB algorithm with the techniques of the intrinsics.

How

feedback symbol

g0 g1 g2 g3 g4 g5 g6 g7

⊗
 g8 g9 g10 g11

⊗
 g12 g13 g14 g15

⊗

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

⊕ ⊕ ⊕⊕

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

⊗

lel for every four operands. Also, it leads that we can replace the original memory

accesses by the register operations because the number of operands is reduced by

packaging. The other benefit is that the shift of each register in LFSR is realized directly

by the intrinsic instruction instead of the sequential value assignment of array elements.

The intrinsics not only speed up the shift operation but also allow shifting four registers

simultaneously. The effort of our improvement with the method we described

previously is shown in Table 6.8.

We also accelerate the modifi

ever, the operation of this algorithm is complex and the situation is different from

the re-encoding process. We also use the intrinsics to accelerate it but apply the

intrinsics only to the primary operations it calls. Similar to the earlier discussions, the

cause which disables the software pipeline is that a large number of memory accesses

and function call are used in the modified WB algorithm. The intrinsics can be used to

pack data and to reduce the number of operands to reduce memory access. We also do

inline functions and use the intrinsics to build software pipelining. The functions calls in

 110

the modified WB algorithm often contain the Galois field multiplication, the

multiplication of polynomials, and the calculation of the polynomial value with a

specified input, and we use the intrinsics to make the execution in them in parallel as

much as we can by the similar method in re-encoding. The comparison of the modified

WB algorithm improved by our method is also presented in Table 6.8.

 According to Table 6.8, it is observed that the percentage of improvement is up to

98.47% for the re-encoding and 92.07% for the modified WB algorithm. They are much

more efficient than the version before our improvement and even better than the

syndrome computation and BM algorithm in the Lee RS decoder.

 111

6.3 DSP Implementation of Reed-Solomon Decoder

and Viterbi Decoder

 for the following subsections, the DSP implementation of our RS decoder and the

Viterbi decoder is divided into the system structure, the program flow, and the

performance analysis. The Viterbi decoder is one module in the receiver of our IEEE

802.16a standard project. It is investigated for a long time and is considered generally

very efficient for the DSP implementation. The algorithm of the Viterbi decoder is fixed

for the most parts and it has been tuned by our group previously [20]. We simply use

this version. The RS decoder we choose to implement is the conventional RS decoding

procedure with our acceleration instead of using the remainder decoding algorithm

because at the present stage, it is still less efficient.

6.3.1 Structure of RS Decoder and Viterbi Decoder

Implementation

 The structures implemented on the DSP platform of our RS decoder and Viterbi

decoder are similar to that of the AMR codec and are also illustrated by Fig. 5.1 in

Chapter 5. Because the DSP platform is the same for the AMR codec, our RS decoder,

and the Viterbi decoder implementation, the data communication mechanism and the

code development supported by the DSP platform is also the same. Hence, we do not

repeat it again, and the details can be referred to Section 5.2.1.

6.3.2 Execution Flow of RS Decoder and Viterbi Decoder

6.3.2.2 DSP Program Flow for RS Decoder

 112

 The implemented interface of the RS decoder is shown in Fig. 6.5 and similar to

that of the AMR encoder. There is also a text edit box for the user to key in the coding

mode supported by the RS decoder in IEEE 802.16a. The default coding mode is (60,

54, 3) RS decoder. The program flow for the host and DSP is similar to that of the AMR

codec. We have to choose the path of the bitstream we want to download and click the

buttons “Download” and “Transfer” for downloading and executing the bitstream. We

use the block transfer mode to transfer data and coding information similar to the AMR

codec implementation. The coding scheme is also capable of being changed in the

middle of the RS decoding, and the blocks of rest shall be decoded with the updated

coding scheme. The program flow decribed above is illustrated by Fig. 6.6. The details

of the communication between the host and DSP end can be referred to Section 5.2.2.

Figure 6.5: the Interface of our RS Decoder Implementation

 113

start execution

interface initialization

choose bitstream path

download the bitstream

“Download Complete.”
“Target logged in OK”

transfer on

new a thread

save the coding mode

read one block from
the input file

send data and mode

receive coded data

write to the file

transfer is
stopped?

stop program
kill the thread

Loop
Thread

yes

Host

Login ()

new a thread

receive data and mode

adjust the input data
and erasure locations

RS decoding

allocate the decoded
data

send coded data

Loop

Execute()

Thread

DSP

set input and output
block size

no

Figure 6.6: the Flowchart of our RS Decoder Implementation

 114

6.3.2.2 DSP Program Flow for Viterbi Decoder

 The interface of the Viterbi decoder implementation is shown in Fig. 6.7 and is

similar to that of the RS decoder except for the text edit box, which is the coding mode.

The program execution flow is also similar to that of the RS decoder, shown as Fig. 6.6,

but no code mode is needed to be judged in the Viterbi decoder.

Figure 6.7: the Interface of the Viterbi Decoder Implementation

6.3.3 Performance Analysis

In this section, we present the execution time of our implementation for the RS

decoder and Viterbi decoder of the IEEE 802.16a wireless communication standard.

The execution time and the code size of our proposed implementation system is shown

in Table 6.9.

Implemented
Decoder Name

Code Size
Processing Rate

(Kbytes/sec)
Improvement Percentage

(%)
the Original RS

Decoder
17,137,575 58.80 N/A

Improved RS
Decoder

17,139,055 176.40 96.44

Viterbi 17,120,975 17.42 N/A

Table 6.9: Profile of our Implementation for RS Decoder and Viterbi Decoder

 115

 It is observed that the code sizes of the both decoder implementations are almost

the same because the largest part included in the final code is the overhead of the

transfer mechanism, the functions, and the constants that have been ready by the library.

The improved RS decoder is up to 176.4 Kbytes/sec of the processing rate, and its

improvement gain is up to 96.44% compared to the Lee RS decoder without the

file-level optimization. The processing rate of the Viterbi decoder is about 17.42

Kbytes/sec. To accelerate the Viterbi decoder, it seems better to design the logic for

parallelize its operation than to execute it sequentially on the DSP platform. Moreover,

the algorithm of the Viterbi decoder is almost fixed, and we are only able to measure its

efficiency on the DSP platform.

 116

Chapter 7

Conclusions and Future Works

7.1 Conclusions

 The speech coding approach taken by AMR is a way to adjust the speech and

channel coding rate to the channel condition without losing too much quality. The

Reed-Solomon codec in IEEE 802.16a provides several coding rates and error

capabilities for the wireless communication. However the multiple speech coding

modes and the additional channel coding for reducing channel errors increase the

complexity of the implementation on the hardware. However, the technique of VLSI

and architecture design advances rapidly at the present time. It gives us the opportunity

to implement complicated algorithms on hardware. In this thesis, the AMR speech

codec is implemented on the DSP platform, which is used mainly for multimedia coding

purposes. And so is the Reed-Solomon decoder, which is used wildly because of its

high capability of correcting both random and burst errors.

In the previous chapters, we first focus on the AMR speech codec. We profile the

C program provided by 3GPP and find that most functions mainly consist of the

function call of arithmetic operations. Hence it is an effective way to reduce much

execution time by accelerating the arithmetic operations. We also use the TI DSP

intrinsics, which are efficient instructions supported by the C64x DSP to take the

advantage of the DSP architecture, to accelerate the AMR codec. It has been improved

 117

up to 68.88% for the encoder and 66.12% for the decoder when the compiler-level

optimization is also enabled. Finally, we implement the accelerated program on the DSP

platform, and its speed is up to 14.05 ms/frame for the encoder and 2.43 ms/frame for

the decoder. The measured time includes the data transfer and still meets the real time.

The other topic in this thesis is the Reed-Solomon decoder in IEEE 802.16a. The

conventional decoding algorithm is described and treated as the original one for further

improvement. The original decoder is first profiled. And then it is accelerated in the

syndrome computation and chien search modules, which are two most time consuming

procedures. We reduce their complexity and simplify their structure for the software

pipeline. It is improved up to 97.79% in the syndrome computation and 73.72% in the

chien search. The improved Reed-Solomon decoder is also implemented on the DSP

platform. Its processing speed is up to 176.4 Kbytes/sec and is 96.44% faster than the

original one. The Viterbi decoder is also implemented to complete the FED scheme in

our IEEE 802.16a project. Its processing rate of DSP implementation is 17.42

Kbytes/sec. The final version of both the Reed-Solomon decoder and the Viterbi

decoder in IEEE 802.16a reaches our goal of real time for the AMR speech coding.

7.2 Future Works

 As discussed in the above, the processing speed of Viterbi decoder is the

bottleneck in our IEEE 802.16a FED procedure. However, we have adopted the most

efficient algorithm we know of and it is hard to further accelerate it by algorithm fine

tuning. One way to implement and accelerate the Viterbi decoder is to design VLSI

logic and parallelize its operations. So, the FED scheme may be accelerated by

implementing the Viterbi decoder using the FPGA with the help of DSP. The DSP

platform we use in this project contains an Xilinx FPGA. It may worth to try.

 There are also other issues in the AMR codec implementation. It is not yet

implemented for the analog input and output although they are included on the DSP

 118

baseboard we use. Reading and writing files are the primary I/O for our present

implementation. It would be more useful in practice to process real-time input speech or

audio using the microphone and the speaker. However, we are limited by the time and

not yet to test and use the I/O port. This can be another subject to explore.

 119

Bibliography

[1] O. Corbun, M. Almgren, and K. Svanbro, “Capacity and Speech Quality

aspects using Adaptive Multi-Rate (AMR),” The Ninth IEEE International

Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3,

pp. 1535-1539, 1998.

[2] 3G TS 26.071: “AMR Speech Codec; General Description,” 3GPP, Aug.

1999.

[3] 3G TS 26.090: “AMR Speech Codec; Speech Transcoding Functions,” 3GPP,

Dec. 1999.

[4] D. A. F. Florencio, “Investigating the use of Asymmetric Windows in CELP

Vocoders,” ICASSP, vol.2, pp. 427-430, 1993.

[5] R. Salami, C. Laflamme, J. P. Adoul, and D. Massaloux, “A Toll Quality 8

Kb/s Speech Codec for the Personal Communications System (PCS),” IEEE

Transactions on Vehicular Technology, vol. 43, no. 3, pp. 808-816, Aug.

1994.

[6] R. Salami, C. Laflamme, J. P. Adoul, A. Kataoka, S. Hayashi, T. Moriya, C.

Lamblin, D. Massaloux, S. Proust, P. Kroon, and Y. Shoham, “Design and

Description of CS-ACELP: A Toll Quality 8 kb/s Speech Coder,” IEEE

Transactions on Speech and Audio Processing, vol. 6, no. 2, pp. 116-130, Mar.

1998.

 120

[7] P. Kabal and R. P. Ramachandran, “The computation of line spectral

frequencies using Chebyshev polynomials,” IEEE Transactions on ASSP, vol.

34, no. 6, pp. 1419-1426, Dec. 1986.

[8] C. R. Galand, J. E. Menez, and M. M. Rosso, “Adaptive Code Excited

Predictive Coding,” IEEE Transactions on Signal Processing, vol. 40, no. 6,

pp. 1317-1326, Jun. 1992.

[9] P. Kroon and B. S. Atal, “On the Use of Pitch Predictors with High Temporal

Resolution,” IEEE Transactions on Signal Processing, vol. 39, no. 3, pp.

733-735, Mar. 1991.

[10] E. Ekudden, R. Hagent, I. Johansson, and J. Svedberg, “The Adaptive

Multi-Rate Speech Coder,” IEEE Proceeding of Speech Coding, pp.117-179,

1999.

[11] A. Uvliden, S. Bruhn, and R. Hagen, “Adaptive Multi-Rate – A Speech

Service Adapted to Cellular Radio Network Quality,” IEEE Tirty-Second

Asilomar Conference, vol. 1, pp. 343-347, 1998.

[12] K. Jarvinen, J. Vainio, P. Kapanen, T. Honkanen, and P. Haavisto, “GSM

Enhanced Full Rate Speech Codec,” ICASSP, vol. 2, pp. 771-774, 1997.

[13] A. M. Kondoz, Digital Speech: Coding for Low Bit Rate Communication

Systems. Wiley, 2004.

[14] IEEE Standard for local and metropolitan area networks, Part 16, Amendment

2, 2003.

[15] I. S. Reed and X.-M. Chen, Error-Control Coding for Data Networks.

Kluwer Academic Publishers, Dordrecht, 1999.

 121

[16] J.-S. Lin, DSP Implementation and Error Performance Study on Speech

Source/Channel Coding. M.S. thesis, National Chiao Tung University, Dep.

of Elect. Eng., Hsinchu, Taiwan R.O.C., Jun. 2002.

[17] Y.-P. Ho, Study on OFDM Signal Description and Channel Coding in the

IEEE 802.16a TDD OFDMA Wireless Communication Standard. M.S. thesis,

National Chiao Tung University, Dep. of Elect. Eng., Hsinchu, Taiwan

R.O.C., Jun. 2003.

[18] F. Tosato and P. Bisaglia, “Simplified Soft-Output Demapper for Binary

Interleaved COFDM with Application to HIPERLAN/2,” IEEE International

Conference Communications, vol. 2, pp. 664-668, 2002.

[19] Y.-P. E. Wang and R. Ramesh, “To bite or not to bite – a study of tail bits

versus tail-biting,” Proc. IEEE International Symposium on Personal Indoor

Mobile Radio Communication, vol. 2, pp. 317-321, Oct. 1996.

[20] Y.-T. Lee, DSP Implementation and Optimization of the Forward Error

Correction Scheme in IEEE 802.16a Standard. M.S. thesis, National Chiao

Tung University, Dep. of Elect. Eng., Hsinchu, Taiwan R.O.C., Jun. 2004.

[21] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide.

Literature Number: SPRU189F, Oct. 2000.

[22] Texas Instruments, TMS320C64x Technical Overview. Literature Number:

SPRU396B, Jan. 2001.

[23] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature Number:

SPRU198G, Aug. 2002.

[24] Innovative Integration, Quixote User’s Manual. 2003.

[25] Innovative Integration, Quixote Architecture. 2003.

 122

[26] Q. Zhuge, B. Xiao, and E. H.-M. Sha, “Code Size Reduction Technique and

Implementation for Software-Pipelined DSP Applications,” ACM

Transactions on Embedded Computing Systems, vol. 2, pp. 590-613, Nov.

2003.

[27] 3G TS 26.074: “AMR Speech Codec Test Sequence,” 3GPP, Dec. 2004.

[28] Texas Instruments, Reed Solomon Decoder: TMS320C64x Implementation.

Literature Number: SPRA686, Dec. 2000.

[29] T.-K. Truong, J.-H. Jeng, and I. S. Reed, “Fast Algorithm for Computing the

Roots of Error Locator Polynomials up to Degree 11 in Reed-Solomon

Decoders,” IEEE Transactions on Communications, vol. 49, no. 5, May 2001.

[30] M. Morii and M. Kasahara, “Generalized Key-Equation of Remainder

Decoding Algorithm for Reed-Solomon Codes,” IEEE Transactions on

Information Theory, vol. 38, no. 6, Nov. 1992.

[31] X. Ma and X.-M. Wang, “On the Minimal Interpolation Problem and

Decoding RS Codes,” IEEE Transactions on Information Theory, vol. 46, no.

4 Jul. 2000.

[32] W. G. Chambers, R. E. Peile, K. Y. Tsie, and N. Zein, “Algorithm for Solving

the Welch-Berlekamp Key-Equation, with a Simplified Proof”, Electronics

Letters, vol. 29, no. 18, Sep. 1993.

[33] S. R. Blackburn, “Fast Rational Interpolation Reed-Solomon Decoding, and

the Linear Complexity Profiles of Sequence,” IEEE Transactions on

Information Theory, vol. 43, no. 2, Mar. 1997.

[34] A. Mahmudi, Dr. M. Benaissa, and Dr. P. Sweeney, “The Implementation of

Generalized Minimum Distance Decoding for Reed Solomon Codes,” IEEE

International Symposlum on Circuits and Systems, May 2000.

 123

[35] D. Dabiri and I. F. Blake, “Fast Parallel Algorithm for Decoding

Reed-Solomon Codes,” IEEE Transaction on Information Theory, vol. 41,

no.4, Jul. 1994.

[36] T.-K. Truong, J.-H. Jeng, and T. C. Cheng, “A New Decoding Algorithm for

Correcting Both Erasures and Errors of Reed-Solomon Codes,” IEEE

Transactions on Communications, vol. 51, no. 3, Mar. 2003.

[37] E. R. Berlekamp and L. Welch, “Error Correction for algebraic block codes,”

U.S. patent 4633470, 1986.

[38] E. R. Berlekamp, Bounded Distance+1 Soft Decision Reed-Solomon

Decoding. preprint.

 124

Content

1 Introduction
1

2 Adaptive Multi-Rate of Speech Coding
4

2.1 The Overview of AMR
4

2.2 Principles of the Encoder
6

2.2.1 Pre-processing
7

2.2.2 Linear Prediction
7

2.2.2.1 Windowing and auto-correlation
7

2.2.2.2 Levinson-Durbin algorithm
10

2.2.2.3 LP to LSP Conversion
10

2.2.2.4 Monitoring resonance in the LPC spectrum
12

2.2.3 Open-loop pitch analysis
13

2.2.4 Impulse response computation (all modes)
13

2.2.5 Target signal computation (all modes)
14

2.2.6 Adaptive codebook
14

2.2.6.1 Adaptive codebook search
14

2.2.6.2 Adaptive codebook gain control (all modes)
16

2.2.7 Algebraic codebook
16

2.2.7.1 Algebraic codebook structure
17

2.2.7.2 Algebraic codebook search
17

2.2.8 Quantization of adaptive and fixed codebook gains
19

2.2.8.1 Adaptive codebook gain limitation
19

2.2.8.2 Quantization of codebook gains
19

2.2.9 Memory update (all modes)
21

2.3 Functional description of the decoder
22

2.3.1 Decoding and speech synthesis
22

2.3.2 Post-processing
25

2.3.2.1 Adaptive post-filtering (all modes)
25

2.3.2.2 High-pass filtering and up-scaling
26

2.4 Bit Allocation
27

3 Overview of IEEE 802.16a FEC Scheme
29

3.1 Introduction to IEEE 802.16a Standard
29

3.2 IEEE 802.16a FEC Specifications
30

3.2.1 Randomizer
31

3.2.2 Forward Error Correction Coding
32

3.2.2.1 Reed-Solomon Code Specification
34

3.2.2.2 Convolutional Code Specification
34

3.2.2.3 Interleaver
36

3.3 Implementation Issues of the FEC Scheme
37

3.3.1 Reed-Solomon Code
37

3.3.1.1 Encoding of Shortened and Punctured Reed-Solomon Codes
37

3.3.1.2 Decoding of Shortened and Punctured Reed-Solomon Codes
40

3.3.2 Convolutional Code
43

3.3.2.1 Encoding of Punctured Convolutional Code
43

3.3.2.2 Viterbi Decoding of Punctured Convolutional Code
44

3.3.2.3 Bit Interleaved Soft Decision Viterbi Decoding
48

3.3.2.4 Viterbi Decoding of Tail-Biting Convolutional Code
50

3.3.2.5 The Butterfly Structure in the Trellis Diagram
50

4 DSP Implementation Environment
52

4.1 The DSP Chip
52

4.1.1 Central Processing Unit
55

4.1.2 Memory
56

4.1.3 Peripherals
57

4.2 The DSP Baseboard
58

4.3 DSP Transmission Mechanism
59

4.4 Features of TI TMSC6000 Family DSP for Optimization
62

4.4.1 Code Development Flow
62

4.4.2 Pipeline Structure of the TI TMSC6000 Family
63

4.4.3 Software Pipelining
65

4.4.4 Program-Level Optimization
68

5 Implementation and Acceleration of AMR Speech Coding on TI DSP Platform
70

5.1 AMR Codec Acceleration
71

5.1.1 AMR Code Profile
71

5.1.2 Acceleration by Using the Intrinsics
75

5.1.3 Compiler Level Improvement
80

5.2 AMR Codec on C64x DSP Platform
82

5.2.1 Structure of AMR Implementation
82

5.2.2 Execution Flow of AMR Implementation
83

5.2.3 Performance Analysis
88

5.2.3.1 AMR Encoder Performance Analysis
89

5.2.3.2 AMR Decoder Performance Analysis
91

6 Implementation and Acceleration of 802.16a Reed-Solomon Decoder on TI DSP Platform
94

6.1 Acceleration on Reed-Solomon Decoder
95

6.1.1 Profiling the Original RS Decoder
95

6.1.2 Modifications of RS Decoder
97

6.1.2.1 Syndrome Computation Improvement
97

6.1.2.2 Chien Search Improvement
99

6.1.3 Performance Analysis
101

6.2 Remainder Decoding Algorithm for RS Decoder
104

6.2.1 Remainder Decoding Algorithm
105

6.2.2 Program Flow and Performance Analysis
107

6.3 DSP Implementation of Reed-Solomon Decoder and Viterbi Decoder
112

6.3.1 Structure of RS Decoder and Viterbi Decoder Implementation
112

6.3.2 Execution Flow of RS Decoder and Viterbi Decoder
112

6.3.2.1 DSP Program Flow for RS Decoder
112

6.3.2.2 DSP Program Flow for Viterbi Decoder
115

6.3.3 Performance Analysis
115

7 Conclusions and Future Work
117

7.1 Conclusion
117

7.2 Future Work
118

Bibliography
120

List of Figures

Figure 2.1 Simplified block diagram of the CELP speech synthesis model
3

Figure 2.2 Simplified block diagram of the adaptive multi-rate encoder
6

Figure 2.3 LP analysis windows
9

Figure 2.4 Simplified block diagram of the adaptive multi-rate decoder
23

Figure 3.1 IEEE local and metropolitan area networks standards family
30

Figure 3.2 Channel coding structure in transmitter side (top) and receiver side (bottom)
31

Figure 3.3 PRBS for Data Randomization
31

Figure 3.4 Creation of OFDMA randomizer initialization vector
32

Figure 3.5 Forward Error Correction structure in transmitter side (left) and receiver side (right)
33

Figure 3.6 Convolutional Encoder of Rate 1/2
35

Figure 3.7 Block Diagram of the RS Encoder Program
39

Figure 3.8 The Linear Feedback Shift Register Structure of RS Encoder
39

Figure 3.9 Block Diagram of a Conventional RS Encoder
40

Figure 3.10 Block Diagram of the RS Decoder Program
42

Figure 3.11 Syndrome Computation Circuit
42

Figure 3.12 Block Diagram of the Convolutional Encoder Program
44

Figure 3.13 State Transition Diagram Example
45

Figure 3.14 Trellis Diagram Example for a Viterbi Decoder
46

Figure 3.15 Survivor path of the Trellis Diagram
47

Figure 3.16 Block Diagram of the Viterbi Decoder Program
47

Figure 3.17 Structure of the Viterbi Algorithm
47

Figure 3.18 Partition of the 16-QAM Constellation
49

Figure 3.19 Block Diagram of the Suboptimal Tail-Biting Viterbi Decoder
50

Figure 3.20 Butterfly Structure Showing Branch Cost Symmetry
51

Figure 4.1 The Block Diagram of TMS320C6x DSP Chip
54

Figure 4.2 The TMS320C64x DSP Chip Architecture and Comparison with Ancient TMS320C62x/C67x Chip
54

Figure 4.3 Innovative Integration’s Quixote DSP Baseboard Card
58

Figure 4.4 The Architecture of Quixote Baseboard
59

Figure 4.5 Block Diagram of DSP Streaming Mode
61

Figure 4.6 Code Development Flow
63

Figure 4.7 (a) The Original Loop. (b) The Loop After Applying Software Pipelining
65

Figure 4.8 (a) Execution Record of the Original Loop. (b) Execution Record of the Software Pipelined Loop
66

Figure 5.1 Structure of AMR Speech Codes Implementation on the Host and DSP
83

Figure 5.2 (a) Graphical Interface of the AMR Encoder Implementation. (b) A Snapshot of Running the Program
85

Figure 5.3 (a) Graphical Interface of the AMR Decoder Implementation. (b) A Snapshot of Running the Program
86

Figure 5.4 the Flowchart of the AMR Encoder Implementation
87

Figure 6.1 the C Code of the Syndrome Computation in the Lee Decoder
98

Figure 6.2 the Plot of the Decoding Cycle versus SNR
103

Figure 6.3 the Plot of the Correct Decoding Ratio versus SNR
104

Figure 6.4 Implementation of LFSR with the Intrinsics
110

Figure 6.5 the Interface of our RS Decoder implementation
113

Figure 6.6 the Flowchart of our RS Decoder Implementation
114

Figure 6.7 the Interface of the Viterbi Decoder Implementation
115

List of Table

Table 2.1 Bit allocation of the AMR coding algorithm for 20ms frame
28

Table 3.1 Mandatory Channel Coding per Modulation
34

Table 3.2 The Inner Convolutional Code with Puncturing Configuration
35

Table 3.3 Bit Interleaved Block Sizes and Modulo
36

Table 4.1 Completing Phase of Different Type Instructions
64

Table 5.1 Profile of AMR Encoder Provided by 3GPP
73

Table 5.2 Profile of the Top Ten Encoder Functions Called Most (Except for the Functions Containing Value Assignment Only)
74

Table 5.3 Profile of AMR Codec Arithmetic Functions (Not Counted are Value Assignments or Function Calling Only)
76

Table 5.4 Profile of AMR Arithmetic Functions Listed in Table 5.3 after Acceleration
79

Table 5.5 Profile of Different Improved Versions of AMR Encoder
80

Table 5.6 Profile of Different Improved Versions of AMR Decoder
81

Table 5.7 Code Size of the AMR Encoder for Different Acceleration Level
88

Table 5.8 Code Size of the AMR Decoder for Different Acceleration Level
88

Table 5.9 Execution Time of the DSP Implementation under Different Source Rate for Each Test Sequence
89

Table 5.10 Execution Time of the DSP Implementation under Different Source Rate for Each Test Sequence (ms/frame: the Processing Time for one frame, %: Improvement Percentage)
90

Table 5.11 Execution Time of the DSP Implementation under Different Source Rate for Each Test Sequence (the List Representation is the Same as Table 5.10)
90

Table 5.12 Execution Time of the DSP Implementation under Different Source Rate for Each Test Sequence
91

Table 5.13 Execution Time of the DSP Implementation under Different Source Rate for Each Test Sequence (ms/frame: the Processing Time for one frame, %: Improvement Percentage)
92

Table 5.14 Execution Time of the DSP Implementation under Different Source Rate for Each Test Sequence (the List Representation is the Same as Table 5.13)
92

Table 6.1 Profile of the Lee RS Decoder
96

Table 6.2 Improvement of Syndrome Somputation
99

Table 6.3 Profile Chien Search without the Intrinsics and Compiler Optimization
101

Table 6.4 Profile Chien Search with _gmpy4 and file-Level Optimization
101

Table 6.5 Simulation Profile for RS Decoder
102

Table 6.6 the Decoding Ratio and Cycle under the Channel with Different SNR
103

Table 6.7 Comparison of the Remainder Decoding Algorithm and the Lee Decoder (without the Intrinsics)
107

Table 6.8 Profile of the Improved Remainder Decoding Algorithm
108

Table 6.9 Profile of our Implementation for RS Decoder and Viterbi Decoder
115

PAGE

VII

