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摘要 

近年來，多媒體與無線通訊已成為市場上非常重要的發展趨勢，IEEE 802.16a

通訊標準主要在於實現無線網路上能夠傳輸高品質的多媒體的目標，在本篇論文

中，我們將會實現語音與 Reed-Solomon 編碼機制於 TI DSP 平台上。 

本篇論文的重點之一，在於多媒體編碼的部分，我們將討論第三代無線通訊

系統中所採用的語音標準「適應性多速率編碼(AMR)」，它提供了多樣的編碼模

式來因應各種通道所產生的影響；另一個重點為 IEEE 802.16a 無線通訊標準中前

向誤差改正編碼機制的部分，由於 Reed-Solomon 編碼高度的修正能力，因而被

IEEE 802.16a 採用於前向誤差改正編碼的程序之一。 

在論文中，首先我們將簡單描述 AMR 語音標準與 IEEE 802.16a FEC 部分的

演算法與架構，並且針對數位訊號處理器(DSP)平台的特性，改善 AMR 語音編碼

與 Reed-Solomon 解碼器的執行效率，進而實現於 DSP 平台上。我們的實現平台核

心為德州儀器公司所發展的數位訊號處理器，程式經過改進後，AMR 語音編碼器

在 DSP 平台上可以達到每秒 22.78K 位元的處理速率，解碼器則可達到每秒 31.84K

位元，而在 IEEE 802.16a 中 Reed-Solomon 解碼器的部分，在 DSP 平台上甚至可

以達到每秒 176.4K 位元的處理速度，但這些測試數據都包括電腦與 DSP 之間資料

傳輸所花費的時間，若扣除後將會更加快速。此外，我們也對原先的程式加以比

 I



較，在 AMR 編碼方面進步了 65.94%，在 Reed-Solomon 解碼器方面也比原先實現

的版本進步了 96.44%。 
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Abstract 

Multimedia and wireless communication have been two very important trends in 

the recent years. Transmitting high quality multimedia data over wireless channel is 

the target of the IEEE 802.16a standard. In this thesis, we will implement a speech 

coding scheme and a Reed-Solomon coding scheme on TI DSP. 

One focus of this thesis is Adaptive Multi Rate (AMR), the speech coding 

standard of 3GPP. It provides various coding modes match the channel error rates. 

Another focus of this thesis is the Forward Error Correction (FEC) scheme of the 

IEEE 802.16a wireless communication standard. The Reed-Solomon coding is 

adopted by the IEEE 802.16a because of its high capability of correcting errors. 

We first describe the basic structure and algorithm of the AMR speech coding 

and the FEC in IEEE 802.16a. Then, we adopt and modify fast scheme to accelerate 

the programs of the AMR speech codec and Reed-Solomon decoder to match the 

architecture of the DSP baseboard. We further implement them on the DSP platform, 

which contains the Texas Instruments (TI) TMS320C6416 digital signal processor 
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(DSP). The processing rate of the AMR codec on the DSP platform reaches 22.78 

Kbytes/sec for the encoder and 31.84 Kbytes/sec for the decoder. And the 

Reed-Solomon decoder reaches up to 176.4 Kbytes/sec. Moreover, those processing 

rates includes of the data transfer time between the host and the DSP board. It can be 

much faster if the data transfer time is excluded. In addition, the AMR speech codec 

after our improvement is 65.94% faster for the encoder and 61.31% faster for the 

decoder than the original one. The Reed-Solomon decoder is 96.44% faster than the 

original one. 
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Chapter 1 

Introduction 

 

Digital wireless transmission of multimedia contents is one of the important trends 

in the consumer electronics field in the present. Due to the demand for wireless 

communication of multimedia contents, the high compression ratio with high quality is 

an important issue for multimedia transmission. Multimedia service contains many 

different types of contents such as data, audio, video, image, and the traditional speech. 

These services would have poor quality if they are overly compressed with non-efficient 

source coding or cannot be recovered from the errors introduced by the noisy channel. 

According to channel condition, it is desirable to adjust the source and channel coding 

rate to provide a better overall performance. 

The international organization of 3GPP has adopted the concept above into its 

standard. For the traditional speech coding, it defines a set of technical specifications, 

which include the codecs of G.723.1 and AMR (Adaptive Multi Rate). Both G.723.1 

and AMR are CELP based coders. However, AMR has a better speech quality than 

G.723.1 at about similar data rate. AMR also offers multiple modes for joint 

source/channel coding, providing flexibility for different QoS(Quality of Service). 

For the efficient channel coding, the OFDM modulation technique for wireless 

communication has been the main stream in the recent years. IEEE has completed 

several standards such as IEEE 802.11 series for LAN (Local Area Network) and IEEE 

802.16 series for MAN (Metropolitan Area Network) based on OFDM technique. The 
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advantage of digital wireless communication is based on a fact that it is convenient for 

consumers to receive or transmit digital contents without connecting to transmission 

lines. However, one major problem is that the transmission channel is not noisefree. The 

transmission signals are easily interfered and distorted by several different types of 

noise sources such as the crowd traffic, bad weather, the obstacle of buildings, etc. To 

improve the robustness of the wireless communication against the noisy channel 

condition, the FEC (Forward–Error-Correcting Coding) and FED 

(Forward–Error-Correcting Decoding) mechanism is necessary to reduce channel errors 

and is adopted by almost every commercial communication standards, including the 

IEEE 802.16a. Our study focuses on the Reed-Solomon coding included in the 

FEC/FED of the IEEE 802.16a standard, which specifies the air interface of fixed 

broadband wireless access systems for providing multiple accesses. The Reed-Solomon 

coding adds the resistance directly to the front end multimedia from the channel efforts. 

It has been wildly used and investigated because of its high capability of correcting both 

the random and burst errors and its efficient decoding algorithm of existence. 

    In this thesis, we implement the AMR speech codec and the Reed-Solomon coding 

scheme of IEEE 802.16a standard on II Quixote DSP/FPGA board. We first review the 

algorithm of the AMR codec and the whole FEC/FED scheme of IEEE 802.16a in detail. 

Then, we simulate their procedure by the C codes to accelerate their execution 

efficiency. Finally, we implement the AMR codec and the Reed-Solomon coding 

algorithm on our DSP platform. The AMR encoder can reach a processing rate of 14.05 

ms/frame, and the AMR decoder can reach a processing rate of 2.43 ms/frame. The 

Reed-Solomon decoder even achieves a processing rate of 176.4 Kbytes/s after our 

improvement and implementation. 

In Chapter 2, the concept and the major algorithm blocks of AMR are introduced. 

Due to the limited space, we only present the issues that are important for 

comprehending the structure of speech compression, such as ACELP model, LSP, and 

codebook formation. 
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In Chapter 3, we briefly introduce the forward error correction scheme of the IEEE 

802.16a standard. Furthermore, we also describe the algorithm to be implemented. 

In Chapter 4, we give a brief description of our implementation environment; it 

includes both the II’s Quixote DSP baseboard, its transmission mechanism between host 

PC and target DSP, and the techniques used to accelerate the programs. 

In Chapter 5, we profile and accelerate the AMR codec program before 

implementing on the TI C6x DSP. We first describe the technique used to accelerate our 

C code step by step. Then the structure and the execution flow of its DSP 

implementation shall be introduced in detail. 

In Chapter 6, we first discuss the original Reed-Solomon program required for 

speeding up. Secondly, the acceleration steps we have done on the Reed-Solomon 

decoder are discussed in detail. Finally, the DSP implementation of the improved 

program and the Viterbi decoder in IEEE 802.16a FED scheme is also described. 

Finally, we give some observations and conclusions. Possible subjects for future 

works are also included. 
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Chapter 2 

Adaptive Multi-Rate of Speech Coding 

2.1 Overview of AMR 
 

AMR (Adaptive Multi-Rate) is a new concept for achieving a high speech quality 

while maintaining an efficient spectrum usage. A trade-off between speech quality and 

system capacity can be achieved for a variety of radio channel and operating conditions. 

It is a successful joint source/channel combined codec standard. The system allows 

channel mode (HR or FR) and codec mode (combination of speech and channel bit-rates) 

to vary in order to suit traffic and channel conditions. The channel mode consists of two 

different transmission bit rate: 22.8 kbit/s (Full rate) and 11.4 kbit/s (Half rate) and can 

be switched in order to increase channel capacity, replacing for example one full-rate 

channel with two half-rate channels, while maintaining a certain lower limit for the 

speech quality. These AMR handovers occur much less frequently than the codec mode 

changes, probably a few times per minutes [1]. 

For each channel mode (HR or FR), the codec mode, i.e. bit partitioning between 

speech and channel bit-rates, can be varied rapidly to track the channel error rate or the 

channel’s C/I. The changes must occur quite immediately (several times a second), with 

no perceptible speech degradation. The process is equivalent to Link Adaptation. 

Besides the basic source and channel codec for speech signal payload, the AMR system 
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concept further includes channel state tracking and in-band transmission of adaptation 

data. 

The AMR coder consists of eight source codecs with bit-rates of 12.2, 10.2, 7.95, 

7.40, 6.70, 5.90, 5.15 and 4.75 kbit/s. The codec is based on the code-excited linear 

predictive (CELP) coding model. In this model, the excitation signal at the input of the 

short-term LP synthesis filter is constructed by adding two excitation vectors from 

adaptive and fixed (innovative) codebooks. The speech is synthesized by feeding the 

two properly chosen vectors from these codebooks through the short-term synthesis 

filter. The optimum excitation sequence in a codebook is chosen using an 

analysis-by-synthesis search procedure in which the error between the original and 

synthesized speech is minimized according to a perceptually weighted distortion 

measure. The structure of the CELP speech synthesis model is shown in figure 2.1 

[2][3]. For details, more information can be obtained in [14][15][16]. 

A(z)
1 s(n)^

+

v(n)

c(n)

u(n)

gc

fixed
codebook

adaptive codebook gp

LP synthesis

post-filtering s'(n)^

 

Figure 2.1:  Simplified block diagram of the CELP speech synthesis model. 

 5



2.2 Principles of the Encoder 
 

The AMR coder operates on speech frames of 20ms corresponding to 160 samples 

at the sampling frequency of 8000 sample/s. At each 160 speech samples, the speech 

signal is analyzed to extract the parameters of the CELP model (LP filter coefficients, 

adaptive and fixed codebooks’ indices and gains). A 10th order linear prediction (LP), or 

short-term, synthesis filter is used which is given by [3]: 

∑=
−+

== m

i
i

iazA
zH

1
ˆ1

1
)(ˆ

1
)(                 (2.1) 

where  are the (quantified) linear prediction (LP) parameters, and m=10 

is the predictor order. The long term, or pitch, synthesis filter is given by: 

,,...,1,ˆ miai =

,
1

1
)(

1
T

p zgzB −−
=       (2.2) 

where T is the pitch delay and  is the pitch gain. The pitch synthesis filter is 

implemented using the so-called adaptive codebook approach. Then the following 

operations are repeated for each sub-frame: 

pg

The target signal x(n) is computed by filtering the LP residual through the 

weighted synthesis filter W(z)H(z) with the initial states of the filters having been 

updated by filtering the error between LP residual and excitation. The impulse response, 

h(n) of the weighted synthesis filter is then computed. 

Closed-loop pitch analysis is then performed (to find the pitch lag and gain), using 

the target x(n) and impulse response h(n), by searching around the open-loop pitch lag. 

Fractional pitch with 1/6th or 1/3rd of a sample resolution (depending on the mode) is 

used. The target signal x(n) is updated by removing the adaptive codebook contribution 

(filtered adaptive codevector), and this new target, , is used in the fixed algebraic 

codebook search (to find the optimum innovation). 

)(2 nx

The gains of the adaptive and fixed codebook are scalar quantified with 4 and 5 

bits respectively or vector quantified with 6-7 bits (with moving average (MA) 
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prediction applied to the fixed codebook gain). The different functions of the encoder is 

presented in figure 2.2. 

 

2.2.1 Pre-processing 

 

Two pre-processing functions are applied prior to the encoding process: high-pass 

filtering and signal down-scaling. Down-scaling consists of dividing the input by a 

factor of 2 to reduce the possibility of overflows in the fixed-point implementation. The 

high-pass filter serves as a precaution against undesired low frequency components with 

a cut off frequency of 80Hz. 

 

2.2.2 Linear Prediction 

 

The LP analysis and quantization for the 12.2 kbit/s mode follows that of the GSM 

EFR coder, i.e. two LP filters are computed for each frame. These filters are jointly 

quantized with split matrix quantization (SMQ) of 1st order MA-prediction LSF 

residuals. For all the other modes, one LP filter is estimated per frame. Split VQ (SVQ) 

of 1st order MA-prediction LSF residuals are performed with 3 subvectors of dimension 

3, 3, and 4. 

 

2.2.2.1 Windowing and auto-correlation 

 

For 12.2 kbit/s, LP analysis is performed twice per frame using two different 30ms 

asymmetric windows. Asymmetric windows have been proved to own better 

quality-delay performance then symmetric window [4]. The first window has its weight 

concentrated at the second subframe and it consists of two halves of Hamming windows 

with different size. 
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Figure 2.2:  Simplified block diagram of the adaptive multi-rate encoder
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On the other hand, the second window has its weight concentrated at the fourth 

subframe and it consists of two parts: the first part is half a Hamming window and the 

second part is a quarter of a cosine function cycle [5]. No samples from future frames 

are used (no lookahead). A diagram of the two LP analysis windows is depicted in 

figure 2.3. 

The auto-correlations of the windowed speech are computed 

by: 

,239,...,0),(' =nns

∑
=

=−=
239

'' ,10,...,0),()()(
kn

ac kknsnskr     (2.3) 

2 0 m s
5 m s

fram e (1 6 0 sam p les ) s ub fram e
(40 sa m p le s )

fra m e n -1 fra m e n

t

Iw (n ) IIw (n )

 

Figure 2.3:  LP analysis windows 

and a 60 Hz bandwidth expansion is used by lag windowing the auto-correlations using 

the window:  

,10,...1,
2

2
1exp)(

2

0 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= i

f
if

iw
s

lag
π

     (2.4) 

where is the bandwidth expansion. The expansion on the autocorrelation 

coefficients reduces the possibility of ill-condition in the Levinson algorithm (especially 

in fixed point). It also reduces the underestimation of the formant bandwidth, which 

could create undesirably sharp resonances. Further,  is multiplied by the white 

noise correction factor 1.0001 which is equivalent to adding a noise floor at –40 dB. 

The operation reduces the possibility of ill-condition due to bandpass filtering of the 

input [6]. 

Hzf 600 =

)0(acr
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2.2.2.2 Levinson-Durbin algorithm 

 

The modified auto-correlations are used to obtain the direct form LP filter 

coefficients  by solving the set of equations.  ,10,...,1, =kak

.10,...,1),()( '
10

' =−=−∑ iirkira acack
1=k

    (2.5) 

The set of equations is solved using the Levinson-Durbin algorithm. 

[ ]

E r
i
a

k a r i j E

a k
j i

a a k a

E i k E i

LD ac

i

i j
i

acj
i

LD

i
i

i

j
i

j
i

i i j
i

LD i LD

( ) ' ( )

' ( ) / ( )

( ) ( ) ( )

( )

( )

( )

( ) ( ) ( )

0 0
1 10

1

1

1 1

1 1

0
1

1
0

1

1 1

2

=
=

=

= − − −

=
= −

= +

= − −

−

−
=
−

−
−
−

∑

for    to    do

      

      
      for    to    do
               

end
     
end

i

The final solution is given as  The LP filter coefficients are 

converted to the line spectral pair (LSP) representation for quantization and 

interpolation purposes. 

.10,...,1,)10( == jaa jj

 

2.2.2.3 LP to LSP Conversion 

 

LP is not conducive to efficient quantization, because it has relatively high spectral 

sensitivity. On the other hand, LSP has intimate relationship with the formant 

frequencies. Also LSP’s can be quantized taking into account spectral features known to 

be important in perceiving speech signals. 

For the 10th order LP filter, the LSPs are defined as the roots of the sum and difference 

polynomials [3]:  

( ) ( ) ( )′ = + − −F z A z z A z11 1
1      (2.6) 
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and 

( ) ( ) ( )′ = − − −11 1F z A z z A z2      (2.7) 

respectively. It can be proven that all roots of these polynomials are on the unit circle 

and they alternate each other. has a root )('1 zF )(1 πω =−=z and has a root )('2 zF

)0(1 == ωz . To eliminate these two roots, we define the new polynomials: 

( ) ( ) ( ) ∏
= 9,...,3,1i

−−− +−=+′= 211
11 )21(1 i zzqzzFzF    (2.8) 

and 

( ) ( ) ( ) ∏
= 10,...,4,2i

−−− +−=−′= 211
22 )21(1 i zzqzzFzF    (2.9) 

where )cos( iiq ω= with iω  being the line spectral frequencies (LSP) and they satisfy 

the ordering property πωωω <<<<< 1021 ...0 .We refer to  as the LSPs in the 

cosine domain. Since both polynomials

iq

( )F z1 and ( )F z2  are symmetrical, it means only 

the first 5 coefficients of each need to be computed. The coefficients of these 

polynomials are found by the recursive relation(for I=0 to 4): 

)()1(
)()1(

212

111

ifaaif
ifaaif

imi

imi

+−=+
−+=+

−+

−+       (2.10) 

where m=10 is the predictor order. The LSPs are found by evaluating the polynomials 

and at 60 points equally spaced between 0 andπ and checking for sign 

changes. A sign change signifies the existence of a root and the sign change interval is 

then divided 4 times to better track the root.  

)(1 zF )(2 zF

The Chebyshev polynomials are used to evaluate and [8]. In this method 

the roots are found directly in the cosine domain . The polynomials  and 

 evaluated at can be written as: 

)(1 zF )(2 zF

}{ iq )(1 zF

)(2 zF ωjez =

)(2)( 5 xCeF j ωω −= ,        
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with  

,2/)5()()4()()3()()2()()1()()( 12345 fxTfxTfxTfxTfxTxC +++++=   (2.11) 

where )cos()( ωmxTm =  is the mth order Chebyshev polynomials, and  

are the coefficients of either or . The polynomial  is evaluated at a 

certain value of 

5,...1),( =iif

)(1 zF )(2 zF )(xC

)cos(ω=x  using the recurrence relation: 

,...,3,2)()(2)( 21 =−= −− kforxTxxTxT kkk    (2.12) 

and trigonometric representation on [-1, 1] 

.11))arccos(cos()( ≤≤−= xforxNxTN    (2.13) 

and then we obtain the following recursive relation: 

for  down to 
   
end

k
x f

C x x f

k k k

=
− + −

= − +

= + +

4 1
2 5

5 2

1 2

1 2

λ λ λ

λ λ

( )

( ) ( ) / ,

k  

with initial values λ5 1=  and λ6 0= .  

 

2.2.2.4 Monitoring resonance in LPC spectrum (all modes) 

 

Resonances in the LPC filter are monitored to detect possible problem areas where 

divergence between the adaptive codebook memories in the encoder and the decoder 

could cause unstable filters in areas with highly correlated continuous signals. Typically, 

this divergence is due to channel errors. The monitoring of resonance signals is 

performed using unquantized LSPs .10,...,1, =iqi  The LSPs are available after the LP 

to LSP conversion. The algorithm utilizes the fact that LSPs are closely located at a 

peak in the spectrum. First, two distances,  and , are calculated in two 

different regions, defined as

1dist 2dist

,8,...4),min( 11 =−= + iqqdist ii  and another as 

 Either of these two minimum distance conditions must 

be fulfilled to classify the frame as a resonance as a resonance frame and increase the 

.3,2),min( 12 =−= + iqqdist ii
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resonance counter. 12 consecutive resonance frames are needed to indicate possible 

problem condition, otherwise the LSP_flag is cleared. 

 

2.2.3 Open-loop pitch analysis 

 

Open-loop pitch analysis is performed in order to simplify the pitch analysis and 

confine the closed-loop pitch search to a small number of lags around the open-loop 

estimated lags. Open-loop pitch estimation is based on the weighted speech signal 

 which is obtained by filtering the input speech signal through the weighting 

filter 

)(nsw

)./(/)/()( 21 γγ zAzAzW = Open-loop pitch analysis is performed as follows. In 

the first step, 3 maxima of the correlation:  

∑ −=
79

)()( wwk knsnsO
=0n

     (2.14) 

are found in the three ranges: 

i
i
i

=
=
=

3
2
1

:
:
: .143,...,72

,71,...,36
,35,...,18

 

The retained maxima ,3,...1, =iO
it

 are normalized by dividing by 

,3,...1,)(2 =−∑ itns
nw iw  respectively. The normalized maxima and corresponding 

delays are denoted by .3,...,1),,( =itM ii  The winner, , among the three 

normalized correlations is selected by favouring the delays with the values in the lower 

range. This is performed by weighting the normalized correlations corresponding to the 

longer delays. This procedure of dividing the delay range into 3 clauses and favouring 

the lower clauses is used to avoid choosing pitch multiples. 

opT

 

2.2.4 Impulse response computation (all modes) 
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The impulse response, , of the weighted synthesis filter )(nh

[ ])/()(ˆ/)/()()( 21 γγ zAzAzAzWzH =  is computed each subframe. This impulse 

response is needed for the search of adaptive and fixed codebooks. The use of 

unquantized coefficients gives a weighting filter that matches better the original 

spectrum. The values of 1γ  and 2γ  modify the frequency response of the filter , 

and thereby the amount of noise weighting. It also deemphasizes the error at the formant 

regions of speech spectrum. 

)(zW

 

2.2.5 Target signal computation (all modes) 

 

The target signal for adaptive codebook search is usually computed by subtracting 

the zero input response of the weighted synthesis filter  from the weighted 

speech signal . This is performed on a subframe basis. An equivalent procedure 

for computing the target signal is filtering of the LP residual signal  through 

the combination of synthesis filter  and the weighting filter 

)()( zWzH

)(nsw

)(nresLP

)(ˆ/1 zA )/(/)/( 21 γγ zAzA . 

After determining the excitation for the subframe, the initial states of these filters are 

updated by filtering the difference between the LP residual and excitation. The residual 

signal  which is needed for finding the target vector is also used in the 

adaptive codebook search to extend the past excitation buffer. This simplifies the 

adaptive codebook search procedure for delays less than the subframe size of 40. 

)(nresLP

 

2.2.6 Adaptive codebook 
 

2.2.6.1 Adaptive codebook search 

 

Adaptive codebook search is performed on a subframe basis. It consists of 

performing closed-loop pitch search, and then computing the adaptive codevector by 
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interpolating the past excitation at the selected fractional pitch lag. The adaptive 

codebook parameters (or pitch parameters) are the delay and gain of the pitch filter. In 

the adaptive codebook approach for implementing the pitch filter, the excitation is 

repeated for delays less then the subframe length. In the search stage, the excitation is 

extended by the LP residual to simplify the closed-loop search. 

Closed-loop pitch analysis is performed around the open-loop pitch estimates on a 

subframe basis. In the first (and third) subframe the range 3±opT  is searched. For the 

other subframes, closed-loop pitch analysis is performed around the integer pitch 

selected in the previous subframes. The closed-loop pitch search is performed by 

minimizing the mean-square weighted error between the original and synthesized 

speech. This is achieved by maximizing the term [9]: 

( )R k
x n y n

y n y n

kn

k kn

= =

=

∑
∑

( ) ( )

( ) ( )
,0

39

0
39

     (2.15) 

where is the target signal and  is the past filtered excitation at delay k(past 

excitation with . Note that the search range is limited around the open-loop pitch. 

The convolution  is computed for the first delay in the searched range, and 

for the other delays in the search range 

)(nx )(nyk

)(nh

)(nyk mint

maxmin ,...,1 ttk += , it is updated using the 

recursive relation: 

( ) ( ) ( ) ( )y n y n u k h nk k= − + −−1 1 ,    (2.16) 

where  is the excitation buffer. Note that in search stage, 

the samples , are not known, and they are needed for pitch delays less 

then 40. To simplify the search, the LP residual is copied to in order to make the 

relation in equation (38) valid for all delays. 

,39),...,11143(),( +−=nnu

39,...,0),( =nnu

)(nu

Once the optimum integer pitch delay is determined, the fractions with a step of 

1/6 (or 1/3) around that integer are tested [10]. The fractional pitch search is performed 

by interpolating the normalized correlation in equation (37) and searching for its 
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maximum. The interpolation is performed using an FIR filter based on a Hamming 

windowed  function truncated and padded with zero. The filter has its cut-off 

frequencies (-3 dB) at 3600 Hz in the over-sampled domain. 

xx /)sin(

Once the fractional pitch lag is determined, the adaptive codebook vector  is 

computed by interpolating the past excitation signal  at the given integer delay k 

and phase (fraction) t. The interpolation filter is also based on a Hamming windowed 

 function truncated and padded with zero. The filter has a cut-off frequency 

(-3dB) at 3600 Hz in the over-sampled domain. 

)(nv

)(nu

xx /)sin(

The adaptive codebook gain is then found by: 

g
x n y n

y n y n
gp

n

n

p= ≤=

=

∑
∑

( ) ( )

( ) ( )
, .0

39

0

39 0 1bounded by ≤ 2
    (2.17) 

where ( ) ( ) ( )y n v n h n= ∗  is the filtered adaptive codebook vector (zero state response 

of  to ( ) ( )H z W z ( )v n ). The computed adaptive codebook gain is quantified using 

non-uniform scalar quantization in the range [0.0, 1.2]. 

 

2.2.6.2 Adaptive codebook gain control (all modes) 

 

The average adaptive codebook gain is calculated if the LSP_flag is set and the 

unquantized adaptive codebook gain exceeds the gain threshold . The 

average gain is calculated from the present unquantized gain and the quantized gains of 

the seven previous subframes. That is, 

95.0=thGP

)}7(ˆ),...,1(ˆ),({ −−= ngngngmeanGP pppave , where n is 

the current subframe. If the average adaptive codebook gain exceeds the , the 

unquantized gain is limited to the threshold value and the GpC_flag is set to indicate the 

limitation. 

thGP

 

2.2.7 Algebraic codebook 
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The algebraic codebook (innovation codebook) is for the secondary excitation 

computation. The vectors contained in the excitation forms a very important part in the 

CELP coding algorithm. They serve two main purposes: first, they provide the start-up 

information to the LTP memory, and this includes any sudden changes in the speech not 

adequately tracked by the LTP. Second, they supply the ‘filling in’ information that the 

LTP omitted. This is especially the case during unvoiced region. In the figure shows the 

general framework for innovation codebook driven by algebraic codes. Shaping 

function F can be fixed or changed dynamically as illustrated. 

 

2.2.7.1 Algebraic codebook structure 

 

The algebraic codebook structure is based on interleaved single-pulse permutation 

(ISPP) design. In this codebook, the innovation vector contains some non-zero pulses. 

All pulses can have the amplitudes +1 or –1. The 40 positions in a subframe are divided 

into a few tracks, where each track contains one or two pulses. Each pulse position in 

one track is encoded with some bits and the sign of the first pulse in the track is encoded 

with one bit. For two pulses located in the same track, only one sign bit is needed. This 

sign bit indicates the sign of the first pulse. The sign of the second pulse depends on its 

position relative to the first pulse. If the position of the second pulse is smaller, then it 

has opposite sign, otherwise it has the same sign then in the first pulse. 

 

2.2.7.2 Algebraic codebook search 

 

The algebraic codebook is searched by minimizing the mean square error between 

the weighted input speech and the weighted synthesized speech. The target signal used 

in the closed-loop pitch search is updated by subtracting the adaptive codebook 

contribution. That is,  

( ) ( ) ( ) 39,...,0,ˆ2 =−= nnygnxnx p      (2.18) 
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where ( ) ( ) ( )y n v n h n= ∗  is the filtered adaptive codebook vector and  is quantified 

adaptive codebook gain. If 

pĝ

ck  is the algebraic codevector at index k, then the algebraic 

codebook is searched by maximizing the term : 

( ) ( )
A

C
Ek

k

Dk

t
k

k
t

k
= =

2 2
d c

c cΦ
,      (2.19) 

where  is the correlation between the target signal d H x= t
2 ( )x n2  and the impulse 

response , H is a lower triangular Toepliz convolution matrix with diagonal 

and lower diagonals 

( )h n

( )h 0 ( ) ( )39,...,1 hh , and  is the matrix of correlations of 

. The vector d (backward filtered target) and the matrix 

Φ = H Ht

( )h n Φ  are computed prior to 

the codebook search. To simplify the search procedure, the pulse amplitudes are preset 

by the mere quantization of an appropriate signal ( )b n . This is simply done by setting 

the amplitude of a pulse at a certain position equal to the sign of ( )b n  at that position. 

 is the correlated signal corresponding to the ( )b n ( )d n . 

Having preset the pulse amplitudes, the optimal pulse positions are determined 

using an efficient non-exhaustive analysis-by-synthesis search technique. In this 

technique, the term in equation (43) is tested for a small percentage of position 

combination. During iterations, at least one pulse is located in a position corresponding 

to the global maximum and one pulse is located in a position corresponding to one of 

the 4 local maxima. 

A special feature incorporated in the codebook is that the selected codevector is 

filtered through an adaptive pre-filter which enhances special spectral 

components in order to improve the synthesized speech quality. Here the filter 

 is used, where T is the nearest integer pitch lag to the closed-loop 

fractional pitch lag of the subframe, and 

)(zFE

)1/(1)( T
E zzF −−= β

β  is a pitch gain. β  is given by the 

quantified pitch gain bounded by [0.0, 1.0]. Note that prior to the codebook search, the 

impulse response  must include the pre-filter . That is, )(nh )(zFE

.39,...,),()()( TnTnhnhnh =−−= β  The fixed codebook gain is then found by: 
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gc
t

t=
x z
z z

2         (2.20) 

where  is the target vector for fixed codebook search and  is the fixed codebook 

vector convolved with ,  

x2 z

( )h n

( ) ( ) ( ) .39,...,0,
0

=−=∑
=

ninhicnz
n

i
      (2.21) 

 

2.2.8 Quantization of adaptive and fixed codebook gains 
 

2.2.8.1 Adaptive codebook gain limitation 

 

If the GpC_flag is set, the limited adaptive codebook gain is used in the gain 

quantization. The quantization codebook search range is limited to only include 

adaptive codebook gain values less then . This is performed in the quantization 

search for all modes. 

thGP

 

2.2.8.2 Quantization of codebook gains 

 

The fixed codebook gain quantization is performed using MA prediction with fixed 

coefficients. The 4th order MA prediction is performed on the innovation energy. Let 

 be the mean-removed innovation energy (in dB) at subframe n, and given by: ( )E n

( ) ( ) Eicg
N

nE
N

i
c −⎟

⎠

⎞
⎜
⎝

⎛
= ∑

−

=

1

0

221log10 ,    (2.22) 

where  is the subframe size, and N =40 ( )c i  is the fixed codebook excitation. E  (in 

dB) is the mean of the innovation energy and a pre-defined value. The predicted energy 

is given by: 

( ) ( )∑ −=
4

ˆ~
i inRbnE

=1i
      (2.23) 

 19



where  are the MA prediction coefficients, and ib ( )$R k  is the quantified prediction 

error at subframe k. The predicted energy is used to compute a predicted fixed 

codebook gain  (by substituting ′gc ( )E n  by ( )~E n  and  by ). First, the mean 

innovation energy is found by: 

gc ′gc

E
N

c jI
j

N
=

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

−

∑10 1 2

0

1
log ( )      (2.24) 

and then the predicted gain is found by: 

( )( )+ −E n E E0 05.′ =gc
I10

~
.      (2.25) 

A correction factor between the gain  and the estimated gc ′gc  is given by: 

γ gc c cg g= ′ .        (2.26) 

Note that the prediction error is given by:  

R n E n E n gc( ) ( ) ~( ) ( ).= − = 20 log γ      (2.27) 

The correction factor γ gc  is computed using a mean energy value E . The correction 

vector γ gc  is quantified using an individual codebook or jointly vector quantized with 

adaptive codebook gain. If the correction factor γ gc  is quantized individually, the 

quantization table search is performed by minimizing the error 

( )2′ˆ cgccQ ggE −= γ .       (2.28) 

Otherwise, The gain codebook search is performed by minimizing the square of the 

weighted error between original and reconstructed speech which is given by: 

2
zyx ggE −−= cp .      (2.29) 
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An adaptor based on the coding gain in the adaptive codebook decides if the 

coding gain is low. If this is the case, the correction factor codebook is searched once 

more minimizing a modified criterion in order to find a new quantized fixed codebook 

gain. The modified criterion is given by: 

( ) ( )222 ˆ −⋅+′⋅−⋅⋅−= αγαmod )1( excrescgcc EEggE c   (2.30) 

where  and  are the energy (the squared norm) of the LP residual and the 

total excitation, respectively. The criterion is searched with the already quantized 

adaptive codebook gain and the correction factor 

Eres Eexc

gcγ̂  that minimizes (60) is selected. 

The balance α  decides the amount of energy matching in the modified criterion. This 

factor is adaptively decided based on the coding gain in the adaptive codebook as 

computed by: 

ag LP

LP

= ⋅
−

10 10

2

2log
res

res v
      (2.31) 

if the coding gain ag is less then 1 dB, the modified criterion is employed, except when 

an onset is detected. An onset is said to be detected if the fixed codebook gain in the 

current subframe is more then twice the value of the fixed codebook gain in the 

previous subframe. A hangover of 8 subframes is used in the onset detection so that the 

modified criterion is not used for the next subframes either if an onset is detected. The 

balance factor α  is computed from the median filtered adaptive coding gain. The 

current and the ag-values for the previous 4 subframes are median filtered to get .  agm

The α -factor is computed by: 

( )α = ⋅ − ⋅
>

< <
<

⎧

⎨
⎪

⎩
⎪

0
05 1 05

05

2
0

0
. .

.
ag

ag
ag

ag
m

m

m

m

2     (2.32) 

 

2.2.9 Memory update (all modes) 
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An update of the states of the synthesis and weighting filters is needed in order to 

compute the target signal in the next subframe. After the two gains are quantified, the 

excitation signal, ( )u n , in the present subframe is found by: 

( ) ( ) ( ) 39,..,0,ˆˆ =+= nncgnvgnu cp .     (2.33) 

The states of the filters can be updated by filtering the signal res n u nLP ( ) ( )−  

(difference between residual and excitation) through the filters ( )1 $A z  and 

( ) ( )A z A zγ 1 γ 2 for the 40-sample subframe and saving the states of the filters). A 

simpler approach which requires only one filtering is as follows. The output of the filter 

( )1 $A z due to the input res n u nLP ( ) ( )−  is equivalent to ( ) ( ) (e n s n s n)= − $ . So the 

states of the synthesis filter are given by ( ) 39,...,30, =nne . Updating the states of the 

filter ( ) ( )A z A zγ 1 γ 2  can be done by filtering the error signal  through this 

filter to find the perceptually weighted error 

( )e n

( ) ( ) ( ) (nzgnygnxne cpw ˆˆ )−−= . Since the 

signals , , and  are available, the states of the weighting filter are 

updated by computing for 

( )x n ( )y n ( )z n

( )e nw 39,...,30=n . 

 

2.3 Functional description of the decoder 
 

The function of the decoder consists of decoding the transmitted parameters (LP 

parameters, adaptive codebook vector, adaptive codebook gain, fixed codebook vector, 

fixed codebook gain) and performing synthesis to obtain the reconstructed speech. The 

reconstructed speech is then post-filtered and upscaled. The signal flow at the decoder is 

shown in figure 2.5. 

 

2.3.1 Decoding and speech synthesis 
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The received indices of LSP quantization are used to reconstruct the quantified 

LSP vectors. The interpolation is performed to obtain 4 interpolated LSP vectors 

(corresponding to 4 subframes). For each subframe, the interpolated LSP vector is 

converted to LP filter coefficient domain , which is used for synthesizing the 

reconstructed speech in the subframe.  

ka

LSP
indices

decode LSP

interpolation 
of LSP for the
4 subframes

LSP

decode
adaptive
codebook

decode
innovative
codebook

pitch
index

code
index

decode
gains

A(z)^

construct
excitation

frame subframe post-processing

s'(n)^s(n)^
post filter

gains
indices

 

synthesis
filter

Figure 2.4:  Simplified block diagram of the adaptive multi-rate decoder 

The following steps are repeated for each subframe: 

1. Decoding of the adaptive codebook vector: The received pitch index (adaptive 

codebook index) is used to find the integer and fractional parts of the pitch lag. The 

adaptive codebook vector  is found by interpolating the past excitation  (at 

the pitch delay) using the FIR filter. 

)(nv )(nu

2. Decoding of the innovative codebook vector: The received algebraic codebook 

index is used to extract the position and amplitudes (signs) of the excitation pulses and 

to find the algebraic codebook codevector . If the integer part of the pitch lag, T, is 

less than the subframe size 40, the pitch sharpening procedure is applied which 

translates into modifying  by 

)(nc

)(nc )()()( Tncncnc −+= β , where β  is the decoded 

pitch gain, , bounded by [0.0,1.0] or [0.0,0.8], depending on mode. pĝ
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3. Decoding of the adaptive and fixed codebook gains: In case of scalar quantization 

of the gains the received indices are used to readily find the quantified adaptive 

codebook gain, , and the quantified fixed codebook gain correction factor, pĝ gcγ̂ , 

from the corresponding quantization tables. In case of vector quantization of the gains, 

the received index gives both the quantified adaptive gains, , and the quantified 

fixed codebook gain correction factor, 

pĝ

gcγ̂ . 

4. Smoothing of the fixed codebook gain: An adaptive smoothing of the fixed 

codebook gain is performed to avoid unnatural fluctuations in the energy contour. The 

smoothing is based on a measure of the stationary of the short-term spectrum in the q 

domain. 

5. Anti-sparseness processing: An adaptive anti-sparseness post-processing 

procedure is applied to the fixed codebook vector  in order to reduce perceptual 

artifacts arising from the sparseness of the algebraic fixed codebook vectors with only a 

few non-zero samples per subframe. The anti-sparseness processing consists of circular 

convolution of the fixed codebook vector with an impulse response. The selection of the 

impulse response is performed adaptively from the adaptive and fixed codebook gains 

[3]. 

)(nc

6. Computing the reconstructed speech: Before the speech synthesis, a 

post-processing of excitation elements is performed. This means that the total excitation 

is modified by emphasizing the contribution of the adaptive codebook vector. Adaptive 

gain control (AGC) is used to compensate for the gain difference between the 

non-emphasized excitation  and emphasized excitation . )(nu )(ˆ nu

7. Additional instability protection: An additional instability protection is 

implemented in the speech decoder which is monitoring overflows in the synthesis filter. 

If an overflow has occurred in the synthesis part, the whole adaptive codebook memory, 

 is scaled down by a factor of 4, and the synthesis filtering 

is repeated using this down-scaled memory. 

39),...,11143(),( +−=nnv
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2.3.2 Post-processing 
 

2.3.2.1 Adaptive post-filtering (all modes) 

 

As the encoding rate goes down, the SNR drops and the noise floor of this white 

coding noise is elevated to such an extent that it is very difficult to keep it below the 

threshold of audibility. In speech perception, the formants of speech are perceptually 

much more important then spectral valley regions. A good strategy is to sacrifice valley 

regions and preserve the formants. An important feature of the frequency response of 

the adaptive post-filter is that the spectral envelope peaks corresponding to the formants 

have roughly the same height. This feature ensures that the relative intensity of the 

formants will remain roughly unchanged after post-filtering [12].  

The adaptive post-filter is the cascade of two filters: a formant post-filter, and a tilt 

compensation filter. The post-filter is updated every subframe of 5ms. 

The formant post-filter is given by: 

)/(ˆ
)/(ˆ

)(
d

n
f zA

zA
zH

γ
γ

=        (2.34) 

where  is the received quantified (and interpolated) LP inverse filter (LP analysis 

is not performed at the decoder), and the factors 

)(ˆ zA

nγ  and dγ  control the amount of the 

formant post-filtering.  

To further reduce the low-pass effect, we added a first-order filter with a transfer 

function  to compensate for the tilt in the formant post-filter  and is 

given by: 

)(zH t )(zH f

1−1)( −= zzH t µ        (2.35) 
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where  is a tilt factor, with  being the first reflection coefficient calculated 

on the truncated ( ) impulse response, , of the filter . 

 is given by: 

'
1ktγµ = '

1k

22=hL )(nh f )/(ˆ/)/(ˆ
dn zAzA γγ

'
1k

∑
−−

=

+==
1

0
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1 )()()(;

)0(
)1( iL

j
ffh

h

h
h

ijhjhir
r
r

k     (2.36) 

Adaptive gain control (AGC) is used to compensate for the gain difference between the 

synthesized speech signal  and the post-filtered signal . The gain scaling 

factor 

)(ˆ ns )(ˆ ns f

scγ for the present subframe is computed by: 

∑

∑

=

== 39

0

2

39

0

2

)(ˆ

)(ˆ

n
f

n
sc

ns

ns
γ        (2.37) 

The gain-scaled post-filtered signal  is given by: )(ˆ ' ns

)(ˆ)()(ˆ nsnns fscβ='       (2.38) 

where )(nscβ  is updated in sample-by-sample basis and given by: 

scscsc nn γααββ )1()1()( −+−=      (2.39) 

where α  is AGC factor. 

 

2.3.2.2 High-pass filtering and up-scaling 

 

The high-pass filter serves as a precaution against undesired low frequency 

components. A filter cut-off frequency of 60 Hz is used. Up-scaling consists of 

multiplying the post-filtered speech by a factor of 2 to compensate for the down-scaling 

by 2 which is applied to the input signal. 
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2.4 Bit Allocation 
 

The bit allocation of the AMR codec modes is shown in Table 2.1. In each 20ms 

speech frame, 95, 103, 118, 134, 148, 159, 204 or 244 bits are produced, corresponding 

to a bit-rate of 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2 or 12.2 kbit/s. Note that the most 

significant bits (MSB) are always sent first [3]. 
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Mode Parameter 1st 
subframe

2nd 
subframe

3rd 
subframe

4th 
subframe 

total per 
frame 

 

 2 LSP sets     38 
12.2 kbit/s Pitch delay 9 6 9 6 30 

(GSM EFR) Pitch gain 4 4 4 4 16 
 Algebraic code 35 35 35 35 140 
 Codebook gain 5 5 5 5 20 
 Total     244 
 LSP set     26 

10.2 kbit/s Pitch delay 8 5 8 5 26 
 Algebraic code 31 31 31 31 124 
 Gains 7 7 7 7 28 
 Total     204 
 LSP sets     27 

7.95 kbit/s Pitch delay 8 6 8 6 28 
 Pitch gain 4 4 4 4 16 
 Algebraic code 17 17 17 17 68 
 Codebook gain 5 5 5 5 20 
 Total     159 
 LSP set     26 

7.40 kbit/s Pitch delay 8 5 8 5 26 
(TDMA EFR) Algebraic code 17 17 17 17 68 

 Gains 7 7 7 7 28 
 Total     148 
 LSP set     26 

6.70 kbit/s Pitch delay 8 4 8 4 24 
(PDC EFR) Algebraic code 14 14 14 14 56 

 Gains 7 7 7 7 28 
 Total     134 
 LSP set     26 

5.90 kbit/s Pitch delay 8 4 8 4 24 
 Algebraic code 11 11 11 11 44 
 Gains 6 6 6 6 24 
 Total     118 
 LSP set     23 

5.15 kbit/s Pitch delay 8 4 4 4 20 
 Algebraic code 9 9 9 9 36 
 Gains 6 6 6 6 24 
 Total     103 
 LSP set     23 

4.75 kbit/s Pitch delay 8 4 4 4 20 
 Algebraic code 9 9 9 9 36 
 Gains  8 8 16 
 Total     95 

Table 2.1: Bit allocation of the AMR coding algorithm for 20ms frame 
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Chapter 3 

Overview of IEEE 802.16a FEC Scheme 

3.1 Introduction to IEEE 802.16a Standard 

 

The IEEE 802.16a standard amends IEEE standard 802.16 by enhancing the 

medium access control layer and providing additional physical layer specifications in 

support of broadband wireless access at frequencies from 2 to 11GHz. The resulting 

standard specifies the air interface of fixed (stationary) broadband wireless access 

systems providing multiple services. The medium access control layer is capable of 

supporting multiple physical layer specifications optimized for the frequency bands of 

application. The standard includes a set of particular physical layer specifications 

applicable to systems operating between 2 and 66 GHz. It supports point-to-multipoint 

and optional mesh topologies [14]. 

This standard is a part of a family of standards for local and metropolitan area 

networks. The relationship between the standard and other members of the family is 

shown in Fig. 3.1 (The numbers in the figure refer to IEEE standard designations). The 

family of standards deals with the Physical and the Data Link Layers as defined by the 

international Organization for Standardization (ISO) Open Systems Interconnection 

Basic Reference Model. The access standards define several types of medium access 

technologies and the associated physical media, each appropriate for particular 

applications or system objectives. Other types are under investigation [14]. 
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This thesis focuses on the Reed-Solomon decoder acceleration and the DSP 

implementation issues of the Reed-Solomon and Viterbi decoder in the IEEE 802.16a 

Forward Error Correction (FEC) Decoding scheme. Therefore, we will concentrate on 

introducing the FEC specifications defined in IEEE 802.16a physical layer part in the 

next section. In the last part of this chapter, we will show the block diagrams of the 

program conventionally implemented and also described briefly some modification and 

our contribution to improve the implementation structure by reducing the computational 

complexity. The detail of our improvement will be described in the latter chapter. 

 

Figure 3.1: IEEE local and metropolitan area networks standards family. 

 

3.2 IEEE 802.16a FEC Specifications 

 

The overall physical layer structure of the channel coding scheme is shown in Fig. 

3.2, where the Reed-Solomon Code and the Convolutional Code are major parts of the 

FEC scheme, and the randomizer and the interleaver are additional modules for further 

improving the error performance of the FEC scheme. The detailed specifications of each 

part are introduced in the following subsections, excluding the modulator, which is not 

implemented in our research subproject. 
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Convolutional 
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Reed-Solomon 
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De-randomizer
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De-modulator 

 

Figure 3.2: Channel coding structure at the transmitter side (top) and the receiver side 

(bottom). 

 

3.2.1 Randomizer 

 

Data randomization is performed on data transmitted on the downlink (DL) and 

uplink (UL). The randomization is performed on each allocation (DL or UL), which 

means that for each allocation of a data block (subchannels on the frequency domain 

and OFDM symbols on the time domain) the randomizer shall be used independently. If 

the amount of data to transmit does not match exactly the amount of data allocated, 

symbol “0xFF” (“1” only) should be padded to the transmission block until the 

allocated data are filled. 

 

 
Figure 3.3: PRBS for Data Randomization. 

 

The randomizer is a Pseudo Random Binary Sequence (PRBS) generator depicted 

in Fig. 3.3. As shown in the figure, source bit randomization is performed by the 
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modulo-2 adder and the Linear-Feedback Shift Register (LFSR) with characteristic 

polynomial 1+X14+X15. Each data byte to be transmitted shall enter sequentially (msb 

first) into the randomizer to make the “0” and “1” bits well-distributed in the output data 

streams and hence improve the coding performance. The randomizer sequence is 

applied only to information bits. Preambles are not randomized. 

The shift-register of the randomizer shall be initialized for every 1250 bytes passed 

through (if the allocation is larger then 1250 bytes). 

In the downlink, the randomizer shall be re-initialized at the start of each frame 

with the sequence 

     (msb) 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 (lsb). 

In the uplink, the randomizer is initialized with the vector created as shown in Fig. 

3.4. 

 

Figure 3.4: Creation of OFDMA Randomizer Initialization Vector. 

 

3.2.2 Forward Error Correction Coding 

 

Forward error correction is used to decrease bit error rate (BER) on noisy 

communication channels. This is achieved by a method known as channel coding, 

which adds redundant information to the transmitted data. With forward error correction, 

transmission errors are corrected at the decoder, without requesting a retransmission. 

Convolutional encoding and block coding are two major forms of channel coding. In 

our IEEE 802.16a OFDMA project, both convolutional code and block code 

(Reed-Solomon Code) are employed.  
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The Forward Error Correction scheme used in the IEEE 802.16a standard, as 

shown in Fig. 3.5, consisting of the concatenation of a Reed-Solomon outer code and a 

rate-compatible convolutional inner code, is supported on both UL and DL. The input 

data streams are first divided into RS (Reed-Solomon) blocks of which the size is 

determined by parameter k defined in RS code specification, then encoded by a RS 

encoder, and each RS coded block is then encoded by a convolutional encoder. 

Convolutional code is one kind of sequential codes, but RS code is a block code. 

Overall it makes the whole concatenated code a block-based coding scheme.  

 

Concatenated Encoder

Reed-Solomon 
Encoder

Convolutional 
Encoder

 

Concatenated Decoder

Reed-Solomon 
Decoder

Convolutional 
Decoder

 

Figure 3.5: Forward Error Correction structure in transmitter side (left) and 

receiver side (right). 

 

In order to make the system more flexible and adaptable to the channel condition, 

there are six coding-modulation schemes provided in the standard, as shown in Table 

3.1(notice that 64QAM is an optional mode). The different coding rates are made by 

shortening and puncturing the original RS code and with puncturing of the original 

convolutional code. The shortened- and- punctured mechanisms in RS code can provide 

different block size and hence different error-correction capability through the same RS 

Codec (Coder / Decoder). Similarly, the convolutional code can provide variable code 

rates through the same codec by applying the puncturing rule. Thus it can suit the 

variable block size of the shortened-and-punctured RS code to achieve a desired overall 

coding rate. 
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Modulation 
Uncoded Block 

 Size (bytes) 

Overall Coding

Rate 

Coded Block 

Size (bytes)
RS Code 

CC Code 

Rate 

QPSK 18  1/2 36 (24,18,3)  2/3 

QPSK 26 ~3/4 36 (30,26,2)  5/6 

16-QAM 36  1/2 72 (48,36,6)  2/3 

16-QAM 54  3/4 72 (60,54,3)  5/6 

64-QAM 72  2/3 108 (81,72,4)  3/4 

64-QAM 82 ~3/4 108 (90,82,4)  5/6 

Table 3.1: Mandatory Channel Coding per Modulation. 

 

3.2.2.1 Reed-Solomon Code Specification 

 

The Reed-Solomon encoding is derived from a systematic RS (N=255, K=239, 

T=8) code using GF(28),where N is the number of overall bytes after encoding, K is the 

number of data bytes before encoding, and T is the number of data bytes which can be 

corrected from errors. The galois field used in this code is generated by the field 

generator polynomial: p(x) = x8 + x4 + x3 + x2 + 1, and the codeword is generated by the 

code generator polynomial: g(x) = (x +λ0)(x +λ1)(x +λ2)…(x +λ2T-1). 

This code is shortened and punctured to enable variable block sizes and variable 

error-correction capability. When a block is shortened to K’ data bytes, the first 239 – 

K’ bytes of the encoder block are filled with “0”s. When a codeword is punctured to 

permit T’ bytes to be corrected, only the first 2T’ of the total 16 codeword bytes are 

employed.

 

3.2.2.2 Convolutional Code Specification 

 

After the RS encoding process, each RS block is then encoded by the binary 

convolutional encoder, which has native rate 1/2, a constraint length K=7, and uses the 

following generator polynomials to derive its two code bit outputs: 
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G1 = 171OCT  FOR X 

G2 = 133OCT  FOR Y 

 

The generator is depicted in Fig. 3.6. 

 

Figure 3.6: Convolutional Encoder of Rate 1/2. 

 

Puncturing patterns and serialization order which is used to generate variable code 

rates are defined in Table 3.2. In the table, a “1” denotes a transmitted bit and a “0” 

denotes a removed bit, whereas X and Y correspond to Fig. 3.6. 

 

 Code Rates 

Rate  2/3  3/4  5/6 

dfree 6 5 4 

X 10 101 10101 

Y 11 110 11010 

XY X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

Table 3.2: The Inner Convolutional Code with Puncturing Configuration. 

 

 Furthermore, a tail-biting mechanism is adopted in our convolutional code, by 

initializing the encoder’s memory with the last data bits of the RS block being encoded. 
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3.2.3 Interleaver 

 

All encoded data bits are interleaved by a block interleaver with a block size 

corresponding to the number of coded bits per the specified allocation, Ncbps (see Table 

3.3) to protect the convolutional code from severe impact of burst errors and therefore 

increase the coding performance. The interleaver is defined by a two step permutation. 

The first permutation ensures that adjacent coded bits are mapped onto nonadjacent 

carriers. The second permutation ensures that adjacent coded bits are mapped alternately 

onto less or more significant bits of the constellation, thus avoiding long runs of lowly 

reliable bits. 

 

Modulation 
Coded Bits per Bit Interleaved 

Block (Ncbps) 

Modulo 

Used (d) 

QPSK 288 16 

16-QAM 576 18 

64-QAM 864 16 

Table 3.3: Bit Interleaved Block Sizes and Modulo. 

 

Now let Ncpc be the number of coded bits per carrier, i.e. 2, 4 or 6 for QPSK, 

16QAM or 64QAM, respectively. Let s = Ncpc/2. Let k be the index of the coded bit 

before the first permutation at transmission, m be the index after the first and before the 

second permutation and j be the index after the second permutation, just prior to 

modulation mapping, and d be the modulo used for the permutation. 

 

The first permutation is defined by the rule: 

m = (Ncbps/d) * kmod(d) + floor(k/d),  k = 0, 1, …, Ncbps – 1 

The second permutation is defined by the rule: 

J = s * floor(m/s) + (m + Ncbps – floor(d*m Ncbps))mod(s), m = 0, 1, …, Ncbps -1  
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The de-interleaver, which performs the inverse operation, is also defined by two 

permutations. Let j be the index of the received bit before the first permutation, m be the 

index after the first and before the second permutation and k be the index after the 

second permutation, just prior to delivering the coded bits to the convolutional decoder. 

 

The first permutation is defined by the rule: 

m = s * floor(j/s) + (j + floor(d*j/ Ncbps))mod(s),  j = 0, 1, …, Ncbps -1 

 

The second permutation is defined by the rule: 

K = d * m – (Ncbps -1) * floor (d*m/ Ncbps),  m = 0, 1, …, Ncbps -1 

 

The first permutation in the de-interleaver is the inverse of the second permutation 

in the interleaver, and conversely. 

 

3.3 Implementation Issues of the FEC Scheme 

 

Detailed explanation of the FEC coding and decoding algorithms is given in this 

section. The block diagrams of our simulation programs are also provided in each 

section. Also we will describe how we reduce the computational complexity on PCs. 

 

3.3.1 Reed-Solomon Code 

 

3.3.1.1 Encoding of Shortened and Punctured Reed-Solomon Codes 

 

The Reed-Solomon code defined in IEEE 802.16a standard is a modified RS code 

which is derived from the standard systematic (255, 239, 8) RS code as mentioned in 

section 2.2.2. In this section, we first give an example to illustrate how the encoding 
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process has been done. Secondly, the block diagram of our RS encoder program is 

given too. 

The (48, 36, 6) RS code is chosen from Table 3.2 as an example to show the details 

of encoding process. Before talking about the encoding process, we must note one thing 

that the galois field defined in the IEEE 802.16a standard is GF(28), it means that each 

element, i.e. I238 ~ I0, R15 ~ R0, mentioned below denotes a byte (8 bits). First we let the 

information data bytes which are inputs to the systematic (255, 239, 8) RS code be 

represented as polynomial form shown below: 

I(x) = I238x238 + I237x237 + ………+ I36x36 + I35x35 + …… + I1x + I0

= (I238, I237, … , I36, I35, … , I1, I0) 

 

Then the resulting systematic (255, 239, 8) RS codeword is given by 

C(x) = I(x)．x16 + R(x) 

      = (I238, I237, … , I36, I35, … , I1, I0, R15, R14, … , R3, R2, R1, R0) 

 

The remainder polynomial R(x) can be represented as below: 

R(x) = I(x)．x16 mod g(x) 

            = (R15, R14, … , R3, R2, R1, R0) 

Where the exponent of x is derived from N – K = 16. 

The encoding process shown above is the standard (255, 239, 8) RS code. In order 

to match the (48, 36, 6) code requirement, shortening and puncturing are needed. In 

other words, we have to modify the existing codeword further. Initially we set the first 

(239 – 36) = 203 input data bytes to zero and pad with 36 information data bytes, for 

example, the input data bytes becomes: 

I(x) = (0, 0, 0, … , 0, I35, I34, I33,… , I2, I1, I0), totally 203 zeros in the beginning. 

 

Then let the 239 data bytes be encoded by the standard (255, 239, 8) RS encoder, 

after it has been encoded, we discard the last 4 bytes of the codeword. Finally we have 

48 bytes codeword, for example, the 48 bytes codeword is shown as below: 
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   C(x) = (I35, I34, I33,… , I2, I1, I0, R15, R14, … , R7, R6, R5, R4) 

 

 Similarly, the other types of shortened-and-punctured RS code listed in Table 3.2 

can be acquired by performing the same procedure as discussed above, except for the 

(81, 72, 4) RS code which is derived from (80, 72, 4) shortened-and-punctured RS code 

by inserting a zero byte in the beginning of codeword. 

 The block diagram of our RS encoder is shown in Fig. 3.7, where the block named 

as shortened-and-punctured block is to discard the first 203 zero bytes (shortening) and 

the last 4 bytes (puncturing) of the RS codeword. The details of the LFSR block is 

shown in Fig. 3.8, we employ the Linear Feedback Shift Register (LFSR) structure to 

implement the RS encoder block diagram as shown in Fig. 3.9 [15]. 

 

 

 

 

 

Data 

 

R0

g0

Figu

 

 

LFSRZero 
InsertingSequence

Shortened 
and 

Punctured

RS 
Encoded 
Sequence

Figure 3.7: Block Diagram of the RS Encoder Program. 

R1 R13 R14 R15

g1 g13 g14 g15

First K’ bytes close
Last 2T’ bytes open

I(x) followed by 2T’ zero

First K’ bytes bottom connected
Last 2T’ bytes top connected

Output Data

 

re 3.8: The Linear Feedback Shift Register Structure of RS Encoder. 
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Figure 3.9: Block Diagram of a Conventional RS Encoder. 

 

3.3.1.2 Decoding of Shortened and Punctured Reed-Solomon Codes 

 

In order to understand how to decode a shortened-and-punctured RS code, we also 

take the (48, 36, 6) RS code as an example. First we acquire 48 data bytes from the 

receiver side, prepending with 203 zero bytes and padding with 4 zero bytes in the end. 

Then, we have a data block whose size equals 255 bytes. Afterwards we can employ a 

standard (255, 239, 8) RS decoder to decode it with the last 4 zero bytes of the 

codeword marked as erasures. 

 

A (48, 36, 6) RS decoder consists of the following main steps: 

1. Syndrome computation:  

Insert 203 bytes of zero before the 48 bytes received data and insert 4 bytes of zero 

in the locations marked as erasure then compute the syndromes. 

∑
=

=
254

0i

ik
ik rS α  , for , whereas the r161 ≤≤ k i is the received data after zero 

inserting. 

2. Erasure locator polynomial computation: 

∑∏
==

Λ=−=Λ
s

j

j
j

s

j
j xxZx

01

)1()( , whereas the Zj is the jth erasure location and the s 

is the number of erasures. 

3. Find the error location polynomial coefficient by solving  
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Then find the error location by finding the roots of Λ(x). 

(When performing erasure and error decoding, the syndrome shown in (1) shall be 

replaced by Forney syndrome : , for ∑
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4. Find the error and erasure magnitude by solving 
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5. Let t denote the number of errors, s denote the number of erasures If 2s + t > T (T 

= 6 in the case of (48, 36, 6) RS code), it means that the number of errors and 

erasures exceed the amount that can be recovered by this RS code. Thus, the 

received data bytes would be left unchanged. 

 

For computing (1) and (2), there are two well-known and conventional algorithms 

existing. One is called Euclidean’s algorithm, and the other is called Berlekamp-Massey 

(BM) algorithm. The Euclidean’s algorithm is used to compute the eqns. (1) and (2). 

The BM algorithm is used to compute eqn. (1). 

Initiatively, we choose the BM algorithm to compute (1), and further simplify it by 

eliminating the pre-computation of the Forney syndrome and the post-computation of 

the errata locator polynomial in reference to the inverse-free Berlekamp-Massey 

algorithm. The simplified one just simply initializes the BM algorithm with the erasure 

locator polynomial and afterward the errata locator polynomial can be obtained in the 

end of iteration of BM algorithm. 

As the above described, the BM algorithm is used to find the coefficients of the 

error/erasure locator polynomial while the chein search is used to solve its roots. It 
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requires multiplication of each coefficient by all the elements in GF(28) and however, 

the multiplication is much more complicated than the addition and requires a lot of 

computational time. It makes the chein search one of the bottlenecks of the RS decoder. 

To improve it, we choose an algorithm proposed as a novel algorithm for finding the 

roots of a special class of polynomials together with chein search to speed up the RS 

decoder by reducing the amount of multiplication. Moreover, we employ the Forney 

algorithm to solve (2). 

The block diagram of the RS decoder described above is shown in Fig. 3.10, where 

the syndrome computation is done by employing the circuit shown in Fig. 3.11 then fed 

to the BM algorithm, the chein search is performed after BM algorithm, and the forney 

algorithm is for the purpose of computing the magnitude of the error/erasure. 
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Figure 3.10: Block Diagram of the RS Decoder Program. 

 

 

Figure 3.11: Syndrome Computation Circuit. 
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Except for the above algorithm, the alternative RS decoding algorithm is the 

remainder decoding algorithm, which has been introduced in the early 1980’s. It is the 

other major bottleneck for the RS decoding process to calculate syndromes and 

sometimes we also need to have all syndromes independent of the number of errors in 

the received codeword. Therefore, the remainder decoding algorithm becomes popular 

because the prior computation of the syndromes is not required. This algorithm is 

achieved through solving the constrained polynomials, the Welch-Berlekamp (WB) 

equations, derived from the remainder of the received codeword divided by the 

generator polynomial. In our case, we also use the remainder decoding algorithm with 

WB equations to decode RS codes instead of BM algorithm together with syndrome 

computation for comparison and for investigating this current popular decoding 

algorithm. 

 

3.3.2 Convolutional Code 

 

3.3.2.1 Encoding of Punctured Convolutional Code 

 

The convolutional code encoding structure is shown in Fig. 3.6. It consists of one 

input bit, six memory elements (shift registers) and two output bits, which are generated 

by first performing AND operations on the generator polynomial coefficients, then pad 

the contents of the memory elements with the input bit, and then perform operation of 

modulo 2(XOR) on each bit generated by the previous AND operation. For the purpose 

to reduce computational complexity, we avoid performing XOR operation directly but 

employing the table-lookup method to replace it. That is, we build a table that contains 

all possible 7 bit (6 memory element bits plus 1 input bit) XOR results and store them in 

memory. From the fact that the XOR operation is used frequently during the encoding 

process, we can just search the XOR results in the table and avoid the computations thus 

slightly speed up the encoding process. 

 43



 According to the puncturing rule shown in Table 3.2, a “1” means a transmitted bit 

and a “0” means a skipped bit. The X and Y in the table denote the two output bits 

shown in Fig. 3.6. Note that the dfree has been changed from that of the original 

convolutional code with rate 1/2, which is equal to 10. The operations stated above are 

represented by a block diagram shown in Fig. 3.12. The input and output buffers shown 

in this figure are used for reducing the number of times on memory access when 

concerning DSP implementation. Since the convolutional encoder processes a piece of 

1-bit input data each time step, if we do not setup buffers for input and output, we have 

to do memory accessing frequently during the encoding period, which decreases the 

processing rate on the TI DSP platform. 
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Figure 3.12: Block Diagram of the Convolutional Encoder Program. 

 

3.3.2.2 Viterbi Decoding of Punctured Convolutional Code 

 

Viterbi algorithm is the most well known technique in convolutional decoding 

process. The operation of Viterbi algorithm can be explained easily using the trellis 

diagram, which is generated by the encoder with all possible inputs. As we know, the 

convolutional encoder consists of the memory elements, one input bit and two output 

bits. The output bits are decided by the suitable combinations (AND and XOR) of the 

past input bits. The changes of the value in the memory elements are viewed as the 

transition from one state to another. So we can model the encoder as a finite state 

machine, which is useful in the analysis of trellis diagram. An example of the finite state 
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machine is shown in Fig. 3.13, whereas x(n-1) and x(n-2) denote the previous input and 

the input prior to the previous input, respectively. When we acquire a new input bit, the 

state of memory elements is changed and the finite state machine generates the 

corresponding output bits. 

 

 
Figure 3.13: State Transition Diagram Example. 

 

The trellis diagram can be derived from the state transition diagram. First, the finite 

state machine output is constructed by the given input and the current state. We expand 

the finite state machine to a trellis diagram by introducing the concept of time. The 

trellis diagram is consisting of all the features of finite state machine and can be viewed 

as the time axis expansion of the finite state machine diagram. A simple trellis diagram 

is shown in Fig. 3.14 as an example. We can easily see all the state transition for any 

possible input for every propagation time instance. In this trellis diagram, the upper 

outgoing branch for each state corresponds to an input of 0, and the lower outgoing 

branch corresponds to an input of 1. Each state has two incoming and two outgoing 

branches. Each information sequence, uniquely encoded into an encoded sequence, 

corresponds to a unique path in the trellis. Equivalently, for a given path through the 

trellis, we can obtain the corresponding information sequence by reading off the input 
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labels on all the branches that make up the path, and the procedure is also called 

“Traceback”. The Viterbi algorithm is used to find the optimal path in the trellis 

diagram that results in the minimum errors. Then we do the traceback procedure to 

retrieve the information sequence, which has been the inputs to the encoder, and the 

details are discussed below. 

 

 
Figure 3.14: Trellis Diagram Example for a Viterbi Decoder. 

 

The Viterbi algorithm computes the branch metric of each path at each stage of the 

trellis. The metric is first calculated and stored as a partial metric for each branch as the 

trellis traversed. Since there are two paths merge at each node, the path with a smaller 

metric is retained while the other is discarded. This is based on the principle that the 

optimum path must contain the sub-optimum survivor path just like as the one shown in 

Fig. 3.15 [16]. The survivor path for a given state at time instance n is the sequence of 

symbols closest to the received sequence up to time n. For the case of puncturing 

convolutional code, the metric associated with the punctured bits are simply disregarded 

in metric calculation stage. The overall operation discussed in the above constitutes the 

computational core of the Viterbi algorithm and is so-called the Add-Compare-Select 

(ACS) operation. 
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Figure 3.15: Survivor path of the Trellis Diagram. 

 

In conclusion, the Viterbi algorithm can be divided into four major steps, the first 

step is the branch metric calculation and state metric loading, the second step is the 

ACS, the third step is the state metric storing and path recording, and the last one is the 

traceback. The block diagram of our Viterbi decoder program is shown in Fig. 3.16, and 

the structure of the Viterbi algorithm is shown in Fig. 3.17. The extend received 

sequence block shown in Fig. 3.16 is included for decoding the puncturing and 

tail-biting convolutional code and will be discussed later in this subsection. 
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Figure 3.16: Block Diagram of the Viterbi Decoder Program. 
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Figure 3.17: Structure of the Viterbi Algorithm. 
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Notice that we have named our Viterbi decoder in the block diagram as an SDD 

Viterbi decoder, where the SDD stands for Soft-Decision-Decoding. In fact, there are 

two kinds of decision types used in Viterbi decoding, one is called hard-decision, and 

another is called soft-decision. If hard-decision is adopted, then the metric value we 

used for calculating branch metric and state metric is the Hamming distance, which only 

counts the bit errors between each trellis path and the hard-limited output of the 

demodulator. For the case of soft-decision, the metric we used should be the Euclidean 

distance between each trellis path and the soft-output of the demodulator. The major 

difference on performance between these two decision types is the coding gain and the 

computational speed. For hard-decision, the calculation of Hamming distance is a 

simple XOR operation, On the other hand, the soft-decision in metric calculation 

requires a floating-point arithmetic. The hard-decision based Viterbi decoder is much 

faster than the soft-decision based algorithm. However, its coding gain will lose 2 to 3 

dB compared to soft-decision decoding, and cannot satisfy the requirements of IEEE 

802.16a standard [17]. Hence, the soft-decision decoding is adopted to implement our 

Viterbi decoder. 

 

3.3.2.3 Bit Interleaved Soft Decision Viterbi Decoding  

 

In the specific FEC scheme defined by IEEE 802.16a, there is a block interleaver 

between the convolutional code and modulator. Therefore, the optimal SDD should take 

the joint trellis structure which consists of the convolutional code, the block interleaver 

and the modulator into account. In consequence, it leads to a complicated solution to be 

realized in practice. To be more practical, we consider a suboptimal solution based on a 

bit-by-bit metric mapping and calculation concept, which is proposed in [18]. To begin 

with, we can generalize our major problems to how to obtain the metric values used in 

the SDD Viterbi decoder while concerning the de-interleaving process. Here we are not 

going to discuss or prove the detailed algorithm that has already been well-defined in 

[18], but just showing the procedure on acquiring metric values.  
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According to the suboptimal solution, we first calculate the Euclidean distance 

between the received symbol and its nearest reference modulated symbol with respect to 

a decided bit “0” and “1”. Let us take 16-QAM modulation as example. Referring to Fig. 

3.18, if a received symbol lies in the coordinate (2.5, 2.7) (represented by a square point 

in the figure), then its branch metric of the first bit with respect to a decided bit “0” 

should be the Euclidean distance between the received symbol and the rightmost 

reference symbol whose in-phase coordinate is 3 and the result is |3 – 2.5|2 = 0.25. And 

the branch metric with respect to a decided bit “1” should be |-1 – 2.5|2 = 12.25. The 

branch metric of the second bit, third bit, and fourth bit of this received symbol can be 

calculated in a similar way. Consequently, we have four pairs of branch metric for each 

received symbol. Before sending them to the SDD Viterbi decoder, these pairs of 

branch metric should be mapped to the corresponding bit position since the original 

convolutional encoded sequence has been interleaved. In order to be consistent with the 

newly defined branch metrics, our SDD Viterbi decoder should be modified to be able 

to treat these de-interleaved (or to say “demapped”, alternatively) branch metric as the 

input data sequence instead of the soft-demodulated symbol. Except for the branch 

metric calculation step, all the other parts in a conventional SDD Viterbi decoder are 

still the same. 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Partition of the 16-QAM Constellation. 
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3.3.2.4 Viterbi Decoding of Tail-Biting Convolutional Code 

 

 According to [17] and [19], the practical suboptimal tail-biting Viterbi decoder is 

shown in Fig. 3.19, where the “SDD Viterbi Decoder” block denotes the Viterbi 

decoder with puncturing mechanism and bit-interleaved SDD. The parameter α and 

β are both chosen to be 24 to achieve the balance of computational complexity and the 

performance of error correction based on the analysis done in [17]. 
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Figure 3.19: Block Diagram of the Suboptimal Tail-Biting Viterbi Decoder. 

 

3.3.2.5 The Butterfly Structure in the Trellis Diagram 

 

In order to reduce the computational complexity in the ACS part, we bring in the 

concept of butterfly structure from the trellis diagram. The Symmetry in the trellis 

diagram, which forms the butterfly structure, can be used to reduce the number of 

branch metric calculations. Fig. 3.20 shows the butterfly structure associated with the 

Viterbi decoder － pairing new states 2i and 2i+1 with previous states i and i+s/2, 

where s is the number of total possible states. In our case of constraint length K=7, s 

equals 64 (26). Even though there are four incoming branches, there are only two 

different branch costs. 

Path metrics for each new state are calculated using each incoming branch cost 

plus the previous path cost associated with that branch. The maximum of the two 

incoming path metrics is selected as the survivor. The butterfly computations consist of 
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two “Add-Compare-Select” (ACS) operations and updating the survivor path history. 

The two ACS operations are: 

Sn(2i) = min {Sn-1 (i) + b , Sn-1(i+s /2) + a}, and 

Sn(2i+1) = min {Sn-1 (i) + a , Sn-1 (i+s /2) + b} 

After completing N stages of decoding, one of the M survivor paths is selected for 

trace-back. Obviously, the number of branch metric calculation has been reduced 

greatly by introducing the butterfly structure. 
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Figure 3.20: Butterfly Structure Showing Branch Cost Symmetry. 
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Chapter 4 

DSP Implementation Environment 

 

Our project is a subproject of an integrated group project. The TI DSP is chosen to 

be the platform of the whole system. The DSP baseboard we use is Innovative 

Integration's (II’s) product in year 2003 called Quixote, which houses Texas 

Instruments' TMS320C6416 DSP chip. In this chapter, the specification of the DSP chip 

and the DSP baseboard and the data transmission process from the host PC to the target 

DSP are described. Moreover, some important techniques and features which benefit 

our acceleration work are also included. 

 

4.1 The DSP Chip 
 

The DSP chip we adopt is one in the TMS320C64x series. According to [21], 

TMS320C64x series is also a member of the TMS320C6000 (C6x) family. The C6000 

device is capable of executing up to eight 32-bit instructions per cycle and its core CPU 

consists of 64 general-purpose 32-bit registers (for C64x only) and eight functional 

units. The detailed features of the C6000 family devices include: 

 Advanced VLIW CPU with eight functional units, including two multipliers 

and six arithmetic units. 

 Instruction packing (Reduce Code Size). 

 Conditional execution of all instructions. 
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 Efficient code execution on independent functional units. 

 8/16/32-bit data support, providing efficient memory support for a variety 

of applications. 

 40-bit arithmetic options add extra precision for computationally intensive 

applications. 

 Saturation and normalization provide support for key arithmetic operations. 

 Field manipulation and instruction extract, set, clear, and bit counting support 

common operation found in control and data manipulation applications. 

 

The block diagram of the C6000 family is shown in Fig. 4.1. The C6000 devices 

come with program memory, which, on some devices, can be used as a program cache. 

The devices also have varying sizes of data memory. Peripherals such as a direct 

memory access (DMA) controller, power-down logic, and external memory interface 

(EMIF) usually come with the CPU, while peripherals such as serial ports and host ports 

are on only certain devices. 

In the following subsections, the TMS320C64x DSP Chip is introduced further in 

the manner of three major parts: Central processing unit (CPU), Memory, and 

Peripherals. 
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Figure 4.1: The Block Diagram of TMS320C6x DSP Chip. 
 

 
Figure 4.2: The TMS320C64x DSP Chip Architecture and Comparison with Ancient 

TMS320C62x/C67x Chip. 
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4.1.1 Central Processing Unit 
 

Besides the eight independent functional units and sixty-four general purpose 

registers that has been mentioned before, the C64x CPU also consists of the program 

fetch unit, instruction dispatch unit (attached with advanced instruction packing), 

instruction decode unit, two data path (A and B, each with four functional units), test 

unit, emulation unit, interrupt logic, several control registers and two register files (A 

and B with respect to the two data paths). The architecture is illustrated in more detail in 

Fig .4.2 [22]. Compared with the other C6000 family DSP chip, the C64x DSP chip 

provides more available hardware resources. The additional features that are only 

available on C64x are:  

 Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every 

clock cycle. 

 Quad 8-bit and dual 16-bit instruction set extensions with data flow support 

 Support for non-aligned 32-bit (word) and 64-bit (double word) memory 

accesses. 

 Special communication-specific instructions have been added to address 

common operations in error-correcting codes. 

 Bit count and rotate hardware extends support for bit-level algorithms. 

 

The program fetch unit shown in the figure could fetch eight 32-bit instructions 

(which implies 256-bit wide program data bus) every single cycle, and the instruction 

dispatch and decode units could also decode and arrange the eight instructions to eight 

functional units. The eight functional units in the C64x architecture could be further 

divided into two data paths A and B as shown in Fig. 4.2. Each path has one unit for 

multiplication operations (.M), one for logical and arithmetic operations (.L), one for 

branch, bit manipulation, and arithmetic operations (.S), and one for loading/storing, 

address calculation and arithmetic operations (.D). The .S and .L units are for arithmetic, 
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logical, and branch instructions. All data transfers make use of the .D units. Two 

cross-paths (1x and 2x) allow functional units from one data path to access a 32-bit 

operand from the register file on the opposite side. There can be a maximum of two 

cross-path source reads per cycle. There are 32 general purpose registers, but some of 

them are reserved for specific addressing or are used for conditional instructions.  

Most of the buses in the CPU support 32-bit operands, and some of them support 

40-bit operands. Each functional unit has its own 32-bit write port into a 

general-purpose register file. All functional units which end in 1 (for example, .L1) 

write to register file A while all functional units which end in 2 ( for example, .L2) write 

to register file B. There is an extra 8-bit wide port for 40-bit write as well as an extra 

8-bit wide input port for 40-bit read in four specific units (.L1, .L2, .S1 and .S2). Since 

each unit has its own 32-bit write port, all eight functional units could be operated in 

parallel in every single cycle. 

The program pipelining is also an important technique to make instructions execute 

in parallel and hence reduce the overall execution cycles. In order to make pipelining 

work properly, we should have knowledge of the pipeline stages and instruction 

execution phases. Since the program pipelining is highly related to the optimization of 

DSP program, we left it to be discussed in next chapter and not go into detail here.   

 

4.1.2 Memory 

 
Internal Memory 
 

The C64x DSP chip has a 32-bit, byte-addressable address space. Internal (on-chip) 

memory is organized in separate data and program spaces. When off-chip memory is 

used, these spaces are unified on most devices to a single memory space via the external 

memory interface (EMIF). The C64x has two 64-bit internal ports to access internal 

data memory and a single internal port to access internal program memory, with an 

instruction-fetch width of 256 bits. 
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Memory Options 

Besides the internal memory, the C64x DSP Chip also provides a variety of 

memory options: 

 Large on-chip RAM, up to 7M bits. 

 Program cache. 

 2-level caches. 

 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, 

and other asynchronous memories for a broad range of external memory 

requirements and maximum system performance. 

 

4.1.3 Peripherals 

 

In addition to the on-chip memory, the TMS320C64x DSP chips also contain 

peripherals for supporting with off-chip memory options, co-processors, host processors, 

and serial devices. The peripherals are direct memory access (DMA) controller, 

Host-Port Interface (HPI), EMIF, Timers and some other units. 

 The DMA controller transfers data between regions in the memory map without 

the intervention by CPU. It could move the data from internal memory to external 

memory or from internal peripherals to external devices. It is used for communication to 

other devices. 

 The Host-Port Interface (HPI) is a 16-bir wide parallel port through which a host 

processor could directly access the CPUs memory space. It is used for communication 

between the host PC and the target DSP. 

 The C64x has two 32-bit general-purpose timers that are used to time events, count 

events, generate pulses, interrupt the CPU and send synchronization events to the DMA 

controller. The timer has two signaling modes and could be clocked by an internal or an 

external source. 
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4.2 The DSP Baseboard 
The Quixote DSP Baseboard card is shown in Fig. 4.3 and the architecture is 

shown in Fig. 4.4 [25]. Quixote consists of a TMS320C6416 600 MHz 32-bit 

fixed-point DSP chip and a Xilinx two- or six-million gate Virtex-II FPGA in a single 

board. Utilizing the signal processing technology to provide processing flexibility, 

efficiency and deliver high performance. Quixote has 32MBytes SDRAM for use by 

DSP and 4 or 8Mbytes zero bus turnaround (ZBT) SBSRAM for use by FPGA. 

Developers could build complicated signal processing systems by integrating these 

reusable logic designs with their specific application logic. 

 
Figure 4.3: Innovative Integration’s Quixote DSP Baseboard Card 
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Figure 4.4: The Architecture of Quixote Baseboard 

 

4.3 Data Transmission Mechanism 
 

 Many applications of the Quixote baseboards involve communication with the host 

CPU in some manner. All applications at a minimum must be reset and downloaded 

from the host, even if they are isolated from the host after that. 

For user’s different requirements, it provides different levels of support to 

efficiently accomplish. The simplest method supported is a mapping of Standard C++ 

I/O to the Uniterminal applet that allows console-type I/O on the host. This allows 

simple data input and control and the sending of text strings to the user. 

The next level of support is given by the Packetized Message Interface. This 

allows more complicated medium rate transfer of commands and information between 
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the host and target. It requires more software support on the host than the Standard I/O 

does. For full rate data transfers Quixote supports the creation of data streaming to the 

host, for the maximum ability to move data between the target and host. On Quixote 

baseboards, a second type of busmaster communication between target and host is 

available for use, it is the CPU Busmaster interface. 

The primary CPU busmaster interface is based on a streaming model where 

logically data is an infinite stream between the source and destination. This model is 

more efficient because the signaling between the two parties in the transfer can be kept 

to a minimum and transfers can be buffered for maximum throughput. In addition, the 

Busmaster streaming interface is fully handshook, so that no data loss can occur in the 

process of streaming. For example, if the application cannot process blocks fast enough, 

the buffers will fill, then the busmaster region will fill, then busmastering will stop until 

the application resumes processing. When the busmaster stops, the DSP will no longer 

be able to add data to the PCI interface FIFO. 

 However, in our application of AMR speech coding and RS coding scheme, the 

data sequence is first divided into RS blocks (or speech frames for AMR) then 

performed encoding and decoding procedure. Hence the continuous streaming may not 

be suitable for our requirements. Alternatively, there is a data flow paradigm supported 

for non-continuous data sequence called block mode streaming. For very high rate 

applications, any processing done to each point may result in a reduction in the 

maximum data rate that can be achieved. Since block mode does no implicit processing 

on a point-by-point basis, the fastest data rates are achievable using this mode. 

The DSP Streaming interface is bi-directional. Two streams can run simultaneously, 

one running from the analog peripherals through the DSP into the application. This is 

called the “Incoming Stream”. The other stream runs out to the analog peripherals. This 

is the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there 

is no direct access to analog peripherals from the host. The block diagram of the DSP 

streaming mode is shown in Fig. 4.5 [25]. 
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Figure 4.5: Block Diagram of DSP Streaming Mode. 

 

ing is initiated and started on the Host, using the Caliente component. 

 DSP interface uses pair of DSP/BIOS Device Drivers, PciIn (on the 

) and PciOut (on the Incoming Stream), provided in the Pismo 

s for the DSP. They use burst-mode and are capable of copying blocks 

target SDRAM and host bus-master memory via the PCI interface at 

es up 264 MBytes/sec. Typical desktop machines routinely support 

0 MBytes/sec. Besides, maximum throughput supported by the driver 

ndent on the size of the buffers used in the driver pool. 

to the busmaster streaming interface, the DSP and host also have a 

 communications link for sending commands or side information 

and target DSP. 
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4.4 Features of TI TMSC6000 Family DSP for 

Optimization 
 

 In this subsection, first the code development flow is presented to show how to 

program a DSP efficiently and systematically by the handmade efforts only. Secondly, 

the TI C6000 family pipeline structure is introduced for the ease to understand how the 

processor arrange the pipeline stages and what instruction is more time consuming and 

shall be avoided using if possible. Thirdly, an important techniques used by TI’s CCS 

compiler to improve the program speed performance, which is so-called “software 

pipelining”, is introduced and a simple example is given here to explain how we can 

improve the program efficiency by software pipelining technique. At last, the important 

option, the compiler level optimization, of TI’s CCS compiler is also involved for the 

advanced improvement of our handmade codes. 

 

4.4.1 Code Development Flow 

 

 Traditional development flows in DSP industry have involved validating a C 

model for correctness on a host PC or Unix workstation and then painstakingly porting 

that C code to hand coded DSP assembly language. This is both time consuming and 

error prone. The recommended code development flow involves utilizing the C6000 

code generation tools to aid in optimization rather than forcing the programmer to code 

by hand in assembly. These advantages allow the compiler to do all the laborious work 

of instruction selection, parallelizing, pipelining, and register allocation. Fig. 4.6 

illustrate the three phases in the code development flow [23]. Because phase 3 is kind of 

too detailed and time consuming, most of the time we will not go into phase 3 to write 

linear assembly code unless the software pipelining efficiency is hardly achieved or the 
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unbalanced resource allocation is hardly solved by the compiler or adjusting only the C 

code.  
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Figure 4.6: Code Development Flow. 

 

4.4.2 Pipeline Structure of the TI TMSC6000 Family 

 

 Pipelining is an efficient way to increase the instruction throughput. There are 

some features with regard to the TI C6000 family’s pipeline structure that can provide 

the advantages of optimum performance, low cost, and simple programming. The 

following are several useful features [21]: 

 Increased pipelining eliminates traditional architectural bottlenecks in 

program fetch, data access, and multiply operation. 

 Pipeline control is simplified by eliminating pipeline locks. 

 The pipeline can dispatch eight parallel instructions every cycle. 

 Parallel instructions proceed simultaneously through the same pipeline 

phase. 
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 The pipeline structure of the C6000 family consists of three basic pipeline stages, 

they are Fetch stage (PF), Decode stage (D), and Execution stage (E). At the F stage, the 

CPU first generates an address, fetch the opcode of the specified instruction from 

memory, and then pass it to the program decoder. At the D stage, the program decoder 

efficiently routes the opcode to the specific functional unit which determined by the 

type of instruction (LDW, ADD, SHR, MPY, etc). Once the instruction reaches E stage, 

it is executed by its specified functional unit. Most instructions of the C6000 family fall 

in the Instruction-Single-Cycle (ISC) category, such as ADD, SHR, AND, OR, XOR, 

etc. However, the results of a few instructions are delayed. For example, the multiply 

instructions - MPY (and its varieties) requires a delay length equal to one cycle. 

One cycle delay means that the execution result will not be available until one 

cycle later (i.e. not available for the next instruction to use). The results of a load 

instruction – LDW (and its varieties) are delayed for 4 cycles. Branches instructions 

reach their target destination 5 cycles later. Store instructions are viewed as an ISC from 

the CPU’s perspective because of the fact that there is no execution phase required for a 

store instruction but actually it still finish in 2 cycles later. Since the maximum delay 

among all the available instructions is 5 cycles (6 execution cycles totally), it is intuitive 

to split the execution stage (E) into six phases as shown in table 4.1. 

Execution Phases 
(Completing Phase) 

Instructions' Category 

E1 Instruction single cycle 

E2 Multiply and its varieties 

E3 Store and its varieties 

E4  

E5 Load and its varieties 

E6 Branch to destination 

 

 

 

 

 

 

 

Table 4.1: Completing Phase of Different Type Instructions. 
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4.4.3 Software Pipelining 
 

 Software pipelining is a technique for interleaving instructions from different 

iterations to eliminate the dependency within one iteration and exploit instruction level 

parallelism (ILP) in loops, so the delay slots can be filled and the functional units can be 

used more efficiently. TI’s CCS compiler is also capable of this. Overall it makes the 

loop become a highly optimized loop code and hence accelerate the program operating 

speed significantly. 

 For the ease to understand how software pipelining actually works, here we give an 

example to illustrate it [26]. A simple for loop and its code after applying software 

pipelining are shown in Fig 4.7(a) and 4.7(b). The loop schedule length is reduced from 

four control steps to one control step for software pipelined loop. However the code size 

of software pipelined loop is three times larger than the original code size in this 

example. Fig. 4.8(a) and 4.8(b) show the execution records of the original loop and the 

software pipelined loop, respectively.  

 A[1] = E[-3] + 9; 
A[2] = E[-2] + 9; 
B[1] = A[1] * 5’ 
C[1] = A[1] + B[-1]; 
A[3] = E[-1] + 9; 
B[2] = A[2] * 5; 
C[2] = A[2] + B[0]; 
D[1] = A[1] * C[1]; 
for i = 1 to n-3 do 
  A[i+3] = E[i-1] + 9; 
  B[i+2] = A[i+2] * 5; 
  C[i+2] = A[i+2] + B[i]; 
  D[i+1] = A[i+1] * C[i+1]; 
  E[i] = D[i] + 30; 
End 
E[n] = D[n] +30; 
D[n] = A[n] * C[n]; 
E[n-1] = D[n-1] + 30; 
B[n] = A[n] * 5; 
C[n] = A[n] + B[n-2]; 
D[n-1] = A[n-1] * C[n-1]; 
E[n-2] = D[n-2] + 30; 

 

 

 

 

 

 

 

for i = 1 to n do 
  A[i] = E[i-4] + 9; 
  B[i] = A[i] * 5; 
  C[i] = A[i] + B[i-2]; 
  D[i] = A[i] * C[i]; 
  E[i] = D[i] + 30; 
end 

 

 

 

    (a)         (b) 

Figure 4.7: (a) The Original Loop. (b) The Loop After Applying Software Pipelining. 
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Figure 4.8: (a) Execution Record of the Original Loop. (b) Execution Record of the 

Software Pipelined Loop. 

 

In these figures, we can clearly observe that there are only two (B and C) of the 

five instructions – A,B,C,D,E executed in parallel in original loop, while there are all 

five instructions executed in parallel in software pipelined loop and hence the program 

efficiency is improved significantly. We can also notice that the pipelined code can be 

classified into three regions: prologue, loop kernel (repeating schedule) and epilogue. 

The prologue is the “setup” to the loop. Running the prologue code is often called 

“priming” the loop. The length of the prologue depends on the latency between the 

beginning and ending of the loop code; i.e., the number of instruction and their latency. 

The epilogue refers to the ending instructions, which must be completed at the end after 

the loop kernel; it is kind of similar to the prologue and is optional, if necessary, it can 

be rolled into the loop kernel. Prologue and epilogue of the software pipelined loop 

occupy a large part of the code size, so there may be a trade-off issue between the speed 

and area consideration that we have to take into account. But since the program memory 

of the Quixote DSP baseboard is quite large and the original FEC code size is quite 

small, it may not be a serious issue if we adopt software pipelining on our loops. 
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 Concerning implementation on TI C6000 DSP family, C code loop performance is 

greatly influenced by how well the CCS compiler can software pipeline our loop. The 

compiler provides some feedback information for programmers to fine-tune the loop 

structure. By understanding the feedback information, we can quickly tune our C code 

to obtain the highest possible performance. The feedback is geared for explaining 

exactly what all the issues with pipelining the loop were and what the results obtained 

were. The compiler goes through three basic stages when compiling a loop, these stages 

are [23]： 

1. Qualify the loop for software pipelining. 

2. Collect loop resource and dependency graph information. 

3. Software pipelining the loop. 

 

In the first stage, the compiler tries to identify what the loop counter (named trip 

counter because of the number of trips through a loop) is and any information about the 

loop counter such as minimum value (known minimum trip count), and whether it is a 

multiple of something (has a known maximum trip count factor). 

If factor information is known about a loop counter, the compiler can be more 

aggressive with performing packed data processing and loop unrolling optimizations. 

For example, if the exact value of a loop counter is not known but it is known that the 

value is a multiple of some number, the compiler may be able to unroll the loop to 

improve performance. 

There are several conditions that must be met before software pipelining is allowed, 

or legal, from the compiler’s point of view. These conditions are： 

 It cannot have too many instructions in the loop. Loops that are too big 

typically require more registers than are available and require a longer 

compilation time. 

 It cannot call another function from within the loop unless the called function 

is inlined. Any break in control flow makes it impossible to software pipeline 

as multiple iterations are executing in parallel. 
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If any of the conditions for software pipelining are not met, qualification of the 

pipeline will halt and a disqualification messages will appear. In this situation, software 

pipelining will not be applied on our loop and hence the program operating speed will 

be quite slow. 

In the second stage, the compiler is collecting loop resource and dependency graph 

information, it will derive the loop carried dependency bound, unpartitioned resource 

bound across all resources, partitioned resource bound across all resources based on our 

loop code and shows the resource partition table, which summarizes how the 

instructions have been assigned to the various machine resources and how they have 

been partitioned between the A and B side, after it has the information about the three 

bounds. 

In the third stage, the compiler attempt to software pipeline our loop based on the 

knowledge it obtained from the previous two stages. The first thing the compiler 

attempts during this stage, is to schedule the loop at an iteration interval (ii) equal to the 

minimum value of the three bounds obtained in second stage. If the attempt was not 

successful, the compiler provides additional feedback message to help explain why it 

failed; i.e., register is live too long or did not find schedule, and the compiler will keep 

proceeding to ii = (previous failed ii + 1) till it find a valid schedule and then the 

software pipeline is done. 

 

4.4.4 Program-Level Optimization 
 

 Four optimization levels are provided by the CCS compiler. Program level is 

the highest one of optimization available. With program-level optimization, all our 

source files are compiled into one intermediate file giving the compiler complete 

program view during compilation. It performs various loop optimizations, such as 

software pipelining, unrolling, and SIMD, etc. and also other code size reducing like: 

eliminating unused assignments, eliminating local and global common sub-expressions, 
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and removing functions that are never called. It creates significant advantage for 

determining whether two pointers access the same memory location to eliminate the 

memory dependency in loops and lead to better schedules. 
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Chapter 5 

Implementation and Acceleration of AMR 

Speech Coding on TI DSP Platform 

 

As described in the previous chapter, we adopt the Texas Instruments (TI) digital 

signal processor (DSP) for implementing our AMR (Adaptive Multi-Rate) codec and 

RS (Reed-Solomon) decoder in the IEEE 802.16a wireless communication standard. In 

this chapter, we focus first on one of our major topic of this thesis – the implementation 

and acceleration of the AMR codec on the newly released II’s Quixote DSP baseboard. 

At first, we introduce some special features of TI C6000 family DSP that is helpful 

when doing compiler level optimization. Secondly, we proposed some simple and yet 

practically useful techniques to speed up the computational performance of the AMR 

codec for TI C64 family DSP. Then, we show the simulation profile, which is generated 

by the TI’s Code Composer Studio (CCS) built-in profiler, of the AMR codec after the 

acceleration. Finally, we describe the entire system structure and the operation of our 

AMR codec implemented on the TI C64 DSP platform. Moreover, the presentation of 

the execution time after our acceleration is also attached. 
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5.1 AMR Codec Acceleration 

 

 Follow the code development flow described in the previous chapter. Before 

actually revising our program code, we should first generate a profile by using the CCS 

built-in profiler to obtain exact execution cycles. Then we identify the parts of our 

program that consume the most execution time based on the profile data. And hence we 

concentrate on the most efficient method for speeding up them to make the whole 

program faster. The acceleration steps of our AMR codec program before it being 

implemented on TI DSP platform is discussed in the following subsections. 

 

5.1.1 AMR Code Profile 

 

There are two methods to use the standalone simulator for profiling [23] 

 The –g option provides a profile of all of the functions in our application. 

 If we are interested in only one or two functions or a region of code inside a 

function, the clock( ) function can be used to time the region specified. 

 

For the purpose to find which parts take the most operation time, we choose the 

first method to compare all the functions in our AMR program. The source code we use 

here is the adjusted one of the fixed-point version from the AMR speech codec series of 

the 3GPP specification website. And the test sequences used to profile our code is also 

obtained from there. The function and the usage of the source code involves are 

described as follow. 

The general command line syntax for the encoder program is 

encoder [options] amr_mode input_filename bitstream_filename 

or 

encoder [options] -modefile=mode_file input_filename bitstream_filename 
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 Basically, it contains the filenames of input and output files for user to specify, and 

the format of the input speech file is 16-bit linear encoded PCM speech samples with 

the 8 kHz sampling rate and the frame length of 160 samples. The frame of the encoder 

output bitstreams are structured as 

1 word frame type 

244 words encoded speech parameter bitstream (one bit per word, each word 

contains either 0x0001 or 0x0000), unused bits written as 0x0000 

for modes < MR122 

1 word mode information 

4 words unused (written as 0x0000 by encoder) 

 

In the first case of the syntax, “amr_mode”, which represents one of the eight 

source rates of AMR codec, must be one of MR475, MR515, MR59, MR67, MR74, 

MR795, MR102, and MR122. In the second case, the text file “mode_file” must contain 

the mode names to be used. This mode is capable of switching its bit-rate every 20-ms 

speech frame. 

The option recognized by the encoder command line is “-dtx”, which is used to 

enable DTX operation. The information that explains the DTX operation can be found 

in the chapter 2. 

The general command line syntax for decoder program is similar to the one for 

encoder except for the predetermined mode: 

decoder [options] bitstream_file output_file 

 The structure of the input bitstream and output file for decoder are the same as the 

output bitstream and input file described in the encoder section. The mode and frame 

type for decoding also refers to the information contained in the received bitstream 

unless the option “-rxframetype” is used to force RX frame type (instead of TX frame 

type in the input file). However, this option is only useful for simulations. 
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 We first profile this original version AMR program by the CCS simulator without 

compiler-direct optimizations and handmade improvements. First we roughly segment 

the AMR encoder procedure into a few major sections and the measure their operation 

cycles by the CCS build-in profiler. 

 

Procedure Cycles Percentage (%) 
Pre-processing 148,205 1.46

Linear Prediction Analysis 1,509,708 14.85
Open-Loop Pitch Analysis 1,789,777 17.61

Impulse Response and Target Signal 
Computation 

857,060 8.43

Adaptive Codebook Search 1,745,931 17.18
Algebraic Codebook Search 3,265,651 32.13

Quantization of the Adaptive and 
Fixed Codebook Gains 

789,478 7.77

Memory Update 58,466 0.58

Table 5.1: Profile of AMR Encoder Provided by 3GPP 

 

 As shown on Table 5.1, the algebraic codebook search part takes the most cycles in 

the AMR encoder. Therefore, we further analyze this module to find which sub-module 

uses the most percentage of operation time. It is found that the action of searching the 

best codevector is the most time-consuming unit, and it takes about 54.42% of the 

algebraic codebook search execution cycles. Then, we analyze the code structure of this 

unit, and it is presented as the combination of value assignments and various basic 

operations, such as addition, subtraction, multiplication, and division, etc. The other 

functions are written in a similar style – a sequence of function calls of the mentioned 

basic operations. Similar cases appear in the AMR decoder, too. Moreover, the profile 

data for individual functions of the encoder, which is shown in Table 5.2, supports our 

observation. 
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Function 
Name 

Count 
Average 
Cycles 

Total Cycles 
Percentage 

(%) 
L_mult 101,960 46 4,690,160 19.00
L_add 84,888 38 4,057,107 16.44
L_mac 72,338 126 9,840,534 39.88

saturate 34,749 70 2,466,864 10.00
mult 20,545 128 2,640,418 10.70

L_sub 17,739 36 638,988 2.59
L_msu 15,133 124 1,881,897 7.63
round 10,016 113 1,132,027 4.59
add 7,110 116 824,760 3.34
sub 6,854 115 794,749 3.22

Table 5.2: Profile of the Top Ten Encoder Functions Called Most (Except for the 

Functions Containing Value Assignment Only) 

 

More exactly the most frequently called functions are the mathematical arithmetics 

including mult (multiplication), add (addition), mac (multiplication and cumulation), 

saturate (saturating the 32-bit input to a 16-bit value), sub (subtraction), msu 

(multiplication and subtraction), round (rounding the 32-bit input to the MSB 16-bit 

value). In Table 5.2, the letter “L” in the function names represents 32-bit outputs. 

Although each individual arithmetic function has only a few operation cycles, the 

considerable account of calling them results in the enormous cumulative time of 

execution. Specially, “L_mac” occupies up to 39.88% of the whole encoding time 

although it calls the functions of addition and multiplication only. Hence based on the 

above obsevations, it is noticeable for us to accelerate the codes of the basic arithmetic 

functions. 
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5.1.2 Acceleration by Using the Intrinsics 

 

Before introducing the acceleration methods we use, let us summarize our main 

points in the previous section. 

1. Referring to the profiling data and the discussion in the previous section, we 

know that to focus on the arithmetic functions is the overriding work for 

accelerating the AMR codec. Those arithmetic functions are called for 

numbers of times by various procedures, so simply improving their codes is 

quite efficient way to speed up more than one procedure and even the whole 

AMR codec. 

2. It matters that we accelerate the AMR codec by improving the coding style of 

those arithmetic functions instead of changing the algorithm of the procedure 

taking the most cycles. The reason is that the specification of the AMR speech 

codec is fixed by the standard, and even the detail operations of any 

procedure are defined. Not like the audio and video standards, algorithms of 

the speech coding standard are always fixed and not flexible for us to modify. 

 

The above points sufficiently support us to accelerate the AMR codec primarily by 

the code improvement of the arithmetic functions. First, we profile those functions 

before acceleration as shown in Table 5.3. 

 

 

 

 

 

 

 

 

 75



Function Name Count Code Size 
Average 
Cycles 

Total Cycles 

saturate 34,749 152 70 2,466,864
abs_s 19 116 48 927

shl 327 320 110 35,970
shr 1,098 252 68 75,681

mult 20,545 124 128 2,640,418
L_mult 101,960 124 46 4,690,160
negate 162 76 32 5,184
L_add 84,888 148 47 4,057,107

L_negate 5 68 25 125
mult_r 240 148 136 32,826
L_shr 1,815 236 63 115,737
L_abs 180 96 37 6,696

norm_s 10 204 202 2,027
norm_l 103 180 287 29,648

Table 5.3: Profile of AMR Codec Arithmetic Functions (Not Counted are Value 

Assignments or Function Calling Only). 

 

 It is clear that the calling account is the most important factor that contributes the 

total execution cycles. Each function takes a few cycles and has a simple structure 

because it contains a couple of basic arithmetic operations. It seems that the most 

obvious way to accelerate it without increasing the code size is using intrinsic functions 

(or intrinsics). 

The intrinsics, which are special functions provided by the C6000 compiler, map 

directly to inline C64x instructions and hence result in no increase of the code size [23]. 

They can speed up the codes quickly and efficiently and are accessed by just calling 

them as an ordinary function with a leading “_”. The intrinsics we use to accelerating 

those arithmetic functions are introduced below [23]. 
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int _spack2(int src1, int src2) Two signed 32-bit values are saturated to 16-bit 

values and packed into the return value. 

int _abs2(int src2) Calculates the absolute value for each 16-bit 

value. 

int _sshl(int src2, uint src1) Shifts src2 left by the contents of src1, saturates 

the result to 32 bits, and returns the result. 

int _sshvr(int src2, int src1) Shifts src2 to the right of src1 bits. Saturates the 

result if the shifted value is greater than 

MAX_INT or less than MIN_INT. 

int _mpy(int src1, int src2) Multiplies the 16 LSBs of src1 by the 16 LSBs 

of src2 and returns the result. 

int _smpy(int src1, int src2) Multiplies src1 by src2, left-shifts the result by 

one, and returns the result. If the result is 

0x80000000, saturates the result to 

0x7FFFFFFF. 

int _ssub(int src1, int src2) Subtracts src2 from src1, saturates the result 

size, and returns the result. 

int _sadd(int src1, int src2) Adds src1 to src2 and saturates the result. 

Return the result. 

int _abs(int src2) Returns the saturated absolute value of src2. 

uint _norm(int src2) Returns the number of bits up to the first 

nonredundant sign bit of src2. 

 

The function names shown in the above are the intrinsics we use, where “int” and 

“uint” represent the data types of integer and unsigned integer. The arithmetic 

operations of the AMR codec program are of many different kinds, but the amount of 

intrinsics C64x provided is a few. To accelerate every operation which takes excessive 
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execution time, we need to modify its argument before calling it and/or add additional 

simple operations to its output. 

For example, a simple way to realize the calculation of a 16-bit absolute value is to 

use “_abs2” because this instruction only imports the 16-bit LSBs of its two inputs even 

if the input data type supported by the instruction is a 32-bit integer. Hence we can 

import a zero and the value which needs to be calculated its absolute value as the two 

inputs and truncate the output to a 16-bit LSB. 

Another example is to realize the “negate” operation, which is to negate one 16-bit 

value with saturation when the minimum negative input appears. Here, we use the 

intrinsic “_ssub” to achieve this operation by subtracting the input value from zero. 

However, the intrinsic is designed for the 32-bit operation and performs only the 32-bit 

saturation instead of the 16-bit one. We shift the input to the left by 16 bits and then 

shift back the output to the right by 16 bits after the intrinsic “_ssub” realizes the 

“negate” operation. It corresponds to enlarging the 16-bit input to 32-bit to make it 

suitable for the 32-bit operation of “_ssub” and recover the result after the intrinsic is 

executed. 

The “saturate” function is the operation to saturate a 32-bit value to 16 bits and has 

to be speeded up to reduce its total execution cycles. By a way similar to the previous 

cases, we have two choices of the intrinsics to perform the “saturate” operation. One is 

the intrinsic of “_sshl”, which performs shift left and checks if the saturation happens. 

Hence, it is immediate that we can use “_sshl” to shift the input to the left of 16 bits and 

saturate the result, and then we have to shift back its output by hand. Alternatively, 

“_spack2” is the other choice. Both of its 32-bit inputs are packed into one 32-bit value 

after their 16-bit LSBs are satureated. Corresponding to the case of calculating 16-bit 

absolute value, a zero and the input value are imported into the intrinsic “_spack2”, and 

its output truncated to 16 bits is the outcome of the “saturate” function. 

Previous examples are several of our works in using the intrinsics to accelerate the 

arithmetic functions. The profile of the codes after improvement is shown in Table 5.4, 

where their percentage of acceleration is also listed. 
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Function 
Name 

Count Code Size 
Average 
Cycles 

Total 
Cycles 

Improvement 
Percentage (%)

saturate 34,749 96 35 1216285 50.70
abs_s 19 48 24 456 50.81

shl 327 268 85 27795 22.73
shr 1,098 148 44 48312 36.16

mult 20,545 100 82 1684690 36.20
L_mult 101,960 108 43 4384280 6.52
negate 162 56 26 4212 18.75
L_add 84,888 116 45 3887331 4.18

L_negate 5 40 16 80 36.00
mult_r 240 120 89 21360 34.93
L_shr 1,815 152 43 78045 32.57
L_abs 180 40 16 2880 56.99

norm_s 10 76 34 340 83.23
norm_l 103 64 25 2575 91.31

Table 5.4: Profile of AMR Arithmetic Functions Listed in Table 5.3 after 

Acceleration

 

  Referring to Table 5.4, generally, using the intrinsics can achieve a high 

acceleration gain even up to 91.31%, and the code size is also highly decreased 

because some block of codes can be replaced with one intrinsic function. However, 

between their codes there are still some arithmetic functions of insignificant 

improvement efforts because a few flags, like “overflow” or “carry”, which discourage 

the usage of the intrinsics. For example, the function “L_add” performs the saturation 

after addition, and the intrinsic with this operation is also available. However, if the 

constraints of saturation are matched, the output of addition is not only adjusted to the 

maximum or minimum of an integer, but also the flag “overflow” is set by the function. 

Hence, only the operation of the addition and saturation in the “L_add” can be 

replaced with the intrinsic. The branch instructions for the judgment of saturation still 

cannot be eliminated because there is a flag operation in the “L_add”. It is also the 

restriction of the intrinsics that the user has to make sure that the properties of the 

 79



target operations match well the intrinsics, otherwise, little improvement after 

implementation. 

 

5.1.3 Compiler Level Improvement 

 

In the last part for acceleration of the AMR codec, we try to improve the speed of 

our program by tuning the CCS compiler’s setting. The compiler is always more 

conversant with the structure of DSP hardware than the programmers. Even if the 

handmade improvement has been finished, the codes may not be suitable for software 

pipelining. 

In order to make the compiler work more efficiently, we try to set the “Opt. Level” 

option to the “File” level [23]. It enables the compiler to comprehend the information of 

the entire program. As described in the chapter 4, this setting can deal with certain 

function calls inside a loop and eliminate the coding styles that disable the software 

pipelining. The execution cycles after the file level optimization are presented in Table 

5.5 and are also compared here to the non-optimized version of the codes with and 

without the intrinsics. 

 

Encoder Version Code Size Cycles 
Improvement 

Percentage (%) 
Original 31,791,683 24,673,217 N/A

Modification with 
Intrinsics 

31,790,850 22,656,174 8.18

File-Level 
Optimization 

31,757,874 7,678,555 66.11

Table 5.5: Profile of Different Improved Versions of AMR Encoder 
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Decoder Version Code Size Cycles 
Improvement 

Percentage (%) 
Original 31,681,519 3,412,267 N/A

Modification with 
Intrinsics 

31,680,687 3,190,223 6.51

File-Level 
Optimization 

31,662,943 1,155,983 63.76

Table 5.6: Profile of Different Improved Versions of AMR Decoder 

 

The lists of “Improvement Percentage” in Table 5.5 and Table 5.6 show the 

improvement gain between the previous and present versions. Compared to the original 

setting, the program is executed much more efficiently, and a large percentage of cycles 

about 68.88% for the encoder and 66.12% for the decoder is reduced in the final version. 

We also measure the processing cycles using the file-level optimization without 

intrinsics. The improvement percentage decreases to 58.05% for the encoder and 

57.15% for the decoder because of the reason below: 

The intrinsic integrates multiple lines of codes into one instruction, and this 

benefits the compiler to establish the software pipelines. Hence, the gain of the file-level 

optimization without intrinsics may be lower, and, on the other hand, the intrinsics 

without compiler-direct optimization obtain limited benefits because the software 

pipeline disables without suitable function inlining. 
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5.2 AMR Codec on C64x DSP Platform 

 

5.2.1 Structure of AMR Implementation 

 

 The code development environment is Visual C++ with Armada library provided 

by II at the host end and Code Composer Studio (CCS) with Matador Pismo library at 

the DSP end. We choose the GUI interface to import the input and show the results for 

convenience and visualization. 

The program located at the host end responses for the interface initialization, the 

definition of button clicks, and the message handler. The message, which is one of the 

data transmission mechanism supported by our DSP platform, is described previously in 

Chapter 4. It is used for the transmission of small amount of data at low speed such as 

signaling between the host and DSP. Thus, the message handler should include the 

actions to reply to various kinds of messages. The other transmission mechanism we use 

in our implementation is block-based data transfer, which is also described in Chapter 4 

and it is responsible for the data transfer between the host and DSP end. 

 The DSP program consists of the main function, the definition of thread, and also 

the message handler. The thread, which is a class with the procedure we want to execute, 

is the primary part at the DSP end. The DSP platform supports the execution of multiple 

threads. Multi-thread execution benefits only when the processor is idle during the 

program execution in the single-thread mode. In our case, the next data is fed to the 

DSP right after the present data is processed completely. Hence this function is needless 

to us. The structure described above is summarized by Figure 5.1. 
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Figure 5.1: Structure of AMR Speech Codec Implementation on the Host and DSP 

 

5.2.2 Execution Flow of AMR Implementation 

 

 We focus on the implementation of the AMR encoder program first. Its interface is 

shown in Fig. 5.2. This interface has one editorial text field and three buttons on the 

right side. The text field on their left side is used to show state messages to users. We 

can input a source rate in the editorial text field, which is supported by the AMR speech 
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encoder, and the default is 4.75 kbit/s. The button “Coff File…” is used to choose the 

path of the compiled bitstream file. The button “Download” is then clicked to download 

the chosen bitstream. The message “Download Complete.” shall be shown in the left 

text field when the whole bitstream has been downloaded. “Transfer” is the third button 

for running the downloaded program, and the text field for importing the source rate is 

disabled until “Transfer” is clicked again to stop the program. If the program is stopped 

in the middle, and the source rate is changed by the user, our program is capable to 

update the AMR coding mode for the speech frames of rest. Moreover, some 

information, the number of blocks transferred, the byte rate, and the transferring state, 

shall be shown below during running the program. 

The flowchart of the AMR encoder processing is shown in Fig. 5.4. First, the GUI 

interface should be initialized right after the program executing at the host end. All 

objects on the interface like text editing boxes, buttons, or check boxes, etc. are mapped 

to the parameters available to the program, and the events of objects also need to be 

assigned to the functions defined by the programers. Then we have to choose the path of 

compiled bitstream file of the AMR encoder program to download to the DSP 

baseboard. Once the bitstream file is download completely, the DSP end sends a login 

message to inform the host end, and we can start to execute our program by clicking the 

button “Transfer”. The thread is generated when the data transfer begins. The imported 

source rate is also read and saved to a parameter to specify the AMR encoder processing 

mode. And the text field for importing the source rate is set non-active at the same time. 

The thread is used to read inputs and write outputs to files. It also manages sending 

blocks of data to DSP for encoding and receiving the processed blocks from DSP. Also 

the mode information is transmitted together with the speech data to achieve higher 

efficiency. At the host, one frame data is transmitted, and a flag which is set as long as 

“Transfer” is clicked again to stop the transfer is also inspected for each loop. This flag 

is used to decide whether the transfer is on or not. If the transfer is off, the flag shall be 

set, and the text field is set active for users to specify a new coding rate. The speech 
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frames of rest are encoding with the updated mode information after the transfer begins 

again. 

 

 
 

 
 

Figure 5.2: (a) Graphical Interface of the AMR Encoder Implementation. (b) A 

Snapshot of Running the Program. 

 

At the DSP end, the thread with our AMR encoding procedure is generated and 

executed after the program bitstream is downloaded to the DSP baseboard completely. 

The program in the thread is also initialized for the memory allocation. Then, it waits to 

receive the data blocks from the host end. After the input data blocks are received, the 

program performs the AMR encoding process and transmits back the coded data. 

Finally, some parameters like the excitation signal of the previous frame shall be 

updated for the next loop. 

 85



The AMR decoder implementation is the same as that of the AMR encoder. 

However, the AMR coding mode is fixed in the coded bitstream, and hence no input 

text field on the interface is provided for the user to specify the AMR decoding mode. 

Its interface is shown as Fig. 5.3. The program execution flow is also the same as the 

encoder except that the encoder part is replaced by the decoder and the parts involving 

the coding mode should be deleted, so we do not describe here again. 

 

 
 

 
 

Figure 5.3: (a) Graphical Interface of the AMR Decoder Implementation. (b) A 

Snapshot of Running the Program. 
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Figure 5.4: the Flowchart of the AMR Encoder Implementation 
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5.2.3 Performance Analysis 

 

In this section, we present the execution time of our implementation for each 

source rate supported by the AMR codec. We use the test sequences provided by 3GPP. 

They are marked as “TSx” and described as follow [27]: 

TS0: Synthetic harmonic signal. The pitch delay varies slowly from 18 to 143.5 

samples. The minimum and maximum amplitudes are -997 and +971. 285 frames. 

TS1: Female speech, active speech level: -19.4 dBov, flat frequency response, 301 

frames. 

TS2: Male speech, active speech level: -18.7 dBov, flat frequency response, 224 

frames. 

 

We first show the code size of the AMR codec downloaded to the DSP baseboard 

at the different acceleration levels in Table 5.7 and 5.8. 

 

Acceleration Level Total Code Size Improvement Percentage (%)
Original 17,449,709 N/A

Modification with Intrinsics 17,448,909 0.0046
File-Level Optimization 17,372,845 0.436

Table 5.7: Code Size of the AMR Encoder for Different Acceleration Level 

 

Acceleration Level Total Code Size Improvement Percentage (%)
Original 17,337,934 N/A

Modification with Intrinsics 17,334,566 0.019
File-Level Optimization 17,280,686 0.311

Table 5.8: Code Size of the AMR Decoder for Different Acceleration Level 

 

The total code size contains the on chip memory, L2 cache, and SDRAM. 

Referring to Tables 5.7 and 5.8, it is shown that the code size dose not benefit much for 
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all acceleration levels, and the code size is about 17.4 MB for the encoder and 17.3 MB 

for the decoder. 

Next we present the execution time for each test sequence under different source 

rates and acceleration level. To make it perspicuous, we divide the result data into two 

subsections, the encoder and decoder part, and also attach the improvement percentage 

between the different acceleration level for each table. 

 

5.2.3.1 AMR Encoder Performance Analysis 

 

 We use the time or clock function to obtain the processing time for each test 

sequence at the host end. The time function is inserted before sending data blocks and 

after receiving coded blocks to count the coding duration. Hence this duration consists 

of the AMR encoding time and the block transfer overhead. It is measured and sown as 

follow: 

 

1. the Original AMR Encoder (Provided by 3GPP) 

 

Encoding Time (ms/frame) Source Rate 
(bits/sec) TS0 TS1 TS2 

4.75 42.06 42.19 42.11 
5.15 33.31 33.34 33.40 
5.9 37.21 37.33 37.29 
6.7 43.89 44.12 43.86 
7.4 41.36 41.52 41.44 
7.95 43.19 43.62 43.55 
10.2 43.25 43.39 43.23 
12.2 45.01 45.15 45.25 

Average 41.16 41.33 41.27 

Table 5.9: Execution time of the DSP Implementation under Different Source Rate for 

Each Test Sequence 
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2. Improved AMR Encoder with Intrinsics 

 

TS0 TS1 TS2 Source Rate 
(bits/sec) ms/frame % ms/frame % ms/frame % 

4.75 39.46 6.18 39.49 6.40 39.30 6.67 
5.15 31.41 5.70 31.58 5.28 31.56 5.51 
5.9 35.07 5.75 35.14 5.87 35.05 6.01 
6.7 41.22 6.08 41.32 6.35 41.17 6.13 
7.4 38.97 5.78 39.06 5.92 38.98 5.94 
7.95 40.69 5.79 40.99 6.03 40.95 5.97 
10.2 40.62 6.08 40.79 5.99 40.73 5.78 
12.2 42.31 6.00 42.45 5.98 42.43 6.23 

Average 38.72 5.93 38.85 6.00 38.77 6.06 

Table 5.10: Execution time of the DSP Implementation under Different Source Rate for 

Each Test Sequence (ms/frame: the Processing Time for one frame, %: Improvement 

Percentage). 

 

3. File-Level Optimization 

 

TS0 TS1 TS2 Source Rate 
(bits/sec) ms/frame % ms/frame % ms/frame % 

4.75 14.09 64.29 14.07 64.37 14.13 64.05 
5.15 11.18 64.41 11.25 64.38 11.17 64.61 
5.9 12.83 63.42 12.81 63.55 12.83 63.40 
6.7 15.00 63.61 15.04 63.60 15.02 63.52 
7.4 14.34 63.20 14.37 63.21 14.31 63.29 
7.95 14.93 63.31 15.07 63.23 15.02 63.32 
10.2 14.69 63.84 14.74 63.86 14.67 63.98 
12.2 15.28 63.89 15.24 64.10 15.24 64.08 

Average 14.04 63.74 14.07 63.78 14.05 63.76 

Table 5.11: Execution time of the DSP Implementation under Different Source Rate for 

Each Test Sequence (the Lists Representation is the Same as Table 5.10). 
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 The format of all the three test sequences is 8 kHz sampling rate, 16 bits/sample, 

and 160 samples/frame speech. The duration of one frame is 20 ms. Referring to Tables 

5.8, 5.9, and 5.10, it is observed that the coding time relates with the AMR coding mode 

more than the different test sequences. The final AMR encoder implemented on the 

DSP baseboard after our acceleration takes the coding time about 14.05 ms/frame and is 

improved up to 65.94% with respect to the original for average. Hence it reaches the 

coding speed of real time. Moreover, it is noted that the coding time shown in the three 

tables contains the time of the data transfer between the host and DSP end, and the data 

transfer time is measured alone about 0.28 ms/frame for average. Hence the pure AMR 

encoding time is about 13.77 ms/frame. 

 

5.2.3.2 AMR Decoder Performance Analysis 

 

 We measure the AMR decoding time by the same method as the encoder. 

 

1. the Original AMR Decoder (Provided by 3GPP) 

 

Encoding Time (ms/frame) Source Rate 
(bits/sec) TS0 TS1 TS2 

4.75 6.25 6.29 6.26 
5.15 6.33 6.22 6.26 
5.9 6.33 6.22 6.26 
6.7 6.40 6.39 6.26 
7.4 6.18 6.12 6.04 
7.95 6.32 6.36 6.35 
10.2 6.15 6.29 5.99 
12.2 6.57 6.39 6.30 

Average 6.32 6.29 6.22 

Table 5.12: Execution time of the DSP Implementation under Different Source Rate for 

Each Test Sequence 
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2. Improved AMR Decoder with the Intrinsics 

 

TS0 TS1 TS2 Source Rate 
(bits/sec) ms/frame % ms/frame % ms/frame % 

4.75 5.90 5.60 5.92 5.88 5.81 7.19 
5.15 5.90 6.79 5.86 5.79 5.90 5.75 
5.9 5.94 6.16 5.92 4.82 5.86 6.39 
6.7 5.97 6.72 5.89 7.82 5.90 5.75 
7.4 5.84 5.50 5.82 4.90 5.72 5.30 
7.95 5.94 6.01 5.96 6.29 5.99 5.67 
10.2 5.66 7.97 5.89 6.36 5.68 5.18 
12.2 6.05 7.91 5.95 6.89 5.94 5.71 

Average 5.90 6.65 5.90 6.20 5.85 5.95 

Table 5.13: Execution time of the DSP Implementation under Different Source Rate for 

Each Test Sequence (ms/frame: the Processing Time for one frame, %: Improvement 

Percentage). 

 

3. File-Level Optimization 

 

TS0 TS1 TS2 Source Rate 
(bits/sec) ms/frame % ms/frame % ms/frame % 

4.75 2.46 58.30 2.46 58.45 2.37 59.21 
5.15 2.43 58.81 2.46 58.02 2.37 59.83 
5.9 2.39 59.76 2.43 58.95 2.42 58.70 
6.7 2.46 58.79 2.46 58.23 2.42 58.98 
7.4 2.43 58.39 2.36 59.45 2.42 57.69 
7.95 2.46 58.59 2.46 58.72 2.42 59.60 
10.2 2.39 57.77 2.43 58.74 2.37 58.27 
12.2 2.46 59.34 2.43 59.16 2.42 59.26 

Average 2.44 58.64 2.44 58.64 2.40 58.97 

Table 5.14: Execution time of the DSP Implementation under Different Source Rate for 

Each Test Sequence (the Lists Representation is the Same as Table 5.13). 
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 The final AMR decoder implemented on the DSP baseboard after our acceleration 

takes the processing time about 2.43 ms/frame and is improved up to 61.31% with 

respect to the original for average. It matches the real time requirement. The data 

transfer time alone is also about 0.28 ms/frame. Hence, the pure AMR decoding time is 

about 2.15 ms/frame. 
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Chapter 6 

Implementation and Acceleration of 802.16a 

Reed-Solomon Decoder on TI DSP Platform 

 

After introducing the AMR speech coding part, in this chapter, we are going to 

discuss the second major topic – the implementation and acceleration of the specified 

Reed-Solomon coding scheme on the same DSP platform. The AMR codec and the RS 

coding scheme are both specified in the IEEE 802.16a wireless communication standard. 

The AMR codec belongs to the source coding part, while the RS coding belongs to the 

channel coding part. The RS coding scheme connects directly to the block of AMR 

speech coding and provides it with the ability against channel errors. The acceleration 

work of the RS code would be mainly focused on the decoder because it is more 

complicated than the encoder. 

At first, as the general flow of acceleration, the structure and profile of the original 

RS decoder is introduced. Then we describe the algorithms proposed to obtain the 

further improvement. Also, an alternative procedure for RS decoding, the remainder 

decoding algorithm [30] [31] [35], is implemented for comparison with the former 

system. Finally, we report the total effort of acceleration and the DSP implementation of 

our system. 
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6.1 Acceleration on Reed-Solomon Decoder 

 

 We first generate a computational profile by using the CCS built-in profiler to 

obtain the execution cycles. Then, we identify which parts of our program consume the 

most execution time based on the profile data, and hence we pay our attention on these 

parts to speed up the whole program. In the following subsections, the processing flow 

of our RS decoder program on TI DSP platform is divided into several procedures to 

improvement work. 

 

6.1.1 Profiling the Original RS Decoder 

 

 The starting point of our RS decoder is the version that has been improved using 

several acceleration techniques on the well-known RS decoding flow. It was written by 

Y.-T. Lee in 2004 for his MS thesis [20]. We call it the Lee decoder. The well-known 

RS decoding flow has been described in Chapter 3, which consists of the four procedure 

units: 

 Syndrome computation 

 Berlekamp-Massey algorithm (BM algorithm) 

 Chien search 

 Forney algorithm 

The Lee decoder program we intend to accelerate uses a look-up table to realize the 

Galois field multiplier and has improved the BM algorithm and Chien search by some 

fast versions. 

The inversion of discrepancy needed during the computation of the original BM 

algorithm is complex and time-consuming due to the requirement of chain 

multiplication. Hence the inverse-free BM algorithm is used to reduce the inversion 

operations to one time. Compared to the original BM algorithm, the Lee decoder 

program has greatly reduced the number of inversion operations. 
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Two features of Chien search are used to improve it. One feature is early 

termination. We can substitute elements to find the roots until the number of roots 

match the order of the errata locator polynomial instead of substituting all the elements. 

The other is skipping nonused position in Chien search. The inputs of different block 

sizes defined in IEEE 802.16a standard should be padded with zeros in the (255, 239, 8) 

RS encoding. Thus, we also have to pad the same zeros to the input at the RS decoder. 

Therefore, the positions of zero padding are never wrong and cannot be the roots of the 

errata locator polynomial. Those positions can be skipped in checking roots. 

The improvement described above has been done in the version of RS decoder we 

start with, and we call this version the Lee RS decoder for convenience. The profile of 

the Lee RS decoder is shown in Table 6.1 without compiler level optimization. 

 

Function Name Code Size Cycle 
Percentage 

(%) 
Syndrome Computation 480 249,294 80.98

BM Algorithm 1,920 23,962 7.78
Worst Case 25,375 8.24Chien 

Search Best Case 
804

902 N/A
Forney Algorithm 1,064 9,211 2.99

Table 6.1: Profile of the Lee RS Decoder 

 

 The “Percentage” in Table 6.1 represents the execution cycles of individual 

functions in percentage of the whole RS decoder. The Chien search is discussed for two 

cases because it may early terminate when the number of roots reaches the order of the 

errata locator polynomial in the Lee RS decoder. The worst case represents that one of 

the errors happens in the last position, and therefore we have to substitute all the 

elements for finding the last roots. Respectively, the best case represents that no error 

happens. It is clear that the possibility of the best case is very low. To insure real-time 

operation, we focus mainly on the worst case, and the details will be discussed in the 

following sections. 
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 Referring to Table 6.1, it shows that the procedures of syndrome computation and 

Chien search take the most execution time, and our acceleration work on them are 

described in the next section. 

 

6.1.2 Modifications of RS Decoder 

 

6.1.2.1 Syndrome Computation Improvement 

 

 The syndrome can be formally defined as follow: 

 Si = R mod G where i = (0, 1, 2, 3, …, 15) for GF(28) 

 The received codeword may be expressed in polynomial form as follow: 

 Ri = r0XN-1 + r1XN-2 + … + rN-1 

 Where the length of the received codeword is N. In our case of (255, 239, 8) RS 

code, N equals to 255. Let the first 2T powers of beta be specified as shown below, 

where beta = {β0, β1, …, β15}. The 16 syndromes are now expanded as follows: 

 S0 = r0β0
N-1 + r1β0

N-2 + … + rN-2β0
 1+ rN-1 

 S1 = r0β1
N-1 + r1β1

N-2 + … + rN-2β1
 1+ rN-1 

 …… 

 S15 = r0β15
N-1 + r1β15

N-2 + … + rN-2β15
 1+ rN-1

 It can be seen that computing the syndromes amounts to polynomial evaluation at 

the roots as defined by beta. In the Lee RS decoder, this is done recursively using the 

Horner’s rule. For example, the recursive computation of S0 is shown below: 

 S0 = (… ((r0β0 + r1) β0 + r2) β0 + … rN-2) β0 + rN-1 

According to the computation procedure shown in Figure 6.1, the C code 

implementation involves two loops, an outer loop that iterates once for every syndrome 

and an inner loop that iterates over all the field elements. In order to obtain a better 

performance from the architecture, we unroll the inner loop. 
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 for (j = 1; j <= 16; j++) { 
  for (i = 0; i < 255; i++) { 
   product = gf_mul_tab(Alpha_to[B0-1+j],s[j]); 
   s[j] = product ^ data[i];    
  } 
 } 

 

 

 

 

 

Figure 6.1: the C Code of the Syndrome Computation in the Lee Decoder 

 

 We should choose a way to unroll the loop efficiently. Here is an approach similar 

to that of a radix-4 FFT [28]. The received codeword is read starting at locations 0, N/4, 

N/2, and 3N/4. Horner’s rule is now applied recursively to all four parts of the 

syndrome polynomial using the input data read in all four locations (N/4 – 1) times. The 

syndrome polynomials are thus segmented as shown below: 

 s0 = r0β0
63 + r1β0

62 + … + r62β0
 1+ r63 

 s1 = r64β0
63 + r65β0

62 + … + r126β0
 1+ r127 

 s2 = r128β0
63 + r129β0

62 + … + r190β0
 1+ r191 

 s3 = r192β0
63 + r193β0

62 + … + r255β0
 1+ r256 

 The four segments use the same powers of beta, and it means that only one beta 

value has to be read in one iteration for computing the terms of these four polynomials. 

Then, these four segments has to be weighted and cumulated as follow to obtain the 

syndrome we want: 

 S0 = s0β0
192 + s1β0

128 + s2β0
64 + s3

 It should be noticed that our received codeword length is 255, so we have to assign 

a zero to r0 to use this method. This method has the benefit in the reduction of the 

memory access of beta values. It is also able to reduce the number of the inner loops. 

The profile data of the modified syndrome computation is compared in Table 6.2. 
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Version Code Size Cycle 
Improvement 

Percentage (%)
Lee Decoder RS Syndrome 

Computation 
480 249,294 N/A

Modified RS Syndrome 
Computation 

748 172,607 30.76

Using the Intrinsic _gmpy4 680 47,486 72.49
Improved with More Intrinsics 816 34,058 28.28

Compiler File-Level Opt. 564 5,503 83.84
Compiler File-Level Opt. 

(Lee Decoder) 
296 104,378 58.13

Table 6.2: Improvement of Syndrome Computation 

 

 The list of the modified RS syndrome computation in Table 6.2 is the version using 

the method we propose here, and it improves the original one up to 30.76% of cycles 

without compiler-level optimization. The versions using the intrinsics are also listed in 

Table 6.2, where “_gmpy4” is the intrinsic for Galois field multiplier [23], and the more 

intrinsics means we further pack four symbols into a 32-bit integer by the other 

intrinsics and perform four Galois field multiplications simultaneously. Finally we turn 

on the file-level optimization and obtain the improvement percentage 97.79% compared 

to the Lee decoder syndrome computation. The improvement percentage of the Lee 

decoder syndrome computation is only 58.13% after the file-level optimization and is 

lower than the syndrome computation with our modification. 

 

6.1.2.2 Chien Search Improvement 

 

 The Chien-search method is used to find the roots of an errata locator polynomial. 

It requires multiplication for each term in calculating the errata locator polynomial. 

Hence, we choose the Berlekamp-Rumsey-Solomon (BRS) algorithm together with the 

Chien-search method proposed in [29] for our RS decoder. The new fast algorithm 

makes the root-finding problem quite practical and efficient because it can eliminate a 
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lot of multiplications and is structured regularly for compiler to achieve the software 

pipeline more easily. 

 The BRS algorithm is first described below, which is an algorithm in finding the 

roots of a special class of polynomials as proposed by [29]. Before introducing the 

algorithm, here are two definitions and a theorem that are needed for this algorithm: 

 Definition 1: the polynomial L(y) over GF(2m) is called a p-polynomial for p = 2 

iff 

∑=
i

2
i

i

ycL(y)  

where ci are restricted to GF(2m) and the exponents are restricted to be the powers of 

two. 

 Definition 2: a polynomial A(y) over GF(2m) is called an affine polynomial iff 

A(y) = L(y) + β 

where L(y) is a p-polynomial as defined previously and β∈GF(2m). 

 Theorem 1: let y∈GF(2m) and let α0, α1, α2, …, αm-1 be a standard basis. If y is 

represented in the standard basis, i.e., if 

∑
−

=

=
1m

0k

k
kαyy  

where yk∈GF(2), then 

∑
−

=

=
1m

0k

k
k )L(αyL(y)  

 Using Theorem 1, a simplified algorithm is proposed to find the roots of an affine 

polynomial, which needs only to compute the eight values L(α0), L(α1), …, and L(α7) 

instead of all the 255 elements needed in the Chien search. The elements of rest simply 

need to be judged whether the term L(αk) should be cumulated or not according to each 

yk. This is done by checking the k-th bit of the element y. 

It can be observed that most of the Galois field multiplications are eliminated. It is 

only needed to compute the eight terms imported with the standard bases. The BRS 

algorithm is used only for solving affine polynomials. Hence, in our method, we first 

arrange and sort our errata locator polynomial into an affine polynomial and the 
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remainder, and then the value of the affine polynomial is obtained by the BRS algorithm 

and the roots of the remainder is by the Chien search. If their values are equal for a 

Galois field element, we can claim a root is found. Note that this method benefits only 

when the order of the errata locator polynomial is not more than eleven [29]. 

 

Cycle 
Function Version Code Size 

Worst Case Best Case 
Lee Decoder Chien Search 804 25,375 902

Modified Chien Search 1,268 14,013 4,248

Table 6.3: Profile of Chien Search without the Intrinsics and Compiler Optimization 

 

Cycle 
Function Version Code Size 

Worst Case Best Case 
Lee Decoder Chien Search 856 4,186 345

Modified Chien Search 960 1,100 183

Table 6.4: Profile of Chien Search with _gmpy4 and File-Level Optimization 

 

 Table 6.3 and Table 6.4 show the comparison of the Lee decoder Chien search and 

the modified one by the method we describe. In Table 6.3, it is the case without using 

the intrinsics and any compiler-level optimization, where the modified one is more 

efficient than the original in the worst case but is slower in the best case because the 

overhead of codes is increased to rearrange our errata locator polynomial. However, the 

best case is of very low probability. We apply the intrinsic “_gmpy4” and the file-level 

optimization to the two functions, and shown as Table 6.4, the modified Chien search is 

always more efficient than the Lee decoder Chien search. The improvement is up to 

73.72% in the worst case and 46.96% in the best case because the most of Galois field 

multiplications are substituted in the modified Chien search to achieve the software 

pipeline more easily. 

 

6.1.3 Performance Analysis 
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 In this section, we present the simulation profile generated by the CCS built-in 

profiler for our RS decoder specified in IEEE 802.16a. The results of all improvements 

described formerly are also shown in the simulation profile, and the one which involves 

the efforts of all the former improvements is called the modified RS decoder on the list. 

 

Decoder Version Code Size Cycle 
Improvement 

Percentage (%) 
Lee RS Decoder 5284 447,109 N/A

Using the Intrinsics 4936 238,050 46.76
Modified RS Decoder 5584 121,466 48.97

Compiler File-Level Opt. 5048 11,650 90.41
Compiler File-Level Opt. 

(Lee RS Decoder) 
4732 121,169 72.90

Table 6.5: Simulation Profile for RS Decoder 

 

Referring to Table 6.5, the cycles of the RS decoder are measured under the worst 

case condition, i.e., all elements are searched in the Chien search, and all the symbols 

are decoded correctly. It can be observed that in the case without the file-level 

optimization, the RS decoder with our improvement is accelerated up to 48.97% even 

compared to the one with the intrinsics. Respectively, it is accelerated up to 72.83% 

compared to the Lee RS decoder . The file-level optimization can further obtain 90.41% 

of acceleration. The final speed corresponds to 1.85 Mbytes/sec. The improvement of 

the Lee decoder only with the file-level optimization is also attached. 

We also measure the speed and the ratio of correct decoding through the AWGN 

channel of the different SNR. Here we generate random data for the input to the RS 

encoder and pass the coded data through the convolutional coder and then the AWGN 

channel. At the receiver end, the soft-decision Viterbi decoder recovers the received 

data into the RS coded blocks. Then, we start to decode those RS blocks and count their 

decoding time. The process in the above is repeated ten times to make the results more 

accurate. The convolutional coder and Viterbi decoder used here are the ones designed 
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in IEEE 802.16a standard and are described in Chapter 3. We focus on the RS decoding 

cycles under different channel conditions, and the results are shown in Table 6.6. The 

relationship is plotted as Fig. 6.2 for the decoding cycle versus SNR and Fig. 6.3 for the 

correct decoding ratio versus SNR. 

 

ES/N0 (dB) Correct Decoding Ratio (%) Decoding Cycle 
7 100 11073 

6.5 100 11574 
6 96.43 12646 

5.5 85.71 13181 
5 67.86 14221 

4.5 35.71 15030 
4 7.14 15435 

3.5 0 15269 
3 0 15264 

Table 6.6: the Decoding Ratio and Cycle under the Channel with Different SNR 

 

 

Decoding Cycle 

SNR (ES/N0) 

Figure 6.2: the Plot of the Decoding Cycle versus SNR 
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Correct Decoding Ratio 

SNR (ES/N0) 
 

Figure 6.3: the Plot of the Correct Decoding Ratio versus SNR 

 

 It is clear that the decoding cycles are decreased and the correct decoding ratio is 

increased as the SNR goes up. The reason for the decrement of the decoding cycles is 

that because more error locations should be searched and more error values should be 

corrected, processing time is higher. The Chien search shall go through all the elements 

for the error locations but the Forney algorithm is not further executed when the number 

of errors is reaching the decoding capability for our RS decoder. It is why the decoding 

cycles of the zero correct decoding ratio are slightly less than some case with non-zero 

correct decoding ratios in Table 6.6. 

 

6.2 Remainder Decoding Algorithm for RS Decoder 
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 The decoding algorithm for RS codes has been investigated for a long time. Both 

the Berlekamp-Massey and Euclidean algorithms are well known, which solve the 

key-equations for RS codes. Generally, the key-equation can be generated by syndrome 

sequences, which are derived from the received codewords. Therefore, the syndromes 

have to be calculated. However, the syndrome calculation takes a large amount of 

execution time as shown in the profile data in the earlier sections. In 1983, L. Welch 

and E. R. Berlekamp proposed a new decoding algorithm, the remainder decoding 

algorithm [37], for RS codes without the need of computing the syndromes, and hence it 

becomes an alternative and popular algorithm that it is worthy of our attention and study. 

They presented a new key-equation and the solving algorithm for decoding RS codes. It 

should be noted that the proposed key-equation is quite different from the conventional 

key-equation which was proposed by E. R. Berlekamp [38]. In the next subsections, we 

introduce the decoding flow for the remainder decoding algorithm and write the C codes 

for it. The performance analysis of the system is also shown and is compared in the final 

subsection. 

 

6.2.1 Remainder Decoding Algorithm 

 

 The remainder decoding algorithm represents a decoding algorithm, which dose 

not compute the syndromes. There are two main points. One is that a new key-equation 

has been derived. This is a relationship between the coefficients of remainder 

polynomial and the errors occurring in a received codeword. It is very special that it is 

quite different from the conventional key-equation. The other is that Welch and 

Berlekamp have proposed an efficient algorithm, Welch-Berlekamp (WB) algorithm, 

for solving the new key-equation. The solution technique we adopt is proposed in [32], 

a modified version of the original WB algorithm. It is similar to but an improved 

version of the WB algorithm. Here, we call it the modified WB algorithm for 

convenience. Now, we shall briefly describe the decoding algorithm. However, the 
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proof for this algorithm dose not be presented here, and it can be find in [30], [31], and 

[35]. 

 At first, we re-encode the received codeword R(x) and yield the remainder 

polynomial 

r(x) = (R(x) mod g(x)), 

where g(x) is the generator polynomial same as the one used in the encoder. A few 

polynomials are derived for the remainder decoding as follows: 

)(αg'
)N(α)W(αr j

j
j

j = , j = 0, …, d-2, 

where rj is the j-th coefficient of the polynomial r(x), W(x) is the error-locator 

polynomial, and N(x) is a unique polynomial whose degree is less than that of W(x). 

The formal derivative applied here is defined as [30] 

∏∑
≠
∈∈

−=

ki
Ek

k

Ei

i 1)x(αα(x)g'  

where E is the set of indices for which ei, the error pattern in the position i, is nonzero, 

0}e|{iE i ≠=  

The RS decoding can then be formulated as a problem of solving the set of the key 

equations 

)(αg')rW(α)N(α j
j

jj = , for j = 0, …, d-2 

Our goal is to find the unique pair of polynomials (W, N). The error locations 

correspond to the roots of W(x), and we denote it as Zj. If Zj is a message location, then 

the error values are given by the following equation: 

)(ZW'
)N(Z

)β(ZY
j

j
jj =  

where 

∏ −

=
−

= 2d

0i j
ij

)Z(α
1)β(Z  

The values of g’(αj) and β(Zj) can be calculated in advance when the specification 

of the RS code system is fixed. 
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6.2.2 Program Flow and Performance Analysis 

 

In our program, first we re-encode the received codeword with the LFSR structure. 

Then the algorithm proposed in [32] is used to solve the key equations for obtaining the 

pair (W, N). Then the roots of the error-locator polynomial should be found. We can 

apply the Chien search to solve this problem. Finally, the error values can be derived by 

using the equation described in the previous subsections or the Forney algorithm. Here 

we choose the Chien search and Forney algorithm to complete the last half of our 

program flow, and hence it equals the last procedures used in the original RS decoder. 

We only need to compare the re-encoding part to the syndrome computation and the 

key-equation solving part to the Berlekamp-Massey algorithm. For the former, they 

both compute the necessary information for RS decoding. For the latter, they both use 

the information computed by the former to solve the constrained polynomial 

congruence. It is noted that there is an additional procedure, the re-encoding, in the 

remainder decoding algorithm although it is claimed that the syndrome computation is 

not needed for the remainder decoding algorithm. The comparisons simulated by CCS 

built-in profiler are presented as follow: 

 

Procedure Code Size Cycle 

Syndrome Computation 212 149,972
Re-Encoding 436 191,484

Inverse-Free BM Algorithm 1,716 14,046
Modified WB Algorithm 2,036 33,683

Table 6.7: Comparison of the Remainder Decoding Algorithm and the Lee Decoder 

(without the Intrinsics) 

 

 Table 6.7 is the comparison of the remainder decoding with the Lee RS decoder. In 

Table 6.8, the re-encoding and the modified WB algorithm with the improvement of the 
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intrinsics are compared to the Lee decoder. Both Table 6.7 and Table 6.8 are obtained 

with the file-level optimization. 

 

Procedure Code Size Cycle 
Improved 

Percentage (%)

Re-Encoding without Intrinsics 436 191,484 N/A
Re-Encoding with Intrinsics 996 2,926 98.47

Modified WB Algorithm 
without Intrinsics 

2,036 33,683 N/A

Modified WB Algorithm with 
Intrinsics 

2,208 2,672 92.07

Table 6.8: Profile of the Improved Remainder Decoding Algorithm 

 

Referring to Table 6.7, it seems that the C code implementation of the remainder 

decoding algorithm on the DSP platform is less efficient than that of the original RS 

decoder. For the re-encoding, its structure consists of a LFSR and the calculation of 

multiplying rj by g’(αj). The LFSR is implemented as the method of the syndrome 

computation in the original RS decoder. However the multiplication of rj by g’(αj) adds 

the complexity to the re-encoding procedure and leads to the fact that the re-encoding 

takes more cycles than the syndrome computation. For the modified WB algorithm, 

there are two primary factors reducing its performance: 

 The over too-many memory accesses are caused by the operation of array. 

The modified WB algorithm needs to initialize four arrays and imports six 

arrays for operation while the inverse-free BM algorithm only needs to 

initialize two arrays and imports three arrays for operation. Furthermore, it 

contains the multiplication of polynomials, the swap of polynomials, and the 

calculation of polynomials imported by some value. These operations cost a 

large number of memory accesses, too. 

 The poor structure of the modified WB algorithm is difficult to form software 

pipelines by the compiler. To complete the operations described in the 
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previous list, we have to call the other functions. However, the compiler dose 

not do software pipelining for the loops which contain a loop or a function 

call. Moreover, the structure of the loop content must be simple enough to 

activate the software pipeline, but it seems that most loops in the modified WB 

algorithm is more complicated than that in the inverse-free BM algorithm. 

 

To eliminate the above shortcomings, the intrinsics are used here to reduce these 

problems. In the re-encoding, it takes a large amount of time to add the previous value 

of the register and to shift in each register in the LFSR, and it also increases the 

dependency between the iterations. We employ adding register values and shifting 

simultaneously as much as possible by the intrinsics as illustrated by Fig. 6.4. 

The structure of LFSR used to implement the re-encoding procedure is shown as 

Fig. 3.8 in Chapter 3. Referring to Fig. 6.4, at first we calculate the feedback symbol by 

performing modulo-2 addition of the LFSR fifteenth register in the previous iteration 

for the present iteration, and pack the feedback symbol for the present iteration into a 

32-bit integer variable by using the intrinsics. We can pack the coefficients of RS 

generator polynomial into the individual four 32-bit variables by the same method and 

perform the multiplication on them with the feedback symbol in one iteration. These 

four packages of results continue to perform the modulo-2 addition with the individual 

32-bit variables packed with the fifteen registers of LFSR. Here, we call these variables 

packed with the registers in the LFSR the register variables. Then we save the results 

back to the register variables. At last, we use the intrinsics to right shift to each register 

variable one symbol size (one byte) to the next register variable, and the symbol shifted 

out of the end register variable is used for calculating the feedback symbol for the next 

iteration. 
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Figure 6.4: Implementation of LFSR with the Intrinsics 

Thus each modulo-2 addition and Galois field multiplication in one iteration are in 

paral

ed WB algorithm with the techniques of the intrinsics. 

How

feedback symbol

g0     g1     g2     g3 g4     g5     g6     g7

⊗
 g8     g9     g10    g11

⊗
 g12   g13   g14    g15

⊗

r0      r1      r2     r3 r4      r5      r6     r7  r8      r9     r10    r11 r12    r13    r14    r15

⊕ ⊕ ⊕⊕

r0      r1      r2     r3 r4      r5      r6     r7  r8      r9     r10    r11 r12    r13    r14    r15

⊗

 

lel for every four operands. Also, it leads that we can replace the original memory 

accesses by the register operations because the number of operands is reduced by 

packaging. The other benefit is that the shift of each register in LFSR is realized directly 

by the intrinsic instruction instead of the sequential value assignment of array elements. 

The intrinsics not only speed up the shift operation but also allow shifting four registers 

simultaneously. The effort of our improvement with the method we described 

previously is shown in Table 6.8. 

We also accelerate the modifi

ever, the operation of this algorithm is complex and the situation is different from 

the re-encoding process. We also use the intrinsics to accelerate it but apply the 

intrinsics only to the primary operations it calls. Similar to the earlier discussions, the 

cause which disables the software pipeline is that a large number of memory accesses 

and function call are used in the modified WB algorithm. The intrinsics can be used to 

pack data and to reduce the number of operands to reduce memory access. We also do 

inline functions and use the intrinsics to build software pipelining. The functions calls in 
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the modified WB algorithm often contain the Galois field multiplication, the 

multiplication of polynomials, and the calculation of the polynomial value with a 

specified input, and we use the intrinsics to make the execution in them in parallel as 

much as we can by the similar method in re-encoding. The comparison of the modified 

WB algorithm improved by our method is also presented in Table 6.8. 

 According to Table 6.8, it is observed that the percentage of improvement is up to 

98.47% for the re-encoding and 92.07% for the modified WB algorithm. They are much 

more efficient than the version before our improvement and even better than the 

syndrome computation and BM algorithm in the Lee RS decoder.
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6.3 DSP Implementation of Reed-Solomon Decoder 

and Viterbi Decoder 

 

 for the following subsections, the DSP implementation of our RS decoder and the 

Viterbi decoder is divided into the system structure, the program flow, and the 

performance analysis. The Viterbi decoder is one module in the receiver of our IEEE 

802.16a standard project. It is investigated for a long time and is considered generally 

very efficient for the DSP implementation. The algorithm of the Viterbi decoder is fixed 

for the most parts and it has been tuned by our group previously [20]. We simply use 

this version. The RS decoder we choose to implement is the conventional RS decoding 

procedure with our acceleration instead of using the remainder decoding algorithm 

because at the present stage, it is still less efficient. 

 

6.3.1 Structure of RS Decoder and Viterbi Decoder 

Implementation 

 

 The structures implemented on the DSP platform of our RS decoder and Viterbi 

decoder are similar to that of the AMR codec and are also illustrated by Fig. 5.1 in 

Chapter 5. Because the DSP platform is the same for the AMR codec, our RS decoder, 

and the Viterbi decoder implementation, the data communication mechanism and the 

code development supported by the DSP platform is also the same. Hence, we do not 

repeat it again, and the details can be referred to Section 5.2.1. 

 

6.3.2 Execution Flow of RS Decoder and Viterbi Decoder 

 

6.3.2.2 DSP Program Flow for RS Decoder 
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 The implemented interface of the RS decoder is shown in Fig. 6.5 and similar to 

that of the AMR encoder. There is also a text edit box for the user to key in the coding 

mode supported by the RS decoder in IEEE 802.16a. The default coding mode is (60, 

54, 3) RS decoder. The program flow for the host and DSP is similar to that of the AMR 

codec. We have to choose the path of the bitstream we want to download and click the 

buttons “Download” and “Transfer” for downloading and executing the bitstream. We 

use the block transfer mode to transfer data and coding information similar to the AMR 

codec implementation. The coding scheme is also capable of being changed in the 

middle of the RS decoding, and the blocks of rest shall be decoded with the updated 

coding scheme. The program flow decribed above is illustrated by Fig. 6.6. The details 

of the communication between the host and DSP end can be referred to Section 5.2.2. 

  

 

 
Figure 6.5: the Interface of our RS Decoder Implementation 
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Figure 6.6: the Flowchart of our RS Decoder Implementation 
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6.3.2.2 DSP Program Flow for Viterbi Decoder 

 

 The interface of the Viterbi decoder implementation is shown in Fig. 6.7 and is 

similar to that of the RS decoder except for the text edit box, which is the coding mode. 

The program execution flow is also similar to that of the RS decoder, shown as Fig. 6.6, 

but no code mode is needed to be judged in the Viterbi decoder. 

 

 
Figure 6.7: the Interface of the Viterbi Decoder Implementation 

 

6.3.3 Performance Analysis 

 

In this section, we present the execution time of our implementation for the RS 

decoder and Viterbi decoder of the IEEE 802.16a wireless communication standard. 

The execution time and the code size of our proposed implementation system is shown 

in Table 6.9. 

 

Implemented 
Decoder Name 

Code Size 
Processing Rate 

(Kbytes/sec) 
Improvement Percentage 

(%) 
the Original RS 

Decoder 
17,137,575 58.80 N/A

Improved RS 
Decoder 

17,139,055 176.40 96.44

Viterbi 17,120,975 17.42 N/A

Table 6.9: Profile of our Implementation for RS Decoder and Viterbi Decoder 
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 It is observed that the code sizes of the both decoder implementations are almost 

the same because the largest part included in the final code is the overhead of the 

transfer mechanism, the functions, and the constants that have been ready by the library. 

The improved RS decoder is up to 176.4 Kbytes/sec of the processing rate, and its 

improvement gain is up to 96.44% compared to the Lee RS decoder without the 

file-level optimization. The processing rate of the Viterbi decoder is about 17.42 

Kbytes/sec. To accelerate the Viterbi decoder, it seems better to design the logic for 

parallelize its operation than to execute it sequentially on the DSP platform. Moreover, 

the algorithm of the Viterbi decoder is almost fixed, and we are only able to measure its 

efficiency on the DSP platform. 
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Chapter 7 

Conclusions and Future Works 

 

7.1 Conclusions 

 

 The speech coding approach taken by AMR is a way to adjust the speech and 

channel coding rate to the channel condition without losing too much quality. The 

Reed-Solomon codec in IEEE 802.16a provides several coding rates and error 

capabilities for the wireless communication. However the multiple speech coding 

modes and the additional channel coding for reducing channel errors increase the 

complexity of the implementation on the hardware. However, the technique of VLSI 

and architecture design advances rapidly at the present time. It gives us the opportunity 

to implement complicated algorithms on hardware. In this thesis, the AMR speech 

codec is implemented on the DSP platform, which is used mainly for multimedia coding 

purposes. And so is the Reed-Solomon decoder, which is used wildly because of its 

high capability of correcting both random and burst errors. 

In the previous chapters, we first focus on the AMR speech codec. We profile the 

C program provided by 3GPP and find that most functions mainly consist of the 

function call of arithmetic operations. Hence it is an effective way to reduce much 

execution time by accelerating the arithmetic operations. We also use the TI DSP 

intrinsics, which are efficient instructions supported by the C64x DSP to take the 

advantage of the DSP architecture, to accelerate the AMR codec. It has been improved 
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up to 68.88% for the encoder and 66.12% for the decoder when the compiler-level 

optimization is also enabled. Finally, we implement the accelerated program on the DSP 

platform, and its speed is up to 14.05 ms/frame for the encoder and 2.43 ms/frame for 

the decoder. The measured time includes the data transfer and still meets the real time. 

The other topic in this thesis is the Reed-Solomon decoder in IEEE 802.16a. The 

conventional decoding algorithm is described and treated as the original one for further 

improvement. The original decoder is first profiled. And then it is accelerated in the 

syndrome computation and chien search modules, which are two most time consuming 

procedures. We reduce their complexity and simplify their structure for the software 

pipeline. It is improved up to 97.79% in the syndrome computation and 73.72% in the 

chien search. The improved Reed-Solomon decoder is also implemented on the DSP 

platform. Its processing speed is up to 176.4 Kbytes/sec and is 96.44% faster than the 

original one. The Viterbi decoder is also implemented to complete the FED scheme in 

our IEEE 802.16a project. Its processing rate of DSP implementation is 17.42 

Kbytes/sec. The final version of both the Reed-Solomon decoder and the Viterbi 

decoder in IEEE 802.16a reaches our goal of real time for the AMR speech coding. 

 

7.2 Future Works 

 

 As discussed in the above, the processing speed of Viterbi decoder is the 

bottleneck in our IEEE 802.16a FED procedure. However, we have adopted the most 

efficient algorithm we know of and it is hard to further accelerate it by algorithm fine 

tuning. One way to implement and accelerate the Viterbi decoder is to design VLSI 

logic and parallelize its operations. So, the FED scheme may be accelerated by 

implementing the Viterbi decoder using the FPGA with the help of DSP. The DSP 

platform we use in this project contains an Xilinx FPGA. It may worth to try. 

 There are also other issues in the AMR codec implementation. It is not yet 

implemented for the analog input and output although they are included on the DSP 
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baseboard we use. Reading and writing files are the primary I/O for our present 

implementation. It would be more useful in practice to process real-time input speech or 

audio using the microphone and the speaker. However, we are limited by the time and 

not yet to test and use the I/O port. This can be another subject to explore. 
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