

i

應用於系統單晶片之可同時保證頻寬及即時要求的仲裁器演算法

研究生： 陳建華 指導教授： 周景揚 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

對系統單晶片(SoC)的系統而言，若有多個元件同時使用通訊管道會產生資源衝

突。為了解決這問題，需要一個仲裁器(arbiter)來決定哪個元件可以使用通訊管道。每個

元件可能會有不同的頻寬或是即時(real-time)的要求，若仲裁演算法無法滿足元件的這些

要求，會導致系統不符合應用。在系統單晶片設計流程的初期，仲裁演算法和它的參數

必須決定，若在設計流程後期的階段，才發現無法滿足頻寬和即時的需求，設計者很可

能需要回到設計流程前期來修改系統架構，因此延誤了出產時間。

 為了解決這個問題，首先，我們提出了一個仲裁演算法(命名為RT_lottery)期許能同

時符合所有元件的頻寬和即時的需求。為了能合宜地決定RT_lottery的參數，我們用高

階抽象度的方法模擬一個系統單晶片的系統以評估仲裁器的效用。根據評估的結果及我

們的調整參數流程，來自動產生合宜的參數。實驗結果證明經過我們的方法而決定的仲

裁演算法，對於頻寬和即時保證的需求，表現得比實驗中其他對照的演算法來的好。

ii

A Real-Time and Bandwidth Guaranteed

Arbitration Algorithm for SoC Communication

Student: Chien-Hua Chen Advisor: Dr. Jing-Yang Jou

Department of Electronics & Institute of Electronics
National Chiao Tung University

Abstraction

On an SoC bus, an arbiter is required to decide which master is granted for access when

multiple masters on the same shared bus issue requests at the same time. We propose an

arbitration algorithm, RT_lottery, which intends to meet bandwidth and real-time

requirements simultaneously. To decide suitable parameters for our arbiter, we model the SoC

system at a high abstract level for evaluation. Based on the evaluation model and our weight

tuning flow, the parameters are decided appropriately. We compare our arbitration algorithm,

RT_lottery, with Static Priority, Lottery, and TDM + Lottery, and the experimental results

show that RT_lottery handles both bandwidth and real-time requirements better than the other

arbitration algorithms.

iii

Acknowledgments

 I felt an immense gratitude to my adviser, Professor Jing-Yang Jou and professor Juinn-Dar

Huang, for their insightful suggestion and patient guidance throughout the course of this work.

Together, I gratefully acknowledge Geeng-Wei Lee, Che-Hua Shih, and Cheng-Yeh Wang,

whose constructive suggestion really helped me a lot. Special thanks to all members in the

EDA lab for their friendship and company. Finally, I have to show my sincere appreciation to

my friends who give me a wonderful memory up to now.

iv

Contents

Chinese Abstract………………………………………………………………………………. i

English Abstract………………………………………………………………………………..ii

Acknowledgements……………………………………………………………………………iii

Contents……………………………………………………………………………………….iv

List of Tables………………………………………………………………………………….vi

List of Figures………………………………………………………………………………...vii

Chapter 1 Introduction…………………………………………………………………………1

Chapter 2 Preliminaries………………………………………………………………………..4

 2.1 Purpose of an arbiter………………………………………………………………….4

 2.2 Performance evaluation of an arbiter…………………………………………………4

 2.3 Introduction of some common arbitration algorithms………………………………..6

 2.4 Performance evaluation……………………………………………………………….9

 2.5 Our observations on previous work…………………………………………………10

 2.6 Motivations………………………………………………………………………….11

Chapter 3 Proposed Approach………………………………………………………………..13

 3.1 Proposed arbiter architecture………………………………………………………..13

 3.2 Evaluation model……………………………………………………………………14

 3.3 Proposed arbitration algorithm………………………………………………………17

 3.3.1 Algorithm of Real-Time Handler…………………………………………….18

 3.3.2 Weight tuning flow for Lottery (2nd level)…………………………………...20

 3.3.3 Acceptance range…………………………………………………………….22

 3.3.4 Algorithm of weight tuning…………………………………………………..23

v

Chapter 4 Experimental Results………………………………………………………………27

4.1 Experimental environment…………………………………………………………..27

4.2 Experiment 1………………………………………………………………………...31

 4.3 Experiment 2………………………………………………………………………...36

Chapter 5 Conclusions..38

Reference……………………………………………………………………………..………39

vi

List of Tables

Table 2.1. Performance of the ATM switch……………...…………………………………...10

Table 3.1. The example of input traffic information of masters……………………………...15

Table 3.2. Input pattern for explanation of the warning line…………………………………20

Table 4.1. The input pattern for experiment 1.……………………………………………….32

Table 4.2. The required bandwidth pattern for single case in experiment 1………………….33

Table 4.3. The result of the single case in experiment 1……………………………………...33

Table 4.4. The result of 100 random cases…………………………………………………...35

Table 4.5. The summary of experiment 1…………………………………………………….36

Table 4.6. The fixed 8-beat input information of masters in experiment 2…………………..36

Table 4.7. The fixed 16-beat input information of masters in experiment 2………………....36

Table 4.8. The fixed 32-beat input pattern of masters in experiment 2………........................37

vii

List of Figures

Figure 2.1. The simple architecture of SoC system………………………………………..…..5

Figure 2.2. A simple architecture of two-level TDM arbitration algorithm………………..….7

Figure 2.3. A diagram to explain Lottery arbitration algorithm…………………………….....8

Figure 2.4. Cell forwarding in a 4 ports ATM switch…………………………………………9

Figure 3.1.The proposed arbiter architecture…………………………………………..….….13

Figure 3.2. The simplified flow of weight tuning in 2nd level of RT_lottery………………...14

Figure 3.3. The architecture of the evaluation………………………………………………..14

Figure 3.4. The example of D type master……………………………………………………16

Figure 3.5. The example of D_R type master with Rcycles = 10…………………………….....17

Figure 3.6. The example of ND_R type master with Rcycles = 10……………………………..17

Figure 3.7. The example for Real-Time Handler (Rcycles of M1 = 30, Warning line = 25)…...18

Figure 3.8. The worst case of Table 3.2……………………………………...……………….20

Figure 3.9. The detailed weight tuning flow for Lottery……………………………………..21

Figure 3.10. The flow of weight tuning……………………………………………..………..24

Figure 4.1. The example of the 1st level of TDM + Lottery...31

Figure 4.2. Trend of failed cases for 100 random cases…………………………………..….37

1

Chapter 1

Introduction

System-on-Chip (SoC) is a major revolution taking place in the design of integrated circuits.

It is a technology that integrates heterogeneous system components (CPU, Memory, and

DSPs, etc.) into a single chip and offers several benefits, including improvements in system

performance, power dissipation, and design time [1].

The massive real-time data transfer among IP cores is essential to keep the system function

properly. Therefore, a systematic On-Chip-Bus (OCB) standard now becomes a widely

adopted key technology for IP integration in SoC development. This advanced concept

provides a systematic, modular, and reusable bus interface circuit to easily and instantly

integrate the data flow from all IPs into a system-level backbone for data transfer [2].

Network-on-Chip (NoC) is the design methodology proposed recently to solve following

three problems: (1) Buses usually handle 3 to 10 communication components efficiently, but

they do not scale to higher numbers [3-5]. (2) Wire delay is no longer negligible since

technology scaling works better for transistors than for interconnecting wires. Global and long

wires make system performance unpredictable hence it is hard to maintain global synchrony

[6]. (3) In a complex system, each component may be designed by different teams at different

times with different tools and languages. At system level, the components are not easily

compatible since a tiny change in one component may result in unexpected effects on other

2

seemingly unrelated components of the system [1]. Thus, more design efforts are spent on

verification, which in turn lowers the design productivity and delays product development.

Our work focuses on shard bus architecture. Up to the present, there are many

On-Chip-Bus (OCB) protocols. Future SoC designs demand (1) increasing levels of system

complexity, (2) increasing performance demands, (3) increasing clock speed requirements, (4)

reduction of system power consumption. To meet these demands, bus protocol should be

updated [7]. For Advanced Microcontroller Bus Architecture (AMBA) series, ASB protocol

is presented in 1995 and then AHB protocol is presented in 1999. Advanced eXtensible

Interface (AXI) Protocol proposed in 2003 is the latest generation of AMBA.

The masters on an SoC bus may issue requests simultaneously and an arbiter is required to

decide which master is granted for access. In many applications, masters may have real-time

or bandwidth requirements. A master with real-time requirements demands tasks

accomplished within fixed clock cycles. The master with bandwidth requirements must

occupy a fixed fraction of total bandwidth of the interconnect channel. If designers find that

an arbitration algorithm cannot fulfill requirements at late design stages, they need jumping

back to a very early design stage to significantly modify the arbitration algorithm. This results

in a significant schedule delay.

Arbitration algorithms commonly used for shared buses include Static Priority, TDM, and

Round-Robin [8-13]. Lottery is the arbitration algorithm proposed recently [14] with

advantages of (i) providing designers with great control over the bandwidth allocated to each

SoC component, and (ii) providing high priority SoC component with quite low traffic

latencies. However, all arbitration algorithms mentioned above cannot well handle bandwidth

and hard real-time requirements concurrently.

In this thesis, we propose a two-level arbitration algorithm, RT_lottery (R for real-time, T

for weight Tuning), which is expected to meet hard real-time and bandwidth requirements of

each master at the same time. For the 1st level, we develop an arbitration algorithm whose

3

purpose is to handle hard real-time requirements (named Real Time Handler). For the 2nd

level, we adopt a Lottery based arbitration algorithm with weight tuning for bandwidth

requirements. Although Lottery is good at bandwidth allocation, we observe that if request

conditions (traffic behaviors) of masters vary a lot, it is not adequate to decide Lottery

parameters (weight of each master) merely according to the required bandwidth ratio. For this

reason, we propose a weight tuning algorithm to decide appropriate parameters of Lottery

automatically.

We compare RT_lottery with other three arbitration algorithms, Static Priority, Lottery, and

TDM + Lottery (1st level : TDM, 2nd level : Lottery). The experimental results show that

RT_lottery with parameters fine tuned by our weight tuning flow can handle real-time and

bandwidth requirements of each master better than the other arbitration algorithms.

 The remainder of this thesis is organized as follows: the previous works including

introduction of some common arbitration algorithms (Static Priority, TDM, and Lottery) and

the motivations of this work are presented in Chapter 2. Chapter 3 describes the proposed

arbitration algorithm (RT_lottery) and method of automatically generating suitable parameters

of RT_lottery to meet bandwidth requirements. The experiment environment and results are

shown in Chapter 4. Chapter 5 concludes the thesis.

4

Chapter 2

Preliminaries

2.1 Purpose of an arbiter

In an SoC system, masters may request to access interconnect channel simultaneously

and thus the contention occurs. In the situation, an arbiter is required to decide which master

can access the interconnect channel. Like Fig. 2.1, masters which need to access interconnect

channel assert request signals high [15]. An arbiter gathers pending request signals of all

masters and asserts the corresponding grant signal high for certain master which has the

authority to access interconnect channel according to the arbitration algorithm. Thus it can be

seen that different types of arbitration algorithms could lead the different behavior of an SoC

system.

2.2 Performance evaluation of an arbiter

 Depending on different demands of designers, there are several aspects of performance

evaluation for an arbiter:

1) Low average latency:

In our work, latency means the cycles between request’s generation time and request’s

finish time.

5

Req.Req.GrantGrant

M1 M2 M3

Arbiter

M1 M2 M3

ArbiterArbiter

Interconnect channel

Interface

Fig. 2.1. The simple architecture of SoC system

2) Real-time handling:

Some masters require tasks accomplished within fixed cycles.

3) Guarantee fraction of communication bandwidth:

It is somewhat like the concept of QoS (Quality of Service). Designers may hope that each

master can get nearly a certain fixed fraction of bandwidth at least.

4) High channel utilization:

If the channel utilization is low, the bandwidth of channel is wasted. It violates the

principle of efficiency.

5) Low hardware complexity:

It not only means smaller area of an arbiter, but also simpler implementation of an arbiter.

In our work, we focus on the aspects of real-time handling and guaranteed fraction of

communication bandwidth of each master.

6

2.3 Introduction of some common arbitration algorithms

In this section, we present several arbitration schemes:

1) Static Priority [16-18]:

Each master is statically assigned a unique priority value. When multiple masters issue

request simultaneously, the master with the highest priority would be granted. The

advantages of this arbitration scheme include simpler implementation and smaller area

cost. However, if masters with higher priority request successively and frequently, masters

with lower priority may rarely be granted. This could produce the severe starvation of low

priority masters and result in unfair bandwidth allocation.

2) TDM [8-11]:

Time Division Multiplexing (TDM) algorithm divides execution time on the channel

into time slots and then allocates time slots to masters. If the master owning the current

time slot does not request, the current time slot may be wasted. To mend this unefficiency,

a 2nd level arbitration algorithm is usually adopted to reallocate the available slot to other

requesting masters. Fig. 2.2 is a simple architecture of two-level TDM.

For a two-level TDM arbitration algorithm, the 1st level uses a time wheel where each

slot is statically reserved for a unique master and the 2nd level could be any arbitration

algorithm depending on applications. For example, if bandwidth reservation for masters is

important, an arbitration algorithm with better ability of bandwidth allocation can be used

as the 2nd level. In our work, when the arbiter grants some master, regardless of which

level makes a decision, the time wheel will be rotated by one slot. For example, as shown

in Fig. 2.2, the current time slot is reserved for M1. If M1 does not have a request, the

decision is made by the 2nd level and the time wheel is rotated by one slot.

7

TDM wheel

M1
M2

M3
M2

M3

M1M3

M2

TDM wheel

M1
M2

M3
M2

M3

M1M3

M2

Does M1 request?Does M1 request?

Granting M1

Yes

Granting M1

Yes

2nd Level
Arbitration Algorithm

No

2nd Level
Arbitration Algorithm

No

Fig. 2.2. A simple architecture of two-level TDM arbitration algorithm

3) Lottery [14][19]:

For the Lottery arbitration algorithm, an arbiter is just like a lottery manager deciding

which lucky one will win a prize. The lottery manager accumulates requests for ownership

of the channel from one or more masters, each of which is (statically or dynamic,

statically for our work) assigned a number of ‘Lottery tickets’. The lottery manager

generates a pseudo random number that corresponds to one ticket number. The master

having the most thickets is most likely to be granted.

Let the set of bus masters be M1,M2…..Mn and the number of tickets held by each

master be t1,t2….,tn. At any cycle, let the set of pending requests be represented by a set of

boolean variables ri (i= 1,2….,n), where ri =1 if component Mi has a pending request, and

ri =0 otherwise. The master to be granted is chosen randomly, with the probability of

granting component Mi given by: ()
∑ ⋅

⋅
=

= jj
n
j

ii
i tr

trMP
1

To decide which master to be granted, a lottery manager sums up the total number of

tickets possessed by the masters which request, given by ∑ ⋅= jj
n
j tr1 . Then, it generates

a pseudo random number from the range [0,∑ ⋅= jj
n
j tr1) to decide which master to be

8

granted. If the random number falls in the range [0, r1t1), the channel is granted to M1; if it

falls in the range [r1t1, r1t1 +r2t2), the channel is granted to M2, and so on. In general, if it

falls in the range [∑ ⋅= jj
i
j tr1 ,∑ ⋅+

= jj
i
j tr1

1) it is granted to component Ci+1. Fig 2.3 gives an

example.

M1

M2

M3

M4

Number of
Tickets

1

2

3

4

Lottery
Manager

M1

M2

M3

M4

Number of
Tickets

1

2

3

4

Lottery
Manager

Request
Map

1

0

1

1

Request
Map

1

0

1

1

1+2+4=7

T[8]=XX

T[9]=XX

T[7]=XX

T[6]=M4

T[5]=M4

T[4]=M4

T[3]=M4

T[2]=M2

T[1]=M2

T[0]=M1

T[8]=XX

T[9]=XX

T[7]=XX

T[6]=M4

T[5]=M4

T[4]=M4

T[3]=M4

T[2]=M2

T[1]=M2

T[0]=M1

Rand[0,7)
=5

Rand[0,7)
=5

Grant to
M4

 Fig. 2.3. A diagram to explain Lottery arbitration algorithm

In the example, there are totally four masters M1, M2, M3 and M4 assigned 1, 2, 3, and 4

tickets respectively. Request map indicates the request conditions of masters. As shown in

the Fig. 2.3, all masters request for access except M3. The Lottery manager sums up the

tickets number of masters which request (∑ ⋅= jj
n
j tr1 =1+2+4=7). Then, the lottery

manager randomly generates the number 5 from the range [0,∑ ⋅= jj
n
j tr1 =7). The random

number 5 falls into the range [r1t1+r2t2 = 3, r1t1 +r2t2 + r4t4 = 7), so M4 is granted.

 The number of tickets of each master for Lottery arbitration algorithm is like the weight

associated to the master. A master with a higher weight has better chance to be granted.

We present the number of tickets as weight in the following sections.

9

2.4 Performance evaluation

In this section, we show the experimental results and conclusions of reference [14]. The

experiment compares Lottery with Static Priority, and TDM arbitration algorithm in the

aspects of bandwidth allocation and low average latency. Fig. 2.4 shows the experiment

environment.

Fig. 2.4. Cell forwarding in a 4 ports ATM switch [14]

The following quality-of-service requirements are imposed: (1) Port4 requires minimum

latency. (2) Port1, Port2, Port3 share the bandwidth in the ratio 1 : 1 : 4. Lottery tickets,

time-slots, and priorities were assigned uniformly in the ratio 1 : 1 : 4 : 6, for ports 1, 2, 3, 4,

respectively. The results of the experiments are shown in Table 2.1.

The columns present performance metrics for each output port (bandwidth fraction and

latency for Port4, and bandwidth fraction for Ports 1, 2, and 3). The rows present the

performance under each alternative arbitration algorithm. For example, Port3 receives about

59% of the total bus bandwidth based on the Lottery arbitration algorithm. From the Table 2.1,

we can make following observations: (1) In latency aspect : The latency observed at Port4

based on Lottery is comparable to that based on Static Priority, while the latency observed at

10

Table 2.1. Performance of the ATM switch

2.22 : 1 : 1

0.68 : 4.13 : 1.19 : 1

Starvation here

port4 based on TDM is 7 times larger. (2) In bandwidth aspect: Based on the Lottery

arbitration algorithm, the bandwidth ratio of Ports 1, 2, and 3, is 1 : 1.19 : 4.13 which is the

best result, since it is 1 : 1 : 2.22 based on TDM and Static Priority even generates the

starvation at Port1 (only 0.01 %).

 To sum up, the Lottery arbitration algorithm is (i) capable of providing the designer with

the great control over the bandwidth allocated to each master, and (ii) quite good at providing

the high priority master with low traffic latencies.

2.5 Our observations on previous work

From above, we make some observations. Low average latency can be seen as loose

real-time requirements since some extreme long latencies may exceed cycles of real-time

requirements. However, for hard real-time requirements, the worst case latency (not average

latency) must be smaller than certain amount. According to Table 2.1, Static Priority and

TDM cannot handle real-time and bandwidth requirements at the same time. The results in

section 2.3 demonstrate that the Lottery arbitration algorithm (a) provides low latency for

bursty traffic with real-time latency constraints, and (b) at the same time, provides effective

bandwidth guarantees for traffic generated by each port.

Based on Lottery, how do we allocate the weight of each master on an SoC bus to meet

11

real-time and bandwidth requirements at the same time? Let the problem be easier for just

considering bandwidth requirements first. In the experiment of [14], for good bandwidth

allocation, the weight of each component is allocated according to the ratio of required

bandwidth. Nevertheless, as shown in Table 2.1, the bandwidth ratio (1 : 1.19 : 4.13 : 0.68,

Port1 -> Port4) would not conform with the weight ratio (1 : 1 : 4 : 6, Port1 -> Port4) for

Port4. The reason should be that the traffic of discordant Port4 is much less than the other

ports (request ratio 1 : 1 : 4 : 0.67, Port1 -> Port4). Thus it can be seen that weight allocation

is not good enough just according to the ratio of the required bandwidth. If request conditions

(traffic behaviors) of masters vary a lot, weight tuning is required to improve bandwidth

allocation.

 To meet the real-time requirements, the experiment of reference [14] requires Port4 with

minimum latency. The weight of Port4 is much larger than the other ports. However, there is

no rule to allocate the suitable weight of a certain component much larger than others. It is

even harder to allocate weight of each master to meet real-time requirements if there are

multiple components with real-time requirements, not to mention meeting bandwidth and

real-time requirements at the same time. Furthermore, if a certain component requires hard

real-time, a probabilistic arbitration algorithm like Lottery is obviously not appropriate.

2.6 Motivations

(1) Since Lottery is not suitable for hard real-time, can we develop an arbitration algorithm

being capable of handling hard real-time requirements?

(2) For Lottery, can we develop a method of weight tuning considering both request

12

condition and required bandwidth to allocate weight of masters to meet bandwidth

requirements?

(3) Can we develop the arbitration algorithm to meet hard real-time and bandwidth

requirements at the same time?

13

Chapter 3

Proposed Approach

3.1 Proposed arbiter architecture

Since probabilistic arbitration algorithms cannot handle hard real-time requirements, we

propose the two-level arbitration algorithm, RT_lottery (R for Real-time, T for weight

Tuning). The proposed arbiter architecture is shown in Fig. 3.1. The 1st level, Real Time

Handler, intends to handle real-time requirements. The 2nd level, Lottery with weight tuning,

intends to handle bandwidth requirements. The simplified flow of weight tuning for the 2nd

level is shown in Fig. 3.2 and the details will be presented in the following sections.

In section 2.4, we find that doing a good bandwidth allocation should consider both request

conditions and required bandwidth. As shown in Fig. 3.2, we simulate the whole system and

then analyze the result. If the result meets bandwidth requirements, the flow ends; else we

perform weight tuning according to the result analysis and then simulate again. Since we need

to simulate the whole SoC system for evaluation, we should model the SoC system at the

early design stages.

Real-Time Handler
(for real-time)

Real-Time Handler
(for real-time)

Lottery with weight tuning
(for bandwidth)

Lottery with weight tuning
(for bandwidth)

1st level 2nd level

Fig. 3.1. The proposed arbiter architecture

14

Simulation Result Analysis

Meet Bandwidth
Requirement?

Meet Bandwidth
Requirement?

No

Finish

Yes
Model system

at early design stages

Weight Tuning

Fig. 3.2. The simplified flow of weight tuning in 2nd level of RT_lottery

3.2 Evaluation model

 In our model, we assume that once a master possesses the channel, the other masters cannot

access the channel until the possessing master releases the channel. The architecture of the

evaluation model is shown in Fig. 3.3.

Traffic generator 1Traffic generator 1

Traffic generator 2Traffic generator 2

Traffic generator 3Traffic generator 3

Traffic generator 4Traffic generator 4

M1 M1

M2 M2

M3 M3

M4 M4

ArbiterArbiter

Fig. 3.3. The architecture of the evaluation

Each master has a traffic generator. The behavior of each traffic generator is given by

15

designers. An arbiter accumulates requests of all masters and decides which master should be

granted. We also construct the monitor to check the correctness of the model. There are four

types of information for a master:

(1) Rcycles：

It is the real-time requirements (in cycles) of a master. For those masters without real-time

requirements, this information should be left undefined. As shown in Table 3.1, the Rcycles

of M2 is 100 cycles for example.

Table 3.1. The example of input traffic information of masers

interval/prob.beat/prob.Rcyclestype

16/5014/507/206/505/30120ND_RM3
90/9080/105/304/503/20100D_RM2
70/8060/206/305/204/50DM1

interval/prob.beat/prob.Rcyclestype

16/5014/507/206/505/30120ND_RM3
90/9080/105/304/503/20100D_RM2
70/8060/206/305/204/50DM1

(2) Beat number and probabilities：

It defines the burst size and its probability of each request. Take Table 3.1 for example,

there is 30% chance for M3 to generate a 5-beat burst request.

(3) Interval cycles and probabilities：

It determines the next request time of the master. Nevertheless, the rule of deciding the

next request time varies with master types (explained later). There is 20 % of probability

for the interval of M1 to be 60 in Table 3.1.

(4) Type：

Designers must define each master’s type. Take Table 3.1 for example, M3 belongs to

ND_R type. There are three possible types:

16

a. D type (D for Dependency)：

D type masters have no real-time requirements and its next request depends on the

finish time of its current request. Interval means the cycles between the next request and

the finish time of the current request. Fig. 3.4 shows an example.

finish

9

finish

9

grant

5

grant

5

next
request

19

next
request

next
request

19 cycle

current
request

2 cycle

current
request

2
Fig. 3.4. The example of D type master

At cycle 2, the traffic generator randomly generates a 4-beat burst according to beat

probability. The request is not granted until cycle 5 and is finished at cycle 9 (4-beat

burst). Based on the probability of interval cycles, the interval time generated randomly

is 10 and it determines the next request time. Since the interval of D type master means

the cycles between the next request and the finish time of the current request, the next

request occurs at cycle 19.

b. D_R type (D for Dependency, R for Real-time)：

D_R type masters are like D type masters except that they have real-time

requirements. If beat and interval numbers generated randomly are the same as Fig. 3.4,

Fig. 3.5 is the same as Fig. 3.4 except that the request occurred at cycle 2 must be

finished before cycle 12 for Rcycles = 10. If the request is not finished before cycle 12, a

real-time violation occurs.

17

finish

9

grant

5

next
request

19 cycle

current
request

2

finish

9

grant

5

next
request

19 cycle

current
request

2 1212
Fig. 3.5. The example of D_R type master with Rcycles = 10

c. ND_R type (ND for No Dependency, R for Real-time)：

The next request of ND_R type master is independent of the finish time of the

current request and interval means cycles between two successive requests. In Fig. 3.6,

the random result of interval distribution is 15. The next request is issued at cycle 17

regardless of the finish time of the current request. The MPEG encoder belongs to this

type of master, for example. Since the current request must be finished before the next

request, the reasonable value of Rcycles should be smaller than the minimum possible

interval. For reasonable Rcycles constraints, we define Rcycles = min(tmin_interval , tuser_given).

tmin_interval is the minimum possible interval and tuser_given is Rcycles given by designers.

finish

9

finish

9 cycle

current
request

2 cycle

current
request

2

grant

5

grant

5

next
request

17

next
request

171212

Fig. 3.6. The example of ND_R type master with Rcycles = 10

3.3 Proposed arbitration algorithm

 We have presented the architecture of RT_lottery (section 3.1 and Fig. 3.1). In this section,

the algorithms of Real-Time Handler and weight tuning for Lottery are described in detail.

18

3.3.1 Algorithm of Real-Time Handler

The Real-Time Handler sets a real-time counter for each master with real-time

requirements. When a master issues a request, the corresponding real-time counter is set to

this master’s Rcycles . The real-time counter is decremented by 1 every cycle until the master

is granted to access the channel. Warning line is the value used to remind an arbiter to give

the grant to the emergent master. The master would have higher priority if its

corresponding real-time counter is below the warning line. When two or more real-time

counters are below the warning line, the master with the smallest real-time counter value

gets granted. Fig. 3.7 shows an example of Real-Time Handler’s operation.

.

cycle

Yes

No

Yes

Request

No25M2

Yes19M3

No22M1

GrantReal-time
counter

Yes

No

Yes

Request

No25M2

Yes19M3

No22M1

GrantReal-time
counter

Yes

Yes

Yes

Request

Yes25M2

No27M3

No30M1

GrantReal-time
counter

Yes

Yes

Yes

Request

Yes25M2

No27M3

No30M1

GrantReal-time
counter

3

M1 request
Grant to M2

11

Fig. 3.7. The example for Real-Time Handler(Rcycles of M1=30, Warning line = 25)

In Fig. 3.7, we assume that Rcycles of M1 = 30 and Warning line = 25. Let us focus on

cycle 3 and cycle 11:

(1) Cycle 3 (see the left table of Fig. 3.7)

19

As M1 requests at this cycle, the real-time counter of M1 is reset to its Rcycles (real-time

counter = 30). All masters issue requests but only M2’s real-time counter is below the

warning line, so M2 is granted to access the bus.

(2) Cycle 11 (see the right table of Fig. 3.7)

We assume that M2’s transaction is a 8-beat burst and finishes at cycle 11. Each

real-time counters of pending masters are decrements by 8. At this cycle, M1 and M3

request and their real-time counters are both below the warning line. Since the real-time

counter of M3 is smaller than M1’s, M3 is granted.

To meet real-time requirements, we set the appropriate value of warning line considering

the worst contending case.

So,

Warning line = SUM (max possible beat of type D_R or type ND_R)

+ max possible beat of all type D

In the worst case, a master without real-time requirements (D type) gets grant before all

real-time counters being below the warning line. After this D type master finishing the task,

all real-time counters are below the warning line at this arbitration time , hence all

emergent masters with real-time requirements still must queue up to be granted. Take Table

3.2 for an example and the worst contending case is shown in Fig. 3.8:

Warning line = max (5,6,7,4,5,6) + max (2,3,4)+max(3,4,5)+max (5,6,7) = 23

If there is no master whose Rcycles is smaller than the warning line (like Table 3.2), we can

meet all hard real-time requirements.

20

Table 3.2. Input pattern for explanation of the warning line

60/5040/504/403/302/30200D_RM3

50/5040/507/406/405/20DM1

interval/ prob.beat/prob.Rcyclestype

16/5014/507/206/505/30120ND_RM5
90/9080/105/304/503/20100D_RM4

70/8060/206/305/204/50DM2
60/5040/504/403/302/30200D_RM3

50/5040/507/406/405/20DM1

interval/ prob.beat/prob.Rcyclestype

16/5014/507/206/505/30120ND_RM5
90/9080/105/304/503/20100D_RM4

70/8060/206/305/204/50DM2

cycle

D type M3 M4 M5

7 4 5 7

Fig. 3.8. The worst case of Table 3.2

3.3.2 Weight tuning flow for Lottery (2nd level)

 In this section, we present the 2nd level of RT_lottery, Lottery with weight tuning. The

simplified weight tuning flow has been shown in Fig. 3.2. Fig. 3.9 is the detailed tuning

flow for Lottery to meet bandwidth requirements.

Explanation of each block：

(1) First, we read the information about traffic behaviors of masters from designers. The

input pattern is like Table 3.1.

(2) Each master’s required bandwidth must be smaller than its maximum bandwidth. The

maximum bandwidth of a master is obtained by assuming that there is only one master

on the channel, i.e., any request from the master will be granted immediately. To screen

out unreasonable required bandwidth constraints, we evaluate the maximum bandwidth

of each master first.

21

Yes
Finish Weight Tuning

No

No

Does it
exceed iteration bound
or have no redundant

bandwidth?

No

Does it
exceed iteration bound
or have no redundant

bandwidth?

No

Does it
exceed iteration bound
or have no redundant

bandwidth?

Do all masters
meet requirement?

Do all masters
meet requirement?

Yes

User can modify the required
bandwidth according

to the current best solution

Output the current
best solution

Yes

User can modify the required
bandwidth according

to the current best solution

Output the current
best solution

User can modify the required
bandwidth according

to the current best solution

Output the current
best solution

Reading design information

Evaluating each master’s
max bandwidth

Required bandwidth
from designers

Allocating initial
weight -> f()bandwidthmax

bandwidthrequired

Simulation

Reading design information

Evaluating each master’s
max bandwidth

Required bandwidth
from designers

Allocating initial
weight -> f()bandwidthmax

bandwidthrequired

Simulation

1

2

3

4

5

6
7

8

9

10

Fig. 3.9. The detailed weight tuning flow for Lottery

(3) Designers input required bandwidth of each master.

(4) The maximum bandwidth of each master is related to traffic condition. Initial weight

allocation is based on each master’s maximum bandwidth and required bandwidth. We

introduce some definitions first .

(a) Ri : he max bandwidth of Mi .

(b) ri : represents the required bandwidth of Mi.

(c)Oi : the value which is equal to ri / Ri .

(d)Ti : initial tickets of Mi .

We set Ti = int [(total tickets*(Oi / SUM (O))]

(5) Based on masters’ information and evaluation architecture (see Fig. 3.3), we simulate

the whole system.

(6) If all masters meet bandwidth requirements, we get what we want and go to block 7,

else go to block 8.

(7) Output the results of the flow.

22

(8) Weight tuning intends to move bandwidth from the master whose bandwidth is more

than its required bandwidth to the master whose bandwidth is less than required

bandwidth. We say that the master has redundant bandwidth if its bandwidth is more

than required bandwidth. If no master has redundant bandwidth, the weight tuning

process is no more useful and stops (block 10). Otherwise, go to block 9 for weight

tuning. Although there is any master with redundant bandwidth, it is possible that we

still cannot meet bandwidth requirements with weight tuning. We set the iteration

bound for our flow. If the iteration number exceeds the iteration bound, go to block 10.

(9) Based on evaluation result, we try to tune weigh for meeting bandwidth requirements.

The arbitration algorithm of weight tuning is presented in section 3.3.4.

(10)Output the current best solution for designers. Designers may change the required

bandwidth of each master according to the current best solution.

3.3.3 Acceptance range

How do we define meeting bandwidth requirements? If we demand that the required

bandwidth is exactly equal to the simulated bandwidth, it is somewhat unreasonable. Based

on the same input information of masters and required bandwidth, the results of our

experiment may even vary with different random seeds. We design the experiment to

decide the acceptance range from required bandwidth to simulated bandwidth. The

bandwidth requirements are met if the difference of required bandwidth and simulated

bandwidth is within this acceptance range. Based on the same input information of masters

and the required bandwidth, we simulate the whole system with different seeds (0 ~ 65535)

to measure the max difference of simulated bandwidth. The result shows that the max

difference of simulated bandwidth is 4% of total bandwidth and we choose 2% as the

acceptance range.

23

3.3.4 Algorithm of weight tuning

 In the section, the algorithm of the block named weight tuning in Fig. 3.9 is presented

(see Fig 3.10). Weight tuning intends to move bandwidth from the master which has the

most extra bandwidth to the master which lacks bandwidth the most. Since we do not know

the suitable amount of weight transfer to meet bandwidth requirements, the amount of

weight transfer is initialized as certain value (described later) and is decremented with

binary method. To be more detail, we introduce some definitions first:

 Smore :

Smore is the set of masters having more bandwidth than required.

Eq.:

If (Mi’s simulated bandwidth –Mi’s required bandwidth > 2%), Mi∈ Smore

(2% is acceptance range decided in section 3.3.3)

Sless :

If some master’s simulated bandwidth is less than required bandwidth, this master

lacks bandwidth. Sless is the set of masters lacking bandwidth.

Eq.:

If (Mi’s required bandwidth –Mi’s simulated bandwidth > 2%), Mi∈ Sless

Smet :

If some master’s simulated bandwidth is about equal to required bandwidth, this

master meets bandwidth requirements. Smet is the set of masters meeting bandwidth

requirements.

Eq.:

If (| Mi’s required bandwidth –Mi’s simulated bandwidth | < 2%), Mi∈ Smet

24

mmost : The master having the most extra bandwidth in Smore

mleast : The master lacking the most bandwidth in Sless

tm : The number of tickets mmost has

tl : The number of tickets mleast has

td : The number of tickets that we try to tune each time

tm’ : The number of tickets mmost has after weight tuning

tl’ : The number of tickets mleast has after weight tuning

R : Right bound used for deciding td

L : Left bound used for deciding td

tm’ = tm – td
tl’ = tl + td

R=(R-L)/2
No

Finish
YesDo Smore and Smet still

meet requirements?

If (td == 0) ?

No

Yes

Simulation

4

6

7

89 5

Masters Classification

R=1, L=0

td = tm*(R-L)/2

1

2

3

Fig. 3.10. The flow of weight tuning

Explanation of each block：

(1) First, masters are classified into three sets - Smore , Sless , and Smet .

(2) R and L are initialized.

25

(3) Decide td , td = (R-L) tm / 2

 td is used for deciding tm’ and tl
’.

(4) The block checks whether the iteration is meaningful or not. If the iteration is

meaningful, go to block 6, else go to block 5. If td is equal to zero, tm
’ and tl

’ cannot be

changed (see block 6) and weight tuning does not need going on.

(5) Finish the weight tuning.

(6) Decide tm
’ and tl

’ according to td .

(7) Simulate the whole system with new weight allocation.

(8) The proposed flow of weight tuning is required to merely improve bandwidth allocation.

This block intends to prevent weight tuning from worsening bandwidth allocation. Smore

and Smet are sets that meet bandwidth requirements. If tm
’ and tl

’ make these sets which

originally meet bandwidth requirements into Sless which violate bandwidth requirements,

go to block 9 to reduce td , else go to block 5 to finish weight tuning.

(9) Reduce R for decreasing td .

 The purpose of weight tuning is transferring the fixed amount (td) of weight from mmost to

mleast . If the current td transfers any master from Smore or Smet to Sless , we would decrease td

in the proposed flow.

 Pseudo code is shown as follows:

 Master classification ;

Initialize R = 1 , L = 0, finish = 0;

// record the old value of tm and tl

tm_old = tm ;

tl_old = tl ;

26

while (finish == 0)

{

 td = (R - L) * tm / 2 ;

 tm = tm - td ;

 tl = tl + td;

 if (td = 0) // Loop breaks if it is not a meaningful action

 do

 {

 tm = tm_old;

 tl = tl_old;

 break;

 }

 simulate ();

 if (Smore and Smet still meet requirements)

 do

 {

 finish = 1;

 }

 else

 {

 R = (R-L) / 2;

 }

}

27

Chapter 4

Experimental Results

4.1 Experimental environment

 We compare RT_lottery with Lottery, Static Priority, and TDM + Lottery (two-level). The

parameters of these arbitration algorithms are set as follows:

(1) Lottery:

The weight of each master is allocated according to each master’s required bandwidth

(weight ratio = required bandwidth ratio)

(2) Static Priority:

The priority of each master is according to its required bandwidth. The master with higher

required bandwidth has a higher priority.

(3) TDM + Lottery

 To meet real-time and bandwidth requirements at the same time, we design a two-level

arbitration algorithm.

1st level – TDM :

 The 1st level intends to meet real-time requirements. Masters which have real-time

28

requirements are allocated time slots. There are three steps for our algorithm of

allocating time slots to masters which have real-time requirements.

a. Calculate the distance of time slots for each master to meet real time requirements:

Di: the distance of time slots of Mi

Di = int (Rcycles / Bmax) – 1

(Bmax: the max possible beat number of all masters

Rcycles: the real-time requirements (in cycles) of the Mi)

b. Calculate Si:

Since the 1st level is the time wheel, we must decide the size of the wheel. Si is

used to decide the size of the time wheel. It can be seen as the number of time

slots which we hope possessed by Mi in the whole time wheel.

L = LCM (all Di)

Si = L / Di

c. Allocate time slots:

In the algorithm, we set Ci for each master. Ci is like counter to indicate

allocating time slots.

Ci: the counter of Mi

First, we initialize Ci=Di. Then, run through time slots of wheel to allocate each

time slot to the suitable master. At each time slot, the master with minimum Ci

gets this time slot. Once Mi gets time slot, Ci = Di , Si = Si – 1 and other

masters’ counters are decremented by 1 (Ex. For jth master, Cj = Cj – 1). If

there is any Mi with zero Si , allocate remaining masters to following time slots

one more time (according to Ci) and the algorithm stops.

Pseudo code is shown as follows:

 // Mi means the ith master which has real-time requirements;

29

for each Mi

 do

{

 Di = int (Rcycles_i / Bmax) - 1;

}

L = LCM (all Di);

for each Mi

do

{

Ci = Di ; // initialize all Ci = Di

Si = L / Di ;

}

Finish = 0;

while (Finish == 0)

do

{

 for Mi whose Ci is the minimum

 do

{

 Ci = Di ;

 Si = Si - 1;

time_slots.allocate(Mi); // Mi is allocated the current time_slot

}

 for Mj whose Cj is not the minimum

do

{

30

Cj = Cj - 1 ;

 Sj = Sj – 1 ;

}

if any Mi whose Si = 0

do

{

Finish = 1;

while (there is any Mj whose Sj != 0)

do

{

for Mk whose Sk != 0 && Ck is the minimum

do

{

time_slots.allocate(Mk);

Sk = 0;

}

}

}

Fig. 4.1 shows an example.

31

Bmax = 8

2660M4

4336M3

4335M2

3442M1

SDRcyclesMaster

2660M4

4336M3

4335M2

3442M1

SDRcyclesMaster

L=12

413
312
211
110
39
28
17
46
35
24
13
32
21
MasterSlot

413
312
211
110
39
28
17
46
35
24
13
32
21
MasterSlot

Fig. 4.1. The example of the 1st level of TDM + Lottery

 In Fig. 4.1, we assume that Bmax = 8 of all masters. According to the given Rcycles , we

calculate Di for each Mi. In the example, D1 = int (42 / 8) - 1 = 4. Thus, we get L = 12

(LCM (4,3,3,6) = 12). Based on L, we calculate Si for each Mi. In Fig. 4.1, S3 = 12 / 3 =

4. The result of time slots allocation is just like the right table of Fig. 4.1.

2nd level – Lottery :

The weight of each master is allocated according to each master’s required bandwidth

(weight ratio = required bandwidth ratio).

4.2 Experiment 1

 In experiment 1, we use the input information of masters shown in Table 4.1 [10][20].

32

Table 4.1. The input pattern for experiment 1

88/20

68/20

13/20

9/20

13/20

9/20

69/1067/4066/2065/1016/508/5065ND_RMaster5

87/40

12/40

8/40

12/40

8/40

86/20

11/20

7/20

11/20

7/20

10/106/1016/508/5065D_RMaster3

10/106/1016/508/50DMaster1

interval/prob.beat/prob.Rcyclestype

89/1085/104/501/5085ND_RMaster6

14/1010/104/501/5085D_RMaster4

14/1010/104/501/50DMaster2

88/20

68/20

13/20

9/20

13/20

9/20

69/1067/4066/2065/1016/508/5065ND_RMaster5

87/40

12/40

8/40

12/40

8/40

86/20

11/20

7/20

11/20

7/20

10/106/1016/508/5065D_RMaster3

10/106/1016/508/50DMaster1

interval/prob.beat/prob.Rcyclestype

89/1085/104/501/5085ND_RMaster6

14/1010/104/501/5085D_RMaster4

14/1010/104/501/50DMaster2

Heavy Light

For each type of master, we design a heavy traffic master (intensive use bus) and a light

traffic master (infrequent use bus). For example, M1 belongs to D type and its possible beat

number is 8 or 16, which is larger than M2’s 1 or 4. In the aspect of interval, M1’s possible

interval cycle is shorter than M2’s on average.

Although the input information of masters is given, the required bandwidth of each master

is undecided. The difficulty of meeting real-time and bandwidth requirements varies with the

different required bandwidth pattern. Let us see the single case of required bandwidth pattern

first. We record following values for evaluation:

(1) bw_miss_num:

The value represents the number of masters which miss bandwidth requirements.

(2) rt_vio_time:

This value is calculated by: SUM (the number of real-time violations of allmasters’

requests). If the request of Mi which has real-time requirements is not finished within

the Rcycles , a real-time violation occurs.

(3) max_latency:

33

During the simulation time, we record the latencies of all requests and choose the

maximum one among these as the max_latency .

Table 4.2 is the given required bandwidth pattern.

Table 4.2. The required bandwidth pattern for single case in experiment 1

2171040520
Required
Bandwidth(%)

21719631863
Maximum
Bandwidth(%)

M6M5M4M3M2M1

2171040520
Required
Bandwidth(%)

21719631863
Maximum
Bandwidth(%)

M6M5M4M3M2M1

=> 94 % in total

The maximum bandwidth of each master is very diverse from one to one, since the input

information of masters includes heavy and light traffics. The results are shown in Table 4.3.

Table 4.3. The result of the single case in experiment 1

170

314

954

7060

max _latency (cycle)

1603 (50%)Lottery

01 (17%)TDM+Lottery

2443 (50%)Static Priority

0 (0%)

bw_miss_num rt_vio_time

0RT_lottery 170

314

954

7060

max _latency (cycle)

1603 (50%)Lottery

01 (17%)TDM+Lottery

2443 (50%)Static Priority

0 (0%)

bw_miss_num rt_vio_time

0RT_lottery

For the ability of bandwidth allocation, Static Priority is poor and Lottery still needs weight

tuning for better results. In the aspect of real-time, Lottery and Static Priority are failed to

meet real-time requirements since these two arbitration algorithms do not take real-time

34

requirements into consideration. The Static Priority is worse than Lottery for real-time

requirements, because max_latency of Static Priority is much larger than that of Lottery (7060

VS. 954). Even though TDM + Lottery has advantages of handling real-time (1st level) and

bandwidth (2nd level), it still has bad bandwidth allocation capability (bw_miss_num = 1).

It is not quite fair to conclude the comparison of these four arbitration algorithms just by a

single case of required bandwidth pattern. We design a random required bandwidth pattern

generator. This generator can randomly generate the required bandwidth for each master and

the sum of these required bandwidth is equal to Rsum. In general, it is usually harder to meet

requirements with higher Rsum . For each Rsum , the experiments are conducted to compare four

arbitration algorithms with 100 different random required bandwidth patterns, and Rsum_i

represents the ith iteration of simulation for Rsum . We record the following values during

simulation for evaluation:

(1) rt_vio_time_sum :

SUM(rt_vio_time in each Rsum_i)

(2) rt_fail_sum :

The count of real-time failed cases in 100 iterations

(if rt_vio_time > 0 in Rsum_i => Rsum_i is a real-time failed case)

(3) bw_fail_sum :

The count of bandwidth failed cases in 100 iterations

(if bw_miss_num > 0 in Rsum_i => Rsum_i is a bandwidth failed case)

(4) fail_sum :

The count of failed cases in 100 iterations

(if rt_vio_time > 0 or bw_miss_num > 0 in Rsum_i => Rsum_i is a failed case)

The results are shown in Table 4.4.

35

Table 4.4. The result of 100 random cases

38
57
66
68
79
80
87
fail

0
0
0
0
0
0
0
rt_v

03865
05770
06675
06880
07985
08090
08795
rt_fbw_fRsum

38
57
66
68
79
80
87
fail

0
0
0
0
0
0
0
rt_v

03865
05770
06675
06880
07985
08090
08795
rt_fbw_fRsum

58
75
84
91
96
96
99
fail

2
3
6
6
8
8
1
rt_v

25865
37570
68375
69180
89585
89690
19995
rt_fbw_fRsum

58
75
84
91
96
96
99
fail

2
3
6
6
8
8
1
rt_v

25865
37570
68375
69180
89585
89690
19995
rt_fbw_fRsum

RT_lottery Lottery

Static
Priority

TDM+
Lottery

100
100
100
100
100
100
100
fail

8274
9022
9007
10535
11159
12150
12915
rt_v

1004565
1005870
1007375
1008680
1009885
1009790
1009995
rt_fbw_fRsum

100
100
100
100
100
100
100
fail

8274
9022
9007
10535
11159
12150
12915
rt_v

1004565
1005870
1007375
1008680
1009885
1009790
1009995
rt_fbw_fRsum

98
97
100
100
100
100
100
fail

10345
11076
11200
14235
13739
17396
18577
rt_v

968265
978370
998875
1009880
9910085
10010090
10010095
rt_fbw_fRsum

98
97
100
100
100
100
100
fail

10345
11076
11200
14235
13739
17396
18577
rt_v

968265
978370
998875
1009880
9910085
10010090
10010095
rt_fbw_fRsum

rt_v : rt_vio_time_sum rt_f : rt_fail_sum
bw_f : bw_fail_sum fail : fail_sum

As can be seen, it is harder to meet requirements with larger Rsum . The number of fails

decreases with lower Rsum . In real-time aspect, Lottery and Static Priority do not consider

real-time requirements and hence the rt_f of these two arbitration algorithms are much larger

than others. Static Priority is worse than Lottery since its rt_v is much larger than Lottery’s.

The 1st level of TDM + Lottery handles real-time requirements but it still fails for certain

critical cases. In bandwidth aspect, Lottery and TDM + Lottery handle bandwidth

requirements better than Static Priority, but RT_lottery with weight tuning is the best.

Number of failed cases in different Rsum :

RT_lottery < (TDM + Lottery) < Lottery ≈ Static Priority

Table 4.5 is the summery of experiment 1.

36

Table 4.5. The summery of experiment 1

Good but requiring weight tuningNo considerationLottery

PoorNo considerationStatic Priority

Good but requiring weight tuningOnly fails for critical casesTDM + Lottery

BestAlways holdsRT_lottery

Bandwidth allocation capability Real-time capabilityArbitration algorithm

Good but requiring weight tuningNo considerationLottery

PoorNo considerationStatic Priority

Good but requiring weight tuningOnly fails for critical casesTDM + Lottery

BestAlways holdsRT_lottery

Bandwidth allocation capability Real-time capabilityArbitration algorithm

4.3 Experiment 2

The objective of experiment 2 is to observe the effect of beat number on arbitration

algorithms. The input patterns are designed that all masters send the same beat number of 8,

16, and 32, respectively. The input information of masters for fixed 8-beat, 16-beat, and

32-beat is shown respectively in Table 4.6, Table 4.7, and Table 4.8. We run 100 random

cases for each Rsum . Results are shown in Fig. 4.2.

Table 4.6. The fixed 8-beat input information of masters in experiment 2

103/20

9/20

9/20

104/10102/40101/20100/108/100100ND_RMaster3

8/40

8/40

7/20

7/20

10/106/108/100100D_RMaster2

10/10 6/108/100DMaster1

interval/prob.beat/prob.Rcyclestype

103/20

9/20

9/20

104/10102/40101/20100/108/100100ND_RMaster3

8/40

8/40

7/20

7/20

10/106/108/100100D_RMaster2

10/10 6/108/100DMaster1

interval/prob.beat/prob.Rcyclestype

Table 4.7. The fixed 16-beat input information of masters in experiment 2

103/20

9/20

9/20

104/10102/40101/20100/1016/100100ND_RMaster3

8/40

8/40

7/20

7/20

10/106/1016/100100D_RMaster2

10/10 6/1016/100DMaster1

interval/prob.beat/prob.Rcyclestype

103/20

9/20

9/20

104/10102/40101/20100/1016/100100ND_RMaster3

8/40

8/40

7/20

7/20

10/106/1016/100100D_RMaster2

10/10 6/1016/100DMaster1

interval/prob.beat/prob.Rcyclestype

37

Table 4.8. The fixed 32-beat input information of masters in experiment 2

103/20

9/20

9/20

104/10102/40101/20100/1032/100100ND_RMaster3

8/40

8/40

7/20

7/20

10/106/1032/100100D_RMaster2

10/10 6/1032/100DMaster1

interval/prob.beat/prob.Rcyclestype

103/20

9/20

9/20

104/10102/40101/20100/1032/100100ND_RMaster3

8/40

8/40

7/20

7/20

10/106/1032/100100D_RMaster2

10/10 6/1032/100DMaster1

interval/prob.beat/prob.Rcyclestype

0

20

40

60

80

100

120

95 90 85 80 75 70 65

0
20

40
60
80

100
120

95 90 85 80 75 70 65

R_sum

Failed
 cases

8 beats

0

20

40

60

80

100

120

95 90 85 80 75 70 65

16 beats 32 beats

Fig. 4.2. Trend of failed cases for 100 random cases

As shown in Fig. 4.2, RT_lottery is the best among four arbitration algorithms for fixed 8,

16 and 32-beat. As well, RT_lottery and TDM + Lottery, which have capability of handling

both bandwidth and real-time requirements, are much better than the other arbitration

algorithms. Nevertheless, it is harder to meet requirements with larger fixed beat number for

RT_lottery and TDM + Lottery and the numbers of failed cases arise with larger beat number.

The reason is that with larger beat number, the granularities of weight (ticker number) for

RT_lottery and TDM + Lottery are more coarse-grained. If there is fixed amount weight

transfer from Mi to Mj , the influence of weight transfer on 8 or 16 fixed beat pattern is

smaller than 32 fixed beat pattern.

38

Chapter 5

Conclusions

 The two-level arbitration algorithm RT_lottery with weight tuning is proposed in this

thesis. Our evaluation model and weigh tuning algorithm set the suitable parameters of

RT_lottery. The experiments compare RT_lottery with Static Priority, Lottery, and TDM +

Lottery. We make some conclusions as:

(1) The results show that RT_lottery is the best among four arbitration algorithms for meeting

bandwidth and real-time requirements at the same time.

(2) Our evaluation model and weight tuning algorithm really set the parameters of RT_lottery

well and make it more powerful.

(3) With smaller possible beat number, the outstanding of RT_lottery is more obvious

because the granularity of its weight is more fine-grained.

39

References

[1] http://www.webopedia.com/

[2] http://www.arm.com

[3] A. Jantsch, and H. Tenhunen, Networks on Chip, Kluwer Academic Publisher, 2003.

[4] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez and C. A. Zeferin, “SPIN: A

Scalable, Packer Switched, On-Chip Micro-Network,” in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, 2003, supplements 70-73.

[5] C. A. Zeferino and A. A. Susin, “SoCIN: A Parametric and Scalable Network-on-Chip,”

in proceedings of the symposium on Integrated Circuits and Systems Design, 2003,

Page(s) 169-174.

[6] P. P. Pande, C. Grecu, A. Ivanov and R. Saleh, “Design of A Switch for Network on

Chip Applications,” in Proceedings of the 2003 International Symposium on Circuits

and Systems, 2003, volume 5, Page(s) 217 – 220.

[7] AMBA AXI Protocol Specification rev. r0p0.

[8] C. H. Pyoun, C. H. Lin, H. S. Kim, and J. W. Chong, “The Efficient Bus Arbitration

Scheme In Soc Environment,” International Workshop on System-on-Chip for Real-Time

Applications, 2003, Page(s):311 – 315.

[9] M. Yang, S.Q. Zheng, Bhagyavati, and S. Kurkovsky, “Programmable Weighted

Arbiters for Constructing Switch Schedulers,” Workshop on High Performance

Switching and Routing, 2004, Page(s):203 – 206.

[10] M. Conti, M. Caldari, G. B. Vece, S. Orcioni, and C. Turchetti, “Performance Analysis

of Different Arbitration Algorithms of the AMBA AHB Bus,” Design Automation

Conference, 2004.

40

[11] F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance Analysis of Arbitration

Policies for SoC Communication Architectures,” Journal of Design Automation for

Embedded Systems, 2003, Page(s):618 – 621.

[12] E. S. Shin, V. J. Mooney, G. F. Riley, “Round-Robin Arbiter Design and Generation,”

Symposium on System Synthesis, 2002, Page(s):243 – 248.

[13] K. C. Lee, “A Variable Round-Robin Arbiter for High Speed Buses and Statistical

Multiplexers,” International Phoenix Conference on Computers and Communications,

1991, Page(s):23 – 29.

[14] K. Lahiri, A. Raghunathan, and G. Lakshiminarayan, “LOTTERYBUS: A New

High-Performance Communication Architecture for System-On-Chip Designs,” Design

Automation Conference, 2001, Page(s):15 – 20.

[15] acalab1.csie.ntu.edu.tw/aca2002/slides/lecture11.pdf

[16] C. Li, R. Bettati, W. Zhao, “Static Priority Scheduling for ATM Networks,” Proceedings

on Real-Time Systems Symposium, 1997, Page(s):264 – 273.

[17] S. Ramamurthy, M. Moir, “Static-Priority Periodic Scheduling on Multiprocessors,”

Proceedings on Real-Time Systems Symposium, 2000, Page(s):69 – 78.

[18] B. Andersson, S. Baruah, J. Jonsson, “Static-Priority Scheduling on Multiprocessors,”

Proceedings on Real-Time Systems Symposium, 2001, Page(s):193 – 202.

[19] A.C Waldspurger and W.E Weih., “Lottery Scheduling: Flexible Proportional Share

Resource Management,” Symp. on Operating Systems Design and Implementation,

1994.

[20] K. Lahiri, A. Raghunathan, and S. Dey., “Evaluation of The Traffic Performance

Characterization of System-on-Chip Communication Architectures,” International

Conference on VLSI Design, 2001, Page(s):29 – 35.

