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Abstraction

On an SoC bus, an arbiter is required to decide which master is granted for access when
multiple masters on the same shared bus issue requests at the same time. We propose an
arbitration algorithm, RT_lottery, which intends to meet bandwidth and real-time
requirements simultaneously. To decide suitable parameters for our arbiter, we model the SoC
system at a high abstract level for evaluation. Based on the evaluation model and our weight
tuning flow, the parameters are decided appropriately. We compare our arbitration algorithm,
RT _lottery, with Static Priority, Lottery, and TDM + Lottery, and the experimental results
show that RT_lottery handles both bandwidth and real-time requirements better than the other

arbitration algorithms.
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Chapter 1

Introduction

System-on-Chip (SoC) is a major revolution taking place in the design of integrated circuits.
It is a technology that integrates heterogeneous system components (CPU, Memory, and
DSPs, etc.) into a single chip and offers _several benefits, including improvements in system
performance, power dissipation, and designjtime.[1]:

The massive real-time data transfer among 1P cores’is essential to keep the system function
properly. Therefore, a systematic: On-Chip-Bus (OCB) standard now becomes a widely
adopted key technology for IP integration in  SoC development. This advanced concept
provides a systematic, modular, and reusable bus interface circuit to easily and instantly
integrate the data flow from all IPs into a system-level backbone for data transfer [2].

Network-on-Chip (NoC) is the design methodology proposed recently to solve following
three problems: (1) Buses usually handle 3 to 10 communication components efficiently, but
they do not scale to higher numbers [3-5]. (2) Wire delay is no longer negligible since
technology scaling works better for transistors than for interconnecting wires. Global and long
wires make system performance unpredictable hence it is hard to maintain global synchrony
[6]. (3) In a complex system, each component may be designed by different teams at different
times with different tools and languages. At system level, the components are not easily

compatible since a tiny change in one component may result in unexpected effects on other



seemingly unrelated components of the system [1]. Thus, more design efforts are spent on
verification, which in turn lowers the design productivity and delays product development.

Our work focuses on shard bus architecture. Up to the present, there are many
On-Chip-Bus (OCB) protocols. Future SoC designs demand (1) increasing levels of system
complexity, (2) increasing performance demands, (3) increasing clock speed requirements, (4)
reduction of system power consumption. To meet these demands, bus protocol should be
updated [7]. For Advanced Microcontroller Bus Architecture (AMBA) series, ASB protocol
is presented in 1995 and then AHB protocol is presented in 1999. Advanced eXtensible
Interface (AXI) Protocol proposed in 2003 is the latest generation of AMBA.

The masters on an SoC bus may issue requests simultaneously and an arbiter is required to
decide which master is granted for access. In many applications, masters may have real-time
or bandwidth requirements. A .master with -real-time requirements demands tasks
accomplished within fixed clock cycles. The master with bandwidth requirements must
occupy a fixed fraction of total bandwidth-of the interconnect channel. If designers find that
an arbitration algorithm cannot fulfill requirements at late design stages, they need jumping
back to a very early design stage to significantly modify the arbitration algorithm. This results
in a significant schedule delay.

Avrbitration algorithms commonly used for shared buses include Static Priority, TDM, and
Round-Robin [8-13]. Lottery is the arbitration algorithm proposed recently [14] with
advantages of (i) providing designers with great control over the bandwidth allocated to each
SoC component, and (ii) providing high priority SoC component with quite low traffic
latencies. However, all arbitration algorithms mentioned above cannot well handle bandwidth
and hard real-time requirements concurrently.

In this thesis, we propose a two-level arbitration algorithm, RT_lottery (R for real-time, T
for weight Tuning), which is expected to meet hard real-time and bandwidth requirements of

each master at the same time. For the 1% level, we develop an arbitration algorithm whose



purpose is to handle hard real-time requirements (named Real Time Handler). For the 2™
level, we adopt a Lottery based arbitration algorithm with weight tuning for bandwidth
requirements. Although Lottery is good at bandwidth allocation, we observe that if request
conditions (traffic behaviors) of masters vary a lot, it is not adequate to decide Lottery
parameters (weight of each master) merely according to the required bandwidth ratio. For this
reason, we propose a weight tuning algorithm to decide appropriate parameters of Lottery
automatically.

We compare RT_lottery with other three arbitration algorithms, Static Priority, Lottery, and
TDM + Lottery (1% level : TDM, 2" level : Lottery). The experimental results show that
RT_lottery with parameters fine tuned by our weight tuning flow can handle real-time and
bandwidth requirements of each master better than the other arbitration algorithms.

The remainder of this thesis is organized as. follows: the previous works including
introduction of some common arbitration algorithms (Static Priority, TDM, and Lottery) and
the motivations of this work aré presented.in_Chapter 2. Chapter 3 describes the proposed
arbitration algorithm (RT_lottery) and method of automatically generating suitable parameters
of RT_lottery to meet bandwidth requirements. The experiment environment and results are

shown in Chapter 4. Chapter 5 concludes the thesis.



Chapter 2

Preliminaries

2.1 Purpose of an arbiter

In an SoC system, masters may request to access interconnect channel simultaneously
and thus the contention occurs. In the situation, an arbiter is required to decide which master
can access the interconnect channel. LikesFig:2.1, masters which need to access interconnect
channel assert request signals high [15]. An arbiter ‘gathers pending request signals of all
masters and asserts the corresponding.grant:-signal-high for certain master which has the
authority to access interconnect channel accarding to the arbitration algorithm. Thus it can be
seen that different types of arbitration algorithms could lead the different behavior of an SoC

system.

2.2 Performance evaluation of an arbiter

Depending on different demands of designers, there are several aspects of performance
evaluation for an arbiter:
1) Low average latency:

In our work, latency means the cycles between request’s generation time and request’s

finish time.



2)

3)

4)

5)

M1 M2 M3

Grant Req.

A

Arbiter

Interface

Fig. 2.1. The simple architecture of SoC system

Real-time handling:
Some masters require tasks accomplished within fixed cycles.
Guarantee fraction of communiba"tion ti)%ndwidtﬁ‘: .

B9

It is somewhat like the conce_pt' of QoS ‘(Q'uéility of‘"iService). Designers may hope that each
master can get nearly a certaihiﬁxedfﬁﬁ of bar;dwidth at least.

High channel utilization: | :

If the channel utilization is low, the bandwidth of channel is wasted. It violates the
principle of efficiency.

Low hardware complexity:

It not only means smaller area of an arbiter, but also simpler implementation of an arbiter.

In our work, we focus on the aspects of real-time handling and guaranteed fraction of

communication bandwidth of each master.



2.3 Introduction of some common arbitration algorithms

1)

2)

In this section, we present several arbitration schemes:

Static Priority [16-18]:

Each master is statically assigned a unique priority value. When multiple masters issue
request simultaneously, the master with the highest priority would be granted. The
advantages of this arbitration scheme include simpler implementation and smaller area
cost. However, if masters with higher priority request successively and frequently, masters
with lower priority may rarely be granted. This could produce the severe starvation of low

priority masters and result in unfair bandwidth allocation.

TDM [8-11]:

Time Division Multiplexing (TDM).algorithm-divides execution time on the channel
into time slots and then allocates time slots-to-masters. If the master owning the current
time slot does not request, the current time slot may be wasted. To mend this unefficiency,
a 2" level arbitration algorithm is usually adopted to reallocate the available slot to other
requesting masters. Fig. 2.2 is a simple architecture of two-level TDM.

For a two-level TDM arbitration algorithm, the 1% level uses a time wheel where each
slot is statically reserved for a unique master and the 2" level could be any arbitration
algorithm depending on applications. For example, if bandwidth reservation for masters is
important, an arbitration algorithm with better ability of bandwidth allocation can be used
as the 2" level. In our work, when the arbiter grants some master, regardless of which
level makes a decision, the time wheel will be rotated by one slot. For example, as shown
in Fig. 2.2, the current time slot is reserved for M1. If M1 does not have a request, the

decision is made by the 2" level and the time wheel is rotated by one slot.



2nd | evel
Arbitration Algorithm

Does M1 request?

Granting M1

Fig. 2.2. A simple architecture of two-level TDM arbitration algorithm

3) Lottery [14][19]:

For the Lottery arbitration algorithm, an arbiter is just like a lottery manager deciding
which lucky one will win a prize. The lottery manager accumulates requests for ownership
of the channel from one or more masters, each of which is (statically or dynamic,
statically for our work) assigned a_number ‘of ‘Lottery tickets’. The lottery manager
generates a pseudo random number that corresponds to one ticket number. The master
having the most thickets is most likely to be granted.

Let the set of bus masters be M;,M,.....M, and the number of tickets held by each
master be ty,t5....,t,. At any cycle, let the set of pending requests be represented by a set of
boolean variables r; (i= 1,2....,n), where r; =1 if component M; has a pending request, and

ri =0 otherwise. The master to be granted is chosen randomly, with the probability of
g
D han

To decide which master to be granted, a lottery manager sums up the total number of

granting component M; given by: P(M;)=

tickets possessed by the masters which request, given by Z’}:lrj -t;. Then, it generates

a pseudo random number from the range [0, ) }.r;-t;) to decide which master to be



granted. If the random number falls in the range [0, rit;), the channel is granted to My; if it

falls in the range [rits, rit; +roty), the channel is granted to My, and so on. In general, if it

falls in the range [ > \r;-t;

\"ir,-t; ) itis granted to component Ci+1. Fig 2.3 gives an

example.
Number of Request
u
Tickets Map
1 —| M1 1
2 — M2 1
Lottery
3 — M3 0 Manager
1 1+2+4=7
4 — M4
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T[4]=M4

Grant to

 T[5]=M4

M4

—

T[6]=M4

T[7]=XX

T[8]=XX

T[9]=XX

Fig. 2.3. A diagram to explain Lottery arbitration algorithm

In the example, there are totally four masters Mi, M, M3 and My assigned 1, 2, 3, and 4

tickets respectively. Request map indicates the request conditions of masters. As shown in

the Fig. 2.3, all masters request for access except Ms. The Lottery manager sums up the

tickets number of masters which request (Z?erj-tj =1+2+4=7). Then, the lottery

manager randomly generates the number 5 from the range [O,Z'}:lrj -t; =7). The random

number 5 falls into the range [riti+raty = 3, rity +roty + 14ty = 7), SO My s granted.

The number of tickets of each master for Lottery arbitration algorithm is like the weight

associated to the master. A master with a higher weight has better chance to be

We present the number of tickets as weight in the following sections.

granted.



2.4 Performance evaluation

In this section, we show the experimental results and conclusions of reference [14]. The
experiment compares Lottery with Static Priority, and TDM arbitration algorithm in the
aspects of bandwidth allocation and low average latency. Fig. 2.4 shows the experiment

environment.

Network Out

T_Port1
Network In —»_2 15 | IF
g et L
J' § T—Portz
2 +vJCommunication
o 15 | IF
= Mbps e ¥| Controller
ATM cell || T_
Scheduler 3 Port3
Queue] Bl
Portd
ayloads
Mbps
Cell bits i

Fig. 2.4. Cell forwarding in a 4 ports ATM switch [14]

The following quality-of-service requirements are imposed: (1) Port4 requires minimum
latency. (2) Portl, Port2, Port3 share the bandwidth in the ratio 1 : 1 : 4. Lottery tickets,
time-slots, and priorities were assigned uniformly in the ratio 1 : 1 : 4 : 6, for ports 1, 2, 3, 4,
respectively. The results of the experiments are shown in Table 2.1.

The columns present performance metrics for each output port (bandwidth fraction and
latency for Port4, and bandwidth fraction for Ports 1, 2, and 3). The rows present the
performance under each alternative arbitration algorithm. For example, Port3 receives about
59% of the total bus bandwidth based on the Lottery arbitration algorithm. From the Table 2.1,
we can make following observations: (1) In latency aspect : The latency observed at Port4

based on Lottery is comparable to that based on Static Priority, while the latency observed at



Table 2.1. Performance of the ATM switch

. Port 4
IComm.| [ atency | Port4 | Port3 | Port2 | Portl

Arch.| (veles’ | BW ¢y | BW (%) | BW %) | BW ¢4

word)

Starvation here

Static |/ 20\l 960 | 45.72 44.58( 0.01

prioerity

TDMA| 9.84 10.09 € 4729 | 21.31 | 21.30

\V

222 :1:1

Lotrer}'\lA 9.67 | 59.03 | 17.00 | 1430 D —nou 068:413:-1.19 - 1

N

port4 based on TDM is 7 times larger. (2) In bandwidth aspect: Based on the Lottery
arbitration algorithm, the bandwidth ratio of Ports 1, 2, and 3, is 1 : 1.19 : 4.13 which is the
best result, since it is 1 : 1 : 2.22 based on TDM and Static Priority even generates the
starvation at Port1 (only 0.01 %).

To sum up, the Lottery arbitration algorithmis (i) capable of providing the designer with
the great control over the bandwidth allocated to each master, and (ii) quite good at providing

the high priority master with low traffic latencies.

2.5 Our observations on previous work

From above, we make some observations. Low average latency can be seen as loose
real-time requirements since some extreme long latencies may exceed cycles of real-time
requirements. However, for hard real-time requirements, the worst case latency (not average
latency) must be smaller than certain amount. According to Table 2.1, Static Priority and
TDM cannot handle real-time and bandwidth requirements at the same time. The results in
section 2.3 demonstrate that the Lottery arbitration algorithm (a) provides low latency for
bursty traffic with real-time latency constraints, and (b) at the same time, provides effective
bandwidth guarantees for traffic generated by each port.

Based on Lottery, how do we allocate the weight of each master on an SoC bus to meet

10



real-time and bandwidth requirements at the same time? Let the problem be easier for just
considering bandwidth requirements first. In the experiment of [14], for good bandwidth
allocation, the weight of each component is allocated according to the ratio of required
bandwidth. Nevertheless, as shown in Table 2.1, the bandwidth ratio (1 : 1.19 : 4.13 : 0.68,
Portl -> Port4) would not conform with the weight ratio (1 : 1 : 4 : 6, Portl -> Port4) for
Port4. The reason should be that the traffic of discordant Port4 is much less than the other
ports (request ratio 1 : 1 : 4 : 0.67, Portl -> Port4). Thus it can be seen that weight allocation
IS not good enough just according to the ratio of the required bandwidth. If request conditions
(traffic behaviors) of masters vary a lot, weight tuning is required to improve bandwidth
allocation.

To meet the real-time requirements, the experiment of reference [14] requires Port4 with
minimum latency. The weight of Port4 is much larger than the other ports. However, there is
no rule to allocate the suitable weight of a certain. component much larger than others. It is
even harder to allocate weight ‘of each master_to meet real-time requirements if there are
multiple components with real-time requirements, not to mention meeting bandwidth and
real-time requirements at the same time. Furthermore, if a certain component requires hard

real-time, a probabilistic arbitration algorithm like Lottery is obviously not appropriate.

2.6 Motivations

(1) Since Lottery is not suitable for hard real-time, can we develop an arbitration algorithm

being capable of handling hard real-time requirements?

(2) For Lottery, can we develop a method of weight tuning considering both request

11



condition and required bandwidth to allocate weight of masters to meet bandwidth

requirements?

(3) Can we develop the arbitration algorithm to meet hard real-time and bandwidth

requirements at the same time?

12



Chapter 3

Proposed Approach

3.1 Proposed arbiter architecture

Since probabilistic arbitration algorithms cannot handle hard real-time requirements, we
propose the two-level arbitration algorithm, RT_lottery (R for Real-time, T for weight

Tuning). The proposed arbiter a‘rc‘hi‘tectu‘reT is "shoﬂi/‘vn in Fig. 3.1. The 1% level, Real Time

Handler, intends to handle real-ﬁi‘me requirements. The 2" level, Lottery with weight tuning,
intends to handle bandwidth requireménté. The s‘impl“ified flow of weight tuning for the 2™
level is shown in Fig. 3.2 and the details will'be prés;ented in the following sections.

In section 2.4, we find that doing a good bandwidth allocation should consider both request
conditions and required bandwidth. As shown in Fig. 3.2, we simulate the whole system and
then analyze the result. If the result meets bandwidth requirements, the flow ends; else we
perform weight tuning according to the result analysis and then simulate again. Since we need
to simulate the whole SoC system for evaluation, we should model the SoC system at the

early design stages.

1st level 2nd Jevel

Fig. 3.1. The proposed arbiter architecture

13



Meet Bandwidth
Requirement?

A Model system
at early design stages

Fig. 3.2. The simplified flow of weight tuning in 2" level of RT _lottery

3.2 Evaluation model

In our model, we assume that once a master possesses the channel, the other masters cannot
access the channel until the possessing‘master releases the channel. The architecture of the

evaluation model is shown in Fig-."‘_3‘;3. 5_!Ti L

Traffic generator 1

Traffic generator 2

Traffic generator 3 ——>-
Traffic generator 4 —»_

Fig. 3.3. The architecture of the evaluation

Arbiter

Each master has a traffic generator. The behavior of each traffic generator is given by

14



designers. An arbiter accumulates requests of all masters and decides which master should be
granted. We also construct the monitor to check the correctness of the model. There are four

types of information for a master:

(1) Rcycles :
It is the real-time requirements (in cycles) of a master. For those masters without real-time
requirements, this information should be left undefined. As shown in Table 3.1, the Reycles

of M2 is 100 cycles for example.

Table 3.1. The example of input traffic information of masers

type | Reycles beat/prob. interval/prob.
M1 |D 4/505/20 |6/30 |60/20 |70/80
M2 |D_R 100 3/20- |4/50 |5/30 |[80/10 |90/90
M3 |ND_R [120 5/30- | 6/50° | 7/20 |14/50 |16/50

(2) Beat number and probabilities :
It defines the burst size and its probability of each request. Take Table 3.1 for example,

there is 30% chance for M3 to generate a 5-beat burst request.

(3) Interval cycles and probabilities :
It determines the next request time of the master. Nevertheless, the rule of deciding the
next request time varies with master types (explained later). There is 20 % of probability
for the interval of M1 to be 60 in Table 3.1.

(4) Type :
Designers must define each master’s type. Take Table 3.1 for example, M3 belongs to

ND_R type. There are three possible types:

15



a. D type (D for Dependency) :
D type masters have no real-time requirements and its next request depends on the
finish time of its current request. Interval means the cycles between the next request and

the finish time of the current request. Fig. 3.4 shows an example.

current o next
request grant finish request
2 5 9 19 c{/cle

Fig. 3.4. The example of D type master

At cycle 2, the traffic generator randomly. generates a 4-beat burst according to beat
probability. The request isnot granted until cycle 5 and is finished at cycle 9 (4-beat
burst). Based on the probability of interval cycles, the interval time generated randomly
is 10 and it determines the next request time. Since the interval of D type master means
the cycles between the next request and the finish time of the current request, the next

request occurs at cycle 19.

b. D_R type (D for Dependency, R for Real-time) :

D R type masters are like D type masters except that they have real-time
requirements. If beat and interval numbers generated randomly are the same as Fig. 3.4,
Fig. 3.5 is the same as Fig. 3.4 except that the request occurred at cycle 2 must be
finished before cycle 12 for Reyces = 10. If the request is not finished before cycle 12, a

real-time violation occurs.

16



current next
request  grant finish _ request

L =l

2 5 9 12 19 cycle

Fig. 3.5. The example of D_R type master with Reycies = 10

c. ND_R type (ND for No Dependency, R for Real-time) :

The next request of ND_R type master is independent of the finish time of the
current request and interval means cycles between two successive requests. In Fig. 3.6,
the random result of interval distribution is 15. The next request is issued at cycle 17
regardless of the finish time of the current request. The MPEG encoder belongs to this
type of master, for example. Since the current request must be finished before the next
request, the reasonable value_of Reyeles SOUld be smaller than the minimum possible
interval. For reasonable Reyeles constraints,.we define Reycles = MiN(tmin_interval » tuser given)-

tmin_intervar IS the minimum possible;interval-and tuser given IS Reycles given by designers.

current next
request grant finish request

2 5 9 12 17 cycle

Fig. 3.6. The example of ND_R type master with Reycles = 10
3.3 Proposed arbitration algorithm

We have presented the architecture of RT _lottery (section 3.1 and Fig. 3.1). In this section,

the algorithms of Real-Time Handler and weight tuning for Lottery are described in detail.

17



3.3.1 Algorithm of Real-Time Handler

The Real-Time Handler sets a real-time counter for each master with real-time
requirements. When a master issues a request, the corresponding real-time counter is set to
this master’s Reycies . The real-time counter is decremented by 1 every cycle until the master
is granted to access the channel. Warning line is the value used to remind an arbiter to give
the grant to the emergent master. The master would have higher priority if its
corresponding real-time counter is below the warning line. When two or more real-time
counters are below the warning line, the master with the smallest real-time counter value

gets granted. Fig. 3.7 shows an example of Real-Time Handler’s operation.

M1 request
TGranttoMZT ‘
3 11 cycle
Real-time | Request | Grant Real-time | Request | Grant
counter counter
M1 | 30 Yes No M1 |22 Yes No
M2 | 25 Yes Yes M2 |25 No No
M3 | 27 Yes No M3 |19 Yes Yes

Fig. 3.7. The example for Real-Time Handler(Rcycies 0f M1=30, Warning line = 25)

In Fig. 3.7, we assume that Reycies OF M1 = 30 and Warning line = 25. Let us focus on

cycle 3 and cycle 11:

(1) Cycle 3 (see the left table of Fig. 3.7)
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As M1 requests at this cycle, the real-time counter of M1 is reset to itS Reycies ( real-time
counter = 30). All masters issue requests but only M2’s real-time counter is below the

warning line, so M2 is granted to access the bus.

(2) Cycle 11 (see the right table of Fig. 3.7)
We assume that M2’s transaction is a 8-beat burst and finishes at cycle 11. Each
real-time counters of pending masters are decrements by 8. At this cycle, M1 and M3
request and their real-time counters are both below the warning line. Since the real-time

counter of M3 is smaller than M1’s, M3 is granted.

To meet real-time requirements, we set the appropriate value of warning line considering
the worst contending case.
So,
Warning line = SUM (max‘possible beat of type-D R or type ND_R)

+ max possible beat.of all type D

In the worst case, a master without real-time requirements (D type) gets grant before all
real-time counters being below the warning line. After this D type master finishing the task,
all real-time counters are below the warning line at this arbitration time , hence all
emergent masters with real-time requirements still must queue up to be granted. Take Table

3.2 for an example and the worst contending case is shown in Fig. 3.8:

Warning line = max (5,6,7,4,5,6) + max (2,3,4)+max(3,4,5)+max (5,6,7) = 23

If there is no master whose Reycies is Smaller than the warning line (like Table 3.2), we can

meet all hard real-time requirements.
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Table 3.2. Input pattern for explanation of the warning line

Fig. 3.8. The worst case of Table 3.2

3.3.2 Weight tuning flow for Lottery (2" level)

In this section, we present the 2™ level of RT lottery, Lottery with weight tuning. The

simplified weight tuning flow has been shown in Fig. 3.2. Fig. 3.9 is the detailed tuning

flow for Lottery to meet bandwidth requirements.

Explanation of each block :

(1) First, we read the information about traffic behaviors of masters from designers. The

input pattern is like Table 3.1.

(2) Each master’s required bandwidth must be smaller than its maximum bandwidth. The
maximum bandwidth of a master is obtained by assuming that there is only one master
on the channel, i.e., any request from the master will be granted immediately. To screen

out unreasonable required bandwidth constraints, we evaluate the maximum bandwidth

of each master first.
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type Reycles beat/prob. interval/ prob.
M1 |D 5/20 | 6/40 |7/40 |40/50 |50/50
M2 | D 4/50 |5/20 |6/30 |60/20 |70/80
M3 |D_R 200 2/30 | 3/30 |4/40 |40/50 |60/50
M4 |D_R 100 3/20 [4/50 |5/30 |80/10 |90/90
M5 |[ND_R |120 5/30 | 6/50 |7/20 |14/50 |16/50
D type M3 M4 M5 ‘
7 “—a 7 5 7 * cycle




| @ Reading design information
¥

@ Evaluating each master’s
max bandwidth User can modify the required
1 bandwidth according
@ Required bandwidth ‘ to the current best solution
from designers
]
@ Allocating initial

weight -> f( = 2= )

| (5 Simulation |

©)

Weight Tuning

Do all masters
meet requirement?

No Yes

utput the current
best solution

exceed iteration bound
or have no redundant

Fig. 3.9. The detailed weight tuning flow for Lottery

(3) Designers input required bandwidth of each master.

(4) The maximum bandwidth.of eachmaster.is related to traffic condition. Initial weight
allocation is based on each master’s maximum bandwidth and required bandwidth. We
introduce some definitions first .

(@) Ri: he max bandwidth of M;

(b) ri :  represents the required bandwidth of M;.
(c)Oi: the value whichisequal tor;/ R;.
(d)Ti: initial tickets of M;

We set T; = int [(total tickets*(O; / SUM (0))]

(5) Based on masters’ information and evaluation architecture (see Fig. 3.3), we simulate
the whole system.

(6) If all masters meet bandwidth requirements, we get what we want and go to block 7,
else go to block 8.

(7) Output the results of the flow.
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(8) Weight tuning intends to move bandwidth from the master whose bandwidth is more
than its required bandwidth to the master whose bandwidth is less than required
bandwidth. We say that the master has redundant bandwidth if its bandwidth is more
than required bandwidth. If no master has redundant bandwidth, the weight tuning
process is no more useful and stops (block 10). Otherwise, go to block 9 for weight
tuning. Although there is any master with redundant bandwidth, it is possible that we
still cannot meet bandwidth requirements with weight tuning. We set the iteration
bound for our flow. If the iteration number exceeds the iteration bound, go to block 10.

(9) Based on evaluation result, we try to tune weigh for meeting bandwidth requirements.
The arbitration algorithm of weight tuning is presented in section 3.3.4.

(10)Output the current best solution for designers. Designers may change the required

bandwidth of each master according to the current best solution.

3.3.3 Acceptance range

How do we define meeting bandwidth requirements? If we demand that the required
bandwidth is exactly equal to the simulated bandwidth, it is somewhat unreasonable. Based
on the same input information of masters and required bandwidth, the results of our
experiment may even vary with different random seeds. We design the experiment to
decide the acceptance range from required bandwidth to simulated bandwidth. The
bandwidth requirements are met if the difference of required bandwidth and simulated
bandwidth is within this acceptance range. Based on the same input information of masters
and the required bandwidth, we simulate the whole system with different seeds (0 ~ 65535)
to measure the max difference of simulated bandwidth. The result shows that the max
difference of simulated bandwidth is 4% of total bandwidth and we choose 2% as the

acceptance range.
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3.3.4 Algorithm of weight tuning

In the section, the algorithm of the block named weight tuning in Fig. 3.9 is presented

(see Fig 3.10). Weight tuning intends to move bandwidth from the master which has the

most extra bandwidth to the master which lacks bandwidth the most. Since we do not know

the suitable amount of weight transfer to meet bandwidth requirements, the amount of

weight transfer is initialized as certain value (described later) and is decremented with

binary method. To be more detail, we introduce some definitions first:

Smore

Sless

Smet

Smore IS the set of masters:having more bandwidth than required.
Eq.:
If (My’s simulated bandwidth =M;’s required bandwidth > 2%), M; € Sore

(2% is acceptance range decided in.section 3.3.3)

If some master’s simulated bandwidth is less than required bandwidth, this master
lacks bandwidth. S, is the set of masters lacking bandwidth.
Eq.:

If (My’s required bandwidth —M;’s simulated bandwidth > 2%), M; € Sjess

If some master’s simulated bandwidth is about equal to required bandwidth, this
master meets bandwidth requirements. Sy IS the set of masters meeting bandwidth
requirements.

Eq.:

If (| My’s required bandwidth —M;’s simulated bandwidth | < 2%), M € Spet
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Yes

Mmost The master having the most extra bandwidth in Spere
Mieast - The master lacking the most bandwidth in Sjess
tm The number of tickets Mpost has
t The number of tickets Myeast has
tq The number of tickets that we try to tune each time
tm’ The number of tickets mmost has after weight tuning
ty’ The number of tickets me,st has after weight tuning
R Right bound used for deciding tq
L Left bound used for deciding tq
(Dmasters Classification |
@ R=1,‘L=O |
i
(Dt, =t *R-L)/2 |
@ 1@, ==0)2
®) t,P’ =t -ty
t =t + tg
|@ Simjlation
® R=(R-L)/2 e e

Fig. 3.10. The flow of weight tuning

Explanation of each block :

A

®

Finish

(1) First, masters are classified into three sets - Smore s Siess s AN0 Smet -

(2) R and L are initialized.
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(3) Decide tg, tg=(R-L) t / 2
ty is used for deciding t,’ and t; .

(4) The block checks whether the iteration is meaningful or not. If the iteration is
meaningful, go to block 6, else go to block 5. If ty is equal to zero, t, and t; cannot be
changed (see block 6) and weight tuning does not need going on.

(5) Finish the weight tuning.

(6) Decide t,, and t; according to tg.

(7) Simulate the whole system with new weight allocation.

(8) The proposed flow of weight tuning is required to merely improve bandwidth allocation.
This block intends to prevent weight tuning from worsening bandwidth allocation. Syore
and Specare sets that meet bandwidth requirements. If t, and t; make these sets which
originally meet bandwidth reguirements into-S;.;s Which violate bandwidth requirements,
go to block 9 to reduce t4,-else.go to block'5:to finish weight tuning.

(9) Reduce R for decreasing tg-

The purpose of weight tuning is transferring the fixed amount (t;) of weight from mpes: to
Mieast - 1T the current tq transfers any master from Spore OF Smet t0 Siess » We Would decrease tq

in the proposed flow.

Pseudo code is shown as follows:

Master classification ;

Initialize R =1, L =0, finish = 0;
// record the old value of t, and t,
tm old = tm ;

tioa=1;
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while (finish == 0)

{

ts=(R-L) *tn/2;

tm=1tm-1q;
t=t+tg
if (ta=0) I/ Loop breaks if it is not a meaningful action
do
{
tm = tm_old;
t =1 olg;
break;
¥
simulate ();

it (Smore @Nd Syet Still meetirequirements)

do
{
finish = 1;
¥
else
{
R=(R-L)/2;
¥
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Chapter 4

Experimental Results

4.1 Experimental environment

We compare RT_lottery with Lottery, Static Priority, and TDM + Lottery (two-level). The

parameters of these arbitration algorithms are set as follows:

(1) Lottery:
The weight of each master is allocated-according to each master’s required bandwidth
(weight ratio = required bandwidth ratio)

(2) Static Priority:
The priority of each master is according to its required bandwidth. The master with higher
required bandwidth has a higher priority.

(3) TDM + Lottery
To meet real-time and bandwidth requirements at the same time, we design a two-level

arbitration algorithm.
1% level - TDM :
The 1% level intends to meet real-time requirements. Masters which have real-time
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requirements are allocated time slots. There are three steps for our algorithm of
allocating time slots to masters which have real-time requirements.

a. Calculate the distance of time slots for each master to meet real time requirements:
D;: the distance of time slots of M;
Di = int ( Reyctes / Bmax ) — 1
( Bmax: the max possible beat number of all masters

Reycles: the real-time requirements (in cycles) of the M;)

b. Calculate S;:
Since the 1% level is the time wheel, we must decide the size of the wheel. S;is
used to decide the size of the time wheel. It can be seen as the number of time
slots which we hope possessed by M; in the whole time wheel.
L=LCM (all D;)
Si=L/D;

c. Allocate time slots:
In the algorithm, we: set C; for-each master. C; is like counter to indicate
allocating time slots.
Ci: the counter of M;
First, we initialize Ci=D;. Then, run through time slots of wheel to allocate each
time slot to the suitable master. At each time slot, the master with minimum C;
gets this time slot. Once M; gets time slot, Ci = D;j, S; = S;j — 1 and other
masters’ counters are decremented by 1 (EX. For ji master, Cj = C; — 1). If
there is any M; with zero S; , allocate remaining masters to following time slots
one more time (according to C;) and the algorithm stops.

Pseudo code is shown as follows:

/I M means the i, master which has real-time requirements;
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for each M

do
{
Di = int ( Reyetes i / Bmax ) - 1;
}
L =LCM (all D;);
for each M;
do
{
Ci=Di; [ initialize all C; = D;
Si=L/Dj;
¥
Finish = 0;

while (Finish == 0)

do
{
for Mjwhose C; is the minimum
do
{
Ci=Di;
Si=Si-1,

time_slots.allocate(M;); // M; is allocated the current time_slot

}

for Mjwhose C; is not the minimum

do

{
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Ci=GCi-1;
Sj=§j-1,;
}
if any M;whose Sj=0
do
{
Finish = 1;
while (there is any M; whose S; != 0)
do
{
for My whose Sx 1= 0 && Cy is the minimum
do
{
time_slots.allocate(M);

Sk=0;

Fig. 4.1 shows an example.
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max /
Master | Ryees | D S
M1 42 4 3
M2 35 3 4
M3 36 3 4
M4 60 6 2
L=12
12 |3
13 4

Fig. 4.1. The example’of the 1™ level of TDM + Lottery

In Fig. 4.1, we assume that Bmax= 8 0f all masters. According to the given Reycles, We
calculate D; for each M;. Inthe example, Dy="int (42/8) -1 = 4. Thus, we get L =12
(LCM (4,3,3,6) = 12). Based on L, we calculate S; for each M. In Fig.4.1,S3=12/3=

4. The result of time slots allocation is just like the right table of Fig. 4.1.
2" level — Lottery :

The weight of each master is allocated according to each master’s required bandwidth

(weight ratio = required bandwidth ratio).

4.2 Experiment 1

In experiment 1, we use the input information of masters shown in Table 4.1 [10][20].
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Table 4.1. The input pattern for experiment 1

| Heavy | | Light |
type | Ryyies beat/prob. interval/prob.
Masterl | D 8/50 |16/50 |6/10 7/20 |8/40 9/20 |10/10
Master2 | D 1/50 | 4/50 |10/10 11/20 | 12/40 | 13/20 |14/10
Master3 |D_R |65 8/50 |16/50 |6/10 7/20 |8/40 9/20 |10/10
Master4 |D_R |85 1/50 | 4/50 |10/10 11/20 | 12/40 | 13/20 |14/10
Master5 | ND_R | 65 8/50 |16/50 | 65/10 66/20 | 67/40 |68/20 |69/10
Master6 | ND_R | 85 1/50 | 4/50 |85/10 86/20 | 87/40 |88/20 |89/10

For each type of master, we design a heavy traffic master (intensive use bus) and a light
traffic master (infrequent use bus)..For example, M, belongs to D type and its possible beat
number is 8 or 16, which is larger than Mz’s 1 or.4.-In the aspect of interval, M;’s possible
interval cycle is shorter than M,’s on average.

Although the input information of:masters is-given, the required bandwidth of each master
is undecided. The difficulty of meeting real-time and bandwidth requirements varies with the
different required bandwidth pattern. Let us see the single case of required bandwidth pattern

first. We record following values for evaluation:

(1) bw_miss_num:
The value represents the number of masters which miss bandwidth requirements.

(2) rt_vio_time:
This value is calculated by: SUM ( the number of real-time violations of allmasters’
requests ). If the request of M; which has real-time requirements is not finished within
the Reycles , @ real-time violation occurs.

(3) max_latency:
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During the simulation time, we record the latencies of all requests and choose the
maximum one among these as the max_latency .

Table 4.2 is the given required bandwidth pattern.

Table 4.2. The required bandwidth pattern for single case in experiment 1

M1 |M2 M3 |M4 | M5 | M6
Maximum
_ 63|18 |63 |19 |17 | 2
Bandwidth(%b)
Requi
eqUIr.ed 20 5 40 10 17 2 => 94 % in total
Bandwidth(%b)

The maximum bandwidth of each master-is very diverse from one to one, since the input

information of masters includes heavy andight traffics. The results are shown in Table 4.3.

Table 4.3. Theresult of the single case in experiment 1

bw_miss_num | max _latency (cycle) | rt_vio_time
Static Priority 3 (50%) 7060 244
Lottery 3 (50%) 954 160
TDM+Lottery 1 (17%) 314 0
RT_lottery 0 (0%) 170 0

For the ability of bandwidth allocation, Static Priority is poor and Lottery still needs weight
tuning for better results. In the aspect of real-time, Lottery and Static Priority are failed to

meet real-time requirements since these two arbitration algorithms do not take real-time
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requirements into consideration. The Static Priority is worse than Lottery for real-time
requirements, because max_latency of Static Priority is much larger than that of Lottery (7060
VS. 954). Even though TDM + Lottery has advantages of handling real-time (1% level) and
bandwidth (2" level), it still has bad bandwidth allocation capability (bw_miss_num = 1).

It is not quite fair to conclude the comparison of these four arbitration algorithms just by a
single case of required bandwidth pattern. We design a random required bandwidth pattern
generator. This generator can randomly generate the required bandwidth for each master and
the sum of these required bandwidth is equal to Rg,m. In general, it is usually harder to meet
requirements with higher Rgm. For each Rqm, the experiments are conducted to compare four
arbitration algorithms with 100 different random required bandwidth patterns, and Rsym i
represents the i" iteration of simulation for Rem . We record the following values during

simulation for evaluation:

(1) rt_vio_time_sum :
SUM( rt_vio_time in each'Rsym.i)
(2) rt_fail_sum :
The count of real-time failed cases in 100 iterations
(if rt_vio_time >0 in Reym i => Rgym_i is a real-time failed case )
(3) bw_fail_sum :
The count of bandwidth failed cases in 100 iterations
(if bw_miss_num > 0 in Reym_i => Reum_i is @ bandwidth failed case )
(4) fail_sum :
The count of failed cases in 100 iterations

(if rt_vio_time >0 or bw_miss_num > 0 in Rym i == Reum_i is a failed case)

The results are shown in Table 4.4.
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Table 4.4. The result of 100 random cases

f.RT_Iottery [Rym  |FEV [bw f |rt fail
: 95 0 87 0 87
90 0 80 0 80

85 0 79 0 79

80 0 68 0 68

75 0 66 0 66

70 0 57 0 57

65 0 38 0 38

TDM+ | Roum rtv |bwf |rt fail
Lottery 95 1 99 1 99

90 8 96 8 96

85 8 95 8 96

80 6 91 6 91

75 6 83 6 84

70 3 75 3 75

65 2 58 2 58

rt v : rt_vio_time_sum

bw_f : bw_fail_sum

As can be seen, it is harder tosmeet requirements with larger Ry . The number of fails
decreases with lower Rg, . In real-time aspect, Lottéry and Static Priority do not consider
real-time requirements and hence-the rt_f of-these two arbitration algorithms are much larger
than others. Static Priority is worse than:Lottery since its rt_v is much larger than Lottery’s.
The 1% level of TDM + Lottery handles real-time requirements but it still fails for certain

critical cases. In bandwidth aspect, Lottery and TDM + Lottery handle bandwidth

Lottery

Static
Priority

rt f :rt_fail_sum
: fail_sum

fail

[Rym [tV bw_f rt f fail
95 12915 99 100 |100
90 12150 97 100 |100
85 11159 98 100 |100
80 10535 86 100 |100
75 9007 73 100 |100
70 9022 58 100 |100
65 8274 45 100 |100

[Rom rtv bw_f rt_f fail
95 18577 100 100 [100
90 17396 100 100 [100
85 13739 100 99 100
80 14235 98 100 |100
75 11200 88 99 100
70 11076 83 97 97
65 10345 82 96 98

requirements better than Static Priority, but RT_lottery with weight tuning is the best.

Number of failed cases in different Rgm :

RT_lottery < (TDM + Lottery) < Lottery = Static Priority

Table 4.5 is the summery of experiment 1.
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Table 4.5. The summery of experiment 1

Arbitration algorithm

Real-time capability

Bandwidth allocation capability

RT_lottery Always holds Best
TDM + Lottery Only fails for critical cases | Good but requiring weight tuning
Lottery No consideration Good but requiring weight tuning

Static Priority

No consideration

Poor

4.3 Experiment 2

The objective of experiment 2 is to observe the effect of beat number on arbitration
algorithms. The input patterns are designed that all masters send the same beat number of 8,
16, and 32, respectively. The input information of masters for fixed 8-beat, 16-beat, and

32-beat is shown respectively in Table 4.6, Table.4.7, and Table 4.8. We run 100 random

cases for each Rqym . Results are shown in Fig. 4.2.

Table 4.6. The fixed 8-beat input infermation of masters in experiment 2

type Reycles beat/prob. | interval/prob.
Masterl | D 8/100 6/10 7/20 8/40 9/20 | 10/10
Master2 | D_R 100 8/100 6/10 7/20 8/40 9/20 | 10/10
Master3 | ND_R | 100 8/100 100/10 | 101/20 | 102/40 | 103/20 | 104/10

Table 4.7. The fixed 16-beat input information of masters in experiment 2

type Reycles beat/prob. | interval/prob.

Masterl |D

16/100 6/10

7/20 8/40 9/20 | 10/10

Master2 |D R 100

16/100 6/10

7/20 8/40 9/20 | 10/10

Master3 | ND_R | 100

16/100 100/10

101/20 | 102/40 | 103/20 | 104/10
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As shown in Fig. 4.2, RT_lottery is the best among four arbitration algorithms for fixed 8,
16 and 32-beat. As well, RT_lottery and TDM + Lottery, which have capability of handling
both bandwidth and real-time requirements, are much better than the other arbitration
algorithms. Nevertheless, it is harder to meet requirements with larger fixed beat number for
RT_lottery and TDM + Lottery and the numbers of failed cases arise with larger beat number.
The reason is that with larger beat number, the granularities of weight (ticker number) for
RT _lottery and TDM + Lottery are more coarse-grained. If there is fixed amount weight

transfer from M; to M; , the influence of weight transfer on 8 or 16 fixed beat pattern is

Table 4.8. The fixed 32-beat input information of masters in experiment 2

type Reycles beat/prob. | interval/prob.
Masterl | D 32/100 6/10 7/20 8/40 9/20 10/10
Master2 |D R 100 32/100 6/10 7/20 8/40 9/20 10/10
Master3 | ND_R | 100 32/100 100/10 | 101/20 | 102/40 | 103/20 | 104/10
8 beats
120
) ——s—+—+——=» g5 — Lottery
80 . Co
— —= Static Prion
N e — ~— TDM+Lottery
0 L L L L L L
5 9 8 8 75 0 6 - RT lottery
—_—
R_sum
16 beats 32 beats
120 120
100 . - > SN |
80 L~ T~ lgg i:_—%’_ ; ;
60 N~ . 60 F
40 e 40
\/‘\ 20
20 ~a 0
0
95 90 85 80 75 70 65 % % 8 80 7 70 05

Fig. 4.2. Trend of failed cases for 100 random cases

smaller than 32 fixed beat pattern.




Chapter 5

Conclusions

The two-level arbitration algorithm RT lottery with weight tuning is proposed in this
thesis. Our evaluation model and weigh tuning algorithm set the suitable parameters of
RT_lottery. The experiments compare RT _lottery with Static Priority, Lottery, and TDM +

Lottery. We make some conclusions as:

(1) The results show that RT_lottery is the best:among four arbitration algorithms for meeting
bandwidth and real-time requirements at the same time.

(2) Our evaluation model and weight tuning algorithm really set the parameters of RT_lottery
well and make it more powerful.

(3) With smaller possible beat number, the outstanding of RT_lottery is more obvious

because the granularity of its weight is more fine-grained.
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