&4 H.264/AVC 2 = Bujg ik B2 2N Y 2.
SR LE S

Algorithm and Architecture Design for H.264/AVC
Deblocking Filter and Intra Coding

Frdl @i

I wpE L

PEAR 4t £ 2 0

&4 H. 264/7AVC 2 2 Bujg il B2 2N S ff 2
SR LES Sy

Algorithm and Architecture Design for H.264/AVC
Deblocking Filter and Intra Coding

SRR L 1E] Student: Chao-Chung Cheng
R RRE AL Advisor: Dr. Tian-Sheuan Chang

1458k RFFTTAHRLATL
o o N

=H

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science
in
Electronics Engineering
June 2005
Hsinchu, Taiwan, Republic of China

PEAR 4 te & 2 0

&4 H.264/AVC 2 = Bujg ik B2 2N Mnf 2
/ﬁ-rr = ’f‘-" ’f#r)f{;

Py A s i FFR wipe L

Bz~ F

BE kAT TR

® =

B e AR § 2R RRER DL o WA Y ']
FHprauFiEa &2 > H264/AVC P # 5 AT S AL S fg 1 > 4p iR
% MPEG-4 » H.263 ~ 4o MPEG-2 » /&5 &4 39% ~ 49% ~ fr 64% 7 2
Bod NHEGRFAFRLGBEITE FNER > R FEYRAL G
BT AT 2 B ERE T Ao AR R N e A Rk
H.264/AVC z_ i sci 2. M " M MEE SR > S P £ 82
FAL - Aghe ¥ o AP ORI &G 2 BV 4 LA H264/AVC

Bt Rk B ARG B R RIS R P e B

&

EHR

2 3 Bpk BE_H.264/AVC AL Sl 4 P chE B e kR
BALE % MBER ST o 63 27 LARDELE » Ah2 P > AP
R AEI RAMERE Y L LR TRASESERE T PP

BT o P T A K B e

“-"}
5
j"
i3
3
o
.
N
=

Fans o - B AR E R S R R TR e

W #cp > 30 50%:np R Rkl 0 % S R T RS 90% i 383

o

Bkl > T E D { PaiE o

R FERFI 2 B TR ECE SRR R R AL A T R ik

B 2 H264/AVC AL %fh 5 v 2 %fBhE BB > Ak d > R

W&%+MMMNC£WWW&M—%@Eﬁiﬁ%ﬁﬁé’ﬂ%%ﬁﬂﬁ
Pt e B G A IR FRM B EE o h FERER P HTFR

FE BN a2 G 2BFFE T RS AN o fr2 B RFE 24
o (T S G 3B%GHEp FFREELE R 0 om R A 1%L f iAo
B s A H264/AVC 1= Sl Benp w5 2 2 2 4 ﬁ AT
DR BE B R 2 AF FRenT G SERIHESS 0 R D B ECREG AR B X ehfEp SR
Bl > © %ﬁ“v} B e T gk EREFAPL o fie & F iy R Y
f?friﬁﬁ AR o ¥ 117.28MHz T i 7 T pF e HDTV(1280x720) 30fps
a2 A H264AVC AR iz 5 4 ,?fuﬁvﬁjgki L5 = B3N
Ao AP nd S B R OB T WL ot chie it 2 5 ST S i
RPN FERNT B 2T UG R TRBIET S ciE B AP A I e Y Ag

ER AR RN T &

Algorithm and Architecture Design for H.264/AVC
Deblocking Filter and Intra Coding
Student: Chao-Chung Cheng Advisor: Dr. Tian-Sheuan Chang
Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Digital video technology has played an important role in our daily life.
With the evolution of video technology coding efficiency has been greatly
improved. H.264/AVC is the latest international video coding standard that can
save 39%, 49%, and 64% of bit-rates in comparison with MPEG-4, H.263, and
MPEG-2, respectively. However, this efficiency comes with the cost of much
higher computational complexity than previous standards due to the complex
coding approaches and mode idecision techniques. Thus, how to design high
performance functional units and:reduce-computational complexity without too
much degradation in coding efficiency are-very important topics. In this thesis,
we have three contributions for the H.264/AVC design, architecture design of
the deblocking filter, a fast intra prediction algorithm, and an architecture
design of intra coding in H.264/AVC.

Deblocking filter is an important component of H.264/AVC to reduce the
blocking effect and to improve the video quality. It is both computational and
memory extensive. In this thesis, two different architecture of deblocking filter
are proposed. The computing flow is reordered for efficient data reusability and
high throughput while maintain standard compatibility. In the first version, gate
count is greatly reduced by simple control unit, and internal memory is also
reduced to 50% of that in the previous design. In the second version, the
proposed architecture can reduce 90% of internal memory and achieve higher

throughput than others.

Vi

Intra prediction, which uses the information of spatial correlation to
prediction the data to be encoded, is an important tool of intra frame coding. In
this thesis, we propose a simple fast three step algorithm. The algorithm uses
the directional relationship of prediction modes to skip the modes with less
probability. Thus, the proposed algorithm can complete the 4x4 intra prediction
by only examining six modes instead of nine modes in the full search algorithm.
The simulation result shows that the proposed algorithm can maintain similar
PSNR quality to that in the full search algorithm with 33% of computation
reduction of intra prediction process and only 1% of bit-rate increase.

Finally, a hardware oriented algorithm of intra coding and its architecture
are proposed. We save the complex and hardware costly plane mode, which
occupies the biggest area in the intra prediction unit in the intra coding and
improve the coding efficiency: with .the. enhanced cost function. With well
designed high performance: functional .unit -and computing schedule, the
proposed architecture can easily. support-real-time intra coding of HDTV
1280x720@30fps video application-when clocked at 117.28MHz.

In brief, our contribution to H.264/AVC video coding system is in three
parts. The first contribution to the deblocking filter architecture can accelerate
the deblocking process. The second contribution to the fast intra coding
algorithm can reduce the computational complexity of intra prediction. The
final contribution to the intra coding architecture can speed up the computation

of intra frame coding.

vii
=1 24
s P
2 £ ‘Q}F{\:?T; m;l‘}il %?’%4{5{ frE/J J'E‘I‘]’;—-l y iB— FE 5% ?/‘-A. J}é—?’ff'éj:
}lﬁ—: ’gﬂ. I—-EH Fﬁ‘;gﬂml};}{,.q-g*\.el r‘liﬁ‘-_\i\‘ i g&”é'ﬂ'f\?*\‘
pi,uﬁi)ﬁam E B ;I”E‘Jri\.mt/z ’}'é)/;f7 ,]d’—,—,v‘k BB Fn?uz\é°
SEBHBHAOT RLAR P AP RESEL E
E oYK FIRERCRE R PP
.&i’gf\"ﬁﬁ:ﬁ? ié\fml%

Bo g kg
H 7

T EAT kA
ENEEE
WVSP F oz L o BEREIA Pz H GHEE K
CRBAER P B F RS TR AT R 0 RPN S o
G RAXT T E#heh RS 2225 &8¢ g - St
SIP gk eniffz » — Ao g f§ T A RD E R o EAE
TSR pHMAPEE SMBETEE S PHEEE 2 F 8 F
ERNC IR ENNCEE N Rt L SNk L RN
SOEIEA] o B F BB A FRR R A v B B fireny 4 o A
PR A ICKFFFIEE T A PR E o1 - o A A A4
I R o
fs L
BANY A B Amdl o

¥

B R Gh Y P

TR HpEREE F E A R A P N 4D S dr e~ dEdE S R auE

G- RIS R

A

viii

Contents
CHAPTER 1 INTRODUCTION ..ottt 1
1.1, IMOTIVATION oottt bbb 1
1.2, THESIS ORGANIZATION ..cutiiiiiiiitiesiisieesteeiesseeste et s e sse s e b s aseesne e sneenneenne e 2
CHAPTER 2 OVERVIEW OF H.264/AVC STANDARD.......ccccotiiiiiieieiese e 3
2.1, INTRODUCTION TO H.284/AVC......ooiiiiiiiiiieiieee e 3
2.2, PROFILE AND LEVELiiiiiiiiiiiiiiesiieie sttt sttt 7
CHAPTER 3 ARCHITECTURE DESIGN OF DEBLOCKING FILTER IN H.264........... 9
3.1. FUNDAMENTAL OF H.264/AVC DEBLOCKING FILTER ...ccocviveiiiirieiniiniesieenienens 10
3.2. ARCHITECTURE DESIGN OF H.264/AVC DEBLOCKING FILTERccccccvririiniiniinnns 13
32,1, VERSION L. 13
3.2.1.1. SIMPLE DATA FLOW i: o 8 e coanfs e steeeesseesieenesiee e sseesnesnne e nnesnne e 13
3.2.1.2. HARDWARE ARCHITECTURE ...t titesues s iaileseeesrierisiiesiisiesies st 14
3.2.2. VERSION 2. Btk iaaea naaadaidsanat s« b et ess s abe e s e be e st abe e n e enneenneenn e 18
3.2.2.1. FULL DATA REUSE FLOW. (i it 18
3.2.2.2. IN-PLACE DEBLOCKING FILTER ARCHITECTUREcctetirieeiiarenieesreenesieesieannens 21
3.2.2.3. MEMORY ORGANIZATION.....ceiuiiriiiiiitieiisiestissi st 22
3.2.2.4. PROCESSING SCHEDULEccitiiiiiieeniieienieesteasesiee s ene et sne e nne e 23
3.3, IMPLEMENTATION AND COMPARISON......ccviiiiiiriiiiiiiesiisie et 25
3.4, SUMMARY OF PROPOSED ARCHITECTURES.......ccittiieitieririeesieanesseesnesnesseessessnees 26
CHAPTER 4 FAST 4X4 INTRA PREDICTION ALGORITHM FOR H.264/AVC 27
4.1. FUNDAMENTAL OF H.264/AVC 4X4 INTRA PREDICTION.....cveiviirieieiinienieeniennens 27
4.2, REVIEW OF PREVIOUS APPROACHES.ccittiiiitiatisieesieessesieesseesne e sseesnessnesneennens 30
4.3. FAST THREE STEP INTRA PREDICTION ALGORITHM....ceeiviiiiiiieiiiie e 31

44, SIMULATION RESULT AND DISCUSSION ... eeieeeeeee e eeeeeeeeae e e e e e e e eeeeeaaaeeeeeeeennn 32

45. SUMMARY OF PROPOSED INTRA PREDICTION ALGORITHMcccovviiiiiieniiniiniienns 37
CHAPTER S5 ARCHITECTURE DESIGN FOR H.264/AVC INTRA CODING............... 38
5.1. FUNDAMENTAL OF H.264/AVC INTRA CODINGocvriiriiriieiieieniesie et 39
5.1.1. INTRAPREDICTION MODE........ciciiiiiiiiiieiiiiie e 40
5.2. HARDWARE ORIENTED ALGORITHM MODIFICATIONccvviviiiieiinieeniiere e 40
5.2.1. PROPOSED MODE DECISION METHOD.......ciiiiiiieiiiiiniieiisis e 40
5.2.2. INTRA PREDICTION MODE.......cciiiiiiiiiiiieiti et 43
5.3. ARCHITECTURE DESIGN OF H.264/AVC INTRA CODINGocvevriirieieiinienieesieneens 49
5.3.1. SYSTEM ARCHITECTURE DESIGNcciiiiiiiiiiiieiiire et 49
5.3.2. INTRA PREDICTOR GENERATION UNIT ...ooiiiiiiiiiiiiiieiisi s 51
5.3.3. TRANSFORM UNIT ..ottt 55
5.3.4. QUANTIZATION UNITuiuri i orrtiieicasesasfareeeeeaiureeeessseeessassssssssssssssssssssssessanssessssnnens 57
5.3.5. MODE DECISION UNITt ittt it i 58
5.3.6. CAVLC UNIT ..o it i i immmiimii e e ettt e sine b neennne e 59
5.3.7. MEMORY ORGANIZAT HON Sttt satt e veveerressresseessesseseessesessseesseseessesssesessesssenns 59
5.3.8. OVERALL ARCHITECTURE PERFORMANCEccciiiiiiniiiiiiin i 60
9.4, IMPLEMENTATION RESULTSooiiiiiiieiieiiiesiee e 61
CHAPTER 6 CONCLUSIONcccovonerieneessesssssissssessssssssssssess oo assssssss s 63

BIBLIOGRAPHY ..o 64

List of Tables

Table 1 Parameters for determining boundary strength.............c.cccoevveiennen, 12

Table 2. Comparison of cost synthesized at 100MHz. (excluding memory cost).

.. 25
Table 3. Comparison Of MEMOIY SIZE........cccocoiiriiiiiieieee e 26
Table 4. Comparison of processing capability...........ccccocovvveviiieiicie e, 26
Table 5. QP =28, Comparison reSUlLS.........ccooviiriiiriiie e 33
Table 6. QP =32, Comparison resUltS.........ccccvcvveieeiiiie e 33
Table 7. QP =36, Comparison reSUlLS.........ccocviierieiiiie e 34
Table 8. QP =40, Comparison resUltS.........cccceeveieeiiiie i 34

Table 9. List 0f gate COUNTccveiiiie e 61

Xi

List of Figures

Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

1 Block diagram of H.264/AVC encoderccccvveveeveiiieieeie e s 4
2 Block size of motion estimation/compensationc.ccocevvvereeeenenn. 4
3 Subjective view comparison of picture with deblocking filter (left) and
without deblocking filter (right). ..., 6
4 R-D curve comparison of H.264/AVC with MPEG-4, H.263, and
MPEG-2 ..o e 7
5 Profile of H.264/AVCcooiiiiiieeee e 8
6 Encoding 100p OFf H.264ooviiiiiiieeeee e 10
7. Original processing flow for (a)horizontal filtering, and (b)vertical
FIEEIING o 12
8 Convention for describing samples across two 4x4 block boundary... 12
9. Modified processing flow for (a) horizantal filtering, and (b) vertical
LT L] T ey SRR BSOS 14
10. Data structure of debloeking filtercooviiiiiieee 14
11. The proposed deblocking filter architecture.cccccooeveiveinennnn, 15
12. 4x4 Block index for one macroblock. ..o 15
13 Data path for (a) horizontal filtering and (b) vertical filtering........ 16
14 timing diagram of simple data flow deblocking filter 17
15, BIOCK INGEX ..t 18
16. Edge processing order for (a) luma edge, and (b) chroma edge....... 19
17. Overall arChiteCtUIe..........cooviirieee e 19
18. Data path (a) horizontal filtering over vertical edges, and (b) vertical
filtering over horizontal edges..........cccveveiieii e 20
19 Organization of on-chip 1R/IW port SRAM........ccccceveieiininienininns 22

20. Data flow of deblocking filter (a) processing the left vertical edges, (b)

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Xii

processing vertical edges, and (c) processing horizontal edges.............. 24
21. Direction of 9 4x4 intra prediction modes in H.264............c..cccco..... 28
22. A 4x4 block and its neighboring piXels........cccocovveviveieivieieccece, 28
23. 9 mode of 4x4 intra PrediCtionccocoviririeieieee e 28
24. Adjacent block of current 4x4 blocK ..., 29
25. Flow chart of three step intra algorithm ..., 32
26. RD-curve of mobile & calendar ..o 35
27. RD-CUIVE OF TOrEMAN.......coiiiiiiieiesece e 35
28. RD-curve of Stefan.........ccccoooeiiiinic 36
29. RD-CUIE OF NEWS.....cuiiiiiiiiiieieieieste et 36
30. RD-curve of coastguard...........ccccvcieieeieiiee e 37
31. Flow of H.264/AVC intra COUING ...oifu e oveeveeieieieniesie e 38
32. MOAES OF INTradXA cesvusissassatitrsssstasnetis s b4t ettt 39
33. Modes Of INtralBOXLB. ... s crmmmmmmmrmrn s et eeneseesreesiesreseeesre e 39
34. Modes Of ChromMaBX8. & s susssitas vt 40
35. 4X4 DCT transform of H.264/AVC..........ccooveiiiiiii e 41
36. quant_coef table of quantizationc.cccceevveve v 42
37. dequant_coef table of inverse quantization.cccceoceverinennnnnn 42
38. Modified SATD calculation methodccooevviiieiiiniicece 43
39 Four types of intra prediction Modes..........cccocevveveiieeneninsie e 44
40. Equations of plane mode prediCtion..........cccccceeviveieeve s 44
41. RD CUIVE OF AKIYO ..o 45
42. RD curve of FOremanccocveveieiiniiiseseeeeeese e 45
43. RD CUIVe Of CONTAINETccviiiieieieeic e 46
44. RD curve of Stefan.........cccoiiiiiiiiic 46

45. RD curve of TOOthall.........ooovveveeeeeeeeeeeeeeeeeeeeee 47

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

46. RD curve of mobile and calendarcccocoieiiininiiiiiies 47
47. RD CUIVe Of tEMPELE ..o s 48
48. RD CUIVE OF NBWS.....oiiiiiiiieiecee s 48
49 Architecture of Intra CodiNg........ccvierieriiiniriee e 49
50. Reconfigurable data path of intra predictor generation unit............. 52
51. Data path of diagonal down right...........cccceoiiiiiiininicce, 52
52. Data path of vertical rightcccoooveiiiiii e 53
53. Data path of horizontal down MOode...........cceveiiieiiieninieeeeen 53
54. Data path of DC prediction MOdeccccvvevievieeieiieie e 54
55. Data path of horizontal Mmode...........ccoeoeiiiiiiiii 54
56. Coding order of residual bIoCKsS............cccccvveiiiiiiiiiece e, 55
57. Transform matrix of 4x4 DCT tranSformcccccevenineninninieennn 56
58. Transform matrix-0f 4x4 IDCT transformcccccvvereiinencnnnen, 56
59. Transform matrix ‘of Hadamard-transform.............c.cccoceveirencinnnn, 56
60. Fast algorithms of 4x4 transformai.coovveii e 56
61. Hardware architecture of transform unit.............cocooceveniiininicienn, 57
62. Hardware architecture of quantization unit...............ccccccovevvevieennnnn. 57
63. Hardware architecture of mode decision unit.............c.ccooeveeviivnenas 58
64. CAVLC ArChiteCtUreooveiiiieiceseeeee e 58
65. Memory Organization..........ccccoeiererininieiesese e 59
66. Timing schedule of proposed intra COder...........ccccovvvveiiveieccieiienenn, 60
67. Timing schedule of proposed architecture............cccooevviveivereennnne. 60

68 Chip SPECITICALIONc.eeiviiiircecece e, 62

Xiv

Chapter 1 Introduction

The Advanced Video Coding (AVC) is the latest generation standard
developed by a Joint Video Team (JVT) of ISO/IEC and ITU-T[1]. The new
standard outperforms the earlier MPEG-4 and H.263 standards, providing better
compression of video images. While the basic framework of H.264/AVC is
similar to the motion compensated hybrid scheme of previous video coding
standards, additional tools improve the compression efficiency at the expense of

an increased implementation cost.

1.1. Motivation

The high-efficient coding features of H:264/AVC are due to complex mode
selection and high computational cading tools.: For software implementation,
H.264/AVC video coding demands fast algorithm to minimize the computation
complexity for mode decision. To meet the need of consumer electronics market,
VLSI implementation is necessary for real-time and low power applications.
These motivate us to explore efficient solution for key modules in H.264/AVC.

Deblocking filter of H.264/AVC is both computational and memory
intensive due to its highly adaptive mode decision and small 4x4 block sizes. The
small 4x4 block size used in H.264/AVC requires almost every pixel in a frame
loaded from and written to frame memory for deblocking operations. It is reported
that even with highly optimized filtering algorithm, the deblocking operation still
occupies one third of the computational complexity of a decoder. In order to solve
the problem mentioned, two architectures are proposed to meet the high resolution

real-time deblocking filter process.

Intra prediction is the dominate components besides the motion estimation in
the encoding process. Exhaustedly search is adopted in the reference software to
select the optimal intra prediction mode. Since each mode will be examined, the
computation load is quite large and becomes the one of computational bottleneck.

A fast intra prediction algorithm is needed to speed up the encoding process.

1.2. Thesis Organization

This thesis contains six parts. Chap. 1 gives the motivation and design challenge
of this work. In Chap. 2, a brief overview is given for H.264/AVC coding
standard. Then, the proposed deblocking architectures and their cost-performance
analysis are presented Chap. 3. In Chap. 4, a fast three step intra prediction
algorithm is contributed. In Chap. 5, architecture design for intra coding is

implemented. Finally, conclusion is remarked:in Chap. 6.

Chapter 2 Overview of H.264/AVC Standard

In the recent years, multimedia application becomes more flexible and more
powerful with the development of digital signal processing and communication
technology. The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG
develop a new standard for the compression of natural video images. The new
standard [1][2] is known as H.264 and also MPEG-4 Part 10 Advanced Video
Coding, and regarded as the next generation video compression standard. The
new standard is designed for technical solutions of wide application areas from
videoconference, broadcasting, digital storage media, multimedia streaming

service, etc.

2.1. Introduction to H.264/AVC

The overall architecture;of H.264/ AVC is shown in Fig. 1. , the same with
the previous video coding standard, is a hybrid coder. Different from prior video
coding standards, H.264/AVC has many features that enhance coding efficiency

to predict the content of a picture.
® Variable block-size motion estimation/compensation

As shown in Fig. 2, H.264/AVC has more flexibility in selection of
block sizes and shapes, such as 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and

4x4.
® Quarter-sample-accurate motion vector accuracy

Compare to advanced profile of the MPEG-4 Visual standard, 6-tap filter

is adopted in H.264/AVC to reduce the complexity of interpolation.

Quantization step sizes
Increased at a compounding
Caoding Contraol I rate of approximately 1..5%

Video

B Durantized Transform

§= Transform '—F| Queamtization %rﬂfﬁt‘ﬁm“

Axd Integer Transform (fixed)
 E—— — — N S S S S S S S — — _—q
I

Macroblack Type + CRP |

r —
I Predicied Ireerse |
| Macreblock (nantization |
I
| Tmira [nter | it Str-eam Chl
I Iverse I
Intra Prediction Inter Motion Transtorm I
| ey and Conpensation
| Compensation | g | Single Universal VL &
| T | Context-Adaptive VLC OR
; Context-Based Adaptive
| _ Binary Arithmetic Coding
I Fraine Slore I
| * Loop Filter :
| Motlen Ftl . No mismatch
| > Mution Veclors + Macrebock T ype
| + Referemce Frame Index + CBP
I Inira Prediction Mol + '

SR . | N P
Seven block sizes and shapes
Intra Prediction Modes Yi=pad-motion estimation aocuracy
9 dxd, 4 16316 modes (luma) & 4 Five Prediction modes with B-pictures
maodes (chroma) = 17 modes Multiple reference picture selection

Fig. 1 Block diébrém -of‘H.'.ZGZ'f/'AVC encoder

16x16 16x8 8x16 8x8

MB 0
Types| O 0| 1

8x8 0 01
Types 1 2|3

Motion vector accuracy 1/4 (6-tap filter)

Fig. 2 Block size of motion estimation/compensation

Multiple reference picture motion estimation/compensation

H.264/AVC adopts the multiple reference picture selection technique to
enable efficient coding by allowing an encoder to select the reference
frame. There are at most five previous and five afterward reference

pictures to be searched.
Directional spatial prediction for intra coding

In H.264/AVC intra encoding, the edges of the previously decoded
sample of current picture is applied to predict the samples of current
block to be encoded. In summary nine kinds of 4x4 luma prediction
modes, four kinds of 16x16 luma prediction modes, and four kinds of

8x8 chroma prediction modes are'adopted.

Small block size integer transform

Due to small block size ‘metion estimation/compensation, H.264/AVC
standard is based primarily on the*4x4 transform, including discrete
cosine transform and discrete hadamard transform. It requires only 16

bits arithmetic processing.
In-loop deblocking filter

The block-based video coding produces blocking artifact due to its block
structure. Blocking artifact becomes worse especially in the low bit
rate or highly compressed video environment. To reduce the artifact, the
in-loop deblocking filter is adopted by the H.264/AVC standard to
improve the quality of decoded picture. Fig. 3 shows the subjective view
comparison of picture with deblocking fitler and without deblocking

filter.

SIEMENS -
F >

|

Fig. 3 Subjective view comparison of picture with deblocking filter (left) and
without deblocking filter (right).
® Context-adaptive entropy coding
The two entropy coding methods applied in H.264/AVC, termed

CAVLC (context- adaptlve varlable Iength coding) and CABAC

® CABAC
In main profile, an advanced entropy coding method known as
arithmetic coding is included in H.264/AVC to increase the efficiency of
entropy coding.

With all the mentioned powerful coding approaches and extensive rate
distortion optimization (RDO) techniques, H.264/AVC can offers a significant
improvement of bit-rate reduction compared with previous video standards under
the same PSNR quality as shown in Fig. 4. It is reported that the new standard can
achieve 39%, 49%, 64% of bit-rate reduction compared with MPEG-2[3],
H.263[4], and MPEG-4[5] respectively[6]. However, the complexity and

computation load of video coding in H.264 increase drastically.

Tempete CIF 30Hz
|

- =#=PEG-2 [
S —— | ZoMPEG2 [
By ——NPEG4 [

i —= H 204 -
F 1

0 £00 1000 1500 2000 2500 2 2000 3500
Bit-rate [kbitis]

Fig. 4 R-D curve comparison of H.264/AVC with MPEG-4, H.263, and MPEG-2

2.2. Profile and Level

In H.264/AVC, three pféfiles are aé‘fi‘n‘éd, Which are the Baseline, Main, and
Extended Profile as shown in Fig. '5: The”BaseIiné profile supports all features in
H.264/AVC except the following f\)\;o feature sets:

e Set 1. B slices, weighted predi(;tion, ‘CABAC, field coding, and picture or
macroblock adaptive switching between frame and field coding.
* Set 2: SP/SI slices, and slice data partitioning.

The first set of additional features is supported by the Main profile. However,
the Main profile does not support the FMO, ASO, and redundant pictures features
which are supported by the Baseline profile. Thus, only a subset of the coded
video sequences that are decodable by a Baseline profile decoder can be decoded
by a Main profile decoder.

The Extended Profile supports all features of the Baseline profile, and both

sets of features on top of Baseline profile, except for CABAC.

Baseline

FMO

Redundant
pictures

ASO

- e
Macroblock Adaptive Frame/Field Coding

-3 H-.*

In H.264/AVC, the same set of level definitions is used with all profiles, but
individual implementations may support a different level for each supported
profile. There are 15 levels defined, specifying upper limits for the picture size (in
macroblocks) ranging from QCIF to all the way to above 4k 2k,
decoder-processing rate (in macroblocks per second) ranging from 250k pixels/s
to 250M pixels/s, size of the multipicture buffers, video bit rate ranging from 64

kbps to 240 Mbps, and video buffer size.

Chapter 3 Architecture Design of Deblocking

Filter in H.264

In the H.264/AVC standard, the adaptive deblocking filter is applied on
edges of each 4x4 blocks in a macroblock (MB) to reduce the blocking artifact.
However, the deblocking filter is both computational and memory intensive due
to its highly adaptive mode decision and small 4x4 block size [9]. The adaptive
mode decision is required for each edge to distinguish real edges from block
artifacts. The small 4x4 block size used in H.264/AVC requires almost every
pixel in a frame loaded from and, written to frame memory for deblocking
operations. It is reported that.even with-highly optimized filtering algorithm, the
deblocking operation still occupies one third of the computational complexity of a
decoder [9]. Thus, VLSI implementation-is-necessary for real-time and low power
applications.

In this chapter, two deblocking filter architectures are proposed. For the first
version, the data flow is reordered for easy and regular hardware implementation
while maintains the standard compatibility. For the second version, an in-place
computing design for the deblocking filter is presented. The proposed in-placed
computing flow reuses intermediate data to filter horizontal edges and vertical
edges seamlessly as soon as data is available. Thus, the intermediate data storage
is greatly reduced to only the four 4x4 blocks instead of whole 16x16 macroblock.
In the first version, gate count is greatly reduced by simple control unit, and
internal memory is also reduced to 50% of that in the previous design. In the
second version, the proposed architecture can reduce 90% of internal memory and

achieve higher throughput than others.

10

»| Coder
Control
—— Control
Input Ly YT * Data \\\
V_|deo - .| Transform/ > Quanth
Signal 'l Scal./Quant. T "
S y ransf coeffs)
| |
! : Scaling & Inv. \\\
i s S Transform
|
! ! Y Entropy
} ' Coding
! 1
i j De-blocking
| el [ntra-frame Filter
‘* Prediction Output
0wl Motion- |« @ Video
Intra/Inter Comp‘ensatlon Signal
|
! l\/lotion
Y " Data
»| Motion
Estimation

Fig. 6 Encoding loop of H.264
Both of them are implemented by UMC 0.18um CMOS technology. The
resulting hardware of Version 1 cap-achieve real-time 2Kx1K (2048x1024) 30Hz
video at 82.58 MHz. The gate count is only, 9.16K when synthesized at 100MHz,
excluding the memory cost. For version 2, the resulting hardware can achieve
real-time 2Kx1K (2048x1024) 30Hz video at 73:73 MHz. When synthesized at

100MHz the gate count is only 13.41K, excluding the memory cost.

3.1. Fundamental of H.264/AVC Deblocking Filter

The block-based video coding, due to its simple and regular block structure,
has been widely used in various video standards, such as MPEG-1, MPEG-2,
MPEG-4 and H.26x. However, block-based computation like discrete cosine
transforms (DCT) and motion compensation (MC) also produce blocking artifact
[71[1]I8][9], which becomes worse especially in the low bit rate or highly
compressed video environment. To reduce blocking artifact, the deblocking filter
is a well-known tool to improve both objective and subjective video quality,

either inside or outside the coding loop. In-loop approach is adopted by the

11

H.264/AVC standard as shown in Fig. 6. The in-loop deblocking filter improves
the quality of reference frame, thus improves overall resulting view effect.
However, This forces all standard conformant decoders to perform identical
filtering in order to stay in synchronization with the encoder.

H.264/AVC deblocking filter is adaptive on several levels. On the slice level,
the global filtering strength can be adjusted to the individual characteristics of the
video sequence. On the block-edge level, filtering strength is made dependent on
the inter/intra prediction decision, motion differences, and the presence of coded
residuals in the two participating blocks. Special strong filtering is applied for
macroblocks with very flat characteristics to remove “tiling artifacts”. On the
sample level, sample values and quantizer-dependent thresholds can turn off
filtering for each individual sample.

Deblocking process is done in.MB by MB in raster scan order. In each MB, the
processing order in the H.264/AV/C reference software first processes on the four
vertical edges from left to right; transpeses the intermediate data, and then
processes on the four horizontal edges from up to bottom, as shown in

Fig. 7.

(a) (b)

[
(21

2 1[4 12 H 34t
N ER|ENE — ===
sHg 78 H
2116 1([10]]14 — | — || —
o W1l 11 [121 E
3 117 11115 BIE e] L L
13414 15 16 1 3 1 4
4 [8 1[12]]16 2 1[4 = j

Luma Chroma Luma Chroma

12

Fig. 7. Original processing flow for (a)horizontal filtering, and (b)vertical filtering

Table 1 Parameters for determining boundary strength

Block modes and conditions Bs
One of the blocks is Intra and the
edge is a macroblock edge

One of the blocks is Intra 3
One of the blocks has coded
residuals 2

Difference of block motion =1
luma sample distance 1
Motion ~ compensation form
different reference frames

Else 0

p3 | p2| p1| pOg a0 | g1 | 92| a3

Fig. 8 Convention for describing samples:across two 4x4 block boundary.

The Boundary-Strength (Bs) parameter;-a number ranging from 0 to 4, is
assigned to every boundary between two.neighboring 4x4 luma sample blocks to
determine whether it is true blocking artifact or not. The chroma boundary
strengths are the same as that in the corresponding luma boundary location.

Table 1 shows that the value of Bs depends on the modes and the coding
conditions of the two adjacent blocks. In this table, conditions are evaluated from
top to bottom until one of the conditions holds true, and the corresponding value
is assigned to Bs. Bs decides the filter strength performed on the edge. Two
primary filtering modes are selected. A value of 4 means the strongest filtering
mode, and the Bs from 1 to 3 is the standard mode, whereas a value of 0 means no
filtering is applied on the edges.

For nonzero Bs values, a pair of quantization dependent parameters, referred to

13

as a and g, are used to determine which set of samples to be filtered. In the
following description, the convention for describing 8 pixels across two 4x4 block
boundary is shown in Fig. 8. Filtering on a line of 8 samples takes place if the
three conditions
| p0-q0 | <a, | p1-p0 | <B, | q1-q0 | <B, when Bs+0
hold true. For edges with Bs from 1 to 3, the filter operation is divided into basic
filter operation and clipping. In strongest filtering mode (Bs=4), the deblocking
operation uses a very strong 4- and 5-tap filter that modifies the edge sample and
two interior samples on each side, or uses a weaker 3-tap filter to modify the edge
samples only. The stronger filter is only applied when the following constraint
[p0-q0] < (6>>2) + 2

holds true. Interested readers can refer to [1]-and [10] for more details.

3.2. Architecture Design of H.264/AVC Deblocking Filter

3.2.1. Version1

3.2.1.1.Simple Data Flow

The major drawback of this direct approach is that intermediate data between
different edges has to be stored and loaded again. Thus results in an inefficiency
data flow and complex controller. For an efficient VLSI design of the deblocking
filter, regular data flow is the major concern for easy hardware implementation.
Different from the original processing order that processes the column major
order first, the proposed computing flow processes the horizontal filtering along
the row major order first and then vertical filtering along the column major order

as shown in Fig. 9.

14

(L]
(=]l

{-H-]
{=H{~]

—
H‘H’w
— |l —

— — — —
=] [=][=][5]
[ﬂ[ﬂ
HH

shefH-]
5,880

-
=~

(1]

Luma

H

Chroma

@]
=
=
S
=
£
—
=
3
]

Fig. 9. Modified processing flow for (a) horizontal filtering, and (b) vertical

filtering

(G2 X e Do)

|
OO : (a0 X a1 Xaz)(a3)
G20 | | | @oXa) @2 e
(paXp2 e X(po)flif (a0 X a1 X(az)(a2)

\

elt Current
B

Fig. 10. Data structure of deblocking filter
With the modified approach, the intermediate 4x4 block data between
neighboring vertical or horizontal edge will be reused immediately. Thus we can
save the internal memory access and speed up the deblocking computation. This
modification does not only fit the memory access order but also has higher data

reuse capability and still has the same results as the standard specified.

3.2.1.2.Hardware Architecture

The data structure of proposed deblocking filter is a line of 8 pixels as shown in

Fig. 10. The proposed architecture is shown in

15

Fig. 11. A 1-D 8 pixels parallel-in parallel-out deblocking filter can be

reconfigurable to support different filtering strength. A 4x4-pixel shift register is

to reuse the intermediate 4x4 block data after processing previous neighboring

edge. A 4x4-pixel transpose register is to transpose data from row major order to

column major order, or transpose from column major order back to row major

order after vertical filtering. An 80x32bits SRAM is required to buffer the

intermediate 20 4x4-block pixels to be filtered vertically.

Output port
A

y

4

]
Reconfigurable 1D Filter

A ?

4x4 pixel |2| 4x4 pixel A A
transpose shift 80x32bits
register register local
buffer
/\

Input port

Fig. 11. The proposed deblocking filter architecture.

Block index

12|34 3

5

N R -

6|7 8|9 6

10

11|12 13|14 1

15

16|17 (18|19 3|4

20

D WL N|| @I

21(22(23 (24| [¢ | 7

Luma Chroma

Fig. 12. 4x4 Block index for one macroblock.

16

To transposed register or To transposed
output port register
! I I

Reoonﬁgurable 1D Deblocking Filter Reconﬁgurable 1D Deblocking Flter
\)

Port3 Portl | Port3 Portl |

L
Frormrwtport % % Fromlocal Menory
Po 2

(horizontal filtering) (vertical filtering)

@ ®)

Fig. 13 Data path for (a) horizontal filtering and (b) vertical filtering

The proposed architecture operates-as below. .For simplicity of explanation,
we use the block index as shown in Fig. 12-in the following. First, we assume that
all data 1/0 is row major order-with-32bits-width (4 pixels in parallel). The data
path is shown in Fig. 13.

Step 1: data preparation
In the first 16 cycles, we first retrieve the data of block index 1 to 4,
transpose them from row major order to column major order with the
transpose buffer, and store them in the local buffer for vertical filtering.
Step 2: horizontal filtering over vertical edges
Then we start horizontal filtering as the order shown in Fig. 9(a) with
data of block 5 to 24. In this phase, filter inputs are from external memory
via input port, and from the 4x4 shift register via port3. The data after first
time filtering is sent to 4x4 shift register via port 2 to be reused to filter next

neighboring edge.

17

Luma
Datasource [ITITITTTITITATATAATATATA[A[A[ITITOTITI] [[MMMMMMMMMMMMMMMMMMMM] |
Memory access | [WWWW_[[WWWW [WWWW [WWWW_[WWWWR[R[R[R[R[R[R[R[R[R[R[R[R[R[R[RTR[R[R[R] []
Deblocking Filter[[[[[[H[H[H[H [H[HHH] [H[H[HTH] THTHCHCH] [[[VIVIVIV[[V]V]VIV] [VIVIVIV] [VIVIVIV []
Output [[[T TTO[TTTIOCTTTTOLTTTIO[[TTTTT T clojojojojojojoioio[orore[ere[e[e[oofoj
Chroma 0 0 & & 8 10 i ik 10 180
Data source [[[I[IITITITITI] [[MMMMMM | |

From Input @ From Memory

1]
Memory access| [WW [[WW [WWRIRIR[R[R[R[| | W Memory write [R] Memory read
[H]

Deblocking Filter] | | TH[H[THIH[[[[V[V] [VIV] [] Horizontal filtering Vertical filtering

oup [TTTO[[0 [[o000 (9 O

Fig. 14 timing diagram of simple data flow deblocking filter

Step 3: vertical filtering over horizontal edges
After the processing of horizontal filtering, the macroblock data is
transposed to column major. order by transpose buffer and stored in the local
buffer for vertical filtering. The vertical. filtering uses the same data flow as
the horizontal filtering. The only difference’ is that filter input is from the
local buffer instead of external memory. . The filtered results are transposed
again and stored back to the external memory in the row major order. Thus,
all data uses row major order input and row major order output to the
external memory. This can ease the other relating processing to work
together.
Based on the above flow, it needs only 192(Y)+72(Cb)+72(Cr)=336 cycles
to complete the deblocking process for one YCbCr macro block. The processing
timing diagram of proposed deblocking is shown in Fig. 14 that illustrates the

detailed timing of above steps.

18

S16[7(8]9
1011 (1213 |14
15/16 |17 |18 |19
201212223 |24

Fig. 15. Block index

3.2.2. Version 2

3.2.2.1.Full Data Reuse Flow

In version 1, the deblockig filter always reuses the data of neighbor 4x4
blocks of current filtering edge. After horizontal filtering, there are two edges can
be filtered in the next step. Those.are up edge and-right edge. In version 2, the
data flow is further improved to explore-more-data reusability

Fig. 15 shows the Block “index_for:explanation. Block 1-4 are the
intermediate data from above macroblock after vertical edge processing, and
block 5, 10, 15, and 20 are the intermediate data from left macro block after
horizontal edge processing. For simplicity, we will denote the block number as
blki, where i is from 1-24. These block data will be processed with current macro

block data to complete the deblocking operations.

19

16x16 Luma

L L L 8x8 Chroma

%wuﬁws L

0 1
—}18%20%22{»23— —‘»6+7—
6 17 19 21 4 5

—}26+28+30+31—
425 271 29

\ \ \ \
(a) (b)

Fig. 16. Edge processing order for (a) luma edge, and (b) chroma edge

4X4 pixels
transpose
register Lb\

= X4 pixels > s
z » Shift »H | = 3
— = . e s>
g register g =
|| =]
= [16e3mits FeW o 3
SRAM > 5
»H T

Fig. 17: Overall architecture

Fig. 16 shows the proposed full data reuse flow that maintain the same result
as specified by the H.264/AVC standard. As shown in Fig. 16 (a), we process
edges of each 4x4 block from the left-top most block (blk6) to the right-bottom
most block (blk24). Starting from the left-top most 4x4 block (blk6), we first do
the horizontal filtering over its two vertical edges (edge 0 and edge 1). Then, since
all data is available for horizontal edge 2 (intermediate data from blk1 and blk6),
we can do the vertical filtering over the top horizontal edge (edge 2). This
horizontal-vertical interleaved approach is repeated for each 4x4 block in a raster

scan order, as the edge number shown in Fig. 16 (a) and (b).

20

To transposed register
(support vertical filtering)
or to output port
(the leftest four 4x4 blocks)

A
Reconfigurable 1D Deblocking Filter

f f

\ Port3 | Port 1 \

T

From input port
(4 pixels with row
major order)

S S S

\ Port 2 \

y

(a) Horizontal filtering over vertical edges

To transpose register
(In order to output with

To Memor
y row major order)

f

Reconfigurable 1D Deblocking Filter

f f

\ Port 3 - L Port 1 \
From transpose register From Memory
(4 pixels with*column (4 pixels with column
major order) major order)

(b) Vertical filtering over "horizontal edges

Fig. 18. Data path (a) horizontal filtering over vertical edges, and (b) vertical
filtering over horizontal edges
With the interleaved approach, the intermediate data will be reused
immediately. Thus we can save the memory access and buffer required to process
the left, top, and right edge in a 4x4 block. The only buffer and memory access
remained are the intermediate data for the bottom edge in a 4x4 block. Therefore,
we need only four 4x4 blocks (4x16x8bits) above the current filtering block row
(e.g. store blk6-blk9 when process blk11-blk14), rather than a whole macroblock
(24x16x8bits) as in the conventional data flow. Because of such high data reuse,

internal memory access number and size are both greatly reduced.

21

3.2.2.2.In-place Deblocking Filter Architecture

Fig. 17 shows the proposed architecture, where the solid arrows denote
32-bits dataflow. First, we assume that all data 1/0 is row major order with 32bits
width (4 pixels). For simplicity, we will only explain the operation of luma
macroblock. The chroma block is processed using the same method.

In the first 16 cycles, the data of block index 1 to 4 are transposed from row
major order to column major order with the transpose buffer, and store them in
the local SRAM buffer to wait for vertical filtering. Then we start horizontal
filtering over the vertical edge 0 as shown in Fig. 16 (a) with data of block 5 and 6.
The data of block 5 is from external memory via input port and shifted into to 4x4
shift register after four cycles. After that,the data of block 6 from input port, and
data of block 5 from 4x4 shift register-i1s loaded to perform the horizontal filtering
as shown in Fig. 20 (a). The filtered data of block:5 is sent to output port, and the
data of block 6 after first time filtering 1s'sent to-4x4 shift register. So the data in
4x4 shift register can be used to perform‘the next horizontal filtering again.

Next we start horizontal filtering over vertical edge 1 with data of block 6
and 7. In this phase, filter input is from 4x4 shift register (block 6), and from
external memory (block 7) via input port as shown in Fig. 20 (b). The filtered data
of block 6 is then transposed to column major order by transpose buffer after the
data is being filtered two times, and the data of block 7 after first time filtering is
sent to 4x4 shift register.

The data of block 1 and block 6 are both ready to perform vertical filtering
over horizontal edge 2 in column major order now. In this phase, filter input is
from local SRAM buffer (block 1), and from 4x4 transpose register (block 6) as

shown in Fig. 20 (c). The data of block 6 after filtering is sent to local SRAM

22

buffer to wait for filtering next vertical edge, and the data of block 1 is transposed
again and output in row major order in the next four cycles. The remaining edges
is processed using the same data flow mentioned above.

Same as version 1, this design use parallel-in parallel-out style (32-bits,
processing 4-pixels concurrently). The deblocking filter part implements the
required function as specified by the H.264/AVC standard. The 16x32bits SRAM
buffers four 4x4 block pixels to be processed, as described in the previous Section.

The register array is for transposing operation during the 2-D deblocking filtering.

3.2.2.3.Memory Organization

In the proposed data flow, the deblocking operation uses horizontal-vertical
interleaved scheduling. However, to support such the interleaved operation, the
corresponding architecture shall transpose the 4x4 block immediately when
changing the filtering edges. The corresponding data path consists of a 4x4 shift
buffer and a 4x4 transpose buffer. We assume that the SRAM module is an
ordinary one which has one 32bits read port and one 32bits write port. With this,
we can transpose the data of 4x4 blocks to support both horizontal filtering and

vertical filtering on a parallel-in parallel-out deblocking filter seamlessly.

(words)
<t pletd plald et
Sm+] | 5m+2 | 5m+3 | Sm+4 3.2
bits

16x32bits two port SRAM

Fig. 19 Organization of on-chip 1R/1W port SRAM

23

The on-chip buffer first stores blkl to blk4. Fig. 7 shows its data
organization, where m is an integer number from 0, the number in the block
denotes the block index and each block stores one 4x4 block data. Then the same
address location will be overwritten by new data from blk6 to blk9, respectively.
This will be repeated for each row of 4x4 blocks. Since data is in-place

overwritten after reading out, no read-write conflict will occur.

3.2.2.4.Processing Schedule

Assume input data are four pixels (32bits) per clock cycle, it requires 16+
(36+4)x4+16=192 cycles to process a luma macroblock without overlapping the
data flow. Among them, 16 cycles to input data of block 1 to 4 from external
memory to on-chip memory before starting processing the data, 36 cycles to
process edge 8m to 8m+7, 4-¢cycles to shift block 8m+7 from 4x4 shift buffer to
4x4 transpose buffer, and 16¢ycles to-output data:of block 21 to 24 from on-chip
memory to external memory, where m is an integer number from 0. For two
chroma macroblocks, (8+(20+4)x2+8)x2=128 cycles is required. Thus the
processing capability is 320 cycles per macroblock.

For a more efficient processing schedule, we can save four cycles by
overlapping the data loading cycles of block 5(m+1) from the external memory
and data shifting cycles of block 5m+4 from 4x4 shift buffer to 4x4 transpose

buffer before processing horizontal edge 8m+7.

24

4X4 pixels
transpose
register b\
= 4X4 pixels > g o
E| = Shift —»H | F <
— = . & g —»
= register z. =
S 2 S
= 16x32bits W |5 3
SRAM > =
»H |~

~ (a) Horizontal filtering over the left vertical

edge 0, 8, 16, and 24

4X4 pixels

transpose

register b\
= X4 pixels > & o
T| —» Shift FE—>H. | T =
_>~; register o =

: : H E
- 16x32bits VY | = -

SRAM > =

»H |~

(b) Horizontal filtering over vertical edges

4X4 pixels
transpose
register b\

5 X4 pixels > § o
—» 2 Shift B g e
-§ register z T
= S 16x32bits VY | S !
SRAM >

H -~

~ (¢) Vertical filtering over horizontal edges
Fig. 20. Data flow of deblocking filter (a) processing the left vertical edges, (b)

processing vertical edges, and (c) processing horizontal edges.

25

For example, it takes four cycles to shift the data of block 9 to 4x4 transpose
register. At the same time, we can move the data of blockl0 from external
memory to 4x4 shift register. With this strategy, the total cycle count is reduced to

300 cycles for one macroblock

3.3. Implementation and Comparison

To evaluate the accuracy and the efficiency of the proposed architecture, the
proposed architectures are designed by Verilog and implemented by TSMC
0.18um CMOS technology. The resulting hardware of Version 1 can achieve
real-time 2Kx1K (2048x1024) 30Hz video at 82.58 MHz. The gate count is only
9.16K when synthesized at 100MHz, excluding the memory cost. The resulting
hardware of version 2 can achieve real-time,2Kx1K (2048x1024) 30Hz video at
73.73 MHz. The gate count is only:13.41K when synthesized at 100MHz,
excluding the memory cost.

Table 2 lists the area cost.comparisons with other approaches. Table 3 shows
the processing capability comparison. Table 4 shows the comparison of memory
size. From the comparison results, the proposed architecture has the advantages of
both smaller area cost and cycle count because of high data reusability.

Table 2. Comparison of cost synthesized at 100MHz. (excluding memory cost).

Design Gate count
Version 1 (with single port SRAM) 9.16K
Version 2 (with 1R/1W port SRAM) 13.41K
[4] Basic type (with single port SRAM) 18.91K
[4] Advanced type (with dual port SRAM) 18.91K
[4] Basic type (with two port SRAM) 18.91K
[4] Dual arrays type (with two port SRAM) 20.66K

Table 3. Comparison of memory size

Design

Version 1

Version 2

[4]

Memory size

80x32bits

16x32bits

160x32bits

Table 4. Comparison of processing capability

26

Design Cycle CIF 2Kx1K
/MB (352X288) (2048X1024)

Version 1 336 3.99MHz 82.58MHz

(single port SRAM)

Version 2 300 3.56MHz 73.73MHz

(1R/1W port SRAM)

[11] Basic type 878 10.43MHz 215.78MHz

(single port SRAM)

[11] Advanced type 814 9.67 MHz 200.05MHz

(dual port SRAM)

[11] Basic type 782 9.29 MHz 192.18MHz

(two port SRAM)

[11] Dual arrays type 614 7.29 MHz 150.90MHz

(two port SRAM)

3.4. Summary of Proposed Architectures

In this chapter, we contribute two high data reuse deblocking processing flow

and its corresponding VLSI architecture for deblocking filter in H.264/AVC. By

rearranging the data flow we can achieve high data reusability. Version 1 has very

simple data flow, and a simple controller.

In version 2 the major idea is to filter

a vertical edge immediately followed by the filtering of a horizontal edge for a

4x4 block instead of whole macroblock. With a 4x4 transpose buffer, the

aforementioned interleaved vertical and horizontal deblocking filtering can be

easily realized. Thus, the processing capability of the proposed architecture can

operate at high utilization and small memory size.

27

Chapter 4 Fast 4x4 Intra Prediction Algorithm

for H.264/AVC

Different from AC/DC prediction in MPEG-4, H.264/AVC adopts a new tool
called intra prediction for intra frame coding. Intra prediction uses the directional
spatial information to predict the sample to be encoded. However, intra prediction
is also computational intensive besides the motion estimation in the coding loop.
Direct approach for intra prediction use the full search that exhaustedly searches
all possible modes and is adopted in the reference software. Although full search
can achieve optimal prediction mode selection, it is computationally expensive.
Besides, intra prediction is computed for fintra-frame as well as inter-frame to
determine the block type: It is |:thus. highly desirable to develop fast

intra-prediction mode selection.

In this chapter a fast algorithm for H.264 4x4 intra prediction is proposed. To
determine the prediction mode, only six modes is required instead of nine modes
in the full search method. The fast intra prediction algorithm can save 33%
computational complexity with only about 1% bit-rate loss. Besides, the decision

method is very simple.

4.1. Fundamental of H.264/AVC 4x4 Intra Prediction

There are 9 kinds of intra prediction modes for 4x4 intra blocks as shown in
Fig. 21. A prediction mode is a way to generate 16 predictive pixel values (hamed
a to p) using some or all of the neighboring pixels A to M as shown in Fig. 22.

The pixels A to M are from the neighboring reconstructed blocks.

HU

8
2 DC
1
6
HD
3 4
DDL 7 5 DDR
0
VL VR
\%

Fig. 21. Direction of 9 4x4 intra prediction modes in H.264

MAB/C/D|E|F|G|H
Ifalb|c]|d
Jle|flg]|h
K| i k|1
Lim|nj|o]|p

Fig. 22. A 4x4 bleck-and-its-neighboring pixels

0 gwarlicaly 1 {haizoental D)
MALE[CTD] ETFIGIH| M AE[CTOETFTE[H]
1 | | e | S
] T EIREE
b——= KIER
T T
3 {diagenal downelaft) 4 [diagonal dewn-righth & {verticakright)
A S CIDTEf PTG H MATECO[E[FTGH
i o
J [J]
K h’,\
T]
& (harizanialdawn) T fvericalkbeh)
TOECOEFEE [WAD
S 1
J J
K K

Fig. 23. 9 mode of 4x4 intra prediction

29

A
B|C

Fig. 24. Adjacent block of current 4x4 block

Fig. 23 shows the nine prediction modes designed in a directional manner.
Mode 2 is called DC prediction in which all pixels (a to p) are predicted by
(A+B+C+D+I+J+K+L)/8. Mode 0 is the vertical prediction mode in which pixels
a, e, i, and m are predicted by A. Mode 1 is the horizontal prediction mode in
which pixels a, b, ¢, and d are predicted by I. The other modes are similar except

that the directions are different.

In addition to the 9 modes of 4x4 intra prediction, the correlation between
spatially adjacent blocks is .also exploited. to- encode the prediction mode
efficiently. In Fig. 24, A and B.are-the-up and left encoded 4x4 blocks near
current block C. The probability-of.the 9 modes being the optimal intra prediction
mode for C is different depending on the prediction modes of the top block A and
left block B. A probability list is generated by Joint Video Team for each
combination of the modes of A and B. Rather than sending the selected mode
number, the position of the selected mode in the probability list is sent. Thus, the

coding efficiency of intra prediction can be further improved.

In the reference software [13], a full search (FS) approach is used to examine

all the 9 modes exhaustively to find the one with the smallest cost.
The main steps are:

1. Generate a 4x4 predicted block according to a mode

30

2. Calculate sum of absolute difference (SAD when using Hadamard is off)
or sum of absolute transformed difference (SATD when using Hadamard is

on) between the original 4x4 block and the predicted block
3. Compute Cost of the mode
Cost = Cost_of Mode + SAD (or SATD when using Hadamard is on)

4. Repeat 1 to 3 for all the 9 modes, and choose the one that has the

minimum cost.

Since each 4x4 block will go through these steps, the computation load is

quite large and becomes one of computational bottleneck.

4.2. Review of Previous Approaches

Some approaches have heen proposed.on fast intra prediction algorithm
[14][15][16]. In [3][4], they: proposed a threshold to early terminate the
computation of the most probable.mode. If the‘cost of most probable mode is
larger than the threshold, the quartet cost of remaining 8 modes is computed. The
mode with minimum quartet cost is chosen among 8. Thus, the required
computation cost varies with the contents of video. Besides, their algorithm still

needs to determine a threshold, which could affect its efficiency severely.

In [16], it assumes high correlation between the edge direction and intra
mode, and thus adopts the edge direction to predict the possible mode. However,
the assumption of edge direction is not always true. Due to above drawbacks,
these previous approaches increase the bit-rate significantly with PSNR loss. For
example, approach in [16] increases bit- rate by 4.0% with 0.27dB PSNR loss in

all I-frame condition.

31

4.3. Fast Three Step Intra Prediction Algorithm

In this chapter, a three step algorithm of intra prediction for intra 4x4 blocks is
presented. The modes needed to be examined are constant 6 modes rather than

variable number of modes as in the previous approaches.

From our observation, we find the SAD of the modes at the neighborhood of
the optimal mode is also small. It means that we can skip some mode after initial
search to save computation power. After initial search of some modes, we can
examine the two modes neighboring to the selected mode in the first step. In the
last step, extra one mode is refined to improve the prediction precision.

Fig. 25 shows a flow chart of the algorithm. We first start from the horizontal
(mode 1) and vertical (mode @) and DC.mede (mode 2) since these modes occur
in the high probability. Then in the second step,“we select the neighboring 22.5
degree modes (mode 5 and 7-for vertical'direction, or mode 6 and 8 for horizontal
direction) based on the smaller one of harizontal or vertical mode. In the third
step, we refine the search further by considering the remaining neighbor mode
(mode 3 or 4). We compare the best mode from the step 1 and 2 and the
neighboring mode of the best one from step 2 (mode 3 or 4), and choose the best
one as our final decision.

In the algorithm, three modes are initially compared in stepl. In step 2, two of
neighboring modes are examined to determine the refined direction. And in the
last step, cost of the refine mode is calculated, and the one of the three modes are
compared to make the final decision. So there are constant six modes to be

examined by this algorithm.

Yes

Step1:

calculate cost of mode
0,1,2, and select one
with minimum cost

Step2.1:
calculate cost
of mode 5,7

Yes

mode 5 < mode 7

Step3.1.1:
select mode
form mode 5, 4,
and the selected
mode in Stepl

mode 0 < mode |

No

Step2.2:
calculate cost
of mode 6,8

Yes

Step3.1.2:
select mode
form mode 7, 3,
and the selected
mode in Stepl

Step3.2.1:
select mode
form mode 4, 6,
and the selected
mode in Stepl

mode 6 < mode 8

Fig. 25. Flow chart ofithree step intra algorithm

4.4. Simulation Result:and Discussion

The proposed three step algorithm ‘and"the full search are simulated on five
CIF sequences, mobile and calendar, foreman, Stefan, news, and coastguard. For
each sequence, 300 frames are encoded with intra frame coding. We simulate
these sequences with 5 different fixed QP values, from 12 to 44 as shown in Table
5 to Table 8. RD-curve is shown in the Fig. 7 to Fig. 11.

From the result, we can find that bit-rate is increased about 1% with almost
the same PSNR. We can also find bit-rate increase is step up when QP is from
low to high. But when QP is high, the bit-rate increase is reduced. The
phenomenon may relate to the Intral6é mode, an intra prediction mode for 16x16

blocks. In the high QP case, the opportunity to select Intral6 will also increases

since Intral6 mode decision is also using full search algorithm.

Step3.2.2:
select mode
form mode 8, 3,
and the selected
mode in Stepl

33

For high motion and low motion test sequence, the result in bit-rate increase
is almost the same. It is because that picture is intra coded without using
information of other frames. The comparison with [16] is shown in Table 5 to
Table 8 with four different QP values, from 28 to 40. The proposed algorithm
outperforms the previous approach.

Table 5. QP = 28, Comparison results

CHG CHG CHG CHG CHG CHG

BIT BIT PSNR | PSNR T T_AVG
Sequence
(%) (%) (dB) (dB) (%) (%)

[16] Ours [16] Ours Ours Ours

Container | 1.80 0.79 0.039 -0.01 | -32.34 | -16.03

News 2.56 1.09 0.045 -0.02 | -31.05 | -15.92

Paris 1.60 0.93 0.043 -0.01 | -31.91 | -16.62

Tempete 1.58 0.79 0:091 -0.01 | -31.33 | -16.22

Table 6. QP = 32, Comparison results

CHG CHG CHG CHG CHG CHG

BIT BIT PSNR | PSNR T1 T_AVG
Sequence
(%) (%) (dB) | (dB) (%) (%)

[16] Ours [16] Ours Ours Ours

Container 2.64 1.02 0.044 -0.01 -32.94 | -16.46

News 3.09 1.30 0.031 -0.02 -31.11 | -15.50

Paris 2.43 1.16 0.032 -0.01 -30.29 | -15.54

Tempete 2.32 0.96 0.065 -0.01 -31.43 | -16.25

Table 7. QP = 36, Comparison results

CHG CHG CHG CHG CHG CHG
BIT BIT PSNR | PSNR T 1 T_AVG
Sequence
(%) (%) (dB) | (dB) (%) (%)
[16] Ours [16] Ours Ours Ours
Container | 4.06 1.21 0.005 -0.02 | -32.82 | -16.46
News 4.26 1.20 0.000 -0.02 | -3141 | -15.29
Paris 3.25 1.21 0.013 -0.01 | -30.45 | -15.46
Tempete 3.11 1.00 0.051 -0.02 | -31.23 | -16.16
Table 8. QP =40, Comparison results
CHG | CHG | CHG .| CHG | CHG CHG
BIT BIT PSNR | PSNR T1 T_AVG
Sequence
(%) (%) i @B)yj (dB) (%) (%)
[16] Ours [16] Ours Ours Ours
Container | 5.18 1.00 0.001 -0.03 | -32.75 | -16.21
News 5.31 1.38 0.006 -0.03 | -31.64 | -15.16
Paris 4.91 158 | 0.003 | -0.04 | -30.39 | -15.23
Tempete 3.67 0.78 0.024 -0.03 | -31.17 | -16.09

34

CHG BIT: change in bit-rate
CHG PSNR: change in PSNR
CHG T_LI: change in intra encoding time

CHG T_AVG: change in average encoding time

35

50
45 f,/"
",,/'
40 -
o~ o
Z o« e FS
Ef% - — 4TSS
e
30 /
25
20
0 5000 10000 15000 20000
bit-rate
Fig. 26. RD-curve of mob‘ile & calendar
50
45
40 o i oo FS
Z e TS
=35
30
25
0 4000 b 8000 12000
1t-rate

Fig. 27. RD-curve of foreman

36

yd —a—TSS

0

8000 12000

bit-rate

4000

Fig. 28.RD-curve of Stefan

50
45

PSNR

35
30
25

2500 5000 7500 10000

bit-rate

Fig. 29. RD-cure of news

37

50 .

45 | |
e 40 , - TS
Z A ~+TSS

35

30

05 U

0 5000 ! 10000 15000

Fig. 30. RD-curve of coastguard

4.5. Summary of Proposed Intra Prediction Algorithm

We propose a three step intra.prediction mode selection algorithm.
Computation reduction is achieved by examining only six of total intra prediction
modes. Simulation results suggest that three step algorithm can achieve similar

PSNR as full search and only about 1% of increase on bit-rate.

38

Chapter 5 Architecture Design for H.264/AVC

Intra Coding

H.264/AVC is regarded as the next generation video compression standard.
Though original standard targeted to video applications, the high compression
performance of intra-only coding also makes it suitable for still image coding,
which is competitive with JPEG2000 [17].

In this chapter, an HDTV size H.264/AVC intra encoder chip for digital
camera and digital video applications is presented. The chip reduces the gate
count by saving the costly plane mode and enhances the video quality with the
improved cost function. With careful scheduling and high performance function
unit, the developed chip can easily support 29.46M pixels/s still image encoding
and real-time moving picture intra” coding of- HDTV 720p@30fps video

application when clocked at 117.28MHz under 0.18um CMOS process.

. | Inverse Quantization [«
Reconstruction
Inverse Transform
Y
Input i Transf Bitstream
P Intra > Cost Generation »| Transform »| Entropy
Prediction and and Codin
Mode Decision Quantization g

Fig. 31. Flow of H.264/AVC intra coding

39

5.1. Fundamental of H.264/AVC Intra Coding

The Intra coding flow of H.264/AVC is shown in

Fig. 31. This macroblock data will be predicted from one of nine kinds of 4x4
luma prediction modes, four kinds of 16x16 luma prediction mode, and four kinds
of 8x8 chroma prediction mode. Then the prediction mode with the minimum cost
value is selected as the best mode. The residuals after the prediction are further
processed by transform, Q/1Q, inverse transform, and reconstructed as reference
of next macroblock. The coefficients after quantization and mode information are

encoded by entropy coding, CAVLC and UVLC.

0 {variicaly 1 {harizontal) 2 (D)
MAJEICTDE]FGIH)| MAECIOEFTEH

] T TR

] i > i .:-::-

m ! i T
C=== [

3 {diagonal down-lafty 4 [diagonal dowm-right) B {werdicakright)
HAE[E[OEF e
|

J J [J] \

K K

T

& (harizantal-dawn) 7 fverlicalkbeft)

| |

J J

K K

Fig. 32. Modes of Intradx4

0 (vertical) 1 (hortzonlal) 2(DC) 3 (plan2)
i] H H J H

b
LN|
L

L 1 | — v : v| Mean{H+V) v

Fig. 33. Modes of Intral6x16.

40

o (DC) 1ivertical) 2 (hortzoatal) 3 (plana)
H |
H]]
E} i /
. ||

Fig. 34. Modes of chroma8x8.

=

Mean(H-+V)

5.1.1. Intra Prediction Mode

There are three classes of intra prediction modes. They are Intradx4,
Intral6x16 for luma sample prediction, and chroma8x8 for chroma samples
prediction. Different form AC/DC prediction of MPEG-4, H.264/AVC use
directional spatial information of neighbor already coded blocks to predict current
sample values. Fig. 32 shows the mades of Intradx4. Eight directional modes and
one DC prediction are adopted: Fig. 33 shows the modes of Intral6x16 used for
smooth texture. Intradx4 is more suitable for high quality application while
intral6x16 is suitable for low bitrate application. Fig. 34 shows the mode of
chroma8x8. The mode of chroma8x8 is the same as Intral6x16 only with

different mode number.

5.2. Hardware Oriented Algorithm Modification

5.2.1. Proposed Mode Decision Method

In the intra encoding flow, the mode decision method is the most important
part to determine the coding performance. Two mode decision methods are used
in the reference software. One is basic mode decision method and the other is
rd-optimization (RDO) mode decision method.

Basic mode decision method calculates cost using table look up mode cost

41

and sum of absolute transform difference (SATD). RDO mode decision method
use weighted sum of actual encoded bitrate and reconstructed samples to generate
distortion. Though RDO mode decision method achieves the best performance, it
is also computational intensive and thus is not suitable for high performance or
real-time encoder implementation. Therefore, our intra encoder adopts the basic
method to implement the mode decision stage as shown below

Basic cost generation function :

Cost = Cost_of Mode + SATD

In the reference software, SATD is calculated by applying 4x4 discrete
Hadamard transform (DHT) to the residuals of prediction modes due to its
simplicity. However, since the residuals are processed by 4x4 discrete cosine
transform (DCT) in the encoding flow, a 4x4 DCT transform for SATD will
generate better results than. DHT does, -which-has the side benefit to avoid
computing the 4x4 DCT again.

However, 4x4 DCT in H.264/AVC.is divided into two parts, 4x4 integer
transform and scalar multiplication factors (the one with factors a, b) that are
merged into the quantization stage, as shown in Fig. 35. The reference software
adopts DHT simply for its simplicity to approximate the 4x4 integer transform. A
better way for SATD calculation is to approximate the 4x4 DCT, but this should

have low computational complexity as DHT does.

M 1 1 17 Tv 2 1 1) [a® abf2 a* abj2]
2 1 -1 -2 X L1 -1 =2 lab2 b /4 abj2 b*/4
1 -1 -1 1 1 -1 -1 2 a’ abj2 a’ ab)2

|r -2 2 -1 1 =2 1 -1)) |abf2 B*/4 abj2 b*[4]

Fig. 35. 4X4 DCT transform of H.264/AVC

42

Positions Positions
QP | (0.0).(2.0).(2.2).(0.2) | (1.1).(1.3).(3.1).(3.3) | Other positions
0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 0362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

Fig. 36. quant_coef table of quantization

Positions Positions
QP | (0.0).(2.0).(2.2).(0.2) | (1.1).(1.3).(3.1).(3.3) | Other positions
0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

Fig. 37. dequant_coef table of inverse‘quantization.
First, we look at the equation of quantization and inverse quantization
Quantization
— L=(abs(M) * quant_coef + qp_const) >> q_bits
Inverse quantization
— L*dequant_coef<<qp_per
gp_per, g_bits and gp_const are derived from quantization parameter
Quantization is calculated by using a table look up constant multiplication
and an offset derived from quantization parameter. Inverse quantization is
calculated only by a table loop up constant multiplication. We use the
quantization factors, quant_coef, shown in Fig. 36 or inverse quantization factor,
dequant_coef, shown in Fig. 37 to derive the scaling factors.
— 1/quant_coef: [0][0]:[0][1]:[1][1]~=30:19:12

— 1/dequant_coef: [0][0]:[0][1]:[1][1]~=32:25:20

43

1 1 1 1 1 2 1 17 322532725

2 1 -1 =2 1 1 -1 =2 25202520
>>5

1 -1 -1 1| X1 =1 -1 2 ® 32 2532 25

1 -2 2 - 1 -2 1 -1 |»202520

Fig. 38. Modified SATD calculation method
Fig. 38 shows our modified method of SATD calculation. In our simulation,
the scalar factors derived from inverse quantization is better than factors from
quantization. The reason is that quantization process is also affected by an offset
gp_const. The result of modified mode decision method is better than the

reference software.

5.2.2. Intra Prediction Mode

In H.264/AVC Intra coding, intra prediction and mode decision are the two
computation extensive components. All prediction modes are examined to find
the best mode. Parallel architecture are demanded-to accelerate these components.
After analyzing the type of intra prediction-modes, we can separate the modes into
four types as shown in Fig. 39. In'the bypass type, prediction samples are the
same as boundary pixels. In the linear types, prediction samples are linear
interpolation derived from boundary pixels. In the average type, prediction
samples are average of all boundary pixels. In the plane type, prediction samples
are approximation of bilinear transform with only integer arithmetic as shown in
Fig. 40. The equation of Plane mode is more complex than other modes and is
hard to reuse with other mode.

However, by simulation we found that intra prediction with plane prediction
mode only reduces about 1% of bit-rate than that without plane mode. This 1% of
bit-rate difference can be easily compensated by the enhanced cost function and

achieves almost the same result with the basic method in reference software

0 {verdesl] 1 (horizont)
A ETOEFTEA TAEETETE
] | f——r
By pasll ‘ ‘ ‘ KEs=s 2 (D)
" - Average —z—
0 (vertical 1 (hortzental) i
H | H
———
——————————* V[Maan{H+Vj
W W
R
Linear Bilinear
% [degorel dowrHk) 4 [dlagonal dowrwight) E [wertiazi-right) 3 (plane)
ﬂﬂﬂﬂlﬂlﬂﬂﬂlﬁl ﬁﬁllﬁﬂlﬂﬂlﬂﬁlﬂ %HHHEEH“ . i
5 i]
H /| Bl P
@ K]
</
6 o tzonia sowr) T{vertad ety 8 [herizmrisiap) ¥ /ﬂ
7 %I‘JI&IL‘JHIIIHIH %H"FEIHEIEHEW
IIr !lf
@
] L] n

| = |

Fig. 39 Four types of intra prediction modes

[]

N N
T T T T T

‘+J| Ili

[]

<t

T T T LI L L]

Luma 16x16

h= Y x[p(7+i.-1) - p(7-i,-1)] i=1~8
v= Y y[p(-1,7+1) - p(-1,7-i)] i=1~8
a=16*[p(-1,15) + p(15,-1)]

b= (5h+32)>>6

c=(5v+32 >>6

Pred=[a+b(x-7) + c(y-7) + 16 [>>5

Chroma 8x8

h= Y x[p(4+i,-1) - p(4-i,-1)] i=1~4
v= Y y[p(-1,4+1) - p(-1,4-i)] i=1~4
a= 16¥[p(-1,7) + p(7.-1)]

b= (17h+16)>>5

c=(17v+16 >>5

Pred=[a+b(x-3) + c(y-3) + 16 [>>5

Fig. 40. Equations of plane mode prediction

44

45

The simulation result is shown from Fig. 41 to Fig. 48. Thus, we decide to

implement the intra coding without plane prediction mode based on the cost and

performance trade-off.

PSNR

42

40

38

36

34

32

30

/‘

/./

e

—&— Proposed

/

400 600 800 1000 1200
bit-rate

1400

Fig: 41. RD curveof Akiyo

PSNR

38
37
36
35
34
33
32
31
30
29

A

/

/

~

500 800 1100 1400 1700 2000
1t-rate

——FS
/ —8— Proposed
e
2300

Fig. 42. RD curve of Foreman

46

38

35
34 /
33

%ﬁ ——TFS
A —=— Proposed

32 B /

31

30 '//

29 ‘

500 800 1100 1400 1700 2000 2300 2600
bit-rate
Fig. 43. RD:¢urve of container

37

36 /

35

34 /
» 33
% 32+ ——FS

—&— Proposed

31
30 /
29

- /
27 ‘

1400 1800 2200 2600 3000 3400 3800 4200 4600

bit-rate

Fig. 44. RD curve of stefan

47

PSNR

—#— Proposed

o

700

1100 1500 1900 2300 2700

bit-rate

Fig. 45:RD eurve of football

PSNR

35

33

31

29

27

25

—— L[S

—&— Proposed

2300

3300 4300 5300 6300

bit-rate

Fig. 46. RD curve of mobile and calendar

48

PSNR

36
o | /
34

ol /
3

31
30 | /
29

—o— S

—#— Proposed

28
27 i/

26
1300 2300 3300 4300

bit-rate

Fig. 47.RD curve of tempete
= "‘” ‘

PSNR

39

38 /.

; -

36 /

35 |
34+
B+

—— L[S

—8— Proposed

32
v

30
700 1200 1700

bit-rate

2200

Fig. 48. RD curve of news

49

Reconstruction DERES }
Pixels Path |
Selection | Boundary [Ping-Pong |
ll:tergafl‘(;ii IDCT } CoeigBuffegr
g IDHT 1IQ |« T 96x16x2
= Boundary 96x48x2
Boundary Precitior ‘ Single Port
Reg for Buffer \
Intral6ex16 Y |
Q
DC Reg |«+— \ v
\
Intra Predictor T [CAVLC
Generation UVLC
ver || [Batem
DHT - \
- Reg
Source Ping-Pong ‘ .
Source Buffer Y | Bitstream
Input 96x32x2 Mode | Output
Single Port Decision ‘
I
4pixesl/cycle | 1pixel/cycle

Fig. 49 Architecture of Intra Coding

5.3. Architecture Design of H.264/AVC Intra Coding

5.3.1. System Architecture;Design

Fig. 49 shows theZintra encoding architecture, which is directly
corresponding to the coding flow shown in Fig. 31. The architecture consists of
the intra prediction unit, transform unit, quantization unit and CAVLC unit. First,
the intra prediction unit will generate the prediction value for the current block.
Then for each possible mode, the residual pixels after prediction are transformed
by 4x4 integer transform or DHT (DC value of Intral6x16 or Chroma8x8). These
transform coefficients are further used to compute the cost function to determine
the best by the proposed cost function. The intra4x4 block with lower cost is
preserved in the buffer. After best intradx4 block is obtained, it will go through
the reconstruction path to generate the required boundary samples for the next 4x4
block. The data after quantization and mode information will be coded by

CAVLC and UVLC, respectively.

50

In the intra encoder implementation, the major bottleneck is the feedback
loop in the reconstruction path since the next 4x4 block cannot start its
computation until its boundary samples are reconstructed from previous blocks.
Thus, three scheduling techniques are proposed to accelerate this data dependency
problem.

1. Insertion of intral6x16 prediction: During the empty bubble cycles of
intradx4 block reconstruction, intral6x16 prediction process is inserted
into these bubble cycles of intra predictor generation unit to
pre-compute the Intral6 cost. Thus, the utilization of intra predictor is
improved.

2. Early start of next 4x4 block prediction: before the boundary samples
are available, the prediction mode using upper samples (vertical
prediction mode) can be.early started before other modes.

3. Intral6x16 DC value pre-computing: In the H.264/AVC standard, the
sixteen DC coefficients -from_.the " Intral6x16 mode have to be
transformed again by DHT. Thus, for the reconstruction, inverse DCT
of other AC coefficients cannot be started before inverse DHT, and
this situation will result in a macroblock size buffer to store the AC
coefficient of sixteen 4x4 blocks. Using the intral6x16 prediction
insertion mentioned in technique 1, the best intral6x16 DC value after
DHT is pre-computed from the Q/IQ stage to the DC registers of
IDCT/IDHT stage. Not only a macroblock size buffer is saved but also

the overall computation cycles are reduced.

51

5.3.2. Intra Predictor Generation Unit

A reconfigurable 4 pixels parallel intra predictor generation unit is proposed.
It can support nine kinds of Intra 4x4 modes, three kinds of Intral6x16 modes,
and three kinds of Chroma8x8 modes. After analyzing the prediction mode, we
can find that prediction samples are derived from boundary pixels using four
types of arithmetic equation:

1. (A+B+1)>>1

2. (A+2B+C+2)>>2

3. Bypass (for Vertical, Horizontal mode)

4. DC (Intradx4: average of 8 pixels, Intral6x16: average of 32 pixels)
(A, B and C are reconstructed boundary pixels)

Fig. 50 shows the proposed reconfigurable architecture of intra predictor
generation unit. The architecture reuse the partial sum of neighbor predictor to
save the adder count.

For example : Intradx4

Predictorl = B+2C+D = (B+C)+(C+D)
Predictor2 = A+2B+C = (A+B)+(B+C)
Thus, B+C can be reused to generate two predictor output

Some examples are shown in Fig. 51 to Fig. 55.

Round &
clipping

pixd—»]

&/

Round &
clipping
pix3 —»

i

Round &
clipping
pix2

i

I Pix 6 j
Lo X
+
| Pix5 | Y—D—“»
[»
- J
| Pix9 ——» I+J —
Lo + 0
ot o ;
Lo g
Ol
+ \
i) e VN O o
L____. A‘%\ J
>\
@ e ; \
fffff ’ —
| Pix2 } ~|—>—/ 0 @ bV
! | »
77777 > v .
Do .
0

Round &
clipping
pix1—>|

i

dc_reg

i

X+A

¥

i

Y

)

i

I+X

k"

B+2C+D

Round &
clipping
Round &
clipping

A+2B+C

Round &
clipping

X+2A+B

+2X+A

Round &
clipping

E

Fig. 51. Data path of diagonal down right

52

K’

Fig. 52. Data path.of vertical right

+X

|

{0y
Yo

\

+J

\J

K+J

L,
e
S

N

}»

Round &
clipping

Round &
clipping

Round &
clipping

Round &
clipping

Round &
clipping

Round &
clipping

Round &
clipping

Round &
clipping

Fig. 53. Data path of horizontal down mode

B+C

A+B

X+A

X+20+J

JR2I+X

J+I

K+2J+1

K+J

53

+ 0
k
- clippin,
\ 1+J PPing
0

Round &
clipping

Round &
clipping

0 b
@ Round &
K+L > clipping

A

N

M

A+B+C+D

+ _/ 0
I+J+K+L

dc_reg

;

Fig. 54. Data path of: DC-prediction mode

Fig. 55. Data path of horizontal mode

|

E

55

1 {16x16 Intra
— made only)

Fig. 56. Coding order of residual blocks

5.3.3. Transform Unit

In H.264/AVC, residual macroblock is divided in 16 4x4 luma blocks and 8
4x4 blocks as shown in Fig. .56. All the 4x4. blocks will be transformed with
integer coefficient. If the intra prediction mode is-Intral6x16, the DC value of 16
luma blocks will be transformed again.-by-4x4 discrete Hadamard transform. The
2x2 DC values of chroma blocks after. DCTwill also be transformed by 2x2 DHT.

Transform matrix of DCT, IDCT, and Hadamard transform is shown in Fig.
57 to Fig. 59. We can find the coefficients of the transform matrixes are even or
odd symmetry at each row or column and can be implemented by add and shift.
The number of addition in each 1D transform can be reduced from 16 to 8 with
butterflies. Fast algorithm and its butterfly structure are shown in Fig. 60. Because
two forward transforms have the same structure and will not operate at the same
time in our system architecture. We can merge them together to save area. Inverse
transform of DCT and DHT are merged by the same method as the forward
methods. The transform unit handles uses the similar architecture as in [18]. Fig.

61 shows the hardware architecture of transform unit.

56

. Fast algorithms of 4x4 transform

1 1 1 1|1Cyp Cou Cp Cos ||l 2 1 1
‘- 2 1 -1 -2|c, €, C, Cpy |l 1 -1 -2
1 -1 -1 1ic,y, C,; Cp Cpffl -1 -1 2
1 -2 2 -—1ljc; Cy Cgp Cap |l =2 1 -1
Fig. 57. Transform matrix of 4x4 DCT transform
1 1 1 1/2|c, Cy Cp Cos 1 1 1
£ 1 12 -1 -1ilc, C; C, Cp 1 1/2 -1/2 -1
1 -12 -1 1(c,, Cp, €y Cyp -1 -1 1
1 -1 1 -1/2|cy, Cy €y Cylll2 -1 1 -1/2
Fig. 58. Transform matrix of 4x4 IDCT transform
1 1 1 1{{Cpy Co Cp Culll 1 1 1
£ o 1 1 -1 -1jjc, c,; €, Cpll 1 -1 -1
1 -1 -1 lilc, C, C, Cull -1 -1 1
1 -1 1 —1|jCgpaiC; €y Cyp|ll -1 1 -1
Fig. 59. Transform matrix of Hadamard transform
1D Forward-Transform
DCT 0 0 DHT 0 0 DCT/DHT
1 2 1 2 1
2 1 2 1 2
-1 - -1 -1 22
2
3 3 3 3
-1 -1 -1
1D Inverse Transform
IDCT 00 IDHT 0 0 IDCT/IDHT
12 2 1 5 ; 2,1
1 -1 1 -1 1 -1
3 3 3
12 -1 -1 2,1 -1

wJaoysuea] (i

AATAA

IE=

{

‘ 1D Transform

4X4
transpose
e register

Fig. 61. Hardware architecture of transform unit

5.3.4. Quantization Unit

57

The quantization and inverse quantization unit are shown in Fig. 62. The

constant value of quant_coef; dequant:coef, gp. const, qp_shift, and qp_per are

implemented by look-up table depending on the QP values. The design also uses

the data guarding technique™to. reduce -power consumption when input value is

Zero.

Quantization Unit

qp_shift

skip

ﬂ skip quant_coef
Shift =
reg
00—
qp_const
Inverse Quantization Unit
@ skip dequant_coef ap_per skip
Shift & Round -
reg o

Fig. 62. Hardware architecture of quantization unit

58

5.3.5. Mode Decision Unit

Fig. 63 shows the hardware architecture of mode decision unit. The
transformed coefficient is accumulated by mode decision unit. The scaling
operations are implemented by shift and add. If the cost of current mode is small
than best mode, the cost and mode value of best mode register will be refreshed.
After processing whole macroblock, the mode with minimum cost will be selected

as the best intra prediction mode.

Transformed coefficient
Cost_of_Mode

e o][
’ Absolute ‘ ’ Absolute ‘ ’ Absolute ‘ ’ Absolute ‘ Current Cost
0 Tniral6x16
L Current Cost
’ Scaling ‘ ’ Scaling ‘ ’ Scaling ‘ ’ Scaling ‘ A

N T T

SUM

v i Cost &Mode

e, information of Best

Intra4x4 mode
Cost&Mode

- information of Best |«&—

Intral6x16 Min Cost

Comparator 4—-——

Best Intra -«—— Comparator - ll\zl:n(i:::;: —— MB Cost —
Prediction Mode p - mode Accumulator

Fig. 63. Hardware architecture of mode decision unit

oo w
T |

‘ Coefficient

[‘ Token Table

\ [

\ . [

| Ct)l:‘f;f:i&::n[| Trailing One q —> Code Word

‘ | Sign Table

\ ‘ \

\ ‘ M

‘ [N Level Table U

| Find Leading | | | X

| One L

-
‘ | Total Zero
7777777 Table
R —> Code Length
Scanning Process ¢
Run Table
Run Code
- . —>
Encoding Process Concatenation

Fig. 64. CAVLC architecture

59

5.3.6. CAVLC Unit

The architecture of CAVLC is shown in Fig. 64. CAVLC encoding process
can be divided into two phases, scanning phase and encoding phase. Input of
CAVLC is four transformed coefficients per cycle. The scanning phase will skip
the zero coefficients and only scans the nonzero one in the inverse zigzag scan
order to speedup the encoding phase. Then, the data are sent to the corresponding
lookup tables in parallel. These codes are buffered and concatenated to form the

final bitstream.

Source Buffer Coefficient Buffer
96 words x 32 bits x 1 bank 104 words x 64 bits x 2 banks
1 il T T 0 1§ il T T Ot
ST TR S I 74 Luma DC
91

R T AT A R R T 0
AT T A T SA [A AT A7 156 [A | ChromaDC
M T AR ROTT R M T AR ROTT XA

T 1 In R&ETG7 TR R G7

Fig. 65. Memory Organization

5.3.7. Memory Organization

In the proposed architecture, two components have memories. The
organizations of memories are shown in Fig. 65. Source buffer stores the input
data 4 pixels row by row. Coefficient Buffer is divided into two parts to facilitate
DC value access in Intral6x16 mode. By using Ping-Pong architecture, data input
phase and entropy coding phase can be pipelined to improve the encoding

throughput.

60

5.3.8. Overall Architecture Performance

Fig. 66 shows the timing schedule of proposed intra coder. Intral6x16
prediction mode is inserted in the Intra4x4 reconstruction cycle. If Intral6x16 is
selected as best prediction mode, the quantization coefficient will be recomputed
again to replace the data in ping-pong buffer.

1086 cycles are spent for pipelined architecture as shown in Fig. 67. The
performance of proposed architecture only needs about 117.28MHz to meet

HDTYV 720p (1280x720@30Hz) real-time application.

[16 H [16 H [T6 H
Initial |4 block0 block 14 block1 block |4 block2 | Block
0-3 4-7 8-11
L M6V M6V M6V A
oHT I
14 block3 Bg(fk of |4 block4 Block [14 blockS block |4 blocké | Block |4 block7 B1I(;C_k o]
<P 0-3 4-7 8-11 PP
[E®) [E®)
U U Hg' \ \ Mg
C8V C8H DC C8V[C8H D
|4 block12 | Block | |4 block13 |block| |4 block14 Block |4 block15 | Block| Block Block
0-3 0-3 o 03103 .,
U=0 U=3
U vV
If 116 is best g C8 | C8plir
mode 116 block0-15 of Block | Blockof
Pt 03 [0-3§
then u \
’ C8 | C8
If 14 is best DHT
o Block | Block b
0-3 | 03 PF
Fig. 66. Timing schedule of proposed intra coder.
Encoding Loop for current MB Reconstruct
Initial 14 116 C8 Prediction 116[UsY
If116 is
selected
Entropy Coding of previous MB
I I I I I I I
0 200 400 600 800 1000 1200

Fig. 67. Timing schedule of proposed architecture

61

5.4. Implementation Results

To evaluate the accuracy and the efficiency of the proposed architecture, the
design is implemented using the UMC 0.18um 1P6M CMOS technology and the
cell-based design flow. The chip has an area of 2.4x2.4 mm? (pad limited) as
shown in Fig. 68. The design can achieve 125 MHz at the worst-case. Thus, it can
easily support 29.46M pixels/s still image encoding and real-time moving picture
intra coding of HDTV 720p@30fps video application when clocked at

117.28MHz. Therefore, it is suitable for digital video or camera applications.

Table 9. List of gate count

Intra Predictor 3507
QNQ 22082
DCT(with DC register) 9985
IDCT(with DC register) 9836
Boundary Reconstruction Unit 15697
Cost Generation and Mode Decision Unit 10315
UVLC/CAVLC 11965
Controller 2781
Boundary Predictor Buffer 6465
Total 92633

Technology: UMC 0.18 pm 1P6M CMOS
1.8 V(Core)
Voltage: .
3.3 \\/C(VO)‘
Die Size: 2424mmt
Core size: ”“1.28xi.28r‘n‘m
SRAM: (all single port)
Coefficient buffer 104 x 64 bits x 2 banks
Source buffer 96 x 32 bits x 1 bank

Fig. 68 Chip specification

62

63

Chapter 6 Conclusion

In this thesis, our contribution is in three parts. The first contribution is the
deblocking filter architecture that can accelerate the deblocking process. The
proposed two architectures not only save the memory size but also have higher
speed. The idea is to rearrange the data flow and achieve higher data reusability.
The second contribution is the fast intra coding algorithm can reduce the
computational complexity of intra 4x4 prediction. Six modes are required instead
of nine modes in the full search method. The fast intra prediction algorithm can
save 33% computational complexity with only about 1% bit-rate loss. The final
contribution is the intra coding architecture can speed up the computation of intra
frame coding. Proposed cost function has better quality and complex plane mode
is skipped to save area. The prediction process is well scheduled to achieve high
utilization. We hope that our research result can promote the convenience of

human life.

64

Bibliography

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint
Video Specification (ITU-T Rec. H.264/ 1SO/ IEC 14496-10 AVC), Mar.
20083.

[2] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra,
“Overview of the H.264/AVC Video Coding Standard,” IEEE Transactions on
Circuits and Systems for Video Technology, July 2003

[3] Information Technology - Generic Coding of Moving Picture and Associated
Audio Information: Video, ISO/IEC 13818-2 and ITU-T Recommendation
H.262, 1996

[4] Video Coding for Low Bit Rate Communication, ITU-T Recommendation
H.263, Feb. 1998.

[5] Information Technology - Coading of Audio-Visual Objects - Part 2: Visual,
ISO/IEC 14496-2, 1999.

[6] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G.J. Sullivan,
"Performance comparison of video coding standards using Lagrangian coder
control, in Proceedings of IEEE International Conference on Image
Processing 2002, vol. 2, pp501-504.

[7] Y.-L. Lee and H. W. Park, “Loop filtering and post-filtering for low-bitrates
moving picture coding,” Signal Processing: Image Commun., vol. 16, pp.
871-890, 2001.

[8] S. D. Kim, J. Yi, H. M. Kim, and J. B. Ra, “A deblocking filter with two
separate modes in block-based video coding,” IEEE Trans. Circuits Syst.

Video Technol., vol. 9, pp. 156-160, Feb. 1999.

65

[9] P. List, A. Joch, J. Lainema, G. Bjgntegaard, and M. Karczewicz, “Adaptive
deblocking filter,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,
pp. 614- 619, Jul. 2003.

[10] H.264/AV/C reference software IM7.2, Jul. 2003

[11] Y.-W. Huang, T.-W. Chen, B.-Y. Hsieh, T.-C. Wang, T.-H. Chang, L.-G.
Chen, “Architecture design for deblocking filter in H.264/JVT/AVC,” Proc.
of Multimedia and Expo, vol. 1, pp. 693 —696, Jul. 2003.

[12] Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification (ITU-T Rec. H.264/ 1SO/ IEC 14496-10 AVC), Mar.
2003.

[13] H.264/AVC reference software IM8.2, Jul. 2004

[14] Meng, B.; Au, O.C, “Fastiintra-prediction mode selection for 4x4 blocks in
H.264”in Proc. of IEEE-Int.' Conf. on Acoustics, Speech, and Signal, 2003.,
vol. 3, 6-10 pp.111 - 389-92 ,April2003

[15] Meng, B., Au, O.C., ChisWah_Wong, Hong-Kwai Lam, “Efficient
intra-prediction mode selection for 4x4 blocks in H.264” in Proc. of Int. Conf.
on Multimedia and Expo, 2003, vol. 3, 6-9 Pages:1lI - 521-4, July 2003

[16] Feng PAN, Xiao LIN, Rahardja SUSANTO, Keng Pang LIM, Zheng Guo LI,
Ge Nan FENG, Da Jun WU, and Si WU, "Fast Mode Decision for Intra

Prediction,” JVT-G013, 7th Meeting, Pattaya Il, Thailand, 7-14 March, 2003.

[17] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG Performance
comparison: H.26L intra coding vs. JPEG2000” Klagenfurt, Austria, 22-26
July, 2002, JVT-D039

[18] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen, “Parallel 4_4 2D
transform and inverse transform architecture for MPEG-4 AVC/H.264,” in
Proc. IEEE Int. Symp. Circuits and Systems, 2003, pp. 800-803.

66

i

AN e - B 4 (A ®85# 97" ~x 88 #£6 ")
R TR S R X 21 (AFMB88EQ9! ~AEI2EG")
MR <FFFIFyor e L (ARR2EI! ~XFWME67)
B A

® 4{-l-Hzpgp < %r?&zﬁ%}g?ﬁ%é{?ﬁ%% (IC Contest)
Fpoar/x g 3% R E TRkt e (Cell-based) &%
® Asia and South Pacific Design Automation Conference (ASP-DAC) 2005
Best Award of Student Design Contest
@ {-1l-Bip XHEpkw %‘é;{%ﬁ?%(m Contest)
Star Video Motion Estimation Engine QME
SoftIP 7 AL #if
® {-FER F2FRITFIFHRI;EREL
£ 3% # 4L - Automatic generation of Area-Effective Bit-Serial FIR Filters
® | l-FEptEH(xe)TFimiTEE
0 | lEERTEH(LZ)TIm T LR

® LUFERIFH(RZ) LT IALF IS

67

FiF .
Chao-Chung Cheng, Tian-Sheuan Chang, "Fast Three Step Intra Prediction

Algorithm for 4x4 blocks in H.264," International Conference on Circuit and
System (ISCAS) 2005

Chao-Chung Cheng, Tian-Sheuan Chang, "An Hardware Efficient Deblocking
Filter for H.264/AVC," International Conference on Consumer Electronics (ICCE)
2005

Hao-Yun Chin, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan Chang, "A
Bandwidth Efficient Subsampling-based Block Matching Architecture for Motion
Estimation,” Asia and South Pacific Design Automation Conference (ASP-DAC)
2005

Chao-Chung Cheng, Yu-Jen Wang, Tian-Sheuan Chang, “A Fast Fractional Pel
Motion Estimation Alogrithm for H.264/AVC,” The 16th VLSI Design/CAD
symposium 2005

