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研究生: 鄭朝鐘              指導教授: 張添烜 博士 
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電子工程學系 電子研究所碩士班 

摘 要 

數位視訊科技已在我們的日常生活中扮演重要的角色，編碼效能也隨

著技術的演進而提升，H.264/AVC 是目前最新的國際視訊編碼標準，相較

於 MPEG-4、H.263、和 MPEG-2，分別可節省 39%、49%、和 64%的資料

量，但由於其具有相當複雜之編碼技術及模式選擇，使得運算複雜度也遠

高於先前之編碼標準，因此如何設計高效能的運算模組與在不致犧牲

H.264/AVC 之編碼效能之前提下，降低其運算複雜度，為目前相當重要之

課題。本論文中，我們的貢獻主要有三個部分，分別是針對 H.264/AVC 系

統中：方塊濾波器的架構設計、快速框內預測演算法、以及框內編碼器之

架構設計。 

 去方塊濾波器是 H.264/AVC 視訊編碼系統中的重要模組，用來減少方

塊視覺效應，以增進影像品質。佔有不可忽視的運算量，本論文中，我們

提出了兩種不同硬體架構，藉由妥善安排資料處理的順序，在不影響輸出

結果的情況下，達到更有效的資料利用率與加速處理的效能，和之前的設

計相比，第一種架構有控制邏輯簡單的優點，大量的減少控制電路的邏輯

閘數目，並減少 50%的內部記憶體，第二種架構則可以減少 90%的內部記

憶體，並達到更快的運算效率。 
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 框內預測利用空間中資料數值的相關性，用來預測將被編碼的資料數

值，是 H.264/AVC 視訊編碼系統中框內編碼的重要利器，在本論文中，我

們針對 H.264/AVC 框內預測提出一個簡單的三步驟演算法，利用各預測模

式的方向關係，省略出現機率較低之模式的運算，而整個過程，只固定需要

運算六個模式，而不像全域搜尋演算法需要找九種模式。和全域搜尋法相

比，約可節省約 33%的框內預測運算量，而只損失約 1%左右的位元率。 

 最後，我們提出 H.264/AVC 框內編碼器的硬體演算法及其架構，所提

出的硬體演算法省去複雜的平面預測模式，減少佔整體面積最大的框內預

測模組，且藉由改善的代價函數來增進壓縮的效能。配合高效能的硬體架

構和運算流程，可以 117.28MHz 下，進行即時的 HDTV(1280x720) 30fps

編碼。 

 簡而言之，我們對 H.264/AVC 視訊編解碼系統的貢獻主要有三個部

分。我們提出的去方塊濾波器架構可以更有效率的加速去方塊處理；快速

框內預測演算法可以有效減少預測所需的運算量；我們所提出的框內編碼

架構可以加快框內編碼的速度。 
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Abstract 

 Digital video technology has played an important role in our daily life. 

With the evolution of video technology coding efficiency has been greatly 

improved. H.264/AVC is the latest international video coding standard that can 

save 39%, 49%, and 64% of bit-rates in comparison with MPEG-4, H.263, and 

MPEG-2, respectively. However, this efficiency comes with the cost of much 

higher computational complexity than previous standards due to the complex 

coding approaches and mode decision techniques. Thus, how to design high 

performance functional units and reduce computational complexity without too 

much degradation in coding efficiency are very important topics. In this thesis, 

we have three contributions for the H.264/AVC design, architecture design of 

the deblocking filter, a fast intra prediction algorithm, and an architecture 

design of intra coding in H.264/AVC. 

Deblocking filter is an important component of H.264/AVC to reduce the 

blocking effect and to improve the video quality. It is both computational and 

memory extensive. In this thesis, two different architecture of deblocking filter 

are proposed. The computing flow is reordered for efficient data reusability and 

high throughput while maintain standard compatibility. In the first version, gate 

count is greatly reduced by simple control unit, and internal memory is also 

reduced to 50% of that in the previous design. In the second version, the 

proposed architecture can reduce 90% of internal memory and achieve higher 

throughput than others.  
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Intra prediction, which uses the information of spatial correlation to 

prediction the data to be encoded, is an important tool of intra frame coding. In 

this thesis, we propose a simple fast three step algorithm. The algorithm uses 

the directional relationship of prediction modes to skip the modes with less 

probability. Thus, the proposed algorithm can complete the 4x4 intra prediction 

by only examining six modes instead of nine modes in the full search algorithm. 

The simulation result shows that the proposed algorithm can maintain similar 

PSNR quality to that in the full search algorithm with 33% of computation 

reduction of intra prediction process and only 1% of bit-rate increase. 

Finally, a hardware oriented algorithm of intra coding and its architecture 

are proposed. We save the complex and hardware costly plane mode, which 

occupies the biggest area in the intra prediction unit in the intra coding and 

improve the coding efficiency with the enhanced cost function. With well 

designed high performance functional unit and computing schedule, the 

proposed architecture can easily support real-time intra coding of HDTV 

1280x720@30fps video application when clocked at 117.28MHz. 

In brief, our contribution to H.264/AVC video coding system is in three 

parts. The first contribution to the deblocking filter architecture can accelerate 

the deblocking process. The second contribution to the fast intra coding 

algorithm can reduce the computational complexity of intra prediction. The 

final contribution to the intra coding architecture can speed up the computation 

of intra frame coding.  
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Chapter 1 Introduction 

The Advanced Video Coding (AVC) is the latest generation standard 

developed by a Joint Video Team (JVT) of ISO/IEC and ITU-T[1]. The new 

standard outperforms the earlier MPEG-4 and H.263 standards, providing better 

compression of video images. While the basic framework of H.264/AVC is 

similar to the motion compensated hybrid scheme of previous video coding 

standards, additional tools improve the compression efficiency at the expense of 

an increased implementation cost. 

1.1. Motivation 

The high-efficient coding features of H.264/AVC are due to complex mode 

selection and high computational coding tools. For software implementation, 

H.264/AVC video coding demands fast algorithm to minimize the computation 

complexity for mode decision. To meet the need of consumer electronics market, 

VLSI implementation is necessary for real-time and low power applications. 

These motivate us to explore efficient solution for key modules in H.264/AVC. 

Deblocking filter of H.264/AVC is both computational and memory 

intensive due to its highly adaptive mode decision and small 4x4 block sizes. The 

small 4x4 block size used in H.264/AVC requires almost every pixel in a frame 

loaded from and written to frame memory for deblocking operations. It is reported 

that even with highly optimized filtering algorithm, the deblocking operation still 

occupies one third of the computational complexity of a decoder. In order to solve 

the problem mentioned, two architectures are proposed to meet the high resolution 

real-time deblocking filter process. 
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Intra prediction is the dominate components besides the motion estimation in 

the encoding process. Exhaustedly search is adopted in the reference software to 

select the optimal intra prediction mode. Since each mode will be examined, the 

computation load is quite large and becomes the one of computational bottleneck. 

A fast intra prediction algorithm is needed to speed up the encoding process.  

1.2. Thesis Organization 

This thesis contains six parts. Chap. 1 gives the motivation and design challenge 

of this work. In Chap. 2, a brief overview is given for H.264/AVC coding 

standard. Then, the proposed deblocking architectures and their cost-performance 

analysis are presented Chap. 3. In Chap. 4, a fast three step intra prediction 

algorithm is contributed. In Chap. 5, architecture design for intra coding is 

implemented. Finally, conclusion is remarked in Chap. 6. 
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Chapter 2 Overview of H.264/AVC Standard 

In the recent years, multimedia application becomes more flexible and more 

powerful with the development of digital signal processing and communication 

technology. The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG 

develop a new standard for the compression of natural video images. The new 

standard [1][2] is known as H.264 and also MPEG-4 Part 10 Advanced Video 

Coding, and regarded as the next generation video compression standard. The 

new standard is designed for technical solutions of wide application areas from 

videoconference, broadcasting, digital storage media, multimedia streaming 

service, etc.  

2.1. Introduction to H.264/AVC 

The overall architecture of H.264/ AVC is shown in Fig. 1. , the same with 

the previous video coding standard, is a hybrid coder. Different from prior video 

coding standards, H.264/AVC has many features that enhance coding efficiency 

to predict the content of a picture. 

 Variable block-size motion estimation/compensation 

As shown in Fig. 2, H.264/AVC has more flexibility in selection of 

block sizes and shapes, such as 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 

4x4. 

 Quarter-sample-accurate motion vector accuracy 

Compare to advanced profile of the MPEG-4 Visual standard, 6-tap filter 

is adopted in H.264/AVC to reduce the complexity of interpolation. 
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Fig. 1 Block diagram of H.264/AVC encoder 

 

Fig. 2 Block size of motion estimation/compensation 
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 Multiple reference picture motion estimation/compensation 

H.264/AVC adopts the multiple reference picture selection technique to 

enable efficient coding by allowing an encoder to select the reference 

frame. There are at most five previous and five afterward reference 

pictures to be searched.  

 Directional spatial prediction for intra coding 

In H.264/AVC intra encoding, the edges of the previously decoded 

sample of current picture is applied to predict the samples of current 

block to be encoded. In summary nine kinds of 4x4 luma prediction 

modes, four kinds of 16x16 luma prediction modes, and four kinds of 

8x8 chroma prediction modes are adopted. 

 Small block size integer transform 

Due to small block size motion estimation/compensation, H.264/AVC 

standard is based primarily on the 4x4 transform, including discrete 

cosine transform and discrete hadamard transform. It requires only 16 

bits arithmetic processing. 

 In-loop deblocking filter 

The block-based video coding produces blocking artifact due to its block 

structure.  Blocking artifact becomes worse especially in the low bit 

rate or highly compressed video environment. To reduce the artifact, the 

in-loop deblocking filter is adopted by the H.264/AVC standard to 

improve the quality of decoded picture. Fig. 3 shows the subjective view 

comparison of picture with deblocking fitler and without deblocking 

filter. 
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Fig. 3 Subjective view comparison of picture with deblocking filter (left) and 

without deblocking filter (right). 

 Context-adaptive entropy coding  

The two entropy coding methods applied in H.264/AVC, termed 

CAVLC (context-adaptive variable length coding) and CABAC 

(context-adaptive binary arithmetic coding), both use context-based 

adaptivity to improve performance relative to prior standards. 

 

 CABAC 

In main profile, an advanced entropy coding method known as 

arithmetic coding is included in H.264/AVC to increase the efficiency of 

entropy coding. 

With all the mentioned powerful coding approaches and extensive rate 

distortion optimization (RDO) techniques, H.264/AVC can offers a significant 

improvement of bit-rate reduction compared with previous video standards under 

the same PSNR quality as shown in Fig. 4. It is reported that the new standard can 

achieve 39%, 49%, 64% of bit-rate reduction compared with MPEG-2[3], 

H.263[4], and MPEG-4[5] respectively[6]. However, the complexity and 

computation load of video coding in H.264 increase drastically.  
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Fig. 4 R-D curve comparison of H.264/AVC with MPEG-4, H.263, and MPEG-2 

2.2. Profile and Level 

In H.264/AVC, three profiles are defined, which are the Baseline, Main, and 

Extended Profile as shown in Fig. 5. The Baseline profile supports all features in 

H.264/AVC except the following two feature sets: 

• Set 1: B slices, weighted prediction, CABAC, field coding, and picture or 

macroblock adaptive switching between frame and field coding. 

• Set 2: SP/SI slices, and slice data partitioning.  

The first set of additional features is supported by the Main profile. However, 

the Main profile does not support the FMO, ASO, and redundant pictures features 

which are supported by the Baseline profile. Thus, only a subset of the coded 

video sequences that are decodable by a Baseline profile decoder can be decoded 

by a Main profile decoder.  

The Extended Profile supports all features of the Baseline profile, and both 

sets of features on top of Baseline profile, except for CABAC. 
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Fig. 5 Profile of H.264/AVC 

In H.264/AVC, the same set of level definitions is used with all profiles, but 

individual implementations may support a different level for each supported 

profile. There are 15 levels defined, specifying upper limits for the picture size (in 

macroblocks) ranging from QCIF to all the way to above 4k 2k, 

decoder-processing rate (in macroblocks per second) ranging from 250k pixels/s 

to 250M pixels/s, size of the multipicture buffers, video bit rate ranging from 64 

kbps to 240 Mbps, and video buffer size. 
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Chapter 3 Architecture Design of Deblocking 

Filter in H.264 

In the H.264/AVC standard, the adaptive deblocking filter is applied on 

edges of each 4x4 blocks in a macroblock (MB) to reduce the blocking artifact. 

However, the deblocking filter is both computational and memory intensive due 

to its highly adaptive mode decision and small 4x4 block size [9]. The adaptive 

mode decision is required for each edge to distinguish real edges from block 

artifacts. The small 4x4 block size used in H.264/AVC requires almost every 

pixel in a frame loaded from and written to frame memory for deblocking 

operations. It is reported that even with highly optimized filtering algorithm, the 

deblocking operation still occupies one third of the computational complexity of a 

decoder [9]. Thus, VLSI implementation is necessary for real-time and low power 

applications.  

In this chapter, two deblocking filter architectures are proposed. For the first 

version, the data flow is reordered for easy and regular hardware implementation 

while maintains the standard compatibility. For the second version, an in-place 

computing design for the deblocking filter is presented. The proposed in-placed 

computing flow reuses intermediate data to filter horizontal edges and vertical 

edges seamlessly as soon as data is available. Thus, the intermediate data storage 

is greatly reduced to only the four 4x4 blocks instead of whole 16x16 macroblock. 

In the first version, gate count is greatly reduced by simple control unit, and 

internal memory is also reduced to 50% of that in the previous design. In the 

second version, the proposed architecture can reduce 90% of internal memory and 

achieve higher throughput than others.  
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Fig. 6 Encoding loop of H.264 

Both of them are implemented by UMC 0.18µm CMOS technology. The 

resulting hardware of Version 1 can achieve real-time 2Kx1K (2048x1024) 30Hz 

video at 82.58 MHz. The gate count is only 9.16K when synthesized at 100MHz, 

excluding the memory cost. For version 2, the resulting hardware can achieve 

real-time 2Kx1K (2048x1024) 30Hz video at 73.73 MHz. When synthesized at 

100MHz the gate count is only 13.41K, excluding the memory cost.  

3.1.  Fundamental of H.264/AVC Deblocking Filter 

The block-based video coding, due to its simple and regular block structure, 

has been widely used in various video standards, such as MPEG-1, MPEG-2, 

MPEG-4 and H.26x. However, block-based computation like discrete cosine 

transforms (DCT) and motion compensation (MC) also produce blocking artifact 

[7][1][8][9], which becomes worse especially in the low bit rate or highly 

compressed video environment. To reduce blocking artifact, the deblocking filter 

is a well-known tool to improve both objective and subjective video quality, 

either inside or outside the coding loop. In-loop approach is adopted by the 
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H.264/AVC standard as shown in Fig. 6. The in-loop deblocking filter improves 

the quality of reference frame, thus improves overall resulting view effect. 

However, This forces all standard conformant decoders to perform identical 

filtering in order to stay in synchronization with the encoder.  

H.264/AVC deblocking filter is adaptive on several levels. On the slice level, 

the global filtering strength can be adjusted to the individual characteristics of the 

video sequence. On the block-edge level, filtering strength is made dependent on 

the inter/intra prediction decision, motion differences, and the presence of coded 

residuals in the two participating blocks. Special strong filtering is applied for 

macroblocks with very flat characteristics to remove “tiling artifacts”. On the 

sample level, sample values and quantizer-dependent thresholds can turn off 

filtering for each individual sample.  

Deblocking process is done in MB by MB in raster scan order. In each MB, the 

processing order in the H.264/AVC reference software first processes on the four 

vertical edges from left to right, transposes the intermediate data, and then 

processes on the four horizontal edges from up to bottom, as shown in  

Fig. 7. 
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Fig. 7. Original processing flow for (a)horizontal filtering, and (b)vertical filtering 

Table 1  Parameters for determining boundary strength 

Block modes and conditions Bs 
One of the blocks is Intra and the 
edge is a macroblock edge 4 
One of the blocks is Intra 3 
One of the blocks has coded 
residuals 2 
Difference of block motion ≧1 
luma sample distance 1 
Motion compensation form 
different reference frames 1 
Else 0 

 

 
Fig. 8 Convention for describing samples across two 4x4 block boundary. 

The Boundary-Strength (Bs) parameter, a number ranging from 0 to 4, is 

assigned to every boundary between two neighboring 4x4 luma sample blocks to 

determine whether it is true blocking artifact or not. The chroma boundary 

strengths are the same as that in the corresponding luma boundary location. 

Table 1 shows that the value of Bs depends on the modes and the coding 

conditions of the two adjacent blocks. In this table, conditions are evaluated from 

top to bottom until one of the conditions holds true, and the corresponding value 

is assigned to Bs. Bs decides the filter strength performed on the edge. Two 

primary filtering modes are selected. A value of 4 means the strongest filtering 

mode, and the Bs from 1 to 3 is the standard mode, whereas a value of 0 means no 

filtering is applied on the edges.  

For nonzero Bs values, a pair of quantization dependent parameters, referred to 



 13

as α and β, are used to determine which set of samples to be filtered. In the 

following description, the convention for describing 8 pixels across two 4x4 block 

boundary is shown in Fig. 8. Filtering on a line of 8 samples takes place if the 

three conditions  

｜p0-q0｜<α ,｜p1-p0｜<β , ｜q1-q0｜<β , when Bs≠0 

hold true. For edges with Bs from 1 to 3, the filter operation is divided into basic 

filter operation and clipping. In strongest filtering mode (Bs=4), the deblocking 

operation uses a very strong 4- and 5-tap filter that modifies the edge sample and 

two interior samples on each side, or uses a weaker 3-tap filter to modify the edge 

samples only. The stronger filter is only applied when the following constraint  

|p0-q0| < (α>>2) + 2 

holds true. Interested readers can refer to [1] and [10] for more details. 

3.2. Architecture Design of H.264/AVC Deblocking Filter 

3.2.1. Version 1 

3.2.1.1. Simple Data Flow 

The major drawback of this direct approach is that intermediate data between 

different edges has to be stored and loaded again. Thus results in an inefficiency 

data flow and complex controller. For an efficient VLSI design of the deblocking 

filter, regular data flow is the major concern for easy hardware implementation. 

Different from the original processing order that processes the column major 

order first, the proposed computing flow processes the horizontal filtering along 

the row major order first and then vertical filtering along the column major order 

as shown in Fig. 9.  



 14

 

Fig. 9. Modified processing flow for (a) horizontal filtering, and (b) vertical 

filtering 

 

Fig. 10. Data structure of deblocking filter 

With the modified approach, the intermediate 4x4 block data between 

neighboring vertical or horizontal edge will be reused immediately. Thus we can 

save the internal memory access and speed up the deblocking computation. This 

modification does not only fit the memory access order but also has higher data 

reuse capability and still has the same results as the standard specified. 

3.2.1.2. Hardware Architecture 

The data structure of proposed deblocking filter is a line of 8 pixels as shown in 

Fig. 10. The proposed architecture is shown in  
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Fig. 11. A 1-D 8 pixels parallel-in parallel-out deblocking filter can be 

reconfigurable to support different filtering strength. A 4x4-pixel shift register is 

to reuse the intermediate 4x4 block data after processing previous neighboring 

edge. A 4x4-pixel transpose register is to transpose data from row major order to 

column major order, or transpose from column major order back to row major 

order after vertical filtering. An 80x32bits SRAM is required to buffer the 

intermediate 20 4x4-block pixels to be filtered vertically.  

 
Fig. 11. The proposed deblocking filter architecture. 

 

Fig. 12. 4x4 Block index for one macroblock. 
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Reconfigurable 1D Deblocking Filter

Port 3

Port 2

To transposed register or
output port

From input port
(horizontal filtering)

Port 1

(a)

Reconfigurable 1D Deblocking Filter

Port 3

Port 2

To transposed
register

From local memory
(vertical filtering)

Port 1

(b)  

Fig. 13  Data path for (a) horizontal filtering and (b) vertical filtering 

 

The proposed architecture operates as below. For simplicity of explanation, 

we use the block index as shown in Fig. 12 in the following. First, we assume that 

all data I/O is row major order with 32bits width (4 pixels in parallel). The data 

path is shown in Fig. 13. 

Step 1: data preparation  

In the first 16 cycles, we first retrieve the data of block index 1 to 4, 

transpose them from row major order to column major order with the 

transpose buffer, and store them in the local buffer for vertical filtering. 

Step 2: horizontal filtering over vertical edges 

Then we start horizontal filtering as the order shown in Fig. 9(a) with 

data of block 5 to 24. In this phase, filter inputs are from external memory 

via input port, and from the 4x4 shift register via port3. The data after first 

time filtering is sent to 4x4 shift register via port 2 to be reused to filter next 

neighboring edge.  
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Fig. 14 timing diagram of simple data flow deblocking filter 

 

Step 3: vertical filtering over horizontal edges 

After the processing of horizontal filtering, the macroblock data is 

transposed to column major order by transpose buffer and stored in the local 

buffer for vertical filtering. The vertical filtering uses the same data flow as 

the horizontal filtering. The only difference is that filter input is from the 

local buffer instead of external memory. The filtered results are transposed 

again and stored back to the external memory in the row major order. Thus, 

all data uses row major order input and row major order output to the 

external memory. This can ease the other relating processing to work 

together. 

Based on the above flow, it needs only 192(Y)+72(Cb)+72(Cr)=336 cycles 

to complete the deblocking process for one YCbCr macro block. The processing 

timing diagram of proposed deblocking is shown in Fig. 14 that illustrates the 

detailed timing of above steps.  
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Fig. 15. Block index 

3.2.2. Version 2 

3.2.2.1. Full Data Reuse Flow 

In version 1, the deblockig filter always reuses the data of neighbor 4x4 

blocks of current filtering edge. After horizontal filtering, there are two edges can 

be filtered in the next step. Those are up edge and right edge. In version 2, the 

data flow is further improved to explore more data reusability  

Fig. 15 shows the Block index for explanation. Block 1-4 are the 

intermediate data from above macroblock after vertical edge processing, and 

block 5, 10, 15, and 20 are the intermediate data from left macro block after 

horizontal edge processing. For simplicity, we will denote the block number as 

blki, where i is from 1-24. These block data will be processed with current macro 

block data to complete the deblocking operations. 
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Fig. 16. Edge processing order for (a) luma edge, and (b) chroma edge 

 
Fig. 17. Overall architecture  

 

Fig. 16 shows the proposed full data reuse flow that maintain the same result 

as specified by the H.264/AVC standard. As shown in Fig. 16 (a), we process 

edges of each 4x4 block from the left-top most block (blk6) to the right-bottom 

most block (blk24). Starting from the left-top most 4x4 block (blk6), we first do 

the horizontal filtering over its two vertical edges (edge 0 and edge 1). Then, since 

all data is available for horizontal edge 2 (intermediate data from blk1 and blk6), 

we can do the vertical filtering over the top horizontal edge (edge 2). This 

horizontal-vertical interleaved approach is repeated for each 4x4 block in a raster 

scan order, as the edge number shown in Fig. 16 (a) and (b). 
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Fig. 18. Data path (a) horizontal filtering over vertical edges, and (b) vertical 

filtering over horizontal edges  

With the interleaved approach, the intermediate data will be reused 

immediately. Thus we can save the memory access and buffer required to process 

the left, top, and right edge in a 4x4 block. The only buffer and memory access 

remained are the intermediate data for the bottom edge in a 4x4 block. Therefore, 

we need only four 4x4 blocks (4x16x8bits) above the current filtering block row 

(e.g. store blk6-blk9 when process blk11-blk14), rather than a whole macroblock 

(24x16x8bits) as in the conventional data flow. Because of such high data reuse, 

internal memory access number and size are both greatly reduced. 
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3.2.2.2. In-place Deblocking Filter Architecture  

Fig. 17 shows the proposed architecture, where the solid arrows denote 

32-bits dataflow. First, we assume that all data I/O is row major order with 32bits 

width (4 pixels). For simplicity, we will only explain the operation of luma 

macroblock. The chroma block is processed using the same method.  

In the first 16 cycles, the data of block index 1 to 4 are transposed from row 

major order to column major order with the transpose buffer, and store them in 

the local SRAM buffer to wait for vertical filtering. Then we start horizontal 

filtering over the vertical edge 0 as shown in Fig. 16 (a) with data of block 5 and 6. 

The data of block 5 is from external memory via input port and shifted into to 4x4 

shift register after four cycles. After that, the data of block 6 from input port, and 

data of block 5 from 4x4 shift register is loaded to perform the horizontal filtering 

as shown in Fig. 20 (a). The filtered data of block 5 is sent to output port, and the 

data of block 6 after first time filtering is sent to 4x4 shift register.  So the data in 

4x4 shift register can be used to perform the next horizontal filtering again. 

Next we start horizontal filtering over vertical edge 1 with data of block 6 

and 7. In this phase, filter input is from 4x4 shift register (block 6), and from 

external memory (block 7) via input port as shown in Fig. 20 (b). The filtered data 

of block 6 is then transposed to column major order by transpose buffer after the 

data is being filtered two times, and the data of block 7 after first time filtering is 

sent to 4x4 shift register. 

The data of block 1 and block 6 are both ready to perform vertical filtering 

over horizontal edge 2 in column major order now. In this phase, filter input is 

from local SRAM buffer (block 1), and from 4x4 transpose register (block 6) as 

shown in Fig. 20 (c). The data of block 6 after filtering is sent to local SRAM 
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buffer to wait for filtering next vertical edge, and the data of block 1 is transposed 

again and output in row major order in the next four cycles. The remaining edges 

is processed using the same data flow mentioned above. 

Same as version 1, this design use parallel-in parallel-out style (32-bits, 

processing 4-pixels concurrently). The deblocking filter part implements the 

required function as specified by the H.264/AVC standard. The 16x32bits SRAM 

buffers four 4x4 block pixels to be processed, as described in the previous Section. 

The register array is for transposing operation during the 2-D deblocking filtering. 

 

3.2.2.3. Memory Organization 

In the proposed data flow, the deblocking operation uses horizontal-vertical 

interleaved scheduling. However, to support such the interleaved operation, the 

corresponding architecture shall transpose the 4x4 block immediately when 

changing the filtering edges. The corresponding data path consists of a 4x4 shift 

buffer and a 4x4 transpose buffer. We assume that the SRAM module is an 

ordinary one which has one 32bits read port and one 32bits write port. With this, 

we can transpose the data of 4x4 blocks to support both horizontal filtering and 

vertical filtering on a parallel-in parallel-out deblocking filter seamlessly. 

 

 

Fig. 19 Organization of on-chip 1R/1W port SRAM 
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The on-chip buffer first stores blk1 to blk4. Fig. 7 shows its data 

organization, where m is an integer number from 0, the number in the block 

denotes the block index and each block stores one 4x4 block data. Then the same 

address location will be overwritten by new data from blk6 to blk9, respectively. 

This will be repeated for each row of 4x4 blocks. Since data is in-place 

overwritten after reading out, no read-write conflict will occur.  

3.2.2.4. Processing Schedule 

  Assume input data are four pixels (32bits) per clock cycle, it requires 16+ 

(36+4)x4+16=192 cycles to process a luma macroblock without overlapping the 

data flow. Among them, 16 cycles to input data of block 1 to 4 from external 

memory to on-chip memory before starting processing the data, 36 cycles to 

process edge 8m to 8m+7, 4 cycles to shift block 8m+7 from 4x4 shift buffer to 

4x4 transpose buffer, and 16cycles to output data of block 21 to 24 from on-chip 

memory to external memory, where m is an integer number from 0.  For two 

chroma macroblocks, (8+(20+4)x2+8)x2=128 cycles is required. Thus the 

processing capability is 320 cycles per macroblock. 

For a more efficient processing schedule, we can save four cycles by 

overlapping the data loading cycles of block 5(m+1) from the external memory 

and data shifting cycles of block 5m+4 from 4x4 shift buffer to 4x4 transpose 

buffer before processing horizontal edge 8m+7.  
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Fig. 20. Data flow of deblocking filter (a) processing the left vertical edges, (b) 

processing vertical edges, and (c) processing horizontal edges.  
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For example, it takes four cycles to shift the data of block 9 to 4x4 transpose 

register. At the same time, we can move the data of block10 from external 

memory to 4x4 shift register. With this strategy, the total cycle count is reduced to 

300 cycles for one macroblock 

3.3. Implementation and Comparison  

To evaluate the accuracy and the efficiency of the proposed architecture, the 

proposed architectures are designed by Verilog and implemented by TSMC 

0.18µm CMOS technology. The resulting hardware of Version 1 can achieve 

real-time 2Kx1K (2048x1024) 30Hz video at 82.58 MHz. The gate count is only 

9.16K when synthesized at 100MHz, excluding the memory cost. The resulting 

hardware of version 2 can achieve real-time 2Kx1K (2048x1024) 30Hz video at 

73.73 MHz. The gate count is only 13.41K when synthesized at 100MHz, 

excluding the memory cost. 

Table 2 lists the area cost comparisons with other approaches. Table 3 shows 

the processing capability comparison. Table 4 shows the comparison of memory 

size. From the comparison results, the proposed architecture has the advantages of 

both smaller area cost and cycle count because of high data reusability.  

Table 2. Comparison of cost synthesized at 100MHz. (excluding memory cost). 

Design Gate count 

Version 1 (with single port SRAM) 9.16K 

Version 2 (with 1R/1W port SRAM) 13.41K 

[4] Basic type (with single port SRAM) 18.91K 

[4] Advanced type (with dual port SRAM) 18.91K 

[4] Basic type (with two port SRAM) 18.91K 

[4] Dual arrays type (with two port SRAM) 20.66K 
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Table 3. Comparison of memory size 

Design Version 1 Version 2 [4] 
Memory size 80x32bits 16x32bits 160x32bits 

 

Table 4. Comparison of processing capability 

Design Cycle 
/MB 

CIF 
(352X288) 

2Kx1K 
(2048X1024) 

Version 1 
(single port SRAM) 

336 3.99MHz 82.58MHz 

Version 2 
(1R/1W port SRAM) 

300 3.56MHz 73.73MHz 

[11] Basic type 
(single port SRAM) 

878 10.43MHz 215.78MHz 

[11] Advanced type 
(dual port SRAM) 

814 9.67 MHz 200.05MHz 

[11] Basic type 
(two port SRAM) 

782 9.29 MHz 192.18MHz 

[11] Dual arrays type 
(two port SRAM) 

614 7.29 MHz 150.90MHz 

3.4. Summary of Proposed Architectures 

In this chapter, we contribute two high data reuse deblocking processing flow 

and its corresponding VLSI architecture for deblocking filter in H.264/AVC. By 

rearranging the data flow we can achieve high data reusability. Version 1 has very 

simple data flow, and a simple controller.  In version 2 the major idea is to filter 

a vertical edge immediately followed by the filtering of a horizontal edge for a 

4x4 block instead of whole macroblock. With a 4x4 transpose buffer, the 

aforementioned interleaved vertical and horizontal deblocking filtering can be 

easily realized. Thus, the processing capability of the proposed architecture can 

operate at high utilization and small memory size.  
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Chapter 4 Fast 4x4 Intra Prediction Algorithm 

for H.264/AVC 

Different from AC/DC prediction in MPEG-4, H.264/AVC adopts a new tool 

called intra prediction for intra frame coding. Intra prediction uses the directional 

spatial information to predict the sample to be encoded. However, intra prediction 

is also computational intensive besides the motion estimation in the coding loop. 

Direct approach for intra prediction use the full search that exhaustedly searches 

all possible modes and is adopted in the reference software. Although full search 

can achieve optimal prediction mode selection, it is computationally expensive. 

Besides, intra prediction is computed for intra-frame as well as inter-frame to 

determine the block type. It is thus highly desirable to develop fast 

intra-prediction mode selection. 

In this chapter a fast algorithm for H.264 4x4 intra prediction is proposed. To 

determine the prediction mode, only six modes is required instead of nine modes 

in the full search method. The fast intra prediction algorithm can save 33% 

computational complexity with only about 1% bit-rate loss. Besides, the decision 

method is very simple. 

4.1. Fundamental of H.264/AVC 4x4 Intra Prediction 

There are 9 kinds of intra prediction modes for 4x4 intra blocks as shown in 

Fig. 21. A prediction mode is a way to generate 16 predictive pixel values (named 

a to p) using some or all of the neighboring pixels A to M as shown in Fig. 22. 

The pixels A to M are from the neighboring reconstructed blocks. 
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Fig. 21. Direction of 9 4x4 intra prediction modes in H.264 

 

Fig. 22. A 4x4 block and its neighboring pixels 

 

 

 

Fig. 23. 9 mode of 4x4 intra prediction 
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Fig. 24. Adjacent block of current 4x4 block 

Fig. 23 shows the nine prediction modes designed in a directional manner. 

Mode 2 is called DC prediction in which all pixels (a to p) are predicted by 

(A+B+C+D+I+J+K+L)/8. Mode 0 is the vertical prediction mode in which pixels 

a, e, i, and m are predicted by A. Mode 1 is the horizontal prediction mode in 

which pixels a, b, c, and d are predicted by I. The other modes are similar except 

that the directions are different.  

In addition to the 9 modes of 4x4 intra prediction, the correlation between 

spatially adjacent blocks is also exploited to encode the prediction mode 

efficiently. In Fig. 24, A and B are the up and left encoded 4x4 blocks near 

current block C. The probability of the 9 modes being the optimal intra prediction 

mode for C is different depending on the prediction modes of the top block A and 

left block B. A probability list is generated by Joint Video Team for each 

combination of the modes of A and B. Rather than sending the selected mode 

number, the position of the selected mode in the probability list is sent. Thus, the 

coding efficiency of intra prediction can be further improved. 

In the reference software [13], a full search (FS) approach is used to examine 

all the 9 modes exhaustively to find the one with the smallest cost.  

The main steps are: 

1. Generate a 4x4 predicted block according to a mode 
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2. Calculate sum of absolute difference (SAD when using Hadamard is off) 

or sum of absolute transformed difference (SATD when using Hadamard is 

on) between the original 4x4 block and the predicted block 

3. Compute Cost of the mode  

  Cost = Cost_of_Mode + SAD (or SATD when using Hadamard is on) 

4. Repeat 1 to 3 for all the 9 modes, and choose the one that has the 

minimum cost. 

   Since each 4x4 block will go through these steps, the computation load is 

quite large and becomes one of computational bottleneck. 

4.2. Review of Previous Approaches 

Some approaches have been proposed on fast intra prediction algorithm 

[14][15][16]. In [3][4], they proposed a threshold to early terminate the 

computation of the most probable mode. If the cost of most probable mode is 

larger than the threshold, the quartet cost of remaining 8 modes is computed. The 

mode with minimum quartet cost is chosen among 8. Thus, the required 

computation cost varies with the contents of video. Besides, their algorithm still 

needs to determine a threshold, which could affect its efficiency severely.  

In [16], it assumes high correlation between the edge direction and intra 

mode, and thus adopts the edge direction to predict the possible mode. However, 

the assumption of edge direction is not always true. Due to above drawbacks, 

these previous approaches increase the bit-rate significantly with PSNR loss. For 

example, approach in [16] increases bit- rate by 4.0% with 0.27dB PSNR loss in 

all I-frame condition. 
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4.3. Fast Three Step Intra Prediction Algorithm 

In this chapter, a three step algorithm of intra prediction for intra 4x4 blocks is 

presented. The modes needed to be examined are constant 6 modes rather than 

variable number of modes as in the previous approaches.  

From our observation, we find the SAD of the modes at the neighborhood of 

the optimal mode is also small. It means that we can skip some mode after initial 

search to save computation power. After initial search of some modes, we can 

examine the two modes neighboring to the selected mode in the first step. In the 

last step, extra one mode is refined to improve the prediction precision. 

Fig. 25 shows a flow chart of the algorithm. We first start from the horizontal 

(mode 1) and vertical (mode 0) and DC mode (mode 2) since these modes occur 

in the high probability. Then in the second step, we select the neighboring 22.5 

degree modes (mode 5 and 7 for vertical direction, or mode 6 and 8 for horizontal 

direction) based on the smaller one of horizontal or vertical mode. In the third 

step, we refine the search further by considering the remaining neighbor mode 

(mode 3 or 4). We compare the best mode from the step 1 and 2 and the 

neighboring mode of the best one from step 2 (mode 3 or 4), and choose the best 

one as our final decision.  

In the algorithm, three modes are initially compared in step1. In step 2, two of 

neighboring modes are examined to determine the refined direction. And in the 

last step, cost of the refine mode is calculated, and the one of the three modes are 

compared to make the final decision. So there are constant six modes to be 

examined by this algorithm. 
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Fig. 25. Flow chart of three step intra algorithm 

4.4. Simulation Result and Discussion 

The proposed three step algorithm and the full search are simulated on five 

CIF sequences, mobile and calendar, foreman, Stefan, news, and coastguard. For 

each sequence, 300 frames are encoded with intra frame coding. We simulate 

these sequences with 5 different fixed QP values, from 12 to 44 as shown in Table 

5 to Table 8. RD-curve is shown in the Fig. 7 to Fig. 11.  

From the result, we can find that bit-rate is increased about 1% with almost 

the same PSNR. We can also find bit-rate increase is step up when QP is from 

low to high. But when QP is high, the bit-rate increase is reduced. The 

phenomenon may relate to the Intra16 mode, an intra prediction mode for 16x16 

blocks. In the high QP case, the opportunity to select Intra16 will also increases 

since Intra16 mode decision is also using full search algorithm.  
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For high motion and low motion test sequence, the result in bit-rate increase 

is almost the same. It is because that picture is intra coded without using 

information of other frames. The comparison with [16] is shown in Table 5 to 

Table 8 with four different QP values, from 28 to 40. The proposed algorithm 

outperforms the previous approach. 

Table 5. QP = 28, Comparison results 

Sequence

CHG 

BIT 

(%) 

[16] 

CHG 

BIT 

(%) 

Ours 

CHG 

PSNR 

(dB) 

[16] 

CHG 

PSNR 

(dB) 

Ours 

CHG 

T_I 

(%) 

Ours 

CHG 

T_AVG 

(%) 

Ours 

Container 1.80 0.79 0.039 -0.01 -32.34 -16.03 

News 2.56 1.09 0.045 -0.02 -31.05 -15.92 

Paris 1.60 0.93 0.043 -0.01 -31.91 -16.62 

Tempete 1.58 0.79 0.091 -0.01 -31.33 -16.22 

 

Table 6. QP = 32, Comparison results 

Sequence

CHG 

BIT 

(%) 

[16] 

CHG 

BIT 

(%) 

Ours 

CHG 

PSNR

(dB) 

[16] 

CHG 

PSNR 

(dB) 

Ours 

CHG 

T_I 

(%) 

Ours 

CHG 

T_AVG 

(%) 

Ours 

Container 2.64 1.02 0.044 -0.01 -32.94 -16.46 

News 3.09 1.30 0.031 -0.02 -31.11 -15.50 

Paris 2.43 1.16 0.032 -0.01 -30.29 -15.54 

Tempete 2.32 0.96 0.065 -0.01 -31.43 -16.25 
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Table 7. QP = 36, Comparison results 

Sequence 

CHG 

BIT 

(%) 

[16] 

CHG 

BIT 

(%) 

Ours 

CHG 

PSNR

(dB) 

[16] 

CHG 

PSNR

(dB) 

Ours 

CHG 

T_I 

(%) 

Ours 

CHG 

T_AVG 

(%) 

Ours 

Container 4.06 1.21 0.005 -0.02 -32.82 -16.46 

News 4.26 1.20 0.000 -0.02 -31.41 -15.29 

Paris 3.25 1.21 0.013 -0.01 -30.45 -15.46 

Tempete 3.11 1.00 0.051 -0.02 -31.23 -16.16 

 

Table 8. QP = 40, Comparison results 

Sequence 

CHG 

BIT 

(%) 

[16] 

CHG 

BIT 

(%) 

Ours 

CHG 

PSNR

(dB) 

[16] 

CHG 

PSNR

(dB) 

Ours 

CHG 

T_I 

(%) 

Ours 

CHG 

T_AVG 

(%) 

Ours 

Container 5.18 1.00 0.001 -0.03 -32.75 -16.21 

News 5.31 1.38 0.006 -0.03 -31.64 -15.16 

Paris 4.91 1.58 0.003 -0.04 -30.39 -15.23 

Tempete 3.67 0.78 0.024 -0.03 -31.17 -16.09 

 

CHG BIT: change in bit-rate 

CHG PSNR: change in PSNR 

CHG T_I: change in intra encoding time 

CHG T_AVG: change in average encoding time 
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Fig. 26. RD-curve of mobile & calendar 

 

25

30

35

40

45

50

0 4000 8000 12000
bit-rate

P
S
N
R FS

TSS

 

 Fig. 27. RD-curve of foreman 
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Fig. 28. RD-curve of Stefan 
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Fig. 29. RD-cure of news 
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Fig. 30. RD-curve of coastguard 

 

4.5. Summary of Proposed Intra Prediction Algorithm 

We propose a three step intra prediction mode selection algorithm. 

Computation reduction is achieved by examining only six of total intra prediction 

modes. Simulation results suggest that three step algorithm can achieve similar 

PSNR as full search and only about 1% of increase on bit-rate.  
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Chapter 5 Architecture Design for H.264/AVC 

Intra Coding 

H.264/AVC is regarded as the next generation video compression standard. 

Though original standard targeted to video applications, the high compression 

performance of intra-only coding also makes it suitable for still image coding, 

which is competitive with JPEG2000 [17].  

In this chapter, an HDTV size H.264/AVC intra encoder chip for digital 

camera and digital video applications is presented. The chip reduces the gate 

count by saving the costly plane mode and enhances the video quality with the 

improved cost function. With careful scheduling and high performance function 

unit, the developed chip can easily support 29.46M pixels/s still image encoding 

and real-time moving picture intra coding of HDTV 720p@30fps video 

application when clocked at 117.28MHz under 0.18um CMOS process.  

 

 

Fig. 31. Flow of H.264/AVC intra coding 
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5.1. Fundamental of H.264/AVC Intra Coding 

The Intra coding flow of H.264/AVC is shown in  

Fig. 31. This macroblock data will be predicted from one of nine kinds of 4x4 

luma prediction modes, four kinds of 16x16 luma prediction mode, and four kinds 

of 8x8 chroma prediction mode. Then the prediction mode with the minimum cost 

value is selected as the best mode. The residuals after the prediction are further 

processed by transform, Q/IQ, inverse transform, and reconstructed as reference 

of next macroblock. The coefficients after quantization and mode information are 

encoded by entropy coding, CAVLC and UVLC. 

 

 

 

Fig. 32. Modes of Intra4x4 

 

Fig. 33. Modes of Intra16x16.  
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Fig. 34. Modes of chroma8x8. 

5.1.1. Intra Prediction Mode 

There are three classes of intra prediction modes. They are Intra4x4, 

Intra16x16 for luma sample prediction, and chroma8x8 for chroma samples 

prediction. Different form AC/DC prediction of MPEG-4, H.264/AVC use 

directional spatial information of neighbor already coded blocks to predict current 

sample values. Fig. 32 shows the modes of Intra4x4. Eight directional modes and 

one DC prediction are adopted. Fig. 33 shows the modes of Intra16x16 used for 

smooth texture. Intra4x4 is more suitable for high quality application while 

intra16x16 is suitable for low bitrate application. Fig. 34 shows the mode of 

chroma8x8. The mode of chroma8x8 is the same as Intra16x16 only with 

different mode number. 

5.2. Hardware Oriented Algorithm Modification 

5.2.1. Proposed Mode Decision Method 

In the intra encoding flow, the mode decision method is the most important 

part to determine the coding performance. Two mode decision methods are used 

in the reference software. One is basic mode decision method and the other is 

rd-optimization (RDO) mode decision method.  

Basic mode decision method calculates cost using table look up mode cost 
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and sum of absolute transform difference (SATD). RDO mode decision method 

use weighted sum of actual encoded bitrate and reconstructed samples to generate 

distortion. Though RDO mode decision method achieves the best performance, it 

is also computational intensive and thus is not suitable for high performance or 

real-time encoder implementation. Therefore, our intra encoder adopts the basic 

method to implement the mode decision stage as shown below 

Basic cost generation function： 

Cost = Cost_of_Mode + SATD  

 In the reference software, SATD is calculated by applying 4x4 discrete 

Hadamard transform (DHT) to the residuals of prediction modes due to its 

simplicity. However, since the residuals are processed by 4x4 discrete cosine 

transform (DCT) in the encoding flow, a 4x4 DCT transform for SATD will 

generate better results than DHT does, which has the side benefit to avoid 

computing the 4x4 DCT again. 

 However, 4x4 DCT in H.264/AVC is divided into two parts, 4x4 integer 

transform and scalar multiplication factors (the one with factors a, b) that are 

merged into the quantization stage, as shown in Fig. 35. The reference software 

adopts DHT simply for its simplicity to approximate the 4x4 integer transform. A 

better way for SATD calculation is to approximate the 4x4 DCT, but this should 

have low computational complexity as DHT does. 

 

Fig. 35. 4X4 DCT transform of H.264/AVC 
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Fig. 36. quant_coef table of quantization 

 

Fig. 37. dequant_coef table of inverse quantization. 

First, we look at the equation of quantization and inverse quantization 

Quantization 

– L=(abs(M) * quant_coef + qp_const) >> q_bits 

Inverse quantization 

– L*dequant_coef<<qp_per 

qp_per, q_bits and qp_const are derived from quantization parameter 

Quantization is calculated by using a table look up constant multiplication 

and an offset derived from quantization parameter. Inverse quantization is 

calculated only by a table loop up constant multiplication. We use the 

quantization factors, quant_coef, shown in Fig. 36 or inverse quantization factor, 

dequant_coef, shown in Fig. 37 to derive the scaling factors.  

– 1/quant_coef:  [0][0]:[0][1]:[1][1]~=30:19:12 

– 1/dequant_coef: [0][0]:[0][1]:[1][1]~=32:25:20 
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Fig. 38. Modified SATD calculation method 

Fig. 38 shows our modified method of SATD calculation. In our simulation, 

the scalar factors derived from inverse quantization is better than factors from 

quantization. The reason is that quantization process is also affected by an offset 

qp_const. The result of modified mode decision method is better than the 

reference software.  

5.2.2. Intra Prediction Mode 

In H.264/AVC Intra coding, intra prediction and mode decision are the two 

computation extensive components. All prediction modes are examined to find 

the best mode. Parallel architecture are demanded to accelerate these components. 

After analyzing the type of intra prediction modes, we can separate the modes into 

four types as shown in Fig. 39. In the bypass type, prediction samples are the 

same as boundary pixels. In the linear types, prediction samples are linear 

interpolation derived from boundary pixels. In the average type, prediction 

samples are average of all boundary pixels. In the plane type, prediction samples 

are approximation of bilinear transform with only integer arithmetic as shown in 

Fig. 40. The equation of Plane mode is more complex than other modes and is 

hard to reuse with other mode.  

However, by simulation we found that intra prediction with plane prediction 

mode only reduces about 1% of bit-rate than that without plane mode. This 1% of 

bit-rate difference can be easily compensated by the enhanced cost function and 

achieves almost the same result with the basic method in reference software 
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Fig. 39 Four types of intra prediction modes 

 

Fig. 40. Equations of plane mode prediction 
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The simulation result is shown from Fig. 41 to Fig. 48. Thus, we decide to 

implement the intra coding without plane prediction mode based on the cost and 

performance trade-off. 
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Fig. 41. RD curve of Akiyo 
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Fig. 42. RD curve of Foreman 
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Fig. 43. RD curve of container 
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Fig. 44. RD curve of stefan 
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Fig. 45. RD curve of football 
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Fig. 46. RD curve of mobile and calendar 
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Fig. 47. RD curve of tempete 
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Fig. 48. RD curve of news 
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Fig. 49 Architecture of Intra Coding 

5.3. Architecture Design of H.264/AVC Intra Coding 

5.3.1. System Architecture Design 

Fig. 49 shows the intra encoding architecture, which is directly 

corresponding to the coding flow shown in Fig. 31. The architecture consists of 

the intra prediction unit, transform unit, quantization unit and CAVLC unit. First, 

the intra prediction unit will generate the prediction value for the current block. 

Then for each possible mode, the residual pixels after prediction are transformed 

by 4x4 integer transform or DHT (DC value of Intra16x16 or Chroma8x8). These 

transform coefficients are further used to compute the cost function to determine 

the best by the proposed cost function. The intra4x4 block with lower cost is 

preserved in the buffer. After best intra4x4 block is obtained, it will go through 

the reconstruction path to generate the required boundary samples for the next 4x4 

block. The data after quantization and mode information will be coded by 

CAVLC and UVLC, respectively. 
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In the intra encoder implementation, the major bottleneck is the feedback 

loop in the reconstruction path since the next 4x4 block cannot start its 

computation until its boundary samples are reconstructed from previous blocks. 

Thus, three scheduling techniques are proposed to accelerate this data dependency 

problem. 

1. Insertion of intra16x16 prediction: During the empty bubble cycles of 

intra4x4 block reconstruction, intra16x16 prediction process is inserted 

into these bubble cycles of intra predictor generation unit to 

pre-compute the Intra16 cost. Thus, the utilization of intra predictor is 

improved. 

2. Early start of next 4x4 block prediction: before the boundary samples 

are available, the prediction mode using upper samples (vertical 

prediction mode) can be early started before other modes. 

3. Intra16x16 DC value pre-computing: In the H.264/AVC standard, the 

sixteen DC coefficients from the Intra16x16 mode have to be 

transformed again by DHT. Thus, for the reconstruction, inverse DCT 

of other AC coefficients cannot be started before inverse DHT, and 

this situation will result in a macroblock size buffer to store the AC 

coefficient of sixteen 4x4 blocks. Using the intra16x16 prediction 

insertion mentioned in technique 1, the best intra16x16 DC value after 

DHT is pre-computed from the Q/IQ stage to the DC registers of 

IDCT/IDHT stage. Not only a macroblock size buffer is saved but also 

the overall computation cycles are reduced. 
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5.3.2. Intra Predictor Generation Unit 

A reconfigurable 4 pixels parallel intra predictor generation unit is proposed. 

It can support nine kinds of Intra 4x4 modes, three kinds of Intra16x16 modes, 

and three kinds of Chroma8x8 modes. After analyzing the prediction mode, we 

can find that prediction samples are derived from boundary pixels using four 

types of arithmetic equation: 

1. (A+B+1)>>1 

2. (A+2B+C+2)>>2 

3. Bypass (for Vertical, Horizontal mode) 

4. DC (Intra4x4: average of 8 pixels, Intra16x16: average of 32 pixels) 

(A, B and C are reconstructed boundary pixels) 

Fig. 50 shows the proposed reconfigurable architecture of intra predictor 

generation unit. The architecture reuse the partial sum of neighbor predictor to 

save the adder count.  

For example：Intra4x4 

Predictor1 = B+2C+D = (B+C)+(C+D) 

Predictor2 = A+2B+C = (A+B)+(B+C) 

Thus, B+C can be reused to generate two predictor output 

Some examples are shown in Fig. 51 to Fig. 55. 
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Fig. 50. Reconfigurable data path of intra predictor generation unit 

 

Fig. 51. Data path of diagonal down right 

 



 53

 
Fig. 52. Data path of vertical right 

 
Fig. 53. Data path of horizontal down mode 
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Fig. 54. Data path of DC prediction mode 

 

Fig. 55. Data path of horizontal mode 



 55

 

Fig. 56. Coding order of residual blocks 

5.3.3. Transform Unit 

In H.264/AVC, residual macroblock is divided in 16 4x4 luma blocks and 8 

4x4 blocks as shown in Fig. 56. All the 4x4 blocks will be transformed with 

integer coefficient. If the intra prediction mode is Intra16x16, the DC value of 16 

luma blocks will be transformed again by 4x4 discrete Hadamard transform. The 

2x2 DC values of chroma blocks after DCT will also be transformed by 2x2 DHT.  

 Transform matrix of DCT, IDCT, and Hadamard transform is shown in Fig. 

57 to Fig. 59. We can find the coefficients of the transform matrixes are even or 

odd symmetry at each row or column and can be implemented by add and shift. 

The number of addition in each 1D transform can be reduced from 16 to 8 with 

butterflies. Fast algorithm and its butterfly structure are shown in Fig. 60. Because 

two forward transforms have the same structure and will not operate at the same 

time in our system architecture. We can merge them together to save area. Inverse 

transform of DCT and DHT are merged by the same method as the forward 

methods. The transform unit handles uses the similar architecture as in [18]. Fig. 

61 shows the hardware architecture of transform unit. 
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Fig. 57. Transform matrix of 4x4 DCT transform 
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Fig. 58. Transform matrix of 4x4 IDCT transform 
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Fig. 59. Transform matrix of Hadamard transform 

 

Fig. 60. Fast algorithms of 4x4 transform 



 57

 

Fig. 61. Hardware architecture of transform unit 

5.3.4. Quantization Unit 

The quantization and inverse quantization unit are shown in Fig. 62. The 

constant value of quant_coef, dequant_coef, qp_const, qp_shift, and qp_per are 

implemented by look-up table depending on the QP values. The design also uses 

the data guarding technique to reduce power consumption when input value is 

zero. 

 

Fig. 62. Hardware architecture of quantization unit 
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5.3.5. Mode Decision Unit 

Fig. 63 shows the hardware architecture of mode decision unit. The 

transformed coefficient is accumulated by mode decision unit. The scaling 

operations are implemented by shift and add. If the cost of current mode is small 

than best mode, the cost and mode value of best mode register will be refreshed. 

After processing whole macroblock, the mode with minimum cost will be selected 

as the best intra prediction mode.  

 
Fig. 63. Hardware architecture of mode decision unit 

 
Fig. 64. CAVLC architecture 
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5.3.6. CAVLC Unit 

The architecture of CAVLC is shown in Fig. 64. CAVLC encoding process 

can be divided into two phases, scanning phase and encoding phase. Input of 

CAVLC is four transformed coefficients per cycle. The scanning phase will skip 

the zero coefficients and only scans the nonzero one in the inverse zigzag scan 

order to speedup the encoding phase. Then, the data are sent to the corresponding 

lookup tables in parallel. These codes are buffered and concatenated to form the 

final bitstream.  

 

Fig. 65. Memory Organization 

5.3.7. Memory Organization 

In the proposed architecture, two components have memories. The 

organizations of memories are shown in Fig. 65. Source buffer stores the input 

data 4 pixels row by row. Coefficient Buffer is divided into two parts to facilitate 

DC value access in Intra16x16 mode. By using Ping-Pong architecture, data input 

phase and entropy coding phase can be pipelined to improve the encoding 

throughput. 
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5.3.8. Overall Architecture Performance 

Fig. 66 shows the timing schedule of proposed intra coder. Intra16x16 

prediction mode is inserted in the Intra4x4 reconstruction cycle.  If Intra16x16 is 

selected as best prediction mode, the quantization coefficient will be recomputed 

again to replace the data in ping-pong buffer.  

1086 cycles are spent for pipelined architecture as shown in Fig. 67. The 

performance of proposed architecture only needs about 117.28MHz to meet 

HDTV 720p (1280x720@30Hz) real-time application. 

 

 

Fig. 66. Timing schedule of proposed intra coder. 

 
Fig. 67. Timing schedule of proposed architecture 
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5.4. Implementation Results  

To evaluate the accuracy and the efficiency of the proposed architecture, the 

design is implemented using the UMC 0.18µm 1P6M CMOS technology and the 

cell-based design flow. The chip has an area of 2.4x2.4 mm2 (pad limited) as 

shown in Fig. 68. The design can achieve 125 MHz at the worst-case. Thus, it can 

easily support 29.46M pixels/s still image encoding and real-time moving picture 

intra coding of HDTV 720p@30fps video application when clocked at 

117.28MHz. Therefore, it is suitable for digital video or camera applications. 

 

Table 9. List of gate count 

Intra Predictor 3507 

Q/IQ 22082 

DCT(with DC register) 9985 

IDCT(with DC register) 9836 

Boundary Reconstruction Unit 15697 

Cost Generation and Mode Decision Unit 10315 

UVLC/CAVLC 11965 

Controller 2781 

Boundary Predictor Buffer 6465 

Total 92633 
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Technology: UMC 0.18 µm 1P6M CMOS 

Voltage: 
1.8 V (Core) 

3.3 V (I/O) 

Die Size: 2.4×2.4 mm2 

Core size: 1.28x1.28mm 

SRAM: (all single port)  

Coefficient buffer 

Source buffer 

 

104 x 64 bits x 2 banks 

96 x 32 bits x 1 bank 

Fig. 68 Chip specification 
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Chapter 6 Conclusion 

In this thesis, our contribution is in three parts. The first contribution is the 

deblocking filter architecture that can accelerate the deblocking process. The 

proposed two architectures not only save the memory size but also have higher 

speed. The idea is to rearrange the data flow and achieve higher data reusability. 

The second contribution is the fast intra coding algorithm can reduce the 

computational complexity of intra 4x4 prediction. Six modes are required instead 

of nine modes in the full search method. The fast intra prediction algorithm can 

save 33% computational complexity with only about 1% bit-rate loss. The final 

contribution is the intra coding architecture can speed up the computation of intra 

frame coding. Proposed cost function has better quality and complex plane mode 

is skipped to save area. The prediction process is well scheduled to achieve high 

utilization. We hope that our research result can promote the convenience of 

human life. 
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