
 i

電子工程學系 電子研究所碩士班

碩 士 論 文

針對H.264/AVC去方塊濾波器及框內編碼之

演算法和架構設計

Algorithm and Architecture Design for H.264/AVC
Deblocking Filter and Intra Coding

研究生： 鄭朝鐘

指導教授： 張添烜 博士

中華民國 九十四 年 六 月

 ii

針對 H.264/AVC 去方塊濾波器及框內編碼之

演算法和架構設計

Algorithm and Architecture Design for H.264/AVC
Deblocking Filter and Intra Coding

研 究 生：鄭朝鐘
指導教授：張添烜 博士

Student: Chao-Chung Cheng
Advisor: Dr. Tian-Sheuan Chang

國 立 交 通 大 學
電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of
Master of Science

in
Electronics Engineering

June 2005
Hsinchu, Taiwan, Republic of China

中華民國 九十四 年 六 月

 iii

針對 H.264/AVC 去方塊濾波器及框內編碼之

演算法和架構設計

研究生: 鄭朝鐘 指導教授: 張添烜 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

數位視訊科技已在我們的日常生活中扮演重要的角色，編碼效能也隨

著技術的演進而提升，H.264/AVC 是目前最新的國際視訊編碼標準，相較

於 MPEG-4、H.263、和 MPEG-2，分別可節省 39%、49%、和 64%的資料

量，但由於其具有相當複雜之編碼技術及模式選擇，使得運算複雜度也遠

高於先前之編碼標準，因此如何設計高效能的運算模組與在不致犧牲

H.264/AVC 之編碼效能之前提下，降低其運算複雜度，為目前相當重要之

課題。本論文中，我們的貢獻主要有三個部分，分別是針對 H.264/AVC 系

統中：方塊濾波器的架構設計、快速框內預測演算法、以及框內編碼器之

架構設計。

 去方塊濾波器是 H.264/AVC 視訊編碼系統中的重要模組，用來減少方

塊視覺效應，以增進影像品質。佔有不可忽視的運算量，本論文中，我們

提出了兩種不同硬體架構，藉由妥善安排資料處理的順序，在不影響輸出

結果的情況下，達到更有效的資料利用率與加速處理的效能，和之前的設

計相比，第一種架構有控制邏輯簡單的優點，大量的減少控制電路的邏輯

閘數目，並減少 50%的內部記憶體，第二種架構則可以減少 90%的內部記

憶體，並達到更快的運算效率。

 iv

 框內預測利用空間中資料數值的相關性，用來預測將被編碼的資料數

值，是 H.264/AVC 視訊編碼系統中框內編碼的重要利器，在本論文中，我

們針對 H.264/AVC 框內預測提出一個簡單的三步驟演算法，利用各預測模

式的方向關係，省略出現機率較低之模式的運算，而整個過程，只固定需要

運算六個模式，而不像全域搜尋演算法需要找九種模式。和全域搜尋法相

比，約可節省約 33%的框內預測運算量，而只損失約 1%左右的位元率。

 最後，我們提出 H.264/AVC 框內編碼器的硬體演算法及其架構，所提

出的硬體演算法省去複雜的平面預測模式，減少佔整體面積最大的框內預

測模組，且藉由改善的代價函數來增進壓縮的效能。配合高效能的硬體架

構和運算流程，可以 117.28MHz 下，進行即時的 HDTV(1280x720) 30fps

編碼。

 簡而言之，我們對 H.264/AVC 視訊編解碼系統的貢獻主要有三個部

分。我們提出的去方塊濾波器架構可以更有效率的加速去方塊處理；快速

框內預測演算法可以有效減少預測所需的運算量；我們所提出的框內編碼

架構可以加快框內編碼的速度。

 v

Algorithm and Architecture Design for H.264/AVC
Deblocking Filter and Intra Coding

Student: Chao-Chung Cheng Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

 National Chiao Tung University

Abstract

 Digital video technology has played an important role in our daily life.

With the evolution of video technology coding efficiency has been greatly

improved. H.264/AVC is the latest international video coding standard that can

save 39%, 49%, and 64% of bit-rates in comparison with MPEG-4, H.263, and

MPEG-2, respectively. However, this efficiency comes with the cost of much

higher computational complexity than previous standards due to the complex

coding approaches and mode decision techniques. Thus, how to design high

performance functional units and reduce computational complexity without too

much degradation in coding efficiency are very important topics. In this thesis,

we have three contributions for the H.264/AVC design, architecture design of

the deblocking filter, a fast intra prediction algorithm, and an architecture

design of intra coding in H.264/AVC.

Deblocking filter is an important component of H.264/AVC to reduce the

blocking effect and to improve the video quality. It is both computational and

memory extensive. In this thesis, two different architecture of deblocking filter

are proposed. The computing flow is reordered for efficient data reusability and

high throughput while maintain standard compatibility. In the first version, gate

count is greatly reduced by simple control unit, and internal memory is also

reduced to 50% of that in the previous design. In the second version, the

proposed architecture can reduce 90% of internal memory and achieve higher

throughput than others.

 vi

Intra prediction, which uses the information of spatial correlation to

prediction the data to be encoded, is an important tool of intra frame coding. In

this thesis, we propose a simple fast three step algorithm. The algorithm uses

the directional relationship of prediction modes to skip the modes with less

probability. Thus, the proposed algorithm can complete the 4x4 intra prediction

by only examining six modes instead of nine modes in the full search algorithm.

The simulation result shows that the proposed algorithm can maintain similar

PSNR quality to that in the full search algorithm with 33% of computation

reduction of intra prediction process and only 1% of bit-rate increase.

Finally, a hardware oriented algorithm of intra coding and its architecture

are proposed. We save the complex and hardware costly plane mode, which

occupies the biggest area in the intra prediction unit in the intra coding and

improve the coding efficiency with the enhanced cost function. With well

designed high performance functional unit and computing schedule, the

proposed architecture can easily support real-time intra coding of HDTV

1280x720@30fps video application when clocked at 117.28MHz.

In brief, our contribution to H.264/AVC video coding system is in three

parts. The first contribution to the deblocking filter architecture can accelerate

the deblocking process. The second contribution to the fast intra coding

algorithm can reduce the computational complexity of intra prediction. The

final contribution to the intra coding architecture can speed up the computation

of intra frame coding.

 vii

誌 謝

首先，要感謝我的指導教授－張添烜博士，這一年多來給我支持和鼓

勵，讓我在研究上能自由的發揮，每當我有困難或疑問時，總會抽空和我

詳談，以鼓勵的態度支持我的想法，感激之情，非短短文句可以表達。

也要謝謝我的口試委員們，工研院任建葳主任，交大電子李鎮宜系主

任，交大資工蔡淳仁教授，感謝你們百忙中抽空來指導我，因為你們寶貴

的意見讓我的論文更加完備。

接著要感謝 VSP 實驗室的好伙伴們。謝謝引我入門的李坤儐學長，教

導不少經驗的張彥中學長、許惠錚學姐與林昕儀學姐，你們傳給我許多的

經驗，讓我受用不盡。感謝林佑昆學長、秦浩雲學長與史彥芪同學，參加

SIP 競賽的過程，一起加油打氣，熬夜而建立出的革命情感，也讓我學習

了不少的經驗。感謝海珊學長、陳漢臣學長、楊智喬學長、君偉、旻奇、

裕仁、國亘、錦木、得瑋學弟們，有你們的幫忙，讓我在實驗室的生活都

能順順利利。還有最棒的戰友林亭安，從大四開始，經過不懈的努力，我

們終於在 IC 設計競賽獲得了不錯的成績。所有的一切，都是我在交大寶貴

的回憶。

最後要感謝默默支持我的家人們，我的爸媽、姐姐、妹妹、你們的溫

暖是我努力最大的支柱。

 在此，把這本論文獻給所有愛我與所有我愛的人

 viii

Contents
CHAPTER 1 INTRODUCTION ...1

1.1. MOTIVATION ..1

1.2. THESIS ORGANIZATION ..2

CHAPTER 2 OVERVIEW OF H.264/AVC STANDARD..3

2.1. INTRODUCTION TO H.264/AVC..3

2.2. PROFILE AND LEVEL...7

CHAPTER 3 ARCHITECTURE DESIGN OF DEBLOCKING FILTER IN H.264...........9

3.1. FUNDAMENTAL OF H.264/AVC DEBLOCKING FILTER ...10

3.2. ARCHITECTURE DESIGN OF H.264/AVC DEBLOCKING FILTER13

3.2.1. VERSION 1 ..13

3.2.1.1. SIMPLE DATA FLOW...13

3.2.1.2. HARDWARE ARCHITECTURE...14

3.2.2. VERSION 2 ..18

3.2.2.1. FULL DATA REUSE FLOW...18

3.2.2.2. IN-PLACE DEBLOCKING FILTER ARCHITECTURE...21

3.2.2.3. MEMORY ORGANIZATION...22

3.2.2.4. PROCESSING SCHEDULE ...23

3.3. IMPLEMENTATION AND COMPARISON...25

3.4. SUMMARY OF PROPOSED ARCHITECTURES...26

CHAPTER 4 FAST 4X4 INTRA PREDICTION ALGORITHM FOR H.264/AVC27

4.1. FUNDAMENTAL OF H.264/AVC 4X4 INTRA PREDICTION......................................27

4.2. REVIEW OF PREVIOUS APPROACHES...30

4.3. FAST THREE STEP INTRA PREDICTION ALGORITHM..31

4.4. SIMULATION RESULT AND DISCUSSION..32

 ix

4.5. SUMMARY OF PROPOSED INTRA PREDICTION ALGORITHM37

CHAPTER 5 ARCHITECTURE DESIGN FOR H.264/AVC INTRA CODING...............38

5.1. FUNDAMENTAL OF H.264/AVC INTRA CODING ...39

5.1.1. INTRA PREDICTION MODE...40

5.2. HARDWARE ORIENTED ALGORITHM MODIFICATION ..40

5.2.1. PROPOSED MODE DECISION METHOD...40

5.2.2. INTRA PREDICTION MODE...43

5.3. ARCHITECTURE DESIGN OF H.264/AVC INTRA CODING49

5.3.1. SYSTEM ARCHITECTURE DESIGN ..49

5.3.2. INTRA PREDICTOR GENERATION UNIT ..51

5.3.3. TRANSFORM UNIT...55

5.3.4. QUANTIZATION UNIT ..57

5.3.5. MODE DECISION UNIT ..58

5.3.6. CAVLC UNIT ...59

5.3.7. MEMORY ORGANIZATION ...59

5.3.8. OVERALL ARCHITECTURE PERFORMANCE ..60

5.4. IMPLEMENTATION RESULTS..61

CHAPTER 6 CONCLUSION ..63

BIBLIOGRAPHY..64

 x

List of Tables
Table 1 Parameters for determining boundary strength.................................12

Table 2. Comparison of cost synthesized at 100MHz. (excluding memory cost).

..25

Table 3. Comparison of memory size...26

Table 4. Comparison of processing capability..26

Table 5. QP = 28, Comparison results ..33

Table 6. QP = 32, Comparison results ..33

Table 7. QP = 36, Comparison results ..34

Table 8. QP = 40, Comparison results ..34

Table 9. List of gate count ..61

 xi

List of Figures
Fig. 1 Block diagram of H.264/AVC encoder ... 4

Fig. 2 Block size of motion estimation/compensation 4

Fig. 3 Subjective view comparison of picture with deblocking filter (left) and

without deblocking filter (right). .. 6

Fig. 4 R-D curve comparison of H.264/AVC with MPEG-4, H.263, and

MPEG-2 ... 7

Fig. 5 Profile of H.264/AVC.. 8

Fig. 6 Encoding loop of H.264... 10

Fig. 7. Original processing flow for (a)horizontal filtering, and (b)vertical

filtering ... 12

Fig. 8 Convention for describing samples across two 4x4 block boundary... 12

Fig. 9. Modified processing flow for (a) horizontal filtering, and (b) vertical

filtering ... 14

Fig. 10. Data structure of deblocking filter .. 14

Fig. 11. The proposed deblocking filter architecture. 15

Fig. 12. 4x4 Block index for one macroblock.. 15

Fig. 13 Data path for (a) horizontal filtering and (b) vertical filtering........ 16

Fig. 14 timing diagram of simple data flow deblocking filter 17

Fig. 15. Block index ... 18

Fig. 16. Edge processing order for (a) luma edge, and (b) chroma edge 19

Fig. 17. Overall architecture... 19

Fig. 18. Data path (a) horizontal filtering over vertical edges, and (b) vertical

filtering over horizontal edges.. 20

Fig. 19 Organization of on-chip 1R/1W port SRAM..................................... 22

Fig. 20. Data flow of deblocking filter (a) processing the left vertical edges, (b)

 xii

processing vertical edges, and (c) processing horizontal edges..............24

Fig. 21. Direction of 9 4x4 intra prediction modes in H.264..........................28

Fig. 22. A 4x4 block and its neighboring pixels...28

Fig. 23. 9 mode of 4x4 intra prediction ..28

Fig. 24. Adjacent block of current 4x4 block ...29

Fig. 25. Flow chart of three step intra algorithm ..32

Fig. 26. RD-curve of mobile & calendar ..35

Fig. 27. RD-curve of foreman...35

Fig. 28. RD-curve of Stefan..36

Fig. 29. RD-cure of news..36

Fig. 30. RD-curve of coastguard...37

Fig. 31. Flow of H.264/AVC intra coding..38

Fig. 32. Modes of Intra4x4 ...39

Fig. 33. Modes of Intra16x16. ..39

Fig. 34. Modes of chroma8x8. ..40

Fig. 35. 4X4 DCT transform of H.264/AVC..41

Fig. 36. quant_coef table of quantization ...42

Fig. 37. dequant_coef table of inverse quantization.42

Fig. 38. Modified SATD calculation method ...43

Fig. 39 Four types of intra prediction modes..44

Fig. 40. Equations of plane mode prediction ..44

Fig. 41. RD curve of Akiyo ..45

Fig. 42. RD curve of Foreman ..45

Fig. 43. RD curve of container ...46

Fig. 44. RD curve of stefan...46

Fig. 45. RD curve of football ..47

 xiii

Fig. 46. RD curve of mobile and calendar ... 47

Fig. 47. RD curve of tempete ... 48

Fig. 48. RD curve of news.. 48

Fig. 49 Architecture of Intra Coding.. 49

Fig. 50. Reconfigurable data path of intra predictor generation unit 52

Fig. 51. Data path of diagonal down right.. 52

Fig. 52. Data path of vertical right ... 53

Fig. 53. Data path of horizontal down mode.. 53

Fig. 54. Data path of DC prediction mode ... 54

Fig. 55. Data path of horizontal mode.. 54

Fig. 56. Coding order of residual blocks.. 55

Fig. 57. Transform matrix of 4x4 DCT transform ... 56

Fig. 58. Transform matrix of 4x4 IDCT transform.. 56

Fig. 59. Transform matrix of Hadamard transform.. 56

Fig. 60. Fast algorithms of 4x4 transform.. 56

Fig. 61. Hardware architecture of transform unit... 57

Fig. 62. Hardware architecture of quantization unit....................................... 57

Fig. 63. Hardware architecture of mode decision unit 58

Fig. 64. CAVLC architecture ... 58

Fig. 65. Memory Organization... 59

Fig. 66. Timing schedule of proposed intra coder.. 60

Fig. 67. Timing schedule of proposed architecture.. 60

Fig. 68 Chip specification .. 62

 xiv

 1

Chapter 1 Introduction

The Advanced Video Coding (AVC) is the latest generation standard

developed by a Joint Video Team (JVT) of ISO/IEC and ITU-T[1]. The new

standard outperforms the earlier MPEG-4 and H.263 standards, providing better

compression of video images. While the basic framework of H.264/AVC is

similar to the motion compensated hybrid scheme of previous video coding

standards, additional tools improve the compression efficiency at the expense of

an increased implementation cost.

1.1. Motivation

The high-efficient coding features of H.264/AVC are due to complex mode

selection and high computational coding tools. For software implementation,

H.264/AVC video coding demands fast algorithm to minimize the computation

complexity for mode decision. To meet the need of consumer electronics market,

VLSI implementation is necessary for real-time and low power applications.

These motivate us to explore efficient solution for key modules in H.264/AVC.

Deblocking filter of H.264/AVC is both computational and memory

intensive due to its highly adaptive mode decision and small 4x4 block sizes. The

small 4x4 block size used in H.264/AVC requires almost every pixel in a frame

loaded from and written to frame memory for deblocking operations. It is reported

that even with highly optimized filtering algorithm, the deblocking operation still

occupies one third of the computational complexity of a decoder. In order to solve

the problem mentioned, two architectures are proposed to meet the high resolution

real-time deblocking filter process.

 2

Intra prediction is the dominate components besides the motion estimation in

the encoding process. Exhaustedly search is adopted in the reference software to

select the optimal intra prediction mode. Since each mode will be examined, the

computation load is quite large and becomes the one of computational bottleneck.

A fast intra prediction algorithm is needed to speed up the encoding process.

1.2. Thesis Organization

This thesis contains six parts. Chap. 1 gives the motivation and design challenge

of this work. In Chap. 2, a brief overview is given for H.264/AVC coding

standard. Then, the proposed deblocking architectures and their cost-performance

analysis are presented Chap. 3. In Chap. 4, a fast three step intra prediction

algorithm is contributed. In Chap. 5, architecture design for intra coding is

implemented. Finally, conclusion is remarked in Chap. 6.

 3

Chapter 2 Overview of H.264/AVC Standard

In the recent years, multimedia application becomes more flexible and more

powerful with the development of digital signal processing and communication

technology. The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG

develop a new standard for the compression of natural video images. The new

standard [1][2] is known as H.264 and also MPEG-4 Part 10 Advanced Video

Coding, and regarded as the next generation video compression standard. The

new standard is designed for technical solutions of wide application areas from

videoconference, broadcasting, digital storage media, multimedia streaming

service, etc.

2.1. Introduction to H.264/AVC

The overall architecture of H.264/ AVC is shown in Fig. 1. , the same with

the previous video coding standard, is a hybrid coder. Different from prior video

coding standards, H.264/AVC has many features that enhance coding efficiency

to predict the content of a picture.

 Variable block-size motion estimation/compensation

As shown in Fig. 2, H.264/AVC has more flexibility in selection of

block sizes and shapes, such as 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and

4x4.

 Quarter-sample-accurate motion vector accuracy

Compare to advanced profile of the MPEG-4 Visual standard, 6-tap filter

is adopted in H.264/AVC to reduce the complexity of interpolation.

 4

Fig. 1 Block diagram of H.264/AVC encoder

Fig. 2 Block size of motion estimation/compensation

 5

 Multiple reference picture motion estimation/compensation

H.264/AVC adopts the multiple reference picture selection technique to

enable efficient coding by allowing an encoder to select the reference

frame. There are at most five previous and five afterward reference

pictures to be searched.

 Directional spatial prediction for intra coding

In H.264/AVC intra encoding, the edges of the previously decoded

sample of current picture is applied to predict the samples of current

block to be encoded. In summary nine kinds of 4x4 luma prediction

modes, four kinds of 16x16 luma prediction modes, and four kinds of

8x8 chroma prediction modes are adopted.

 Small block size integer transform

Due to small block size motion estimation/compensation, H.264/AVC

standard is based primarily on the 4x4 transform, including discrete

cosine transform and discrete hadamard transform. It requires only 16

bits arithmetic processing.

 In-loop deblocking filter

The block-based video coding produces blocking artifact due to its block

structure. Blocking artifact becomes worse especially in the low bit

rate or highly compressed video environment. To reduce the artifact, the

in-loop deblocking filter is adopted by the H.264/AVC standard to

improve the quality of decoded picture. Fig. 3 shows the subjective view

comparison of picture with deblocking fitler and without deblocking

filter.

 6

Fig. 3 Subjective view comparison of picture with deblocking filter (left) and

without deblocking filter (right).

 Context-adaptive entropy coding

The two entropy coding methods applied in H.264/AVC, termed

CAVLC (context-adaptive variable length coding) and CABAC

(context-adaptive binary arithmetic coding), both use context-based

adaptivity to improve performance relative to prior standards.

 CABAC

In main profile, an advanced entropy coding method known as

arithmetic coding is included in H.264/AVC to increase the efficiency of

entropy coding.

With all the mentioned powerful coding approaches and extensive rate

distortion optimization (RDO) techniques, H.264/AVC can offers a significant

improvement of bit-rate reduction compared with previous video standards under

the same PSNR quality as shown in Fig. 4. It is reported that the new standard can

achieve 39%, 49%, 64% of bit-rate reduction compared with MPEG-2[3],

H.263[4], and MPEG-4[5] respectively[6]. However, the complexity and

computation load of video coding in H.264 increase drastically.

 7

Fig. 4 R-D curve comparison of H.264/AVC with MPEG-4, H.263, and MPEG-2

2.2. Profile and Level

In H.264/AVC, three profiles are defined, which are the Baseline, Main, and

Extended Profile as shown in Fig. 5. The Baseline profile supports all features in

H.264/AVC except the following two feature sets:

• Set 1: B slices, weighted prediction, CABAC, field coding, and picture or

macroblock adaptive switching between frame and field coding.

• Set 2: SP/SI slices, and slice data partitioning.

The first set of additional features is supported by the Main profile. However,

the Main profile does not support the FMO, ASO, and redundant pictures features

which are supported by the Baseline profile. Thus, only a subset of the coded

video sequences that are decodable by a Baseline profile decoder can be decoded

by a Main profile decoder.

The Extended Profile supports all features of the Baseline profile, and both

sets of features on top of Baseline profile, except for CABAC.

 8

Fig. 5 Profile of H.264/AVC

In H.264/AVC, the same set of level definitions is used with all profiles, but

individual implementations may support a different level for each supported

profile. There are 15 levels defined, specifying upper limits for the picture size (in

macroblocks) ranging from QCIF to all the way to above 4k 2k,

decoder-processing rate (in macroblocks per second) ranging from 250k pixels/s

to 250M pixels/s, size of the multipicture buffers, video bit rate ranging from 64

kbps to 240 Mbps, and video buffer size.

 9

Chapter 3 Architecture Design of Deblocking

Filter in H.264

In the H.264/AVC standard, the adaptive deblocking filter is applied on

edges of each 4x4 blocks in a macroblock (MB) to reduce the blocking artifact.

However, the deblocking filter is both computational and memory intensive due

to its highly adaptive mode decision and small 4x4 block size [9]. The adaptive

mode decision is required for each edge to distinguish real edges from block

artifacts. The small 4x4 block size used in H.264/AVC requires almost every

pixel in a frame loaded from and written to frame memory for deblocking

operations. It is reported that even with highly optimized filtering algorithm, the

deblocking operation still occupies one third of the computational complexity of a

decoder [9]. Thus, VLSI implementation is necessary for real-time and low power

applications.

In this chapter, two deblocking filter architectures are proposed. For the first

version, the data flow is reordered for easy and regular hardware implementation

while maintains the standard compatibility. For the second version, an in-place

computing design for the deblocking filter is presented. The proposed in-placed

computing flow reuses intermediate data to filter horizontal edges and vertical

edges seamlessly as soon as data is available. Thus, the intermediate data storage

is greatly reduced to only the four 4x4 blocks instead of whole 16x16 macroblock.

In the first version, gate count is greatly reduced by simple control unit, and

internal memory is also reduced to 50% of that in the previous design. In the

second version, the proposed architecture can reduce 90% of internal memory and

achieve higher throughput than others.

 10

Fig. 6 Encoding loop of H.264

Both of them are implemented by UMC 0.18µm CMOS technology. The

resulting hardware of Version 1 can achieve real-time 2Kx1K (2048x1024) 30Hz

video at 82.58 MHz. The gate count is only 9.16K when synthesized at 100MHz,

excluding the memory cost. For version 2, the resulting hardware can achieve

real-time 2Kx1K (2048x1024) 30Hz video at 73.73 MHz. When synthesized at

100MHz the gate count is only 13.41K, excluding the memory cost.

3.1. Fundamental of H.264/AVC Deblocking Filter

The block-based video coding, due to its simple and regular block structure,

has been widely used in various video standards, such as MPEG-1, MPEG-2,

MPEG-4 and H.26x. However, block-based computation like discrete cosine

transforms (DCT) and motion compensation (MC) also produce blocking artifact

[7][1][8][9], which becomes worse especially in the low bit rate or highly

compressed video environment. To reduce blocking artifact, the deblocking filter

is a well-known tool to improve both objective and subjective video quality,

either inside or outside the coding loop. In-loop approach is adopted by the

 11

H.264/AVC standard as shown in Fig. 6. The in-loop deblocking filter improves

the quality of reference frame, thus improves overall resulting view effect.

However, This forces all standard conformant decoders to perform identical

filtering in order to stay in synchronization with the encoder.

H.264/AVC deblocking filter is adaptive on several levels. On the slice level,

the global filtering strength can be adjusted to the individual characteristics of the

video sequence. On the block-edge level, filtering strength is made dependent on

the inter/intra prediction decision, motion differences, and the presence of coded

residuals in the two participating blocks. Special strong filtering is applied for

macroblocks with very flat characteristics to remove “tiling artifacts”. On the

sample level, sample values and quantizer-dependent thresholds can turn off

filtering for each individual sample.

Deblocking process is done in MB by MB in raster scan order. In each MB, the

processing order in the H.264/AVC reference software first processes on the four

vertical edges from left to right, transposes the intermediate data, and then

processes on the four horizontal edges from up to bottom, as shown in

Fig. 7.

 12

Fig. 7. Original processing flow for (a)horizontal filtering, and (b)vertical filtering

Table 1 Parameters for determining boundary strength

Block modes and conditions Bs
One of the blocks is Intra and the
edge is a macroblock edge 4
One of the blocks is Intra 3
One of the blocks has coded
residuals 2
Difference of block motion ≧1
luma sample distance 1
Motion compensation form
different reference frames 1
Else 0

Fig. 8 Convention for describing samples across two 4x4 block boundary.

The Boundary-Strength (Bs) parameter, a number ranging from 0 to 4, is

assigned to every boundary between two neighboring 4x4 luma sample blocks to

determine whether it is true blocking artifact or not. The chroma boundary

strengths are the same as that in the corresponding luma boundary location.

Table 1 shows that the value of Bs depends on the modes and the coding

conditions of the two adjacent blocks. In this table, conditions are evaluated from

top to bottom until one of the conditions holds true, and the corresponding value

is assigned to Bs. Bs decides the filter strength performed on the edge. Two

primary filtering modes are selected. A value of 4 means the strongest filtering

mode, and the Bs from 1 to 3 is the standard mode, whereas a value of 0 means no

filtering is applied on the edges.

For nonzero Bs values, a pair of quantization dependent parameters, referred to

 13

as α and β, are used to determine which set of samples to be filtered. In the

following description, the convention for describing 8 pixels across two 4x4 block

boundary is shown in Fig. 8. Filtering on a line of 8 samples takes place if the

three conditions

｜p0-q0｜<α ,｜p1-p0｜<β , ｜q1-q0｜<β , when Bs≠0

hold true. For edges with Bs from 1 to 3, the filter operation is divided into basic

filter operation and clipping. In strongest filtering mode (Bs=4), the deblocking

operation uses a very strong 4- and 5-tap filter that modifies the edge sample and

two interior samples on each side, or uses a weaker 3-tap filter to modify the edge

samples only. The stronger filter is only applied when the following constraint

|p0-q0| < (α>>2) + 2

holds true. Interested readers can refer to [1] and [10] for more details.

3.2. Architecture Design of H.264/AVC Deblocking Filter

3.2.1. Version 1

3.2.1.1. Simple Data Flow

The major drawback of this direct approach is that intermediate data between

different edges has to be stored and loaded again. Thus results in an inefficiency

data flow and complex controller. For an efficient VLSI design of the deblocking

filter, regular data flow is the major concern for easy hardware implementation.

Different from the original processing order that processes the column major

order first, the proposed computing flow processes the horizontal filtering along

the row major order first and then vertical filtering along the column major order

as shown in Fig. 9.

 14

Fig. 9. Modified processing flow for (a) horizontal filtering, and (b) vertical

filtering

Fig. 10. Data structure of deblocking filter

With the modified approach, the intermediate 4x4 block data between

neighboring vertical or horizontal edge will be reused immediately. Thus we can

save the internal memory access and speed up the deblocking computation. This

modification does not only fit the memory access order but also has higher data

reuse capability and still has the same results as the standard specified.

3.2.1.2. Hardware Architecture

The data structure of proposed deblocking filter is a line of 8 pixels as shown in

Fig. 10. The proposed architecture is shown in

 15

Fig. 11. A 1-D 8 pixels parallel-in parallel-out deblocking filter can be

reconfigurable to support different filtering strength. A 4x4-pixel shift register is

to reuse the intermediate 4x4 block data after processing previous neighboring

edge. A 4x4-pixel transpose register is to transpose data from row major order to

column major order, or transpose from column major order back to row major

order after vertical filtering. An 80x32bits SRAM is required to buffer the

intermediate 20 4x4-block pixels to be filtered vertically.

Fig. 11. The proposed deblocking filter architecture.

Fig. 12. 4x4 Block index for one macroblock.

 16

Reconfigurable 1D Deblocking Filter

Port 3

Port 2

To transposed register or
output port

From input port
(horizontal filtering)

Port 1

(a)

Reconfigurable 1D Deblocking Filter

Port 3

Port 2

To transposed
register

From local memory
(vertical filtering)

Port 1

(b)

Fig. 13 Data path for (a) horizontal filtering and (b) vertical filtering

The proposed architecture operates as below. For simplicity of explanation,

we use the block index as shown in Fig. 12 in the following. First, we assume that

all data I/O is row major order with 32bits width (4 pixels in parallel). The data

path is shown in Fig. 13.

Step 1: data preparation

In the first 16 cycles, we first retrieve the data of block index 1 to 4,

transpose them from row major order to column major order with the

transpose buffer, and store them in the local buffer for vertical filtering.

Step 2: horizontal filtering over vertical edges

Then we start horizontal filtering as the order shown in Fig. 9(a) with

data of block 5 to 24. In this phase, filter inputs are from external memory

via input port, and from the 4x4 shift register via port3. The data after first

time filtering is sent to 4x4 shift register via port 2 to be reused to filter next

neighboring edge.

 17

Fig. 14 timing diagram of simple data flow deblocking filter

Step 3: vertical filtering over horizontal edges

After the processing of horizontal filtering, the macroblock data is

transposed to column major order by transpose buffer and stored in the local

buffer for vertical filtering. The vertical filtering uses the same data flow as

the horizontal filtering. The only difference is that filter input is from the

local buffer instead of external memory. The filtered results are transposed

again and stored back to the external memory in the row major order. Thus,

all data uses row major order input and row major order output to the

external memory. This can ease the other relating processing to work

together.

Based on the above flow, it needs only 192(Y)+72(Cb)+72(Cr)=336 cycles

to complete the deblocking process for one YCbCr macro block. The processing

timing diagram of proposed deblocking is shown in Fig. 14 that illustrates the

detailed timing of above steps.

 18

Fig. 15. Block index

3.2.2. Version 2

3.2.2.1. Full Data Reuse Flow

In version 1, the deblockig filter always reuses the data of neighbor 4x4

blocks of current filtering edge. After horizontal filtering, there are two edges can

be filtered in the next step. Those are up edge and right edge. In version 2, the

data flow is further improved to explore more data reusability

Fig. 15 shows the Block index for explanation. Block 1-4 are the

intermediate data from above macroblock after vertical edge processing, and

block 5, 10, 15, and 20 are the intermediate data from left macro block after

horizontal edge processing. For simplicity, we will denote the block number as

blki, where i is from 1-24. These block data will be processed with current macro

block data to complete the deblocking operations.

 19

Fig. 16. Edge processing order for (a) luma edge, and (b) chroma edge

Fig. 17. Overall architecture

Fig. 16 shows the proposed full data reuse flow that maintain the same result

as specified by the H.264/AVC standard. As shown in Fig. 16 (a), we process

edges of each 4x4 block from the left-top most block (blk6) to the right-bottom

most block (blk24). Starting from the left-top most 4x4 block (blk6), we first do

the horizontal filtering over its two vertical edges (edge 0 and edge 1). Then, since

all data is available for horizontal edge 2 (intermediate data from blk1 and blk6),

we can do the vertical filtering over the top horizontal edge (edge 2). This

horizontal-vertical interleaved approach is repeated for each 4x4 block in a raster

scan order, as the edge number shown in Fig. 16 (a) and (b).

 20

Fig. 18. Data path (a) horizontal filtering over vertical edges, and (b) vertical

filtering over horizontal edges

With the interleaved approach, the intermediate data will be reused

immediately. Thus we can save the memory access and buffer required to process

the left, top, and right edge in a 4x4 block. The only buffer and memory access

remained are the intermediate data for the bottom edge in a 4x4 block. Therefore,

we need only four 4x4 blocks (4x16x8bits) above the current filtering block row

(e.g. store blk6-blk9 when process blk11-blk14), rather than a whole macroblock

(24x16x8bits) as in the conventional data flow. Because of such high data reuse,

internal memory access number and size are both greatly reduced.

 21

3.2.2.2. In-place Deblocking Filter Architecture

Fig. 17 shows the proposed architecture, where the solid arrows denote

32-bits dataflow. First, we assume that all data I/O is row major order with 32bits

width (4 pixels). For simplicity, we will only explain the operation of luma

macroblock. The chroma block is processed using the same method.

In the first 16 cycles, the data of block index 1 to 4 are transposed from row

major order to column major order with the transpose buffer, and store them in

the local SRAM buffer to wait for vertical filtering. Then we start horizontal

filtering over the vertical edge 0 as shown in Fig. 16 (a) with data of block 5 and 6.

The data of block 5 is from external memory via input port and shifted into to 4x4

shift register after four cycles. After that, the data of block 6 from input port, and

data of block 5 from 4x4 shift register is loaded to perform the horizontal filtering

as shown in Fig. 20 (a). The filtered data of block 5 is sent to output port, and the

data of block 6 after first time filtering is sent to 4x4 shift register. So the data in

4x4 shift register can be used to perform the next horizontal filtering again.

Next we start horizontal filtering over vertical edge 1 with data of block 6

and 7. In this phase, filter input is from 4x4 shift register (block 6), and from

external memory (block 7) via input port as shown in Fig. 20 (b). The filtered data

of block 6 is then transposed to column major order by transpose buffer after the

data is being filtered two times, and the data of block 7 after first time filtering is

sent to 4x4 shift register.

The data of block 1 and block 6 are both ready to perform vertical filtering

over horizontal edge 2 in column major order now. In this phase, filter input is

from local SRAM buffer (block 1), and from 4x4 transpose register (block 6) as

shown in Fig. 20 (c). The data of block 6 after filtering is sent to local SRAM

 22

buffer to wait for filtering next vertical edge, and the data of block 1 is transposed

again and output in row major order in the next four cycles. The remaining edges

is processed using the same data flow mentioned above.

Same as version 1, this design use parallel-in parallel-out style (32-bits,

processing 4-pixels concurrently). The deblocking filter part implements the

required function as specified by the H.264/AVC standard. The 16x32bits SRAM

buffers four 4x4 block pixels to be processed, as described in the previous Section.

The register array is for transposing operation during the 2-D deblocking filtering.

3.2.2.3. Memory Organization

In the proposed data flow, the deblocking operation uses horizontal-vertical

interleaved scheduling. However, to support such the interleaved operation, the

corresponding architecture shall transpose the 4x4 block immediately when

changing the filtering edges. The corresponding data path consists of a 4x4 shift

buffer and a 4x4 transpose buffer. We assume that the SRAM module is an

ordinary one which has one 32bits read port and one 32bits write port. With this,

we can transpose the data of 4x4 blocks to support both horizontal filtering and

vertical filtering on a parallel-in parallel-out deblocking filter seamlessly.

Fig. 19 Organization of on-chip 1R/1W port SRAM

 23

The on-chip buffer first stores blk1 to blk4. Fig. 7 shows its data

organization, where m is an integer number from 0, the number in the block

denotes the block index and each block stores one 4x4 block data. Then the same

address location will be overwritten by new data from blk6 to blk9, respectively.

This will be repeated for each row of 4x4 blocks. Since data is in-place

overwritten after reading out, no read-write conflict will occur.

3.2.2.4. Processing Schedule

 Assume input data are four pixels (32bits) per clock cycle, it requires 16+

(36+4)x4+16=192 cycles to process a luma macroblock without overlapping the

data flow. Among them, 16 cycles to input data of block 1 to 4 from external

memory to on-chip memory before starting processing the data, 36 cycles to

process edge 8m to 8m+7, 4 cycles to shift block 8m+7 from 4x4 shift buffer to

4x4 transpose buffer, and 16cycles to output data of block 21 to 24 from on-chip

memory to external memory, where m is an integer number from 0. For two

chroma macroblocks, (8+(20+4)x2+8)x2=128 cycles is required. Thus the

processing capability is 320 cycles per macroblock.

For a more efficient processing schedule, we can save four cycles by

overlapping the data loading cycles of block 5(m+1) from the external memory

and data shifting cycles of block 5m+4 from 4x4 shift buffer to 4x4 transpose

buffer before processing horizontal edge 8m+7.

 24

Fig. 20. Data flow of deblocking filter (a) processing the left vertical edges, (b)

processing vertical edges, and (c) processing horizontal edges.

 25

For example, it takes four cycles to shift the data of block 9 to 4x4 transpose

register. At the same time, we can move the data of block10 from external

memory to 4x4 shift register. With this strategy, the total cycle count is reduced to

300 cycles for one macroblock

3.3. Implementation and Comparison

To evaluate the accuracy and the efficiency of the proposed architecture, the

proposed architectures are designed by Verilog and implemented by TSMC

0.18µm CMOS technology. The resulting hardware of Version 1 can achieve

real-time 2Kx1K (2048x1024) 30Hz video at 82.58 MHz. The gate count is only

9.16K when synthesized at 100MHz, excluding the memory cost. The resulting

hardware of version 2 can achieve real-time 2Kx1K (2048x1024) 30Hz video at

73.73 MHz. The gate count is only 13.41K when synthesized at 100MHz,

excluding the memory cost.

Table 2 lists the area cost comparisons with other approaches. Table 3 shows

the processing capability comparison. Table 4 shows the comparison of memory

size. From the comparison results, the proposed architecture has the advantages of

both smaller area cost and cycle count because of high data reusability.

Table 2. Comparison of cost synthesized at 100MHz. (excluding memory cost).

Design Gate count

Version 1 (with single port SRAM) 9.16K

Version 2 (with 1R/1W port SRAM) 13.41K

[4] Basic type (with single port SRAM) 18.91K

[4] Advanced type (with dual port SRAM) 18.91K

[4] Basic type (with two port SRAM) 18.91K

[4] Dual arrays type (with two port SRAM) 20.66K

 26

Table 3. Comparison of memory size

Design Version 1 Version 2 [4]
Memory size 80x32bits 16x32bits 160x32bits

Table 4. Comparison of processing capability

Design Cycle
/MB

CIF
(352X288)

2Kx1K
(2048X1024)

Version 1
(single port SRAM)

336 3.99MHz 82.58MHz

Version 2
(1R/1W port SRAM)

300 3.56MHz 73.73MHz

[11] Basic type
(single port SRAM)

878 10.43MHz 215.78MHz

[11] Advanced type
(dual port SRAM)

814 9.67 MHz 200.05MHz

[11] Basic type
(two port SRAM)

782 9.29 MHz 192.18MHz

[11] Dual arrays type
(two port SRAM)

614 7.29 MHz 150.90MHz

3.4. Summary of Proposed Architectures

In this chapter, we contribute two high data reuse deblocking processing flow

and its corresponding VLSI architecture for deblocking filter in H.264/AVC. By

rearranging the data flow we can achieve high data reusability. Version 1 has very

simple data flow, and a simple controller. In version 2 the major idea is to filter

a vertical edge immediately followed by the filtering of a horizontal edge for a

4x4 block instead of whole macroblock. With a 4x4 transpose buffer, the

aforementioned interleaved vertical and horizontal deblocking filtering can be

easily realized. Thus, the processing capability of the proposed architecture can

operate at high utilization and small memory size.

 27

Chapter 4 Fast 4x4 Intra Prediction Algorithm

for H.264/AVC

Different from AC/DC prediction in MPEG-4, H.264/AVC adopts a new tool

called intra prediction for intra frame coding. Intra prediction uses the directional

spatial information to predict the sample to be encoded. However, intra prediction

is also computational intensive besides the motion estimation in the coding loop.

Direct approach for intra prediction use the full search that exhaustedly searches

all possible modes and is adopted in the reference software. Although full search

can achieve optimal prediction mode selection, it is computationally expensive.

Besides, intra prediction is computed for intra-frame as well as inter-frame to

determine the block type. It is thus highly desirable to develop fast

intra-prediction mode selection.

In this chapter a fast algorithm for H.264 4x4 intra prediction is proposed. To

determine the prediction mode, only six modes is required instead of nine modes

in the full search method. The fast intra prediction algorithm can save 33%

computational complexity with only about 1% bit-rate loss. Besides, the decision

method is very simple.

4.1. Fundamental of H.264/AVC 4x4 Intra Prediction

There are 9 kinds of intra prediction modes for 4x4 intra blocks as shown in

Fig. 21. A prediction mode is a way to generate 16 predictive pixel values (named

a to p) using some or all of the neighboring pixels A to M as shown in Fig. 22.

The pixels A to M are from the neighboring reconstructed blocks.

 28

Fig. 21. Direction of 9 4x4 intra prediction modes in H.264

Fig. 22. A 4x4 block and its neighboring pixels

Fig. 23. 9 mode of 4x4 intra prediction

 29

Fig. 24. Adjacent block of current 4x4 block

Fig. 23 shows the nine prediction modes designed in a directional manner.

Mode 2 is called DC prediction in which all pixels (a to p) are predicted by

(A+B+C+D+I+J+K+L)/8. Mode 0 is the vertical prediction mode in which pixels

a, e, i, and m are predicted by A. Mode 1 is the horizontal prediction mode in

which pixels a, b, c, and d are predicted by I. The other modes are similar except

that the directions are different.

In addition to the 9 modes of 4x4 intra prediction, the correlation between

spatially adjacent blocks is also exploited to encode the prediction mode

efficiently. In Fig. 24, A and B are the up and left encoded 4x4 blocks near

current block C. The probability of the 9 modes being the optimal intra prediction

mode for C is different depending on the prediction modes of the top block A and

left block B. A probability list is generated by Joint Video Team for each

combination of the modes of A and B. Rather than sending the selected mode

number, the position of the selected mode in the probability list is sent. Thus, the

coding efficiency of intra prediction can be further improved.

In the reference software [13], a full search (FS) approach is used to examine

all the 9 modes exhaustively to find the one with the smallest cost.

The main steps are:

1. Generate a 4x4 predicted block according to a mode

 30

2. Calculate sum of absolute difference (SAD when using Hadamard is off)

or sum of absolute transformed difference (SATD when using Hadamard is

on) between the original 4x4 block and the predicted block

3. Compute Cost of the mode

 Cost = Cost_of_Mode + SAD (or SATD when using Hadamard is on)

4. Repeat 1 to 3 for all the 9 modes, and choose the one that has the

minimum cost.

 Since each 4x4 block will go through these steps, the computation load is

quite large and becomes one of computational bottleneck.

4.2. Review of Previous Approaches

Some approaches have been proposed on fast intra prediction algorithm

[14][15][16]. In [3][4], they proposed a threshold to early terminate the

computation of the most probable mode. If the cost of most probable mode is

larger than the threshold, the quartet cost of remaining 8 modes is computed. The

mode with minimum quartet cost is chosen among 8. Thus, the required

computation cost varies with the contents of video. Besides, their algorithm still

needs to determine a threshold, which could affect its efficiency severely.

In [16], it assumes high correlation between the edge direction and intra

mode, and thus adopts the edge direction to predict the possible mode. However,

the assumption of edge direction is not always true. Due to above drawbacks,

these previous approaches increase the bit-rate significantly with PSNR loss. For

example, approach in [16] increases bit- rate by 4.0% with 0.27dB PSNR loss in

all I-frame condition.

 31

4.3. Fast Three Step Intra Prediction Algorithm

In this chapter, a three step algorithm of intra prediction for intra 4x4 blocks is

presented. The modes needed to be examined are constant 6 modes rather than

variable number of modes as in the previous approaches.

From our observation, we find the SAD of the modes at the neighborhood of

the optimal mode is also small. It means that we can skip some mode after initial

search to save computation power. After initial search of some modes, we can

examine the two modes neighboring to the selected mode in the first step. In the

last step, extra one mode is refined to improve the prediction precision.

Fig. 25 shows a flow chart of the algorithm. We first start from the horizontal

(mode 1) and vertical (mode 0) and DC mode (mode 2) since these modes occur

in the high probability. Then in the second step, we select the neighboring 22.5

degree modes (mode 5 and 7 for vertical direction, or mode 6 and 8 for horizontal

direction) based on the smaller one of horizontal or vertical mode. In the third

step, we refine the search further by considering the remaining neighbor mode

(mode 3 or 4). We compare the best mode from the step 1 and 2 and the

neighboring mode of the best one from step 2 (mode 3 or 4), and choose the best

one as our final decision.

In the algorithm, three modes are initially compared in step1. In step 2, two of

neighboring modes are examined to determine the refined direction. And in the

last step, cost of the refine mode is calculated, and the one of the three modes are

compared to make the final decision. So there are constant six modes to be

examined by this algorithm.

 32

Fig. 25. Flow chart of three step intra algorithm

4.4. Simulation Result and Discussion

The proposed three step algorithm and the full search are simulated on five

CIF sequences, mobile and calendar, foreman, Stefan, news, and coastguard. For

each sequence, 300 frames are encoded with intra frame coding. We simulate

these sequences with 5 different fixed QP values, from 12 to 44 as shown in Table

5 to Table 8. RD-curve is shown in the Fig. 7 to Fig. 11.

From the result, we can find that bit-rate is increased about 1% with almost

the same PSNR. We can also find bit-rate increase is step up when QP is from

low to high. But when QP is high, the bit-rate increase is reduced. The

phenomenon may relate to the Intra16 mode, an intra prediction mode for 16x16

blocks. In the high QP case, the opportunity to select Intra16 will also increases

since Intra16 mode decision is also using full search algorithm.

 33

For high motion and low motion test sequence, the result in bit-rate increase

is almost the same. It is because that picture is intra coded without using

information of other frames. The comparison with [16] is shown in Table 5 to

Table 8 with four different QP values, from 28 to 40. The proposed algorithm

outperforms the previous approach.

Table 5. QP = 28, Comparison results

Sequence

CHG

BIT

(%)

[16]

CHG

BIT

(%)

Ours

CHG

PSNR

(dB)

[16]

CHG

PSNR

(dB)

Ours

CHG

T_I

(%)

Ours

CHG

T_AVG

(%)

Ours

Container 1.80 0.79 0.039 -0.01 -32.34 -16.03

News 2.56 1.09 0.045 -0.02 -31.05 -15.92

Paris 1.60 0.93 0.043 -0.01 -31.91 -16.62

Tempete 1.58 0.79 0.091 -0.01 -31.33 -16.22

Table 6. QP = 32, Comparison results

Sequence

CHG

BIT

(%)

[16]

CHG

BIT

(%)

Ours

CHG

PSNR

(dB)

[16]

CHG

PSNR

(dB)

Ours

CHG

T_I

(%)

Ours

CHG

T_AVG

(%)

Ours

Container 2.64 1.02 0.044 -0.01 -32.94 -16.46

News 3.09 1.30 0.031 -0.02 -31.11 -15.50

Paris 2.43 1.16 0.032 -0.01 -30.29 -15.54

Tempete 2.32 0.96 0.065 -0.01 -31.43 -16.25

 34

Table 7. QP = 36, Comparison results

Sequence

CHG

BIT

(%)

[16]

CHG

BIT

(%)

Ours

CHG

PSNR

(dB)

[16]

CHG

PSNR

(dB)

Ours

CHG

T_I

(%)

Ours

CHG

T_AVG

(%)

Ours

Container 4.06 1.21 0.005 -0.02 -32.82 -16.46

News 4.26 1.20 0.000 -0.02 -31.41 -15.29

Paris 3.25 1.21 0.013 -0.01 -30.45 -15.46

Tempete 3.11 1.00 0.051 -0.02 -31.23 -16.16

Table 8. QP = 40, Comparison results

Sequence

CHG

BIT

(%)

[16]

CHG

BIT

(%)

Ours

CHG

PSNR

(dB)

[16]

CHG

PSNR

(dB)

Ours

CHG

T_I

(%)

Ours

CHG

T_AVG

(%)

Ours

Container 5.18 1.00 0.001 -0.03 -32.75 -16.21

News 5.31 1.38 0.006 -0.03 -31.64 -15.16

Paris 4.91 1.58 0.003 -0.04 -30.39 -15.23

Tempete 3.67 0.78 0.024 -0.03 -31.17 -16.09

CHG BIT: change in bit-rate

CHG PSNR: change in PSNR

CHG T_I: change in intra encoding time

CHG T_AVG: change in average encoding time

 35

20

25

30

35

40

45

50

0 5000 10000 15000 20000
bit-rate

P
S
N
R FS

TSS

Fig. 26. RD-curve of mobile & calendar

25

30

35

40

45

50

0 4000 8000 12000
bit-rate

P
S
N
R FS

TSS

 Fig. 27. RD-curve of foreman

 36

20

25

30

35

40

45

50

0 4000 8000 12000
bit-rate

P
S
N
R

FS

TSS

Fig. 28. RD-curve of Stefan

25

30

35

40

45

50

0 2500 5000 7500 10000
bit-rate

PS
N
R

FS

TSS

Fig. 29. RD-cure of news

 37

25

30

35

40

45

50

0 5000 10000 15000
bit-rate

P
SN

R

FS

TSS

Fig. 30. RD-curve of coastguard

4.5. Summary of Proposed Intra Prediction Algorithm

We propose a three step intra prediction mode selection algorithm.

Computation reduction is achieved by examining only six of total intra prediction

modes. Simulation results suggest that three step algorithm can achieve similar

PSNR as full search and only about 1% of increase on bit-rate.

 38

Chapter 5 Architecture Design for H.264/AVC

Intra Coding

H.264/AVC is regarded as the next generation video compression standard.

Though original standard targeted to video applications, the high compression

performance of intra-only coding also makes it suitable for still image coding,

which is competitive with JPEG2000 [17].

In this chapter, an HDTV size H.264/AVC intra encoder chip for digital

camera and digital video applications is presented. The chip reduces the gate

count by saving the costly plane mode and enhances the video quality with the

improved cost function. With careful scheduling and high performance function

unit, the developed chip can easily support 29.46M pixels/s still image encoding

and real-time moving picture intra coding of HDTV 720p@30fps video

application when clocked at 117.28MHz under 0.18um CMOS process.

Fig. 31. Flow of H.264/AVC intra coding

 39

5.1. Fundamental of H.264/AVC Intra Coding

The Intra coding flow of H.264/AVC is shown in

Fig. 31. This macroblock data will be predicted from one of nine kinds of 4x4

luma prediction modes, four kinds of 16x16 luma prediction mode, and four kinds

of 8x8 chroma prediction mode. Then the prediction mode with the minimum cost

value is selected as the best mode. The residuals after the prediction are further

processed by transform, Q/IQ, inverse transform, and reconstructed as reference

of next macroblock. The coefficients after quantization and mode information are

encoded by entropy coding, CAVLC and UVLC.

Fig. 32. Modes of Intra4x4

Fig. 33. Modes of Intra16x16.

 40

Fig. 34. Modes of chroma8x8.

5.1.1. Intra Prediction Mode

There are three classes of intra prediction modes. They are Intra4x4,

Intra16x16 for luma sample prediction, and chroma8x8 for chroma samples

prediction. Different form AC/DC prediction of MPEG-4, H.264/AVC use

directional spatial information of neighbor already coded blocks to predict current

sample values. Fig. 32 shows the modes of Intra4x4. Eight directional modes and

one DC prediction are adopted. Fig. 33 shows the modes of Intra16x16 used for

smooth texture. Intra4x4 is more suitable for high quality application while

intra16x16 is suitable for low bitrate application. Fig. 34 shows the mode of

chroma8x8. The mode of chroma8x8 is the same as Intra16x16 only with

different mode number.

5.2. Hardware Oriented Algorithm Modification

5.2.1. Proposed Mode Decision Method

In the intra encoding flow, the mode decision method is the most important

part to determine the coding performance. Two mode decision methods are used

in the reference software. One is basic mode decision method and the other is

rd-optimization (RDO) mode decision method.

Basic mode decision method calculates cost using table look up mode cost

 41

and sum of absolute transform difference (SATD). RDO mode decision method

use weighted sum of actual encoded bitrate and reconstructed samples to generate

distortion. Though RDO mode decision method achieves the best performance, it

is also computational intensive and thus is not suitable for high performance or

real-time encoder implementation. Therefore, our intra encoder adopts the basic

method to implement the mode decision stage as shown below

Basic cost generation function：

Cost = Cost_of_Mode + SATD

 In the reference software, SATD is calculated by applying 4x4 discrete

Hadamard transform (DHT) to the residuals of prediction modes due to its

simplicity. However, since the residuals are processed by 4x4 discrete cosine

transform (DCT) in the encoding flow, a 4x4 DCT transform for SATD will

generate better results than DHT does, which has the side benefit to avoid

computing the 4x4 DCT again.

 However, 4x4 DCT in H.264/AVC is divided into two parts, 4x4 integer

transform and scalar multiplication factors (the one with factors a, b) that are

merged into the quantization stage, as shown in Fig. 35. The reference software

adopts DHT simply for its simplicity to approximate the 4x4 integer transform. A

better way for SATD calculation is to approximate the 4x4 DCT, but this should

have low computational complexity as DHT does.

Fig. 35. 4X4 DCT transform of H.264/AVC

 42

Fig. 36. quant_coef table of quantization

Fig. 37. dequant_coef table of inverse quantization.

First, we look at the equation of quantization and inverse quantization

Quantization

– L=(abs(M) * quant_coef + qp_const) >> q_bits

Inverse quantization

– L*dequant_coef<<qp_per

qp_per, q_bits and qp_const are derived from quantization parameter

Quantization is calculated by using a table look up constant multiplication

and an offset derived from quantization parameter. Inverse quantization is

calculated only by a table loop up constant multiplication. We use the

quantization factors, quant_coef, shown in Fig. 36 or inverse quantization factor,

dequant_coef, shown in Fig. 37 to derive the scaling factors.

– 1/quant_coef: [0][0]:[0][1]:[1][1]~=30:19:12

– 1/dequant_coef: [0][0]:[0][1]:[1][1]~=32:25:20

 43

Fig. 38. Modified SATD calculation method

Fig. 38 shows our modified method of SATD calculation. In our simulation,

the scalar factors derived from inverse quantization is better than factors from

quantization. The reason is that quantization process is also affected by an offset

qp_const. The result of modified mode decision method is better than the

reference software.

5.2.2. Intra Prediction Mode

In H.264/AVC Intra coding, intra prediction and mode decision are the two

computation extensive components. All prediction modes are examined to find

the best mode. Parallel architecture are demanded to accelerate these components.

After analyzing the type of intra prediction modes, we can separate the modes into

four types as shown in Fig. 39. In the bypass type, prediction samples are the

same as boundary pixels. In the linear types, prediction samples are linear

interpolation derived from boundary pixels. In the average type, prediction

samples are average of all boundary pixels. In the plane type, prediction samples

are approximation of bilinear transform with only integer arithmetic as shown in

Fig. 40. The equation of Plane mode is more complex than other modes and is

hard to reuse with other mode.

However, by simulation we found that intra prediction with plane prediction

mode only reduces about 1% of bit-rate than that without plane mode. This 1% of

bit-rate difference can be easily compensated by the enhanced cost function and

achieves almost the same result with the basic method in reference software

 44

Fig. 39 Four types of intra prediction modes

Fig. 40. Equations of plane mode prediction

 45

The simulation result is shown from Fig. 41 to Fig. 48. Thus, we decide to

implement the intra coding without plane prediction mode based on the cost and

performance trade-off.

30

32

34

36

38

40

42

400 600 800 1000 1200 1400
bit-rate

P
S
N
R

FS

Proposed

Fig. 41. RD curve of Akiyo

29

30

31

32

33

34

35

36

37

38

500 800 1100 1400 1700 2000 2300
bit-rate

P
S
N
R

FS

Proposed

Fig. 42. RD curve of Foreman

 46

29

30

31

32

33

34

35

36

37

38

500 800 1100 1400 1700 2000 2300 2600

bit-rate

PS
N
R FS

Proposed

Fig. 43. RD curve of container

27

28

29

30

31

32

33

34

35

36

37

1400 1800 2200 2600 3000 3400 3800 4200 4600

bit-rate

P
S
N
R

FS

Proposed

Fig. 44. RD curve of stefan

 47

29

30

31

32

33

34

35

36

37

38

700 1100 1500 1900 2300 2700

bit-rate

P
S
N
R

FS

Proposed

Fig. 45. RD curve of football

25

27

29

31

33

35

2300 3300 4300 5300 6300

bit-rate

P
S
N
R

FS

Proposed

Fig. 46. RD curve of mobile and calendar

 48

26

27

28

29

30

31

32

33

34

35

36

1300 2300 3300 4300

bit-rate

P
S
N
R

FS

Proposed

Fig. 47. RD curve of tempete

30

31

32

33

34

35

36

37

38

39

700 1200 1700 2200

bit-rate

P
S
N
R

FS

Proposed

Fig. 48. RD curve of news

 49

Fig. 49 Architecture of Intra Coding

5.3. Architecture Design of H.264/AVC Intra Coding

5.3.1. System Architecture Design

Fig. 49 shows the intra encoding architecture, which is directly

corresponding to the coding flow shown in Fig. 31. The architecture consists of

the intra prediction unit, transform unit, quantization unit and CAVLC unit. First,

the intra prediction unit will generate the prediction value for the current block.

Then for each possible mode, the residual pixels after prediction are transformed

by 4x4 integer transform or DHT (DC value of Intra16x16 or Chroma8x8). These

transform coefficients are further used to compute the cost function to determine

the best by the proposed cost function. The intra4x4 block with lower cost is

preserved in the buffer. After best intra4x4 block is obtained, it will go through

the reconstruction path to generate the required boundary samples for the next 4x4

block. The data after quantization and mode information will be coded by

CAVLC and UVLC, respectively.

 50

In the intra encoder implementation, the major bottleneck is the feedback

loop in the reconstruction path since the next 4x4 block cannot start its

computation until its boundary samples are reconstructed from previous blocks.

Thus, three scheduling techniques are proposed to accelerate this data dependency

problem.

1. Insertion of intra16x16 prediction: During the empty bubble cycles of

intra4x4 block reconstruction, intra16x16 prediction process is inserted

into these bubble cycles of intra predictor generation unit to

pre-compute the Intra16 cost. Thus, the utilization of intra predictor is

improved.

2. Early start of next 4x4 block prediction: before the boundary samples

are available, the prediction mode using upper samples (vertical

prediction mode) can be early started before other modes.

3. Intra16x16 DC value pre-computing: In the H.264/AVC standard, the

sixteen DC coefficients from the Intra16x16 mode have to be

transformed again by DHT. Thus, for the reconstruction, inverse DCT

of other AC coefficients cannot be started before inverse DHT, and

this situation will result in a macroblock size buffer to store the AC

coefficient of sixteen 4x4 blocks. Using the intra16x16 prediction

insertion mentioned in technique 1, the best intra16x16 DC value after

DHT is pre-computed from the Q/IQ stage to the DC registers of

IDCT/IDHT stage. Not only a macroblock size buffer is saved but also

the overall computation cycles are reduced.

 51

5.3.2. Intra Predictor Generation Unit

A reconfigurable 4 pixels parallel intra predictor generation unit is proposed.

It can support nine kinds of Intra 4x4 modes, three kinds of Intra16x16 modes,

and three kinds of Chroma8x8 modes. After analyzing the prediction mode, we

can find that prediction samples are derived from boundary pixels using four

types of arithmetic equation:

1. (A+B+1)>>1

2. (A+2B+C+2)>>2

3. Bypass (for Vertical, Horizontal mode)

4. DC (Intra4x4: average of 8 pixels, Intra16x16: average of 32 pixels)

(A, B and C are reconstructed boundary pixels)

Fig. 50 shows the proposed reconfigurable architecture of intra predictor

generation unit. The architecture reuse the partial sum of neighbor predictor to

save the adder count.

For example：Intra4x4

Predictor1 = B+2C+D = (B+C)+(C+D)

Predictor2 = A+2B+C = (A+B)+(B+C)

Thus, B+C can be reused to generate two predictor output

Some examples are shown in Fig. 51 to Fig. 55.

 52

Fig. 50. Reconfigurable data path of intra predictor generation unit

Fig. 51. Data path of diagonal down right

 53

Fig. 52. Data path of vertical right

Fig. 53. Data path of horizontal down mode

 54

Fig. 54. Data path of DC prediction mode

Fig. 55. Data path of horizontal mode

 55

Fig. 56. Coding order of residual blocks

5.3.3. Transform Unit

In H.264/AVC, residual macroblock is divided in 16 4x4 luma blocks and 8

4x4 blocks as shown in Fig. 56. All the 4x4 blocks will be transformed with

integer coefficient. If the intra prediction mode is Intra16x16, the DC value of 16

luma blocks will be transformed again by 4x4 discrete Hadamard transform. The

2x2 DC values of chroma blocks after DCT will also be transformed by 2x2 DHT.

 Transform matrix of DCT, IDCT, and Hadamard transform is shown in Fig.

57 to Fig. 59. We can find the coefficients of the transform matrixes are even or

odd symmetry at each row or column and can be implemented by add and shift.

The number of addition in each 1D transform can be reduced from 16 to 8 with

butterflies. Fast algorithm and its butterfly structure are shown in Fig. 60. Because

two forward transforms have the same structure and will not operate at the same

time in our system architecture. We can merge them together to save area. Inverse

transform of DCT and DHT are merged by the same method as the forward

methods. The transform unit handles uses the similar architecture as in [18]. Fig.

61 shows the hardware architecture of transform unit.

 56

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1121
2111
2111
1121

cccc
cccc
cccc
cccc

1221
1111
2112
1111

f

33323130

23222120

13121110

03020100

Fig. 57. Transform matrix of 4x4 DCT transform

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1/2111/2
1111
11/21/21
1111

cccc
cccc
cccc
cccc

1/2111
111/21
111/21

1/2111

f

33323130

23222120

13121110

03020100

Fig. 58. Transform matrix of 4x4 IDCT transform

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1111
1111
1111
1111

cccc
cccc
cccc
cccc

1111
1111
1111
1111

f

33323130

23222120

13121110

03020100

Fig. 59. Transform matrix of Hadamard transform

Fig. 60. Fast algorithms of 4x4 transform

 57

Fig. 61. Hardware architecture of transform unit

5.3.4. Quantization Unit

The quantization and inverse quantization unit are shown in Fig. 62. The

constant value of quant_coef, dequant_coef, qp_const, qp_shift, and qp_per are

implemented by look-up table depending on the QP values. The design also uses

the data guarding technique to reduce power consumption when input value is

zero.

Fig. 62. Hardware architecture of quantization unit

 58

5.3.5. Mode Decision Unit

Fig. 63 shows the hardware architecture of mode decision unit. The

transformed coefficient is accumulated by mode decision unit. The scaling

operations are implemented by shift and add. If the cost of current mode is small

than best mode, the cost and mode value of best mode register will be refreshed.

After processing whole macroblock, the mode with minimum cost will be selected

as the best intra prediction mode.

Fig. 63. Hardware architecture of mode decision unit

Fig. 64. CAVLC architecture

 59

5.3.6. CAVLC Unit

The architecture of CAVLC is shown in Fig. 64. CAVLC encoding process

can be divided into two phases, scanning phase and encoding phase. Input of

CAVLC is four transformed coefficients per cycle. The scanning phase will skip

the zero coefficients and only scans the nonzero one in the inverse zigzag scan

order to speedup the encoding phase. Then, the data are sent to the corresponding

lookup tables in parallel. These codes are buffered and concatenated to form the

final bitstream.

Fig. 65. Memory Organization

5.3.7. Memory Organization

In the proposed architecture, two components have memories. The

organizations of memories are shown in Fig. 65. Source buffer stores the input

data 4 pixels row by row. Coefficient Buffer is divided into two parts to facilitate

DC value access in Intra16x16 mode. By using Ping-Pong architecture, data input

phase and entropy coding phase can be pipelined to improve the encoding

throughput.

 60

5.3.8. Overall Architecture Performance

Fig. 66 shows the timing schedule of proposed intra coder. Intra16x16

prediction mode is inserted in the Intra4x4 reconstruction cycle. If Intra16x16 is

selected as best prediction mode, the quantization coefficient will be recomputed

again to replace the data in ping-pong buffer.

1086 cycles are spent for pipelined architecture as shown in Fig. 67. The

performance of proposed architecture only needs about 117.28MHz to meet

HDTV 720p (1280x720@30Hz) real-time application.

Fig. 66. Timing schedule of proposed intra coder.

Fig. 67. Timing schedule of proposed architecture

 61

5.4. Implementation Results

To evaluate the accuracy and the efficiency of the proposed architecture, the

design is implemented using the UMC 0.18µm 1P6M CMOS technology and the

cell-based design flow. The chip has an area of 2.4x2.4 mm2 (pad limited) as

shown in Fig. 68. The design can achieve 125 MHz at the worst-case. Thus, it can

easily support 29.46M pixels/s still image encoding and real-time moving picture

intra coding of HDTV 720p@30fps video application when clocked at

117.28MHz. Therefore, it is suitable for digital video or camera applications.

Table 9. List of gate count

Intra Predictor 3507

Q/IQ 22082

DCT(with DC register) 9985

IDCT(with DC register) 9836

Boundary Reconstruction Unit 15697

Cost Generation and Mode Decision Unit 10315

UVLC/CAVLC 11965

Controller 2781

Boundary Predictor Buffer 6465

Total 92633

 62

Technology: UMC 0.18 µm 1P6M CMOS

Voltage:
1.8 V (Core)

3.3 V (I/O)

Die Size: 2.4×2.4 mm2

Core size: 1.28x1.28mm

SRAM: (all single port)

Coefficient buffer

Source buffer

104 x 64 bits x 2 banks

96 x 32 bits x 1 bank

Fig. 68 Chip specification

 63

Chapter 6 Conclusion

In this thesis, our contribution is in three parts. The first contribution is the

deblocking filter architecture that can accelerate the deblocking process. The

proposed two architectures not only save the memory size but also have higher

speed. The idea is to rearrange the data flow and achieve higher data reusability.

The second contribution is the fast intra coding algorithm can reduce the

computational complexity of intra 4x4 prediction. Six modes are required instead

of nine modes in the full search method. The fast intra prediction algorithm can

save 33% computational complexity with only about 1% bit-rate loss. The final

contribution is the intra coding architecture can speed up the computation of intra

frame coding. Proposed cost function has better quality and complex plane mode

is skipped to save area. The prediction process is well scheduled to achieve high

utilization. We hope that our research result can promote the convenience of

human life.

 64

Bibliography

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint

Video Specification (ITU-T Rec. H.264/ ISO/ IEC 14496-10 AVC), Mar.

2003.

[2] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra,

“Overview of the H.264/AVC Video Coding Standard,” IEEE Transactions on

Circuits and Systems for Video Technology, July 2003

[3] Information Technology - Generic Coding of Moving Picture and Associated

Audio Information: Video, ISO/IEC 13818-2 and ITU-T Recommendation

H.262, 1996

[4] Video Coding for Low Bit Rate Communication, ITU-T Recommendation

H.263, Feb. 1998.

[5] Information Technology - Coding of Audio-Visual Objects - Part 2: Visual,

ISO/IEC 14496-2, 1999.

[6] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G.J. Sullivan,

"Performance comparison of video coding standards using Lagrangian coder

control," in Proceedings of IEEE International Conference on Image

Processing 2002, vol. 2, pp501-504.

[7] Y.-L. Lee and H. W. Park, “Loop filtering and post-filtering for low-bitrates

moving picture coding,” Signal Processing: Image Commun., vol. 16, pp.

871–890, 2001.

[8] S. D. Kim, J. Yi, H. M. Kim, and J. B. Ra, “A deblocking filter with two

separate modes in block-based video coding,” IEEE Trans. Circuits Syst.

Video Technol., vol. 9, pp. 156–160, Feb. 1999.

 65

[9] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz, “Adaptive

deblocking filter,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,

pp. 614- 619, Jul. 2003.

[10] H.264/AVC reference software JM7.2, Jul. 2003

[11] Y.-W. Huang, T.-W. Chen, B.-Y. Hsieh, T.-C. Wang, T.-H. Chang, L.-G.

Chen, “Architecture design for deblocking filter in H.264/JVT/AVC,” Proc.

of Multimedia and Expo, vol. 1, pp. 693 –696, Jul. 2003.

[12] Draft ITU-T Recommendation and Final Draft International Standard of

Joint Video Specification (ITU-T Rec. H.264/ ISO/ IEC 14496-10 AVC), Mar.

2003.

[13] H.264/AVC reference software JM8.2, Jul. 2004

[14] Meng, B.; Au, O.C, “Fast intra-prediction mode selection for 4x4 blocks in

H.264”in Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal, 2003.,

vol. 3, 6-10 pp.III - 389-92 ,April2003

[15] Meng, B., Au, O.C., Chi-Wah Wong, Hong-Kwai Lam, “Efficient

intra-prediction mode selection for 4x4 blocks in H.264” in Proc. of Int. Conf.

on Multimedia and Expo, 2003, vol. 3 , 6-9 Pages:III - 521-4, July 2003

[16] Feng PAN, Xiao LIN, Rahardja SUSANTO, Keng Pang LIM, Zheng Guo LI,

Ge Nan FENG, Da Jun WU, and Si WU, "Fast Mode Decision for Intra

Prediction," JVT-G013, 7th Meeting, Pattaya II, Thailand, 7-14 March, 2003.

[17] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG ”Performance
comparison: H.26L intra coding vs. JPEG2000” Klagenfurt, Austria, 22-26
July, 2002, JVT-D039

[18] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen, “Parallel 4_4 2D
transform and inverse transform architecture for MPEG-4 AVC/H.264,” in
Proc. IEEE Int. Symp. Circuits and Systems, 2003, pp. 800–803.

 66

作者簡歷

姓名：鄭朝鐘

籍貫：台灣省台南市

學歷：

國立台南市第一高級中學 (民國 85 年 9 月～民國 88 年 6 月)

國立交通大學電子工程學系 學士 (民國 88 年 9 月～民國 92 年 6 月)

國立交通大學電子研究所系統組 碩士 (民國 92 年 9 月～民國 94 年 6 月)

獲獎紀錄：

 九十三學年度 大學院校積體電路設計競賽 (IC Contest)

研究所/大學部 標準單元式設計組(Cell-based) 優等

 Asia and South Pacific Design Automation Conference (ASP-DAC) 2005

Best Award of Student Design Contest

 九十二學年度 大學院校矽智產設計競賽(IP Contest)

Star Video Motion Estimation Engine QME

Soft IP 不定題組 特優

 九十一學年度 殷之同電子實驗計畫獎學金

專題名稱：Automatic generation of Area-Effective Bit-Serial FIR Filters

 九十一學年度上學期(大四) 電子工程系書卷獎

 九十學年度下學期(大三) 電子工程系書卷獎

 九十學年度上學期(大三) 電子工程系書卷獎

 67

著作：

Chao-Chung Cheng, Tian-Sheuan Chang, "Fast Three Step Intra Prediction
Algorithm for 4x4 blocks in H.264," International Conference on Circuit and
System (ISCAS) 2005

Chao-Chung Cheng, Tian-Sheuan Chang, "An Hardware Efficient Deblocking
Filter for H.264/AVC," International Conference on Consumer Electronics (ICCE)
2005

Hao-Yun Chin, Chao-Chung Cheng, Yu-Kun Lin, and Tian-Sheuan Chang, "A
Bandwidth Efficient Subsampling-based Block Matching Architecture for Motion
Estimation," Asia and South Pacific Design Automation Conference (ASP-DAC)
2005

Chao-Chung Cheng, Yu-Jen Wang, Tian-Sheuan Chang, “A Fast Fractional Pel
Motion Estimation Alogrithm for H.264/AVC,” The 16th VLSI Design/CAD
symposium 2005

