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ABSTRACT

In this thesis, two high-threughput low-density' parity-check (LDPC) code decoders are
presented. The first one is a (600, 450) LDPC code-decoder applied for MB-OFDM UWB
applications. The architecture adopts a re-scheduling data flow for channel values and the
pipeline structure to reduce routing congestion and critical path delay. After fabricated in
0.18um 1P6M process, the proposed partially parallel decoder can support 480Mb/s data rate
under 8§ decoding iterations. Second decoder is implemented based on a (1200, 720) irregular
parity check matrix. For achieving higher chip density and less interconnection delay, the
proposed architecture features a new data reordering technique to simplify data bus between
message memories and computational units; as a result, the chip size can be greatly reduced
due to the increased chip density. Moreover, the LDPC decoder can also process two different
codewords concurrently to increase throughput and datapath efficiency. After 0.18um 1P6M
chip implementation, a 3.33Gb/s data rate with 8 decoding iterations is achieved in the
21.23mm’ silicon area. The other experiment using 0.13pm 1P8M technology can further

reach a 5.92Gb/s data rate within 10.24mm? area while the chip density is 75.4%.
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Chapter 1
Introduction

1.1 Motivation

Low-density parity-check (LDPC) code, a linear block code defined by a very sparse
parity check matrix, was first introduced by Gallager [1], [2]. Due to the difficulty of circuit
implementation, LDPC codes have been ignored for about forty years except for the study of
codes defined on graphs by Tanner [3]. The rediscovery of LDPC codes were done by
Spielman et al. [4] and MacKay et al:[5], [6]. It has engaged much research interest because
the sparse property of parity check matrix makes the decoding algorithm simple and practical
at good communication rates [5]. It was proven [7] that the LDPC code with large block
length can beat turbo code [8], and achieve a capacity within 0.0045dB of the Shannon limit
on AWGN channels. Besides their good error-correcting capability, LDPC codes have
inherently fully parallelism and the simplicity of arithmetic computations. As a result, LDPC
codes have been considered as next-generation forward error-control (FEC) technology for
many high speed applications such as magnetic storage and telecommunications. However,
the very large scale integrated circuits (VLSI) implementation of LDPC code decoders still
remains a challenge in real applications.

The main challenge of LDPC code decoder falls in the complex interconnections due to
the randomness of parity check matrix. To efficiently design the decoder, the realization of its
iterative decoding process which is referred to the message passing algorithm [5] becomes the
most critical issue. According to different decoding schedules, the implementation of LDPC
code decoders can be partitioned into two categories, fully parallel decoders and partially

1



parallel decoders.

Fully parallel decoders directly map the corresponding bipartite graph [3] into hardware
and all the processing units are hard-wired according to the connectivity of the graph. Thus
they can achieve very high decoding speed but have a large hardware cost. The fully parallel
implementation in [9] presents a 1024-bit, 1-Gb/s LDPC code decoder, which demands large
area due to large amount of processing units and the complicated interconnections. The
partially parallel architecture in [10] maps a certain number of processing unit into a single
hardware block by using time-division multiplexing. It trades the decoding throughput for the
reduction of hardware complexity. However, they also suffer from the same routing
complications, and may be even worse due to multiplexers. Another implementation approach
is presented in [11], which employs a turbo-like decoding algorithm with structured parity
check matrices. The throughput is quite low due tothe trellis-based decoding process.

In this thesis, two decoders-with different block-lengths are implemented based on the
partially parallel architecture. To-solve the problems mentioned previously, efficient methods
are proposed and applied to the decoders to eliminate multiplexers for less signal routing. The
implementation results show how the proposed methods improve the performance. The detail

discussion and architecture will be given in the following chapters.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the
characteristics and decoding algorithms of LDPC codes. High-speed applications which
adopted LDPC codes or potentially will adopt LDPC codes as the FEC kernel are introduced
in Chapter 3. Simulation results and performance analysis will also be discussed here. In
Chapter 4, the proposed LDPC code decoders, including functional units, data rescheduling

and memory arrangement, are presented in detail. Besides, the chip implementation results



and comparisons with the state-of-the-arts will also be shown. Finally, conclusion and future

work are made in Chapter 5.




Chapter 2
Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes are linear block codes that are specified by
sparse parity check matrices containing mostly 0’s and only a small number of 1’s [1]. The
code structures and decoding algorithms can be represented by bipartite graph [2].
Furthermore, it has been shown that the codes can achieve a capacity near Shannon limit with
large block length. In this chapter, the code characteristics and decoding algorithms are

presented.

2.1 LDPC Codes

The parity check matrix H which has N columns and M rows defines a LDPC code with
the block length of N bits and M parity checks. Assuming the matrix is of full rank, the
number of information bits is K = N — M, and the code rate is R = 1 — M/N. It was shown by
Gallager [2] that for large block lengths, the minimum distance of the code grows linearly
with N. Thus block lengths of LDPC codes are often designed as large as possible. For a
regular LDPC code, each column and row contains a fixed number of 1’s in H, leading to
equal weights for both columns and rows. Otherwise, the code is termed irregular. It has been
shown that irregular codes outperform regular codes due to wave effect [12]. An example of
regular LDPC code parity check matrix is shown in Fig. 2.1.

Generation a set of valid codewords requires the generator matrix G, which can be
derived from H. The relationship between G and H can be expressed as

G-H =0. 2. 1)

4



Let u = (u,, u,, u,, .., u,) with u,={0, 1} be the information bits, a LDPC code C is
defined as

C={x|x=u-G}. (2.2)
Note that matrix G is not generally sparse; as a result, the complexity of encoding process is
much higher due to the large and dense matrix multiplication. From equation (2.1) and (2.2), a

valid codeword vector x = (x,, x,, x;, ..., x,) should satisfy M parity check equations

xh"=0 i=12,.,M , (2.3)

1

where h; = (h;y, hi>, ..., h;n) denotes the row space of H.

11110000000000000000
00001111000000000000
00000000112:12100000000
0000000000001 1110000
00000000000000001111
1000100010001 0000000
0100010001 0000001000
00100010000001000100
00010000001 000100010
00000001000100010001
10000100000100000100
01000010001000010000
00100001000010000010
00010000100001001000
00001000010000100001

Fig. 2.1 Example of regular LDPC code parity check matrix

LDPC codes can also be represented in bipartite graph. On one side the graph has N bit
nodes which correspond to the N columns of H and M check nodes which correspond to the
M rows of H on the other side. An edge which connects a bit node B; and check node C;
corresponds to a 1 in the entry (7, j) of H. Fig. 2.2 is the corresponding bipartite graph of the

LDPC code specified by the parity check matrix in Fig. 2.1.

5
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2.2 Message Passing Algorithm

In this section, message passing algorithm which is used to perform probabilistic
decoding is introduced. The intrinsic probability P™(x=a) represents the probability that
the variable x chooses the value a. The extrinsic probability P (x=a) describes the new
information for variable x which is obtained from the event E. Moreover, the a posteriori
probability P!*'(x=a) represents the conditional probability that the variable x takes the

value a based on the knowledge of event E.

2.2.1 Principle of Message Passing Algorithm

The key factor of the message passing algorithm is to iteratively pass and exchange
probabilistic messages in a graph. Extrinsic-and a posteriori probabilities can be evaluated
based on given intrinsic probabilities and the construction of the graph.

Consider a node G with K+1 edges, which are associated with the variables ey, e, ..., ex
belonging to the alphabet sets Ay, Ay,...., Ak, respectively. The connection is shown as Fig. 2.3.
For simplicity, only the case of binary variables is discussed in the following. That is,
A; € Z, . Denote the intrinsic, extrinsic and a posteriori probability for e; with respect to event
Gas PM(e=¢&), P(e,=&) and P/ (e =¢&), respectively. Assuming that the intrinsic
probability for variable e; is available, the a posteriori probability can be derived by Bayes’

theorem as

P (e, =&)=P(e, =& |G)
_ P(G, € = é:z)
G
1

:?G)P((”ei =& (e, =4).

(2.4)



Fig. 2.3 Message passing on a node

Note that the extrinsic probability is in proportion to P(G |e; =¢&;) . That is
P (e, =&()=aP(Gle =¢), (2.5)

where «; is a scaling constant. A constraint set S; € 4y x 4 xL x 4Ax that the values of
variables (ey, ey, ..., ex) have to satisfy is defined on node G. Therefore, event G is true only

when

(S05Siseets Gie) €5G =, (2.6)

where e, =&, e =&, ..., ex = &g
To evaluate the extrinsic and '@ posteriori probabilities of variables {e}%,, the
probabilities of variable ey are considered without loss of generality. Note that the product of
alphabets 4; x A, x -+ x Ag forms a complete set of values for variables (e;, e, ..., ex).

Hence,

> Ple=&})=1 . 2.7)

(&15nbx JEAXL x Ak

In this way, the probability of event G can be decomposed as

P(G)= > PG {g=&}) - (2.8)

(& s )AL x Ay

The extrinsic probability P (e, =&,) can thus be derived by

Péx’(eo :go):aoP(Gleo 250)2(10 Z P(G, {ei :é‘:i}f:l |€0 250) > (29)

8158k JEA XL x Ay

where «, is a scaling constant. With chain rule and the independence of the variables {¢;}5,,

the following result is obtained.



P(G, {e, :é:i}fil le, =&)=P(G|{e :‘fi}io)'})({eﬁ :é:i}fil le, =)

K 2.10
:P(G|{ei:é}fio)'np(ei:é)~ ( :

Because event G is true only when equation (2.6) is satisfied, the first term in equation (2.10)

can be written as

L if (561006 ) €S

i (2.11)
0 otherwise

P(G| {ei = fi}iliO) :{

By putting together equation (2.9), (2.10) and (2.11), the expression of Ps"(e, =&)) can be

rewritten as

P, =&)=a, Y, [JIBR"(=¢) . (2.12)

,,,,, i=1

The a posteriori probability P?*'(e, =&,) can be derived by combining equation (2.4) and

(2.12).
post 1 ul int int
Fi" (e =&) == Z HPG (¢=36) | F5 (e =2
P(G) il
(&o-&1s8k )ESG (2 13)
K
=a;  YUNIR e =4),

Ebe IO

(o561 56k )ESG

where o =a,-1/P(G) is a normalization constant.

2.2.2 Message Passing on Bit Nodes

Representing one bit of the codeword, a bit node in a bipartite graph corresponds to a
specified column in the parity check matrix H which defines the code. Thus the constraint on
a bit node specifies that the associated variables should be equal. The constraint set S on bit

node B, which connects to K+1 check nodes, can be expressed as

S, =1{(¢e;.€,...ex) e, =€ =L =e,}. (2.14)



Fig. 2.4 Message passing on a bit node

The connection is also shown in Fig. 2.4.

For bit node B, the input message vector along edge e; is defined as u,5(e;), where i =
1~K. Based on equation (2.12) and (2.14), the output message 1 ,¢,(ey =&,) along edge ey
is

Moo, (& = &) & (cgmnby)

—ay 2 TlHewe=5) (2.15)

');l 7""51(
(So-Si576k)ESR
K
= aoH:uCi—)B(ei =)
i1

where ¢, is the normalization constant.

2.2.3 Message Passing on Check Nodes

In a bipartite graph, a check node, denoting a parity check equation of the code,
corresponds to a specified row in the parity check matrix H. Thus the constraint on a check
node specifies that the summation of the associated bits should be zero. The constraint set S¢
on check node C, which connects to K+1 bit nodes, can be expressed as

Sc ={(ey,€,....ex) | e, +e +L +e, =0}, (2.16)
where the operation “+” represents the modulo-2 summation. The connection is shown in Fig

2.5.

10



Fig. 2.5 Message passing on a check node

The input message vector along edge e; is denoted by 1, ,c(e;) for i = 1~K. With equation

(2.12) and (2.15), the output message 1,5 () =<&,) along edge ey can be derived as
Heop, (€ =6)) = (e, = &)

s, e T, (e =4) (2.17)

51 ""’éK
(So561 55 )ESC

=, Z e R :O]HﬂB,aC(eizé)’

51 7“'551\'

where [& +& +L +& =0] is an indicaton function that determines whether the parity
check equation is satisfied. Because the indicator function consists of large number of
possible configurations, the summation operation in equation (2.17) is very complicated. Thus
we first consider the case of K=2 for simplicity. Therefore,

| i=

[IUC—M?O (e, =0)
(2.18)

z [0+& +&, = O]HﬂB‘.%C(ei =)
Hep, (€ =1) ] B

z [1+&+&, = O]H/‘Bﬁc(ei =&)

SE) i=
When ¢y = 0, the indicator function is true if and only if the configuration is either e;= e,=0

or e; = e,= 1. Hence equation (2.18) can be decomposed as
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Hc_5, (e =0) _luBl—>C (e = 0) g, (e = 0)+ 1ty (e =Dty (e, =1)
He_yp, (€ =1) | M5 (e =0y (e, =D+ py (e =Dy (e, =0)

(l_luBl—m(el = 1))(1_1u32—>c(ez = 1))+/131—>c(61 =Dy (e, =1)

(1_/131—>C(el = 1))/'le—>C(e2 = 1)+/uBl—>C(el = 1)(1_/132—>C(e2 = 1)) ’

(2.19)
Where ﬂBl >C (el = 0) = 1 - ﬂB]*)C (el = 1) and ﬂBz*)C (82 = 0) = 1 - /’le%C (ez = 1) . Furthermore,

the expression in equation (2.19) can be rewritten as

lzum) (e = 0>—1} (1=215 e (e, =) (1= 215, (e, = 1))

- . (2.20)
20,5 (6 =1)—1 —(1 =24y (e = 1))(1 =21y (e, = 1))

By induction [13], the results in equation (2.20) can be generalized for K>2 and becomes

K
2pc 5 (e, =0)-1 1;[(1_2'u3,—>c(ei = 1))
2ty (g =D=1 | | & : (2.21)
l[,l N e, = =3
C—By \"0 _H(I_Z'UB,-HC(ei =1))
i=1
As a result, the output messages €an be exptessed in terms of the input messages:
1 K
—(1+ 1-2 e =1
/uCaBn (eo = 0) 2 ( ll:‘l[( lLlBi‘)C( i )))
- : (2.22)
Heos, (e,=1)

N | —

(1= H (=24, (e, =1))

2.3  LDPC Code Decoding Algorithm

2.3.1 Sum-Product Algorithm (SPA)

For a Mx N parity check matrix H and the corresponding graph, B; fori =1, 2, ..., N
denote the bit nodes, C; for j = 1, 2, ..., M are check nodes, and e; is the edge connecting B;
and C;. Furthermore, M(i) is the set of check nodes connected to bit node B;, and L(j) is the set
of bit nodes that are associated with check node C;. The codeword is also represented by

x =[x,x,,L ,xy]. The intrinsic probabilities with respect to the LDPC code can thus be

12



written as

P (x)=P(x, =&), (2.23)
where & €{0,1} and P(x; =0)=1-P(x; =1), assuming binary symmetric channel.
Fig 2.6 illustrates the iterative decoding flow of LDPC codes where each step will be

described as follows [5].

Iterative Decoding
ere 1o e Horizontal
Initialization -
Step
Vertical Output
+ Y
Step ™ Estimated Bits

Fig. 2.6 Iterative decoding flow chart for LDPC codes

(1) Initialization: The messages from bit node:B; to check node C; are initialized as

{ﬂsﬁg (¢; = 0)} {P(xi - 0)}
= : (2.24)
IUB,.»CJ (eij = 1) P(xi = 1)

(2) Horizontal step: As shown in Fig. 2.7(a), message updates associated with check

nodes are completed in this step. As shown in equation (2.22), the update equations

can be expressed as

1

S+ (1=245 ¢ (e, =1)

luC/-—>B; (et'j :0) 2 B,-velL(_‘j[)\Bl. ﬂB‘ Y J
e =1 |1 : (2.25)
e. =

He, 58 E(l— H (1_2IUBI-,»CJ (e; =1)))

B,eL(j)\B,

where L(j)\B, is the set of bit nodes that participate in check node C;except B,.
(3) Vertical step: In vertical step, the messages associated with bit nodes are updated as

illustrated in Fig. 2.7(b). According to equation (2.15), the update equations can be
13



expressed as

CreM(iC,

[/uB,»C/ (eij = 0)
| , (2.26)

ag/P(xi = 0) H :ucj,—>3‘. (eg/' = 0)
Hy e (e, =1) ] B

P =) [ #e nley =D

CreM(i\C,

where M(i)\C; is the set of check nodes that connect to bit node B; except C; and «;
is chosen such that g5 ¢, (e; =0)+ 5 ,c,(e; =1) =1.

(4) Syndrome check: The a posteriori probabilities for each codeword bit can be

computed as

aP(x;=0) [ 4 5(e;=0)

PPast (x,' — 0) C e
ost - B (2.27)
PP (x, =1) a,P(x; =1) H Hc, 5, (e; =1
CreM(i)

where normalization factor g tis usedrto ensure P (x; =0)+ P"'(x;, =1)=1. The

estimated bit x; is set to 1 if P (x; =1)> 0.5, otherwise it is set to 0. Then the

syndrome equation XH' =0 is verified whether the estimated sequence
x=[x%,X%,L , Xy] isavalid codeword.

The decoding process halts when the syndrome check equation is satisfied; otherwise it

goes into the next decoding iteration. A failure is declared if some maximum number of

iterations occurs without finding a valid codeword.

' P(x;=&)

(a) Horizontal step (b) Vertical step

Fig. 2.7 Message passing in LDPC code decoding
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2.3.2 Log-Likelihood Ratio Sum-Product Algorithm (LLR-SPA)

For a binary codeword, the decoding operations can be performed in terms of
log-likelihood ratios [15]. The log-likelihood ratio (LLR) of a random variable U can be

defined as

P(U =0)

L({U)=log PU=])

(2.28)

Therefore, the decoding flow can be modified as follows.

(1) Initialization: The messages sent from bit node B; to check node C; are initialized by

P(x;=0)

) (2.29)

Ly o, (e,)=log

which is the so-called “channel value” or “channel information”.
(2) Horizontal step: Based on equation (2:25), the update operation in logarithmic

domain can be rewritten-as

He op (e; =0)

C;—B; \¥jj He, (eij =1)

19 TT (12825, ¢, (e =) (2.30)
By eL(j)\B;
=log .
=TT (1=24t5c (e, =D)
ByeL(j)\B;

Based on the hyperbolic tangent function and the arc-hyperbolic tangent function,

e —1
u

tanh(%) = and tanh™'(y)= %logrr—y , (2.31)

e +1

the term 1-2u; ¢, (e; =1) 1in equation (2.31) can be expressed as

1
1- 2,1131_/_)C/ (e;, =1) = tanh (5 LB[,_)C/ (ei_,/.)j . (2.32)

Combining (2.30), (2.31) and (2.32), we can derive
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1+ J] tanh@LBi%/(eﬁ)j

ByeL()j)\B,

LCJ-—>B‘. (egj) =log

1
1- H tanh(zLBl,_)Cj (el.,j)) (233)
ByeL(j)\B;
=2tanh™ H tanh (l Ly .o (e )j
ByeL(j)\B; 2

(3) Vertical step: Using LLR, the update equation can be rewritten as

Hg e, (eij =0)
/uB‘.—>Cj (ej/' = 1)
a;P(x;=0) [ 4 (e, =0)

C,eM()\C,

a,P(x,=1) ] He, s (€y =1)

CreM(i\C,

LB[_)CJ (e,) =log

=log (2.34)

=L(x)+ Y, Le ()

CreM (NG,
where L(x;) is the intrinsic log-likelihood ratio of bit x;.

(4) Syndrome check: The pseudo-'a posteriori probabilities for each codeword bit can

be computed as

 POSE —
LPost (xi) = logw
PP (x =1) (2.35)
=L+ D Lo, (e) -
CieM(i)

Hard decision are performed based on the sign of L”*(x;); therefore, bit x; is set
to 1if L7”(x;) is negative, otherwise it is set to 0.

Compared with the SPA, multiplications are replaced by additions and the normalization

factors are eliminated in the LLR-SPA. Less complexity in implementation is achieved when

LLR-SPA is employed.

2.3.3 Min-Sum Algorithm (MS)

In the LLR-SPA, the horizontal step is the most computationally complex part because of

hyperbolic tangent functions. Hence it is difficult to implement in hardware based on
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LLR-SPA. To further simplify the decoding process, the min-sum algorithm [16] is
introduced.

We first consider a check node with 3 edges without loss of generality. Combining

equation (2.20), (2.31) and (2.32), we can obtain

1 eLBﬁC(el) _1 eLBzéc(EZ) _1
+ eLBHC(el) +1 ’ eLBzeC(EZ) +1

LC%BO (eO) = log eLBHc (e) -1 eLBzeC(ez) -1
| e e (2.36)
e BI—>C \“1 +1 e By—C \*2 +1
B log 1+ eLBlaC(el)eLBzﬁ(?(ez)
eLBﬁc(el) + eLb‘zﬂC (e2)
Based on the approximation in [17], equation (2.36) becomes
LC*)BO (eo) — lOg (1 + eLB]aC(el)"'LBz—)C(eZ) ) _ log (eLBI—>c(91) + eng—m(‘-’z) )
= max (0’ LBI—>C (el ) + LBZ—)C (62)) iy log(l + ei‘LBlaC(el )Ly, (e )‘)
—max (L, (@), Ly e (@) “log(l e 2ot (237)
= sign (LBI—>C (61))Sign(ngqc(ez))min(‘LB,ec ()], LBZ—>C(62)‘) +g(ee,)

~ sign (LBI_)C (e, )) Sign (LBZ—>C (ez))min (‘LBI—>C (e)

Ly, e (ez)‘) )

b

—|La e (e)+ Ly e ALs e (e)~Liy e . .
where g(e,e,)=log(l+e [Eacsc ()L ‘(eZ)‘)—log(lJre acsc ()L C(”)‘) is the correction factor.

By induction [15], the result in equation (2.37) can be generalized to obtain a sub-optimal

expression of the horizontal step, which is

L (e,,)z[ I1 Sigl’l(LB‘.,acj(6,«;,-))]3‘222]1)1\3( ] . es

B.eL(j)\B;

LB,.,—>C/. (e;)

This approximation results in a significant reduction of hardware complexity but little penalty
of degraded performance [18].

In the min-sum algorithm, all steps of the decoding are the same with LLR-SPA except
for the horizontal step. Thus the min-sum algorithm can be derived by just replacing equation

(2.33) with (2.38) in LLR-SPA.
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Chapter 3
High-Speed Communication Systems
with LDPC Codes

In communication systems, channel coding is a key technique to minimize the
interferences from the noisy channel. Due to the excellent error-correcting ability and the
inherent parallelism, LDPC codes are suitable for high-speed applications. In this chapter,
high-speed communication systems that adopted LDPC codes or potentially will apply LDPC
codes as the channel coding technelogy are sintroduced. The simulation results of the

error-correcting performance are also shown in'the following.

3.1 Introductions to High-Speed Communication Systems

3.1.1 Satellite Wireless Communication

Digital video broadcasting (DVB) standards are established to deliver videos for the
subscriber to provide various entertainments. Over past few years, different broadcasting
modes have been designed for kinds of purposes, including the terrestrial, cable and satellite
broadcasts. The original satellite digital video broadcasting (DVB-S) was developed in 1994
[19], whose forward error correction (FEC) technology is the concatenation of convolutional
codes and Reed-Solomon codes. It is now used worldwide by most of the satellite operators
for data and television broadcasting services. To improve the overall performance of the
digital satellite transmission technology, the second generation of DVB-S (DVB-S.2) was

developed [20]. As a successor to the current DVB-S standard, DVB-S.2 is expected to
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provide not only existing but also new services, including TV, High Definition Television
(HDTYV), audio and other multimedia services.

Employing a powerful FEC system based on LDPC codes concatenated with BCH codes,
DVB-S.2 allows quasi-error-free (QEF) operation at about 0.7dB to 1.0dB from the Shannon
limit, depending on the transmission mode [20]. Moreover, a capacity gain in the order of 30
percent over DVB-S is achieved due to higher order modulation schemes. The functional

block diagram of the DVB-S.2 system is illustrated in Fig. 3.1.

FEC
e e e e
i
TX Mode Stream BCH LDPC Bit
Data Adaptation Adaption Encoder Encoder Interleaver
l
gy g S g Mg g g g M g g .
| PL
RF i i
Modulation Framing Mapping

Fig. 3.1 Functional block diagram of the DVB-S.2 system

To transmit data via satellite, DVB-S.2 targets for a robust and reliable communication
service. The corresponding packet error rate for DVB-S.2 at QEF over AWGN channel is 107,
which is very low as compared to other systems. Therefore LDPC codes with large block
lengths, which are 64,800 and 16,200, are chosen to accomplish excellent error performance.
And different coding rate of LDPC codes are specified to accommodate various transmission

modes.

3.1.2 60GHz Band Wireless Communication

Recently, the Federal Communications Commission (FCC) released the RF band around

60GHz, leading to a new era in the millimeter wave based communications. It potentially can
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provide a variety of applications including high-speed wireless personal area network
(WPAN), automotive radar at nearby frequencies and multimedia communications. The
corresponding standardization (IEEE 802.15.3c) is now under construction by IEEE 802.15
Working Group for WPANS. It is intended to offer higher data transmission, higher frequency
re-usage and superior coexistence than the existing wireless systems. The working group also
suggest IEEE 802.15.3¢ will be widely used for Gigabit Ethernet and replace the cables and
other wired links.

One of the optional data rate suggested by IEEE 802.15.3c¢ is greater than 2Gb/s in order
to satisfy an evolutionary set of consumer multimedia industry in WPAN communications.
Due to the required high data rate, LDPC codes are potential candidates for the FEC
technique. With parallel implementation, the LDPC code decoders can easily achieve the

demands for data rates over Gb/s.

3.1.3 Ultra-Wideband System

Ultra-wideband (UWB) is an emerging wireless physical (PHY)-layer technology that
uses a very large bandwidth [21], [22]. It possesses unique advantages that are attractive to the
communication applications: i) the potential for very high data throughput and large increase
in user capacity; ii) the implementation of UWB potentially takes small size and processing
power; and iii) ultra high precision ranging at centimeter level [22].

Due to the lack of available spectral bands, the applications of UWB devices prior to
2001 were mainly for military usage. In the spring of 2002, the FCC unleashed 3.1GHz to
10.6GHz RF band for increasing high-speed data transmission. Responding to this FCC ruling,
industries, government agencies and academic institutions made many research efforts that
adopted UWB technology in various areas. These include short-range high-speed wireless

communication, localization system, high-resolution radar and imaging system. In this thesis,
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we will focus on the UWB applications for wireless networks.

UWRB addresses short-range connections among digital home electronics appliances that
are applied for the wireless personal area network (WPAN). It is expected to provide
high-speed data exchange among storage systems and real-time video/audio distribution for
home entertainment devices. Due to small power consumption and high data rate, UWB
technology will be exploited to replace existing wireless services.

In [23], the multi-band orthogonal frequency-division multiplexing (MB-OFDM)
PHY-layer proposal indicates the coded OFDM based solution can provide up to 480Mb/s for
528MHz UWB system. The desired range in MB-OFDM is 10m for 110Mb/s and can be
reduced for higher data rates [23]. To enhance the overall system performance, the
convolutional codes and interleaving techniques are applied in the FEC mechanism, whose

block diagram is shown in Fig. 3.2.

Baseband

Convolutional —'\
—/

OFDM —

Modulator |— DAC

Scrambler Interleaver

TX
Data |: Encoder

~ =
= =~
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RX

Data ADC

De-Scrambler De-Interleaver

I=
ir 40

_l\
_‘/
l/‘— OFDM
\—

De-Modulator NT

1r
1r Jt

Viterbi l (-
\N—

Decoder

Fig. 3.2 Block diagram of MB-OFDM UWB system

For improving PHY-layer capacity, LDPC codes can increase the throughput to over
500Mb/s in future WLAN applications [24]. And the LDPC coded OFDM baseband system
has been silicon proven to achieve 480 Mb/s data rate [25]. To provide better performance, the
original convolutional codes and bit interleaving are replaced with LDPC codes in

MB-OFDM UWRB systems [25] as shown in Fig. 3.3. The overall system performance will be
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described and discussed later.

Baseband
x —\ LDPC OFDM =N\
1 DA RF
Data -‘/ Scrambler Encoder Modulater —\/ ¢
RX LDPC OFDM
Data <:: De-Scrambler Decoder De-Modulater T ADC RF

Fig. 3.3 Block diagram of the proposed LDPC-COFDM UWB system

3.2 Error-Correcting:Performance of LDPC Codes in UWB

System

In the MB-OFDM UWB systems [25‘], the’ maximum 480Mb/s data rate with a
bandwidth of 528MHz is specified. The time domain spreading scheme is used to change the
data rate for different channel state information. In the following, the simulation results are
based on the system illustrated in Fig 3.3, whose detail specification is given in Table 3.1.
Two different irregular LDPC codes are constructed by the progressive edge-growth (PEG)
algorithm [26] to enhance the system performances. One is (600, 450) LDPC code (Code I),

and the other is (1200, 720) LDPC code (Code II).

Table 3.1 Specification of referenced MB-OFDM UWB system

Data rate (Mb/s) 120 240 480
Spreading gain 4 2 1
Constellation QPSK
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Data carrier 100

FFT size 128

Packet size (Bytes) 1024

Signal bandwidth (MHz) 528
Channel model Additive White Gaussian Noise (AWGN)

As stated in Chapter 2, the pseudo- a posteriori probabilities of the codeword bits
gradually converge to the real a posteriori probabilities as the number of decoding iterations
grows. And the internal messages which are exchanged between check nodes and bit nodes
are soft values. However, since infinite decoding iterations and infinite signal precision are
impossible for practical implementation, the maximum iteration number and the quantization
bits have to be decided. Some performance degradation would be introduced due to the
implementation limitations. As a result, a trade-off between the performance and hardware

cost will be concerned in the following:

3.2.1 Performance Analysis of Code I

Code I is a (600, 450) rate-3/4 irregular LDPC code, whose column weights are fixed to
3 and row weights are ranging from 11 to 14. Based on the referenced MB-OFDM UWB
system, its performances with different decoding iterations including the bit-error rate (BER)

and packet-error rate (PER), which is demanded to be less than 8% [21], is shown in Fig 3.4.
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Fig. 3.4 Performance results of the (600, 450) LDPC code
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Note that the required signal to noise ratio (SNR) is reduced as the iteration number
increases. In Fig. 3.4(b), 3dB SNR gain at PER = 8% is achieved as the number of decoding
iterations moves from 1 to 8. However, the improvement tends to be insignificant after 8
iterations, which is only about 0.3dB. As a result, LDPC decoding for Code I with 8 iterations
in referenced MB-OFDM UWB system is considerably a good trade-off for practical
implementation.

Quantization has to be performed for two types of signal values. One is the channel
values, and the other is the internal messages. Fig. 3.5 shows the fixed point simulation results
of Code I, where the notation (p, q) represents that the bit width of channel values and internal
messages are p and ¢ bits, respectively. The number of bits used for the integer and the

fractional part in each (p, ¢) quantization schemes are shown as Table 3.2.

Table 3.2 Bit width-distribution for different quantization schemes

Quantization Channel value Internal message
scheme Integer part  Fractional part | Integer part  Fractional part
4,5) 1 3 1 4
(5, 6) 1 4 1 5

Many combinations of the quantization schemes and the bit width distributions have
been tested through simulations. The performances of the quantization with more precision
than (5, 6) scheme are almost the same as those with infinite precision. Consequently, the (5,
6) scheme together with the bit width distribution listed in Table 3.2 are used for the proposed

LDPC Code I decoder.
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3.2.2 Performance Analysis of Code 11

Code II is a (1200, 720) rate-3/5 irregular LDPC code, whose column weights are also

fixed to 3 and row weights range from 7 to 9. Its performances on the MB-OFDM UWB

system including BER and PER under different decoding iterations are shown in Fig. 3.6.

In Fig. 3.6(b), The performance has 4.5 dB SNR gain under PER=8% is obtained as the

number of decoding iterations grows from 1 to 8, but only 0.4 dB from 8§ iterations to 64

iterations. Therefore, LDPC decoding for Code II with 8 iterations is considered as a good

trade-off between implementation and error-correcting performance. The fixed point

simulation results of Code II are shown in Fig. 3.7, and the bit width distributions are given in

Table 3.2. According to the results, the (5, 6) quantization scheme is chosen as the

implementation parameter for the proposed decoder for Code II.
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Fig. 3.6(a) BER of the (1200, 720) LDPC code
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3.2.3 Performance Comparison with Convolutional Codes

In Fig. 3.8, the performance of LDPC codes is compared to the 64-state convolutional
coded system proposed in [23] where two different rates after puncturing the R = 1/3
convolutional code are selected as the references. It shows that both LDPC codes can
outperform the convolutional codes after puncturing with only 8 iterations. The short block

length and small decoding iterations will facilitate high speed implementation.
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Chapter 4
Architectures of Proposed LDPC Code
Decoders

The architectures of the proposed LDPC code decoders for two different LDPC codes,
Code I and Code II, will be introduced in this chapter. Basic functional units, data flow
rescheduling and memory arrangement methods will be discussed in detail. The measurement
results of the proposed LDPC code decoder chips and a comparison with the state-of-the-art
designs will also be listed. The specifications of Code I and Code II are summarized in Table

4.1.

Table 4.1 Summary of the.two LDPC codes

Code I Code II
Block length 600 1200
Information bits 450 720
Code rate 3/4 3/5
Code structure Irregular Irregular
Column weight 3 3
Row weight 11~14 7~9
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4.1 Introduction to the Conventional Design

Based on the decoding algorithm, the block diagram of conventional LDPC code decoder
is shown as Fig. 4.1. The bit node unit (BNU) is dedicated to the vertical step, while the check
node unit (CNU) is used for the horizontal step. The BNU (or CNU) reads and processes the
messages stored in the memory bank, and write them back into the memory bank after
updating. It can be noticed that a large number of combinational feedback paths exist between
the CNU (or BNU) and the memory unit, leading to the complex signal routing as well as

degradation of the decoding speed in the VLSI implementation.

BNU Memory CNU
Bank

!

Channel
value

Fig. 4.1 Block diagram of conventional LDPC code decoder

The conventional architecture of the CNU which is based on the LLR-SPA in (2.33) is
shown in Fig. 4.2(a). The look-up tables (LUT) are used to implement the hyperbolic tangent
(tanh) and inverse hyperbolic tangent (tanh™") functions.

The CNU can be implemented based on the min-sum algorithm as shown in Fig. 4.2(b)
to reduce the hardware cost. As described in (2.38), the operations in the CNU can be divided

into two parts: the sign evaluation and the minimum absolute value searching. The minimum
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absolute values are searches by & comparators which consist of k-7 inputs (CMP-(k-1)), where

k is the row weight of the parity check matrix.

A\ 4

— LUT-1

LUT-2

LUT-1

LUT-2

]

—1 LUT-1 LUT-2

— | LUT-1 LUT-2

'y

(@)

» Sign Bit Evaluation |

7 | CMP-(k-1) P2

CMP-(k-1) P

1
I:: —5 | CMP-(k-1) P j::

—| CMP-(k-1) P&

:
ull

L

(b)

Fig. 4.2 Architecture of conventional CNU based on: (a) LLR-SPA and (b) min-sum algorithm

The conventional BNU architecture with k£ inputs is shown in Fig. 4.3, where the
SUM-(k-1) is used to sum up k-1 values. Note that there is no difference on the BNU design
between the LLR-SPA and the min-sum algorithm. Both LLR-SPA and min-sum algorithm

have the same BNU design.
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channel value

Fig. 4.3 Architecture of conventional BNU

4.2  Proposed LDPC Code I Decoder Design

The LDPC code decoders have inherently-parallelism due to the non-dependency among
check node updates or bit node updates; the throughput can be improved by linear increase of
the hardware costs. However, the full-parallel implementation [9] is non-area-efficient for a
system chip design. Therefore the partial-parallel architecture is employed in the proposed
decoders to reduce circuit complexity according to the system requirements. In time-division
multiplexing mode, the partial-parallel LDPC code decoders map a certain number of check
nodes or bit nodes into a single processing unit. Extra decoding latencies are produced as
compared with the full-parallel implementations. Thus a trade-off is made between the
decoding speed and the hardware complexity. Besides, to simplify the hardware cost, the
min-sum algorithm is chosen to implement the proposed design while keeping the system

performance.
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Fig. 4.4 presents the architecture of the proposed LDPC Code I decoder containing the
distributor, memory unit, switch groups, CNU and BNU. Since the irregular parity check
matrix H has a fixed number of column weight (= 3), the total number of weight in parity
check matrix is 600 x 3 = 1800. To implement the decoder in a partial-parallel mode, the
check nodes in the corresponding bipartite graph are partitioned into three parts, and the bit
nodes are divided into four parts as shown in Fig. 4.5, where every three check nodes share a
single CNU, and every four bit nodes share a single BNU. Therefore 150/3 = 50 CNUs and
600/4 = 150 BNUs are required in the proposed design. The switch groups in Fig. 4.4 are used

to select which part of check nodes or bit nodes is under operation.

m—————=—- 1

_________________ I |
G |

sy:lsbools DiStl’iblltOI‘ syrsn(:)ools i
CNU; |

______ 1800 [—=————x I
symbols |
v l

. |

Memory (1800*6b) : l

|

|

|

CNU 50 :

(

|

__________ 4

Channel Value
(600*5b)

Fig. 4.4 The architecture of LDPC Code I decoder
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Fig. 4.5 The partition for parity check matrix H of Code I

Due to the random-like connections in the bipartite graph, the signal routing problem
causes serious difficulties in the decoder implementation. As shown in Fig. 4.1, the
combinational feedback paths leads to the degradation of the decoding speed and the routing
area overhead in the VLSI implementation. In the-proposed design, the pipeline registers are
inserted in CNUs and BNUs to -cut off those feedback paths as illustrated in Fig. 4.6. Thus,
shorter critical path delay that reduces,routing.congestion can be achieved with little increases

in the hardware costs.

CNU-PATH 2

BNU-PATH 1

BNU-PATH 2

L1

Fig. 4.6 Data path of proposed partial-parallel decoder

4.2.1 Channel Value Interconnection

For the conventional design in Fig. 4.1, both the CNUs and BNUs have to be connected

to the channel values, which lead to large number of signal connections. Thus data
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rescheduling is proposed to solve this problem in Fig. 4.7.

. . Iterative Decoding
Initialization Vertical > Horizontal
Step Step
No
Y
Vertical 0}1 tput
Ste Estimated

P Bits

Fig. 4.7 Proposed LDPC decoding flow

As shown in Fig. 4.7, one extra vertical step is employed to replace the initialization
through the CNUs. Recall equation (2.34)

LB[—>C/ (e)= L(xpt Z Lcj.,—>3,. (e, (2.34)

CreM(NG;
only summations among the channel value L(x;) and the messages Lc-xe;) are performed in
the BNUs. If the messages Lc-s(e).are set to zero during initialization, the channel values are
thus loaded into the memory through the BNUs, and fed to the CNUs for the first horizontal
step. In this scheme, only BNUs have to be connected to the channel values as illustrated in
Fig. 4.4, leading to less signal routing costs with some increases in decoding latencies.

Fig. 4.8 gives the timing diagram of the proposed LDPC Code I decoder, where b; and ¢;
correspond to the active BNU and CNU set in Fig. 4.5. The design takes nine cycles to
complete a decoding iteration, including 4 cycles for horizontal steps with the CNUs and 5
cycles for vertical steps with BNUs. Additional five cycles are used to complete the channel
value loading as described above. Thus total 9*8 + 5 = 77 cycles are required to finish the

decoding process of a codeword with 8 iterations.
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Fig. 4.8 Timing diagram of the proposed LDPC Code I decoder

4.2.2 Check Node Unit

As shown in Fig. 4.2(b), k£ comparators which search the minimal values among -/
inputs are needed to implement the CNU based on the min-sum algorithm. As mentioned in

[18], equation (2.38) can be modified as

38



Loy~ [T sign(L, . (ep)| mi (L e )
-8 4) BeL(j) 5 gn( o ”)) B8 56, )
in (|L if |, in (|L , (4.1)
Join (L o (ep))) > if Ly (¢)# min { 1Ly . (e;)
. 3 eL(J) J j Beel()) j
= | I szgn(LQ,_)Cj(ei,j)) X
Beel(j)\3 2 mln( LB.,%.(%y))a otherwise

Bel() V'

d
where “2"

min” denotes the value which is smaller than all the other candidates except the
minimal one. According to (4.1), the absolute value searching has to be performed only one
time to find the minimum and the second minimum. Fig. 4.9 shows the block diagram of the

compare-select unit (CS14) which searches for the minimal and the second minimal values

from 14 inputs.

p

If (M; == min)
New M; = 2" min; _

else » New M ;
New M; = min;

.

y
If (M, == min)
— ond .-
New M, = 2" min; > New M,
else
New M; = min;
.

?

min

E
i_,
=$'“f“““¢““l‘“"

CMP-14
[ ] ° [ ]
[ ] ° [ ]
[} ° [}

2" minf—-4

k If (M14 == mln)
= nd ..
My, ‘ New My, = 2" min; > New M 14

| else

>

L New My, = min;

Selection Control

Fig. 4.9 Block diagram of CS14

Because the column weight of Code I is ranging from 11 to 14, the CNUs dealing with
different number of inputs should be designed. In this section, only the 14-input CNUs are
introduced and others are designed in the analogous approach. The detailed architecture of

CMP-14 in Fig. 4.9 is illustrated as Fig. 4.10, which consists of the pipeline registers and two
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kinds of comparators: CMP-2 and CMP-4. CMP-4 finds out the minimal and the second
minimal values from the four inputs, a, b, ¢, and d. In addition, CMP-2 is a two input

comparator which is much simpler than CMP-4.

ab ac ad b ¢ b d cd
si is si is si is 5& is si is si is
SUB SUB SUB SUB SUB SUB
1 1 1 1 1 1
MSB5 MSB4 MSB3 MSB2 MSB1 MSBO0
\ 4 l vV £ \ 4
Decoder
min 2" min
min 2" min

Fig. 4.10(a)-Block diagram bf proposed CMP-4

TR It el T

CMP-4 CMP-4 CMP-4 CMP-2

min 2" min min 2" min min 2" min min  2"'min

v v v v v v v v

CMP-4 | CMP-4 |

CMP-2

min

5 5
min 2" min

Fig. 4.10(b) Block diagram of proposed CMP-14

The proposed architecture of the 14-input CNU is shown in Fig. 4.11, where SM14 is

sign-multiplication. To facilitate the operations on the sign and absolute value, all the 6-bit
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values have been represented by the sign-magnitude notation with 2 integer bits and 4
fractional bits. The combinational path in the CNUs is cut off into CNU-PATHI and
CNU-PATH2 by the pipeline registers, leading to shorter critical path delay that reduces

routing congestion.

| CNU-PATH1 > | CNU-PATH 2 >
IMSB) T | 1(MSB)
°$Z 1 = s IR E Z
1vse)| 4 L : 1(MSB)
SO DE e
— . . 1 e
) : SM14 i [ ] )
° ' °
o || U .
oo @ R
. E E FF i Selection :i
¢ 1(MSB) e 1| T = Control |°} [ 1(MSB)
' [y ]
oA E & | |2 min 1
: - :
i CS14 i
[T ]

Fig. 4.11 The proposed 14-input CNU architecture

Table 4.2 lists the comparisons of three different CNU architectures. The LUT-1 and
LUT-2 in Fig. 4.2(a) are implemented in 6-bit precision, including 2 integer bits and 4
fractional bits. The proposed CNU has the smallest size which is only about 22% of the others,
whereas the maximum achievable operating speed is only a little smaller than conventional
MS designs. Due to the fixed point implementation, some performance loss is produced. As a

result, the decoder is implemented efficiently by using of the proposed CNU architecture.
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Table 4.2 Comparison of different CNU architectures

LUT Conv. MS Proposed

Fig. 4.2(a) Fig. 4.2(b) Fig. 4.11

Max. speed 162 MHz 261 MHz 250 MHz
Gate count 7.16 K 6.86 K 1.6 K
Total gate count 358 K 343 K 80 K

4.2.3 Bit Node Unit

Fig 4.12 shows the block diagram of BNU. According to equation (2.34) and (2.35), the
BNUs receive the channel value and the message values linked to the same bit node. All
inputs with sign-magnitude (SM),snotation are.converted to be 2’s complement (TC)
representation, and summed to perform the:updating calculation. The pipeline registers are
inserted to break the critical paths into“BNU-PATH1 and BNU-PATH2 as in the CNUs.
Finally, all the values are converted back to the:SM notation and clipped to avoid overflow.

And the most significant bit (MSB) of the summation of the three input messages and the

channel value is used to decide the estimated codeword bit.

All the 6-bit values are quantized with 2 integer bits and 4 fractional bits, while the

intermediate summations are represented with 4 integer bits and 4 fractional bits.
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Fig. 4.12 The proposed BNU architecture

Note that if C1, C2 and C3 are set to'be zero, during initialization, the channel value will
be directly bypassed to the outputs of BNU.-This produces a path to load the channel values

into the memory as mentioned above.

4.2.4 Chip Implementation

The proposed LDPC Code I decoder was implemented within an LDPC-COFDM UWB
baseband transceiver chip [25] with the 0.18 um 1P6M standard CMOS process. The chip
micrograph of the entire UWB transceiver including the OFDM modem and the LDPC codec
is given in Fig. 4.13. The encoder die size is 2.25 mm®, while the decoder die size is 16.5 mm”.
The total gate count of the LDPC codec is 542 K, where 70K is for the encoder and 472K is
for the decoder.

The chip has been tested to verify the functional correctness. The measured maximal
data rate of the decoder is 480 Mb/s while working at 82.1 MHz, and consuming 232 mW.

The detailed chip features are also summarized in Table 4.3.
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Fig. 4.13 Die microg s h of the ClQ‘ FDM UWRB transceiver chip

Table 4.3 Summary of the LDPC Code I Chip
Technology Standard 0.18-um CMOS 1P6M
Package CQFP-208
Supply voltage 1.8V core, 3.3 VI/O
Encoder 1.5mm x 1.5mm
Chip size
Decoder 5.0mm X 3.5mm
Encoder 70K
Gate count
Decoder 472K
Power dissipation 232mW @ 82.1MHz
Maximum data rate 480Mb/s

44



4.3  Proposed LDPC Code Il Decoder Design

In Sec. 4.2, the proposed LDPC Code I decoder design is introduced and silicon proven
to achieve 480Mb/s maximum data rate. The performance of LDPC code I decoder is
acceptable for the MB-OFDM UWB system [23], but may be not for other high-speed
communication systems mentioned in Chap. 3. As a result, the LDPC code II decoder is
proposed to get better error-correcting ability and higher decoding throughput.

While considering circuit complexity, the 480 x 1200 parity check matrix H of LDPC
code II are divided into four 240 x 600 sub-matrixes to fit partial-parallel architecture, which
is shown in Fig. 4.14. Since matrix H of Code II has a fixed number of column weight (= 3),
the total number of weight is 1200 x 3 = 3600. Based on this partition, the functional units in

the decoder will process 1800 messages every,cycle.

- =N
I
hgo 4 hor CNU Set 1
e
H- (BTN
hy V' hy CNU Set 2
! B

\ / \ /
BNU Set 1 BNU Set 2

Fig. 4.14 The partition of parity check matrix H of Code 11

The proposed LDPC code II decoder architecture illustrated in Fig. 4.15 contains the
input buffer, 240 CNUs, 600 BNUs and two dedicated message memory units (MMU). The
set of data processed by CNUs are {hg, ho;} and {h;9, h;;}, whereas the data fed into BNUs
should be {hp, hio} and {hg;, h;}. Note that two MMUSs are employed to process two
different codewords concurrently without stalls. Therefore, the LDPC decoder is not only
area-efficient but the decoding speed is compatible with the fully parallel architecture. The

detail ideas about the designs of MMUSs will be introduced in the following.
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The input buffer is a storage component that receives and keeps channel values for
iterative decoding. Note that it only connects to the BNUs to get less routing congestion as

discussed in Sec. 4.2.1.

Input Buffer
buf-0 buf-1 buf-2 buf-3

1800
symbols,

Fig. 4.15 The proposed LDPC code II decoder architecture

4.3.1 Input Buffer

Input buffer provides the channel values to the BNUs for iterative decoding. Because
two different codewords are processed concurrently, total 1200 x 2 = 2400 symbols should be
stored in the input buffer. According to the partition in Fig. 4.14, the buffer is divided into
four sub-blocks, where each sub-block contains 600 channel values. The conventional design

is illustrated in Fig. 4.16. Four sub-blocks, buf-0 ~ buf-3, are all connected to the channel
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value inputs, and multiplexers are employed to switch appropriate values into the BNUs. Thus
the signal routings are all “global”, meaning that all the connections are related to the inputs
and outputs (I/O) of the buffer. The global connections and the multiplexers will lead to

serious routing congestion.

@Channel value inputs

| buf-0 || buf-1 || buf-2 || buf-3 |
\ /
{} To BNU

Fig. 4.16 The conventional architecture of input buffer

Fig. 4.17 shows the buffer structuresbased.on tregister exchange (RE) approach and the
operational timing diagram, where ‘buf-0 is_designed as a shift register that serially receives
the channel values from inputs and. the.other three sub-blocks exchange the data with buf-0
sequentially. The notation E1, E2 and E3 represent the data exchange from buf-0 to buf-1,
buf-2 and buf-3, respectively. During initialization, buf-0 serially receives the channel values
and passes them into other sub-blocks by executing the operations E1, E2 and E3 when buf-0

is full-filled.

buf-3 buf-2

E3 E2

buf-1 I-—»El buf-0 To BNU

Channel value inputs

Fig. 4.17(a) The architecture of RE based input buffer
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Fig. 4.17(b) The timing diagram of RE based input buffer

For this RE based buffer architecture, the global interconnections exist only in buf-0, and
all the others are “local” among sub-blocks. However, the drawback is that a large number of
multiplexers are required around buf-0 to perform E1 ~ E3. Thus buf-0 becomes a
routing-critical block due to the multiplexers and the global interconnections.

To overcome this problem, an architecture based on register shifting (RS) is proposed as
shown in Fig. 4.18(a), where four sub-blocks are arranged in a ring. The buf-0 is a shift
register that serially receives the channel values and buf-3 transports the associated channel
values to BNU. The timing diagram of the RS-based input buffer is presented in Fig. 4.18(b).
Channel values of two different codewords are serially fed into buf-0, and shifted within the
buffer ring when buf-0 is full-filled. Therefore, the data flow is further simplified, and the

multiplexers are eliminated, leading to simple signal transfer and routing interconnections.
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Fig. 4.18 The architecture and timing diagram of RS-based input buffer

Fig. 4.19 gives the comparison of the three input buffer architecture. The RS-based input

buffer can save about 20% gate count and 30% interconnection wires as compared with the

conventional design.
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Fig. 4.19 The comparison of three mput buffer designs

4.3.2 Check Node Unit and Bit Node Unit

Fig. 4.20 shows the CNU architecture for proposed LDPC code II decoder. The CNU can
be divided into two parts: one is 1-bit sign-multiplication (SM) and the other is 5-bit
compare-and-select unit (CS) that searches the minimal value and the second minimal value
from the inputs. The new message for each bit node is a combination of the sign bit according

to (4.1) and the new magnitude which is either “min” or “2" min” of the CS unit. The detailed

architecture of CMP-9 in Fig. 4.20 is designed as that shown in Fig. 4.9 and 4.10.

The BNU architecture is illustrated in Fig. 4.21. According to (2.34) and (2.35), BNU
receives the channel value and the messages linked to the same bit node. All inputs with
sign-magnitude (SM) notation are firstly converted to be 2’s complement (TC) representation,

and then summed to perform the updated calculation. The summed values are also clipped to
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avoid overflow. Finally, the MSB of the summation of all the inputs is used to decide the

decoded bit.
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Fig. 4.20 CNU architecture of proposed LDPC Code II decoder
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Fig. 4.21 BNU architecture of proposed LDPC Code II decoder
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4.3.3 Message Memory Unit

Message memory units (MMU) are used to store the message values that are generated
by CNUs or BNUs. The size of each MMU is 3600 x 6 bit due to the weight of the parity
check matrix. To increase the decoding throughput, two MMUSs are employed to concurrently
process two different codewords in the decoder. The memory management strategies,
described below, include multiplexers (MUX) or register exchange (RE), resulting in different

level of routing complexity. The MUX based MMU architecture and the timing diagram are

illustrated in Fig. 4.22.
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Fig. 4.22 The architecture and timing diagram of MUX-based MMU
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According to the partition of the matrix H in Fig. 4.14, the MMU is divided into four
sub-blocks: A, B, C and D. Many multiplexers are required for the inputs and outputs due to
the partially parallel implementation and the concurrent process of two different codewords.
Moreover, all the signal interconnections are related to the I/O, leading to global routings. As
a result, the serious routing congestion occurs in the conventional MMU design.

To release the routing congestion problem, the architecture based on register exchange
among four sub-blocks (RE-4B) is proposed as shown in Fig 4.23. In this design, only
sub-blocks B, C and D capture data form data paths, and only sub-blocks A and C connect to
the outputs. Thus most of global routings are transformed into local interconnections between
sub-blocks, leading to a simple data flow. Moreover, the number of multiplexers is also

reduced by the RE-4B based architecture.

datapath

datapath

Fig. 4.23(a) The architecture of RE-4B based MMU
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Fig. 4.23(b) The timing diagtam of RE-4B based MMU

To further improve the MMU design, the register exchange scheme based on five
sub-blocks (RE-5B) is proposed as shown in Fig. 4.24(a). One extra sub-block E is used as
temporal memory for reducing the interconnection between other sub-blocks. In MMU-1,
sub-blocks B, C, D and E capture the outputs from CNUs while sub-blocks A and C deliver
the message data to BNUs. Fig. 4.24(b) shows the detailed timing diagram of reordering data
sequence in MMU. The inputs of BNUs (CNUs) sequentially appear in sub-blocks A and C
after reordering the data from CNUs (BNUs). Note that the solution to switch data sequence

also enables the decoder to process two different codewords without stalls.
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Fig. 4.24 The architecture and timing diagram of RE-5B based MMU

With the RE-5B based MMU architecture, the multiplexers between the MMUs and the
data paths are eliminated. And most global interconnections are replaced by local routing
between sub-blocks to reduce routing congestion. Fig. 4.25 shows a comparison among the
three MMU schemes. The gate count and interconnection are measured only from MMU-0
and MMU-1, whereas the routing congestion overflow is investigated through implementing

the decoder in a 25mm? 0.18-pm chip with 6 metal layers. In RE-4B and RE-5B architectures,
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there is a 15% ~ 23% decrease in gate count due to the removal of multiplexers. A significant
drop in signal connections is also observed with RE approach; therefore, the routing

congestion can be dramatically improved.
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Fig. 4.25 Comparison of three MMU designs

4.3.4 Timing Schedule

The overall timing diagram of the decoder is shown in Fig. 4.26. As mentioned above,
two different codewords are processed concurrently without any stalls. In our proposed design,
the BNUs and CNUs have no idle time, leading to an efficient utilization of the functional
units. The design takes four cycles to complete a decoding iteration for each codeword,
including 2 cycles for horizontal steps in CNUs and 2 cycles for vertical steps in BNUs. For

channel value loading, each codeword takes 2 extra cycles. Thus total 2 + 2 + 8*4 = 36 cycles
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are required to finish the decoding of two different codewords with 8 decoding iterations.
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Fig. 4.26 Timing diagram of proposed LDPC code II decoder

4.3.5 Chip Implementation

A test chip has been fabricated in a 1.8V, 0.18um 1P6M CMOS technology, and the die
micrograph is shown in Fig. 4.27. The chip size is 25 mm” while the core occupies 21.23 mm?.
The total gate count is 1.15M including two MMUs while the chip core density is about
71.2%. By measurement, the decoder achieves 3.33Gb/s throughput with 8 decoding
iterations under 1.62V power supply, and the power estimation is 644 mW.

A second test chip is implemented in a 1.2V, 0.13um 1P8M CMOS technology, whose

layout view is shown in Fig. 4.28. The chip size becomes 13.5 mm?® where the core constitutes
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10.24 mm?®. Moreover, the chip density grows to about 75.4% because of two extra metal
layers. After static timing analysis (STA) and post-layout simulation, the maximum decoding
speed has been improved to 5.92Gb/s with 8 decoding iterations under 1.02V supply and
worst speed corner. The estimation also includes crosstalk analysis for signal wires that cause

coupling noise. Table 4.4 gives the characteristic summary of two test chips.
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Fig. 4.27 Die micrograph of the 0.18um LDPC code II decoder chip
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Table 4.4 Summary of the LDPC Code II chip

Technology 0.18-um CMOS 1P6M 0.13-um CMOS 1P8M
Package CQFP-208 N.A.

Supply voltage 1.8V core, 3.3 VI/O 1.2V core, 3.3V I/O

Chip size 5.0mm x 5.0mm 3.67mm % 3.67mm
Chip density 71.2% 75.4%
Gate count 1.15M 1.15M

Power dissipation 644mW (@ 83MHz 299mW @ 145MHz
Maximum data rate 3.33Gb/s 5.8Gb/s
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4.4  Summary and Comparison

The high speed LDPC code decoder designs are presented. The data rescheduling is
employed to reduce the signal interconnections between the input buffer and the datapaths.
The efficient functional unit designs make the decoder suitable for high speed applications. In
addition, the message memories architecture permits parallel decoding of two codewords and
diminishes the routing congestion issues. Consequently, the chip becomes smaller due to the
increased chip density.

The comparisons of our proposed LDPC code decoders with state-of-the-arts are listed in
Table 4.5. Except for [11], the decoders are implemented with non-structured LDPC codes to

get a better performance and a general implementation solution.

Table 4:5 Comparison of LDPC chips

Proposed I Proposed I1 [9] [11]
Block length 600 1200 1024 2304
Code structure irregular irregular irregular structured
Code rate 3/4 3/5 1/2 2/3
Silicon proven Yes Yes No Yes No
Technology 0.18-um 0.18-um 0.13-um 0.16-um 0.18-um
Supply voltage 1.8V 1.8V 1.2V 1.5V 1.8V
Clock freq. 82.1MHz 83MHz 145MHz 64MHz 200MHz
Chip size 17.5mm’ 25mm’> | 13.47mm* | 52.5mm’ | 9.4lmm’
Gate count 472K 1.15M 1.75M N.A.
Power dissipation 232mW 644mW 299mW 690mW 1,176mW
Data rate 480Mb/s 3.33Gb/s 5.8Gb/s 512Mb/s 128Mb/s
Decoding iteration 8 8 64 10
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, high-throughput and area-efficient LDPC code decoders are proposed for
high-speed communication systems. A (600, 450) irregular LDPC code decoder is
implemented in 0.18 pum technology and measured that it can achieve 480Mb/s data rate with
8 decoding iterations. Another (1200, 720) irregular LDPC code decoder is fabricated in 0.18
um technology, whose measured data rate is 3.33Gb/s. Furthermore, the 0.13 um (1200, 720)
LDPC chip reaches the maximum 5.92Gb/sdata rate. with only 13.5 mm” area and 268mW

power consumption.

5.2  Future Work

As mentioned in Section 3.1.1, DVB-S.2 system adopts LDPC codes with very large
block lengths as the FEC kernel to get good error-correcting performance. However, the
implementation complexity of LDPC code decoders goes larger as the block length grows.
Besides, in DVB-S.2 system, there are a lot of different coding rate which are required for
different application mode. In [27], a LDPC codec for DVB-S.2 is proposed, which can
achieve 135Mb/s throughput rate. However, the chip size and the power consumption are both
large. Our proposed designs may be applied to construct a low-power and area-efficient
architecture for the DVB-S.2 LDPC code decoder. This will be an interesting topic for our

future research works.
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