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摘要 

   

  在本論文中，我們提出了兩個高傳輸速度之低密度同位元檢查碼解碼器的設計。第

一個設計為應用於MB-OFDM UWB系統，區塊長度為 600 之解碼器。此架構採用了對

於通道資訊的資料流重新排程以及管線化來減低繞線上的擁擠程度和最長之延遲路

徑。經由 0.18µm製程實作晶片，我們所提出的此部份平行解碼器設計，於固定 8 次迴

圈的解碼模式下，可提供之最高資料傳輸速度為每秒 480Mb。第二個是基於區塊長度為

1200 之解碼器設計。為了達到更高的晶片密度及降低繞線上所造成的時間延遲，我們所

提出的架構採用了一個新的資料重新排序技術，將訊息記憶體和計算單元之間的資料匯

流排簡單化。經由此方法，由於晶片密度的提高，我們可大幅的縮減晶片的大小。另外，

此解碼器可同時處理兩筆不同之codeword來加快傳輸速度及資料路徑的工作效率。此設

計經由 0.18µm製程實作後，於晶片面積為 21.23mm2，固定 8 次迴圈的解碼模式下，其

最大資料傳輸速度可達到每秒 3.33Gb。另外，將此設計經由 0.13µm製程實作後，資料

傳輸速度可提升到每秒 5.92Gb，晶片面積縮小為 10.24mm2，而晶片之密度可提高至

75.4%。 
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ABSTRACT 
 

In this thesis, two high-throughput low-density parity-check (LDPC) code decoders are 

presented. The first one is a (600, 450) LDPC code decoder applied for MB-OFDM UWB 

applications. The architecture adopts a re-scheduling data flow for channel values and the 

pipeline structure to reduce routing congestion and critical path delay. After fabricated in 

0.18µm 1P6M process, the proposed partially parallel decoder can support 480Mb/s data rate 

under 8 decoding iterations. Second decoder is implemented based on a (1200, 720) irregular 

parity check matrix. For achieving higher chip density and less interconnection delay, the 

proposed architecture features a new data reordering technique to simplify data bus between 

message memories and computational units; as a result, the chip size can be greatly reduced 

due to the increased chip density. Moreover, the LDPC decoder can also process two different 

codewords concurrently to increase throughput and datapath efficiency. After 0.18µm 1P6M 

chip implementation, a 3.33Gb/s data rate with 8 decoding iterations is achieved in the 

21.23mm2 silicon area. The other experiment using 0.13µm 1P8M technology can further 

reach a 5.92Gb/s data rate within 10.24mm2 area while the chip density is 75.4%. 
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Chapter 1  
Introduction 
 
1.1 Motivation 
    Low-density parity-check (LDPC) code, a linear block code defined by a very sparse 

parity check matrix, was first introduced by Gallager [1], [2]. Due to the difficulty of circuit 

implementation, LDPC codes have been ignored for about forty years except for the study of 

codes defined on graphs by Tanner [3]. The rediscovery of LDPC codes were done by 

Spielman et al. [4] and MacKay et al. [5], [6]. It has engaged much research interest because 

the sparse property of parity check matrix makes the decoding algorithm simple and practical 

at good communication rates [5]. It was proven [7] that the LDPC code with large block 

length can beat turbo code [8], and achieve a capacity within 0.0045dB of the Shannon limit 

on AWGN channels. Besides their good error-correcting capability, LDPC codes have 

inherently fully parallelism and the simplicity of arithmetic computations. As a result, LDPC 

codes have been considered as next-generation forward error-control (FEC) technology for 

many high speed applications such as magnetic storage and telecommunications. However, 

the very large scale integrated circuits (VLSI) implementation of LDPC code decoders still 

remains a challenge in real applications.  

The main challenge of LDPC code decoder falls in the complex interconnections due to 

the randomness of parity check matrix. To efficiently design the decoder, the realization of its 

iterative decoding process which is referred to the message passing algorithm [5] becomes the 

most critical issue. According to different decoding schedules, the implementation of LDPC 

code decoders can be partitioned into two categories, fully parallel decoders and partially 

1 



 

parallel decoders.  

Fully parallel decoders directly map the corresponding bipartite graph [3] into hardware 

and all the processing units are hard-wired according to the connectivity of the graph. Thus 

they can achieve very high decoding speed but have a large hardware cost. The fully parallel 

implementation in [9] presents a 1024-bit, 1-Gb/s LDPC code decoder, which demands large 

area due to large amount of processing units and the complicated interconnections. The 

partially parallel architecture in [10] maps a certain number of processing unit into a single 

hardware block by using time-division multiplexing. It trades the decoding throughput for the 

reduction of hardware complexity. However, they also suffer from the same routing 

complications, and may be even worse due to multiplexers. Another implementation approach 

is presented in [11], which employs a turbo-like decoding algorithm with structured parity 

check matrices. The throughput is quite low due to the trellis-based decoding process. 

In this thesis, two decoders with different block lengths are implemented based on the 

partially parallel architecture. To solve the problems mentioned previously, efficient methods 

are proposed and applied to the decoders to eliminate multiplexers for less signal routing. The 

implementation results show how the proposed methods improve the performance. The detail 

discussion and architecture will be given in the following chapters. 

 

1.2 Thesis Organization 
The remainder of this thesis is organized as follows. Chapter 2 describes the 

characteristics and decoding algorithms of LDPC codes. High-speed applications which 

adopted LDPC codes or potentially will adopt LDPC codes as the FEC kernel are introduced 

in Chapter 3. Simulation results and performance analysis will also be discussed here. In 

Chapter 4, the proposed LDPC code decoders, including functional units, data rescheduling 

and memory arrangement, are presented in detail. Besides, the chip implementation results 
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and comparisons with the state-of-the-arts will also be shown. Finally, conclusion and future 

work are made in Chapter 5. 
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Chapter 2  
Low-Density Parity-Check Codes 
 

Low-density parity-check (LDPC) codes are linear block codes that are specified by 

sparse parity check matrices containing mostly 0’s and only a small number of 1’s [1]. The 

code structures and decoding algorithms can be represented by bipartite graph [2]. 

Furthermore, it has been shown that the codes can achieve a capacity near Shannon limit with 

large block length. In this chapter, the code characteristics and decoding algorithms are 

presented. 

 

2.1 LDPC Codes 
The parity check matrix H which has N columns and M rows defines a LDPC code with 

the block length of N bits and M parity checks. Assuming the matrix is of full rank, the 

number of information bits is K = N – M, and the code rate is R = 1 – M/N. It was shown by 

Gallager [2] that for large block lengths, the minimum distance of the code grows linearly 

with N. Thus block lengths of LDPC codes are often designed as large as possible. For a 

regular LDPC code, each column and row contains a fixed number of 1’s in H, leading to 

equal weights for both columns and rows. Otherwise, the code is termed irregular. It has been 

shown that irregular codes outperform regular codes due to wave effect [12]. An example of 

regular LDPC code parity check matrix is shown in Fig. 2.1.  

Generation a set of valid codewords requires the generator matrix G, which can be 

derived from H. The relationship between G and H can be expressed as  

T 0⋅ =G H .                            (2. 1) 
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Let  with ( ... )=u 1 2 3 Ku , u , u , , u }1,0{=iu  be the information bits, a LDPC code C is 

defined as  

{ | }= = ⋅x x u GC .                        (2. 2) 

Note that matrix G is not generally sparse; as a result, the complexity of encoding process is 

much higher due to the large and dense matrix multiplication. From equation (2.1) and (2.2), a 

valid codeword vector ( )=x 1 2 3 Nx , x , x , ..., x  should satisfy M parity check equations 

T 0 1,2,...,⋅ = =x hi i M  ,                    (2. 3) 

where hi = (hi,1, hi,2, …, hi,N) denotes the row space of H. 

 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

 

Fig. 2.1 Example of regular LDPC code parity check matrix 

 

LDPC codes can also be represented in bipartite graph. On one side the graph has N bit 

nodes which correspond to the N columns of H and M check nodes which correspond to the 

M rows of H on the other side. An edge which connects a bit node Bj and check node Ci 

corresponds to a 1 in the entry (i, j) of H. Fig. 2.2 is the corresponding bipartite graph of the 

LDPC code specified by the parity check matrix in Fig. 2.1.  
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Fig. 2.2 Bipartite graph of the code specified by matrix in Fig. 2.1 
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2.2 Message Passing Algorithm 
In this section, message passing algorithm which is used to perform probabilistic 

decoding is introduced. The intrinsic probability int (EP x a)=  represents the probability that 

the variable x chooses the value a. The extrinsic probability ( )  describes the new 

information for variable x which is obtained from the event E. Moreover, the a posteriori 

probability ( )

ext
EP x a=

post
EP x a=  represents the conditional probability that the variable x takes the 

value a based on the knowledge of event E.  

 

2.2.1 Principle of Message Passing Algorithm 

The key factor of the message passing algorithm is to iteratively pass and exchange 

probabilistic messages in a graph. Extrinsic and a posteriori probabilities can be evaluated 

based on given intrinsic probabilities and the construction of the graph.  

Consider a node G with K+1 edges, which are associated with the variables e0, e1, …, eK 

belonging to the alphabet sets A0, A1, …, AK, respectively. The connection is shown as Fig. 2.3. 

For simplicity, only the case of binary variables is discussed in the following. That is, 

. Denote the intrinsic, extrinsic and a posteriori probability for e2∈iA Z i with respect to event 

G as int ( )ξ=G i iP e , ( )ξ=ext
G i iP e  and ( )ξ=post

i iGP e , respectively. Assuming that the intrinsic 

probability for variable ei is available, the a posteriori probability can be derived by Bayes’ 

theorem as  

int

( ) ( | )
( , )

( )
1 ( | ) ( ).
( )

ξ ξ
ξ

ξ ξ

= = =
=

=

= =

post
G i i i i

i i

i i G i i

P e P e G
P G e

P G

P G e P e
P G

=

               (2.4) 
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G

e1

ek

ei
ei-1

ei+1

Pext(ei)
 

Fig. 2.3 Message passing on a node 

 

Note that the extrinsic probability is in proportion to ( | )ξ=i iP G e . That is 

( ) ( |ext
G i i i i iP e P G e ) ,ξ α= = = ξ                          (2.5) 

where iα  is a scaling constant. A constraint set 0 1∈ × × ×GS A A AL K  that the values of 

variables (e0, e1, …, eK) have to satisfy is defined on node G. Therefore, event G is true only 

when  

0 1( , ,..., )ξ ξ ξ ∈K GS  ,                           (2.6) 

where 0 0 1 1, , ...,ξ ξ ξ= = =K Ke e e . 

To evaluate the extrinsic and a posteriori probabilities of variables 0{ } =
K

i ie , the 

probabilities of variable e0 are considered without loss of generality. Note that the product of 

alphabets A1 × A2 × … × AK forms a complete set of values for variables (e1, e2, …, eK). 

Hence,  

1 1

1
( ,..., )

({ } ) 1
ξ ξ

ξ =
∈ × ×

= =∑
K K

K
i i i

A A
P e

L

 .                      (2.7) 

In this way, the probability of event G can be decomposed as  

1 1

1
( ,..., )

( ) ( , { } )
ξ ξ

ξ =
∈ × ×

= =∑
K K

K
i i i

A A
P G P G e

L

 .                 (2.8) 

The extrinsic probability 0 0( )ξ=ext
GP e  can thus be derived by  

1 1

0 0 0 0 0 0 1 0 0
( ,..., )

( ) ( | ) ( , { } |
ξ ξ

)ξ α ξ α ξ =
∈ × ×

= = = = = = ξ∑
K K

ext K
G i i i

A A
P e P G e P G e e

L

 ,    (2.9) 

where 0α  is a scaling constant. With chain rule and the independence of the variables 0{ } =
K

i ie , 

the following result is obtained. 
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1 0 0 0 1 0 0

0
1

( , { } | ) ( |{ } ) ({ } |

( |{ } ) ( ) .

)ξ ξ ξ ξ

ξ ξ

= =

=
=

= = = = ⋅ = =

= = ⋅ =∏

K K
i i i i i i i i i

K
K

i i i i i
i

P G e e P G e P e e

P G e P e

ξ=
K

     (2.10) 

Because event G is true only when equation (2.6) is satisfied, the first term in equation (2.10) 

can be written as  

0 1
0

1 if ( , ,..., )
( |{ } ) .

0           otherwise
ξ ξ ξ

ξ =

∈⎧
= = ⎨

⎩
K GK

i i i

S
P G e                (2.11) 

By putting together equation (2.9), (2.10) and (2.11), the expression of 0 0( )ξ=ext
GP e  can be 

rewritten as  

1
0 1

int
0 0 0

,..., 1
( , ,..., )

( ) (
ξ ξ

ξ ξ ξ

)ξ α
=

∈

= = =∑ ∏
K

K G

K
ext

G
i

S

P e P e ξG i i

)

 .               (2.12) 

The a posteriori probability 0 0( ξ=post
GP e  can be derived by combining equation (2.4) and 

(2.12). 

1
0 1

1
0 1

int int
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     (2.13) 

where 0 0 1 ( )α α′ = ⋅ P G  is a normalization constant.  

 

2.2.2 Message Passing on Bit Nodes 

Representing one bit of the codeword, a bit node in a bipartite graph corresponds to a 

specified column in the parity check matrix H which defines the code. Thus the constraint on 

a bit node specifies that the associated variables should be equal. The constraint set SB on bit 

node B, which connects to K+1 check nodes, can be expressed as  

0 1 0 1{( , ,..., ) | }B KS e e e e e e= = =L K= .                 (2.14) 
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Fig. 2.4 Message passing on a bit node 

 

The connection is also shown in Fig. 2.4.  

For bit node B, the input message vector along edge ei is defined as ( )µ →iC B ie , where i = 

1~K. Based on equation (2.12) and (2.14), the output message 0 0 0( )µ ξ→ =B C e  along edge e0 

is 

0
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0
,..., 1
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(

( ) ,
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e

e

ξ ξ
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µ ξ ξ

)α µ

α µ ξ

→

→
=

∈

→
=

= = =

=

= =

∑ ∏

∏

ξ= .                 (2.15) 

where 0α  is the normalization constant.  

 

2.2.3 Message Passing on Check Nodes 

In a bipartite graph, a check node, denoting a parity check equation of the code, 

corresponds to a specified row in the parity check matrix H. Thus the constraint on a check 

node specifies that the summation of the associated bits should be zero. The constraint set SC 

on check node C, which connects to K+1 bit nodes, can be expressed as 

0 1 0 1{( , ,..., ) | 0}C KS e e e e e e= + + +L K = ,                 (2.16) 

where the operation “+” represents the modulo-2 summation. The connection is shown in Fig 

2.5.  
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Fig. 2.5 Message passing on a check node 

 

The input message vector along edge ei is denoted by ( )µ →iB C ie  for i = 1~K. With equation 

(2.12) and (2.15), the output message 0 0 0( )µ ξ→ =C B e  along edge e0 can be derived as  

0
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     (2.17) 

where 0 1[ 0]ξ ξ ξ+ + + =KL  is an indicator function that determines whether the parity 

check equation is satisfied. Because the indicator function consists of large number of 

possible configurations, the summation operation in equation (2.17) is very complicated. Thus 

we first consider the case of K=2 for simplicity. Therefore,  

0 1 2
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1 2

2

1 2
0 , 1

2
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1 2
, 1

[0 0] ( )
( 0)

( 1)
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⎢ ⎥⎣ ⎦

∑ ∏

∑ ∏
.        (2.18) 

When e0 = 0, the indicator function is true if and only if the configuration is either e1 = e2 = 0 

or e1 = e2 = 1. Hence equation (2.18) can be decomposed as 

11 



 

( )( )
( )

0 1 2 1 2

0 1 2 1 2

1 2 1 2

1 2

0 1 2 1 2

0 1 2 1 2

1 2 1

1 2

( 0) ( 0) ( 0) ( 1) ( 1)

( 1) ( 0) ( 1) ( 1) ( 0)

1 ( 1) 1 ( 1) ( 1) ( 1)

1 ( 1) (

C B B C B C B C B C

C B B C B C B C B C

B C B C B C B C

B C B C

e e e e e

e e e e e

e e e e

e e

µ µ µ µ µ

µ µ µ µ µ

µ µ µ µ

µ µ

→ → → → →

→ → → → →

→ → → →

→ →

= = = + = =⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

= = = + = =⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

− = − = + = =
=

− = ( )1 21 2

,
1) ( 1) 1 ( 1)B C B Ce eµ µ→ →

⎡ ⎤
⎢ ⎥
⎢ ⎥= + = − =⎣ ⎦

2

)

  

(2.19) 

where 1 11 1( 0) 1 ( 1µ µ→ →= = − =B C B Ce e  and 2 22( 0) 1 ( 2 1)µ µ→ →= = − =B C B Ce e . Furthermore, 

the expression in equation (2.19) can be rewritten as 
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By induction [13], the results in equation (2.20) can be generalized for K>2 and becomes 
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As a result, the output messages can be expressed in terms of the input messages: 
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∏
.            (2.22) 

 

 

2.3 LDPC Code Decoding Algorithm 

2.3.1 Sum-Product Algorithm (SPA) 

For a M × N parity check matrix H and the corresponding graph, Bi for i = 1, 2, …, N 

denote the bit nodes, Cj for j = 1, 2, …, M are check nodes, and eij is the edge connecting Bi 

and Cj. Furthermore, M(i) is the set of check nodes connected to bit node Bi, and L(j) is the set 

of bit nodes that are associated with check node Cj. The codeword is also represented by 

1 2[ , , , ]x = Nx x xL . The intrinsic probabilities with respect to the LDPC code can thus be 
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written as  

int ( ) ( )LDPC i i iP x P x ξ= = ,                          (2.23) 

where {0,1}ξ ∈i  and , assuming binary symmetric channel.  ( 0) 1 ( 1= = − =iP x P x )i

Fig 2.6 illustrates the iterative decoding flow of LDPC codes where each step will be 

described as follows [5]. 

 

Syndrome
Check
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Step

Vertical
Step

Initialization

No

Output 
Estimated Bits

Iterative Decoding
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Fig. 2.6 Iterative decoding flow chart for LDPC codes  

 

(1) Initialization: The messages from bit node Bi to check node Cj are initialized as  

( 0) ( 0)
( 1) ( 1)

µ

µ
→

→

=⎡ ⎤ =⎡ ⎤
=⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎣ ⎦⎣ ⎦
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B C ij i

B C ij i

e P x
e P x

 .                    (2.24) 

(2) Horizontal step: As shown in Fig. 2.7(a), message updates associated with check 

nodes are completed in this step. As shown in equation (2.22), the update equations 

can be expressed as  

   ( )\

( )\

1 (1 (1 2 ( 1)))( 0) 2
( 1) 1 (1 (1 2 ( 1)))
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∏
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j i i i

j i
i j

i i

B C i j
C B ij B L j B

C B ij
B C i j

B L j B

ee

e e
,       (2.25) 

   where L(j)\Bi is the set of bit nodes that participate in check node Cj except Bi.  

(3) Vertical step: In vertical step, the messages associated with bit nodes are updated as 

illustrated in Fig. 2.7(b). According to equation (2.15), the update equations can be 
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expressed as 
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where M(i)\Cj is the set of check nodes that connect to bit node Bi except Cj and αij  

is chosen such that ( 0) ( 1) 1µ µ→ →= + =i j i jB C ij B C ije e = .  

(4) Syndrome check: The a posteriori probabilities for each codeword bit can be 

computed as  
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,          (2.27) 

   where normalization factor iα  is used to ensure ( 0) ( 1) 1post post
i iP x P x= + = = . The 

estimated bit ˆix  is set to 1 if , otherwise it is set to 0. Then the 

syndrome equation 

( 1) 0.5post
iP x = >

ˆ TH = 0x  is verified whether the estimated sequence 

1ˆ ˆ[x=x 2ˆ, , ,x L ˆ ]Nx  is a valid codeword.  

The decoding process halts when the syndrome check equation is satisfied; otherwise it 

goes into the next decoding iteration. A failure is declared if some maximum number of 

iterations occurs without finding a valid codeword.  

 

+ Cj

Bi

L(j)

   
+ + + +
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BiP(xi = ξi)

 

(a) Horizontal step                     (b) Vertical step 

Fig. 2.7 Message passing in LDPC code decoding 
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2.3.2 Log-Likelihood Ratio Sum-Product Algorithm (LLR-SPA) 

For a binary codeword, the decoding operations can be performed in terms of 

log-likelihood ratios [15]. The log-likelihood ratio (LLR) of a random variable U can be 

defined as  

( 0( ) log
( 1

P UL U
P U

)
)

=
=

=
.                          (2.28) 

Therefore, the decoding flow can be modified as follows.  

(1) Initialization: The messages sent from bit node Bi to check node Cj are initialized by  

( 0( ) log
( 1i j

i
B C ij

i

P xL e
P x→

)
)

=
=

=
,                       (2.29) 

   which is the so-called “channel value” or “channel information”. 

(2) Horizontal step: Based on equation (2.25), the update operation in logarithmic 

domain can be rewritten as 
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          (2.30) 

   Based on the hyperbolic tangent function and the arc-hyperbolic tangent function, 

11 1tanh( )     and   tanh ( ) log
2 1 2 1

u

u

u e yy
e y

− 1− +
= =

+ −
 ,            (2.31) 

   the term 1 2 ( 1)i jB C i jeµ ′ ′→− =  in equation (2.31) can be expressed as  

11 2 ( 1) tanh ( )
2i j i jB C i j B C i je Lµ

′ ′→
⎛− = = ⎜
⎝ ⎠

e
′ ′→

⎞
⎟  .              (2.32) 

   Combining (2.30), (2.31) and (2.32), we can derive  
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(3) Vertical step: Using LLR, the update equation can be rewritten as 
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          (2.34) 

where L(xi) is the intrinsic log-likelihood ratio of bit xi.  

(4) Syndrome check: The pseudo- a posteriori probabilities for each codeword bit can 

be computed as  

( )

( 0)( ) log
( 1)

( ) ( ) .
j i

j

post
post i

i post
i

i C B
C M i

P xL x
P x

L x L e→
∈

=
=

=

= + ∑ ij

                (2.35) 

   Hard decision are performed based on the sign of ; therefore, bit ( )post
iL x ˆix  is set 

to 1 if  is negative, otherwise it is set to 0.  ( )post
iL x

Compared with the SPA, multiplications are replaced by additions and the normalization 

factors are eliminated in the LLR-SPA. Less complexity in implementation is achieved when 

LLR-SPA is employed.  

 

2.3.3 Min-Sum Algorithm (MS) 

In the LLR-SPA, the horizontal step is the most computationally complex part because of 

hyperbolic tangent functions. Hence it is difficult to implement in hardware based on 
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LLR-SPA. To further simplify the decoding process, the min-sum algorithm [16] is 

introduced. 

We first consider a check node with 3 edges without loss of generality. Combining 

equation (2.20), (2.31) and (2.32), we can obtain  
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               (2.36) 

Based on the approximation in [17], equation (2.36) becomes 

( ) ( )
( )

( )
( ) ( )

1 2 1 21 2 1 2

0

1 21 2

1 2

1 21 2

1 2

1 2 1

( ) ( ) ( ) ( )
0

( ) ( )
1 2

( ) ( )
1 2

1 2

( ) log 1 log

max 0, ( ) ( ) log(1 )

max ( ), ( ) log(1 )

( ) ( ) min

B C B C B C B C

B C B C

B C B C

L e L e L e L e
C B

L e L e
B C B C

L e L e
B C B C

B C B C B

L e e e e

L e L e e

L e L e e

sign L e sign L e L

→ → → →

→ →

→ →

+
→

− +
→ →

− −
→ →

→ → →

= + − +

= + + +

− − +

= ( )
( ) ( ) ( )

2

1 2 1 2

1 2 1

1 2 1 2

( ) , ( ) ( , )

( ) ( ) min ( ) , ( ) ,

C B C

B C B C B C B C

e L e g e e

sign L e sign L e L e L e

→

→ → → →

+

≈

2

(2.37) 

where 1 2 11 2 1 2( ) ( ) ( ) ( )
1 2( , ) log(1 ) log(1 )B C B C B C B CL e L e L e L eg e e e e→ → → →− + − −= + − + 2  is the correction factor. 

By induction [15], the result in equation (2.37) can be generalized to obtain a sub-optimal 

expression of the horizontal step, which is 

( ) (( )\
( )\

( ) ( ) min ( )
j i i j i j

i i
i i

C B ij B C i j B C i jB L j B
B L j B

L e sign L e L e
′

′
′

′ ′→ → ∈
∈

⎛ ⎞
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⎝ ⎠
∏ )′→

  .      (2.38) 

This approximation results in a significant reduction of hardware complexity but little penalty 

of degraded performance [18].  

In the min-sum algorithm, all steps of the decoding are the same with LLR-SPA except 

for the horizontal step. Thus the min-sum algorithm can be derived by just replacing equation 

(2.33) with (2.38) in LLR-SPA.  
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Chapter 3  
High-Speed Communication Systems 
with LDPC Codes 
 

In communication systems, channel coding is a key technique to minimize the 

interferences from the noisy channel. Due to the excellent error-correcting ability and the 

inherent parallelism, LDPC codes are suitable for high-speed applications. In this chapter, 

high-speed communication systems that adopted LDPC codes or potentially will apply LDPC 

codes as the channel coding technology are introduced. The simulation results of the 

error-correcting performance are also shown in the following. 

 

3.1 Introductions to High-Speed Communication Systems 

3.1.1 Satellite Wireless Communication 

Digital video broadcasting (DVB) standards are established to deliver videos for the 

subscriber to provide various entertainments. Over past few years, different broadcasting 

modes have been designed for kinds of purposes, including the terrestrial, cable and satellite 

broadcasts. The original satellite digital video broadcasting (DVB-S) was developed in 1994 

[19], whose forward error correction (FEC) technology is the concatenation of convolutional 

codes and Reed-Solomon codes. It is now used worldwide by most of the satellite operators 

for data and television broadcasting services. To improve the overall performance of the 

digital satellite transmission technology, the second generation of DVB-S (DVB-S.2) was 

developed [20]. As a successor to the current DVB-S standard, DVB-S.2 is expected to 
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provide not only existing but also new services, including TV, High Definition Television 

(HDTV), audio and other multimedia services.  

Employing a powerful FEC system based on LDPC codes concatenated with BCH codes, 

DVB-S.2 allows quasi-error-free (QEF) operation at about 0.7dB to 1.0dB from the Shannon 

limit, depending on the transmission mode [20]. Moreover, a capacity gain in the order of 30 

percent over DVB-S is achieved due to higher order modulation schemes. The functional 

block diagram of the DVB-S.2 system is illustrated in Fig. 3.1.  

 

BCH
Encoder
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Adaptation

Stream
Adaption

LDPC
Encoder

RF

TX 
Data

MappingPL
FramingModulation

Bit
Interleaver

FEC

    
Fig. 3.1 Functional block diagram of the DVB-S.2 system  

 

To transmit data via satellite, DVB-S.2 targets for a robust and reliable communication 

service. The corresponding packet error rate for DVB-S.2 at QEF over AWGN channel is 10-7, 

which is very low as compared to other systems. Therefore LDPC codes with large block 

lengths, which are 64,800 and 16,200, are chosen to accomplish excellent error performance. 

And different coding rate of LDPC codes are specified to accommodate various transmission 

modes.  

 

3.1.2 60GHz Band Wireless Communication  

Recently, the Federal Communications Commission (FCC) released the RF band around 

60GHz, leading to a new era in the millimeter wave based communications. It potentially can 
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provide a variety of applications including high-speed wireless personal area network 

(WPAN), automotive radar at nearby frequencies and multimedia communications. The 

corresponding standardization (IEEE 802.15.3c) is now under construction by IEEE 802.15 

Working Group for WPANs. It is intended to offer higher data transmission, higher frequency 

re-usage and superior coexistence than the existing wireless systems. The working group also 

suggest IEEE 802.15.3c will be widely used for Gigabit Ethernet and replace the cables and 

other wired links.  

One of the optional data rate suggested by IEEE 802.15.3c is greater than 2Gb/s in order 

to satisfy an evolutionary set of consumer multimedia industry in WPAN communications. 

Due to the required high data rate, LDPC codes are potential candidates for the FEC 

technique. With parallel implementation, the LDPC code decoders can easily achieve the 

demands for data rates over Gb/s.  

 

3.1.3 Ultra-Wideband System 

Ultra-wideband (UWB) is an emerging wireless physical (PHY)-layer technology that 

uses a very large bandwidth [21], [22]. It possesses unique advantages that are attractive to the 

communication applications: i) the potential for very high data throughput and large increase 

in user capacity; ii) the implementation of UWB potentially takes small size and processing 

power; and iii) ultra high precision ranging at centimeter level [22].  

Due to the lack of available spectral bands, the applications of UWB devices prior to 

2001 were mainly for military usage. In the spring of 2002, the FCC unleashed 3.1GHz to 

10.6GHz RF band for increasing high-speed data transmission. Responding to this FCC ruling, 

industries, government agencies and academic institutions made many research efforts that 

adopted UWB technology in various areas. These include short-range high-speed wireless 

communication, localization system, high-resolution radar and imaging system. In this thesis, 
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we will focus on the UWB applications for wireless networks.  

UWB addresses short-range connections among digital home electronics appliances that 

are applied for the wireless personal area network (WPAN). It is expected to provide 

high-speed data exchange among storage systems and real-time video/audio distribution for 

home entertainment devices. Due to small power consumption and high data rate, UWB 

technology will be exploited to replace existing wireless services.  

In [23], the multi-band orthogonal frequency-division multiplexing (MB-OFDM) 

PHY-layer proposal indicates the coded OFDM based solution can provide up to 480Mb/s for 

528MHz UWB system. The desired range in MB-OFDM is 10m for 110Mb/s and can be 

reduced for higher data rates [23]. To enhance the overall system performance, the 

convolutional codes and interleaving techniques are applied in the FEC mechanism, whose 

block diagram is shown in Fig. 3.2.  
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Fig. 3.2 Block diagram of MB-OFDM UWB system  

 

For improving PHY-layer capacity, LDPC codes can increase the throughput to over 

500Mb/s in future WLAN applications [24]. And the LDPC coded OFDM baseband system 

has been silicon proven to achieve 480 Mb/s data rate [25]. To provide better performance, the 

original convolutional codes and bit interleaving are replaced with LDPC codes in 

MB-OFDM UWB systems [25] as shown in Fig. 3.3. The overall system performance will be 
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described and discussed later. 
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Fig. 3.3 Block diagram of the proposed LDPC-COFDM UWB system  

 

 

3.2 Error-Correcting Performance of LDPC Codes in UWB 

System 
In the MB-OFDM UWB systems [25], the maximum 480Mb/s data rate with a 

bandwidth of 528MHz is specified. The time domain spreading scheme is used to change the 

data rate for different channel state information. In the following, the simulation results are 

based on the system illustrated in Fig 3.3, whose detail specification is given in Table 3.1. 

Two different irregular LDPC codes are constructed by the progressive edge-growth (PEG) 

algorithm [26] to enhance the system performances. One is (600, 450) LDPC code (Code I), 

and the other is (1200, 720) LDPC code (Code II).  

 

Table 3.1 Specification of referenced MB-OFDM UWB system 

Data rate (Mb/s) 120 240 480 

Spreading gain 4 2 1 

Constellation QPSK 
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Data carrier 100 

FFT size 128 

Packet size (Bytes) 1024 

Signal bandwidth (MHz) 528 

Channel model Additive White Gaussian Noise (AWGN) 

 

As stated in Chapter 2, the pseudo- a posteriori probabilities of the codeword bits 

gradually converge to the real a posteriori probabilities as the number of decoding iterations 

grows. And the internal messages which are exchanged between check nodes and bit nodes 

are soft values. However, since infinite decoding iterations and infinite signal precision are 

impossible for practical implementation, the maximum iteration number and the quantization 

bits have to be decided. Some performance degradation would be introduced due to the 

implementation limitations. As a result, a trade-off between the performance and hardware 

cost will be concerned in the following. 

 

3.2.1 Performance Analysis of Code I 

Code I is a (600, 450) rate-3/4 irregular LDPC code, whose column weights are fixed to 

3 and row weights are ranging from 11 to 14. Based on the referenced MB-OFDM UWB 

system, its performances with different decoding iterations including the bit-error rate (BER) 

and packet-error rate (PER), which is demanded to be less than 8% [21], is shown in Fig 3.4.  
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Fig. 3.4 Performance results of the (600, 450) LDPC code 

24 



 

Note that the required signal to noise ratio (SNR) is reduced as the iteration number 

increases. In Fig. 3.4(b), 3dB SNR gain at PER = 8% is achieved as the number of decoding 

iterations moves from 1 to 8. However, the improvement tends to be insignificant after 8 

iterations, which is only about 0.3dB. As a result, LDPC decoding for Code I with 8 iterations 

in referenced MB-OFDM UWB system is considerably a good trade-off for practical 

implementation.  

Quantization has to be performed for two types of signal values. One is the channel 

values, and the other is the internal messages. Fig. 3.5 shows the fixed point simulation results 

of Code I, where the notation (p, q) represents that the bit width of channel values and internal 

messages are p and q bits, respectively. The number of bits used for the integer and the 

fractional part in each (p, q) quantization schemes are shown as Table 3.2.  

 

Table 3.2 Bit width distribution for different quantization schemes 

Channel value Internal message Quantization 
scheme Integer part Fractional part Integer part  Fractional part

(4, 5) 1 3 1 4 

(5, 6) 1 4 1 5 

 

Many combinations of the quantization schemes and the bit width distributions have 

been tested through simulations. The performances of the quantization with more precision 

than (5, 6) scheme are almost the same as those with infinite precision. Consequently, the (5, 

6) scheme together with the bit width distribution listed in Table 3.2 are used for the proposed 

LDPC Code I decoder. 
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Fig. 3.5 Fixed point simulation of the (600, 450) LDPC code 
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3.2.2 Performance Analysis of Code II 

Code II is a (1200, 720) rate-3/5 irregular LDPC code, whose column weights are also 

fixed to 3 and row weights range from 7 to 9. Its performances on the MB-OFDM UWB 

system including BER and PER under different decoding iterations are shown in Fig. 3.6.  

In Fig. 3.6(b), The performance has 4.5 dB SNR gain under PER=8% is obtained as the 

number of decoding iterations grows from 1 to 8, but only 0.4 dB from 8 iterations to 64 

iterations. Therefore, LDPC decoding for Code II with 8 iterations is considered as a good 

trade-off between implementation and error-correcting performance. The fixed point 

simulation results of Code II are shown in Fig. 3.7, and the bit width distributions are given in 

Table 3.2. According to the results, the (5, 6) quantization scheme is chosen as the 

implementation parameter for the proposed decoder for Code II. 
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Fig. 3.6(a) BER of the (1200, 720) LDPC code 
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Fig. 3.6(b) PER of the (1200, 720) LDPC code 
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Fig. 3.7(a) Fixed point simulation of BER for the (1200, 720) LDPC code 
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Fig. 3.7(b) Fixed point simulation of PER for the (1200, 720) LDPC code 

 

 

3.2.3 Performance Comparison with Convolutional Codes 

In Fig. 3.8, the performance of LDPC codes is compared to the 64-state convolutional 

coded system proposed in [23] where two different rates after puncturing the R = 1/3 

convolutional code are selected as the references. It shows that both LDPC codes can 

outperform the convolutional codes after puncturing with only 8 iterations. The short block 

length and small decoding iterations will facilitate high speed implementation.  
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Fig. 3.8 Performance comparison for different codes 
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Chapter 4  
Architectures of Proposed LDPC Code 
Decoders 

 

The architectures of the proposed LDPC code decoders for two different LDPC codes, 

Code I and Code II, will be introduced in this chapter. Basic functional units, data flow 

rescheduling and memory arrangement methods will be discussed in detail. The measurement 

results of the proposed LDPC code decoder chips and a comparison with the state-of-the-art 

designs will also be listed. The specifications of Code I and Code II are summarized in Table 

4.1.  

 

Table 4.1 Summary of the two LDPC codes 

 Code I Code II 

Block length 600 1200 

Information bits  450 720 

Code rate 3/4 3/5 

Code structure Irregular Irregular 

Column weight 3 3 

Row weight 11~14 7~9 
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4.1 Introduction to the Conventional Design 
Based on the decoding algorithm, the block diagram of conventional LDPC code decoder 

is shown as Fig. 4.1. The bit node unit (BNU) is dedicated to the vertical step, while the check 

node unit (CNU) is used for the horizontal step. The BNU (or CNU) reads and processes the 

messages stored in the memory bank, and write them back into the memory bank after 

updating. It can be noticed that a large number of combinational feedback paths exist between 

the CNU (or BNU) and the memory unit, leading to the complex signal routing as well as 

degradation of the decoding speed in the VLSI implementation.  

 

Memory
BankBNU CNUBNUBNU CNUCNU

Channel
value

 

Fig. 4.1 Block diagram of conventional LDPC code decoder 

 

The conventional architecture of the CNU which is based on the LLR-SPA in (2.33) is 

shown in Fig. 4.2(a). The look-up tables (LUT) are used to implement the hyperbolic tangent 

(tanh) and inverse hyperbolic tangent (tanh-1) functions.  

The CNU can be implemented based on the min-sum algorithm as shown in Fig. 4.2(b) 

to reduce the hardware cost. As described in (2.38), the operations in the CNU can be divided 

into two parts: the sign evaluation and the minimum absolute value searching. The minimum 
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absolute values are searches by k comparators which consist of k-1 inputs (CMP-(k-1)), where 

k is the row weight of the parity check matrix. 

LUT-1

LUT-1

∑

-
-

-
-

LUT-2

LUT-2

LUT-2

LUT-2

LUT-1

LUT-1

 

(a) 

CMP-(k-1)

CMP-(k-1)

CMP-(k-1)

CMP-(k-1)

Sign Bit Evaluation

min

min

min

min

 
(b) 

Fig. 4.2 Architecture of conventional CNU based on: (a) LLR-SPA and (b) min-sum algorithm 

 

The conventional BNU architecture with k inputs is shown in Fig. 4.3, where the 

SUM-(k-1) is used to sum up k-1 values. Note that there is no difference on the BNU design 

between the LLR-SPA and the min-sum algorithm. Both LLR-SPA and min-sum algorithm 

have the same BNU design. 
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Fig. 4.3 Architecture of conventional BNU 

 

4.2 Proposed LDPC Code I Decoder Design 
The LDPC code decoders have inherently parallelism due to the non-dependency among 

check node updates or bit node updates; the throughput can be improved by linear increase of 

the hardware costs. However, the full-parallel implementation [9] is non-area-efficient for a 

system chip design. Therefore the partial-parallel architecture is employed in the proposed 

decoders to reduce circuit complexity according to the system requirements. In time-division 

multiplexing mode, the partial-parallel LDPC code decoders map a certain number of check 

nodes or bit nodes into a single processing unit. Extra decoding latencies are produced as 

compared with the full-parallel implementations. Thus a trade-off is made between the 

decoding speed and the hardware complexity. Besides, to simplify the hardware cost, the 

min-sum algorithm is chosen to implement the proposed design while keeping the system 

performance. 
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Fig. 4.4 presents the architecture of the proposed LDPC Code I decoder containing the 

distributor, memory unit, switch groups, CNU and BNU. Since the irregular parity check 

matrix H has a fixed number of column weight (= 3), the total number of weight in parity 

check matrix is 600 × 3 = 1800. To implement the decoder in a partial-parallel mode, the 

check nodes in the corresponding bipartite graph are partitioned into three parts, and the bit 

nodes are divided into four parts as shown in Fig. 4.5, where every three check nodes share a 

single CNU, and every four bit nodes share a single BNU. Therefore 150/3 = 50 CNUs and 

600/4 = 150 BNUs are required in the proposed design. The switch groups in Fig. 4.4 are used 

to select which part of check nodes or bit nodes is under operation. 
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Fig. 4.4 The architecture of LDPC Code I decoder 

35 



 

Parity check matrix
H

CNU 
set

BNU
set

c2

c3

c1

b1 b2 b3 b4
 

Fig. 4.5 The partition for parity check matrix H of Code I 

 

Due to the random-like connections in the bipartite graph, the signal routing problem 

causes serious difficulties in the decoder implementation. As shown in Fig. 4.1, the 

combinational feedback paths leads to the degradation of the decoding speed and the routing 

area overhead in the VLSI implementation. In the proposed design, the pipeline registers are 

inserted in CNUs and BNUs to cut off those feedback paths as illustrated in Fig. 4.6. Thus, 

shorter critical path delay that reduces routing congestion can be achieved with little increases 

in the hardware costs.  

 

BNU-PATH 2 CNU-PATH 1

BNU-PATH 1 CNU-PATH 2
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Bank
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Fig. 4.6 Data path of proposed partial-parallel decoder 

 

4.2.1 Channel Value Interconnection 

For the conventional design in Fig. 4.1, both the CNUs and BNUs have to be connected 

to the channel values, which lead to large number of signal connections. Thus data 

36 



 

rescheduling is proposed to solve this problem in Fig. 4.7. 
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Fig. 4.7 Proposed LDPC decoding flow  

 

    As shown in Fig. 4.7, one extra vertical step is employed to replace the initialization 

through the CNUs. Recall equation (2.34) 

( )\
( ) ( ) ( )

i j j i

j j

B C ij i C B ij
C M i C

L e L x L e
′

′

′→
∈

= + →∑ ,                  (2.34) 

only summations among the channel value L(xi) and the messages LC→B(eij) are performed in 

the BNUs. If the messages LC→B(eij) are set to zero during initialization, the channel values are 

thus loaded into the memory through the BNUs, and fed to the CNUs for the first horizontal 

step. In this scheme, only BNUs have to be connected to the channel values as illustrated in 

Fig. 4.4, leading to less signal routing costs with some increases in decoding latencies.  

Fig. 4.8 gives the timing diagram of the proposed LDPC Code I decoder, where bi and ci 

correspond to the active BNU and CNU set in Fig. 4.5. The design takes nine cycles to 

complete a decoding iteration, including 4 cycles for horizontal steps with the CNUs and 5 

cycles for vertical steps with BNUs. Additional five cycles are used to complete the channel 

value loading as described above. Thus total 9*8 + 5 = 77 cycles are required to finish the 

decoding process of a codeword with 8 iterations. 
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Fig. 4.8 Timing diagram of the proposed LDPC Code I decoder 

 

4.2.2 Check Node Unit 

As shown in Fig. 4.2(b), k comparators which search the minimal values among k-1 

inputs are needed to implement the CNU based on the min-sum algorithm. As mentioned in 

[18], equation (2.38) can be modified as 
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where “2nd min” denotes the value which is smaller than all the other candidates except the 

minimal one. According to (4.1), the absolute value searching has to be performed only one 

time to find the minimum and the second minimum. Fig. 4.9 shows the block diagram of the 

compare-select unit (CS14) which searches for the minimal and the second minimal values 

from 14 inputs. 

CMP-14

2nd min

min

If (M1 == min)
  New M1 = 2nd min;
else
  New M1 = min;

If (M2 == min)
  New M2 = 2nd min;
else
  New M2 = min;

If (M14 == min)
  New M14 = 2nd min;
else
  New M14 = min;

Selection Control

New M1

New M2

New M14

M1

M2

M14

 

Fig. 4.9 Block diagram of CS14 

 

Because the column weight of Code I is ranging from 11 to 14, the CNUs dealing with 

different number of inputs should be designed. In this section, only the 14-input CNUs are 

introduced and others are designed in the analogous approach. The detailed architecture of 

CMP-14 in Fig. 4.9 is illustrated as Fig. 4.10, which consists of the pipeline registers and two 
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kinds of comparators: CMP-2 and CMP-4. CMP-4 finds out the minimal and the second 

minimal values from the four inputs, a, b, c, and d. In addition, CMP-2 is a two input 

comparator which is much simpler than CMP-4.  
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Fig. 4.10(a) Block diagram of proposed CMP-4 
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Fig. 4.10(b) Block diagram of proposed CMP-14 

 

The proposed architecture of the 14-input CNU is shown in Fig. 4.11, where SM14 is 

sign-multiplication. To facilitate the operations on the sign and absolute value, all the 6-bit 
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values have been represented by the sign-magnitude notation with 2 integer bits and 4 

fractional bits. The combinational path in the CNUs is cut off into CNU-PATH1 and 

CNU-PATH2 by the pipeline registers, leading to shorter critical path delay that reduces 

routing congestion. 
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Fig. 4.11 The proposed 14-input CNU architecture 

 

Table 4.2 lists the comparisons of three different CNU architectures. The LUT-1 and 

LUT-2 in Fig. 4.2(a) are implemented in 6-bit precision, including 2 integer bits and 4 

fractional bits. The proposed CNU has the smallest size which is only about 22% of the others, 

whereas the maximum achievable operating speed is only a little smaller than conventional 

MS designs. Due to the fixed point implementation, some performance loss is produced. As a 

result, the decoder is implemented efficiently by using of the proposed CNU architecture. 
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Table 4.2 Comparison of different CNU architectures 

 LUT 
Fig. 4.2(a) 

Conv. MS 
Fig. 4.2(b) 

Proposed 
Fig. 4.11 

Max. speed 162 MHz 261 MHz 250 MHz 

Gate count 7.16 K 6.86 K 1.6 K 

Total gate count 358 K 343 K 80 K 

 

 

4.2.3 Bit Node Unit 

Fig 4.12 shows the block diagram of BNU. According to equation (2.34) and (2.35), the 

BNUs receive the channel value and the message values linked to the same bit node. All 

inputs with sign-magnitude (SM) notation are converted to be 2’s complement (TC) 

representation, and summed to perform the updating calculation. The pipeline registers are 

inserted to break the critical paths into BNU-PATH1 and BNU-PATH2 as in the CNUs. 

Finally, all the values are converted back to the SM notation and clipped to avoid overflow. 

And the most significant bit (MSB) of the summation of the three input messages and the 

channel value is used to decide the estimated codeword bit.  

All the 6-bit values are quantized with 2 integer bits and 4 fractional bits, while the 

intermediate summations are represented with 4 integer bits and 4 fractional bits. 
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Fig. 4.12 The proposed BNU architecture 

 

Note that if C1, C2 and C3 are set to be zero during initialization, the channel value will 

be directly bypassed to the outputs of BNU. This produces a path to load the channel values 

into the memory as mentioned above. 

 

4.2.4 Chip Implementation 

The proposed LDPC Code I decoder was implemented within an LDPC-COFDM UWB 

baseband transceiver chip [25] with the 0.18 µm 1P6M standard CMOS process. The chip 

micrograph of the entire UWB transceiver including the OFDM modem and the LDPC codec 

is given in Fig. 4.13. The encoder die size is 2.25 mm2, while the decoder die size is 16.5 mm2. 

The total gate count of the LDPC codec is 542 K, where 70K is for the encoder and 472K is 

for the decoder.  

The chip has been tested to verify the functional correctness. The measured maximal 

data rate of the decoder is 480 Mb/s while working at 82.1 MHz, and consuming 232 mW. 

The detailed chip features are also summarized in Table 4.3. 
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Fig. 4.13 Die micrograph of the LDPC-COFDM UWB transceiver chip 

 

Table 4.3 Summary of the LDPC Code I Chip 

Technology Standard 0.18-µm CMOS 1P6M 

Package CQFP-208 

Supply voltage 1.8V core, 3.3 V I/O 

Encoder 1.5mm × 1.5mm 
Chip size 

Decoder 5.0mm × 3.5mm 

Encoder 70K 
Gate count 

Decoder 472K 

Power dissipation 232mW @ 82.1MHz 

Maximum data rate 480Mb/s 
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4.3 Proposed LDPC Code II Decoder Design 
In Sec. 4.2, the proposed LDPC Code I decoder design is introduced and silicon proven 

to achieve 480Mb/s maximum data rate. The performance of LDPC code I decoder is 

acceptable for the MB-OFDM UWB system [23], but may be not for other high-speed 

communication systems mentioned in Chap. 3. As a result, the LDPC code II decoder is 

proposed to get better error-correcting ability and higher decoding throughput.  

While considering circuit complexity, the 480 × 1200 parity check matrix H of LDPC 

code II are divided into four 240 × 600 sub-matrixes to fit partial-parallel architecture, which 

is shown in Fig. 4.14. Since matrix H of Code II has a fixed number of column weight (= 3), 

the total number of weight is 1200 × 3 = 3600. Based on this partition, the functional units in 

the decoder will process 1800 messages every cycle.  

 

H =
h00 CNU Set 1

CNU Set 2

BNU Set 1 BNU Set 2

h01

h10 h11

 

Fig. 4.14 The partition of parity check matrix H of Code II 

 

The proposed LDPC code II decoder architecture illustrated in Fig. 4.15 contains the 

input buffer, 240 CNUs, 600 BNUs and two dedicated message memory units (MMU). The 

set of data processed by CNUs are {h00, h01} and {h10, h11}, whereas the data fed into BNUs 

should be {h00, h10} and {h01, h11}. Note that two MMUs are employed to process two 

different codewords concurrently without stalls. Therefore, the LDPC decoder is not only 

area-efficient but the decoding speed is compatible with the fully parallel architecture. The 

detail ideas about the designs of MMUs will be introduced in the following.  
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The input buffer is a storage component that receives and keeps channel values for 

iterative decoding. Note that it only connects to the BNUs to get less routing congestion as 

discussed in Sec. 4.2.1.  
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symbols

600 symbols
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Input Buffer
buf-0 buf-1 buf-2 buf-3
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D E

BA
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Fig. 4.15 The proposed LDPC code II decoder architecture 

 

4.3.1 Input Buffer 

Input buffer provides the channel values to the BNUs for iterative decoding. Because 

two different codewords are processed concurrently, total 1200 × 2 = 2400 symbols should be 

stored in the input buffer. According to the partition in Fig. 4.14, the buffer is divided into 

four sub-blocks, where each sub-block contains 600 channel values. The conventional design 

is illustrated in Fig. 4.16. Four sub-blocks, buf-0 ~ buf-3, are all connected to the channel 
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value inputs, and multiplexers are employed to switch appropriate values into the BNUs. Thus 

the signal routings are all “global”, meaning that all the connections are related to the inputs 

and outputs (I/O) of the buffer. The global connections and the multiplexers will lead to 

serious routing congestion.  

buf-0 buf-1 buf-2 buf-3

Channel value inputs

To BNU
 

Fig. 4.16 The conventional architecture of input buffer 

 

Fig. 4.17 shows the buffer structure based on register exchange (RE) approach and the 

operational timing diagram, where buf-0 is designed as a shift register that serially receives 

the channel values from inputs and the other three sub-blocks exchange the data with buf-0 

sequentially. The notation E1, E2 and E3 represent the data exchange from buf-0 to buf-1, 

buf-2 and buf-3, respectively. During initialization, buf-0 serially receives the channel values 

and passes them into other sub-blocks by executing the operations E1, E2 and E3 when buf-0 

is full-filled.  

 

buf-1 buf-0

Channel value inputs

To BNU
E1

E2E3

buf-2buf-3

 
Fig. 4.17(a) The architecture of RE based input buffer 
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Fig. 4.17(b) The timing diagram of RE based input buffer 

 

For this RE based buffer architecture, the global interconnections exist only in buf-0, and 

all the others are “local” among sub-blocks. However, the drawback is that a large number of 

multiplexers are required around buf-0 to perform E1 ~ E3. Thus buf-0 becomes a 

routing-critical block due to the multiplexers and the global interconnections.  

To overcome this problem, an architecture based on register shifting (RS) is proposed as 

shown in Fig. 4.18(a), where four sub-blocks are arranged in a ring. The buf-0 is a shift 

register that serially receives the channel values and buf-3 transports the associated channel 

values to BNU. The timing diagram of the RS-based input buffer is presented in Fig. 4.18(b). 

Channel values of two different codewords are serially fed into buf-0, and shifted within the 

buffer ring when buf-0 is full-filled. Therefore, the data flow is further simplified, and the 

multiplexers are eliminated, leading to simple signal transfer and routing interconnections.  
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Fig. 4.18 The architecture and timing diagram of RS-based input buffer 

 

Fig. 4.19 gives the comparison of the three input buffer architecture. The RS-based input 

buffer can save about 20% gate count and 30% interconnection wires as compared with the 

conventional design. 
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Fig. 4.19 The comparison of three input buffer designs 

 

4.3.2 Check Node Unit and Bit Node Unit 

Fig. 4.20 shows the CNU architecture for proposed LDPC code II decoder. The CNU can 

be divided into two parts: one is 1-bit sign-multiplication (SM) and the other is 5-bit 

compare-and-select unit (CS) that searches the minimal value and the second minimal value 

from the inputs. The new message for each bit node is a combination of the sign bit according 

to (4.1) and the new magnitude which is either “min” or “2nd min” of the CS unit. The detailed 

architecture of CMP-9 in Fig. 4.20 is designed as that shown in Fig. 4.9 and 4.10.  

The BNU architecture is illustrated in Fig. 4.21. According to (2.34) and (2.35), BNU 

receives the channel value and the messages linked to the same bit node. All inputs with 

sign-magnitude (SM) notation are firstly converted to be 2’s complement (TC) representation, 

and then summed to perform the updated calculation. The summed values are also clipped to 
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avoid overflow. Finally, the MSB of the summation of all the inputs is used to decide the 

decoded bit. 
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Fig. 4.20 CNU architecture of proposed LDPC Code II decoder 
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Fig. 4.21 BNU architecture of proposed LDPC Code II decoder 
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4.3.3 Message Memory Unit 

Message memory units (MMU) are used to store the message values that are generated 

by CNUs or BNUs. The size of each MMU is 3600 × 6 bit due to the weight of the parity 

check matrix. To increase the decoding throughput, two MMUs are employed to concurrently 

process two different codewords in the decoder. The memory management strategies, 

described below, include multiplexers (MUX) or register exchange (RE), resulting in different 

level of routing complexity. The MUX based MMU architecture and the timing diagram are 

illustrated in Fig. 4.22. 
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Fig. 4.22 The architecture and timing diagram of MUX-based MMU 
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According to the partition of the matrix H in Fig. 4.14, the MMU is divided into four 

sub-blocks: A, B, C and D. Many multiplexers are required for the inputs and outputs due to 

the partially parallel implementation and the concurrent process of two different codewords. 

Moreover, all the signal interconnections are related to the I/O, leading to global routings. As 

a result, the serious routing congestion occurs in the conventional MMU design.  

To release the routing congestion problem, the architecture based on register exchange 

among four sub-blocks (RE-4B) is proposed as shown in Fig 4.23. In this design, only 

sub-blocks B, C and D capture data form data paths, and only sub-blocks A and C connect to 

the outputs. Thus most of global routings are transformed into local interconnections between 

sub-blocks, leading to a simple data flow. Moreover, the number of multiplexers is also 

reduced by the RE-4B based architecture. 

B A CD

datapath

datapath  

Fig. 4.23(a) The architecture of RE-4B based MMU 
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Fig. 4.23(b) The timing diagram of RE-4B based MMU 

 

To further improve the MMU design, the register exchange scheme based on five 

sub-blocks (RE-5B) is proposed as shown in Fig. 4.24(a). One extra sub-block E is used as 

temporal memory for reducing the interconnection between other sub-blocks. In MMU-1, 

sub-blocks B, C, D and E capture the outputs from CNUs while sub-blocks A and C deliver 

the message data to BNUs. Fig. 4.24(b) shows the detailed timing diagram of reordering data 

sequence in MMU. The inputs of BNUs (CNUs) sequentially appear in sub-blocks A and C 

after reordering the data from CNUs (BNUs). Note that the solution to switch data sequence 

also enables the decoder to process two different codewords without stalls. 
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Fig. 4.24 The architecture and timing diagram of RE-5B based MMU 

 

With the RE-5B based MMU architecture, the multiplexers between the MMUs and the 

data paths are eliminated. And most global interconnections are replaced by local routing 

between sub-blocks to reduce routing congestion. Fig. 4.25 shows a comparison among the 

three MMU schemes. The gate count and interconnection are measured only from MMU-0 

and MMU-1, whereas the routing congestion overflow is investigated through implementing 

the decoder in a 25mm2 0.18-µm chip with 6 metal layers. In RE-4B and RE-5B architectures, 
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there is a 15% ~ 23% decrease in gate count due to the removal of multiplexers. A significant 

drop in signal connections is also observed with RE approach; therefore, the routing 

congestion can be dramatically improved. 
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Fig. 4.25 Comparison of three MMU designs 

 

4.3.4 Timing Schedule 

The overall timing diagram of the decoder is shown in Fig. 4.26. As mentioned above, 

two different codewords are processed concurrently without any stalls. In our proposed design, 

the BNUs and CNUs have no idle time, leading to an efficient utilization of the functional 

units. The design takes four cycles to complete a decoding iteration for each codeword, 

including 2 cycles for horizontal steps in CNUs and 2 cycles for vertical steps in BNUs. For 

channel value loading, each codeword takes 2 extra cycles. Thus total 2 + 2 + 8*4 = 36 cycles 
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are required to finish the decoding of two different codewords with 8 decoding iterations.  
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Fig. 4.26 Timing diagram of proposed LDPC code II decoder 

 

4.3.5 Chip Implementation 

A test chip has been fabricated in a 1.8V, 0.18µm 1P6M CMOS technology, and the die 

micrograph is shown in Fig. 4.27. The chip size is 25 mm2 while the core occupies 21.23 mm2. 

The total gate count is 1.15M including two MMUs while the chip core density is about 

71.2%. By measurement, the decoder achieves 3.33Gb/s throughput with 8 decoding 

iterations under 1.62V power supply, and the power estimation is 644 mW.  

A second test chip is implemented in a 1.2V, 0.13µm 1P8M CMOS technology, whose 

layout view is shown in Fig. 4.28. The chip size becomes 13.5 mm2 where the core constitutes 
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10.24 mm2. Moreover, the chip density grows to about 75.4% because of two extra metal 

layers. After static timing analysis (STA) and post-layout simulation, the maximum decoding 

speed has been improved to 5.92Gb/s with 8 decoding iterations under 1.02V supply and 

worst speed corner. The estimation also includes crosstalk analysis for signal wires that cause 

coupling noise. Table 4.4 gives the characteristic summary of two test chips.  

 

 

Fig. 4.27 Die micrograph of the 0.18µm LDPC code II decoder chip 

 

58 



 

 
Fig. 4.28 Layout view of the 0.13µm LDPC code II decoder chip 

 

 

Table 4.4 Summary of the LDPC Code II chip 

Technology 0.18-µm CMOS 1P6M  0.13-µm CMOS 1P8M 

Package CQFP-208 N.A. 

Supply voltage 1.8V core, 3.3 V I/O 1.2V core, 3.3V I/O 

Chip size 5.0mm × 5.0mm 3.67mm × 3.67mm 

Chip density 71.2% 75.4% 

Gate count 1.15M 1.15M 

Power dissipation 644mW @ 83MHz 299mW @ 145MHz 

Maximum data rate 3.33Gb/s 5.8Gb/s 
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4.4 Summary and Comparison 
The high speed LDPC code decoder designs are presented. The data rescheduling is 

employed to reduce the signal interconnections between the input buffer and the datapaths. 

The efficient functional unit designs make the decoder suitable for high speed applications. In 

addition, the message memories architecture permits parallel decoding of two codewords and 

diminishes the routing congestion issues. Consequently, the chip becomes smaller due to the 

increased chip density. 

The comparisons of our proposed LDPC code decoders with state-of-the-arts are listed in 

Table 4.5. Except for [11], the decoders are implemented with non-structured LDPC codes to 

get a better performance and a general implementation solution.  

 

Table 4.5 Comparison of LDPC chips 

 Proposed I Proposed II [9] [11] 

Block length 600 1200 1024 2304 

Code structure irregular irregular irregular structured

Code rate 3/4 3/5 1/2 2/3 

Silicon proven Yes Yes No Yes No 

Technology 0.18-µm  0.18-µm  0.13-µm  0.16-µm   0.18-µm 

Supply voltage 1.8V 1.8V 1.2V  1.5V 1.8V 

Clock freq. 82.1MHz 83MHz 145MHz 64MHz 200MHz 

Chip size 17.5mm2 25mm2 13.47mm2 52.5mm2 9.41mm2

Gate count 472K 1.15M 1.75M N.A. 

Power dissipation 232mW 644mW 299mW 690mW  1,176mW 

Data rate 480Mb/s 3.33Gb/s 5.8Gb/s 512Mb/s 128Mb/s 

Decoding iteration 8 8 64 10 
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Chapter 5  
Conclusion and Future Work 

 

5.1 Conclusion 
In this thesis, high-throughput and area-efficient LDPC code decoders are proposed for 

high-speed communication systems. A (600, 450) irregular LDPC code decoder is 

implemented in 0.18 µm technology and measured that it can achieve 480Mb/s data rate with 

8 decoding iterations. Another (1200, 720) irregular LDPC code decoder is fabricated in 0.18 

µm technology, whose measured data rate is 3.33Gb/s. Furthermore, the 0.13 µm (1200, 720) 

LDPC chip reaches the maximum 5.92Gb/s data rate with only 13.5 mm2 area and 268mW 

power consumption. 

 

5.2 Future Work 
As mentioned in Section 3.1.1, DVB-S.2 system adopts LDPC codes with very large 

block lengths as the FEC kernel to get good error-correcting performance. However, the 

implementation complexity of LDPC code decoders goes larger as the block length grows. 

Besides, in DVB-S.2 system, there are a lot of different coding rate which are required for 

different application mode. In [27], a LDPC codec for DVB-S.2 is proposed, which can 

achieve 135Mb/s throughput rate. However, the chip size and the power consumption are both 

large. Our proposed designs may be applied to construct a low-power and area-efficient 

architecture for the DVB-S.2 LDPC code decoder. This will be an interesting topic for our 

future research works.  
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