

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

高速低密度同位元檢查碼之解碼器設計

High-Throughput

Low-Density Parity-Check Code Decoder Designs

學生 ： 林凱立

指導教授 ： 李鎮宜 教授

中華民國九十四年七月

高速低密度同位元檢查碼之解碼器設計

High-Throughput

Low-Density Parity-Check Code Decoder Designs

研 究 生：林凱立 Student：Kai-Li Lin

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學
電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

高速低密度同位元檢查碼之解碼器設計

學生：林凱立 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

 在本論文中，我們提出了兩個高傳輸速度之低密度同位元檢查碼解碼器的設計。第

一個設計為應用於MB-OFDM UWB系統，區塊長度為 600 之解碼器。此架構採用了對

於通道資訊的資料流重新排程以及管線化來減低繞線上的擁擠程度和最長之延遲路

徑。經由 0.18µm製程實作晶片，我們所提出的此部份平行解碼器設計，於固定 8 次迴

圈的解碼模式下，可提供之最高資料傳輸速度為每秒 480Mb。第二個是基於區塊長度為

1200 之解碼器設計。為了達到更高的晶片密度及降低繞線上所造成的時間延遲，我們所

提出的架構採用了一個新的資料重新排序技術，將訊息記憶體和計算單元之間的資料匯

流排簡單化。經由此方法，由於晶片密度的提高，我們可大幅的縮減晶片的大小。另外，

此解碼器可同時處理兩筆不同之codeword來加快傳輸速度及資料路徑的工作效率。此設

計經由 0.18µm製程實作後，於晶片面積為 21.23mm2，固定 8 次迴圈的解碼模式下，其

最大資料傳輸速度可達到每秒 3.33Gb。另外，將此設計經由 0.13µm製程實作後，資料

傳輸速度可提升到每秒 5.92Gb，晶片面積縮小為 10.24mm2，而晶片之密度可提高至

75.4%。

i

High-Throughput

Low-Density Parity-Check Code Decoder Designs

Student : Kai-Lin Lin Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

In this thesis, two high-throughput low-density parity-check (LDPC) code decoders are

presented. The first one is a (600, 450) LDPC code decoder applied for MB-OFDM UWB

applications. The architecture adopts a re-scheduling data flow for channel values and the

pipeline structure to reduce routing congestion and critical path delay. After fabricated in

0.18µm 1P6M process, the proposed partially parallel decoder can support 480Mb/s data rate

under 8 decoding iterations. Second decoder is implemented based on a (1200, 720) irregular

parity check matrix. For achieving higher chip density and less interconnection delay, the

proposed architecture features a new data reordering technique to simplify data bus between

message memories and computational units; as a result, the chip size can be greatly reduced

due to the increased chip density. Moreover, the LDPC decoder can also process two different

codewords concurrently to increase throughput and datapath efficiency. After 0.18µm 1P6M

chip implementation, a 3.33Gb/s data rate with 8 decoding iterations is achieved in the

21.23mm2 silicon area. The other experiment using 0.13µm 1P8M technology can further

reach a 5.92Gb/s data rate within 10.24mm2 area while the chip density is 75.4%.

ii

誌 謝

隨著鳳凰花開，轉眼間又到了畢業的季節。在這二年的碩士生涯中，首先我要向指

導教授李鎮宜博士表達最誠摯的謝意。由於老師指導有方，讓我能在短時間內找到正確

的研究方向；在遇到挫折時也能從經驗中學習，培養正確的研究精神。另外，我也要感

謝 Si2 實驗室中的每一位成員。在這裡的每個人研究領域或有不同，但都願意彼此幫助，

讓我不僅了解團隊工作的重要性，更令人倍感溫馨；尤其我要感謝林建青學長，在我研

究過程中不厭其煩地提供不少建議。最後，我要謝謝在背後默默支持著我的家人和朋

友，讓我順利完成了這份學業。在大家的鼓勵下，讓我過得更多采多姿，我一定不會忘

記這段令人充滿回憶的生活。

iii

Contents

CHAPTER 1 INTRODUCTION...1

1.1 MOTIVATION..1

1.2 THESIS ORGANIZATION..2

CHAPTER 2 LOW-DENSITY PARITY-CHECK CODES..4

2.1 LDPC CODES ..4

2.2 MESSAGE PASSING ALGORITHM ..7

2.2.1 Principle of Message Passing Algorithm ...7

2.2.2 Message Passing on Bit Nodes...9

2.2.3 Message Passing on Check Nodes ...10

2.3 LDPC CODE DECODING ALGORITHM..12

2.3.1 Sum-Product Algorithm (SPA) ..12

2.3.2 Log-Likelihood Ratio Sum-Product Algorithm (LLR-SPA)15

2.3.3 Min-Sum Algorithm (MS) ...16

CHAPTER 3 HIGH-SPEED COMMUNICATION SYSTEMS WITH LDPC CODES .18

3.1 INTRODUCTIONS TO HIGH-SPEED COMMUNICATION SYSTEMS18

3.1.1 Satellite Wireless Communication ..18

3.1.2 60GHz Band Wireless Communication ..19

3.1.3 Ultra-Wideband System ..20

iv

3.2 ERROR-CORRECTING PERFORMANCE OF LDPC CODES IN UWB SYSTEM22

3.2.1 Performance Analysis of Code I ...23

3.2.2 Performance Analysis of Code II..27

3.2.3 Performance Comparison with Convolutional Codes......................................29

CHAPTER 4 ARCHITECTURES OF PROPOSED LDPC CODE DECODERS31

4.1 INTRODUCTION TO THE CONVENTIONAL DESIGN ...32

4.2 PROPOSED LDPC CODE I DECODER DESIGN...34

4.2.1 Channel Value Interconnection...36

4.2.2 Check Node Unit...38

4.2.3 Bit Node Unit ..42

4.2.4 Chip Implementation ..43

4.3 PROPOSED LDPC CODE II DECODER DESIGN ...45

4.3.1 Input Buffer...46

4.3.2 Check Node Unit and Bit Node Unit ..50

4.3.3 Message Memory Unit..52

4.3.4 Timing Schedule..56

4.3.5 Chip Implementation ..57

4.4 SUMMARY AND COMPARISON ..60

CHAPTER 5 CONCLUSION AND FUTURE WORK...61

5.1 CONCLUSION ...61

5.2 FUTURE WORK ..61

BIBLIOGRAPHY...62

v

List of Figures

FIG. 2.1 EXAMPLE OF REGULAR LDPC CODE PARITY CHECK MATRIX ..5

FIG. 2.2 BIPARTITE GRAPH OF THE CODE SPECIFIED BY MATRIX IN FIG. 2.16

FIG. 2.3 MESSAGE PASSING ON A NODE ..8

FIG. 2.4 MESSAGE PASSING ON A BIT NODE ..10

FIG. 2.5 MESSAGE PASSING ON A CHECK NODE... 11

FIG. 2.6 ITERATIVE DECODING FLOW CHART FOR LDPC CODES...13

FIG. 2.7 MESSAGE PASSING IN LDPC CODE DECODING..14

FIG. 3.1 FUNCTIONAL BLOCK DIAGRAM OF THE DVB-S.2 SYSTEM..19

FIG. 3.2 BLOCK DIAGRAM OF MB-OFDM UWB SYSTEM ...21

FIG. 3.3 BLOCK DIAGRAM OF THE PROPOSED LDPC-COFDM UWB SYSTEM...........................22

FIG. 3.4 PERFORMANCE RESULTS OF THE (600, 450) LDPC CODE...24

FIG. 3.5 FIXED POINT SIMULATION OF THE (600, 450) LDPC CODE ...26

FIG. 3.6(A) BER OF THE (1200, 720) LDPC CODE ..27

FIG. 3.6(B) PER OF THE (1200, 720) LDPC CODE...28

FIG. 3.7(A) FIXED POINT SIMULATION OF BER FOR THE (1200, 720) LDPC CODE28

FIG. 3.7(B) FIXED POINT SIMULATION OF PER FOR THE (1200, 720) LDPC CODE.....................29

FIG. 3.8 PERFORMANCE COMPARISON FOR DIFFERENT CODES ..30

FIG. 4.1 BLOCK DIAGRAM OF CONVENTIONAL LDPC CODE DECODER.......................................32

FIG. 4.2 ARCHITECTURE OF CONVENTIONAL CNU BASED ON: (A) LLR-SPA AND (B) MIN-SUM

ALGORITHM ...33

vi

FIG. 4.3 ARCHITECTURE OF CONVENTIONAL BNU...34

FIG. 4.4 THE ARCHITECTURE OF LDPC CODE I DECODER..35

FIG. 4.5 THE PARTITION FOR PARITY CHECK MATRIX H OF CODE I..36

FIG. 4.6 DATA PATH OF PROPOSED PARTIAL-PARALLEL DECODER..36

FIG. 4.7 PROPOSED LDPC DECODING FLOW ..37

FIG. 4.8 TIMING DIAGRAM OF THE PROPOSED LDPC CODE I DECODER38

FIG. 4.9 BLOCK DIAGRAM OF CS14 ...39

FIG. 4.10(A) BLOCK DIAGRAM OF PROPOSED CMP-4 ..40

FIG. 4.10(B) BLOCK DIAGRAM OF PROPOSED CMP-14...40

FIG. 4.11 THE PROPOSED 14-INPUT CNU ARCHITECTURE ..41

FIG. 4.12 THE PROPOSED BNU ARCHITECTURE ...43

FIG. 4.13 DIE MICROGRAPH OF THE LDPC-COFDM UWB TRANSCEIVER CHIP........................44

FIG. 4.14 THE PARTITION OF PARITY CHECK MATRIX H OF CODE II ..45

FIG. 4.15 THE PROPOSED LDPC CODE II DECODER ARCHITECTURE...46

FIG. 4.16 THE CONVENTIONAL ARCHITECTURE OF INPUT BUFFER ..47

FIG. 4.17(A) THE ARCHITECTURE OF RE BASED INPUT BUFFER..47

FIG. 4.17(B) THE TIMING DIAGRAM OF RE BASED INPUT BUFFER...48

FIG. 4.18 THE ARCHITECTURE AND TIMING DIAGRAM OF RS-BASED INPUT BUFFER49

FIG. 4.19 THE COMPARISON OF THREE INPUT BUFFER DESIGNS ..50

FIG. 4.20 CNU ARCHITECTURE OF PROPOSED LDPC CODE II DECODER51

FIG. 4.21 BNU ARCHITECTURE OF PROPOSED LDPC CODE II DECODER51

FIG. 4.22 THE ARCHITECTURE AND TIMING DIAGRAM OF MUX-BASED MMU...........................52

FIG. 4.23(A) THE ARCHITECTURE OF RE-4B BASED MMU..53

FIG. 4.23(B) THE TIMING DIAGRAM OF RE-4B BASED MMU...54

FIG. 4.24 THE ARCHITECTURE AND TIMING DIAGRAM OF RE-5B BASED MMU55

FIG. 4.25 COMPARISON OF THREE MMU DESIGNS ...56

vii

FIG. 4.26 TIMING DIAGRAM OF PROPOSED LDPC CODE II DECODER ...57

FIG. 4.27 DIE MICROGRAPH OF THE 0.18µM LDPC CODE II DECODER CHIP...............................58

FIG. 4.28 LAYOUT VIEW OF THE 0.13µM LDPC CODE II DECODER CHIP59

viii

List of Tables

TABLE 3.1 SPECIFICATION OF REFERENCED MB-OFDM UWB SYSTEM....................................22

TABLE 3.2 BIT WIDTH DISTRIBUTION FOR DIFFERENT QUANTIZATION SCHEMES.........................25

TABLE 4.1 SUMMARY OF THE TWO LDPC CODES ..31

TABLE 4.2 COMPARISON OF DIFFERENT CNU ARCHITECTURES ...42

TABLE 4.3 SUMMARY OF THE LDPC CODE I CHIP...44

TABLE 4.4 SUMMARY OF THE LDPC CODE II CHIP..59

TABLE 4.5 COMPARISON OF LDPC CHIPS ..60

ix

Chapter 1
Introduction

1.1 Motivation
 Low-density parity-check (LDPC) code, a linear block code defined by a very sparse

parity check matrix, was first introduced by Gallager [1], [2]. Due to the difficulty of circuit

implementation, LDPC codes have been ignored for about forty years except for the study of

codes defined on graphs by Tanner [3]. The rediscovery of LDPC codes were done by

Spielman et al. [4] and MacKay et al. [5], [6]. It has engaged much research interest because

the sparse property of parity check matrix makes the decoding algorithm simple and practical

at good communication rates [5]. It was proven [7] that the LDPC code with large block

length can beat turbo code [8], and achieve a capacity within 0.0045dB of the Shannon limit

on AWGN channels. Besides their good error-correcting capability, LDPC codes have

inherently fully parallelism and the simplicity of arithmetic computations. As a result, LDPC

codes have been considered as next-generation forward error-control (FEC) technology for

many high speed applications such as magnetic storage and telecommunications. However,

the very large scale integrated circuits (VLSI) implementation of LDPC code decoders still

remains a challenge in real applications.

The main challenge of LDPC code decoder falls in the complex interconnections due to

the randomness of parity check matrix. To efficiently design the decoder, the realization of its

iterative decoding process which is referred to the message passing algorithm [5] becomes the

most critical issue. According to different decoding schedules, the implementation of LDPC

code decoders can be partitioned into two categories, fully parallel decoders and partially

1

parallel decoders.

Fully parallel decoders directly map the corresponding bipartite graph [3] into hardware

and all the processing units are hard-wired according to the connectivity of the graph. Thus

they can achieve very high decoding speed but have a large hardware cost. The fully parallel

implementation in [9] presents a 1024-bit, 1-Gb/s LDPC code decoder, which demands large

area due to large amount of processing units and the complicated interconnections. The

partially parallel architecture in [10] maps a certain number of processing unit into a single

hardware block by using time-division multiplexing. It trades the decoding throughput for the

reduction of hardware complexity. However, they also suffer from the same routing

complications, and may be even worse due to multiplexers. Another implementation approach

is presented in [11], which employs a turbo-like decoding algorithm with structured parity

check matrices. The throughput is quite low due to the trellis-based decoding process.

In this thesis, two decoders with different block lengths are implemented based on the

partially parallel architecture. To solve the problems mentioned previously, efficient methods

are proposed and applied to the decoders to eliminate multiplexers for less signal routing. The

implementation results show how the proposed methods improve the performance. The detail

discussion and architecture will be given in the following chapters.

1.2 Thesis Organization
The remainder of this thesis is organized as follows. Chapter 2 describes the

characteristics and decoding algorithms of LDPC codes. High-speed applications which

adopted LDPC codes or potentially will adopt LDPC codes as the FEC kernel are introduced

in Chapter 3. Simulation results and performance analysis will also be discussed here. In

Chapter 4, the proposed LDPC code decoders, including functional units, data rescheduling

and memory arrangement, are presented in detail. Besides, the chip implementation results

2

and comparisons with the state-of-the-arts will also be shown. Finally, conclusion and future

work are made in Chapter 5.

3

Chapter 2
Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes are linear block codes that are specified by

sparse parity check matrices containing mostly 0’s and only a small number of 1’s [1]. The

code structures and decoding algorithms can be represented by bipartite graph [2].

Furthermore, it has been shown that the codes can achieve a capacity near Shannon limit with

large block length. In this chapter, the code characteristics and decoding algorithms are

presented.

2.1 LDPC Codes
The parity check matrix H which has N columns and M rows defines a LDPC code with

the block length of N bits and M parity checks. Assuming the matrix is of full rank, the

number of information bits is K = N – M, and the code rate is R = 1 – M/N. It was shown by

Gallager [2] that for large block lengths, the minimum distance of the code grows linearly

with N. Thus block lengths of LDPC codes are often designed as large as possible. For a

regular LDPC code, each column and row contains a fixed number of 1’s in H, leading to

equal weights for both columns and rows. Otherwise, the code is termed irregular. It has been

shown that irregular codes outperform regular codes due to wave effect [12]. An example of

regular LDPC code parity check matrix is shown in Fig. 2.1.

Generation a set of valid codewords requires the generator matrix G, which can be

derived from H. The relationship between G and H can be expressed as

T 0⋅ =G H . (2. 1)

4

Let with (...)=u 1 2 3 Ku , u , u , , u }1,0{=iu be the information bits, a LDPC code C is

defined as

{ | }= = ⋅x x u GC . (2. 2)

Note that matrix G is not generally sparse; as a result, the complexity of encoding process is

much higher due to the large and dense matrix multiplication. From equation (2.1) and (2.2), a

valid codeword vector ()=x 1 2 3 Nx , x , x , ..., x should satisfy M parity check equations

T 0 1,2,...,⋅ = =x hi i M , (2. 3)

where hi = (hi,1, hi,2, …, hi,N) denotes the row space of H.

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Fig. 2.1 Example of regular LDPC code parity check matrix

LDPC codes can also be represented in bipartite graph. On one side the graph has N bit

nodes which correspond to the N columns of H and M check nodes which correspond to the

M rows of H on the other side. An edge which connects a bit node Bj and check node Ci

corresponds to a 1 in the entry (i, j) of H. Fig. 2.2 is the corresponding bipartite graph of the

LDPC code specified by the parity check matrix in Fig. 2.1.

5

C1

C2

C3

C4

C5

C6

B1

B2

B3

B4

B8

B7

B6

B5

B9

bit
nodes

check
nodes

+
+

+
+

+
+

edge

+
+

+
+

+
+

+
+

+
B10

B11

B12

B13

B17

B16

B15

B14

B18

B20

B19

C7

C8

C9

C10

C11

C12

C15

C13

C14

.

Fig. 2.2 Bipartite graph of the code specified by matrix in Fig. 2.1

6

2.2 Message Passing Algorithm
In this section, message passing algorithm which is used to perform probabilistic

decoding is introduced. The intrinsic probability int (EP x a)= represents the probability that

the variable x chooses the value a. The extrinsic probability () describes the new

information for variable x which is obtained from the event E. Moreover, the a posteriori

probability ()

ext
EP x a=

post
EP x a= represents the conditional probability that the variable x takes the

value a based on the knowledge of event E.

2.2.1 Principle of Message Passing Algorithm

The key factor of the message passing algorithm is to iteratively pass and exchange

probabilistic messages in a graph. Extrinsic and a posteriori probabilities can be evaluated

based on given intrinsic probabilities and the construction of the graph.

Consider a node G with K+1 edges, which are associated with the variables e0, e1, …, eK

belonging to the alphabet sets A0, A1, …, AK, respectively. The connection is shown as Fig. 2.3.

For simplicity, only the case of binary variables is discussed in the following. That is,

. Denote the intrinsic, extrinsic and a posteriori probability for e2∈iA Z i with respect to event

G as int ()ξ=G i iP e , ()ξ=ext
G i iP e and ()ξ=post

i iGP e , respectively. Assuming that the intrinsic

probability for variable ei is available, the a posteriori probability can be derived by Bayes’

theorem as

int

() (|)
(,)

()
1 (|) ().
()

ξ ξ
ξ

ξ ξ

= = =
=

=

= =

post
G i i i i

i i

i i G i i

P e P e G
P G e

P G

P G e P e
P G

=

 (2.4)

7

G

e1

ek

ei
ei-1

ei+1

Pext(ei)

Fig. 2.3 Message passing on a node

Note that the extrinsic probability is in proportion to (|)ξ=i iP G e . That is

() (|ext
G i i i i iP e P G e) ,ξ α= = = ξ (2.5)

where iα is a scaling constant. A constraint set 0 1∈ × × ×GS A A AL K that the values of

variables (e0, e1, …, eK) have to satisfy is defined on node G. Therefore, event G is true only

when

0 1(, ,...,)ξ ξ ξ ∈K GS , (2.6)

where 0 0 1 1, , ...,ξ ξ ξ= = =K Ke e e .

To evaluate the extrinsic and a posteriori probabilities of variables 0{ } =
K

i ie , the

probabilities of variable e0 are considered without loss of generality. Note that the product of

alphabets A1 × A2 × … × AK forms a complete set of values for variables (e1, e2, …, eK).

Hence,

1 1

1
(,...,)

({ }) 1
ξ ξ

ξ =
∈ × ×

= =∑
K K

K
i i i

A A
P e

L

 . (2.7)

In this way, the probability of event G can be decomposed as

1 1

1
(,...,)

() (, { })
ξ ξ

ξ =
∈ × ×

= =∑
K K

K
i i i

A A
P G P G e

L

 . (2.8)

The extrinsic probability 0 0()ξ=ext
GP e can thus be derived by

1 1

0 0 0 0 0 0 1 0 0
(,...,)

() (|) (, { } |
ξ ξ

)ξ α ξ α ξ =
∈ × ×

= = = = = = ξ∑
K K

ext K
G i i i

A A
P e P G e P G e e

L

 , (2.9)

where 0α is a scaling constant. With chain rule and the independence of the variables 0{ } =
K

i ie ,

the following result is obtained.

8

1 0 0 0 1 0 0

0
1

(, { } |) (|{ }) ({ } |

(|{ }) () .

)ξ ξ ξ ξ

ξ ξ

= =

=
=

= = = = ⋅ = =

= = ⋅ =∏

K K
i i i i i i i i i

K
K

i i i i i
i

P G e e P G e P e e

P G e P e

ξ=
K

 (2.10)

Because event G is true only when equation (2.6) is satisfied, the first term in equation (2.10)

can be written as

0 1
0

1 if (, ,...,)
(|{ }) .

0 otherwise
ξ ξ ξ

ξ =

∈⎧
= = ⎨

⎩
K GK

i i i

S
P G e (2.11)

By putting together equation (2.9), (2.10) and (2.11), the expression of 0 0()ξ=ext
GP e can be

rewritten as

1
0 1

int
0 0 0

,..., 1
(, ,...,)

() (
ξ ξ

ξ ξ ξ

)ξ α
=

∈

= = =∑ ∏
K

K G

K
ext

G
i

S

P e P e ξG i i

)

 . (2.12)

The a posteriori probability 0 0(ξ=post
GP e can be derived by combining equation (2.4) and

(2.12).

1
0 1

1
0 1

int int
0 0 0 0 0

,..., 1
(, ,...,)

int
0

,..., 0
(, ,...,)

1() () ()
()

() ,

ξ ξ
ξ ξ ξ

ξ ξ
ξ ξ ξ

ξ ξ ξ

α ξ

=
∈

=
∈

⎛ ⎞
⎜ ⎟= = ⋅ = ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠

′= =

∑ ∏

∑ ∏

K
K G

K
K G

K
post

G G i
i

S

K

G i i
i

S

P e c P e P e
P G

P e

i G

 (2.13)

where 0 0 1 ()α α′ = ⋅ P G is a normalization constant.

2.2.2 Message Passing on Bit Nodes

Representing one bit of the codeword, a bit node in a bipartite graph corresponds to a

specified column in the parity check matrix H which defines the code. Thus the constraint on

a bit node specifies that the associated variables should be equal. The constraint set SB on bit

node B, which connects to K+1 check nodes, can be expressed as

0 1 0 1{(, ,...,) | }B KS e e e e e e= = =L K= . (2.14)

9

e0

e1 eK-1 eK

+ + ++
C0 C1 CK-1 CK

B

Fig. 2.4 Message passing on a bit node

The connection is also shown in Fig. 2.4.

For bit node B, the input message vector along edge ei is defined as ()µ →iC B ie , where i =

1~K. Based on equation (2.12) and (2.14), the output message 0 0 0()µ ξ→ =B C e along edge e0

is

0

1
0 1

0 0 0 0

0
,..., 1

(, ,...,)

0 0
1

() ()

(

() ,

i

K
K B

i

ext
B C B

K

C B i i
i

S

K

C B i
i

e P e

e

e

ξ ξ
ξ ξ ξ

µ ξ ξ

)α µ

α µ ξ

→

→
=

∈

→
=

= = =

=

= =

∑ ∏

∏

ξ= . (2.15)

where 0α is the normalization constant.

2.2.3 Message Passing on Check Nodes

In a bipartite graph, a check node, denoting a parity check equation of the code,

corresponds to a specified row in the parity check matrix H. Thus the constraint on a check

node specifies that the summation of the associated bits should be zero. The constraint set SC

on check node C, which connects to K+1 bit nodes, can be expressed as

0 1 0 1{(, ,...,) | 0}C KS e e e e e e= + + +L K = , (2.16)

where the operation “+” represents the modulo-2 summation. The connection is shown in Fig

2.5.

10

+ C

e0
e1 eK-1

eK

B0 B1 BK-1 BK

Fig. 2.5 Message passing on a check node

The input message vector along edge ei is denoted by ()µ →iB C ie for i = 1~K. With equation

(2.12) and (2.15), the output message 0 0 0()µ ξ→ =C B e along edge e0 can be derived as

0

1
0 1

1

0 0 0 0

0
,..., 1

(, ,...,)

0 0 1
,..., 1

() ()

()

[0] (

i

K
K C

i

K

ext
C B C

K

B C i i
i

S

K

K B C i
i

e P e

e

e

ξ ξ
ξ ξ ξ

ξ ξ

µ ξ ξ

α µ ξ

) ,iα ξ ξ ξ µ ξ

→

→
=

∈

→
=

= = =

′= =

′= + + + = =

∑ ∏

∑ ∏L

 (2.17)

where 0 1[0]ξ ξ ξ+ + + =KL is an indicator function that determines whether the parity

check equation is satisfied. Because the indicator function consists of large number of

possible configurations, the summation operation in equation (2.17) is very complicated. Thus

we first consider the case of K=2 for simplicity. Therefore,

0 1 2

0

1 2

2

1 2
0 , 1

2
0

1 2
, 1

[0 0] ()
(0)

(1)
[1 0] ()

i

i

B C i i
C B i

C B
B C i i

i

e
e

e
e

ξ ξ

ξ ξ

ξ ξ µ ξ
µ

µ
ξ ξ µ ξ

→
→ =

→
→

=

⎡ ⎤
+ + = =⎢ ⎥=⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥=⎢ ⎥⎣ ⎦ + + = =⎢ ⎥

⎢ ⎥⎣ ⎦

∑ ∏

∑ ∏
. (2.18)

When e0 = 0, the indicator function is true if and only if the configuration is either e1 = e2 = 0

or e1 = e2 = 1. Hence equation (2.18) can be decomposed as

11

()()
()

0 1 2 1 2

0 1 2 1 2

1 2 1 2

1 2

0 1 2 1 2

0 1 2 1 2

1 2 1

1 2

(0) (0) (0) (1) (1)

(1) (0) (1) (1) (0)

1 (1) 1 (1) (1) (1)

1 (1) (

C B B C B C B C B C

C B B C B C B C B C

B C B C B C B C

B C B C

e e e e e

e e e e e

e e e e

e e

µ µ µ µ µ

µ µ µ µ µ

µ µ µ µ

µ µ

→ → → → →

→ → → → →

→ → → →

→ →

= = = + = =⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

= = = + = =⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

− = − = + = =
=

− = ()1 21 2

,
1) (1) 1 (1)B C B Ce eµ µ→ →

⎡ ⎤
⎢ ⎥
⎢ ⎥= + = − =⎣ ⎦

2

)

(2.19)

where 1 11 1(0) 1 (1µ µ→ →= = − =B C B Ce e and 2 22(0) 1 (2 1)µ µ→ →= = − =B C B Ce e . Furthermore,

the expression in equation (2.19) can be rewritten as

()()
()(

1 20

0 1 2

1 20

0 1 2

1 2 (1) 1 2 (1)2 (0) 1

2 (1) 1 1 2 (1) 1 2 (1)

B C B CC B

C B B C B C

e ee

e e e

µ µµ

µ µ µ

→ →→

→ → →)
⎡ ⎤− = − == −⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥= − − − = − =⎢ ⎥⎣ ⎦ ⎣ ⎦

. (2.20)

By induction [13], the results in equation (2.20) can be generalized for K>2 and becomes

()

()
0

0

0 1

0

1

1 2 (1)2 (0) 1

2 (1) 1
1 2 (1)

i

i

K

B C i
C B i

K
C B

B C i
i

ee

e
e

µµ

µ
µ

→
→ =

→
→

=

⎡ ⎤
− =⎢ ⎥= −⎡ ⎤

⎢ ⎥=⎢ ⎥
= − ⎢⎢ ⎥⎣ ⎦ − − =

⎥
⎢ ⎥
⎣ ⎦

∏

∏
. (2.21)

As a result, the output messages can be expressed in terms of the input messages:

0

0

0 1

0

1

1 (1 (1 2 (1)))(0) 2
(1) 1 (1 (1 2 (1)))

2

i

i

K

B C i
C B i

K
C B

B C i
i

ee

e
e

µµ

µ
µ

→
→ =

→
→

=

⎡ ⎤
+ − =⎢ ⎥=⎡ ⎤

⎢ ⎥=⎢ ⎥
= ⎢⎢ ⎥⎣ ⎦ − − =

⎥
⎢ ⎥
⎣ ⎦

∏

∏
. (2.22)

2.3 LDPC Code Decoding Algorithm

2.3.1 Sum-Product Algorithm (SPA)

For a M × N parity check matrix H and the corresponding graph, Bi for i = 1, 2, …, N

denote the bit nodes, Cj for j = 1, 2, …, M are check nodes, and eij is the edge connecting Bi

and Cj. Furthermore, M(i) is the set of check nodes connected to bit node Bi, and L(j) is the set

of bit nodes that are associated with check node Cj. The codeword is also represented by

1 2[, , ,]x = Nx x xL . The intrinsic probabilities with respect to the LDPC code can thus be

12

written as

int () ()LDPC i i iP x P x ξ= = , (2.23)

where {0,1}ξ ∈i and , assuming binary symmetric channel. (0) 1 (1= = − =iP x P x)i

Fig 2.6 illustrates the iterative decoding flow of LDPC codes where each step will be

described as follows [5].

Syndrome
Check

Horizontal
Step

Vertical
Step

Initialization

No

Output
Estimated Bits

Iterative Decoding

Yes

Fig. 2.6 Iterative decoding flow chart for LDPC codes

(1) Initialization: The messages from bit node Bi to check node Cj are initialized as

(0) (0)
(1) (1)

µ

µ
→

→

=⎡ ⎤ =⎡ ⎤
=⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎣ ⎦⎣ ⎦

i J

i J

B C ij i

B C ij i

e P x
e P x

 . (2.24)

(2) Horizontal step: As shown in Fig. 2.7(a), message updates associated with check

nodes are completed in this step. As shown in equation (2.22), the update equations

can be expressed as

 ()\

()\

1 (1 (1 2 (1)))(0) 2
(1) 1 (1 (1 2 (1)))

2

µµ

µ µ

′

′

′

′

′→
→ ∈

→
′→

∈

⎡ ⎤+ − =⎢ ⎥=⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥=⎢ ⎥⎣ ⎦ − − =⎢ ⎥
⎢ ⎥⎣ ⎦

∏

∏

i j
j i i i

j i
i j

i i

B C i j
C B ij B L j B

C B ij
B C i j

B L j B

ee

e e
, (2.25)

 where L(j)\Bi is the set of bit nodes that participate in check node Cj except Bi.

(3) Vertical step: In vertical step, the messages associated with bit nodes are updated as

illustrated in Fig. 2.7(b). According to equation (2.15), the update equations can be

13

expressed as

()\

()\

(0) (0)
(0)

(1) (1) (1)

α µ
µ

µ α µ

′

′

′

′

′→
→ ∈

→ ′→
∈

⎡ ⎤= =
=⎡ ⎤ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

∏

∏

j i

i j j j

i j j i

j j

ij i C B ij
B C ij C M i C

B C ij ij i C B ij
C M i C

P x e
e

e P x e
, (2.26)

where M(i)\Cj is the set of check nodes that connect to bit node Bi except Cj and αij

is chosen such that (0) (1) 1µ µ→ →= + =i j i jB C ij B C ije e = .

(4) Syndrome check: The a posteriori probabilities for each codeword bit can be

computed as

()

()

(0) (0)
(0)

(1) (1)(1)

j i

j

j i

j

i i C B ijpost
C M ii

post
i i C B iji

C M i

P x e
P x

P x eP x

α µ

α µ

→
∈

→
∈

⎡ ⎤= =
⎡ ⎤ ⎢ ⎥=

=⎢ ⎥ ⎢ ⎥
= ==⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

∏

∏
, (2.27)

 where normalization factor iα is used to ensure (0) (1) 1post post
i iP x P x= + = = . The

estimated bit ˆix is set to 1 if , otherwise it is set to 0. Then the

syndrome equation

(1) 0.5post
iP x = >

ˆ TH = 0x is verified whether the estimated sequence

1ˆ ˆ[x=x 2ˆ, , ,x L ˆ]Nx is a valid codeword.

The decoding process halts when the syndrome check equation is satisfied; otherwise it

goes into the next decoding iteration. A failure is declared if some maximum number of

iterations occurs without finding a valid codeword.

+ Cj

Bi

L(j)

+ + + +

M(i)

BiP(xi = ξi)

(a) Horizontal step (b) Vertical step

Fig. 2.7 Message passing in LDPC code decoding

14

2.3.2 Log-Likelihood Ratio Sum-Product Algorithm (LLR-SPA)

For a binary codeword, the decoding operations can be performed in terms of

log-likelihood ratios [15]. The log-likelihood ratio (LLR) of a random variable U can be

defined as

(0() log
(1

P UL U
P U

)
)

=
=

=
. (2.28)

Therefore, the decoding flow can be modified as follows.

(1) Initialization: The messages sent from bit node Bi to check node Cj are initialized by

(0() log
(1i j

i
B C ij

i

P xL e
P x→

)
)

=
=

=
, (2.29)

 which is the so-called “channel value” or “channel information”.

(2) Horizontal step: Based on equation (2.25), the update operation in logarithmic

domain can be rewritten as

(
()

)
()\

()\

(0)
() log

(1)

1 1 2 (
log .

1 1 2 (1

j i

j i

j i

i j

i i

i j

i i

C B ij
C B ij

C B ij

B C i j
B L j B

B C i j
B L j B

e
L e

e

e

e

1)

)

µ

µ

µ

µ

′

′

′

′

→
→

→

′→
∈

′→
∈

=
=

=

+ − =
=

− − =

∏

∏

 (2.30)

 Based on the hyperbolic tangent function and the arc-hyperbolic tangent function,

11 1tanh() and tanh () log
2 1 2 1

u

u

u e yy
e y

− 1− +
= =

+ −
 , (2.31)

 the term 1 2 (1)i jB C i jeµ ′ ′→− = in equation (2.31) can be expressed as

11 2 (1) tanh ()
2i j i jB C i j B C i je Lµ

′ ′→
⎛− = = ⎜
⎝ ⎠

e
′ ′→

⎞
⎟ . (2.32)

 Combining (2.30), (2.31) and (2.32), we can derive

15

()\

()\

1

()\

11 tanh ()
2

() log
11 tanh ()
2

12 tanh tanh () .
2

i j

i i

j i

i j

i i

i j

i i

B C i j
B L j B

C B ij

B C i j
B L j B

B C i j
B L j B

L e
L e

L e

L e

′

′

′

′

′

′

′→
∈

→

′→
∈

−
′→

∈

⎛ ⎞+ ⎜ ⎟
⎝ ⎠=
⎛ ⎞− ⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏

∏

∏

 (2.33)

(3) Vertical step: Using LLR, the update equation can be rewritten as

()\

()\

()\

(0)
() log

(1)

(0) (0
log

(1) (1)

() () ,

i j

i j

i j

j i

j j

j i

j j

j i

j j

B C ij
B C ij

B C ij

ij i C B ij
C M i C

ij i C B ij
C M i C

i C B ij
C M i C

e
L e

e

P x e

P x e

L x L e

)

µ

µ

α µ

α µ

′

′

′

′

′

′

→
→

→

′→
∈

′→
∈

′→
∈

=
=

=

= =

=
= =

= +

∏

∏

∑

 (2.34)

where L(xi) is the intrinsic log-likelihood ratio of bit xi.

(4) Syndrome check: The pseudo- a posteriori probabilities for each codeword bit can

be computed as

()

(0)() log
(1)

() () .
j i

j

post
post i

i post
i

i C B
C M i

P xL x
P x

L x L e→
∈

=
=

=

= + ∑ ij

 (2.35)

 Hard decision are performed based on the sign of ; therefore, bit ()post
iL x ˆix is set

to 1 if is negative, otherwise it is set to 0. ()post
iL x

Compared with the SPA, multiplications are replaced by additions and the normalization

factors are eliminated in the LLR-SPA. Less complexity in implementation is achieved when

LLR-SPA is employed.

2.3.3 Min-Sum Algorithm (MS)

In the LLR-SPA, the horizontal step is the most computationally complex part because of

hyperbolic tangent functions. Hence it is difficult to implement in hardware based on

16

LLR-SPA. To further simplify the decoding process, the min-sum algorithm [16] is

introduced.

We first consider a check node with 3 edges without loss of generality. Combining

equation (2.20), (2.31) and (2.32), we can obtain

1 21 2

1 21 2

0 1 21 2

1 21 2

1 21 2

1 21 2

() ()

() ()

0 () ()

() ()

() ()

() ()

1 11
1 1

() log
11
1 1

1log .

B C B C

B C B C

B C B C

B C B C

B C B C

B C B C

L e L e

L e L e

C B L e L e

L e L e

L e L e

L e L e

e e
e e

L e
e e
e e

e e
e e

→ →

→ →

→ →

→ →

→ →

→ →

→

⎛ ⎞

1

− −
+ ⋅⎜ ⎟⎜ ⎟+ +⎝ ⎠=
⎛ ⎞− −

− ⋅⎜⎜ ⎟⎟+ +⎝ ⎠

+
=

+

 (2.36)

Based on the approximation in [17], equation (2.36) becomes

() ()
()

()
() ()

1 2 1 21 2 1 2

0

1 21 2

1 2

1 21 2

1 2

1 2 1

() () () ()
0

() ()
1 2

() ()
1 2

1 2

() log 1 log

max 0, () () log(1)

max (), () log(1)

() () min

B C B C B C B C

B C B C

B C B C

L e L e L e L e
C B

L e L e
B C B C

L e L e
B C B C

B C B C B

L e e e e

L e L e e

L e L e e

sign L e sign L e L

→ → → →

→ →

→ →

+
→

− +
→ →

− −
→ →

→ → →

= + − +

= + + +

− − +

= ()
() () ()

2

1 2 1 2

1 2 1

1 2 1 2

() , () (,)

() () min () , () ,

C B C

B C B C B C B C

e L e g e e

sign L e sign L e L e L e

→

→ → → →

+

≈

2

(2.37)

where 1 2 11 2 1 2() () () ()
1 2(,) log(1) log(1)B C B C B C B CL e L e L e L eg e e e e→ → → →− + − −= + − + 2 is the correction factor.

By induction [15], the result in equation (2.37) can be generalized to obtain a sub-optimal

expression of the horizontal step, which is

() (()\
()\

() () min ()
j i i j i j

i i
i i

C B ij B C i j B C i jB L j B
B L j B

L e sign L e L e
′

′
′

′ ′→ → ∈
∈

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟
⎝ ⎠
∏)′→

 . (2.38)

This approximation results in a significant reduction of hardware complexity but little penalty

of degraded performance [18].

In the min-sum algorithm, all steps of the decoding are the same with LLR-SPA except

for the horizontal step. Thus the min-sum algorithm can be derived by just replacing equation

(2.33) with (2.38) in LLR-SPA.

17

Chapter 3
High-Speed Communication Systems
with LDPC Codes

In communication systems, channel coding is a key technique to minimize the

interferences from the noisy channel. Due to the excellent error-correcting ability and the

inherent parallelism, LDPC codes are suitable for high-speed applications. In this chapter,

high-speed communication systems that adopted LDPC codes or potentially will apply LDPC

codes as the channel coding technology are introduced. The simulation results of the

error-correcting performance are also shown in the following.

3.1 Introductions to High-Speed Communication Systems

3.1.1 Satellite Wireless Communication

Digital video broadcasting (DVB) standards are established to deliver videos for the

subscriber to provide various entertainments. Over past few years, different broadcasting

modes have been designed for kinds of purposes, including the terrestrial, cable and satellite

broadcasts. The original satellite digital video broadcasting (DVB-S) was developed in 1994

[19], whose forward error correction (FEC) technology is the concatenation of convolutional

codes and Reed-Solomon codes. It is now used worldwide by most of the satellite operators

for data and television broadcasting services. To improve the overall performance of the

digital satellite transmission technology, the second generation of DVB-S (DVB-S.2) was

developed [20]. As a successor to the current DVB-S standard, DVB-S.2 is expected to

18

provide not only existing but also new services, including TV, High Definition Television

(HDTV), audio and other multimedia services.

Employing a powerful FEC system based on LDPC codes concatenated with BCH codes,

DVB-S.2 allows quasi-error-free (QEF) operation at about 0.7dB to 1.0dB from the Shannon

limit, depending on the transmission mode [20]. Moreover, a capacity gain in the order of 30

percent over DVB-S is achieved due to higher order modulation schemes. The functional

block diagram of the DVB-S.2 system is illustrated in Fig. 3.1.

BCH
Encoder

Mode
Adaptation

Stream
Adaption

LDPC
Encoder

RF

TX
Data

MappingPL
FramingModulation

Bit
Interleaver

FEC

Fig. 3.1 Functional block diagram of the DVB-S.2 system

To transmit data via satellite, DVB-S.2 targets for a robust and reliable communication

service. The corresponding packet error rate for DVB-S.2 at QEF over AWGN channel is 10-7,

which is very low as compared to other systems. Therefore LDPC codes with large block

lengths, which are 64,800 and 16,200, are chosen to accomplish excellent error performance.

And different coding rate of LDPC codes are specified to accommodate various transmission

modes.

3.1.2 60GHz Band Wireless Communication

Recently, the Federal Communications Commission (FCC) released the RF band around

60GHz, leading to a new era in the millimeter wave based communications. It potentially can

19

provide a variety of applications including high-speed wireless personal area network

(WPAN), automotive radar at nearby frequencies and multimedia communications. The

corresponding standardization (IEEE 802.15.3c) is now under construction by IEEE 802.15

Working Group for WPANs. It is intended to offer higher data transmission, higher frequency

re-usage and superior coexistence than the existing wireless systems. The working group also

suggest IEEE 802.15.3c will be widely used for Gigabit Ethernet and replace the cables and

other wired links.

One of the optional data rate suggested by IEEE 802.15.3c is greater than 2Gb/s in order

to satisfy an evolutionary set of consumer multimedia industry in WPAN communications.

Due to the required high data rate, LDPC codes are potential candidates for the FEC

technique. With parallel implementation, the LDPC code decoders can easily achieve the

demands for data rates over Gb/s.

3.1.3 Ultra-Wideband System

Ultra-wideband (UWB) is an emerging wireless physical (PHY)-layer technology that

uses a very large bandwidth [21], [22]. It possesses unique advantages that are attractive to the

communication applications: i) the potential for very high data throughput and large increase

in user capacity; ii) the implementation of UWB potentially takes small size and processing

power; and iii) ultra high precision ranging at centimeter level [22].

Due to the lack of available spectral bands, the applications of UWB devices prior to

2001 were mainly for military usage. In the spring of 2002, the FCC unleashed 3.1GHz to

10.6GHz RF band for increasing high-speed data transmission. Responding to this FCC ruling,

industries, government agencies and academic institutions made many research efforts that

adopted UWB technology in various areas. These include short-range high-speed wireless

communication, localization system, high-resolution radar and imaging system. In this thesis,

20

we will focus on the UWB applications for wireless networks.

UWB addresses short-range connections among digital home electronics appliances that

are applied for the wireless personal area network (WPAN). It is expected to provide

high-speed data exchange among storage systems and real-time video/audio distribution for

home entertainment devices. Due to small power consumption and high data rate, UWB

technology will be exploited to replace existing wireless services.

In [23], the multi-band orthogonal frequency-division multiplexing (MB-OFDM)

PHY-layer proposal indicates the coded OFDM based solution can provide up to 480Mb/s for

528MHz UWB system. The desired range in MB-OFDM is 10m for 110Mb/s and can be

reduced for higher data rates [23]. To enhance the overall system performance, the

convolutional codes and interleaving techniques are applied in the FEC mechanism, whose

block diagram is shown in Fig. 3.2.

InterleaverScrambler Convolutional
Encoder

OFDM
Modulator DAC RF

De-InterleaverDe-Scrambler Viterbi
Decoder

OFDM
De-Modulator ADC RF

TX
Data

RX
Data

Baseband

Fig. 3.2 Block diagram of MB-OFDM UWB system

For improving PHY-layer capacity, LDPC codes can increase the throughput to over

500Mb/s in future WLAN applications [24]. And the LDPC coded OFDM baseband system

has been silicon proven to achieve 480 Mb/s data rate [25]. To provide better performance, the

original convolutional codes and bit interleaving are replaced with LDPC codes in

MB-OFDM UWB systems [25] as shown in Fig. 3.3. The overall system performance will be

21

described and discussed later.

Scrambler LDPC
Encoder

OFDM
Modulater DAC RF

De-Scrambler LDPC
Decoder

OFDM
De-Modulater ADC RF

TX
Data

RX
Data

Baseband

Fig. 3.3 Block diagram of the proposed LDPC-COFDM UWB system

3.2 Error-Correcting Performance of LDPC Codes in UWB

System
In the MB-OFDM UWB systems [25], the maximum 480Mb/s data rate with a

bandwidth of 528MHz is specified. The time domain spreading scheme is used to change the

data rate for different channel state information. In the following, the simulation results are

based on the system illustrated in Fig 3.3, whose detail specification is given in Table 3.1.

Two different irregular LDPC codes are constructed by the progressive edge-growth (PEG)

algorithm [26] to enhance the system performances. One is (600, 450) LDPC code (Code I),

and the other is (1200, 720) LDPC code (Code II).

Table 3.1 Specification of referenced MB-OFDM UWB system

Data rate (Mb/s) 120 240 480

Spreading gain 4 2 1

Constellation QPSK

22

Data carrier 100

FFT size 128

Packet size (Bytes) 1024

Signal bandwidth (MHz) 528

Channel model Additive White Gaussian Noise (AWGN)

As stated in Chapter 2, the pseudo- a posteriori probabilities of the codeword bits

gradually converge to the real a posteriori probabilities as the number of decoding iterations

grows. And the internal messages which are exchanged between check nodes and bit nodes

are soft values. However, since infinite decoding iterations and infinite signal precision are

impossible for practical implementation, the maximum iteration number and the quantization

bits have to be decided. Some performance degradation would be introduced due to the

implementation limitations. As a result, a trade-off between the performance and hardware

cost will be concerned in the following.

3.2.1 Performance Analysis of Code I

Code I is a (600, 450) rate-3/4 irregular LDPC code, whose column weights are fixed to

3 and row weights are ranging from 11 to 14. Based on the referenced MB-OFDM UWB

system, its performances with different decoding iterations including the bit-error rate (BER)

and packet-error rate (PER), which is demanded to be less than 8% [21], is shown in Fig 3.4.

23

0 1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

1 iteration
4 iterations
8 iterations
16 iterations
64 iterations

(a)

0 1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

P
E

R

1 iteration
4 iterations
8 iterations
16 iterations
64 iterations
PER=8%

(b)

Fig. 3.4 Performance results of the (600, 450) LDPC code

24

Note that the required signal to noise ratio (SNR) is reduced as the iteration number

increases. In Fig. 3.4(b), 3dB SNR gain at PER = 8% is achieved as the number of decoding

iterations moves from 1 to 8. However, the improvement tends to be insignificant after 8

iterations, which is only about 0.3dB. As a result, LDPC decoding for Code I with 8 iterations

in referenced MB-OFDM UWB system is considerably a good trade-off for practical

implementation.

Quantization has to be performed for two types of signal values. One is the channel

values, and the other is the internal messages. Fig. 3.5 shows the fixed point simulation results

of Code I, where the notation (p, q) represents that the bit width of channel values and internal

messages are p and q bits, respectively. The number of bits used for the integer and the

fractional part in each (p, q) quantization schemes are shown as Table 3.2.

Table 3.2 Bit width distribution for different quantization schemes

Channel value Internal message Quantization
scheme Integer part Fractional part Integer part Fractional part

(4, 5) 1 3 1 4

(5, 6) 1 4 1 5

Many combinations of the quantization schemes and the bit width distributions have

been tested through simulations. The performances of the quantization with more precision

than (5, 6) scheme are almost the same as those with infinite precision. Consequently, the (5,

6) scheme together with the bit width distribution listed in Table 3.2 are used for the proposed

LDPC Code I decoder.

25

0 1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

1 iter. (4, 5)
1 iter. (5, 6)
1 iter. Floating
8 iters. (4, 5)
8 iters. (5, 6)
8 iters. Floating
64 iters. (4, 5)
64 iters. (5, 6)
64 iters. Floating

B
E

R

(a)

0 1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

P
E

R

1 iter. (4, 5)
1 iter. (5, 6)
1 iter. Floating
8 iters. (4, 5)
8 iters. (5, 6)
8 iters. Floating
64 iters. (4, 5)
64 iters. (5, 6)
64 iters. Floating
PER=8%

(b)

Fig. 3.5 Fixed point simulation of the (600, 450) LDPC code

26

3.2.2 Performance Analysis of Code II

Code II is a (1200, 720) rate-3/5 irregular LDPC code, whose column weights are also

fixed to 3 and row weights range from 7 to 9. Its performances on the MB-OFDM UWB

system including BER and PER under different decoding iterations are shown in Fig. 3.6.

In Fig. 3.6(b), The performance has 4.5 dB SNR gain under PER=8% is obtained as the

number of decoding iterations grows from 1 to 8, but only 0.4 dB from 8 iterations to 64

iterations. Therefore, LDPC decoding for Code II with 8 iterations is considered as a good

trade-off between implementation and error-correcting performance. The fixed point

simulation results of Code II are shown in Fig. 3.7, and the bit width distributions are given in

Table 3.2. According to the results, the (5, 6) quantization scheme is chosen as the

implementation parameter for the proposed decoder for Code II.

0 1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

1 iteration
4 iterations
8 iterations
16 iterations
64 iterations

Fig. 3.6(a) BER of the (1200, 720) LDPC code

27

0 1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

P
E

R

1 iteration
4 iterations
8 iterations
16 iterations
64 iterations
PER=8%

Fig. 3.6(b) PER of the (1200, 720) LDPC code

0 1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

B
E

R

1 iter. (4, 5)
1 iter. (5, 6)
1 iter. Floating
8 iters. (4, 5)
8 iters. (5, 6)
8 iters. Floating
64 iters. (4, 5)
64 iters. (5, 6)
64 iters. Floating

Fig. 3.7(a) Fixed point simulation of BER for the (1200, 720) LDPC code

28

0 1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

SNR [dB]

1 iter. (4, 5)
1 iter. (5, 6)
1 iter. Floating
8 iters. (4, 5)
8 iters. (5, 6)
8 iters. Floating
64 iters. (4, 5)
64 iters. (5, 6)
64 iters. Floating
PER=8%

P
E

R

Fig. 3.7(b) Fixed point simulation of PER for the (1200, 720) LDPC code

3.2.3 Performance Comparison with Convolutional Codes

In Fig. 3.8, the performance of LDPC codes is compared to the 64-state convolutional

coded system proposed in [23] where two different rates after puncturing the R = 1/3

convolutional code are selected as the references. It shows that both LDPC codes can

outperform the convolutional codes after puncturing with only 8 iterations. The short block

length and small decoding iterations will facilitate high speed implementation.

29

0 1 2 3 4 5 6 7 8
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R=3/4 convolutional code
R=5/8 convolutional code
(600,450) LDPC code with 8 iters.
(1200,720) LDPC code with 8 iters.

B
E

R

SNR [dB]

(a) BER

0 1 2 3 4 5 6 7 8
10

-3

10
-2

10
-1

10
0

R=3/4 convolutional code
R=5/8 convolutional code
(600,450) LDPC code with 8 iters.
(1200,720) LDPC code with 8 iters.
PER=8%

P
E

R

SNR [dB]

(b) PER

Fig. 3.8 Performance comparison for different codes

30

Chapter 4
Architectures of Proposed LDPC Code
Decoders

The architectures of the proposed LDPC code decoders for two different LDPC codes,

Code I and Code II, will be introduced in this chapter. Basic functional units, data flow

rescheduling and memory arrangement methods will be discussed in detail. The measurement

results of the proposed LDPC code decoder chips and a comparison with the state-of-the-art

designs will also be listed. The specifications of Code I and Code II are summarized in Table

4.1.

Table 4.1 Summary of the two LDPC codes

 Code I Code II

Block length 600 1200

Information bits 450 720

Code rate 3/4 3/5

Code structure Irregular Irregular

Column weight 3 3

Row weight 11~14 7~9

31

4.1 Introduction to the Conventional Design
Based on the decoding algorithm, the block diagram of conventional LDPC code decoder

is shown as Fig. 4.1. The bit node unit (BNU) is dedicated to the vertical step, while the check

node unit (CNU) is used for the horizontal step. The BNU (or CNU) reads and processes the

messages stored in the memory bank, and write them back into the memory bank after

updating. It can be noticed that a large number of combinational feedback paths exist between

the CNU (or BNU) and the memory unit, leading to the complex signal routing as well as

degradation of the decoding speed in the VLSI implementation.

Memory
BankBNU CNUBNUBNU CNUCNU

Channel
value

Fig. 4.1 Block diagram of conventional LDPC code decoder

The conventional architecture of the CNU which is based on the LLR-SPA in (2.33) is

shown in Fig. 4.2(a). The look-up tables (LUT) are used to implement the hyperbolic tangent

(tanh) and inverse hyperbolic tangent (tanh-1) functions.

The CNU can be implemented based on the min-sum algorithm as shown in Fig. 4.2(b)

to reduce the hardware cost. As described in (2.38), the operations in the CNU can be divided

into two parts: the sign evaluation and the minimum absolute value searching. The minimum

32

absolute values are searches by k comparators which consist of k-1 inputs (CMP-(k-1)), where

k is the row weight of the parity check matrix.

LUT-1

LUT-1

∑

-
-

-
-

LUT-2

LUT-2

LUT-2

LUT-2

LUT-1

LUT-1

(a)

CMP-(k-1)

CMP-(k-1)

CMP-(k-1)

CMP-(k-1)

Sign Bit Evaluation

min

min

min

min

(b)

Fig. 4.2 Architecture of conventional CNU based on: (a) LLR-SPA and (b) min-sum algorithm

The conventional BNU architecture with k inputs is shown in Fig. 4.3, where the

SUM-(k-1) is used to sum up k-1 values. Note that there is no difference on the BNU design

between the LLR-SPA and the min-sum algorithm. Both LLR-SPA and min-sum algorithm

have the same BNU design.

33

SUM-
(k-1)

SUM-
(k-1)

SUM-
(k-1)

channel value

Fig. 4.3 Architecture of conventional BNU

4.2 Proposed LDPC Code I Decoder Design
The LDPC code decoders have inherently parallelism due to the non-dependency among

check node updates or bit node updates; the throughput can be improved by linear increase of

the hardware costs. However, the full-parallel implementation [9] is non-area-efficient for a

system chip design. Therefore the partial-parallel architecture is employed in the proposed

decoders to reduce circuit complexity according to the system requirements. In time-division

multiplexing mode, the partial-parallel LDPC code decoders map a certain number of check

nodes or bit nodes into a single processing unit. Extra decoding latencies are produced as

compared with the full-parallel implementations. Thus a trade-off is made between the

decoding speed and the hardware complexity. Besides, to simplify the hardware cost, the

min-sum algorithm is chosen to implement the proposed design while keeping the system

performance.

34

Fig. 4.4 presents the architecture of the proposed LDPC Code I decoder containing the

distributor, memory unit, switch groups, CNU and BNU. Since the irregular parity check

matrix H has a fixed number of column weight (= 3), the total number of weight in parity

check matrix is 600 × 3 = 1800. To implement the decoder in a partial-parallel mode, the

check nodes in the corresponding bipartite graph are partitioned into three parts, and the bit

nodes are divided into four parts as shown in Fig. 4.5, where every three check nodes share a

single CNU, and every four bit nodes share a single BNU. Therefore 150/3 = 50 CNUs and

600/4 = 150 BNUs are required in the proposed design. The switch groups in Fig. 4.4 are used

to select which part of check nodes or bit nodes is under operation.

Switch 2

Memory (1800*6b)

Switch 1

Distributor

450
symbols

Channel Value
(600*5b)

Switch 3

1800
symbols

1800
symbols

1800
symbols

450
symbols

MU2MU2MU2BNUi

MU2BNU150

MU2MU2MU2CNU i

MU2CNU50
600

symbols

600
symbols

150
symbols

600
symbols

Fig. 4.4 The architecture of LDPC Code I decoder

35

Parity check matrix
H

CNU
set

BNU
set

c2

c3

c1

b1 b2 b3 b4

Fig. 4.5 The partition for parity check matrix H of Code I

Due to the random-like connections in the bipartite graph, the signal routing problem

causes serious difficulties in the decoder implementation. As shown in Fig. 4.1, the

combinational feedback paths leads to the degradation of the decoding speed and the routing

area overhead in the VLSI implementation. In the proposed design, the pipeline registers are

inserted in CNUs and BNUs to cut off those feedback paths as illustrated in Fig. 4.6. Thus,

shorter critical path delay that reduces routing congestion can be achieved with little increases

in the hardware costs.

BNU-PATH 2 CNU-PATH 1

BNU-PATH 1 CNU-PATH 2

Flip
Flop CNUMemory

Bank
Flip
FlopBNU

Fig. 4.6 Data path of proposed partial-parallel decoder

4.2.1 Channel Value Interconnection

For the conventional design in Fig. 4.1, both the CNUs and BNUs have to be connected

to the channel values, which lead to large number of signal connections. Thus data

36

rescheduling is proposed to solve this problem in Fig. 4.7.

Syndrome
Check

Horizontal
Step

Vertical
Step

Initialization

No

Output
Estimated

Bits

Iterative Decoding

Yes

Vertical
Step

Fig. 4.7 Proposed LDPC decoding flow

 As shown in Fig. 4.7, one extra vertical step is employed to replace the initialization

through the CNUs. Recall equation (2.34)

()\
() () ()

i j j i

j j

B C ij i C B ij
C M i C

L e L x L e
′

′

′→
∈

= + →∑ , (2.34)

only summations among the channel value L(xi) and the messages LC→B(eij) are performed in

the BNUs. If the messages LC→B(eij) are set to zero during initialization, the channel values are

thus loaded into the memory through the BNUs, and fed to the CNUs for the first horizontal

step. In this scheme, only BNUs have to be connected to the channel values as illustrated in

Fig. 4.4, leading to less signal routing costs with some increases in decoding latencies.

Fig. 4.8 gives the timing diagram of the proposed LDPC Code I decoder, where bi and ci

correspond to the active BNU and CNU set in Fig. 4.5. The design takes nine cycles to

complete a decoding iteration, including 4 cycles for horizontal steps with the CNUs and 5

cycles for vertical steps with BNUs. Additional five cycles are used to complete the channel

value loading as described above. Thus total 9*8 + 5 = 77 cycles are required to finish the

decoding process of a codeword with 8 iterations.

37

T
im

e
ch

an
ne

l v
al

ue

lo
ad

in
g

ite
ra

tio
n

#1

BNU-
PATH1

b1

b2

b3

b4

Memory

b1

b2

idle

BNU-
PATH2

b1

b2

b3

b4

b1

b1

b1~2

b1~3

b1~4

b1~4

c1

c1~2

c1~3

c1~3

CNU-
PATH1

c1

c2

c3

CNU-
PATH2

c1

c3

c2

b1

b1~2

b1~3

b2

b3

b4

b3

b4

active

Fig. 4.8 Timing diagram of the proposed LDPC Code I decoder

4.2.2 Check Node Unit

As shown in Fig. 4.2(b), k comparators which search the minimal values among k-1

inputs are needed to implement the CNU based on the min-sum algorithm. As mentioned in

[18], equation (2.38) can be modified as

38

() ()

()
() ()

()\()\

() ()

nd()\
()

min

min if min

min

() () ()

() , () ()
()

2

j i i j i j
i i

i i

i j i j i j
i i

i j

i i
i j

i

C B ij B C i j B C i jB L j BB L j B

B C i j B C ij B C i jB L j B L j

B C i j
B L j B B C

B L j

L e sign L e L e

L e L e L e
sign L e

L

′ ′
′

′

′ ′
′ ′

′

′
′

′

′ ′→ → →∈
∈

′ ′→ → →∈ ∈

′→
∈ →

∈

⎛ ⎞
≈⎜ ⎟⎜ ⎟
⎝ ⎠

≠⎛ ⎞
= ×⎜ ⎟⎜ ⎟
⎝ ⎠

∏

∏ () otherwise() , i je ′

⎧
⎪
⎨
⎪
⎩

, (4.1)

where “2nd min” denotes the value which is smaller than all the other candidates except the

minimal one. According to (4.1), the absolute value searching has to be performed only one

time to find the minimum and the second minimum. Fig. 4.9 shows the block diagram of the

compare-select unit (CS14) which searches for the minimal and the second minimal values

from 14 inputs.

CMP-14

2nd min

min

If (M1 == min)
 New M1 = 2nd min;
else
 New M1 = min;

If (M2 == min)
 New M2 = 2nd min;
else
 New M2 = min;

If (M14 == min)
 New M14 = 2nd min;
else
 New M14 = min;

Selection Control

New M1

New M2

New M14

M1

M2

M14

Fig. 4.9 Block diagram of CS14

Because the column weight of Code I is ranging from 11 to 14, the CNUs dealing with

different number of inputs should be designed. In this section, only the 14-input CNUs are

introduced and others are designed in the analogous approach. The detailed architecture of

CMP-14 in Fig. 4.9 is illustrated as Fig. 4.10, which consists of the pipeline registers and two

39

kinds of comparators: CMP-2 and CMP-4. CMP-4 finds out the minimal and the second

minimal values from the four inputs, a, b, c, and d. In addition, CMP-2 is a two input

comparator which is much simpler than CMP-4.

SUB SUB SUB SUB SUB SUB

a b a c a d b c b d c d

min 2nd min

MSB5

5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1
MSB4 MSB3 MSB2 MSB1 MSB0

5 5

min 2nd min
Decoder

Fig. 4.10(a) Block diagram of proposed CMP-4

5

min 2nd min

min 2nd min

5 5 5 5

min 2nd min

5 5 5 5

min 2nd min

5 5 5 5

min 2nd min

5

FF FF FF FF FF FF FF FF

min 2nd min min

min

CMP-2

5 5

CMP-4CMP-4 CMP-4 CMP-2

CMP-4 CMP-4

Fig. 4.10(b) Block diagram of proposed CMP-14

The proposed architecture of the 14-input CNU is shown in Fig. 4.11, where SM14 is

sign-multiplication. To facilitate the operations on the sign and absolute value, all the 6-bit

40

values have been represented by the sign-magnitude notation with 2 integer bits and 4

fractional bits. The combinational path in the CNUs is cut off into CNU-PATH1 and

CNU-PATH2 by the pipeline registers, leading to shorter critical path delay that reduces

routing congestion.

min

2nd min

6 1(MSB)
5

6
5

6 1(MSB)
5

6

6
1(MSB)

5
1(MSB)
5

6
1(MSB)

5

CNU-PATH1

FF

FF

FF

... ...

FF

FF

FF

CNU-PATH 2

...

Selection
Control

C
M

P-14

CS14

SM14

1(MSB) ...

Fig. 4.11 The proposed 14-input CNU architecture

Table 4.2 lists the comparisons of three different CNU architectures. The LUT-1 and

LUT-2 in Fig. 4.2(a) are implemented in 6-bit precision, including 2 integer bits and 4

fractional bits. The proposed CNU has the smallest size which is only about 22% of the others,

whereas the maximum achievable operating speed is only a little smaller than conventional

MS designs. Due to the fixed point implementation, some performance loss is produced. As a

result, the decoder is implemented efficiently by using of the proposed CNU architecture.

41

Table 4.2 Comparison of different CNU architectures

 LUT
Fig. 4.2(a)

Conv. MS
Fig. 4.2(b)

Proposed
Fig. 4.11

Max. speed 162 MHz 261 MHz 250 MHz

Gate count 7.16 K 6.86 K 1.6 K

Total gate count 358 K 343 K 80 K

4.2.3 Bit Node Unit

Fig 4.12 shows the block diagram of BNU. According to equation (2.34) and (2.35), the

BNUs receive the channel value and the message values linked to the same bit node. All

inputs with sign-magnitude (SM) notation are converted to be 2’s complement (TC)

representation, and summed to perform the updating calculation. The pipeline registers are

inserted to break the critical paths into BNU-PATH1 and BNU-PATH2 as in the CNUs.

Finally, all the values are converted back to the SM notation and clipped to avoid overflow.

And the most significant bit (MSB) of the summation of the three input messages and the

channel value is used to decide the estimated codeword bit.

All the 6-bit values are quantized with 2 integer bits and 4 fractional bits, while the

intermediate summations are represented with 4 integer bits and 4 fractional bits.

42

+

+

+C1

Channel
value

6

6

6

5

6

6

6

5

8

8

8
+

6

6

6

1

8

8

8

8

new
C3

Decoded
bit

new
C1

new
C2

(MSB)

Clipping

Clipping

Clipping

BNU-PATH1

FF

FF

FF

FF

BNU-PATH2

C2

C3

SM→TC

SM→TC

SM→TC

SM→TC

TC→SM

TC→SM

TC→SM

Fig. 4.12 The proposed BNU architecture

Note that if C1, C2 and C3 are set to be zero during initialization, the channel value will

be directly bypassed to the outputs of BNU. This produces a path to load the channel values

into the memory as mentioned above.

4.2.4 Chip Implementation

The proposed LDPC Code I decoder was implemented within an LDPC-COFDM UWB

baseband transceiver chip [25] with the 0.18 µm 1P6M standard CMOS process. The chip

micrograph of the entire UWB transceiver including the OFDM modem and the LDPC codec

is given in Fig. 4.13. The encoder die size is 2.25 mm2, while the decoder die size is 16.5 mm2.

The total gate count of the LDPC codec is 542 K, where 70K is for the encoder and 472K is

for the decoder.

The chip has been tested to verify the functional correctness. The measured maximal

data rate of the decoder is 480 Mb/s while working at 82.1 MHz, and consuming 232 mW.

The detailed chip features are also summarized in Table 4.3.

43

OFDM
Modem

LDPC
Encoder

LDPC
Decoder

Fig. 4.13 Die micrograph of the LDPC-COFDM UWB transceiver chip

Table 4.3 Summary of the LDPC Code I Chip

Technology Standard 0.18-µm CMOS 1P6M

Package CQFP-208

Supply voltage 1.8V core, 3.3 V I/O

Encoder 1.5mm × 1.5mm
Chip size

Decoder 5.0mm × 3.5mm

Encoder 70K
Gate count

Decoder 472K

Power dissipation 232mW @ 82.1MHz

Maximum data rate 480Mb/s

44

4.3 Proposed LDPC Code II Decoder Design
In Sec. 4.2, the proposed LDPC Code I decoder design is introduced and silicon proven

to achieve 480Mb/s maximum data rate. The performance of LDPC code I decoder is

acceptable for the MB-OFDM UWB system [23], but may be not for other high-speed

communication systems mentioned in Chap. 3. As a result, the LDPC code II decoder is

proposed to get better error-correcting ability and higher decoding throughput.

While considering circuit complexity, the 480 × 1200 parity check matrix H of LDPC

code II are divided into four 240 × 600 sub-matrixes to fit partial-parallel architecture, which

is shown in Fig. 4.14. Since matrix H of Code II has a fixed number of column weight (= 3),

the total number of weight is 1200 × 3 = 3600. Based on this partition, the functional units in

the decoder will process 1800 messages every cycle.

H =
h00 CNU Set 1

CNU Set 2

BNU Set 1 BNU Set 2

h01

h10 h11

Fig. 4.14 The partition of parity check matrix H of Code II

The proposed LDPC code II decoder architecture illustrated in Fig. 4.15 contains the

input buffer, 240 CNUs, 600 BNUs and two dedicated message memory units (MMU). The

set of data processed by CNUs are {h00, h01} and {h10, h11}, whereas the data fed into BNUs

should be {h00, h10} and {h01, h11}. Note that two MMUs are employed to process two

different codewords concurrently without stalls. Therefore, the LDPC decoder is not only

area-efficient but the decoding speed is compatible with the fully parallel architecture. The

detail ideas about the designs of MMUs will be introduced in the following.

45

The input buffer is a storage component that receives and keeps channel values for

iterative decoding. Note that it only connects to the BNUs to get less routing congestion as

discussed in Sec. 4.2.1.

1800
symbols

600
BNUs

1800
symbols

600 symbols

1800
symbols

1800
symbols

Input Buffer
buf-0 buf-1 buf-2 buf-3

B A

CDE

MMU-1

240
CNUs

D E

BA

C

MMU-0

Fig. 4.15 The proposed LDPC code II decoder architecture

4.3.1 Input Buffer

Input buffer provides the channel values to the BNUs for iterative decoding. Because

two different codewords are processed concurrently, total 1200 × 2 = 2400 symbols should be

stored in the input buffer. According to the partition in Fig. 4.14, the buffer is divided into

four sub-blocks, where each sub-block contains 600 channel values. The conventional design

is illustrated in Fig. 4.16. Four sub-blocks, buf-0 ~ buf-3, are all connected to the channel

46

value inputs, and multiplexers are employed to switch appropriate values into the BNUs. Thus

the signal routings are all “global”, meaning that all the connections are related to the inputs

and outputs (I/O) of the buffer. The global connections and the multiplexers will lead to

serious routing congestion.

buf-0 buf-1 buf-2 buf-3

Channel value inputs

To BNU

Fig. 4.16 The conventional architecture of input buffer

Fig. 4.17 shows the buffer structure based on register exchange (RE) approach and the

operational timing diagram, where buf-0 is designed as a shift register that serially receives

the channel values from inputs and the other three sub-blocks exchange the data with buf-0

sequentially. The notation E1, E2 and E3 represent the data exchange from buf-0 to buf-1,

buf-2 and buf-3, respectively. During initialization, buf-0 serially receives the channel values

and passes them into other sub-blocks by executing the operations E1, E2 and E3 when buf-0

is full-filled.

buf-1 buf-0

Channel value inputs

To BNU
E1

E2E3

buf-2buf-3

Fig. 4.17(a) The architecture of RE based input buffer

47

buf-0
C00

C10

C00

Data shift-in
empty

ite
ra

tio
n

#1
in

iti
al

iz
at

io
n C01

C11

C00

C01

C10

C11

C00

C01

C10

C11C01 C00

C01C10

C11 C10

C00

C01

C00

C01

C10

C11

C00

buf-1 buf-2 buf-3

C00 C11C10 C01

Channel Value

Codeword 0 Codeword 1

C00 C01 C10 C11

Fig. 4.17(b) The timing diagram of RE based input buffer

For this RE based buffer architecture, the global interconnections exist only in buf-0, and

all the others are “local” among sub-blocks. However, the drawback is that a large number of

multiplexers are required around buf-0 to perform E1 ~ E3. Thus buf-0 becomes a

routing-critical block due to the multiplexers and the global interconnections.

To overcome this problem, an architecture based on register shifting (RS) is proposed as

shown in Fig. 4.18(a), where four sub-blocks are arranged in a ring. The buf-0 is a shift

register that serially receives the channel values and buf-3 transports the associated channel

values to BNU. The timing diagram of the RS-based input buffer is presented in Fig. 4.18(b).

Channel values of two different codewords are serially fed into buf-0, and shifted within the

buffer ring when buf-0 is full-filled. Therefore, the data flow is further simplified, and the

multiplexers are eliminated, leading to simple signal transfer and routing interconnections.

48

buf-1 buf-0

buf-2 buf-3

Channel
value inputs

To BNU

(a)

buf-0
C00

C10

C00

Data shift-in
empty

ite
ra

tio
n

#1
in

iti
al

iz
at

io
n C01

C11

C00

C01

C10

C11

C00

C01

C10

C11C01 C00

C01C10

C11 C10

C00

C01

C00

C01

C10

C11

C00

buf-1 buf-2 buf-3

(b)

Fig. 4.18 The architecture and timing diagram of RS-based input buffer

Fig. 4.19 gives the comparison of the three input buffer architecture. The RS-based input

buffer can save about 20% gate count and 30% interconnection wires as compared with the

conventional design.

49

Conventional RE RS
0

1

2

3

4

5

6

7

8

9 x 104

gate count
number of interconnection

83825

30000

81830

24000

67855

21000

Fig. 4.19 The comparison of three input buffer designs

4.3.2 Check Node Unit and Bit Node Unit

Fig. 4.20 shows the CNU architecture for proposed LDPC code II decoder. The CNU can

be divided into two parts: one is 1-bit sign-multiplication (SM) and the other is 5-bit

compare-and-select unit (CS) that searches the minimal value and the second minimal value

from the inputs. The new message for each bit node is a combination of the sign bit according

to (4.1) and the new magnitude which is either “min” or “2nd min” of the CS unit. The detailed

architecture of CMP-9 in Fig. 4.20 is designed as that shown in Fig. 4.9 and 4.10.

The BNU architecture is illustrated in Fig. 4.21. According to (2.34) and (2.35), BNU

receives the channel value and the messages linked to the same bit node. All inputs with

sign-magnitude (SM) notation are firstly converted to be 2’s complement (TC) representation,

and then summed to perform the updated calculation. The summed values are also clipped to

50

avoid overflow. Finally, the MSB of the summation of all the inputs is used to decide the

decoded bit.

min

2nd min

6 1(MSB)
5

6
5

6 1(MSB)
5

6

6
1(MSB)

5
1(MSB)
5

6
1(MSB)

5

... ...

Selection
ControlCMP-9

CS9

SM9

M1

M2

M9

new
M1

new
M2

new
M9

1(MSB) ...

Fig. 4.20 CNU architecture of proposed LDPC Code II decoder

C1

Channel
Value

6

6

6

5

6

6

6

5

8

8

+

6

6

6

1

8

8

new
C3

decoded
bit

new
C1

new
C2

(MSB)

Clipping

Clipping

Clipping

+

C2

C3

SM→TC

SM→TC

SM→TC

SM→TC

TC→SM

TC→SM

TC→SM

+

+

Fig. 4.21 BNU architecture of proposed LDPC Code II decoder

51

4.3.3 Message Memory Unit

Message memory units (MMU) are used to store the message values that are generated

by CNUs or BNUs. The size of each MMU is 3600 × 6 bit due to the weight of the parity

check matrix. To increase the decoding throughput, two MMUs are employed to concurrently

process two different codewords in the decoder. The memory management strategies,

described below, include multiplexers (MUX) or register exchange (RE), resulting in different

level of routing complexity. The MUX based MMU architecture and the timing diagram are

illustrated in Fig. 4.22.

A B C D

datapath

datapath
(a)

h10 h11h00 h01

h00 h01h01 h11

h00 h01h10 h11

h00 h01 h01 h11

h00 h01 h10 h11

A B C D
h00 h01 h10 h11

h00 h10 h11

h00 h10 h01 h11

h00 h10h10 h11

h00 h10h01 h11

A B C D

h10

... ...

ite
ra

tio
n

#i
ite

ra
tio

n
#(

i+
1)

h00 h01h01 h11 h00 h10 h11h10

... ...

codeword-0 codeword-1 output block

MMU-0MMU-1

(b)

Fig. 4.22 The architecture and timing diagram of MUX-based MMU

52

According to the partition of the matrix H in Fig. 4.14, the MMU is divided into four

sub-blocks: A, B, C and D. Many multiplexers are required for the inputs and outputs due to

the partially parallel implementation and the concurrent process of two different codewords.

Moreover, all the signal interconnections are related to the I/O, leading to global routings. As

a result, the serious routing congestion occurs in the conventional MMU design.

To release the routing congestion problem, the architecture based on register exchange

among four sub-blocks (RE-4B) is proposed as shown in Fig 4.23. In this design, only

sub-blocks B, C and D capture data form data paths, and only sub-blocks A and C connect to

the outputs. Thus most of global routings are transformed into local interconnections between

sub-blocks, leading to a simple data flow. Moreover, the number of multiplexers is also

reduced by the RE-4B based architecture.

B A CD

datapath

datapath

Fig. 4.23(a) The architecture of RE-4B based MMU

53

h11h00

h01 h00h01

h01

h11

h00 h01 h10 h11

h00h01h01 h11

h00 h01 h10 h11

A B C D
h00 h01h10 h11

h00h10 h11

h00 h10 h01 h11

h00h10h10 h11

h00 h10 h01 h11

A B C D

h10

... ...

ite
ra

tio
n

#i
ite

ra
tio

n
#(

i+
1)

... ...

codeword-0 codeword-1 output block

MMU-0MMU-1

h00h01h01 h11

h10

input block

h00h10 h11h10

(b)

Fig. 4.23(b) The timing diagram of RE-4B based MMU

To further improve the MMU design, the register exchange scheme based on five

sub-blocks (RE-5B) is proposed as shown in Fig. 4.24(a). One extra sub-block E is used as

temporal memory for reducing the interconnection between other sub-blocks. In MMU-1,

sub-blocks B, C, D and E capture the outputs from CNUs while sub-blocks A and C deliver

the message data to BNUs. Fig. 4.24(b) shows the detailed timing diagram of reordering data

sequence in MMU. The inputs of BNUs (CNUs) sequentially appear in sub-blocks A and C

after reordering the data from CNUs (BNUs). Note that the solution to switch data sequence

also enables the decoder to process two different codewords without stalls.

54

A B DCE

datapath

datapath

(a)

h11h00

h01 h00h01

h01

h11

h00 h01 h10 h11

h00h01h01 h11

h00 h01 h10 h11

A B C D
h00 h01h10 h11

h00h10 h11

h00 h10 h01 h11

h00h10h10 h11

h00 h10 h01 h11

A B C D

h10

... ...

ite
ra

tio
n

#i
ite

ra
tio

n
#(

i+
1)

... ...
codeword-0 codeword-1 output block

MMU-0MMU-1

h00h01h01 h11

h10

input block

h00h10 h11h10

E E

empty

(b)

Fig. 4.24 The architecture and timing diagram of RE-5B based MMU

With the RE-5B based MMU architecture, the multiplexers between the MMUs and the

data paths are eliminated. And most global interconnections are replaced by local routing

between sub-blocks to reduce routing congestion. Fig. 4.25 shows a comparison among the

three MMU schemes. The gate count and interconnection are measured only from MMU-0

and MMU-1, whereas the routing congestion overflow is investigated through implementing

the decoder in a 25mm2 0.18-µm chip with 6 metal layers. In RE-4B and RE-5B architectures,

55

there is a 15% ~ 23% decrease in gate count due to the removal of multiplexers. A significant

drop in signal connections is also observed with RE approach; therefore, the routing

congestion can be dramatically improved.

MUX RE-4B RE-5B
0

0.45

0.9

1.35

1.8

2.25

2.7

3.15

3.6

4.05

4.5

x 10
5

gate count
number of interconnection
routing congestion overflow

-100%

-50%

-0%

416,298

319,260

-36.8%

303,012

130,572

-10.57%

355,650

108,012

-0%

Fig. 4.25 Comparison of three MMU designs

4.3.4 Timing Schedule

The overall timing diagram of the decoder is shown in Fig. 4.26. As mentioned above,

two different codewords are processed concurrently without any stalls. In our proposed design,

the BNUs and CNUs have no idle time, leading to an efficient utilization of the functional

units. The design takes four cycles to complete a decoding iteration for each codeword,

including 2 cycles for horizontal steps in CNUs and 2 cycles for vertical steps in BNUs. For

channel value loading, each codeword takes 2 extra cycles. Thus total 2 + 2 + 8*4 = 36 cycles

56

are required to finish the decoding of two different codewords with 8 decoding iterations.

A B C D E

h10 h00

h00 h01 h10 h11

h10 h11 h10 h00

h00 h01 h10 h11

ch
an

ne
l v

al
ue

lo

ad
in

g
ite

ra
tio

n
#1

BNUs BNUs

A B C D E

h01 h00

h00 h01 h10 h11

h01 h01 h11 h00

h00 h01 h10 h11

h01 h01 h11 h00

h00 h01 h10 h11

CNUs CNUs

BNU

MMU-0 MMU-1

h00 + h10

h01 + h11

h00 + h10

h01 + h11

h00 + h10

h01 + h11

CNU

h00 +h01

h10 +h11

h00 +h01

h10 +h11

h00 + h10 h00 +h01

ite
ra

tio
n

#2

h10 h11 h10 h00

h10 h11 h10 h00h01 + h11 h10 +h11

codeword-1
codeword-0

idle

Fig. 4.26 Timing diagram of proposed LDPC code II decoder

4.3.5 Chip Implementation

A test chip has been fabricated in a 1.8V, 0.18µm 1P6M CMOS technology, and the die

micrograph is shown in Fig. 4.27. The chip size is 25 mm2 while the core occupies 21.23 mm2.

The total gate count is 1.15M including two MMUs while the chip core density is about

71.2%. By measurement, the decoder achieves 3.33Gb/s throughput with 8 decoding

iterations under 1.62V power supply, and the power estimation is 644 mW.

A second test chip is implemented in a 1.2V, 0.13µm 1P8M CMOS technology, whose

layout view is shown in Fig. 4.28. The chip size becomes 13.5 mm2 where the core constitutes

57

10.24 mm2. Moreover, the chip density grows to about 75.4% because of two extra metal

layers. After static timing analysis (STA) and post-layout simulation, the maximum decoding

speed has been improved to 5.92Gb/s with 8 decoding iterations under 1.02V supply and

worst speed corner. The estimation also includes crosstalk analysis for signal wires that cause

coupling noise. Table 4.4 gives the characteristic summary of two test chips.

Fig. 4.27 Die micrograph of the 0.18µm LDPC code II decoder chip

58

Fig. 4.28 Layout view of the 0.13µm LDPC code II decoder chip

Table 4.4 Summary of the LDPC Code II chip

Technology 0.18-µm CMOS 1P6M 0.13-µm CMOS 1P8M

Package CQFP-208 N.A.

Supply voltage 1.8V core, 3.3 V I/O 1.2V core, 3.3V I/O

Chip size 5.0mm × 5.0mm 3.67mm × 3.67mm

Chip density 71.2% 75.4%

Gate count 1.15M 1.15M

Power dissipation 644mW @ 83MHz 299mW @ 145MHz

Maximum data rate 3.33Gb/s 5.8Gb/s

59

4.4 Summary and Comparison
The high speed LDPC code decoder designs are presented. The data rescheduling is

employed to reduce the signal interconnections between the input buffer and the datapaths.

The efficient functional unit designs make the decoder suitable for high speed applications. In

addition, the message memories architecture permits parallel decoding of two codewords and

diminishes the routing congestion issues. Consequently, the chip becomes smaller due to the

increased chip density.

The comparisons of our proposed LDPC code decoders with state-of-the-arts are listed in

Table 4.5. Except for [11], the decoders are implemented with non-structured LDPC codes to

get a better performance and a general implementation solution.

Table 4.5 Comparison of LDPC chips

 Proposed I Proposed II [9] [11]

Block length 600 1200 1024 2304

Code structure irregular irregular irregular structured

Code rate 3/4 3/5 1/2 2/3

Silicon proven Yes Yes No Yes No

Technology 0.18-µm 0.18-µm 0.13-µm 0.16-µm 0.18-µm

Supply voltage 1.8V 1.8V 1.2V 1.5V 1.8V

Clock freq. 82.1MHz 83MHz 145MHz 64MHz 200MHz

Chip size 17.5mm2 25mm2 13.47mm2 52.5mm2 9.41mm2

Gate count 472K 1.15M 1.75M N.A.

Power dissipation 232mW 644mW 299mW 690mW 1,176mW

Data rate 480Mb/s 3.33Gb/s 5.8Gb/s 512Mb/s 128Mb/s

Decoding iteration 8 8 64 10

60

Chapter 5
Conclusion and Future Work

5.1 Conclusion
In this thesis, high-throughput and area-efficient LDPC code decoders are proposed for

high-speed communication systems. A (600, 450) irregular LDPC code decoder is

implemented in 0.18 µm technology and measured that it can achieve 480Mb/s data rate with

8 decoding iterations. Another (1200, 720) irregular LDPC code decoder is fabricated in 0.18

µm technology, whose measured data rate is 3.33Gb/s. Furthermore, the 0.13 µm (1200, 720)

LDPC chip reaches the maximum 5.92Gb/s data rate with only 13.5 mm2 area and 268mW

power consumption.

5.2 Future Work
As mentioned in Section 3.1.1, DVB-S.2 system adopts LDPC codes with very large

block lengths as the FEC kernel to get good error-correcting performance. However, the

implementation complexity of LDPC code decoders goes larger as the block length grows.

Besides, in DVB-S.2 system, there are a lot of different coding rate which are required for

different application mode. In [27], a LDPC codec for DVB-S.2 is proposed, which can

achieve 135Mb/s throughput rate. However, the chip size and the power consumption are both

large. Our proposed designs may be applied to construct a low-power and area-efficient

architecture for the DVB-S.2 LDPC code decoder. This will be an interesting topic for our

future research works.

61

Bibliography

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, vol.

IT-8, pp. 21-28, Jan. 1962.

[2] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:MIT press, 1963.

[3] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.
Theory, vol. IT-27, no. 5, pp. 399-431, Sep. 1981.

[4] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform. Theory, vol. 42,
pp. 1710-1722, Nov. 1996.

[5] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,” IEEE
Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[6] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low-density
parity-check codes,” Electron. Lett., vol. 32, pp.1645-1646, Aug. 1996.

[7] S. Y. Chung, G. D. F. Jr., T. J. Richardson and R. Urbanke, “On the design of
low-density parity-check codes within 0.0045dB of the Shannon limit,” IEEE Commun.
Lett., vol. 5, no. 2, pp. 58-60, Feb. 2001.

[8] C. Berrou and A.Glavieux, “Near optimum error correcting coding and decoding:
turbo –codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[9] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-dnesity
parity-check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp.
404-412, Mar. 2002.

[10] E. Yeo, P. Pakzad, B. Nikolic and V. Anantharam, “VLSI architectures for iterative
decoders in magnetic recording channels,” IEEE Trans. on Magnetics, vol. 37, no. 2, pp.
748-755, March 2001.

62

[11] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans.
on VLSI Systems, vol. 11, no. 6, pp. 976-996, Dec. 2003.

[12] M. G. Luby, M. Mitzenmacher, M. A. Shokollahi and D. A. Spielman, “Improved
low-density parity-check codes using irregular graphs,” IEEE Trans. Inform. Theory, vol.
47, no. 2, pp. 585-598, Feb. 2001.

[13] T. J. Richardson and R. L. Urbanke, “Efficient encoding of Low-Density Parity-Check
codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-656, Feb. 2001.

[14] J. L. Fan, Constrained Coding and Soft Iterative Decoding, Kluwer Academic Publishers,
2001.

[15] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-445, Mar.
1996.

[16] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ.
Linkoping, 1996.

[17] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold and A. Dholakia, “Efficient implementation of
the sum-product algorithm for decoding LDPC codes,” IEEE Global Telecomm. Conf.,
vol. 2, pp. 25-29, Nov. 2001.

[18] M. P. C. Fossorier, M. Mihaljevic and H. Imai, “Reduced complexity iterative decoding
of low-density parity check codes based on belief propagation,” IEEE Trans. Comm., vol.
47, no. 5, May 1999.

[19] ESTI, “Digital Video Broadcasting (DVB); Frame structure, channel coding and
modulation for 11/12 GHz satellite services,” European Telecomm. Standard EN 300
421 V1.1.2, Aug. 1997.

[20] ESTI, “Digital Video Broadcasting (DVB); Second generation framing structure, channel
coding and modulation systems for Broadcasting, Interactive Services, News Gathering
and other broadband satellite applications,” European Telecomm. Standard EN 302 307
V1.1.1, Mar. 2005.

63

[21] A. Batra, J. Balakrishnan, G. R. A. J. R. Foerster and A. Dakbak, “Design of a multiband
OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave
Theory Tech., vol. 52, no. 9, pp. 2123-2138, Sep. 2004.

[22] L. Yang and G. Giannakis, “Ultra-wideband communications,” IEEE Signal Processing
Mag., pp. 26-54, Nov. 2004.

[23] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group
3a,” submitted to IEEE P802.15 working group for WPANs, Sep. 2004.

[24] D. Krishnaswamy and J. Vicente, “Scalable adaptive wireless networks for multimedia
in the proactive enterprise,” Intel Technology Journal, vol. 8, pp.291-302, 2004.

[25] H. Y. Liu, C. C. Lin, Y. W. Lin, C. C. Chung, K. L. Lin, W. C. Chang, L. H. Chen, H.C.
Chang and C. Y. Lee, “A 480Mb/s LDPC-COFDM-based UWB baseband transceiver,”
IEEE Int. Solid-State Circuit Conf. Dig Tech. Papers, pp. 444-445,609, 2005.

[26] X. Y. Hu, E. Eleftheriou and D. M. Arnoldx, “Regular and irregular progressive
edge-growth tanner graphs,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp. 386-398,
Jan. 2005.

[27] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E. Lantreibecq and B.
Gupta, “A 135Mb/s DVB-S2 compliant codec based on 64800b LDPC and BCH codes,”
IEEE Int. Solid-State Circuit Conf. Dig Tech. Papers, pp. 446-447,609, 2005.

64

作 者 簡 歷

 姓名 ：林凱立

 出生地 ：台灣省台中市

 出生日期：1982. 1. 4

 學歷： 1987. 9 ~ 1993. 6 台中市立中正國民小學

 1993. 9 ~ 1996. 6 台中市立居仁國民中學

 1996. 9 ~ 1999. 6 國立台中第一高級中學

 1999. 9 ~ 2003. 6 國立清華大學 電機工程學系 學士

 2003. 9 ~ 2005. 7 國立交通大學 電子研究所 系統組 碩士

得 獎 事 績

 九十二學年度 第二學期電子研究所書卷獎

九十二學年度 2004 全國系統晶片設計比賽光電通訊類 SOC 組特優獎

 九十四學年度 斐陶斐榮譽學會新榮譽會員

65

發 表 論 文

z Hsuan-Yu Liu, Chien-Ching Lin, Yu-Wei Lin, Ching-Che Chung, Kai-Lin Lin, Wei-Che

Chang, Lin-Hong Chen, Hsie-Chia Chang, Chen-Yi Lee, “A 480Mb/s

LDPC-COFDM-based UWB Baseband Transceiver in 0.18µm CMOS Process,” in

IEEE ISSCC, Feb. 2005.

z Chien-Ching Lin, Kai-Li Lin, Hsie-Chia Chang and Chen-Yi Lee, “A 3.33Gb/s (1200,

720) Low-Density Parity Check Code Decoder,” in IEEE ESSCIRC, Sep. 2005.

66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

