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Tree Encoder with Long Term Prediction

Fast Forward and Inverse Playback in Decoder

Student: Su hao Yang Advisor: Dr. Tihao Chiang

Institute of Electronics
National Chiao Tung University

Abstract

We present a novel technique, hierarchical temporal domain decimated
prediction structure, to provide a video. bitstream with full VCR functionality —
random access, fast forward, and fast backward. This hierarchical temporal domain
decimated prediction structure, which we named as symmetric tree prediction
structure, utilized the flexiblé-reference picture management scheme that provided
in AVC standard to generate an"AVC' compliant bitstream. It uses a tree-like
prediction structure to provide efficient fast forward/fast backward playback
functionality. No redundant picture will be decoded during fast playback. Only
one-pass encoding and a single bitstream can provide both the forward and
backward playback functionality. It also provides flexible parameters to make the
prediction structure can be tuned with better coding efficiency or lower complexity.
We also propose a decoder that can fully support the VCR functionality with low
complexity. The simulation results show the symmetric tree prediction structure
can provide full VCR functionality with similar coding efficiency and slightly

higher coding complexity.
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Chapter 1
Introduction

1.1 Motivation

In the age of video tape, the video is record in the video tape without compression.
All the VCR functionalities including step forward, step backward, fast forward, fast
backward and random access can be easily supported. However, it is not the case for
digital video. To reduce the storage space or transmission bandwidth, digital video is
usually compressed before store or. ‘transmission. Temporal prediction is an essential
tool for digital video compression..In the encoding-process, previous reconstructed
frame is used to predict the current frame;-only-the prediction error will be store. The
current reconstructed frame is also used-to.predict the following frame. This prediction
strategy removes the temporal redundancy among frames, but also causes temporal
dependency. To reconstruct the current frame, the decoder must decode the previous
frame to generate correct prediction image. And to decode the previous frame the
decoder need to decode the frame before the previous frame — the current frame is
depend on the entire previous frames. Temporal dependency won’t cause any
disadvantage in a forward- only playback scenario. However, forward-only playback is
not sufficient for real-word applications. The user may randomly jump to other sections
in the video, fast forward playback to skip some video, or rewind the video. All of this
functionality is hard to implement under the traditional temporal prediction scheme.

To address the random access issue, the traditional approaches periodically insert

the intra-prediction-only picture to break the temporal dependency with other images.
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However, without removing the temporal dependency, the I-picture usually needs much
more bit to provide similar video quality compare with the pictures has utilized
temporal predictions. To provide the fast forward functionality, the decoder can simply
skip the B-picture in the bitstream. For example, with the GOP structure
like ...PBBBP..., the decoder can skip one B-picture for 2x forward playback speed, or
skip all B-picture for 4x forward playback speed. However, if there is no B-picture in
the bitstream, or more forward speed factor is needed, the decoder needs to decode
some “redundant” P-pictures that are never displayed. This may waste the decoding
power, or also limit the speed up factor of the decoder. To provide the (fast) backward
functionality, generally there are two approaches. The first approach is, the decoder can
buffer the entire already decoded picture in a GOP, and display the target image when
they request. The second approach .is, the decoder decode the bitstream several times.
Each times it starts from the I-picture.of this GOP to the target picture. Assuming there
are N-picture in a GOP, the first approach-need.-at most N-picture buffer to store all the
decoded image, and the second approach.need-at most NxN/2 times decoding power,
both are significantly need to be improved.

H.264/AVC, the latest international video-coding standard, provides a
significantly improved video coding efficiency compared with the previous
international standard, such as MPEG-2 and MPEG-4. It uses the variable block size
motion estimation, context-based entropy coding, rate-distortion optimized, in-loop
deblocking filter, and some other technique to improve the coding efficiency. It also
provide a flexible reference picture management and utilization scheme to support
temporal prediction. It uses multiple reference picture motion compensation, decouples
the reference order from the display order, and also decouples the picture representation
from the picture referencing capability [7]. In this thesis, we utilize this flexible

temporal prediction structure to construct a “symmetric tree prediction structure”, which
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can provide an AVC compliant video bitstream that fully support the VCR

functionalities.
1.2 Application Scenario

Figure 1-1 shows the application scenario that utilized the proposed symmetric
tree prediction structure to serve video playback with VCR functionalities. The encoder
encodes the video sequences with the selected symmetric tree prediction structure that
suitable for the application. The bitstream is stored in the bitstream container, which
could be a CD, a file in the PC, or the video server in Internet. The user or client will
access the bitstream through our proposed decoder that supports VCR functionalities.
Various request, including forward playhack,. backward playback, fast playback, and
also random access, will be send:to.therproposed decoder, the decoder decode the

requested frame and send it to the-user or client:

Content Capture

Choose GOP > Encoder ' '
Structure

Request frame
number
Client / User P Server/ Decoder
Request display
f speed

Figure 1-1 utilized the proposed symmetric tree prediction structure to serve



video playback with VCR functionalities.

1.3 Organization

The details of the proposed symmetric tree prediction structure encoder and the
proposed VCR-functionality-supported decoder will be described in the following
chapters. The organization and abstract of each chapter are described as follows:

In Chapter 2, some previous works that address VCR functionality for video
compression will be introduced first. An overview of Advanced Video Coding (AVC)
will be given then. Some highlight features in AVC are briefly described. The reference
picture management and utilization methaod.in. AVC, which is strongly related with the
proposed structure, will be described in detail:

In Chapter 3, we firstly describe the basic concept of the proposed symmetric tree
prediction structure. Then the implementation-detail in AVC of the proposed structure is
described. Further, we describe the concept of the proposed decoder that support VCR
functionality. The decoder flow is described step by step. Finally, we discuss the cost of
VCR functionality for normal GOP structure as well as the proposed structure. The
trade-off among various symmetric tree prediction structures are discussed in detail.

In Chapter 4 we show the experimental results. The coding efficiency of various
symmetric tree prediction structures is compared. We also compare the coding
efficiency between the proposed structure and the normal GOP structures.

The conclusions are given in Chapter 5. We highlight the properties of the proposed

prediction structure and the decoder that support VCR functionality.



Chapter 2
Background

2.1 Previous Work

The normal video encoding uses sequential temporal prediction so the reference
dependency is the same as the picture coding order of the GOP. If the GOP size is large,
the dependencies of later frames cause serious problem for achieving VCR
functionality.

In previous works, there are some techniques.to implement VCR functionalities.
In [1], macroblock-based scheme is. proposed to.use the reverse play operation. It
divides all the macroblocks to forward:macroblocks (FMB) and backward macroblocks
(BMB). They define MB"(k,l) which means that:the macroblock is the n™ frame and at
K™ row and I"" column. MB"(k,|) is defined as BMB if MB" (k,I) has the same spatial
position, for example, MB" (k,1) is coded without motion compensation. Otherwise, it is
defined as FMB. In backward display, FMB is reconstructed by the formula:

MB" (k,1) = MC MB"* (mv"(k,I))+e"(k,|)

MC MB"!is the motion compensated macroblock of MB" (k, ).

e"is the prediction error.

BMB is reconstructed by the formula: (due to MC MB"™™* (mv"(k,)) = 0)

MB" (k,I) = MB™? (k,1)+e"(k,])

= MB"(k,I) = MB"(k,I) - "(k,I).
In the algorithm, if we want to play frame n-1 after play frame n, BMB can be

display with parsing e"(k,I), but FMB is in the different situation. All related
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macroblocks in frame n-2 which are the motion compensated macroblocks of FMB in
frame n-1 needs to be sent. The BMB is the saving part in the algorithm. But the
percentage of BMB is different by sequence and it just use for step reverse playback. If
we want fast forward / reverse playback, the percentage of BMB will be little. The
improvement for full VCR functionalities is limited.

In [2], another previous work uses video transcoding for fast forward / backward
video playback. It must define different GOP structure for different speed display. If the
required frame is the first frame of the GOP, it is set as intra frame. Otherwise it is set as
inter frame. For example, the original sequence is 0" to 17" frame with 0™ and 9" are
intra frames and others are inter frames. If we use 4 times speed up, we play 0, 4, 8, 12,
16 in forward display. The 0" is also intra frame, 4™, 8" can use sum of motion vector to
do motion compensation from 0™ to. 4" and 8". Buit:the 12" frame can not just parse all
motion vectors to do motion compensation: It should needs 9™ intra frame then we can
use motion compensation from 9™ to 12" to-get.12" Therefore the algorithm defines
12" frame as intra frame for 4 times speed up:Here they define a formula for define
intra frames:

If (Kmod L) <r (Lis GOP size and r is display speed.)

= We set the K" frame as intra frame.

They re-estimate the motion vector of inter frame with 4 methods for 4 situations
such as in place, area weighted average, maximum overlap and median. With 4 methods
combine the motion vectors as new motion vector but the combination makes error
accumulation. If the speed up rate is high, the error becomes large so they make a
threshold to switch intra coding and re-estimation inter coding but the degradation of
PSNR is still very serious.

In [3], other previous work uses dual bitstreams structure to each sequence. One is

encoded by forward playback sequence and another is encoded with reverse playback
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sequence. For example, we encode a sequence with 9 frames which shows in Table 2-1.
With 2 bitstream, the client requests a frame to server. The server finds the shortest way
to get the frame. For example, if the client want to get 6™ frame, the server pare the
forward bitstream because it just need to parse 1 frame then the client can get the target
frame. If we want get 5", first we parse the 6™ I frame of the forward bitstream and
parse the 5™ motion vector and residue of the reverse bitstream and then we can get the
5" frame.

This algorithm must contain 2 bitstreams and sometimes it needs to switch

different bitstream to go minimum path to get target frame so it may not match

perfectly.

No 0 1 2 3 4 5 6 7 8 9
Forward | | P P P P " I P P P
Reverse | P P P I B R P P P |

Table 2-1 dual bitstream structure

For VCR functionalities implementation-with lower complexity and lower buffer
cost, [4] reconstructs a new GOP structure. It decomposes sequential structure to
hierarchical structure that can strongly reduce reference dependency. First, they present
a binary tree structure which shows in Figure 2-1. Figure 2-1 uses a binary tree structure
with N = 15, the level value is the same as reference dependency. From the Figure 2-1,
the maximum dependency is 3, which is much smaller than the normal IPPP structure.
The maximum dependency is reduced from N to log, (N)

With the dependency reduction, random access functionality is easy to implement.
From Figure 2-1, we can also found that there is no redundant frame decoding with 2"
speed up (forward / inverse) playback because we can just skip large level frames. But
this structure can not supply non 2" speed up playback.

In order to reduce the redundant frame for non 2" speed up, it proposes another
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GOP structure shows in Figure 2-2. It sets the center frame to be the first encoded frame.
The frame of level = n connect to the edges of level = n-1 and each level has the same
frame number. Comparing Figure 2-1 and Figure 2-2, if we want triple speed up
playback that display frame 1, 4, 7, 10, and 14, which is green color in figure, the
redundant decoded frame of binary tree are 5 frames, including 3, 5, 9, 11, and 13. But
for the Figure 2-2 structure only has 2 redundant frames, which is frame 3 and 11.

Figure 2-1 and Figure 2-2 structures supplies much faster random access and fast
playback with fewer redundant frames. But in this paper, it has not implemented the
structure so we do not know the coding efficiency. Further, in this paper only one

direction prediction is considered, bi-direction prediction is not discussed in this paper.

Level=0 k

Level=1 Q \%

Level=2

CIAL ¢ ®
L I

Figure 2-1 binary tree structure with N = 15 [4]

Level=0

e
Level=1 Q/( @/ @5 M
T TTe

Figure 2-2 proposed GOP structure of previous work [4]




2.2 Advanced Video Coding

Advance Video Coding (AVC), unlike the previous video coding standard such as
MPEG-2, provide a flexible reference picture management and utilization scheme. We
utilize this scheme to achieve our tree-like prediction structure. In section 2.2.1 we
provide an overview of AVC. In Section 2.2.2, we describe the concept and syntax of

the reference picture management and utilization scheme in AVC.

2.2.1 Overview

AVC is the newest video coding standard developed by the Joint Video Team
(JVT) of ISO/MPEG and ITU. It provides better coding efficiency compare with
MPEG-4 and H.263. The detail syntax and decoding. method are described in [7]. In the
following, we firstly briefly described the AVC encoding process, and then briefly
describe some highlighted features in AVC-that-enables enhanced coding efficiency.

In AVC encoding process, a video-sequence 1S separate into several pictures, and
each picture will be processed macroblock by macroblock.

Figure 2-2 is the AVC encoder block diagram. In inter prediction mode, it use
block-based motion estimation and motion compensation to generate the prediction
image. In intra prediction mode, is use the previous coded macroblocks at the same
picture to generate the prediction image. The best prediction mode is selected by the
mode decision scheme. The prediction value of the best prediction mode is subtracted
from the original image to form the prediction residue (D, DCT and quantization are
then applied on the residue. The results are further entropy coded to generate the
bitstream. The reconstructed pictures are then generated in reverse direction of encoding,
and are stored in the reference picture buffer. It will be used for the inter prediction of

the following pictures.
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Compare with the previous video coding standard, such as MPEG-2, the AVC has

the following new features that can improve the coding efficiency: [8].

® \Variable block size motion compensation with small block size: AVC support

seven different block size,range from 4x4 10 16x16.

Quarter sample accurate motion compensation: the prior standards just enable

half sample motion vector accuracy.

Motion vectors over picture boundaries: the picture boundary extrapolation

technique is first used in H.263 and is included in AVC.

Weighted prediction: this can dramatically improve coding efficiency for light

change in the same scenes.

Small block size transform: in prior standards use transform block size of 8x8,

but AVC use block size of 4x4 transform that allows encoder to represent

signal more locally-adaptive.

Exact-match inverse transform: in previous standard, the DCT transform and

inverse DCT transform are not perfect reconstruction. In AVC, the transform
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and inverse transform are perfect reconstruction.

® Arithmetic entropy coding: a powerful arithmetic coding method known as
CABAC is adopted in AVC. We can choose CAVLC and CABAC for entropy
coding.

® Context-adaptive entropy coding: The two entropy coding method adopted in
AVC, CAVLC and CABAC, are both use context-based adaptive to improve
performance.

Except the above features, AVC also provides a flexible reference picture

management and utilization scheme, which is strongly related with our work. The

detailed descriptions are given in the following section.

2.2.2 Reference picture management process

The reference picture management scheme in AVC:can be generally classified as
following [8]:

®  Multiple reference picture motion compensation: there is only 1 reference
picture in forward prediction and 2 reference pictures in bi-direction
prediction in prior standards. In AVC, we can use 16 reference pictures at
most.

® Decoupling of referencing order from display order: in prior standards, the
encoding order has strict limitation. In AVC, it removes the restriction that the
encoder can choose the order of pictures with high degree of flexibility.

® Decoupling of picture representation methods from picture referencing
capability: in prior standards, bi-direction picture can not be used as reference
for prediction, but AVC remove the restriction that bi-direction picture can be
used as reference.

To support these features, the AVC uses the following methods for the reference picture
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management [7]. All of their related syntax is stored in the slice header of each slice, so
the decoder can find out the temporal dependency of each picture by only decode the

slice header rather than the whole picture.

2.2.2.1 Reference picture list initialization process

Previous video codec such as MPEG4 contains only one forward reference picture
for P-picture, or one forward and one backward reference picture for B-pictures, so it is
unnecessary to control the reference picture order. In AVC, the reference picture number
can be up to 16. AVC uses the “reference picture list” to list the reference pictures that
can be used by the handling pictures. Each index of the reference picture list mapped to
a reference picture inside the decoded picture buffer (DPB). During the motion
estimation (ME) and motion compensation (MC);stage of an inter-predicted block, the
block simply indicate the index of:the reference picture list to point out which reference
picture it is used. With this structure, the AVC standard must provide a mechanism to
“order” the reference pictures in the. reference picture list, that is, which reference
picture is put at which index inside the reference picture list. The “reference picture list
initialization process” provides the default ordering method in AVC.

In AVC, the reference pictures are divided into two types, one is short term
reference pictures and another is long term reference pictures, each of which has
different management method. To each short-term reference picture a variable PicNum
is assigned, and to each long-term reference picture a variable LongTermPicNum is
assigned. During the memory management process in AVC, one can identify a
short-term or a long-term reference picture with PicNum or LongTermPicNum,
respectively. For short term reference frame, PicNum is generally set with a value that
related to the display order of that frame. For long-term reference frame,

LongTermPicNum is set with the “memory management control operation” (MMCO) in
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AVC, we will describe its detail in section 2.2.2.3.
In the following, we describe the reference picture list initialization process for P

slice and B slice.

P slices reference list initialization

For P slice, the reference picture list RefPicList0 is ordered such that the
short-term reference frames has lower indices than long-term reference frames. For
short-term reference frames, they are ordered starting with the one that has the largest
PicNum to the one that has the smallest PicNum. For long-term reference frames, they
are ordered starting with the one that has the smallest LongTermPicNum to the one that
has the largest LongTermPicNum.

We give an example for P slices list initialization:

Assuming we have 5 reference frames that.contain: 3 short term reference frames
with PicNum = 303, 302, 300 and-2 long term-reference frames with LongTermPicNum
=0 and 3. After the initialization,

RefPicList0 [0] is the short term reference picture with Picnum = 303

RefPicListO [1] is the short term reference picture with Picnum = 302

RefPicList0 [2] is the short term reference picture with Picnum = 300

RefPicListO [3] is the long term reference picture with LongTermPicnum =0

RefPicList0 [4] is the long term reference picture with LongTermPicnum = 3

B slices reference list initialization

For B slice, the reference picture is also ordered such that the short-term reference
frames has lower indices than long-term reference frames. For the short term reference
frames, we further divided them into two parts. The first part contains all references

whose PicNum are smaller than current PicNum and the second part contains all
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references whose PicNum are larger than current PicNum. The first part short-term
reference frames are ordered starting with the one that has the largest PicNum to the one
that has the smallest PicNum. The Second part short-term reference frames are ordered
starting with the one that has the smallest PicNum to the one that has the largest
PicNum.

For reference picture list RefPicListO, it is started with the entire ordered
short-term reference frame in the first part short-term reference, followed by the entire
ordered short-term reference frame in the second part, finally is the long-term reference
frames with the same order used in P slice. For reference picture list RefPicListl, it is
started with the entire ordered short-term reference frame in the second part short-term
reference, followed by the entire ordered short-term reference frame in the first part,
finally is again the long-term reference frames with'the same order used in P slice. Also
note that after this ordering, if the RefPicListl is identical with RefPicListO, the first
two entries of RefPicList1 are switched.

We also give an example to B slice;

Assuming we have 6 reference frames that contain 4 short term reference frames
with Picnum = 303, 302, 300, 299 and 2 long term reference frames with
LongTermpicnum = 0 and 3. The current reference frame is 301. After the initialization,

RefPicListO [0] is the short term reference picture with Picnum = 300

RefPicList0 [1] is the short term reference picture with Picnum = 299

RefPicListO [2] is the short term reference picture with Picnum = 302

RefPicList0 [3] is the short term reference picture with Picnum = 303

RefPicListO [4] is the long term reference picture with LongTermPicnum =0

RefPicList0 [5] is the long term reference picture with LongTermPicnum = 3

RefPicListl [0] is the short term reference picture with Picnum = 302

RefPicListl [1] is the short term reference picture with Picnum = 303
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RefPicListl [2] is the short term reference picture with Picnum = 300
RefPicListl [3] is the short term reference picture with Picnum = 299
RefPicListl [4] is the long term reference picture with LongTermPicnum =0

RefPicListl [5] is the long term reference picture with LongTermPicnum = 3
2.2.2.2 Reference picture list reordering process

In 2.2.2.1 we introduce the initialization of the reference list. The initialization
process order the short term reference pictures such that the temporally closer reference
frame is in lower index of the reference list. This is because temporally closer reference
frames usually provided better prediction image and will be encoded many times for
each inter prediction block. In the AVC entropy coding method such as CABAC, lower
reference picture index can be coded with fewer bits, so put temporally closer frame at
lower index can provide better coding efficiency. On another side, the initialization
process order the long term reference frames from smallest LongTermPicNum to largest
LongTermPicNum, which can nat reflect 1o the frequency of there utilization. Further,
sometimes the temporally closer reference frame is'not the best reference frame and we
will want to reorder the reference picture list. Another reason that we need to reorder
the reference picture list is, for some prediction structure, such as the proposed
tree-prediction structure, we may need to move some reference pictures outside the
scope of the temporal prediction process of the handling picture to reduce the temporal
dependency. To address these issues, AVC provides the reference picture list reordering
process to make the user can fully control the order of the reference picture list.

In reference buffer list section, AVC has 2 reference buffer lists. If we just use
forward prediction, the RefPicListO is used. If we use forward and backward prediction
at the same time, RefPicListl and RefPicListO buffers are both used. We use
ref pic_list_reordering_1X syntax element to present which buffer we are control. If

ref_pic_list_reordering_flag_10 = 1, we make refPicList0 buffer reordering and if
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ref_pic_list_reordering_flag_11 =1, we make refPicListl buffer reordering.

The second syntax element: reordering_of pic_nums_idc. If
reordering_of_pic_nums_idc = 0 or 1, our reordering process of reference buffer lists
are for short term reference frame. If reordering_of pic_nums_idc = 2, our reordering
process of reference buffer lists are for long term reference frames. If
reordering_of _pic_nums_idc = 3, the reference reordering function ends.

If reordering_of pic_nums_idc = 0, we parse abs_diff_pic_num_minusl[i] = k
that we move the reference of pic hum = ( current pic_num -
abs_diff_pic_num_minus1[i]) to the k™ order of reference list.

If reordering_of pic_nums_idc = 1, we parse abs_diff_pic_num_minusl[i] = k
that we move the reference of picnum = ( current pic_num +
abs_diff_pic_num_minus1[i]) to the.k™ order of reference list.

If reordering_of_pic_nums =idc.= 3, we parse.long_term_pic_num[i] = k that we
move long_term_pic_numl[i] to the k™ order-of reference list.

We make a long term reference reorder example in here. We have reference 0, 1, 2
with long term number = 0, 1, 2. The original reference list order is 0, 1, and 2. We want
to reorder the reference list in inverse order. In this case, we want move long term
number = 2 to 1% order and 0 to the end. So 1* we set long_term_pic_num[2] = 0 that
the reference list order become 2, 0, 1. Then we set long_term_pic_num[1] = 1 that the

reference list order become 2, 1, 0.

2.2.2.3 Reference picture list marking process

In the previous video coding standard such as MPEG-2, the reference frame is
only the temporally closest one. In AVC, it simply set the limitation of the reference
picture number. Which reference picture are going to be stored to or remove from the

reference picture buffer can be fully controlled by the encoder, as long as it has not

16



exceed the reference picture number limitation. In AVC, the “reference picture list
marking process” is the tool to handle these matters. There are two method of marking
process, one is “sliding window” and the other is “adaptive memory control”

The basic memory management method of AVC is sliding window marking
process. It will be invoked if we have not use the adaptive memory control marking
process. When the handling picture is set as a reference picture, sliding window
marking process will put this picture into the reference picture buffer. If the reference
picture buffer is full, it remove the oldest reference frame in encoding order from the
reference picture buffer.

Different with the sliding window marking process, adaptive memory control
marking process make the encoder can fully control which picture will be store to or
remove from the reference picture.buffer through:the “memory management control
operation” (MMCO) command. -As.our tree prediction structure needs to utilize the
adaptive memory control marking process,-we-described the six MMCO commands
provided in AVC in the following.

If memory_management_control_operation = 1, this operation marks short term
reference frames as unused for reference that means we remove the short term reference
frame from reference buffer. This operation includes 3 parameters which are picNumX,
CurrPicNum and difference_of_pic_nums_minus1l.

Every reference frame has its identification number and the picNumX means its
identification number. CurrPicNum is the picNumX of the current frame. The parameter
difference_of pic_nums_minusl is used as function parameter. If we set MMCO(we
use this to instead memory_management_control_operation) = 1, we must pass
difference_of pic_nums_minusl. From the inner operation: picNumX = CurrPicNum —
(difference_of _pic_nums_minus1+1) we can calculate picNumX, and then we drop the

reference frame with id number = picNumX.
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If MMCO = 2, this operation marks long term reference frame as unused for
reference that we remove the long term reference frame from reference buffer. We
control the long term reference frame by long term number so we sent the long term
number and mark that reference frame as unused.

MMCO = 3, this operation assigns long term number to short term reference
frame. In AVC software, if we do not use MMCO it always sets reference frame as
short term reference frame at first and if we want to use long term reference frame, we
can use this operation to make the frame from short term reference frame to long term
reference frame. In this operation, we must pass 2 syntax elements:
difference_of pic_nums_minusl and LongTermFrameldx. The first element is
introduced in MMCO = 1 section, we use that to get the short term reference frame id
number and then we set this frame as-long term reference frame with long term number
= LongTermFrameldx. One important thing in here that if the long term number is used
in the other long term reference frame;.the-new-long term reference frame will use the
long term number and the old one is removed from the long term reference buffer.

MMCO = 4, this operation sets the maximum long term frame index. We change
the maximum index value of long term reference frame in this operation. We need only
one syntax element: max_long_term_frame_idx_plusl. If the long term number of any
long term reference frame is greater than (max_long_term_frame_idx_plusl-1), the
reference  frame shall be marked as unused for reference so if
max_long_term_frame_idx_plusl = 0 and then there will be no reference frame in the
long term reference buffer.

MMCO = 5, this operation marks all reference frame as unused for reference
frame and set maximum long term frame index as no long term reference frame. This
operation is like reset all reference setting. It cleans all reference buffers which include

long term and short term buffer to null.
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MMCO = 6, this operation assigns long term frame index to the current frame. We
must pass one syntax element LongTermFrameldx as long term number of current
frame. If the long term number is used in the other reference frame, we remove the old
reference frame as unused like we describe in MMCO = 3.

Finally we introduce MMCO = 0, this operation means that the MMCO is over. We
use this operation when we have done all MMCO instructions.

We make a MMCO example, if we have 0, 1, 2, 3, total 4 frames and we set 0" as
long term number = 0, 1% as long term number = 1, 2™ as long term number = 2, 3" as
long term number = 0.

First, we want to set 0" as long term number = 0, there are two methods. 1% we can
set img->long_term_reference_flag = 1. This function can set |_slice frame as long term
frame with long term number = 0. 2™%Wwe use MMCO operation but MMCO can not use
if the frame is |_slice so we must define MMCO at the 1 picture.

At the 1% picture, we see that the. maximum. of ‘our long term number is 3 so we
define our long term buffer size-= 3..We use MMCO = 4 and give
max_long_term_frame_idx_plus1 = 3 .want set 0" as long term number =0.

Then we want to set 0™ with long term number = 0. We use MMCO = 3 and
difference_of pic_nums_minusl = 0 and long_term_frame_idx =0.

And then we set the current frame with long term number = 1. We use MMCO = 6
and long_term_frame_idx = 1.

Finally we set MMCO = 0 to end the MMCO loop. The 2" picture just set MMCO
=6 and long_term_frame_idx = 2 and next MMCO = 0.

The 3" picture set as long term number = 0, it replaces 0™ picture. MMCO = 6
will remove the long_term_frame_idx long term picture and then set the current picture

with long term number = long_term_frame_idx.
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Chapter 3

Tree Architecture Coder

In this chapter, we describe the proposed symmetric tree prediction structure.
Firstly, we describe the basic concept of the proposed architecture in section 3.1. Then,
we describe the implementation of the symmetric tree prediction structures in AVC
encoder in section 3.2. We then described the decoding method that supports VCR
functionalities in section 3.3. Finally, in section 3.4, we discuss the decoding
complexity of various VCR functionalities for various GOP structures, including the

normal GOP structures and the propesed symmetric'tree prediction structures.

3.1 Basic Cancept of Qur Tree

Prediction Structure

In the traditional video reorder, the pictures are directly stored in the video cassette
without prediction, just as shown in Figure 3-1. In this architecture, the video player can
access and display any pictures without access any other pictures. Thus the VCR
functionalities can be easily achieved. This is similar with digital video compression
that does not allowed temporal prediction. However, digital video compression usually
utilizes temporal prediction to remove the temporal redundancy and thus dramatically
increase the coding efficiency. Figure 3-2 shows commonly used prediction architecture
in video compression. Every picture is predicted by the previous pictures to remove the
temporal redundancy between them. However, this architecture causes difficulties on
VCR functionalities. For example, if we want to access the latest pictures, the decoder

needs to decode all the previous pictures to derive the correct prediction image that used
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to reconstruct the latest pictures. Figure 3-3 shows a different prediction structure that
utilizes temporal prediction and also provide the convenience for VCR functionalities:
Every picture is temporally predicted by the first picture. Comparing to Figure 3-1, it
has inter prediction that provides better coding efficiency. But with the inter prediction,
it also cause one more delay for random access except the first frame. Comparing to
Figure 3-2, the average distance of the inter prediction is longer so the coding efficiency
is worse but the random access functionality is much better.

In Figure 3-4, we extend the concept in Figure 3-3 into “multiple levels”. In
Figure 3-3, the pictures in level 1 is predicted by the picture in level 0. In Figure 3-4,
the reference picture is restricted by the following rule:

Rule 1: A pictures in level i can only be predicted by the pictures in level j, where
J<i.

Compare with Figure 3-3, «it reduce the.distance of inter prediction and hence
improve the coding efficiency. However, if-we-have not assigned the reference picture
correctly, it will also significantly ‘increase..the .random access decoding delay. For
example, assuming the picture in level 2 can be predicted by any picture in level 0 and 1,
than we need to decode all of these pictures before we can corrected decode the picture
in level 2. To solve this problem, we add the following rule to restrict the usage of the
reference picture.

Rule 2: Only the temporally closest picture can be used as reference. The
reference picture of the reference picture can also be taken as reference picture.

For example, frame 9 can take frame 8 and frame 12 as reference, because there
are temporally closest picture at lower level. It can also take frame O as reference,
because frame 0 is the reference picture of frame 8. Frame 9 can not take frame 4, 16,
20, and 24 as reference because they violate rule 2, and hence reduce the decoding

delay of this structure. With this 2 rule, we form a hierarchical prediction structure. If
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we inspect this structure only from one prediction direction, that is, forward or
backward, it is just like a tree, so we can call this structure as “tree prediction structure”.

Another feature of the structure in Figure 3-4 is it symmetry — Firstly the
prediction structure is symmetric between forward direction and backward direction.
That is, the decoding complexity is identical for forward playback or backward
playback. Secondly, in each level the picture number of each sub-group, which can also
be viewed as the number of the “branch” number in a tree, are identical. For example,
each sub-group in level 1 contains two pictures, which are frame 4 and frame 8, or
frame 16 and frame 20. Each sub-group in level 2 contains three pictures, which is
frame 1 to frame 3, frame 5 to frame 7, etc. Because the frame in each level can only
reference the frame at lower level, and then fast forward and fast backward can be
achieved easily at decoder. For 2x speed up, the decoder can simply drop all the odd
frames. For 4x speed up, the decoder can drop. the entire picture in level 2 and only
decode the picture in level 0 and-level 1.-For-12x speed up, the decoder can drop the
entire picture in level 1 and 2 and only decode.the picture in level 0.

We name the structure in Figure 3-4 as “symmetric tree prediction structure”, a
tree prediction structure that is symmetric. It enables all the required VCR
functionalities with low complexity at decoder: low-delayed random access, low
complexity forward and backward playback, simple fast playback.

Tree prediction structure is not restricted to be symmetric. For example, we show
an unrestrained tree in Figure 3-5. The tree in Figure 3-5 still obey rule 1 and rule 2, but
the branch number in each level are different with each other. With this flexibility, tree
prediction structure can be adapted with the temporally local statistic of the sequence
and hence improve the prediction efficiency. However, without symmetry, the tree in
Figure 3-5 is difficult to provide VCR functionality. For example, we can not simply

drop the odd pictures to provide a 2x speed up, because they could be the reference
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pictures of the remaining even pictures. Therefore, in this thesis, we will focus on the

“symmetry tree prediction structure”, such as shown in Figure 3-4.
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3.2 Symmetric Tree Structure Encoder

Implementation in AVC

From the previous section, we know that symmetric tree prediction structure is
more suitable to generate a bitstream that can easily support VCR functionality. In this
section, we describe the implementation of our symmetric tree prediction structure in
AVC encoder.

To easily express our symmetric tree prediction structure, the following notation is
used:

GOPSize_LevelX-PictureType-BranchNumber-ReferencePictureNumber

“GOPSize” is picture number in‘a GOP. For example, a GOP with 16 pictures is
denoted as N16. “PictureType” is.-the_picture “type of the specified level.
“BranchNumber” means the picture number.-between the two nearest lower-level
pictures at the specified level. We call it “branch” because these pictures are just like the
branch in a tree. For example, in Figure 3-6 the branch number for level 1, 2, and 3 are
1, 1, and 3, respectively. We combine the “PictureType” and “BranchNumber” to make
the expression more compact. For example, “B3” means there are 3 branches in this
level, each of which has “B” picture type. “ReferencePictureNumber” is the reference
picture number used for pictures in the specified level, and the reference picture number
for forward reference and backward reference will be shown separately. For example,
F1B1 means 1 forward reference and 1 backward reference.

For example, we can denote the symmetric tree GOP structure in Figure 3-6 as
N16 P1F2 B1F1B1 B3F1B1, which means the there are 16 pictures in this GOP (N16).

In level 1, P1F2 means there is only one picture with picture type P, and it has 2 forward
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references. In level 2, BIF1B1 means there is only one picture with picture type B, and
it has 1 forward reference and 1 backward reference. In level 3, B3F1B1 means there
are 3 pictures with picture type B, and they have 1 forward reference and 1 backward
reference. Further, sometimes when we are not focus on the reference picture number,
and we can remove the related field in the above notation and, for example, Figure 3-6
is then expressed as N16_P1 B1 B3. With this notation, we use an example to describe
the implementation of the symmetric tree prediction structure encoder in AVC.

Encoder implementation of the symmetric tree prediction structure: N16 P1 B1 B3

As shown in Figure 3-6 we show a GOP which contain 16 pictures. Level 1 has 1
branch with P picture type. Level 2 also has one branch but with B picture type. The
third level has 3 branches with B picture type. With the picture type and branch number
in each level, we can then derive.the encoding order, as shown in Figure 3-7. For
example, frame 8 is P-picture, so-we.only need.to encode the forward reference picture,
which is frame 0, before encodingit. However,-Frame 4 is B-picture, and we need to
encode both its forward and backward. reference, which is frame 0 and frame 8
respectively, before encoding it. With this concept we can generate the encoding order
of this GOP and start the encoding process.

During the encoding of each picture, we need to control the reference picture
reordering process and the marking process to achieve the symmetric tree prediction
structure we want. Figure 3-8 shows the long term picture numbers (LTPN) setting. In
the symmetric tree prediction structure, we restricted the reference picture to the
temporally closest picture at the lower level. Therefore in a certain level, only two
pictures will be used as reference at the same time. We can allocate two LTPN to each
level, and all the pictures in the same level can recycle these two LTPN. For example,
we allocate LTPN 1 and 2 to level 0. We can assign LTPN=1 for frame 0, LTPN=1 for

frame 16 and then reuse LTPN=1 for frame 32 and LTPN=2 for frame 48... When there
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is only one branch in a level, we can only allocate one LTPN to that level. This is
because with one branch in a level, only one of the “two temporally closest reference
picture” is at the specified level, and another is at the lower level, such that it will only
consume one LTPN a certain time. For example, we can assign LTPN=3 for frame 8 and
LTPN=4 for frame 4 and 12.

In Table 3-1, we show the reference picture list after initialization and after
reordering of each picture. Because we are using long-term reference picture, the
initialize process will put the long-term reference picture that has smallest LTPN at
lower index. We then reorder the list such that the temporally closer picture will allocate
at lower index. In this way the closer picture, which is usually the frequently used
picture, can be entropy encoded more efficiently. The reordering process also need
make sure the reference picture thatwiolate the ruled and rule 2 described in section 3.1
will not appear in the reference -picture list of-the .handling frame. We also show the
reference picture marking process and-the-reference picture list after the marking
process of each picture. It reflects the LTPN-assignment that we discussed in the

previous paragraph.
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Figure 3-6 Symmetric tree prediction structure for N16_P1 Bl B3
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Figure 3-8 long term picture numbers setting for GOP structure N16_P1 B1 B3
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Table 3-1

reference picture

list of each picture of GOP structure

N16 P1 Bl B3
Coding | Frame Level | List after | List after | Picture marking | Picture in buffer after
order number initialization reordering process marking process.
(display (Format: frame number
order) (LTPN¥*)

0 0 0 Set FrameO LTPN=0 | 0(0)

1 8 1 LO: 0 L0: 0 Set Frame8 LTPN=3 | 0(0), 8(3)
L1:- L1: -

2 4 2 L0: 0, 8 L0: 0, 8 Set Frame4 LTPN=4 | 0(0), 8(3), 4(4)
L1:8,0 L1:8,0

3 1 3 L0: 0, 8,4 L0: 0, 4,8 None 0(0), 8(3), 4(4)
L1:8,0,4 L1:4,8,0

4 2 3 L0:0, 8,4 L0:0,4,8 None 0(0), 8(3), 4(4)
L1:8,0,4 L1:4,8,0

5 3 3 L0:0, 8,4 L0:0,4,8 None 0(0), 8(3), 4(4)
L1:8,0,4 L1:4,8,0

6 5 3 LO0: 0, 8;4 LO:4,0,8 None 0(0), 8(3), 4(4)
L1:8,0;4 £1:8,4,0

7 6 3 L0: 0, 8,4 L0: 4,0, 8 None 0(0), 8(3), 4(4)
L1:8,0,4 L1:8,4,0

8 7 3 L0: 0, 8, 4 L0: 0, 8 None 0(0), 8(3), 4(4)
L1:8,0,4 L1:8,0

9 16 0 L0: 0, 8,4 LO: Set Frame16 LTPN=1 | 0(0), 16(1),8(3),4(4)
L1:8,0,4 L1:

10 12 3 L0:0,16,8,12 | L0:8,0,12,16 | Set Framel2 LTPN=4 | 0(0), 16(1), 8(3), 12(4)
L1:16,0,8, 12 L1:12,16,8,0 (remove Frame4

automatically)

11 9 3 L0:0,16,8,12 | L0:8,0,12,16 | None 0(0), 8(3), 12(4)
L1:16,0,8, 12 L1:12,16,8,0

12 10 3 L0:0,16,8,12 | L0:8,0,12,16 | None 0(0), 8(3), 12(4)
L1:16,0,8, 12 L1:12,16,8,0

13 11 03 L0:0,16,8,12 | L0:8,0,12,16 | None 0(0),16(1), 8(3), 12(4)
L1: 16,0, 8,12 L1:12,16,8,0
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14 13 L0:0,16,8,12 | L0:12,8,0,16 | None 0(0),16(1), 8(3), 12(4)
L1:16,0,8, 12 | L1:16,12,8,0

15 14 L0:0,16,8,12 | L0:12,8,0,16 | None 0(0),16(1), 8(3), 12(4)
L1:16,0,8, 12 | L1:16,12,8,0

16 15 L0:0,16,8,12 | L0:12,8,0,16 | None 0(0),16(1), 8(3), 12(4)
L1:16,0,8, 12 | L1:16,12,8,0
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3.3 Decoder implementation that
support VCR functionalities

The bitstreams generated by our encoder that described in section 3.2 is compliant
with AVC standard and can be correctly decoded by the AVC standard compliant
decoder. However, a normal AVC decoder, such as the reference decoder provided in [9],
can only decode the bitstream with forward display. To provide the VCR functionalities
such as backward display, fast forward/backward display, and random access, we need
to redesign the decoder.

The basic structure of our AVC decoder that supports VCR functionality is to
provide an efficient decoding method for random access, and then all the VCR
functionality such as fast forward and_ fast-backward can be easily support. From section
2.2, we know that the slice header of each 'slice in the sequences contain all the
reference information. Therefore for efficient random access, we only need to parse the
slice header of the sequences to generate the GOP structure of each GOP, and then we
know the dependency among pictures. A size configurable GOP structure buffer is used
to store the GOP structure, thus we don’t need to parse and decode the slice header if
the related GOP structure is already in the buffer. With the knowledge of the
dependency, we can generate the reference picture for the request picture. A
size-configurable picture buffer is used to store the decoded picture such that we don’t
need to decode the recently decoded picture again and again. The detail of our decoder

is described as the following, and Figure 3-10 shows the decoder flow chart.

1% step: Decoder initialization. Parse the picture order count (POC) related syntax in the
slice header of the entire the bitstream, record the playback time stamp (PTS)

and start byte position (SBP) of the first picture (in display order) in each GOP.
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We show the diagram in Figure 3-9.

2" step: Get the request target PTS from the player. The decoder find out the GOP
which the target PTS belong to. If the target GOP structure has not recorded in
the “GOP structure buffer” (GSB), go to step 3. Else go to step 4.

3" step: Derive the GOP structure. Parse the entire slice headers in this GOP. Derive the
reference pictures list of each picture in this GOP. Store the GOP structure
information in the GSB. If the GSB is full, remove the data of the GOP that is
farthest (in display order) from the current GOP.

4" step: If the target picture can not be found in “picture buffer” (PB), go to step 5. Else
go to step 8.

5" step: Check the required reference pictures of the target picture. If some reference
pictures of the target picture.are not available in the PB, go to step 6. Else go to
Step 7.

6" step: Decode the reference picturesithat requited of the target picture, stored it in the
PB. If the PB is full, the picture on.the PB.is removed with the following order:
1. Remove the picture that is in different GOP. 2. In the current GOP, remove the
picture that has highest level ID and is farthest (in display order) from the target
picture.

7" step: Decode the target picture, stored it in the PB. If the PB is full, the same method
used in step 6 is used to remove the picture in PB.

8" step: Send the target picture memory position to the player. Go to step 2, wait for the

decoding request of the next picture from the player.
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3.4 Cost of VCR Functionalities
for Various GOP Structures

In this section we compare the cost of VCR functionalities for various GOP
structures. In 3.4.1, we discuss the cost of forward and backward playback for normal
GORP structure. In 3.4.2, the same analysis is applied on the proposed symmetric tree
prediction structure with B-picture only. We further discuss the difference of B and P
picture type in the symmetric tree prediction structure. Finally, the cost of fast playback

and random access for various GOP structure are discussed in 3.4.4.

3.4.1 Cost of forward:and backward playback for

normal GOP structure

We firstly discuss the normal GOP structure with M=1, as shown in Figure 3-2.
Assuming it has GOP size N = 16 and use 3 reference frames. In Figure 3-11 we show
the decoding order and decoding delay for forward playback in one GOP. X-axis is
frame numbers and Y-axis is time orders. Each time unit is identical with the duration of
display one frame. We also assume that decode one frame need one time unit. There are
four colors to present 4 different situations: Red color means the specified frame is
under decoding. Cyan color means it is put into the reference frame buffer. Blue color
means it is under displaying. And yellow color means it is used as reference frame for
other frames. In forward display, this GOP structure works well, there is no delay
between decoding and displaying each frame.

Figure 3-12 shows the backward playback with unlimited decoder buffer size. The
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decoder must decode the entire frame in this GOP before it can display the first
requested frame, which is the frame N-1. Such that we can see the delay of backward
playback is equally to the GOP size N. Because there is unlimited buffer size, the
decoder can store every decoded frame during the decoding, and it can display frame
N-2, frame N-3, ... , to frame O with load them from the decoder buffer rather than
decode them again. When the decoder buffer size is limited, the backward playback
delay becomes even worse. Due to there are 3 reference frame, the minimum buffer size
is 3. For inverse playback, the decoder firstly decode the entire GOP to gets the final
pictures of the GOP, which is frame N-1, and then it can display frame N-1 as well as
frame N-2 and frame N-3, because frame N-2 and frame N-3 are also stored in the
frame buffer. Next, the decoder have to decode the bitstream from frame 0 to frame N-4
again to get frame N-4, and display: frame N-4 tg.frame N-6. Consequently, we can
found that overall the backward playback with buffer size = B needs to decode

N+ (N-B) + (N-2B) + ... = (NxN)/(2xB)-frames. With this example we know that
for IPPP GOP structure, if the GOP size_is-large, the decoder cost for backward

playback is very high.
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Figure 3-11 forward playback for IPPP GOP structure
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Figure 3-12 inverse playback for IPPP GOP structure
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We now discuss the decoding delay of normal GOP structure with M=4, as shown in
Figure 3-13. Again assume the GOP size N=16 and there are 3 reference frames.
Similar with M=1, there is no decoding delay for forward playback. In Figure 3-15, we
show the decoding delay of backward playback with unlimited decoder buffer size.
Compare with M=1, the backward decoding delay of M=4 is much smaller. Instead of
decode the entire GOP, it only need to decode the frames that are used as reference,
which is frame 0, M, 2M, ... N. And hence the decoding delay is N/M. If the decoder
buffer size is limited, the inverse playback will also cost more delays. Similar with M=1,
assuming buffer size = B, we can found the overall decoding delay is N/M + (N/M-B) +
(N/M-2B) ... = (N/M)x(N/M)/(2xB).

In normal GOP structure, we can found that larger M can reduce the decoding
delay of backward playback. However, the delay is. still a linear function of the GOP
size N. Therefore with normal -GOP structure, we must use smaller N to prevent
problem in VCR functionality. However,-with-the ‘frequently used intra frame, the

coding efficiency is limited.

Level=0 K @
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v

L Lfff”f’fff”
Level=3 ‘ 3 3

Figure 3-13 IPB GOP structure
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Figure 3-15 reverse playback for IPB GOP structure
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3.4.2 Cost of forward and backward playback for

symmetric tree prediction structure with different

level depth

In this section, we discuss the decoding delay of the proposed symmetric tree
prediction structure. From the previous section, we know that the backward playback
decoding delay of normal GOP is a linear function of GOP size N. To prevent long
delay at decoder side, one can not use large GOP size N and hence limited the coding
efficiency. There is no such problem in symmetric tree prediction structure.

We give 2 examples of our .Symmetric tree.prediction structure, as shown in
Figure 3-16 and Figure 3-17. Figure 3-16 isa N16_B1 -B7 structure; it demonstrates the
symmetric tree prediction structurewith.fewer levels. Figure 3-17 is a
N16 Bl B1 B1 B1 structure; it demonstrates the symmetric tree prediction structure
with largest levels. Note that for convenience, we will use N16_4B1, which means 4
level depths and each level has one branch with B-picture type, instead of
N16 B1 B1 B1 B1 in the following description. For B1_B7 structure, we show the
decoding order and decoding delay for forward and backward playback in Figure 3-18
and Figure 3-19, respectively. For 4B1 structure, we also show the decoding order and
decoding delay for forward and backward playback in Figure 3-20 and Figure 3-21,
respectively.

Due it is symmetric for forward and backward prediction in symmetric tree
prediction structure. So it costs identical delays for forward and backward playback.

The decoding delay computation of the symmetric tree prediction structure is very

similar with the long-term picture number assignment described in section 3.2. Due to
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the prediction rule described in section 3.1, for a certain level, only the temporally
closest two pictures will be used to predict the frame in higher level. Which means we
will increase 2 decoding delay with increasing one level. Further, when there is only
one branch in a certain level, only one of the “two closest frames” is inside that level,
and thus will only increase one decoding delay at that level. With this knowledge, it is
easy to compute the decoding delay of B1 _B7 and 4B1.

Considering the B1_B?7 structure, level 0 will cause two delays. level 1 will cause
1 delay because there is only one branch. Therefore the maximum decoding delay is 3.
Considering the 4B1 structure, level O will also cause 2 delays. Each level of level 1 to
level 3 will cause 1 delay. Therefore the maximum decoding delay is 5. When the GOP
size is larger, the benefit of symmetric tree prediction structure is more significant.
Assuming we always use one branch:of each level, we will have a log,(N)B1 structure,
and the maximum decoding delay is'2+logz(N)-1.. Fer example, with N=64, we can
generate a 6B1 structure with maximunt-decoding delay equal to 7. We can also use
larger branch number in each level to reduce. the total level number, and hence reduce
the decoding delay. Assuming we always use H-1 branches for each level, where H>2.
Then we will have a logy(N)B(H-1) structure with maximum delay equal to 2x logn(N).
For example, with N=64 and 7 branches in each level, we can construct a 2B7 structure
with maximum delay = 4. Comparing with the “backward playback with unlimited
decoder buffer size” of normal GOP structure with N=64, the M=1 structure need 64
decoding delay and M=4 structure need 64/4=16 decoding delay, both are significantly
larger then the symmetric tree prediction structure.

Symmetric tree prediction structure not only benefit with lower decoding delay. It
also prevent the requirement of the “large decoder buffer” when the decoder does not
have enough power to decode the bitstream several times. For backward playback, if the

decoder wants to decode the bitstream only one time, the required decoder buffer size is
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identical with the decoding delays no matter it is normal GOP structure or symmetric
tree prediction structure. This is because “decoding delay” means the decoded frame
number. If we can store all of these decoded frames, then we don’t need to decode them
twice. As we already shows that the symmetric tree prediction structure has much lower
decoding delay, we know that symmetric tree prediction structure can also significantly
reduce the decoder buffer size requirement if the decoder can not or does not want to

decode the bitstream several times.

Level=1

Level=2

Level=0

Level=1

Level=2
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Figure 3-17 the longest depth of symmetric tree structure 4B1 GOP
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Figure 3-18 forward playback decoding diagram of B1_B7 GOP structure
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Figure 3-19 inverse playback decoding diagram of B1_B7 GOP structure

46



Symmetric tiee structure : GOP size = 16, 4B1 structure
play forward

I« decode [ sInrefbuffer [ | :setasref

- . display

10

11

12

13

14

15

16

10

11

12

14

15

16

17

18

19

20

21

Figure 3-20 forward playback decoding diagram of 4B1 GOP structure
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Figure 3-21 inverse playback decoding diagram of 4B1 GOP structure
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3.4.3 The Comparison of P and B picture in

Symmetric Tree Prediction Structure

In previous section, all the pictures except the pictures in level O are set as
B-picture type. In this section, we discuss the influence of changing the picture type
from B to P. In AVC, P-picture means the picture that only have one reference list, and
the reference picture it used can be either forward or backward. On the other side,
B-picture in AVC means there are two reference lists. Similar with P-picture, the
reference picture in these two lists can be either forward or backward. For simplicity, in
this thesis we will only use forward reference in P-picture and in listO of B-picture, and
we will only use backward reference:in list1 of B-picture.

We show the difference of-P/B. picture by using the same GOP size and same
branch number in each level. We take the GOP.structure in Figure 3-17 for sample. We
change the picture type in level 1 of Figure. 3-17-from B to P, as shown in Figure 3-22.

Bi-direction prediction usually provides better coding efficiency than one direction
prediction. However, if we consider the real time encoder, the disadvantage of B-picture
reveals. When backward prediction is used, the encoder needs to encode the future
reference frame before encoding the current frame. In a real-time encoder, all of the
frame between the current frame and the future reference frame must be buffered. The
longer the prediction distance, the larger the encoder buffer is required. For example,
the minimum encoder buffer size of 4B1 GOP structure is 16. This is because, before
we encoder frame 1 in level 4, we need to firstly encode frame 2 in level 3, and it will
take 1 frame buffer. Before encode frame 2 in level 3, we also need to encode frame 4 in
level 2, and it further increase the buffer requirement by 2. Consequently, we also need

to encode frame 8 in level 1 and frame 16 in level 0, and increase the buffer requirement
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by 4 and 8, respectively. If we change the picture type in level 1 to P, that is, the
1P 3B1 structure in Figure 3-22, we can reduce the buffer requirement to 8, because we
do not need to encode frame 16 before encoding frame 8. In the proposed symmetric
tree prediction encoder, lower level has larger prediction distance then higher level, so
the minimum encoder buffer size is depend on the lowest level that has B-picture. We
can not reduce encoder buffer size if we use P-picture at higher level but use B-picture
at lower level. In Table 3-2, we show the encoder buffer requirement for replacing
B-picture to P-picture from lower level to higher level. With this GOP structure that has
one branch at each level, replace the picture type from B to P in a level can reduce the
encoder buffer usage by half. The loss of coding efficiency with changing picture type
from B to P will be limited because the picture number in lower level is comparably
fewer.

Another advantage for P-picture.is it can reduce the random access decoding delay.
For random access, if level 1 is P-picture,-for-the-picture that has display order smaller
than the P picture, it can save one more delay comparing with using B-picture in level 1.
This is because for random access, the frame whose display order is smaller than the
level 1 picture does not depend on frame 16. With this concept, we construct the

decoding delay with different P/B depth in Table 3-2.

Level=1 \

Level=2 \

. é \&
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Figure 3-22 P1_3B1 GOP structure
Table 3-2 maximum encoder buffer size and decoding delay in different P/B

depth

Structure

type
w N16_4B1 NI16_P1_3B1 N16_2P1_2B1 NI16_3P1_1B1 N16_4P1

Hardware cost

Max encoder buffer 16 8 4 2 1
size

Max decoding delay 5 ! 1 1 1
for 1st level

Max decoding delay
for 2nd level

(98]
(98]
S
S
S

Max decoding delay
for 3rd level 4 4 4

(98]
(98]

51



3.4.4 Decoding complexity for fast playback and

random access

The VCR functionalities contain not only step forward / backward playback but
also fast forward / backward playback and random access. In this section, we compare
the number of decoded frame for fast playback between symmetric tree prediction
structure and normal IPPP GOP structure. We also show the random access decoding
delay for these two structures.

We show the relation of speed-up factor and decoded frame number with the 4B1
symmetric tree prediction structure for forward playback in
Table 3-3 and backward playback in:Table 3-4. The.same tables for normal IPPP GOP
structure with unlimited decoder buffer size ‘are-shown-in Table 3-5 and Table 3-6. Due
to its symmetry, the symmetric-tree iprediction. structure has identical forward and
backward property. When the speed-up. factor is 2", the symmetric tree prediction
structure can skip all the useless frames and only decode the requested frames. But in
the normal IPPP GOP structure, due to the high reference dependency, no frame can be
skipped and the decoder must work with high decoding rate. When the decoder buffer
size is limited, the problem for IPPP GOP structure become even worse, just as
discussed in section 3.4.1

In Table 3-7, we show the random access decoding delay of various GOP structure
for each frame. For IPPP GOP structure, the maximal delay is equal to the GOP size,
and the average delay is equal to half of the GOP size. For various symmetric tree
prediction structures, the maximal delay is range frame 3 to 5 and the average delays

are all smaller then 4.
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Table 3-3 Symmetric Tree structure fast forward playback transmission table

Speed factor Request frames | Accessed Number of Decoding rate
frames decoded
frames
X1 0,1...16 0,123... 17 1
X2 0,2,4,6,8 0,2,4,6,8... |9 1
X4 0,4,8,12,16 |0,4,8,12,16 |5 1
X8 0,8 0,8,16 3 1
X16 0,16 0,16 2 1

Table 3-4 Symmetric Tree structure fast inverse playback transmission table

Speed factor Request frames | Accessed Number of Decoding rate
frames decoded
frames
X-1 16, 15, 14.... 051, 2, 37 17 1
X-2 16, 14,12, ... 40, 2;4,6;8+— |9 1
X-4 16,12,8,4,0 |0,4,8,12,16 15 1
X-8 16, 8,0 0, 8,16 3 1
X-16 16, 0 0,16 2 1

Table 3-5 normal GOP

transmission table

structure with

IPPP fast forward play back

Speed factor Request frames | Accessed Number of Decoding rate
frames decoded
frames
X1 0,1...16 0,1...16 17 1
X2 0,2,4,6,8 0,1..16 17 1.9
X4 0,4,8,12,16 |0,1....16 17 3.4
X8 0,8 0,1...16 17 5.66
X16 0,16 0,1...16 17 8.5

Table 3-6 normal IPPP GOP structure with unlimited buffer size fast inverse
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playback transmission table

Speed factor Request frames | Accessed Number of Decoding rate
frames decoded
frames
X-1 16, 15, 14.... 0,1..16 17 1
X-2 16, 14,12, ... 0,1..16 17 1.9
X-4 16,12,8,4,0 |0,1...16 17 3.4
X-8 16, 8,0 0,1..16 17 5.66
X-16 16, 0 0,1..16 17 8.5

Table 3-7: Random access decoding delay of each picture for various GOP

structures

Frame GOP | GOPI | GOP GOP GOP GOP GOP
number | IPPP | BPBP | 4B1 P1 3B1 |2P1 2B1 |3P1_1B1 | B1_BY
0 0 0 0 0 0 0 0

1 1 2 5 4 3 2 3

2 2 1 4 3 2 1 3

3 3 3 5 4 3 3 3

4 4 2 3 2 1 1 3

5 5 4 5 4 4 3 3

6 6 3 4 3 3 2 3

7 7 5 5 4 4 4 3

8 8 4 2 1 1 1 2

9 9 6 5 5 4 4 3
10 10 5 4 4 3 3 3
11 11 7 5 5 4 4 3
12 12 6 3 3 2 2 3
13 13 8 5 5 5 4 3
14 14 7 4 4 4 3 3
15 15 8 S) 5 5 5 3
16 0 0 0 0 0 0 0
Max 15 8 ) S) 5 5 3
average | 7.06 4.17 3.76 3.29 2.82 2.47 2.58
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Chapter 4

Experimental Results

In this chapter, we describe the experimental results of the proposed symmetric
tree prediction structure. We firstly compare the coding efficiency of the proposed
structure with different total level depth under same GOP size. Then we compare the
influence of different P/B depth under same GOP structure. We also show the coding
efficiency difference among different reference picture number in the motion estimation
stage. Finally, a suggested configuration for the symmetric tree prediction structure that
provide sufficient coding efficient:with low encoding and decoding complexity is
proposed and compare with the nermal GOP structures:

In the following sections, if there are-no-further statements, the following test
conditions are used. Four MPEG test sequences with different texture and motion are
tested, including Bus, Foreman, Mobil, and Football in CIF resolution. The encoded
frame rate is 30 frames per second (fps). 257 frames are encoded for Foreman. Mobile,
and Football sequences, and 129 frames are encoded for Bus sequence. The symmetric
tree prediction structure is implemented based on the reference software JM9.6. The
simulation results for normal GOP structure are also from on the same reference
software. All the intra and inter prediction modes are turn on. For inter prediction, three
reference frames are used. Both RD-optimization and Fast ME are turn on. We use
CABAC as the entropy coding method. Six QP value range from 20 to 40 with step 4
are used to show the RD-curves of the simulations. In each simulation, constant QP is
used for all picture type and all MBs in a picture. For symmetric tree prediction

structure, the GOP size is 64. The pictures in each GOP have different structures to
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demonstrate the influence of each parameter in the proposed structures. For normal

GOP structure, GOP size equal to 16, 32, and 64 are used.
4.1 Coding efficiency comparison
for different level depths

We compare the symmetric tree prediction structure with three different level
depths in this section. We have discussed in section 3.4 that fewer level depths lead to
lower maximum decoding delay. More level depths provide shorter prediction distance
between the reference picture and the handling picture, and should lead to better coding
efficiency. The following three cases are used to demonstrate these issues.

» N64_2B7 (2 level depths with'all' B-picture, max decoding delay is 4)

» N64_3B3 (3 level depths with all B-picture, max decoding delay is 6)

» N64_6B1 (6 level depths with all-B-picture, max decoding delay is 7)

From the simulation results, we find that more level depth really has better coding
efficiency. The coding efficiency difference between 2 levels and 3 levels is about
0.7~0.8 db, and the coding efficiency difference between 3 levels to 6 levels is about 0.3
~ 0.7 db.

This experiment shows that if the branch number is larger, the decoding delay is
smaller but it brings worse coding efficiency. On the other hand, if all the branch

number is 1, the decoding delay will be longer but it supplies better coding efficiency.
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level depths

57



Mobile

—e—N64_2B7
—=—N64_4B3

N64_6B1

0 38 76 11 15 19 23 26 30 34 38 42 46 49
4 8 52 36 20 04 88 72 56 40 24 08 92

bitrate

SnrY

Figure 4-3 RD-curves of Mobile sequences for tree structure with various

Football

SnrY

——N64_2B7
—=—N64_4B3
N64_6B1

0 384 768 115 153 192 230 268 307 345 384

2 6 0 4 8 2 6
bitrate

0
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4.2 Coding efficiency comparison
for different P/B level depths

We know that the B picture have better coding efficiency than single prediction.
From 3.4.3, we understand that P picture can reduce both encoder buffer size and
random access decoding delay. In this section, we compare the RD curve to give the
concept about how much difference among different P/B combinations. The following
cases are compared:

> N64_6B1

> N64_1P1 5B1

> N64_2P1 4B1
> N64_3P1 3B1
> N64_4P1 2B1

> N64_5P1 1B1

> N64_6P1

From the simulation results, the difference between N64_6B1 to N64_3P1 3Bl is
smaller then 0.1 dB for most of the cases, and the difference between N64 6B1 to
N64_4P1 2B1 is smaller then 0.3 dB for most of the cases. The difference becomes
larger when more high level adopts P-picture type. This is because higher level contains
more pictures, such that changing picture type to P lead to more overall coding
efficiency degradations.

From the result, we recommend to use B picture at the last 2 or 3 levels, because it
has similar coding efficiency compare with using B pictures at all levels but only need 4

or 8 encoder frame buffer, respectively.
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Figure 4-5 RD curve of s sequence with different P/B in each level
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Figure 4-6 RD curve of Foreman sequence with different P/B in each level
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Figure 4-8 RD curve of Football sequence with different P/B in each level
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4.3 Coding efficiency comparison
for different reference picture
number

In this section we show the efficiency of multiple references in the symmetric tree
prediction structure. Five cases are compared:

» N64 _6B1_refl (1 forward and 1 backward reference)

» N64_6B1_full (all references)

» N64_6P1 refl (1 forward reference)

» N64 _6P1 ref2 (2 forward references)

» N64_6P1 full (all references).

All the cases have six levels with one branch at each level. The first two cases use
all B-pictures. The “6B1_refl” case use one forward.and one backward reference frame.
The “6B1_full” case uses the entire reference-frame in the buffer. The last three cases
use all P-pictures. The “6P1 refl” and.“6P1 ref2” cases use one and two forward
reference frame, respectively. The “6P1_full” case uses the entire reference frame in the
buffer.

From the simulation results, we found that for all B-pictures, in the more static
sequences such as Foreman and Mobile, “6B1_refl” has around 0.2 dB loss compare
with “6B1_full”. And there is no difference for the non-static sequences such as Bus
and Football. For all P-pictures, “6P1_ref2” is almost identical with “6P1_full” for all
sequences. In the more static sequences such as Foreman and Mobile, “6P1_refl” has
around 0.2 dB loss compare with “6P1_full”. And there is no difference for the
non-static sequences such as Bus and Football.

The results show the improvement from more reference is rare in symmetric tree

prediction structure. This might because in the proposed structure, the reference frame
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at higher index has much longer prediction distance compare with the reference frame
at lower index, therefore limited their prediction efficiency. From these analyses, in the
proposed structure, we suggest to use 1 forward and 1 backward reference for

B-pictures, and 1 or 2 forward reference for P-pictures.
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Figure 4-9 the RD curve of Bus with different numbers of references
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Figure 4-10 the RD curve of Foreman with different numbers of references
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Figure 4-11 the RD curve of Mobile with different numbers of references
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4.4 Coding efficiency comparison
with normal GOP structure

In this part, we compare the coding efficiency between normal structure and our
symmetric tree prediction structure. From 4.2, we know that using B picture only at the
last 3 levels has good coding efficiency and small encoder buffer size in symmetric tree
structure. So we use this structure to compare with normal GOP structure with M=2,

Normal GOP structure:

> N64_M2
> N32_M2
> N16_M2

Symmetric tree prediction structure:
> N64_3P1 3B1

For normal GOP structure, the maximum decoding delay is a linear function of the GOP
size, therefore usually normal GOP size will not choose large GOP size to prevent
problem in achieving VCR functionality at decoder. Table 4-1 shows the maximum
decoding delay for normal GOP structure and symmetric tree prediction structure. We
can found that even with largest GOP size, symmetric tree prediction structure still
provide shortest maximum decoding delay.

Table 4-1 max and average delay comparison with normal structure and

symmetric tree structure

Structures | N64 M2 N32_M2 N16_M2 N64_3P1 3B1
Delay
Max 32 16 8 7
average 16.23077 8.212121 4.176471 3.892308
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From the simulation results, we first compare the coding efficiency between the
normal GOP with N=16 with the symmetric tree prediction structure, which has similar
maximum decoding delay as shown in Table 4-1. For the static sequence, symmetric
tree prediction structure provides at most 1.2dB gain in Mobile sequence, and at most
0.3dB gain in Foreman sequences. In the fast motion sequences, it has around 0.1 dB
losses for Bus sequence, and around 0.3dB to 0 dB losses from low bitrate to high
bitrate for Football sequence.

We then compare the coding efficiency between the normal GOP with N=64 with
the symmetric tree prediction structure, which has more than 4 times different
maximum decoding delay as shown in Table 4-1. For the static sequence, symmetric
tree prediction structure has very close performance compare with normal GOP
structure in Mobile sequence, and has at most 0.3dB loss in Foreman sequences. In the
fast motion sequences, it has around.0.4 dB losses for Bus sequence, and around 0.3dB
to 0.1 dB losses from low bitrate to high bitrate-for Football sequence.

From the above analysis, we know:that comparing with normal GOP structure,
symmetric tree prediction structure provide up to 1.2dB gain and at most 0.3dB loss
when there are similar maximum decoding delay. And it has at most 0.4dB loss when it

has less then one-fourth maximum decoding delay.

67



SnrY

bitrate

Bus

—— N64M2

—&—N32M2
N16M2

¢ N64_3P1_3B1

0 384 768 1152 1536 1920 2304 2688 3072 3456

Figure 4-13 RD curve of Bus sequenc

rmal and symmetric tree structure

SnrY

0 384 768 1152

bitrate

1536 1920

—— N64M?2

—=—N32M2
N16M2

— N64_3P1_3Bl

Figure 4-14 RD curve of Foreman sequence with normal and symmetric tree structure
comparison
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Figure 4-15 RD curve of Mobile se ormal and symmetric tree structure
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Figure 4-16 RD curve of Football sequence with normal and symmetric tree structure
comparison
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Chapter 5

Conclusion

This thesis proposes a symmetric tree prediction structure that can generate an
AVC compliant bitstream with low complexity VCR functionality supported at decoder.
Comparing with the normal GOP structure, it reduces the maximum random access
decoding delay in a GOP with size N from linear functionality of N to logarithmic
function of N. The prediction structure is symmetric between forward and backward
prediction, which makes the backward playback has the same low complexity with
forward playback. It separate the pictures into several levels and make the picture can
only reference the picture at lower level, which make the fast playback can skip the
higher level pictures therefore no redundant-pictures will be decoded. We also propose a
decoder that can fully support the VCR functionality with low decoding complexity.

The symmetric tree prediction structure can be configured to trade-off among
lower decoding delay, fewer encoder buffer size, and better coding efficiency. We have
discus this trade-off and a suggested configuration is proposed that provide good coding
efficiency with reasonable complexity. From the simulation results, the symmetric tree
prediction structure with suggested configuration can provide -0.3dB to +1.2dB coding
efficiency difference comparing with the normal GOP structure with similar maximum
decoding delay.

Based on the proposed structure, many issues can be further investigated. Different
bit allocation method can be used to make the frame at lower level has better quality,
and hence improve the overall coding efficiency. Different motion estimation search

range can be use for the reference picture at different distance. Different prediction
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structure variation can be investigated to reduce the decoding delay and improve the

coding efficiency.
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