
國 立 交 通 大 學 
 

電子工程學系電子研究所碩士班 

 

碩 士 論 文 
 
 

利用對稱式樹狀預測架構在 AVC 中有效實現視訊

正轉、倒轉、快轉及隨機擷取 

Efficient VCR Functionality Implementation in 

AVC with Symmetric Tree Prediction Structure 

 

指導教授：蔣迪豪 博士 

研 究 生：楊思浩 

 

中 華 民 國 九 十 四 年  七 月 



 ii

利用對稱式樹狀預測架構在 AVC 中有效實現視訊正轉、倒轉、

快轉及隨機擷取 

 Efficient VCR Functionality Implementation in AVC with 

Symmetric Tree Prediction Structure 

 

研 究 生: 楊思浩 S t u d e n t: S.H. Yang 

指導教授: 蔣迪豪 A d v i so r: Tihao Chiang 

 

國 立 交 通 大 學 

電子工程學系電子研究所碩士班 

碩 士 論 文 

A Thesis 
Submitted to Department of Electronics Engineering & Institute of Electronics 

College of Electrical Engineering and Computer Science 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of  

Master 
in 

Electronics Engineering 
 

July 2005 
 

HsinChu, Taiwan, Republic of China 
 

中華民國九十四年七月



利用對稱式樹狀預測架構在 AVC 中有效實現視訊正轉、倒

轉、快轉及隨機擷取 

研究生: 楊思浩 指導教授: 蔣迪豪 博士

國立交通大學 

電子工程學系 電子研究所碩士班 

摘要 

我們提出了一種新的時間軸預測架構，將一串影像對稱式的拆解為

數個階層。這種架構提供了所有的 VCR 功能如:隨機存取，快速正/倒

轉。我們將這種階層式的架構命名為對稱式樹狀預測架構。我們利用

AVC 提供的影像參照處理機制來設定並壓縮出符合 AVC 標準的對稱式

樹狀預測架構二位元資料串流。對稱式樹狀預測架構在解壓縮端提供

了極有效率的快速 正/倒 轉，在快轉時，不需播放的影片可以略過不

解壓縮。對稱式樹狀預測架構只須壓縮一次，就可以單一的二位元資

料串流在解壓縮端提供所有的 VCR 功能。 我們提供了相當有彈性的參

數設定，使我們可以任意變更其樹狀架構，使其有較好的壓縮效能或

是提供較低複雜度的壓縮。最後的實驗結果顯示，對稱式樹狀預測架

構其壓縮效能和一般壓縮方式相當接近，雖花了稍高的複雜度，但在

解壓縮端可以提供極低複雜度的 VCR 實現。 
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Abstract 

We present a novel technique, hierarchical temporal domain decimated 

prediction structure, to provide a video bitstream with full VCR functionality – 

random access, fast forward, and fast backward. This hierarchical temporal domain 

decimated prediction structure, which we named as symmetric tree prediction 

structure, utilized the flexible reference picture management scheme that provided 

in AVC standard to generate an AVC compliant bitstream. It uses a tree-like 

prediction structure to provide efficient fast forward/fast backward playback 

functionality. No redundant picture will be decoded during fast playback. Only 

one-pass encoding and a single bitstream can provide both the forward and 

backward playback functionality. It also provides flexible parameters to make the 

prediction structure can be tuned with better coding efficiency or lower complexity. 

We also propose a decoder that can fully support the VCR functionality with low 

complexity. The simulation results show the symmetric tree prediction structure 

can provide full VCR functionality with similar coding efficiency and slightly 

higher coding complexity. 
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Chapter 1  

Introduction 

1.1 Motivation  
In the age of video tape, the video is record in the video tape without compression. 

All the VCR functionalities including step forward, step backward, fast forward, fast 

backward and random access can be easily supported. However, it is not the case for 

digital video. To reduce the storage space or transmission bandwidth, digital video is 

usually compressed before store or transmission. Temporal prediction is an essential 

tool for digital video compression. In the encoding process, previous reconstructed 

frame is used to predict the current frame; only the prediction error will be store. The 

current reconstructed frame is also used to predict the following frame. This prediction 

strategy removes the temporal redundancy among frames, but also causes temporal 

dependency. To reconstruct the current frame, the decoder must decode the previous 

frame to generate correct prediction image. And to decode the previous frame the 

decoder need to decode the frame before the previous frame – the current frame is 

depend on the entire previous frames. Temporal dependency won’t cause any 

disadvantage in a forward- only playback scenario. However, forward-only playback is 

not sufficient for real-word applications. The user may randomly jump to other sections 

in the video, fast forward playback to skip some video, or rewind the video. All of this 

functionality is hard to implement under the traditional temporal prediction scheme.  

To address the random access issue, the traditional approaches periodically insert 

the intra-prediction-only picture to break the temporal dependency with other images. 
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However, without removing the temporal dependency, the I-picture usually needs much 

more bit to provide similar video quality compare with the pictures has utilized 

temporal predictions. To provide the fast forward functionality, the decoder can simply 

skip the B-picture in the bitstream. For example, with the GOP structure 

like …PBBBP…, the decoder can skip one B-picture for 2x forward playback speed, or 

skip all B-picture for 4x forward playback speed. However, if there is no B-picture in 

the bitstream, or more forward speed factor is needed, the decoder needs to decode 

some “redundant” P-pictures that are never displayed. This may waste the decoding 

power, or also limit the speed up factor of the decoder. To provide the (fast) backward 

functionality, generally there are two approaches. The first approach is, the decoder can 

buffer the entire already decoded picture in a GOP, and display the target image when 

they request. The second approach is, the decoder decode the bitstream several times. 

Each times it starts from the I-picture of this GOP to the target picture. Assuming there 

are N-picture in a GOP, the first approach need at most N-picture buffer to store all the 

decoded image, and the second approach need at most NxN/2 times decoding power, 

both are significantly need to be improved. 

H.264/AVC, the latest international video-coding standard, provides a 

significantly improved video coding efficiency compared with the previous 

international standard, such as MPEG-2 and MPEG-4. It uses the variable block size 

motion estimation, context-based entropy coding, rate-distortion optimized, in-loop 

deblocking filter, and some other technique to improve the coding efficiency. It also 

provide a flexible reference picture management and utilization scheme to support 

temporal prediction. It uses multiple reference picture motion compensation, decouples 

the reference order from the display order, and also decouples the picture representation 

from the picture referencing capability [7]. In this thesis, we utilize this flexible 

temporal prediction structure to construct a “symmetric tree prediction structure”, which 
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can provide an AVC compliant video bitstream that fully support the VCR 

functionalities. 

1.2 Application Scenario 

Figure 1-1 shows the application scenario that utilized the proposed symmetric 

tree prediction structure to serve video playback with VCR functionalities. The encoder 

encodes the video sequences with the selected symmetric tree prediction structure that 

suitable for the application. The bitstream is stored in the bitstream container, which 

could be a CD, a file in the PC, or the video server in Internet. The user or client will 

access the bitstream through our proposed decoder that supports VCR functionalities. 

Various request, including forward playback, backward playback, fast playback, and 

also random access, will be send to the proposed decoder, the decoder decode the 

requested frame and send it to the user or client.  

 

 

Figure 1-1 utilized the proposed symmetric tree prediction structure to serve 
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video playback with VCR functionalities. 

 

1.3 Organization  
The details of the proposed symmetric tree prediction structure encoder and the 

proposed VCR-functionality-supported decoder will be described in the following 

chapters. The organization and abstract of each chapter are described as follows: 

In Chapter 2, some previous works that address VCR functionality for video 

compression will be introduced first. An overview of Advanced Video Coding (AVC) 

will be given then. Some highlight features in AVC are briefly described. The reference 

picture management and utilization method in AVC, which is strongly related with the 

proposed structure, will be described in detail. 

In Chapter 3, we firstly describe the basic concept of the proposed symmetric tree 

prediction structure. Then the implementation detail in AVC of the proposed structure is 

described. Further, we describe the concept of the proposed decoder that support VCR 

functionality. The decoder flow is described step by step. Finally, we discuss the cost of 

VCR functionality for normal GOP structure as well as the proposed structure. The 

trade-off among various symmetric tree prediction structures are discussed in detail. 

In Chapter 4 we show the experimental results. The coding efficiency of various 

symmetric tree prediction structures is compared. We also compare the coding 

efficiency between the proposed structure and the normal GOP structures. 

The conclusions are given in Chapter 5. We highlight the properties of the proposed 

prediction structure and the decoder that support VCR functionality.  



 5

Chapter 2  

Background 

2.1 Previous Work 
The normal video encoding uses sequential temporal prediction so the reference 

dependency is the same as the picture coding order of the GOP. If the GOP size is large, 

the dependencies of later frames cause serious problem for achieving VCR 

functionality. 

In previous works, there are some techniques to implement VCR functionalities. 

In [1], macroblock-based scheme is proposed to use the reverse play operation. It 

divides all the macroblocks to forward macroblocks (FMB) and backward macroblocks 

(BMB). They define MBn(k,l) which means that the macroblock is the nth frame and at 

kth row and lth column. MBn-1(k,l) is defined as BMB if MBn (k,l) has the same spatial 

position, for example, MBn (k,l) is coded without motion compensation. Otherwise, it is 

defined as FMB. In backward display, FMB is reconstructed by the formula: 

MBn (k,l) = MC MBn-1 (mvn(k,l))+en(k,l) 

MC MBn-1 is the motion compensated macroblock of MBn (k,l). 

en is the prediction error. 

BMB is reconstructed by the formula: (due to MC MBn-1 (mvn(k,l)) = 0) 

MBn (k,l) = MBn-1 (k,l)+en(k,l) 

 MBn-1 (k,l) = MBn (k,l) - en(k,l). 

In the algorithm, if we want to play frame n-1 after play frame n, BMB can be 

display with parsing en(k,l), but FMB is in the different situation. All related 
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macroblocks in frame n-2 which are the motion compensated macroblocks of FMB in 

frame n-1 needs to be sent. The BMB is the saving part in the algorithm. But the 

percentage of BMB is different by sequence and it just use for step reverse playback. If 

we want fast forward / reverse playback, the percentage of BMB will be little. The 

improvement for full VCR functionalities is limited. 

In [2], another previous work uses video transcoding for fast forward / backward 

video playback. It must define different GOP structure for different speed display. If the 

required frame is the first frame of the GOP, it is set as intra frame. Otherwise it is set as 

inter frame. For example, the original sequence is 0th to 17th frame with 0th and 9th are 

intra frames and others are inter frames. If we use 4 times speed up, we play 0, 4, 8, 12, 

16 in forward display. The 0th is also intra frame, 4th, 8th can use sum of motion vector to 

do motion compensation from 0th to 4th and 8th. But the 12th frame can not just parse all 

motion vectors to do motion compensation. It should needs 9th intra frame then we can 

use motion compensation from 9th to 11th to get 12th. Therefore the algorithm defines 

12th frame as intra frame for 4 times speed up. Here they define a formula for define 

intra frames: 

If (K mod L) < r (L is GOP size and r is display speed.) 

 We set the Kth frame as intra frame.  

They re-estimate the motion vector of inter frame with 4 methods for 4 situations 

such as in place, area weighted average, maximum overlap and median. With 4 methods 

combine the motion vectors as new motion vector but the combination makes error 

accumulation. If the speed up rate is high, the error becomes large so they make a 

threshold to switch intra coding and re-estimation inter coding but the degradation of 

PSNR is still very serious. 

In [3], other previous work uses dual bitstreams structure to each sequence. One is 

encoded by forward playback sequence and another is encoded with reverse playback 
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sequence. For example, we encode a sequence with 9 frames which shows in Table 2-1. 

With 2 bitstream, the client requests a frame to server. The server finds the shortest way 

to get the frame. For example, if the client want to get 6th frame, the server pare the 

forward bitstream because it just need to parse 1 frame then the client can get the target 

frame. If we want get 5th, first we parse the 6th I frame of the forward bitstream and 

parse the 5th motion vector and residue of the reverse bitstream and then we can get the 

5th frame.  

This algorithm must contain 2 bitstreams and sometimes it needs to switch 

different bitstream to go minimum path to get target frame so it may not match 

perfectly. 

No 0 1 2 3 4 5 6 7 8 9 

Forward I P P P P P I P P P 

Reverse P P P I P P P P P I 

Table 2-1 dual bitstream structure 

For VCR functionalities implementation with lower complexity and lower buffer 

cost, [4] reconstructs a new GOP structure. It decomposes sequential structure to 

hierarchical structure that can strongly reduce reference dependency. First, they present 

a binary tree structure which shows in Figure 2-1. Figure 2-1 uses a binary tree structure 

with N = 15, the level value is the same as reference dependency. From the Figure 2-1, 

the maximum dependency is 3, which is much smaller than the normal IPPP structure. 

The maximum dependency is reduced from N to log2 (N) 

With the dependency reduction, random access functionality is easy to implement. 

From Figure 2-1, we can also found that there is no redundant frame decoding with 2n 

speed up (forward / inverse) playback because we can just skip large level frames. But 

this structure can not supply non 2n speed up playback.  

In order to reduce the redundant frame for non 2n speed up, it proposes another 
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GOP structure shows in Figure 2-2. It sets the center frame to be the first encoded frame. 

The frame of level = n connect to the edges of level = n-1 and each level has the same 

frame number. Comparing Figure 2-1 and Figure 2-2, if we want triple speed up 

playback that display frame 1, 4, 7, 10, and 14, which is green color in figure, the 

redundant decoded frame of binary tree are 5 frames, including 3, 5, 9, 11, and 13. But 

for the Figure 2-2 structure only has 2 redundant frames, which is frame 3 and 11.  

Figure 2-1 and Figure 2-2 structures supplies much faster random access and fast 

playback with fewer redundant frames. But in this paper, it has not implemented the 

structure so we do not know the coding efficiency. Further, in this paper only one 

direction prediction is considered, bi-direction prediction is not discussed in this paper. 
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Figure 2-1 binary tree structure with N = 15 [4] 
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Figure 2-2 proposed GOP structure of previous work [4] 
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2.2 Advanced Video Coding 
Advance Video Coding (AVC), unlike the previous video coding standard such as 

MPEG-2, provide a flexible reference picture management and utilization scheme. We 

utilize this scheme to achieve our tree-like prediction structure. In section 2.2.1 we 

provide an overview of AVC. In Section 2.2.2, we describe the concept and syntax of 

the reference picture management and utilization scheme in AVC. 

2.2.1 Overview 

AVC is the newest video coding standard developed by the Joint Video Team 

(JVT) of ISO/MPEG and ITU. It provides better coding efficiency compare with 

MPEG-4 and H.263. The detail syntax and decoding method are described in [7]. In the 

following, we firstly briefly described the AVC encoding process, and then briefly 

describe some highlighted features in AVC that enables enhanced coding efficiency. 

In AVC encoding process, a video sequence is separate into several pictures, and 

each picture will be processed macroblock by macroblock.  

Figure 2-2 is the AVC encoder block diagram. In inter prediction mode, it use 

block-based motion estimation and motion compensation to generate the prediction 

image. In intra prediction mode, is use the previous coded macroblocks at the same 

picture to generate the prediction image. The best prediction mode is selected by the 

mode decision scheme. The prediction value of the best prediction mode is subtracted 

from the original image to form the prediction residue (Dn). DCT and quantization are 

then applied on the residue. The results are further entropy coded to generate the 

bitstream. The reconstructed pictures are then generated in reverse direction of encoding, 

and are stored in the reference picture buffer. It will be used for the inter prediction of 

the following pictures. 
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Figure 2-3 AVC encoder [7] 

Compare with the previous video coding standard, such as MPEG-2, the AVC has 

the following new features that can improve the coding efficiency: [8].  

 Variable block size motion compensation with small block size: AVC support 

seven different block size, range from 4x4 to 16x16. 

 Quarter sample accurate motion compensation: the prior standards just enable 

half sample motion vector accuracy. 

 Motion vectors over picture boundaries: the picture boundary extrapolation 

technique is first used in H.263 and is included in AVC. 

 Weighted prediction: this can dramatically improve coding efficiency for light 

change in the same scenes. 

 Small block size transform: in prior standards use transform block size of 8x8, 

but AVC use block size of 4x4 transform that allows encoder to represent 

signal more locally-adaptive. 

 Exact-match inverse transform: in previous standard, the DCT transform and 

inverse DCT transform are not perfect reconstruction. In AVC, the transform 
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and inverse transform are perfect reconstruction. 

 Arithmetic entropy coding: a powerful arithmetic coding method known as 

CABAC is adopted in AVC. We can choose CAVLC and CABAC for entropy 

coding. 

 Context-adaptive entropy coding: The two entropy coding method adopted in 

AVC, CAVLC and CABAC, are both use context-based adaptive to improve 

performance. 

Except the above features, AVC also provides a flexible reference picture 

management and utilization scheme, which is strongly related with our work. The 

detailed descriptions are given in the following section.  

 

2.2.2 Reference picture management process 

The reference picture management scheme in AVC can be generally classified as 
following [8]: 

 Multiple reference picture motion compensation: there is only 1 reference 

picture in forward prediction and 2 reference pictures in bi-direction 

prediction in prior standards. In AVC, we can use 16 reference pictures at 

most. 

 Decoupling of referencing order from display order: in prior standards, the 

encoding order has strict limitation. In AVC, it removes the restriction that the 

encoder can choose the order of pictures with high degree of flexibility. 

 Decoupling of picture representation methods from picture referencing 

capability: in prior standards, bi-direction picture can not be used as reference 

for prediction, but AVC remove the restriction that bi-direction picture can be 

used as reference. 

To support these features, the AVC uses the following methods for the reference picture 
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management [7]. All of their related syntax is stored in the slice header of each slice, so 

the decoder can find out the temporal dependency of each picture by only decode the 

slice header rather than the whole picture. 

 

2.2.2.1 Reference picture list initialization process 

 Previous video codec such as MPEG4 contains only one forward reference picture 

for P-picture, or one forward and one backward reference picture for B-pictures, so it is 

unnecessary to control the reference picture order. In AVC, the reference picture number 

can be up to 16. AVC uses the “reference picture list” to list the reference pictures that 

can be used by the handling pictures. Each index of the reference picture list mapped to 

a reference picture inside the decoded picture buffer (DPB). During the motion 

estimation (ME) and motion compensation (MC) stage of an inter-predicted block, the 

block simply indicate the index of the reference picture list to point out which reference 

picture it is used. With this structure, the AVC standard must provide a mechanism to 

“order” the reference pictures in the reference picture list, that is, which reference 

picture is put at which index inside the reference picture list. The “reference picture list 

initialization process” provides the default ordering method in AVC. 

In AVC, the reference pictures are divided into two types, one is short term 

reference pictures and another is long term reference pictures, each of which has 

different management method. To each short-term reference picture a variable PicNum 

is assigned, and to each long-term reference picture a variable LongTermPicNum is 

assigned. During the memory management process in AVC, one can identify a 

short-term or a long-term reference picture with PicNum or LongTermPicNum, 

respectively. For short term reference frame, PicNum is generally set with a value that 

related to the display order of that frame. For long-term reference frame, 

LongTermPicNum is set with the “memory management control operation” (MMCO) in 
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AVC, we will describe its detail in section 2.2.2.3.  

In the following, we describe the reference picture list initialization process for P 

slice and B slice. 

 

P slices reference list initialization 

For P slice, the reference picture list RefPicList0 is ordered such that the 

short-term reference frames has lower indices than long-term reference frames. For 

short-term reference frames, they are ordered starting with the one that has the largest 

PicNum to the one that has the smallest PicNum. For long-term reference frames, they 

are ordered starting with the one that has the smallest LongTermPicNum to the one that 

has the largest LongTermPicNum. 

We give an example for P slices list initialization: 

Assuming we have 5 reference frames that contain 3 short term reference frames 

with PicNum = 303, 302, 300 and 2 long term reference frames with LongTermPicNum 

= 0 and 3. After the initialization, 

RefPicList0 [0] is the short term reference picture with Picnum = 303 

RefPicList0 [1] is the short term reference picture with Picnum = 302 

RefPicList0 [2] is the short term reference picture with Picnum = 300 

RefPicList0 [3] is the long term reference picture with LongTermPicnum = 0 

RefPicList0 [4] is the long term reference picture with LongTermPicnum = 3 

 

B slices reference list initialization 

For B slice, the reference picture is also ordered such that the short-term reference 

frames has lower indices than long-term reference frames. For the short term reference 

frames, we further divided them into two parts. The first part contains all references 

whose PicNum are smaller than current PicNum and the second part contains all 
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references whose PicNum are larger than current PicNum. The first part short-term 

reference frames are ordered starting with the one that has the largest PicNum to the one 

that has the smallest PicNum. The Second part short-term reference frames are ordered 

starting with the one that has the smallest PicNum to the one that has the largest 

PicNum.  

For reference picture list RefPicList0, it is started with the entire ordered 

short-term reference frame in the first part short-term reference, followed by the entire 

ordered short-term reference frame in the second part, finally is the long-term reference 

frames with the same order used in P slice. For reference picture list RefPicList1, it is 

started with the entire ordered short-term reference frame in the second part short-term 

reference, followed by the entire ordered short-term reference frame in the first part, 

finally is again the long-term reference frames with the same order used in P slice. Also 

note that after this ordering, if the RefPicList1 is identical with RefPicList0, the first 

two entries of RefPicList1 are switched. 

We also give an example to B slice: 

Assuming we have 6 reference frames that contain 4 short term reference frames 

with Picnum = 303, 302, 300, 299 and 2 long term reference frames with 

LongTermpicnum = 0 and 3. The current reference frame is 301. After the initialization, 

RefPicList0 [0] is the short term reference picture with Picnum = 300 

RefPicList0 [1] is the short term reference picture with Picnum = 299 

RefPicList0 [2] is the short term reference picture with Picnum = 302 

RefPicList0 [3] is the short term reference picture with Picnum = 303 

RefPicList0 [4] is the long term reference picture with LongTermPicnum = 0 

RefPicList0 [5] is the long term reference picture with LongTermPicnum = 3 

RefPicList1 [0] is the short term reference picture with Picnum = 302 

RefPicList1 [1] is the short term reference picture with Picnum = 303 
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RefPicList1 [2] is the short term reference picture with Picnum = 300 

RefPicList1 [3] is the short term reference picture with Picnum = 299 

RefPicList1 [4] is the long term reference picture with LongTermPicnum = 0 

RefPicList1 [5] is the long term reference picture with LongTermPicnum = 3 

2.2.2.2 Reference picture list reordering process 

In 2.2.2.1 we introduce the initialization of the reference list. The initialization 

process order the short term reference pictures such that the temporally closer reference 

frame is in lower index of the reference list. This is because temporally closer reference 

frames usually provided better prediction image and will be encoded many times for 

each inter prediction block. In the AVC entropy coding method such as CABAC, lower 

reference picture index can be coded with fewer bits, so put temporally closer frame at 

lower index can provide better coding efficiency. On another side, the initialization 

process order the long term reference frames from smallest LongTermPicNum to largest 

LongTermPicNum, which can not reflect to the frequency of there utilization. Further, 

sometimes the temporally closer reference frame is not the best reference frame and we 

will want to reorder the reference picture list. Another reason that we need to reorder 

the reference picture list is, for some prediction structure, such as the proposed 

tree-prediction structure, we may need to move some reference pictures outside the 

scope of the temporal prediction process of the handling picture to reduce the temporal 

dependency. To address these issues, AVC provides the reference picture list reordering 

process to make the user can fully control the order of the reference picture list. 

In reference buffer list section, AVC has 2 reference buffer lists. If we just use 

forward prediction, the RefPicList0 is used. If we use forward and backward prediction 

at the same time, RefPicList1 and RefPicList0 buffers are both used. We use 

ref_pic_list_reordering_1X syntax element to present which buffer we are control. If 

ref_pic_list_reordering_flag_10 = 1, we make refPicList0 buffer reordering and if 
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ref_pic_list_reordering_flag_11 = 1, we make refPicList1 buffer reordering. 

The second syntax element: reordering_of_pic_nums_idc. If 

reordering_of_pic_nums_idc = 0 or 1, our reordering process of reference buffer lists 

are for short term reference frame. If reordering_of_pic_nums_idc = 2, our reordering 

process of reference buffer lists are for long term reference frames. If 

reordering_of_pic_nums_idc = 3, the reference reordering function ends. 

If reordering_of_pic_nums_idc = 0, we parse abs_diff_pic_num_minus1[i] = k 

that we move the reference of pic_num = ( current pic_num - 

abs_diff_pic_num_minus1[i]) to the kth order of reference list. 

If reordering_of_pic_nums_idc = 1, we parse abs_diff_pic_num_minus1[i] = k 

that we move the reference of pic_num = ( current pic_num + 

abs_diff_pic_num_minus1[i]) to the kth order of reference list. 

If reordering_of_pic_nums_idc = 3, we parse long_term_pic_num[i] = k that we 

move long_term_pic_num[i] to the kth order of reference list.  

We make a long term reference reorder example in here. We have reference 0, 1, 2 

with long term number = 0, 1, 2. The original reference list order is 0, 1, and 2. We want 

to reorder the reference list in inverse order. In this case, we want move long term 

number = 2 to 1st order and 0 to the end. So 1st we set long_term_pic_num[2] = 0 that 

the reference list order become 2, 0, 1. Then we set long_term_pic_num[1] = 1 that the 

reference list order become 2, 1, 0. 

 

2.2.2.3 Reference picture list marking process 

In the previous video coding standard such as MPEG-2, the reference frame is 

only the temporally closest one. In AVC, it simply set the limitation of the reference 

picture number. Which reference picture are going to be stored to or remove from the 

reference picture buffer can be fully controlled by the encoder, as long as it has not 
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exceed the reference picture number limitation. In AVC, the “reference picture list 

marking process” is the tool to handle these matters. There are two method of marking 

process, one is “sliding window” and the other is “adaptive memory control” 

The basic memory management method of AVC is sliding window marking 

process. It will be invoked if we have not use the adaptive memory control marking 

process. When the handling picture is set as a reference picture, sliding window 

marking process will put this picture into the reference picture buffer. If the reference 

picture buffer is full, it remove the oldest reference frame in encoding order from the 

reference picture buffer.  

Different with the sliding window marking process, adaptive memory control 

marking process make the encoder can fully control which picture will be store to or 

remove from the reference picture buffer through the “memory management control 

operation” (MMCO) command. As our tree prediction structure needs to utilize the 

adaptive memory control marking process, we described the six MMCO commands 

provided in AVC in the following. 

 If memory_management_control_operation = 1, this operation marks short term 

reference frames as unused for reference that means we remove the short term reference 

frame from reference buffer. This operation includes 3 parameters which are picNumX, 

CurrPicNum and difference_of_pic_nums_minus1.  

Every reference frame has its identification number and the picNumX means its 

identification number. CurrPicNum is the picNumX of the current frame. The parameter 

difference_of_pic_nums_minus1 is used as function parameter. If we set MMCO(we 

use this to instead memory_management_control_operation) = 1, we must pass 

difference_of_pic_nums_minus1. From the inner operation: picNumX = CurrPicNum – 

(difference_of_pic_nums_minus1+1) we can calculate picNumX, and then we drop the 

reference frame with id number = picNumX. 
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If MMCO = 2, this operation marks long term reference frame as unused for 

reference that we remove the long term reference frame from reference buffer. We 

control the long term reference frame by long term number so we sent the long term 

number and mark that reference frame as unused. 

MMCO = 3, this operation assigns long term number to short term reference 

frame. In AVC software, if we do not use MMCO it always sets reference frame as 

short term reference frame at first and if we want to use long term reference frame, we 

can use this operation to make the frame from short term reference frame to long term 

reference frame. In this operation, we must pass 2 syntax elements: 

difference_of_pic_nums_minus1 and LongTermFrameIdx. The first element is 

introduced in MMCO = 1 section, we use that to get the short term reference frame id 

number and then we set this frame as long term reference frame with long term number 

= LongTermFrameIdx. One important thing in here that if the long term number is used 

in the other long term reference frame, the new long term reference frame will use the 

long term number and the old one is removed from the long term reference buffer. 

MMCO = 4, this operation sets the maximum long term frame index. We change 

the maximum index value of long term reference frame in this operation. We need only 

one syntax element: max_long_term_frame_idx_plus1. If the long term number of any 

long term reference frame is greater than (max_long_term_frame_idx_plus1-1), the 

reference frame shall be marked as unused for reference so if 

max_long_term_frame_idx_plus1 = 0 and then there will be no reference frame in the 

long term reference buffer. 

MMCO = 5, this operation marks all reference frame as unused for reference 

frame and set maximum long term frame index as no long term reference frame. This 

operation is like reset all reference setting. It cleans all reference buffers which include 

long term and short term buffer to null. 
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MMCO = 6, this operation assigns long term frame index to the current frame. We 

must pass one syntax element LongTermFrameIdx as long term number of current 

frame. If the long term number is used in the other reference frame, we remove the old 

reference frame as unused like we describe in MMCO = 3. 

 Finally we introduce MMCO = 0, this operation means that the MMCO is over. We 

use this operation when we have done all MMCO instructions. 

We make a MMCO example, if we have 0, 1, 2, 3, total 4 frames and we set 0th as 

long term number = 0, 1st as long term number = 1, 2nd as long term number = 2, 3rd as 

long term number = 0.  

 First, we want to set 0th as long term number = 0, there are two methods. 1st we can 

set img->long_term_reference_flag = 1. This function can set I_slice frame as long term 

frame with long term number = 0. 2nd we use MMCO operation but MMCO can not use 

if the frame is I_slice so we must define MMCO at the 1st picture.  

At the 1st picture, we see that the maximum of our long term number is 3 so we 

define our long term buffer size = 3. We use MMCO = 4 and give 

max_long_term_frame_idx_plus1 = 3 .want set 0th as long term number =0. 

  Then we want to set 0th with long term number = 0. We use MMCO = 3 and 

difference_of_pic_nums_minus1 = 0 and long_term_frame_idx =0.   

 And then we set the current frame with long term number = 1. We use MMCO = 6 

and long_term_frame_idx = 1.  

 Finally we set MMCO = 0 to end the MMCO loop. The 2nd picture just set MMCO 

= 6 and long_term_frame_idx = 2 and next MMCO = 0. 

The 3rd picture set as long term number = 0, it replaces 0th picture. MMCO = 6 

will remove the long_term_frame_idx long term picture and then set the current picture 

with long term number = long_term_frame_idx. 
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Chapter 3  

Tree Architecture Coder 
In this chapter, we describe the proposed symmetric tree prediction structure. 

Firstly, we describe the basic concept of the proposed architecture in section 3.1. Then, 

we describe the implementation of the symmetric tree prediction structures in AVC 

encoder in section 3.2. We then described the decoding method that supports VCR 

functionalities in section 3.3. Finally, in section 3.4, we discuss the decoding 

complexity of various VCR functionalities for various GOP structures, including the 

normal GOP structures and the proposed symmetric tree prediction structures. 

3.1 Basic Concept of Our Tree 

Prediction Structure 
In the traditional video reorder, the pictures are directly stored in the video cassette 

without prediction, just as shown in Figure 3-1. In this architecture, the video player can 

access and display any pictures without access any other pictures. Thus the VCR 

functionalities can be easily achieved. This is similar with digital video compression 

that does not allowed temporal prediction. However, digital video compression usually 

utilizes temporal prediction to remove the temporal redundancy and thus dramatically 

increase the coding efficiency. Figure 3-2 shows commonly used prediction architecture 

in video compression. Every picture is predicted by the previous pictures to remove the 

temporal redundancy between them. However, this architecture causes difficulties on 

VCR functionalities. For example, if we want to access the latest pictures, the decoder 

needs to decode all the previous pictures to derive the correct prediction image that used 
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to reconstruct the latest pictures. Figure 3-3 shows a different prediction structure that 

utilizes temporal prediction and also provide the convenience for VCR functionalities: 

Every picture is temporally predicted by the first picture. Comparing to Figure 3-1, it 

has inter prediction that provides better coding efficiency. But with the inter prediction, 

it also cause one more delay for random access except the first frame. Comparing to 

Figure 3-2, the average distance of the inter prediction is longer so the coding efficiency 

is worse but the random access functionality is much better. 

In Figure 3-4, we extend the concept in Figure 3-3 into “multiple levels”. In 

Figure 3-3, the pictures in level 1 is predicted by the picture in level 0. In Figure 3-4, 

the reference picture is restricted by the following rule: 

Rule 1: A pictures in level i can only be predicted by the pictures in level j, where 

j<i.  

Compare with Figure 3-3, it reduce the distance of inter prediction and hence 

improve the coding efficiency. However, if we have not assigned the reference picture 

correctly, it will also significantly increase the random access decoding delay. For 

example, assuming the picture in level 2 can be predicted by any picture in level 0 and 1, 

than we need to decode all of these pictures before we can corrected decode the picture 

in level 2. To solve this problem, we add the following rule to restrict the usage of the 

reference picture. 

Rule 2: Only the temporally closest picture can be used as reference. The 

reference picture of the reference picture can also be taken as reference picture.  

For example, frame 9 can take frame 8 and frame 12 as reference, because there 

are temporally closest picture at lower level. It can also take frame 0 as reference, 

because frame 0 is the reference picture of frame 8. Frame 9 can not take frame 4, 16, 

20, and 24 as reference because they violate rule 2, and hence reduce the decoding 

delay of this structure. With this 2 rule, we form a hierarchical prediction structure. If 
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we inspect this structure only from one prediction direction, that is, forward or 

backward, it is just like a tree, so we can call this structure as “tree prediction structure”. 

Another feature of the structure in Figure 3-4 is it symmetry ⎯ Firstly the 

prediction structure is symmetric between forward direction and backward direction. 

That is, the decoding complexity is identical for forward playback or backward 

playback. Secondly, in each level the picture number of each sub-group, which can also 

be viewed as the number of the “branch” number in a tree, are identical. For example, 

each sub-group in level 1 contains two pictures, which are frame 4 and frame 8, or 

frame 16 and frame 20. Each sub-group in level 2 contains three pictures, which is 

frame 1 to frame 3, frame 5 to frame 7, etc. Because the frame in each level can only 

reference the frame at lower level, and then fast forward and fast backward can be 

achieved easily at decoder. For 2x speed up, the decoder can simply drop all the odd 

frames. For 4x speed up, the decoder can drop the entire picture in level 2 and only 

decode the picture in level 0 and level 1. For 12x speed up, the decoder can drop the 

entire picture in level 1 and 2 and only decode the picture in level 0.  

We name the structure in Figure 3-4 as “symmetric tree prediction structure”, a 

tree prediction structure that is symmetric. It enables all the required VCR 

functionalities with low complexity at decoder: low-delayed random access, low 

complexity forward and backward playback, simple fast playback. 

Tree prediction structure is not restricted to be symmetric. For example, we show 

an unrestrained tree in Figure 3-5. The tree in Figure 3-5 still obey rule 1 and rule 2, but 

the branch number in each level are different with each other. With this flexibility, tree 

prediction structure can be adapted with the temporally local statistic of the sequence 

and hence improve the prediction efficiency. However, without symmetry, the tree in 

Figure 3-5 is difficult to provide VCR functionality. For example, we can not simply 

drop the odd pictures to provide a 2x speed up, because they could be the reference 
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pictures of the remaining even pictures. Therefore, in this thesis, we will focus on the 

“symmetry tree prediction structure”, such as shown in Figure 3-4. 

 

 

Figure 3-1 intra frame encoding 

 

Figure 3-2 IPPP encoding  

 
 

Figure 3-3 best random access for inter prediction 
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Figure 3-4 Prediction method for the nearest level 

 

 

 

Figure 3-5 An example of a PGOP with various descendent picture number 

and depth. Each circle indicates a picture. The black circle is the root I-picture. 

The red circles are the PIDR-pictures. The green circles are the leaf pictures. 
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3.2 Symmetric Tree Structure Encoder 

Implementation in AVC 

 

From the previous section, we know that symmetric tree prediction structure is 

more suitable to generate a bitstream that can easily support VCR functionality. In this 

section, we describe the implementation of our symmetric tree prediction structure in 

AVC encoder. 

To easily express our symmetric tree prediction structure, the following notation is 

used: 

GOPSize_LevelX-PictureType-BranchNumber-ReferencePictureNumber 

“GOPSize” is picture number in a GOP. For example, a GOP with 16 pictures is 

denoted as N16. “PictureType” is the picture type of the specified level. 

“BranchNumber” means the picture number between the two nearest lower-level 

pictures at the specified level. We call it “branch” because these pictures are just like the 

branch in a tree. For example, in Figure 3-6 the branch number for level 1, 2, and 3 are 

1, 1, and 3, respectively. We combine the “PictureType” and “BranchNumber” to make 

the expression more compact. For example, “B3” means there are 3 branches in this 

level, each of which has “B” picture type. “ReferencePictureNumber” is the reference 

picture number used for pictures in the specified level, and the reference picture number 

for forward reference and backward reference will be shown separately. For example, 

F1B1 means 1 forward reference and 1 backward reference. 

 For example, we can denote the symmetric tree GOP structure in Figure 3-6 as 

N16_P1F2_B1F1B1_B3F1B1, which means the there are 16 pictures in this GOP (N16). 

In level 1, P1F2 means there is only one picture with picture type P, and it has 2 forward 
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references. In level 2, B1F1B1 means there is only one picture with picture type B, and 

it has 1 forward reference and 1 backward reference. In level 3, B3F1B1 means there 

are 3 pictures with picture type B, and they have 1 forward reference and 1 backward 

reference. Further, sometimes when we are not focus on the reference picture number, 

and we can remove the related field in the above notation and, for example, Figure 3-6 

is then expressed as N16_P1_B1_B3. With this notation, we use an example to describe 

the implementation of the symmetric tree prediction structure encoder in AVC. 

Encoder implementation of the symmetric tree prediction structure: N16_P1_B1_B3  

As shown in Figure 3-6 we show a GOP which contain 16 pictures. Level 1 has 1 

branch with P picture type. Level 2 also has one branch but with B picture type. The 

third level has 3 branches with B picture type. With the picture type and branch number 

in each level, we can then derive the encoding order, as shown in Figure 3-7. For 

example, frame 8 is P-picture, so we only need to encode the forward reference picture, 

which is frame 0, before encoding it. However, Frame 4 is B-picture, and we need to 

encode both its forward and backward reference, which is frame 0 and frame 8 

respectively, before encoding it. With this concept we can generate the encoding order 

of this GOP and start the encoding process.  

During the encoding of each picture, we need to control the reference picture 

reordering process and the marking process to achieve the symmetric tree prediction 

structure we want. Figure 3-8 shows the long term picture numbers (LTPN) setting. In 

the symmetric tree prediction structure, we restricted the reference picture to the 

temporally closest picture at the lower level. Therefore in a certain level, only two 

pictures will be used as reference at the same time. We can allocate two LTPN to each 

level, and all the pictures in the same level can recycle these two LTPN. For example, 

we allocate LTPN 1 and 2 to level 0. We can assign LTPN=1 for frame 0, LTPN=1 for 

frame 16 and then reuse LTPN=1 for frame 32 and LTPN=2 for frame 48… When there 



 27

is only one branch in a level, we can only allocate one LTPN to that level. This is 

because with one branch in a level, only one of the “two temporally closest reference 

picture” is at the specified level, and another is at the lower level, such that it will only 

consume one LTPN a certain time. For example, we can assign LTPN=3 for frame 8 and 

LTPN=4 for frame 4 and 12. 

In Table 3-1, we show the reference picture list after initialization and after 

reordering of each picture. Because we are using long-term reference picture, the 

initialize process will put the long-term reference picture that has smallest LTPN at 

lower index. We then reorder the list such that the temporally closer picture will allocate 

at lower index. In this way the closer picture, which is usually the frequently used 

picture, can be entropy encoded more efficiently. The reordering process also need 

make sure the reference picture that violate the rule 1 and rule 2 described in section 3.1 

will not appear in the reference picture list of the handling frame. We also show the 

reference picture marking process and the reference picture list after the marking 

process of each picture. It reflects the LTPN assignment that we discussed in the 

previous paragraph. 

 

 
 

Figure 3-6 Symmetric tree prediction structure for N16_P1_B1_B3 
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Figure 3-7 Coding order for GOP structure N16_P1_B1_B3 

 

 

 

Figure 3-8 long term picture numbers setting for GOP structure N16_P1_B1_B3 
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Table 3-1 reference picture list of each picture of GOP structure 

N16_P1_B1_B3 

Coding 

order 

Frame 

number 

(display 

order) 

Level List after 

initialization 

List after 

reordering 

Picture marking 

process 

Picture in buffer after 

marking process. 

(Format: frame number 

(LTPN*) 

0 0 0   Set Frame0 LTPN=0 0(0) 

L0: 0 L0: 0 1 8 1 

L1: - L1: - 

Set Frame8 LTPN=3 0(0), 8(3) 

L0: 0, 8 L0: 0, 8 2 4 2 

L1: 8, 0  L1: 8, 0 

Set Frame4 LTPN=4 0(0), 8(3), 4(4) 

L0: 0, 8, 4 L0: 0, 4, 8 3 1 3 

L1: 8, 0, 4  L1: 4, 8, 0 

None 0(0), 8(3), 4(4) 

L0: 0, 8, 4 L0: 0, 4, 8 4 2 3 

L1: 8, 0, 4  L1: 4, 8, 0 

None 0(0), 8(3), 4(4) 

L0: 0, 4, 8 5 3 3 L0: 0, 8, 4 

L1: 8, 0, 4  L1: 4, 8, 0 

None 0(0), 8(3), 4(4) 

L0: 0, 8, 4 L0: 4, 0, 8 6 5 3 

L1: 8, 0, 4  L1: 8, 4, 0 

None 0(0), 8(3), 4(4) 

L0: 0, 8, 4 L0: 4, 0, 8 7 6 3 

L1: 8, 0, 4  L1: 8, 4, 0 

None 0(0), 8(3), 4(4) 

L0: 0, 8, 4 L0: 0, 8 8 7 3 

L1: 8, 0, 4  L1: 8, 0 

None 0(0), 8(3), 4(4) 

L0: 0, 8, 4 L0: 9 16 0 

L1: 8, 0, 4  L1: 

Set Frame16 LTPN=1 0(0), 16(1),8(3),4(4) 

L0: 0, 16, 8, 12 L0: 8, 0, 12, 16 10 12 3 

L1: 16, 0, 8, 12  L1: 12, 16, 8, 0 

Set Frame12 LTPN=4 

 (remove Frame4 

automatically) 

0(0), 16(1), 8(3), 12(4) 

L0: 0, 16, 8, 12 L0: 8, 0, 12, 16 11 9 3 

L1: 16, 0, 8, 12  L1: 12, 16, 8, 0 

None 0(0), 8(3), 12(4) 

L0: 0, 16, 8, 12 L0: 8, 0, 12, 16 12 10 3 

L1: 16, 0, 8, 12  L1: 12, 16, 8, 0 

None 0(0), 8(3), 12(4) 

L0: 0, 16, 8, 12 L0: 8, 0, 12, 16 13 11 03 

L1: 16, 0, 8, 12  L1: 12, 16, 8, 0 

None 0(0),16(1), 8(3), 12(4) 
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L0: 0, 16, 8, 12 L0: 12, 8, 0, 16 14 13 3 

L1: 16, 0, 8, 12  L1: 16, 12, 8, 0 

None 0(0),16(1), 8(3), 12(4) 

L0: 0, 16, 8, 12 L0: 12, 8, 0, 16 15 14 3 

L1: 16, 0, 8, 12  L1: 16, 12, 8, 0 

None 0(0),16(1), 8(3), 12(4) 

L0: 0, 16, 8, 12 L0: 12, 8, 0, 16 16 15 3 

L1: 16, 0, 8, 12  L1: 16, 12, 8, 0 

None 0(0),16(1), 8(3), 12(4) 
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3.3 Decoder implementation that 
support VCR functionalities 

The bitstreams generated by our encoder that described in section 3.2 is compliant 

with AVC standard and can be correctly decoded by the AVC standard compliant 

decoder. However, a normal AVC decoder, such as the reference decoder provided in [9], 

can only decode the bitstream with forward display. To provide the VCR functionalities 

such as backward display, fast forward/backward display, and random access, we need 

to redesign the decoder.  

The basic structure of our AVC decoder that supports VCR functionality is to 

provide an efficient decoding method for random access, and then all the VCR 

functionality such as fast forward and fast backward can be easily support. From section 

2.2, we know that the slice header of each slice in the sequences contain all the 

reference information. Therefore for efficient random access, we only need to parse the 

slice header of the sequences to generate the GOP structure of each GOP, and then we 

know the dependency among pictures. A size configurable GOP structure buffer is used 

to store the GOP structure, thus we don’t need to parse and decode the slice header if 

the related GOP structure is already in the buffer. With the knowledge of the 

dependency, we can generate the reference picture for the request picture. A 

size-configurable picture buffer is used to store the decoded picture such that we don’t 

need to decode the recently decoded picture again and again. The detail of our decoder 

is described as the following, and Figure 3-10 shows the decoder flow chart. 

 

1st step: Decoder initialization. Parse the picture order count (POC) related syntax in the 

slice header of the entire the bitstream, record the playback time stamp (PTS) 

and start byte position (SBP) of the first picture (in display order) in each GOP. 
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We show the diagram in Figure 3-9. 

2nd step: Get the request target PTS from the player. The decoder find out the GOP 

which the target PTS belong to. If the target GOP structure has not recorded in 

the “GOP structure buffer” (GSB), go to step 3. Else go to step 4. 

3rd step: Derive the GOP structure. Parse the entire slice headers in this GOP. Derive the 

reference pictures list of each picture in this GOP. Store the GOP structure 

information in the GSB. If the GSB is full, remove the data of the GOP that is 

farthest (in display order) from the current GOP. 

4th step: If the target picture can not be found in “picture buffer” (PB), go to step 5. Else 

go to step 8. 

5th step: Check the required reference pictures of the target picture. If some reference 

pictures of the target picture are not available in the PB, go to step 6. Else go to 

step 7. 

6th step: Decode the reference pictures that required of the target picture, stored it in the 

PB. If the PB is full, the picture on the PB is removed with the following order: 

1. Remove the picture that is in different GOP. 2. In the current GOP, remove the 

picture that has highest level ID and is farthest (in display order) from the target 

picture. 

7th step: Decode the target picture, stored it in the PB. If the PB is full, the same method 

used in step 6 is used to remove the picture in PB. 

8th step: Send the target picture memory position to the player. Go to step 2, wait for the 

decoding request of the next picture from the player. 
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Figure 3-9 Get PTS and SBP of all 1st frame of each GOP 
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Figure 3-10 decoder flow chart 
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3.4 Cost of VCR Functionalities 
for Various GOP Structures 

 

In this section we compare the cost of VCR functionalities for various GOP 

structures. In 3.4.1, we discuss the cost of forward and backward playback for normal 

GOP structure. In 3.4.2, the same analysis is applied on the proposed symmetric tree 

prediction structure with B-picture only. We further discuss the difference of B and P 

picture type in the symmetric tree prediction structure. Finally, the cost of fast playback 

and random access for various GOP structure are discussed in 3.4.4. 

 

3.4.1 Cost of forward and backward playback for 

normal GOP structure 

We firstly discuss the normal GOP structure with M=1, as shown in Figure 3-2. 

Assuming it has GOP size N = 16 and use 3 reference frames. In Figure 3-11 we show 

the decoding order and decoding delay for forward playback in one GOP. X-axis is 

frame numbers and Y-axis is time orders. Each time unit is identical with the duration of 

display one frame. We also assume that decode one frame need one time unit. There are 

four colors to present 4 different situations: Red color means the specified frame is 

under decoding. Cyan color means it is put into the reference frame buffer. Blue color 

means it is under displaying. And yellow color means it is used as reference frame for 

other frames. In forward display, this GOP structure works well, there is no delay 

between decoding and displaying each frame. 

Figure 3-12 shows the backward playback with unlimited decoder buffer size. The 
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decoder must decode the entire frame in this GOP before it can display the first 

requested frame, which is the frame N-1. Such that we can see the delay of backward 

playback is equally to the GOP size N. Because there is unlimited buffer size, the 

decoder can store every decoded frame during the decoding, and it can display frame 

N-2, frame N-3, … , to frame 0 with load them from the decoder buffer rather than 

decode them again. When the decoder buffer size is limited, the backward playback 

delay becomes even worse. Due to there are 3 reference frame, the minimum buffer size 

is 3. For inverse playback, the decoder firstly decode the entire GOP to gets the final 

pictures of the GOP, which is frame N-1, and then it can display frame N-1 as well as 

frame N-2 and frame N-3, because frame N-2 and frame N-3 are also stored in the 

frame buffer. Next, the decoder have to decode the bitstream from frame 0 to frame N-4 

again to get frame N-4, and display frame N-4 to frame N-6. Consequently, we can 

found that overall the backward playback with buffer size = B needs to decode 

N+ (N-B) + (N-2B) + … = (NxN)/(2xB) frames. With this example we know that 

for IPPP GOP structure, if the GOP size is large, the decoder cost for backward 

playback is very high. 
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Figure 3-11 forward playback for IPPP GOP structure 
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Figure 3-12 inverse playback for IPPP GOP structure 
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We now discuss the decoding delay of normal GOP structure with M=4, as shown in  

Figure 3-13. Again assume the GOP size N=16 and there are 3 reference frames. 

Similar with M=1, there is no decoding delay for forward playback. In Figure 3-15, we 

show the decoding delay of backward playback with unlimited decoder buffer size. 

Compare with M=1, the backward decoding delay of M=4 is much smaller. Instead of 

decode the entire GOP, it only need to decode the frames that are used as reference, 

which is frame 0, M, 2M, … N. And hence the decoding delay is N/M. If the decoder 

buffer size is limited, the inverse playback will also cost more delays. Similar with M=1, 

assuming buffer size = B, we can found the overall decoding delay is N/M + (N/M-B) + 

(N/M-2B) … = (N/M)x(N/M)/(2xB). 

In normal GOP structure, we can found that larger M can reduce the decoding 

delay of backward playback. However, the delay is still a linear function of the GOP 

size N. Therefore with normal GOP structure, we must use smaller N to prevent 

problem in VCR functionality. However, with the frequently used intra frame, the 

coding efficiency is limited. 

 

 

Figure 3-13 IPB GOP structure 
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Figure 3-14 forward playback for IPB GOP structure 
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Figure 3-15 reverse playback for IPB GOP structure 
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3.4.2 Cost of forward and backward playback for 

symmetric tree prediction structure with different 

level depth 

In this section, we discuss the decoding delay of the proposed symmetric tree 

prediction structure. From the previous section, we know that the backward playback 

decoding delay of normal GOP is a linear function of GOP size N. To prevent long 

delay at decoder side, one can not use large GOP size N and hence limited the coding 

efficiency. There is no such problem in symmetric tree prediction structure. 

We give 2 examples of our symmetric tree prediction structure, as shown in 

Figure 3-16 and Figure 3-17. Figure 3-16 is a N16_B1_B7 structure; it demonstrates the 

symmetric tree prediction structure with fewer levels. Figure 3-17 is a 

N16_B1_B1_B1_B1 structure; it demonstrates the symmetric tree prediction structure 

with largest levels. Note that for convenience, we will use N16_4B1, which means 4 

level depths and each level has one branch with B-picture type, instead of 

N16_B1_B1_B1_B1 in the following description. For B1_B7 structure, we show the 

decoding order and decoding delay for forward and backward playback in Figure 3-18 

and Figure 3-19, respectively. For 4B1 structure, we also show the decoding order and 

decoding delay for forward and backward playback in Figure 3-20 and Figure 3-21, 

respectively.  

Due it is symmetric for forward and backward prediction in symmetric tree 

prediction structure. So it costs identical delays for forward and backward playback. 

The decoding delay computation of the symmetric tree prediction structure is very 

similar with the long-term picture number assignment described in section 3.2. Due to 



 43

the prediction rule described in section 3.1, for a certain level, only the temporally 

closest two pictures will be used to predict the frame in higher level. Which means we 

will increase 2 decoding delay with increasing one level. Further, when there is only 

one branch in a certain level, only one of the “two closest frames” is inside that level, 

and thus will only increase one decoding delay at that level. With this knowledge, it is 

easy to compute the decoding delay of B1_B7 and 4B1.  

Considering the B1_B7 structure, level 0 will cause two delays. level 1 will cause 

1 delay because there is only one branch. Therefore the maximum decoding delay is 3. 

Considering the 4B1 structure, level 0 will also cause 2 delays. Each level of level 1 to 

level 3 will cause 1 delay. Therefore the maximum decoding delay is 5. When the GOP 

size is larger, the benefit of symmetric tree prediction structure is more significant. 

Assuming we always use one branch of each level, we will have a log2(N)B1 structure, 

and the maximum decoding delay is 2+log2(N)-1. For example, with N=64, we can 

generate a 6B1 structure with maximum decoding delay equal to 7. We can also use 

larger branch number in each level to reduce the total level number, and hence reduce 

the decoding delay. Assuming we always use H-1 branches for each level, where H>2. 

Then we will have a logH(N)B(H-1) structure with maximum delay equal to 2x logH(N). 

For example, with N=64 and 7 branches in each level, we can construct a 2B7 structure 

with maximum delay = 4. Comparing with the “backward playback with unlimited 

decoder buffer size” of normal GOP structure with N=64, the M=1 structure need 64 

decoding delay and M=4 structure need 64/4=16 decoding delay, both are significantly 

larger then the symmetric tree prediction structure. 

Symmetric tree prediction structure not only benefit with lower decoding delay. It 

also prevent the requirement of the “large decoder buffer” when the decoder does not 

have enough power to decode the bitstream several times. For backward playback, if the 

decoder wants to decode the bitstream only one time, the required decoder buffer size is 
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identical with the decoding delays no matter it is normal GOP structure or symmetric 

tree prediction structure. This is because “decoding delay” means the decoded frame 

number. If we can store all of these decoded frames, then we don’t need to decode them 

twice. As we already shows that the symmetric tree prediction structure has much lower 

decoding delay, we know that symmetric tree prediction structure can also significantly 

reduce the decoder buffer size requirement if the decoder can not or does not want to 

decode the bitstream several times. 

 

B B B B B B B

B

B B B B B B B

IILevel=0

Level=1

Level=2
 

 

Figure 3-16 the shortest depth symmetric tree structure B1_B7 GOP 

 

 

Figure 3-17 the longest depth of symmetric tree structure 4B1 GOP 
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Figure 3-18 forward playback decoding diagram of B1_B7 GOP structure 
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Figure 3-19 inverse playback decoding diagram of B1_B7 GOP structure  
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Figure 3-20 forward playback decoding diagram of 4B1 GOP structure 
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Figure 3-21 inverse playback decoding diagram of 4B1 GOP structure 
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3.4.3 The Comparison of P and B picture in 

Symmetric Tree Prediction Structure  

In previous section, all the pictures except the pictures in level 0 are set as 

B-picture type. In this section, we discuss the influence of changing the picture type 

from B to P. In AVC, P-picture means the picture that only have one reference list, and 

the reference picture it used can be either forward or backward. On the other side, 

B-picture in AVC means there are two reference lists. Similar with P-picture, the 

reference picture in these two lists can be either forward or backward. For simplicity, in 

this thesis we will only use forward reference in P-picture and in list0 of B-picture, and 

we will only use backward reference in list1 of B-picture. 

We show the difference of P/B picture by using the same GOP size and same 

branch number in each level. We take the GOP structure in Figure 3-17 for sample. We 

change the picture type in level 1 of Figure 3-17 from B to P, as shown in Figure 3-22.  

Bi-direction prediction usually provides better coding efficiency than one direction 

prediction. However, if we consider the real time encoder, the disadvantage of B-picture 

reveals. When backward prediction is used, the encoder needs to encode the future 

reference frame before encoding the current frame. In a real-time encoder, all of the 

frame between the current frame and the future reference frame must be buffered. The 

longer the prediction distance, the larger the encoder buffer is required. For example, 

the minimum encoder buffer size of 4B1 GOP structure is 16. This is because, before 

we encoder frame 1 in level 4, we need to firstly encode frame 2 in level 3, and it will 

take 1 frame buffer. Before encode frame 2 in level 3, we also need to encode frame 4 in 

level 2, and it further increase the buffer requirement by 2. Consequently, we also need 

to encode frame 8 in level 1 and frame 16 in level 0, and increase the buffer requirement 
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by 4 and 8, respectively. If we change the picture type in level 1 to P, that is, the 

1P_3B1 structure in Figure 3-22, we can reduce the buffer requirement to 8, because we 

do not need to encode frame 16 before encoding frame 8. In the proposed symmetric 

tree prediction encoder, lower level has larger prediction distance then higher level, so 

the minimum encoder buffer size is depend on the lowest level that has B-picture. We 

can not reduce encoder buffer size if we use P-picture at higher level but use B-picture 

at lower level. In Table 3-2, we show the encoder buffer requirement for replacing 

B-picture to P-picture from lower level to higher level. With this GOP structure that has 

one branch at each level, replace the picture type from B to P in a level can reduce the 

encoder buffer usage by half. The loss of coding efficiency with changing picture type 

from B to P will be limited because the picture number in lower level is comparably 

fewer. 

Another advantage for P-picture is it can reduce the random access decoding delay. 

For random access, if level 1 is P picture, for the picture that has display order smaller 

than the P picture, it can save one more delay comparing with using B-picture in level 1. 

This is because for random access, the frame whose display order is smaller than the 

level 1 picture does not depend on frame 16. With this concept, we construct the 

decoding delay with different P/B depth in Table 3-2. 
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Figure 3-22 P1_3B1 GOP structure 

Table 3-2 maximum encoder buffer size and decoding delay in different P/B 

depth 
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3.4.4 Decoding complexity for fast playback and 

random access 

The VCR functionalities contain not only step forward / backward playback but 

also fast forward / backward playback and random access. In this section, we compare 

the number of decoded frame for fast playback between symmetric tree prediction 

structure and normal IPPP GOP structure. We also show the random access decoding 

delay for these two structures. 

We show the relation of speed-up factor and decoded frame number with the 4B1 

symmetric tree prediction structure for forward playback in  

Table 3-3 and backward playback in Table 3-4. The same tables for normal IPPP GOP 

structure with unlimited decoder buffer size are shown in Table 3-5 and Table 3-6. Due 

to its symmetry, the symmetric tree prediction structure has identical forward and 

backward property. When the speed-up factor is 2n, the symmetric tree prediction 

structure can skip all the useless frames and only decode the requested frames. But in 

the normal IPPP GOP structure, due to the high reference dependency, no frame can be 

skipped and the decoder must work with high decoding rate. When the decoder buffer 

size is limited, the problem for IPPP GOP structure become even worse, just as 

discussed in section 3.4.1 

In Table 3-7, we show the random access decoding delay of various GOP structure 

for each frame. For IPPP GOP structure, the maximal delay is equal to the GOP size, 

and the average delay is equal to half of the GOP size. For various symmetric tree 

prediction structures, the maximal delay is range frame 3 to 5 and the average delays 

are all smaller then 4. 
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Table 3-3 Symmetric Tree structure fast forward playback transmission table 

Speed factor Request frames Accessed 
frames 

Number of 
decoded 
frames 

Decoding rate 

X1 0,1…16 0, 1, 2, 3… 17 1 
X2 0,2,4,6,8 0, 2, 4, 6, 8… 9 1 
X4 0, 4, 8, 12, 16 0, 4, 8, 12, 16 5 1 
X8 0,8 0, 8, 16 3 1 
X16 0,16 0,16 2 1 
 
 

Table 3-4 Symmetric Tree structure fast inverse playback transmission table 

Speed factor Request frames Accessed 
frames 

Number of 
decoded 
frames 

Decoding rate 

X-1 16, 15, 14…. 0, 1, 2, 3… 17 1 
X-2 16, 14, 12, … 0, 2, 4, 6, 8… 9 1 
X-4 16, 12, 8, 4, 0 0, 4, 8, 12, 16 5 1 
X-8 16, 8, 0 0, 8, 16 3 1 
X-16 16, 0 0,16 2 1 
 

Table 3-5 normal GOP structure with IPPP fast forward play back 

transmission table 

Speed factor Request frames Accessed 
frames 

Number of 
decoded 
frames 

Decoding rate 

X1 0,1…16 0, 1....16 17 1 
X2 0,2,4,6,8 0, 1....16 17 1.9 
X4 0, 4, 8, 12, 16 0, 1....16 17 3.4 
X8 0,8 0, 1....16 17 5.66 
X16 0,16 0, 1....16 17 8.5 

 

Table 3-6 normal IPPP GOP structure with unlimited buffer size fast inverse 
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playback transmission table 

Speed factor Request frames Accessed 
frames 

Number of 
decoded 
frames 

Decoding rate 

X-1 16, 15, 14…. 0, 1....16 17 1 
X-2 16, 14, 12, … 0, 1....16 17 1.9 
X-4 16, 12, 8, 4, 0 0, 1....16 17 3.4 
X-8 16, 8, 0 0, 1....16 17 5.66 
X-16 16, 0 0, 1....16 17 8.5 
 
Table 3-7: Random access decoding delay of each picture for various GOP 
structures 
Frame 
number 

GOP 
IPPP 

GOPI 
BPBP 

GOP  
4B1 

GOP  
P1_3B1 

GOP  
2P1_2B1

GOP  
3P1_1B1 

GOP 
B1_B7 

0 0 0 0 0 0 0 0 
1 1 2 5 4 3 2 3 
2 2 1 4 3 2 1 3 
3 3 3 5 4 3 3 3 
4 4 2 3 2 1 1 3 
5 5 4 5 4 4 3 3 
6 6 3 4 3 3 2 3 
7 7 5 5 4 4 4 3 
8 8 4 2 1 1 1 2 
9 9 6 5 5 4 4 3 
10 10 5 4 4 3 3 3 
11 11 7 5 5 4 4 3 
12 12 6 3 3 2 2 3 
13 13 8 5 5 5 4 3 
14 14 7 4 4 4 3 3 
15 15 8 5 5 5 5 3 
16 0 0 0 0 0 0 0 
Max 15 8 5 5 5 5 3 
average 7.06 4.17 3.76 3.29 2.82 2.47 2.58 
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Chapter 4  

Experimental Results 
In this chapter, we describe the experimental results of the proposed symmetric 

tree prediction structure. We firstly compare the coding efficiency of the proposed 

structure with different total level depth under same GOP size. Then we compare the 

influence of different P/B depth under same GOP structure. We also show the coding 

efficiency difference among different reference picture number in the motion estimation 

stage. Finally, a suggested configuration for the symmetric tree prediction structure that 

provide sufficient coding efficient with low encoding and decoding complexity is 

proposed and compare with the normal GOP structures.  

In the following sections, if there are no further statements, the following test 

conditions are used. Four MPEG test sequences with different texture and motion are 

tested, including Bus, Foreman, Mobil, and Football in CIF resolution. The encoded 

frame rate is 30 frames per second (fps). 257 frames are encoded for Foreman. Mobile, 

and Football sequences, and 129 frames are encoded for Bus sequence. The symmetric 

tree prediction structure is implemented based on the reference software JM9.6. The 

simulation results for normal GOP structure are also from on the same reference 

software. All the intra and inter prediction modes are turn on. For inter prediction, three 

reference frames are used. Both RD-optimization and Fast ME are turn on. We use 

CABAC as the entropy coding method. Six QP value range from 20 to 40 with step 4 

are used to show the RD-curves of the simulations. In each simulation, constant QP is 

used for all picture type and all MBs in a picture. For symmetric tree prediction 

structure, the GOP size is 64. The pictures in each GOP have different structures to 
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demonstrate the influence of each parameter in the proposed structures. For normal 

GOP structure, GOP size equal to 16, 32, and 64 are used. 

4.1 Coding efficiency comparison 
for different level depths 

 

We compare the symmetric tree prediction structure with three different level 

depths in this section. We have discussed in section 3.4 that fewer level depths lead to 

lower maximum decoding delay. More level depths provide shorter prediction distance 

between the reference picture and the handling picture, and should lead to better coding 

efficiency. The following three cases are used to demonstrate these issues. 

 N64_2B7 (2 level depths with all B-picture, max decoding delay is 4) 

 N64_3B3 (3 level depths with all B-picture, max decoding delay is 6) 

 N64_6B1 (6 level depths with all B-picture, max decoding delay is 7) 

From the simulation results, we find that more level depth really has better coding 

efficiency. The coding efficiency difference between 2 levels and 3 levels is about 

0.7~0.8 db, and the coding efficiency difference between 3 levels to 6 levels is about 0.3 

~ 0.7 db.  

This experiment shows that if the branch number is larger, the decoding delay is 

smaller but it brings worse coding efficiency. On the other hand, if all the branch 

number is 1, the decoding delay will be longer but it supplies better coding efficiency.  
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Figure 4-1 RD-curves of Bus sequences for tree structure with various level 

depths  
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Figure 4-2 RD-curves of Foreman sequences for tree structure with various 

level depths 



 58

Mobile
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Figure 4-3 RD-curves of Mobile sequences for tree structure with various 

level depths 
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Figure 4-4 RD-curves of Football sequences for tree structure with various 

level depths 
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4.2 Coding efficiency comparison 
for different P/B level depths 

We know that the B picture have better coding efficiency than single prediction. 

From 3.4.3, we understand that P picture can reduce both encoder buffer size and 

random access decoding delay. In this section, we compare the RD curve to give the 

concept about how much difference among different P/B combinations. The following 

cases are compared:  

 N64_6B1 

 N64_1P1_5B1 

 N64_2P1_4B1 

 N64_3P1_3B1 

 N64_4P1_2B1 

 N64_5P1_1B1 

 N64_6P1 

From the simulation results, the difference between N64_6B1 to N64_3P1_3B1 is 

smaller then 0.1 dB for most of the cases, and the difference between N64_6B1 to 

N64_4P1_2B1 is smaller then 0.3 dB for most of the cases. The difference becomes 

larger when more high level adopts P-picture type. This is because higher level contains 

more pictures, such that changing picture type to P lead to more overall coding 

efficiency degradations. 

From the result, we recommend to use B picture at the last 2 or 3 levels, because it 

has similar coding efficiency compare with using B pictures at all levels but only need 4 

or 8 encoder frame buffer, respectively. 
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Figure 4-5 RD curve of Bus sequence with different P/B in each level 
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Figure 4-6 RD curve of Foreman sequence with different P/B in each level 
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Mobile
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Figure 4-7 RD curve of Mobile sequence with different P/B in each level 
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Figure 4-8 RD curve of Football sequence with different P/B in each level 
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4.3 Coding efficiency comparison 
for different reference picture 
number 

In this section we show the efficiency of multiple references in the symmetric tree 

prediction structure. Five cases are compared: 

 N64_6B1_ref1 (1 forward and 1 backward reference) 

 N64_6B1_full (all references) 

 N64_6P1_ref1 (1 forward reference) 

 N64_6P1_ref2 (2 forward references) 

 N64_6P1_full (all references). 

All the cases have six levels with one branch at each level. The first two cases use 

all B-pictures. The “6B1_ref1” case use one forward and one backward reference frame. 

The “6B1_full” case uses the entire reference frame in the buffer. The last three cases 

use all P-pictures. The “6P1_ref1” and “6P1_ref2” cases use one and two forward 

reference frame, respectively. The “6P1_full” case uses the entire reference frame in the 

buffer. 

From the simulation results, we found that for all B-pictures, in the more static 

sequences such as Foreman and Mobile, “6B1_ref1” has around 0.2 dB loss compare 

with “6B1_full”. And there is no difference for the non-static sequences such as Bus 

and Football. For all P-pictures, “6P1_ref2” is almost identical with “6P1_full” for all 

sequences. In the more static sequences such as Foreman and Mobile, “6P1_ref1” has 

around 0.2 dB loss compare with “6P1_full”. And there is no difference for the 

non-static sequences such as Bus and Football.  

The results show the improvement from more reference is rare in symmetric tree 

prediction structure. This might because in the proposed structure, the reference frame 



 63

at higher index has much longer prediction distance compare with the reference frame 

at lower index, therefore limited their prediction efficiency. From these analyses, in the 

proposed structure, we suggest to use 1 forward and 1 backward reference for 

B-pictures, and 1 or 2 forward reference for P-pictures. 
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Figure 4-9  the RD curve of Bus with different numbers of references 
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Foreman
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Figure 4-10 the RD curve of Foreman with different numbers of references 
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Figure 4-11 the RD curve of Mobile with different numbers of references 
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FOOTBALL
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Figure 4-12 the RD curve of Football with different numbers of references 
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4.4 Coding efficiency comparison 
with normal GOP structure 

In this part, we compare the coding efficiency between normal structure and our 

symmetric tree prediction structure. From 4.2, we know that using B picture only at the 

last 3 levels has good coding efficiency and small encoder buffer size in symmetric tree 

structure. So we use this structure to compare with normal GOP structure with M=2. 

 Normal GOP structure: 

 N64_M2  

 N32_M2  

 N16_M2 

Symmetric tree prediction structure: 

 N64_3P1_3B1  

For normal GOP structure, the maximum decoding delay is a linear function of the GOP 

size, therefore usually normal GOP size will not choose large GOP size to prevent 

problem in achieving VCR functionality at decoder. Table 4-1 shows the maximum 

decoding delay for normal GOP structure and symmetric tree prediction structure. We 

can found that even with largest GOP size, symmetric tree prediction structure still 

provide shortest maximum decoding delay. 

Table 4-1 max and average delay comparison with normal structure and 

symmetric tree structure 

Delay

N64_M2 N32_M2 N16_M2 N64_3P1_3B1

Max 32 16 8 7 

average 16.23077 8.212121 4.176471 3.892308 

 

Structures 
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From the simulation results, we first compare the coding efficiency between the 

normal GOP with N=16 with the symmetric tree prediction structure, which has similar 

maximum decoding delay as shown in Table 4-1. For the static sequence, symmetric 

tree prediction structure provides at most 1.2dB gain in Mobile sequence, and at most 

0.3dB gain in Foreman sequences. In the fast motion sequences, it has around 0.1 dB 

losses for Bus sequence, and around 0.3dB to 0 dB losses from low bitrate to high 

bitrate for Football sequence.  

We then compare the coding efficiency between the normal GOP with N=64 with 

the symmetric tree prediction structure, which has more than 4 times different 

maximum decoding delay as shown in Table 4-1. For the static sequence, symmetric 

tree prediction structure has very close performance compare with normal GOP 

structure in Mobile sequence, and has at most 0.3dB loss in Foreman sequences. In the 

fast motion sequences, it has around 0.4 dB losses for Bus sequence, and around 0.3dB 

to 0.1 dB losses from low bitrate to high bitrate for Football sequence. 

From the above analysis, we know that comparing with normal GOP structure, 

symmetric tree prediction structure provide up to 1.2dB gain and at most 0.3dB loss 

when there are similar maximum decoding delay. And it has at most 0.4dB loss when it 

has less then one-fourth maximum decoding delay. 
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Figure 4-13 RD curve of Bus sequence with normal and symmetric tree structure 

comparison 
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Figure 4-14 RD curve of Foreman sequence with normal and symmetric tree structure 

comparison  
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Mobile
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Figure 4-15 RD curve of Mobile sequence with normal and symmetric tree structure 

comparison 
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Figure 4-16 RD curve of Football sequence with normal and symmetric tree structure 

comparison 
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Chapter 5  

Conclusion 
This thesis proposes a symmetric tree prediction structure that can generate an 

AVC compliant bitstream with low complexity VCR functionality supported at decoder. 

Comparing with the normal GOP structure, it reduces the maximum random access 

decoding delay in a GOP with size N from linear functionality of N to logarithmic 

function of N. The prediction structure is symmetric between forward and backward 

prediction, which makes the backward playback has the same low complexity with 

forward playback. It separate the pictures into several levels and make the picture can 

only reference the picture at lower level, which make the fast playback can skip the 

higher level pictures therefore no redundant pictures will be decoded. We also propose a 

decoder that can fully support the VCR functionality with low decoding complexity. 

The symmetric tree prediction structure can be configured to trade-off among 

lower decoding delay, fewer encoder buffer size, and better coding efficiency. We have 

discus this trade-off and a suggested configuration is proposed that provide good coding 

efficiency with reasonable complexity. From the simulation results, the symmetric tree 

prediction structure with suggested configuration can provide -0.3dB to +1.2dB coding 

efficiency difference comparing with the normal GOP structure with similar maximum 

decoding delay. 

Based on the proposed structure, many issues can be further investigated. Different 

bit allocation method can be used to make the frame at lower level has better quality, 

and hence improve the overall coding efficiency. Different motion estimation search 

range can be use for the reference picture at different distance. Different prediction 
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structure variation can be investigated to reduce the decoding delay and improve the 

coding efficiency. 
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Chapter 6  
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