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The optical properties of an annular periodic multilayer structure containing two kinds of single-negative
materials are theoretically investigated based on the transfer matrix method of the cylindrical waves. At
the azimuthal mode number m � 1 and near the magnetic plasma frequency and the electronic plasma
frequency for the TE wave and TM wave, respectively, we find that there is an additional high-reflectance
band and some reflection dips exist when the plasma frequency is located in the photonic band gap.
These two special features arising from the higher order azimuthal mode of the cylindrical waves
are not seen in the planar one-dimensional Bragg reflector consisting of the single-negative materials.
Such filtering responses provide a feasible way of designing a narrowband resonator without physically
introducing any defect layer in the structure.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The electromagnetic metamaterials with both the negative per-
mittivity (ε < 0) and negative permeability (μ < 0) first predicted
by Veselago early in 1968 [1] are called the double-negative (DNG)
materials. A significant result coming from the DNG material is
that its index of refraction is negative. Thus, a DNG material is
commonly referred to as the negative-index material (NIM). The
existence of this kind material was respectively experimentally
demonstrated by Smith et al. [2,3] and one of the distinctive appli-
cations of the DNG materials was presented by Pendry et al. [4].

In addition to the DNG materials [5–7], the single-negative
(SNG) materials also attract much attention recently. An SNG ma-
terial means that only one of the two material parameters, ε and
μ, is negative [8–10]. Thus an SNG material could be the epsilon-
negative (ENG) medium with ε < 0 and μ > 0 or the mu-negative
(MNG) medium with μ < 0 and ε > 0. It is known that a pho-
tonic band gap (PBG) could be formed as a consequence of the
interference of Bragg scattering in a periodical layer structure like
a one-dimensional photonic crystals (1DPCs) and Bragg reflectors
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(1DBRs). In a usual 1DBR made of all positive-index materials, the
PBG is called the Bragg gap, which is proven to be strongly depen-
dent on the lattice constant and the disorder of a device as well.
However, for the SNG materials ε and μ are frequency-dependent,
so that we have ε < 0 and μ > 0 or μ < 0 and ε > 0 within a
certain frequency range, which is called the SNG frequency range.
Therefore, the PBG in the SNG frequency range is called the SNG
gap. For a 1DBR consisting of ENG–MNG bilayers, it is known that
the SNG gap is fundamentally different from the Bragg gap. There
have been many reports on the 1D plane BRs (1DPBRs) containing
SNG materials [11–14].

Besides the simple 1DPBRs or 1DPC, two-dimensional BRs
(2DBRs) are also important in the photonic and physical commu-
nities. A similar version 2DBR is a periodic bilayer structure in an
annular geometry called an annular Bragg reflector (ABR). An ABR
plays an important and useful role in modern laser system with
a feature of vertical emission [15]. Similar device like the annular
Bragg resonator is also available in the present [16].

In this Letter, based on the transfer matrix method for the
cylindrical Bragg waves developed by Kaliteevski et al. [17], we
shall theoretically investigate the optical properties in an ABR con-
sisting of the MNG–ENG materials. With the fact that the field
solutions of the cylindrical Bragg waves for both TE and TM waves
are dependent on the azimuthal mode number denoted by m,
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Fig. 1. The top view of the ABR, where MNG and ENG layers are taken to be with
indices n1 and n2, respectively. The thicknesses of MNG and ENG layers are d1 and
d2, and ρ0 is the starting radius.

optical reflectance will be studied at different m-number. The
frequency-dependent reflectance at m = 0 is first shown to be
nearly identical to that of 1DPBR containing the SNG materials.
Next, the reflectance spectra are plotted and compared at different
values of m. At m � 1, it is found that there exist some novel-
ties compared with the usual PBR. Furthermore, we insert a defect
layer in the periodic multilayers and conclude the property of the
SNG gap for an ABR is insensitive to the disorder as same as the
one-dimensional BR.

2. Theory

We first introduce an ABR consisting of the MNG/ENG double
layers. The relative permittivity and permeability for a MNG mate-
rial are given by [11,12]

εm = a, μm = 1 − ω2
mp

ω2
, (1)

whereas those of an ENG material are

εe = 1 − ω2
ep

ω2
, μe = b, (2)

where a and b are positive constants, and ωmp and ωep are
the magnetic plasma frequency and the electronic plasma fre-
quency respectively. It is seen from Eqs. (1) and (2) that the
SNG frequency range exist when the frequency satisfies ω <

min{ωmp,ωep} whereas the materials will be double-positive (DPS)
if ω > max{ωmp,ωep}.

The top view of the ABR is depicted in Fig. 1, where ρ0 is
called the starting radius, n1-layer is the MNG material, and n2-
layer is the ENG material. The cylindrical wave is assumed to be
radiated from the axis of symmetry, ρ = 0, and to be incident nor-
mally on the first interface at ρ = ρ0. The reflectance at ρ = ρ0
can be analytically analyzed by making use of the transfer matrix
method in cylindrical Bragg wave [17]. There are two possible po-
larizations for the cylindrical Bragg wave, i.e., E-polarization (TE)
and the H-polarization (TM). Let us first formulate the problem
for the TE wave. Assuming the temporal part proportional to e jωt

for all fields, the nonzero fields for the TE wave are Ez , Hφ , and
Hρ , where Ez satisfies the following governing equation,

ρ
∂

∂ρ

(
ρ

∂ Ez

∂ρ

)
− ρ2 1

μ

∂μ

∂ρ

∂ Ez

∂ρ
+ ∂

∂φ

(
∂ Ez

∂φ

)

+ ω2μερ2 Ez = 0. (3)
The solution for Ez can be expressed as Ez = V (ρ)Φ(φ) =
V (ρ)e jmφ , where V is

V (ρ) = A Jm(kρ) + BYm(kρ), (4)

where A and B are the constants, Jm is a Bessel function, Ym is
a Neumann function and k = ω

√
με is the wave number of the

medium. The index m is an integer and is referred to as the az-
imuthal mode number. Similarly, the tangential magnetic field can
be expressed as Hφ = U (ρ)e jmφ , where U (ρ) is given by

U (ρ) = − jp
(

A J ′
m(kρ) + BY ′

m(kρ)
)
, (5)

where p = √
ε/μ is the intrinsic admittance of the medium.

Eqs. (4) and (5) enable us to establish the matrix relationship
for the first layer with matrix M1 (with refractive index n1 and
interfaces at ρ = ρ0 and ρ1) [17]. Likewise, for ith layer the matrix
Mi can be obtained by the replacements, ρ0 → ρi−1, and ρ1 → ρi .
For a periodic bilayer structure as in Fig. 1 we have εi = ε1 if i =
odd, and εi = ε2 if i = even. Thus, the matrix equation for the total
system matrix M is given by[

V (ρ f )

U (ρ f )

]
= M2N · · · M2M1

[(
V (ρ0)

U (ρ0)

)]
= M

[
V (ρ0)

U (ρ0)

]
. (6)

Based on the matrix elements in Eq. (6), the matrix elements of
the inverse of M denoted by M ′

11, M ′
12, M ′

21 and M ′
22 can be read-

ily obtained and then the reflection and transmission coefficients
are determined by the following equations [17],

rd = (M ′
21 + jp0C (2)

m0 M ′
11) − jp f C (2)

mf (M ′
22 + jp0C (2)

m0 M ′
12)

(− jp0C (1)
m0 M ′

11 − M ′
21) − jp f C (2)

mf (− jp0C (1)
m0 M ′

12 − M ′
22)

,

(7)

td = 4
√

ε0/μ0

× (
π Kρ0 H (2)

m (k0ρ0)H (1)
m (k0ρ0)

[(− jp0C (1)
m0 M ′

11 − M ′
21

)
− jp f C (2)

mf

(− jp0C (1)
m0 M ′

12 − M ′
22

)])−1
, (8)

where p0 = √
ε0/μ0 and p f = √

ε f /μ f are the admittances of the
starting and the last medium for the incident wave, K = ω

√
μ0ε0

is the free-space wave number, and

C (1,2)

ml = H (1,2)′
m (klρl)

H (1,2)
m (klρl)

, l = 0, f , (9)

where H(1)
m and H(2)

m are the Hankel function of the first and sec-
ond kind. Eqs. (7) and (8) then leads to the reflectance R and the
transmittance T , i.e.,

R = |rd|2, T = n f

n0
|td|2, (10)

where n0 and n f are respectively the refractive indices of the start-
ing and the final media. By simply replacing ε ↔ μ, and j ↔ − j in
the above formulations, the corresponding results for the TM wave
can be readily obtained.

In the above formulations, we have considered that the input
signal is an outgoing cylindrical wave that is uniformly radiated at
ρ = 0 and impinges normally on ρ = ρ0. Our goal is to calculate
the reflectance at one point on ρ = ρ0. However, there should be
a reflected wave at the opposite end to this point and it can be re-
garded as the secondary input signal for the considered point. This
secondary signal has been assumed to be neglected for the con-
venience of formulation. Technically, this secondary source can be
eliminated by placing a receiving antenna or a metallic absorber at
ρ = 0. And the above formulations are thus acceptable and reason-
able.
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Fig. 2. Calculated reflectance spectra for MNG/ENG Bragg reflectors, where the gray
solid is for the PBR, and the dashed line is for the ABR.

3. Numerical results and discussion

In what follows we will present the numerical results for the
optical reflectance. We suppose that the ABR is immersed in free
space, i.e., n0 = n f = 1. The SNG material parameters are a = 3.5,
b = 1.2, ωmp = 1010 rad/s, and ωep = 1.3 × 1010 rad/s [12]. This
indicates that the SNG frequency range exist under the condition
of ω < 1010 rad/s. The thicknesses of the MNG and ENG layers are
d1 = 10 mm and d2 = 5 mm, and the number of the periods is
N = 21.

We first investigate the geometric effect on the reflection re-
sponse for both the ABR and PBR. In Fig. 2, we plot the frequency-
dependent TE-reflectance, where the dashed curve is for ABR with
ρ0 = 28 mm at the lowest azimuthal mode, m = 0, and the gray
solid curve is for PBR. It is seen that both of the reflection spec-
tra almost coincide, indicating that at m = 0 the geometric dif-
ference due to the curved interfaces in ABR nearly has no effect
on the reflectance compared to the PBR. In addition, there are two
high-reflection band gaps. The narrow one at frequency lower than
1010 rad/s is referred to as the SNG gap. The wide band gap at fre-
quency higher than 3 × 1010 rad/s with DPS materials is the usual
Bragg gap (BG). The fundamental features between SNG gap and
BG are well described in Refs. [11–14].

Because the optical properties at m = 0 for an ABR is nearly the
same as the usual PBR, we thus study the effects due to field solu-
tions at the higher modes. The TE-reflectance for m = 0 (a), 1 (b),
2 (c), and 3 (d) are plotted in Figs. 3, where ρ0 = 30 mm is used.
It is of interest to find that at m � 1 an additional PBG appear near
ωmp = 1010 rad/s. Such a PBG is referred to as the near-zero-n gap
for the MNG material, because within this gap the refractive index
of the MNG material is much less one and very close to zero, and
this additional PBG is referred to as the MNG gap or the magnetic
gap. The MNG gap is enhanced as m increases. At m = 2, this addi-
tional gap wider than m = 1, is not pure SNG gap but a mixed gap
of SNG and MNG gap. At m = 3, a wider flat top mixed gap is ob-
tained, as shown in Fig. 3(d). In Fig. 4, we plot the TM-reflectance
for m = 0 (a), 1 (b), 2 (c), and 3 (d) at ρ0 = 30 mm. Similar results
in Fig. 3 can also be obtained for the TM wave. Here an additional
gap is now near ωep = 1.3×1010 rad/s, and the additional PBG can
be called the ENG gap or the electric gap. This ENG gap will inter-
act with SNG gap considerably at m > 1 and then again merges
as wider PBG in Fig. 4(d). The results illustrate the effects of the
higher-mode cylindrical Bragg wave. In addition, the values in the
plasma frequencies, ωmp and ωep , will determine the position of
the additional MNG or ENG gap. It is evident that MNG gap is due
to the existence of radial component of the magnetic field Hρ of
(a)

(b)

(c)

(d)

Fig. 3. Calculated reflectance spectra of TE wave for the ABR at different azimuthal
modes (a) m = 0, (b) m = 1, (c) m = 2 and (d) m = 3, respectively, under the con-
ditions of a = 3.5, b = 1.2, ωmp = 1010 rad/s, ωep = 1.3 × 1010 rad/s, d1 = 10 mm,
d2 = 5 mm, ρ0 = 30 mm and N = 21.
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(a)

(b)

(c)

(d)

Fig. 4. Calculated reflectance spectra of TM wave for the ABR at different azimuthal
mode (a) m = 0, (b) m = 1, (c) m = 2 and (d) m = 3, respectively, under the con-
ditions of a = 3.5, b = 1.2, ωmp = 1010 rad/s, ωep = 1.3 × 1010 rad/s, d1 = 10 mm,
d2 = 5 mm, ρ0 = 30 mm and N = 21.

(a)

(b)

(c)

Fig. 5. Calculated reflectance spectra of TM wave at azimuthal mode m = 1 for the
ABR at different starting radii ρ0 = 5 mm (a), ρ0 = 10 mm (b) and ρ0 = 20 mm (c),
respectively, under the conditions of a = 3.5, b = 1.2, ωmp = 1010 rad/s, ωep = 1.3×
1010 rad/s, d1 = 10 mm, d2 = 5 mm and N = 21.

TE wave, and ENG gap is caused by Eρ of TM wave. Moreover, the
higher-order mode causes a strong interaction between the MNG
(or ENG) gap and SNG gap, leading to a wider mixed gap. These
special results arising from the higher order azimuthal mode of
the cylindrical waves are not found in the usual PBR containing of
SNG materials. The additional MNG and ENG gap suggest that the
ABR could be used to design a narrowband transmission filter or
an annular resonator without introducing any physical defect layer
in the structure.

In Figs. 5 and 6, we plot TM-reflectance spectra of the ABR for
three different starting radii at m = 1 and m = 2, respectively. (The
reflectance spectra of TM wave for ρ0 = 30 mm at both m = 1 and
m = 2 are shown in Fig. 4.) It is seen that the side lobes near the
upper bandedge of SNG gap are highly enhanced as the starting
radius decreases. Thus, the gap near 1010 rad/s is effectively en-
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(a)

(b)

(c)

Fig. 6. Calculated reflectance spectra of TM wave at azimuthal mode m = 2 for the
ABR at different starting radii ρ0 = 5 mm (a), ρ0 = 10 mm (b) and ρ0 = 20 mm (c),
respectively, under the conditions of a = 3.5, b = 1.2, ωmp = 1010 rad/s, ωep = 1.3×
1010 rad/s, d1 = 10 mm, d2 = 5 mm and N = 21.

larged at ρ0 = 5 mm. The results suggest that care therefore should
be taken in the choice of the starting radius for designing an ABR.

Next, we shall investigate the PBG which the magnetic plasma
frequency ωmp and the electronic plasma frequency ωep are lo-
cated within. To reach this end, the SNG material parameters
are chosen as a = 6, b = 2.5, ωmp = 4 × 1010 rad/s, and ωep =
4.5 × 1010 rad/s [7,9,13] and the thicknesses of MNG and ENG lay-
ers are also changed to be d1 = 6 mm, d2 = 3 mm. The starting
radius, ρ0 = 22 mm and number of periods N = 6, are taken in
our calculation. In Fig. 7 and Fig. 8, we see that ωmp and ωep are
(a)

(b)

(c)

(d)

Fig. 7. Calculated reflectance spectra of TE wave for the ABR at different azimuthal
mode m = 0 (a), m = 1 (b), m = 2 (c), and m = 3 (d), respectively, under the condi-
tions of a = 6, b = 2.5, ωmp = 4 × 1010 rad/s, ωep = 4.5 × 1010 rad/s, d1 = 6 mm,
d2 = 3 mm, ρ0 = 22 mm and N = 6.
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(a)

(b)

(c)

(d)

Fig. 8. Calculated reflectance spectra of TM wave for the ABR at different azimuthal
mode m = 0 (a), m = 1 (b), m = 2 (c) and m = 3 (d), respectively, under the condi-
tions of a = 6, b = 2.5, ωmp = 4 × 1010 rad/s, ωep = 4.5 × 1010 rad/s, d1 = 6 mm,
d2 = 3 mm, ρ0 = 22 mm and N = 6.

Fig. 9. Calculated reflectance spectra of TE wave at azimuthal mode m = 2 for
the ABR, under the conditions of a = 3.5, b = 1.2, ωmp = 1010 rad/s, ωep = 1.3 ×
1010 rad/s, ρ0 = 60 mm and N = 21. The gray solid is for d1 = 9 mm, d2 = 4.5 mm.
The dashed line is for d1 = 8 mm, d2 = 4 mm (scaled by 8/9).

located within the PBG. Some features are to be noted. There are
dips near ωmp within the PBG at mode m � 1 for TE wave, whereas
dips appearing near ωep in the PBG for TM wave. The dip in TM
wave is shallower compared with the TE wave. The appearance
of such dips in reflectance is mainly due to the higher azimuthal
mode of the cylindrical wave, which, in fact, does not show up in
the PBR in the normal-incidence case. In addition, these dips in the
PBG are related to the field component Hρ of TE wave and Eρ of
TM wave, respectively. The deep dip in TE wave enables us to de-
sign a circular transmission narrowband filter or resonator without
introducing any physical defect. Moreover, a multi-resonance filter
is also possible because of the presence of the multiple dips in the
reflection response.

It should be noted that the SNG material parameters and the
film thicknesses in plotting Figs. 7 and 8 are different from in
Figs. 2–6. We use these because the SNG gap is insensitive to the
lattice constant and the SNG gap midfrequency is invariant of the
ratio of the thickness (see Ref. [12]), it is thus difficult to change
the position of the SNG gap in the spectra. In Figs. 2–6, the mag-
netic plasma frequency ωmp and the electronic plasma frequency
ωep are very close to the SNG gap. If we only change the film
thicknesses but use the same values of the plasma frequencies as
in Figs. 2–6 to achieve the condition that the plasma frequencies
are located within the PBG, this PBG will approach to the SNG gap,
which may lead to a confusion in the dips as well as the band
edges. Moreover, the PBG may even overlap the SNG gap, which
also makes the condition more complicated.

The thickness-dependent band structure in plotted in Fig. 9,
where we take a fixed thickness ratio of the two constituent layers
with different lattice constants. It is seen that SNG gap is nearly
invariant for a fixed thickness ratio, robust to the variation in the
lattice constant. However, the Bragg gap is strongly affected by the
variation in the lattice constant. That is, the change in the lat-
tice constant leads to a shift in the Bragg gap. In addition, the
gap is enhanced as the lattice constant is decreased. These fea-
tures in SNG and Bragg gaps are also seen in the usual SNG PBR.
Conclusively, the fundamental optical properties are proven to be
preserved even in the ABR where the boundaries are geometrically
changed from the planar shape to the annular one.

Finally, let us consider ABR containing a defect layer D with
εd = 1.8, μd = 1.8 and dd = 45 mm. The structure is denoted as
(MNG/ENG)6D(MNG/ENG)6. Here we take the material parameters
of MNG and ENG as a = 1.5, b = 1.5, ωmp = 1010 rad/s, and ωep =
1010 rad/s. For convenience of comparison, the reflectance of ABR
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(a)

(b)

Fig. 10. Calculated reflectance spectra of TE wave at m = 1 for the ABR. The mate-
rial parameters are a = 1.5, b = 1.5, ωmp = 1010 rad/s, and ωep = 1010 rad/s. The
spectrum with no defect is in (a), where d1 = 24 mm, d2 = 12 mm, ρ0 = 30 mm
and N = 13. The spectrum of structure with defect layer, is shown in (b), where
the defect layer has εd = 1.8, μd = 1.8 and dd = 45 mm. The gray solid curve is for
d1 = 24 mm, d2 = 12 mm. The dash-dotted curve is for d1 = 16 mm, d2 = 8 mm
(scaled by 2/3). The starting radius ρ0 = 30 mm is used.

without defect is first plotted in Fig. 10(a). The reflectance in the
presence of the defect is then shown in Fig. 10(b), in which two
different magnitudes of thickness, d1 = 24 mm, d2 = 12 mm (gray
solid curve), and d1 = 16 mm, d2 = 8 mm (dash-dotted curve) are
taken, and the starting radius ρ0 = 30 mm is used as well. When
the lattice constant is scaled down by 2/3, the Bragg gap in the
presence of the defect is obviously moved to the higher frequency,
while it remains fixed for the SNG gap. The result again elucidates
that the SNG gap is indeed robust to the lattice constant (with a
fixed thickness ratio of the constituent bilayer) even in the ABR. It
is also contrasted with the Bragg gap that the spectral position of
the defect mode inside the SNG gap is nearly invariant with the
lattice constant scaling.
4. Summary

The photonic band structures of an ABR containing SNG ma-
terials have been theoretically examined in this work. With the
field solutions of the circular Bragg waves being dependent on the
azimuthal mode number m, optical properties including the SNG
and Bragg gaps at different m modes are examined numerically.
The conclusion can be drawn as follows. First, at the lowest mode,
m = 0, the PBG structure in an ABR is nearly identical to that of a
PBR. Second, At higher order azimuthal mode m � 1, we find that
there is an additional PBG called the MNG gap and the ENG gap
for the TE wave and TM wave, respectively. We also find that there
exist some reflection dips when ωmp and ωep are taken in the PBG
for TE and TM waves, respectively. These results are closely re-
lated to the higher order azimuthal mode of the cylindrical wave
in an ABR, which are has not be seen in the PBR with SNG ma-
terials. Such special filtering responds make it possible to design
the structure of a narrowband resonator without introducing any
defect layer to break the periodicity. Third, the PBGs are strongly
affected by the starting radius in addition to the m-number at
m > 0. The SNG gap is robust to the lattice constant with a fixed
thickness ratio of the constituent bilayer. Finally, for an ABR in-
cluding a defect layer, it is found that the property of the SNG
band gap is insensitive to the disorder.
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