MPEG-4 it 4345 B2 # i

28 4 DSP T & e IR

MPEG-4 AAC Codec Acceleration

and DSP Implementation

Moot 23R

B g Bl

;1*"‘9\[3;]{4‘2,:37

A

MPEG4¢:&% Y fERE B2 3 i3
3 H 4 DSP T 5 Fenf IR

MPEG-4 AAC Codec Acceleration
and DSP Implementation

Moy oA 1FF Student: Yin-Ming Wang
R Em B4 Advisor: Dr. Hsueh-Ming Hang

A Thesis
Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science
in
Electronics Engineering

June 2005
Hsinchu, Taiwan, Republic of China

v X /4 e g 2

MPEG-4 £ i& 3 20 % 245 B 2 5 3¢
2 # 4 DSP T 5+ eg I

CERES 35 fl g gl ML

Mzid~§ TF1F i3 F+F7Ls

i &

MPEG-4 * i& 5 3t 30 a8 (AAC) A_25 W 5 »a 5 chyy AR SF 5B i - 7 4
ISO/IEC MPEG #t#] ® - & 4R2 -

EARwE Y 0 NP E Ak 47 MPEG-4 Rk 3 %ss B & DSP b chdd 7 3¢
BAFseR o # meu 2 BF 038 (psychoacoustic model)fo & i 2 = %5 (bit
allocation) #7 1= endy (7 FFa% B & g Zon B8R 54U i > 240 A DSP + a0 I
Fl# vt g Peig g B R L & Aeig 205

BEDSPRIMZ G 0 50 @ ABFAKBE > AP DSP engEfER o -
AR ST 0 & 5 R TR AN S T DSP chiFsrdy €35 % & P RFat 2tk
e 247 - BPFFFAFEZOLET AR RO WS B o TS RN
2R N A o 5d ip RN 2T B s S BAR A B DSP o endd 7
Bt Rokeng 1 T7.89% e L g R o X E AL e LB M E R S fF
B EA HF e [I(Innovative Integration) #7# #=7Quixote DSP -+ &+ -
R ER R S Rl R RO IR L R e E R) A A TN

% ? fﬁ_‘ﬁf II% ’E’J; E’Sfb _.‘:_ ""\' IFE m'éll 1§ % /f ./u g E_, LL ’t@"% %ﬂ. l“,ﬁnlz_,% % ﬁ;:’lz_,% %)Ié.

MPEG-4 AAC Codec Acceleration
and DSP Implementation

Student: Yin-Ming Wang Advisor:Dr. Hsueh-Ming Hang

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

Abstract

MPEG-4 AAC (Advanced Audio Coding) is an efficient audio coding standard. It
is defined by the ISO/IEC (International Standard Organization) MPEG (Moving
Pictures Experts Groups) committee.

In this thesis, we first analyze the computational complexity of the MPEG-4 AAC
encoder program. We find that the PAM (psychoacaustic model) and the quantization
and bit allocation module require the.-most execution cycles on DSP. Hence, we
mainly propose methods to accelerate them on DSP.

In order to speed up the AAC encoder on DSP, we use several DSP codes
acceleration techniques including fixed-point data types, Tl (Texas Instruments) DSP
intrinsic functions and others. In addition, we accelerate the PAM and the quantization
and bit allocation modules by fast algorithms for DSP implementation. Through these
modifications, the final AAC encoder version has about 77.89 percent improvement.
Furthermore, we also successfully implement both the AAC decoder and encoder on
the 1I’s (Innovative Integration) Quixote DSP board. We adopt the burst block
transmission mechanism for communication between the host and the target side.
Finally, the speed of the AAC encoder and decoder on DSP implementation can

achieve real-time operation.

AR A ER® Y o B ML ol BRI R E R i E G
TAR XA R AL EhioRa R LY B0 AREHY Pl

BoRAEE U

FHEREAHA 2 RL AR S FH AT A g EkY o AR
EHTREDFE R F2 55 Bul L s s TRRFE RIS

SRy HuE G A BRHE AT E B AT NBE 6 R g o
ALnFELOFRNART oL >R IRI-FFMOSIR R LA P
G RERFP RN AF] ERY BRI TP 5T g e ¥

Ny BRGNS AL E PR R RARFR

~

Bofs o AR PEHA DA 2 JAS G WEHP R E P R EEG S XD

é-;T‘*uo

T RMEA R F o X yRE S - EAL B

CrE R ’}gk.ﬁgﬁﬁfii&

¢t B L 2 JTEA A s SRR

AEL e

List of Figures

Fig. 2.1 Block diagram for MPEG-2 AAC €NCOUET.........ccevverieeieiieieeieseeseeie e 5
Fig. 2.2 Block diagram of psychoacoustic model.............cccccvevviieiiiii i 7
Fig. 2.3 Block diagram of gain control tOO0l.............cccevvriiiiene e 8
Fig. 2.4 Window shape adaptation ProCESS..........ccververeriierieerieeiesee e eee e e eee e seeas 9
Fig. 2.5 Block switching during transient signal conditions.............cccceceveveiivevveienne 10
Fig. 2.6 Prediction tool for one scalefactor band............ccccoovvveviiiiicie e 11
Fig. 2.7 Block diagram of MPEG-4 GA eNCOUET..........cceiveiieiieeireie e sieeie e 14
Fig. 2.8 LTP in the MPEG-4 General Audio encoderccccevveieiieneeiiesieesn e 15
Fig. 2.9 Principle of Perceptual Noise SUBStItULION.........ccccovveerieiciiece e 16
Fig. 2.10 TwinVQ quantization SChemMIEit il v eeeieereeieseesesee e e e ee e 17
Fig. 3.1 Innovative Integration's Quixote DSP Baseboard Carkccccceevvevvrnnnne. 22
Fig. 3.2 Block Diagram of QUIXOTE ... i it et et ee e sen s 22
Fig. 3.3 Block diagram of TMS320CBX DSP...........cccueiiiiieiieiiee e 23
Fig. 3.4 The TMS320C64x DSP-Chip/Architecture and Comparison with Ancient

TMS320CE2X/COTX CRIP ... i e iaieas ettt nes 24
Fig. 3.5 TMS320C64x CPU Data Path........c.cccoeiiiiiiieseee e 26
Fig. 3.6 Functional Units and Operations Performedc.ccccevvevivveneiieseesn e 27
Fig. 3.7 Functional Units and Operations Performed (Cont.).........cccccevvevviiinvnernenne 28
Fig. 4.1 Code development flow of C6000..........ccceeviiieiieiieiie e 35
Fig. 4.2 Intrinsic functions of the T1 C6000 series DSP (partial list)cccccveeenee. 40
Fig. 4.3 Block diagram of original PAMccccociviiiiieie e 43
Fig. 4.4 Block diagram of propoSed PAMccccviieiieiesiieseene e 44
Fig. 4.5 Requantization operation with three rangesccccevevveievieesesiesee e 48
Fig. 4.6 Block diagram of bit allocationcccccveveiiiiiiii s 50
Fig. 4.7 Flow chart of the bit allocation algorithmcccccooevieiiiei e 52
Fig. 5.1 Structure of AAC decoder implementation on DSP............ccccoecveveiiievveiene. 58
Fig. 5.2 Structure of AAC encoder implementation on DSP..........c.ccccoecveviiiienveiene. 61

List of Tables

Table 4.1 Profile of AAC encoder 0n CBAX DSP.........cccviiiiiiiniieiene e 36
Table 4.2 Compiler Options for Performance Enhancement...........cccccccevvvevvecesinnnnnn 37
Table 4.3 Compiler Options to Avoid on Performance Enhancement..............cccc....... 37
Table 4.4 Processing time on the C64x DSP for different data types...........ccccevevenen. 38
Table 4.5 Comparison between with unrolling and without unrolling 39
Table 4.6 The acceleration result of the PAM in the AAC encoder..........cccocereriennene 46
Table 4.7 The ODG of test SEQUENCE “QUITAI™ccveiierieeie e 46
Table 4.8 The ODG of test SEQUENCE “Organ”........ccceiverierieereerieseeseesieseesieseeseeseeas 46
Table 4.9 The ODG of test sequence “eddierrabbitt”...........cccccoeveviviiiiieniece s 46
Table 4.10 The acceleration result.of the Requantization in the AAC encoder........... 48
Table 4.11 The acceleration result of the bitallocation in the AAC encoder 53
Table 4.12 The ODG of test SeqUENCE “QUITAI™ccrerveeieereerieeiereere e seeseesee e 53
Table 4.13 The ODG Of test SeqUENCE “OFGAM ... iiitrrerrereereeeiesteesieeeeseeseeseeseeeens 53
Table 4.14 The ODG of test sequence:“eddie_rabbitt”.............c.cccoovvviiiiiiniiieiies 54
Table 4.15 The final acceleration result of the AAC encoder...........ccoovvvvenencrennnn 55
Table 4.16 Profile of final modified AAC encoder on C64X DSP...........ccccvvvvvvnennnn. 55
Table 4.17 Improvement of each part in AAC encoder on C64X DSPccccccevenen. 55
Table 4.18 The ODG Of test SEQUENCE “QUITAI™c.cccveruveieerierienie e see e 55
Table 4.19 The ODG Of test SEQUENCE “OrgaN........c.ccvveruerieereeieseesieeieseeseeseeseeeens 56
Table 4.20 The ODG of test sequence “eddie_rabbitt”...........c.ccoveviiiiiiiiiiiieiiee 56
Table 4.21 The ODG of test SeqUeNCe “TS_ 017ccccveveiieereere e 56
Table 4.22 The ODG of test SeqUENCEe “TS_ 027c.cccveveeieeieerieseesr e se e 56
Table 4.23 The ODG of test SequenCe “TS 037cccccveiviieereeriesiese e 56
Table 5.1 Implementation result of AAC decoder on DSP........ccccccevvvevviieiieieeieenn, 59
Table 5.2 Implementation result of AAC encoder on DSP........ccccccevvveviiieiieieeieenn, 62

Contents

Y T e [
ADSTTACT ...t ii
D OSSOSO iii
LISE OF FIQUIES .ttt ettt et e e te e e e s naesaeeneenneas iv
LIS OF TADIES ...t %
Chapter 1 INTrOAUCTIONccvveieiieceee et sne e enes 1
Chapter 2 MPEG-2/4 Advanced Audio CoadiNg.........cccevivereeierieeseeeseese e 3
2. L MPEG-=2 AAC ... ottt ettt 3
2.1.1 PSychoacoustiCc MOUEIcccocviieiieie e 5

2.1.2 Gain Control..........o. sl EER 1ot 7

2. 1.3 FITErbank it s smms st oot i e ve sttt 8

2.1.4 PrediCtion i it aidh e e 10

2.1.5 Temporal Noise:Shaping (TNS).......cccueeeiieiieece e 11

2.1.6 Joint Stere0 COtING ... it ol et 11

2.1.7 QUANTIZALION ... i itfonte e ereesre et esee e sbeesbeesreesre e saaesbeenrees 12

2.1.8 NOISEIESS COUING ...vveveeirerieeteeie e siee et e et sre e eas 13

2.2 MPEG-4 AAC VEISION Lottt 13
2.2.1 Long Term Prediction (LTP)cccccvvveieeecieseese e 15

2.2.2 Perceptual Noise Substitution (PNS)........cccceevveieviinvieere e 16

2.2.3 TWINVQ .ottt sttt enes 16

2.3 MPEG-4 AAC VEISION 2.ttt 17
2.3. 1 ErrOr RODUSINESSccuieiiiieie st 17

2.3.2 Low-Delay Audio COING.....c.cccveieiieiieie e 18

2.3.3 Fine Grain Scalabilitycccovvvereiiiiiee e 19

2.3.4 Parametric AUdIO COING......ceiviieiierieieceese e 19

2.3.5 CELP Silence COMPIreSSIONccveveieerieeieieesieerieseesieesee e sreesae e 19

2.3.6 Extended HVXC ..ot 20

Chapter 3 DSP Implementation ENVIrONMENtcccoeveiiveieiiesicceee e 21
3.1 DSP BASEDOAITccuveiiiiiieie it 21

3.2 DSP ChlP. ittt 23
3.2.1 Central Processing Unit (CPU)cccccevviieiiieir e 24

Vi

3.2 2 DAtA PAN ... e 26

.23 MIBIMOTY ..ttt bbbttt 28
3.2.3.2 Internal MEMOTYooveiieeiece e 28

3.2.3.2 External Memory and Peripheral Options.............cccccvevvvunnee. 28

3.3 Data Transmission MeChaniSMccccuiiiiriirie i 29
3.3.1 DSP Streaming INterface.......cccccveveviieieere e 30
3.3.2 Burst BIOCK TranSmMiSSIONcovrieieriinie e 30
3.3.3 MeSsSsage EXCNANGE.......cccveviiieiieie e 31
Chapter 4 MPEG-4 AAC Encoder Acceleration On DSPccccceviveveiieneenecienn, 33
4.1 TI's Code Development ENVIFONMENL.........c.cccveveiieiieiriie e 33
4.1.1 The Code COmPOSEr StUAIOc.veeveiieriierie e 33
4.1.2 Code Development FIOWcccocviiiieie e 34

4.2 Profile Of AAC 0N DSP.....cciiiiiiieieeseee st 36
4.3 DSP Code Acceleration Methods...........coovieiiniiiiiiieeese e 36
4.3.1 Setting of Compiler OPtioNScccvcveivereeie e 36
4.3.2 FiXxed-point COaiNGccoveiieiieiesiesieerie e e 38
4.3.3 Loop UNrolling.........cstB i i eeee e eie e ee e ee e 38
4.3.4 USING INEFINSICS .. it cwes s o e esh e ereeseeaneesseessessenssnessessenssesnsessensees 40
4.3.5 Packet Data PrOCESSINMT . .usiiih . siveaies datiseereeereesseessesseessneseesseesseessessessees 40
4.3.6 Register and MEMOTY ... cciiiiereeive it ese e seesieeeesree e eseesreeseeeneeens 41
4.3.7 USING MACTOS ... ot iui . rshniaies fee oottt ee st e ste e e steenae e e sneeneennes 41
4.3.8 Linear ASSemMbBIY ..ot e ciifen e 41

4.4 PSYch0oacOUSEIC MOccveiree e 42
4.4.1 Optimization OFf PAMcooi o 42
4.4.2 Simulation ReSUItS 0N DSP ..o, 45

4.5 Quantization and Bit AHIOCAtION...........ccceiviiiiii i 46
4.5.1 A High Quality Requantization Methodccccccviveviiieieenecee 47
4.5.2 Simulation ReSUItS 0N DSP.........cocooiiiiiiiiiicceee e, 48
4.5.3 Single Loop Distortion Control Algorithmcccoovevveievicivcee, 49
4.5.4 Simulation ReSUItS 0N DSP ..ot 52

4.6 The Final Simulation and Acceleration Results on Tl C64x DSP.................. 54
Chapter 5 MPEG-4 AAC Codec Implementation on DSPccccccocovvveiinieeieiiennn, 57
5.1 AAC Decoder Implementation 0N DSPccccceieviieiiiiie e 57
5.1.1 Structure of AAC Decoder Implementation.............c.ccoecvevvvivesnernnnne 58
5.1.2 Implementation Results of AAC Decoderccccevvverviveeivesnenene 59

5.2 AAC Encoder Implementation 0N DSPccoceiieiiiieiie e 60
5.2.1 Structure of AAC Encoder Implementation...........c.ccccevvevevievvenienne 60
5.2.2 Implementation Results of AAC ENCOEr..........cccccvvveerieiiiesieireiene 61

vii

Chapter 6 Conclusions and Future Work

6.1 Conclusions
6.2 Future Work
Bibliography

viii

Chapter 1

Introduction

MPEG stands for ISO “Moving Pictures Experts Groups.” It is a group work under
the directives of the International Standard Organization (ISO) and the International
Electro-technical Commission (IEC). This group work concentrates on defining the
standards for coding moving pictures, audio and related data.

The MPEG-4 Advanced Audio Coding (AAC) is an efficient audio algorithm
standardized by ISO/IEC MPEG committee. The AAC can achieve indistinguishable
quality at 128 kbits/s for stereo signals;'and:at 320 kbits/s for 5.1 multichannel audio.
Hence, it can compress audio data at-high quality with high compression efficiency. The
MPEG-4 AAC mainly inherits MPEG-2 AAC (13818-7) and adds several tools to
enhance the coding performance, suchras-temporal noise shaping (TNS), perceptual noise
substitution (PNS), long time prediction (LTP)," spectral band replication (SBR) and
others.

In this thesis, our aim is to implement the MPEG-4 AAC encoder and decoder on the
DSP processor. Hence, we adopt the DSP board made by Innovative Integration's Quixote
to implement our program. The board houses a Texas Instruments' TMS320C6416 DSP
and a Xilinx Virtex-11 FPGA. The TI TMS320C6416 fixed-point processor has a rather
good performance. Its instruction cycle frequency is 600MHz. It adopts the advanced
VelociTl very long instruction word (VLIW) architecture that can execute eight
instructions in parallel. In addition, we accelerate the MPEG-4 AAC encoder by some
DSP coding techniques and several efficient algorithms.

Our contributions are the acceleration of the AAC encoder and the implementation of
the AAC encoder and decoder. Through some DSP codes acceleration techniques and the
fast algorithms of the PAM (psychoacoustic model) and the quantization and bit

allocation modules in AAC encoder, the final AAC encoder version has about 77.89

percent improvement. Furthermore, the speed of the AAC encoder and decoder on DSP
implementation can achieve real-time operation.

This thesis is organized as follows. In chapter 2, we describe operations of MPEG-2
AAC and MPEG-4 AAC. In chapter 3, we describe the DSP development environment
and the communication interface provided by the DSP platform. In chapter 4, we speed
up the AAC encoder program on DSP. In chapter 5, we successfully implement the AAC
encoder and decoder on DSP platform. Finally, we give a conclusion and future work of

our system.

Chapter 2
MPEG-2/4 Advanced
Audio Coding

In this chapter, we will briefly introduce several basic concepts and major modules of
the MPEG-2/4 AAC (Advanced Audio Coding) system. Details can be found in [1] and
[2] respectively.

2.1 MPEG-2 AAC

In 1994, the MPEG-2 audie, standardization committee defined a high quality
multi-channel standard. It was the first-step of the development of “MPEG-2 AAC”. In
1997 April, the MPEG-2 AAC (ISO/IEC 13818-7) was standardized by the MPEG
(Moving Pictures Expert Group). The aim of MPEG-2 AAC was to reach
“indistinguishable” audio quality at the data rate of 384 kbps or lower for five
full-bandwidth channel audio signals as specified by the ITU-R (International
Telecommunication Union, Radio-communication Bureau). Testing results showed that
MPEG-2 AAC needs 320 kbps to achieve the ITU-R quality requirements. This result
showed that MPEG-2 AAC satisfied the ITU-R specifications.

The MPEG-2 AAC provides the transparent audio quality at the cost of discarding
MPEG-1 backward-compatibility. The MPEG-2 AAC algorithm combines the coding
efficiency of a high-resolution filter bank, prediction techniques, Huffman coding and
other tools to achieve the audio quality at low data rates. And like most audio coding

schemes, the MPEG-2 AAC algorithm compresses signals by removing the redundancy

between samples and the irrelevant audio signals. We can use time-frequency analysis for
removing the redundancy between samples, and use the masking properties of human
hearing system to remove irrelevant audio signals. Besides, the MPEG-2 AAC system
offers three profiles to fulfill the demand of different tradeoffs between audio quality,
memory requirement and system complexity. For this purpose, the three profiles are
defined as main profile, low-complexity (LC) profile and scalable sampling rate (SSR)
profile. The main profile is intended for use when the processing power, and especially
the memory, is not better. The LC profile is intended to use when the computing cycles
and memory use are constrained, and the SSR profile is in use when a scalable decoder is
required.

Next, we will briefly introduce each tool in this section. Fig 2.1 gives an overview of

the MPEG-2 AAC encoder block diagram.

Input time signal

Gain
Control
Perceptual
Model l Leaend
Filter Data
Bank Control —
TNS
Intensity/ R
Coupling e
Quantized |
Spectrum gt
of — | Prediction Bitstream |mmmmpp 13818-7
Previouk Multiplex (SitC;Saeg]Audlo
Frame
M/S
Iteration Loops
Scale g
Factors
Rate/Distortion Quantizer
Control Process
Noiseless :
Coding :

Fig 2.1 Block diagram for MPEG-2 AAC encoder [1]

2.1.1 Psychoacoustic Model

The psychoacoustic model is an essential component of the AAC encoder that enables
its high performance. The job of the psychoacoustic model is to analyze the input audio
signal and determine where the spectrum quantization noise can be allowed and to what
extent. Then, the encoder uses this information to decide how to represent the input audio
signal in the most way with the given limited number of code bits. In this process, the

psychoacoustic model calculates the maximum distortion energy value which can be

masked by the signal. And this energy is called threshold. The threshold generation

process has three inputs. They are:

1.

The shift length for the threshold calculation process is called iblen. This iblen must
remain constant over any particular application of the threshold calculation process.
For long FFT iblen = 1024, for short FFT iblen = 128.

For each FFT type, the newest iblen samples of the signal, with the samples delayed
(either in the filterbank or psychoacoustic calculation) such that the window of the
psychoacoustic calculation is centered in the time-window of the codec
time/frequency transform.

The sampling rate. There are sets of tables that will be used in the calculation process,
and the tables are provided for the standard sampling rates. Sampling rate must
necessarily remain constant over one implementation of the threshold calculation

process.

The outputs of the psychoacoustic model are:

1.

a set of Signal-to-Mask Ratios and thresholds, which are to be used by the encoder.

2. the delayed time domain data (PCM samples), which are to be used by MDCT.
3.
4

the block type for the MDCT.
an estimate of the amount of bits should be used for encoding in addition to the

average available bits.

Fig 2.2 [2] shows the block diagram for the psychoacoustic model in the MPEG-2

AAC encoder. Unlike the psychoacoustic model 1, this model does not make a

dichotomous distinction between tonal and non-tonal components. Instead the spectral

data is transformed to a “partition” domain and the fractions of the tonal and non-tonal

components are estimated in each partition. This fraction ultimately determines the

amount of masking.

For more detailed procedures for calculation, please see [2].

input buffer

'

FFT (long and zhort)
(windowsize lonz 2048
windowsize short 236)

+ delay compenszation for
filterbank

calculate unpredictability measure cw

Y

calculate threshold (part 1)

Y

calculate perceptual entropy

use use

long blocks short blocks
perceptual entropy
N = gwitch pe ? Y
calculate threshold (part 2) calculate threshold for short blocks

delay threzhold (ratio), blocktype, perceptual entropy by one block

if (window_sequence({n) ==EIGHT SHORT SEQUENCE &&
window_sequence(n-1) == ONLY_LONG_SEQUENCE)
window sequence{n-1)=LONG START SEQUENCE;

Y Y

output buffer: blocktype, threshold (ratio), perceptual entropy, time signal |

Fig 2.2 Block diagram of psychoacoustic model [2]

2.1.2 Gain Control

The gain control tool receives the input time-domain signals, and then ouputs
gain_control_data and a gain controlled signal whose length is equal to the length of the
MDCT window. The tool consists of a PQF (Polyphase Quadrature Filter), gain detectors
and gain modifiers. The PQF divides the input signals into four equal width frequency
bands. The gain detectors produce gain control data, which satisfies the MPEG bitstream
syntax. They consist of the number of gain changes, the index of gain change positions

and the index of gain change level. The gain modifier for each PQF band controls the

gain of each signal band. And the gain control tool can be applied to each of four bands

independently. The block diagram for the gain control tool is shown in Fig 2.3.

window_ A L gain_
SeqUence prontrol_
In
Fdata

f 256 or 32

] MDCT
256 or 32 Spectral

» MDCT reverse

¥ Gain 256 or 32
Modifier MDCT
—M Gain J

M Gain
Modifier

—

Fr
2
4]
-
s
Lx]
=
=

—1n PQF

¥ Gan |]256 or 32 L, Spectral
Modifier [MDCT reverse
—» Gain J
Detector aain
controlled
Zain control tool fme
signal

Fig 2.3 Block‘diagram-of gain control tool [2]

2.1.3 Filterbank

The filterbank maps the signal samples into a spectral representation using a modified
discrete cosine transformation (MDCT) with critical subsampling and overlapping
subsequent windows. The MDCT employs TDAC (time-domain aliasing cancellation)
technique.

In the encoder, the filterbank takes in the appropriate block of time samples,
modulates them by an appropriate window function, and performs the MDCT. Each block
of input samples is overlapped by 50% with the immediately preceding block and the
following block in order to reduce the boundary effect.

The mathematical expression of the MDCT is

< 27 1 N
Xix _ngm COS[W(nJrnO)(k +Eﬂ, k=01,..,2--1 2.1)

where
n =sample index
N = transform block length
i =Dblock index
k = coefficient index

no = (N/2+1)/2

Since the window function has a significant effect on the filterbank frequency
response, the filterbank has been designed to allow a change in window length and shape
to match to the input signal characteristics. There are two resolutions in AAC, one with
1024 spectral coefficients (one long window):and one with eight sets of 128 coefficients
(eight short windows) and the switching between them is supported through the use of
transition windows. The encoder also selects the optimal shape for each of these windows
between the Kaiser-Bessel-derived windew(KBD) with improved far-off rejection and

the sine window with a wider main‘lobe.

Kaiser-Bessel Derived Window s for Cverlap-Add Sequence

Time (samples)

Fig 2.4 Window shape adaptation process [2]

9

windows during transient conditions

1 23_4;35?5_

9 .0

———

LI LN R N NLEL BN N NN m BN N NN N N my NN BN BN N B NLEL N N BN N mw NN BN NN h B EL BN NN m L |
0 512 1024 1536 2048 2580 3072 3584 4008
Time (samples)

Fig 2.5 Block switching during transient signal conditions [2]

2.1.4 Prediction

Prediction is used for an improved redundangy-reduction and is very effective in the
stationary parts of a signal. The current'spectral coefficient is estimated by the predictor
based on the corresponding spectral coefficients of the preceding two frames and only the
prediction errors need to be transmitted.

For each channel prediction is applied to the spectral components resulting from the
filterbank. For each spectral component, there is one corresponding predictor resulting in
a bank of predictors. Each predictor exploits the auto-correlation between the spectral
component values of consecutive frames. The predictor coefficients are calculated from
preceding quantized spectral components in the encoder. A second order
backward-adaptive lattice structure predictor is working on the spectral component values
of the preceding frames. The predictor parameters are adapted to the current signal
statistics on a frame-by-frame base, using an LMS-based adaptation algorithm. If the
prediction is activated, the quantizer is fed with the prediction error. Fig 2.6 shows the

block diagram of prediction unit for one scalefactor band.

10

Predicror
- Side Info

D, PREDICTOR CONTROL
- (P_OMN/P_OFF)

- F— - Q; - »

Yein) v (1)

- IF (P_ON)

Y}

L J

g om

IF (P_OFF) -

i ']
Xporag (M=) 1 yam) = xim)
X ()
" —I—.
iy
X ane]
Vg im) {H}
Y2 Vg2

Fig 2.6 Prediction tool for one scalefactor band [2]

2.1.5 Temporal Noise Shaping (TNS)

The Temporal Noise Shaping. tool is used to control the temporal shape of the
quantization noise within each window of the transform, which is needed for transient
and pitched signals. This is done by applying a filtering process to parts of the spectral
data of each channel. The tool can provide considerable enhancement to the audio quality

for the speech and transient signals.

2.1.6 Joint Stereo Coding

AAC joint stereo coding reduces the needed bitrate for stereo or multichannel signals
more efficiently than separate coding of several channels. There are two different joint
stereo methods that can be selected for coding of different frequency bands to optimize
the resulting bitrate: M/S stereo coding and intensity stereo coding.

1. MI/S stereo coding:
The decision to code left and right coefficients as either left/right (L/R) or mid/side

11

(M/S) is made on a noiseless coding band by noiseless coding band basis for all spectral
coefficients in the current block. M/S stereo coding is very efficient for near monophonic
signals, because it use a sum (M) and a difference (S) channel instead of left and right
channels and the difference signals is very small in this case. If the high correlated left
and right signals could be summed, the require bits to code this signals will be less.
Therefore, when the left and right signals’ correlation is higher than a threshold, the M/S
stereo coding tool will operate on transforming the L/R signals to M/S signals.

2. Intensity stereo coding:

The intensity stereo coding tool is used to exploit irrelevance between high frequency
signals of each pair of channels. It adds high frequency signals from left and right
channel and multiplies to a factor to rescale the result. The intensity signals are used to
replace the corresponding left channel high frequency signals, and corresponding signals
of the right channel are set to zero. In this AAC system, the intensity stereo coding

mechanism is implemented in the LC profile.

2.1.7 Quantization

AAC uses the nonuniform power-law "quantization, where smaller values are
quantized finer, so that quantization noise is stronger at larger values and is easier masked.
Scalefactors are used to scale the spectral coefficients before the quantization to be able

to control the power of the introduced quantization noise.

0 g0

iX()) =sgn(xr(i))-NINT
X() g(()) Q/unantize_rstepsize (2.2)

The AAC quantization module consists of three levels. The top level calls a
subroutine named “outer iteration loop”, which calls the subroutine “inner iteration loop”.
The outer iteration loop (distortion control loop) controls the quantization noise which is
produced by the quantization of the frequency domain lines within the inner iteration

loop to maintain perceptual performance. The inner interation loop (rate control loop)

12

calculates the actual quantization of the frequency domain data to maintain bit rate.

2.1.8 Noiseless Coding

In the AAC encoder the input to the noiseless coding module is the set of 1024
quantized spectral coefficients. Since the noiseless coding is done inside the quantizer
inner loop, it is part of an iterative process that converges when the total bit count is
within some interval surrounding the allocated bit count. The noiseless coding stage in
AAC uses sectioning and Huffman coding (entropy coding) and exploits statistical
redundancy to efficiently encode the 1024 coefficients without further loss of
information.

The noiseless coding segments the set of 1024 quantized spectral coefficients, such
that a single Huffman codebook is used to code each section. The Huffman coding is used
to represent n-tuples of quantized coefficients, with 12 codebooks can be used. The
spectral coefficients within n-tuples are lordered and the n-tuple size is two or four
coefficients. Each codebook specifies/the maximum-absolute value that it can represent

and the n-tuple size.

2.2 MPEG-4 AAC Versionl

MPEG-4 is formal as its ISO/IEC designation “ISO/IEC 14496, and it includes the
major parts: Systems, Audio, Video and DMIF. Specially, compared to previous MPEG
standard, MPEG-4 has the following concepts: universality, scalability, object-based
representation, content-based interactivity and natural and synthetic representations.

MPEG-4 AAC Version 1 was finalized in October 1998 and became an International
Standard in the first months of 1999. It is fully backward compatible with MPEG-2 AAC,
and includes some additional tools such as the long term predictor (LTP) tool, perceptual
noise substitution (PNS) tool and transform-domain weighted interlaced vector

quantization (TwinVQ) tool. The PNS tool and the LTP tool are available to enhance the

13

coding performance for the noise-like and very tonal signals, respectively. The TwinVQ
tool is provided to cover very low bitrates. This new scheme which combined AAC with
TwinVQ is officially called "General Audio (GA)." Next, we will briefly introduce these

new tools.

input time signal

|
| |
AAC
{Fain Control
Tocl Lagand:
DiAtd e—
Conmol
Window
Length Filterbank
Decision
1 .. Spectral Frocessing
THS
Prychoacoustic Modal 1
. Perceptusl Long Term
Model Prediction

Bark Scale o
Scalefactor Inpensity
Band Mapping Coupling

Bitstrean i
Pradiction Formatter coded andio
STERI

BS

AAC TwinVi)
Scalefactor coding Specoum
Crantization orinalizanon And
Ilpiseless coding Interlesvad V)
I I
e

Criamrization and Coding

Fig 2.7 Block diagram of MPEG-4 GA encoder [2]

14

2.2.1 Long Term Prediction (LTP)

The LTP tool is well-known from speech coding and is used to exploit redundancy in
the speech signal which is related to the signal periodicity as expressed by the speech
pitch. The LTP tool has been integrated into the audio coder where quantization and
coding is performed on the input signal. Fig 2.8 shows the combined LTP and coding

system.

T/F |= LDIJ.;-T-EHJJ.‘_ F/'T

Prediction
A
o | Long Term
| Synthesis
A
Y
Long Term Chiantizer Bitstream
| I.F - E‘mdm:t'.u:u: || and #| Encodsr’ |[—m
Exror & Coding Wnltrplexer
(Gams

f

L | Povchoacoustic Model J Side Information

Fig 2.8 LTP in the MPEG-4 General Audio encoder [2]

The LTP is used to predict the input signal based on the quantized values of the
preceding frames which were transformed back to a time domain representation by the
inverse filterbank and the associated inverse TNS operation. Comparing this decoded
signal to the input signal, the optimum pitch lag and gain factor is determined. Then, the
difference between the predicted signal and the original signal is calculated and compared
with the original signal. One of them is selected to be coded on a scalefactor band basis
depending on which alternative is more favorable. This is achieved by means of the
“frequency selective switch” (FSS).

The LTP tool provides considerable coding gain for stationary harmonic signals and

some gain for non-harmonic tonal signals. Besides, the computational complexity of the

15

LTP tool is much less than original prediction tool.

2.2.2 Perceptual Noise Substitution (PNS)

The PNS tool allows for a very compact representation of noise-like signal
components because only the signaling and the energy information is transmitted once for
a scalefactor band instead of the set of quantized and coded spectral coefficients.
Therefore, it increases compression efficiency for certain types of input signals. Fig 2.9

shows the PNS concept.

Y

Cuantization Bistrzam Sitsrzam
& Coding Multiplexer Sut

' 3]

Audi | Analyss
[Filterbank

Maolse subst sigraling

S
Bubstii=d signal enengles
Encoder
| |
Decoder
Audla erse Bitstream | ststream ¥

Demuliplexer

Molse subst signaiing
Substtuied signal energles

Moise
Generator

Fig 2.9 Principle of Perceptual Noise Substitution [2]

2.2.3 TwinVQ

The TwinVQ tool is an alternative VQ-based coding kernel. It can provide good
coding performance at very low bitrates (at or below 16kbps).

When it performs the quantization of the spectral coefficients, the spectral
coefficients will first be normalized to a specified target range and then be quantized by

using the weighted vector quantization (VQ) process. The Fig 2.10 shows the TwinVQ

tool module.

16

Input signal vector

-

Inter-

Y i Y leave
[|
Divided
subvectors
Yy Y Y Y Y
Weighted || Weighted | Weighted || Weighted
V2 WO Y W
index index index index

Fig 2.10 TwinVQ quantization scheme [2]

2.3 MPEG-4 AAC Version2

MPEG-4 AAC Version 2 was finalized in 1999. Compared to MPEG-4 AAC version
1, it adds some new tools without replacing any existing tools of version 1. So, it is fully
backward compatible to version 1. The version 2 provides the following new
functionalities: Error Robustness, Low-Delay Audio Coding, Fine grain scalability and so

on. Next, we will briefly introduce these new tools in this section.

2.3.1 Error Rubustness

The Error Robustness tools provide improved performance on error-prone
transmission channels. The two classes of tools are the Error Resilience (ER) tool and
Error Protection (EP) tool.

The ER tool reduces the perceived distortion of the decoded audio signal that is

17

caused by corrupted bits in the bitstream. The following tools are provided to improve the
error robustness for several parts of an AAC bitstream frame: Virtual CodeBook (VCB),
Reversible Variable Length Coding (RVLC), and Huffman Codeword Reordering (HCR).
These tools allow the application of advanced channel coding techniques, which are
adapted to the special needs of the different coding tools.

The EP tool provides Unequal Error Protection (UEP) for MPEG-4 Audio. UEP is an
efficient method to improve the error robustness of source coding schemes. It is used by
various speech and audio coding systems operating over error-prone channels such as
mobile telephone networks or Digital Audio Broadcasting (DAB). The bits of the coded
signal representation are first grouped into different classes according to their error
sensitivity. Then error protection is individually applied to the different classes, giving

better protection to more sensitive bits.

2.3.2 Low-Delay Audio,Coding

The MPEG-4 General Audio Coder-provides very efficient coding of general audio
signals at low bitrates. However it has‘an algorithmic delay of up to several 100ms and is
thus not well suited for applications ‘requiring low coding delay, such as real-time
bi-directional communication. To enable coding of general audio signals with an
algorithmic delay not exceeding 20 ms, MPEG-4 Version 2 specifies a Low-Delay Audio
Coder which is derived from MPEG-2/4 Advanced Audio Coding (AAC). It operates at
up to 48 kHz sampling rate and uses a frame length of 512 or 480 samples, compared to
the 1024 or 960 samples used in standard MPEG-2/4 AAC. Also the size of the window
used in the analysis and synthesis filterbank is reduced by a factor of 2. No block
switching is used to avoid the “look-ahead” delay due to the block switching decision. To
reduce pre-echo phenomenon in case of transient signals, window shape switching is
provided instead. For non-transient parts of the signal a sine window is used, while a
so-called low overlap window is used in case of transient signals. Use of the bit reservoir
is minimized in the encoder in order to reach the desired target delay. As one extreme

case, no bit reservoir is used at all.

18

2.3.3 Fine Grain Scalability

Bitrate scalability, also known as embedded coding, is a very desirable functionality.
In order to provide efficient small step scalability for the AAC, the Bit-Sliced Arithmetic
Coding (BSAC) tool is available in version 2. This tool is used in combination with the
AAC coding tools and replaces the noiseless coding of the quantized spectral data and the
scalfactors. BSAC provides scalability in steps of 1kbps per audio channel, which means
2kbps steps for a stereo signal. One base layer bitstream and many small enhancement

layer bitstreams are used.

2.3.4 Parametric Audio Coding

The Parametric Audio Coding tools.combine very low bitrate coding of general audio
signals with the possibility of modifying the playback speed or pitch during decoding
without the need for an effects processing unit. In combination with the speech and audio
coding tools of version 1, improved overatl-coding efficiency is expected for applications
of object based coding allowing . selection .and switching between different coding

techniques.

2.3.5 CELP Silence Compression

The silence compression tool reduces the average bitrate because of a lower-bitrate
compression for silence. In the encoder, a voice activity detector is used to distinguish
between regions with normal speech activity and those with silence or background noise.
During normal speech activity, the CELP coding as in version 1 is used. Otherwise a
Silence Insertion Descriptor (SID) is transmitted at a lower bitrate. This SID enables a
Comfort Noise Generator (CNG) in the decoder. The amplitude and spectral shape of this
comfort noise is specified by energy and LPC parameters similar as in a normal CELP

frame. These parameters are an optional part of the SID and thus can be updated as

19

required.

2.3.6 Extended HVXC

The variable bitrate mode of 4.0 kbps maximum is additionally supported in version 2
HVXC. In the version 1 HVXC, variable bitrate mode of 2.0 kbps maximum is supported
as well as 2.0 and 4.0 kbps fixed bitrate mode. In version 2, the operation of the variable
bitrate mode is extended to work with 4.0 kbps mode. In the variable bit-rate mode,
non-speech part is detected from unvoiced signals, and smaller number of bits are used
for non-speech part to reduce the average bitrate. When the variable bit-rate mode of 4.0
kbps maximum is used, the average bit rate goes down to approximately 3.0 kbps with

typical speech items.

20

Chapter 3
DSP Implementation

Environment

In our project, we choose digital signal processor (DSP) platform to implement
MPEG-4 AAC encoder and decoder. The DSP baseboard we use is made by Innovative
Integration's (I1’s) Quixote, which houses Texas Instruments’ TMS320C6416 DSP chip
and Xilinx Virtex-1l FPGA. In this chapter, we will introduce the DSP baseboard and
DSP chip. At the end, the data transmission process from the host PC to the target DSP

and vice versa is also introduced.

3.1 DSP Baseboard

The Quixote DSP Baseboard card is shown in Fig. 3.1 and the architecture is shown
in Fig. 3.2 [5]. Quixote combines one TMS320C6416 600MHz 32-bit fixed-point DSP
with one two- or six-million-gate Virtex-1l FPGA on the DSP baseboard, utilizing the
signal processing technology to provide extreme processing flexibility and efficiency and
deliver high performance.

Quixote has 32MB SDRAM for use by DSP and 4 or 8Mbytes zero bus turnaround
(ZBT) SBSRAM for use by FPGA. The SDRAM provides a large, fast external memory
pool for DSP data and code. The SBSRAM is configured as independent banks for fast
data processing storage, directly attached to the FPGA. Developers can build complex
signal processing systems by integrating these reusable logic designs with their specific

application logic.

21

PLL Clock (ouf)

ZBT SBSRAM ZBT SBSRAM SORAM

Ext Glock (in} 4 Mbyte epws 4 Mbyte et
8 Ext Trigger
o o LS FIFD 32K;channel
cyz (Dt 0 Analag 11D each direction
Tornzctors (et | 108 MS/S Virtax Il FPGA
(e o™
with € zale fiers
Cmed Analog Comparah
< 2Mpate or GMgate
MDR-SD — CHETE McBSPs (2)
T - 15-bi 1 00NH: EMIF B
future FMC sugport) &
TR I 5252
Smmmmmmeme i ap | oot diesson
i Timebes

T i ,’ (LA Spartan Il

| PCltoStafabric | i PCI Sireaming =2

; Sridge T TCXO

R : s

i s ——
_"I__“v ’ “""“-“"71-/_"“-"""_ 3T,
FICMG 2.17 yl = P 33MHz
Switched Fabric
FGl
Bridge
le— Quixote Block Diagram
PCI64/66 PXI Triggers
To/From GE415
EMIFA Inferfaze

Gonverter o]
Timing

TosFrom
PLL Signal

Enlarged view of Xilinx Virtex Il FPGA

Fig. 3.2 Block Diagram of Quixote [5]

22

3.2 DSP Chip

The TMS320C64x fixed-point DSP is using the VelociTI architecture. The VelociTl is
a high-performance, advanced VLIW (very long instruction word) architecture, making it
an excellent choice for multichannel, multifunctional, and performance-driven
applications. VLIW can achieve high performance through increased instruction-level
parallelism, performing multiple instructions during a single cycle. Because parallelism
takes the DSP well beyond the performance capabilities of traditional superscalar systems,
it is the key to high performance.

VelociTl is a highly deterministic architecture, having few restrictions on how or
when instructions are fetched, executed, or stored. It is this architectural flexibility that is
the key to the breakthrough efficiency levels of the TMS320C6000 Optimizing C
compiler. VelociTI advanced features include:

] Instruction packing: reduced code:size
] All instructions can operate conditionally:-flexibility of code
] Variable-width instructions: flexibility. of data types

1 Fully pipelined branches: zera-overhead branching

CaICEdwCET e device

Program cachedprogram memaory
=

32- e
F5E-bil dala
CEIn/CadnCETx CPU
Prrwer Program fetch
dhcrw Instnucicon dispatch [See Mabs) Contral
I
Insiruclion decods t gkt
Dt palh A Daka path B
e Dk, EMIF C;""“.""'
| FResgister file A I I Resgister file B I Cf

Tesl

Emulalion

Inbermupls
r

Fig 3.3 Block diagram of TMS320C6x DSP [6]

23

TMS320C6416 has internal memory includes a two-level cache architecture with 16
KB of L1 data cache, 16 KB of L1 program cache, and 1 MB L2 cache for data/program
allocation. Peripherals such as a direct memory access (DMA) controller, power-down
logic, and external memory interface (EMIF) usually come with the CPU, while
peripherals such as serial ports and host ports are on only certain devices.

In the following subsections, we will introduce several important parts of the

TMS320C64x DSP Chip.

3.2.1 Central Processing Unit (CPU)

The TMS320C6416 CPU contains of eight independent functional units, sixty-four
general purpose registers and control registers. Besides above, it also has the program
fetch unit, instruction dispatch unit (attached with advanced instruction packing),
instruction decode unit, two data path (A and: B, each with four functional units), test unit,
emulation unit, interrupt logic andtwo register-files (A and B with respect to the two data

paths). The architecture is illustrated in Fig. 3:3 and Fig. 3.4.

CE2x/CETx CPU Chdx CPU
CE2ICETx CPU Chdx CPU
Instruction fetch Instru_n:‘:tlcun .fetch Control registers -
Control i Instruction dispatch ELE
Instruction dispaich regisiers Advanced instruction — TE
conirol packing Advanced =2
emulaticn =
Ingiruciion decode Ernulaticn Insfruction decode
Data path 1 Cata path 2
Data path 1 Data path 2 - -
Register file A Register file B
O S A15-A0 B815-80
egizter file A egister file _A1E |
TEh L [£31-A16 B31-B16 |

L
M1 D1
L1 M1 | (D1 D2 52 : ﬂ
| i
o I 1

VNS U

Dwal 32-hit load/store path F f athe
(dual 64—bit load path — C&7x only) BL Sl s

Fig. 3.4 The TMS320C64x DSP Chip Architecture and Comparison with Ancient
TMS320C62x/C67x Chip.

i

[+] 5

18
[~ |
]

s1

24

The program fetch, instruction dispatch, and instruction decode units can deliver up to
eight 32-bit instructions to the functional units during one CPU clock cycle. The
processing of instructions occurs in each of the two data paths (A and B), each of which
contains four functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers.

The program pipelining is also the important feature to get parallel instructions
working properly. There are three stages of pipelining: program fetch, decode, and
execute. In the fetch stage, the program address is generated in the CPU, and then the
program address is sent to memory. After a memory read occurs, the fetch packet is
received at the CPU. In the decode stage, the instructions in execute packet are assigned
to the appropriate functional units. And then, the source registers, destimation registers,
and associated paths are decoded for the execution of the instructions in the functional
units. The execute stage is composed of five phases, and instructions are executed in the
stage. Different types of instructions require different numbers of phases to complete the

execution.

25

3.2.2 Data Path

L1

i

Data path A

Y VIR] d
) t L J
3
w
1 T o L

w
i
L]
Fi '.J
3

D2a

fag]

Seplster
Tli= A,
PAI-A31)

¥ See Mote 1
] See Note 2

32LSB
S—

Loop_ 3ZMES,

Data path B

M2

L

w -
q R
i X} g B b Moa by bi o B
-~ . 13

(IR NE] [[

A
P

Motes for .M unit:

==

1. long dstis 32 M5B
2. dstis 32 L5B

Fig 3.5 TMS320C64x CPU Data Path [6]

There are two general-purpose register files (A and B) in the C6000 data paths as
shown in Fig 3.5. The C64x DSP register is double the number of general-purpose
registers that are in the C62x/C67x cores, with 32 32-bit registers.

The C64x architecture has eight functional units that could be further divided into two
data paths A and B. Each path has one unit for multiplication operations (.M), one for
logical and arithmetic operations (.L), one for branch, bit manipulation, and arithmetic

operations (.S), and one for loading/storing, address calculation and arithmetic operations

£“W_u ‘_iT:!‘.-‘l

w
‘\

is

Gee Note 2
Gee MNote 1

Seplster
fli=
(BI-B31)

Controd Reglsier

26

(.D). Two cross-paths (1x and 2x) allow functional units from one data path to access a

32-bit operand from the register file on the opposite side. There can be a maximum of

two cross-path source reads per cycle. Fig 3.6 and Fig 3.7 show the functional units and

its operations.

Functional Unit

Fixed-Point Operations

Floating-Point Operations

Lunit (L1, L2)

Sunit (S1, .52)

32/40-bit arithmetic and compare
operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field
operations

32-bit logical operations
Branches
Constant generation

Register transfers to/from control register
file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations

Dual 16-bit saturated arithmetic
operations

Quad 8-bit saturated arithmetic
operations

Arithmetic operations

DP — SP, INT — DP, INT — SP
conversion operations

Compare

Reciprocal and reciprocal square-root
operations

Absolute value operations

SP — DP conversion operations

Fig. 3.6 Functional Units and Operations Performed [7]

27

Functional Unit

Fixed-Point Operations

Floating-Point Operations

‘M unit (M1, .M2)

16 x 16 multiply operations

32 X 32-bit fixed-point multiply operations

Floating-point multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with
add/subtract operations

Quad 8 x 8 multiply with add operation
Bit expansion

Bit interleaving/de-interleaving
Variable shift operations

Rotation

Galois Field Multiply

Dunit (.D1, .D2) | 32-bit add, subtract, linear and circular Load doubleword with 5-bit constant offset

address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant
offset (.D2 only)

Load and store double words with 5-bit
constant

Load and store non-aligned words and
double words

5-bit constant generation
32-bit logical operations

Fig. 3.7 Functional-Units and Operations Performed (Cont.) [7]

3.2.3 Memory

3.2.3.1 Internal Memory

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is
organized in separate data and program spaces. When off-chip memory is used, these
spaces are unified on most devices to a single memory space via the external memory
interface (EMIF). The C64x has two 64-bit internal ports to access internal data memory
and a single internal port to access internal program memory, with an instruction-fetch

width of 256 bits.

3.2.3.2 External Memory and Peripheral Options

The external memory and peripheral options of C6416 contain
[] Large on-chip RAM, up to 7M bits

[] Program cache

28

[] 2-level caches

[] 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other
asynchronous memories for a broad range of external memory requirements and
maximum system performance.

[| DMA Controller transfers data between address ranges in the memory map
without intervention by the CPU. The DMA controller has four programmable
channels and a fifth auxiliary channel.

[| EDMA Controller performs the same functions as the DMA controller. The
EDMA has 16 programmable channels, as well as a RAM space to hold multiple
configurations for future transfers.

[] HPI is a parallel port through which a host processor can directly access the
CPU’s memory space. The host device has ease of access because it is the master
of the interface. The host and the CPU can exchange information via internal or
external memory.

[] McBSP (multichannel buffered 'serial port) is based on the standard serial port
interface found on the TMS320C2000 and C5000 platform devices. Besides, the
port can buffer serial samples’ in-memory: automatically with the aid of the
DMA/EDMA controller. It also-has-multichannel capability compatible with the
T1, E1, SCSA, and MVIP networking standards.

3.3 Data Transmission Mechanism

Many applications of the Quixote baseboard involve communication with the host
CPU in some manner. All applications at a minimum must be reset and downloaded from
the host, even if they are isolated from the host after that. The simplest method supported
is a mapping of Standard C++ 1/O to the Uniterminal applet that allows console-type 1/0
on the host. This allows simple data input and control and the sending of text strings to
the user. The next level of support is given by the Packetized Message Interface. This
allows more complicated medium rate transfer of commands and information between

the host and target. It requires more software support on the host than the Standard 1/0

29

does. For full rate data transfers Quixote supports the creation of data streaming to the
host, for the maximum ability to move data between the target and host. On Quixote
baseboards, a second type of busmaster communication between target and host is

available for use, the CPU Busmaster interface.

3.3.1 DSP Streaming Interface

The DSP Streaming interface is bi-directional. Two streams can run simultaneously,
one running from the analog peripherals through the DSP into the application. This is
called the “Incoming Stream”. The other stream runs out to the analog peripherals. This is
the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there is
no direct access to analog peripherals from the host. This arrangement allows the DSP to
process the streams as they move from the application to the hardware.

DSP Streaming is initiated and started,on the Host, using the Caliente component.
On the target, the DSP interfacesuses pair-0f:DSP/BIOS Device Drivers, Pciln (on the
Outgoing Stream) and PciOut (en the Incoming: Stream), provided in the Pismo
peripheral libraries for the DSP.. They are capable -of copying blocks of data between

target SDRAM and host bus-master memory viathe PCI interface.

3.3.2 Burst Block Transmission

The interface is based on a streaming model where logically data is an infinite stream
between the source and destination. This model is more efficient because the signaling
between the two parties in the transfer can be kept to a minimum and transfers can be
buffered for maximum throughput. On the other hand, the streaming model has relatively
high latency for a particular piece of data. This is because a data item may remain in
internal buffering until subsequence data accumulates to allow for an efficient transfer.

The interface uses a different model: it transfers discrete blocks between the source
and destination. Each data buffer is transferred completely to the destination in a single
operation. The data buffers transferred can be of different sizes. At the destination, the
destination buffer is re-sized to allow the incoming data to fit.

In this simple blocking interface, there are sending and receiving functions can be

30

used. The sending function will not return until the transfer has completed and the buffer
is ready for reuse. Similarly, the receiving function waits until data has arrived from the

data source and transferred into the data buffer before returning.

3.3.3 Message Exchange

Besides the above interfaces, the DSP and host have a lower bandwidth
communications link for sending commands or out-of-band information between target
and host. Software is provided to build a packet-based message system between the target
and the host. These packets can provide a simple yet powerful means of sending
commands and information across the link.

A set of sixteen mailboxes in each direction to and from host are shared with the DSP
to allow for an efficient message mechanism that complements the streaming interface.
The maximum data rate is 56 kbps, and,the higher data rate requirements should use the

streaming interface.

31

32

Chapter 4
MPEG-4 AAC Encoder

Acceleration on DSP

In this chapter, we will describe the MPEG-4 AAC code acceleration on DSP. We will
first introduce TI’s code development environment, describe how to optimize the C/C++
code for DSP architecture, and then discuss how to optimize the functions for DSP

execution.

4.1 TI's Code Development Environment

In this section, we will briefly introduce the CCS (Code Composer Studio) tool for

DSP, and describe how to develop C/C++ code for the given DSP architecture.

4.1.1 The Code Composer Studio

The Code Composer Studio (CCS) is a helpful tool for developing the DSP codes. We
briefly describe some of its features related to our implementation below. The details can

be found in [6].

] Compiles code and generates Common Object File Format (COFF) output file.
] Provides debug options such as step over, step in, step out, run free, and so on.
] Watches any memory sections when the DSP halts.

] Probes a PC file stream into or from the target memory location.

33

] Counts the instruction cycles between successive profile-points.

We mainly use the CCS tool for debugging, refining, optimizing, and implementing

our C codes on DSP. The profile-points help us to evaluate if our changes to the codes are

better or not. Besides, we must write the host code and target code with the burst block

transmission in order to implement our system on the DSP platform.

4.1.2 Code Development Flow

The DSP code development can be divided into three steps.

Stepl : Develop the C code like standard ANSI C code without any regard to the
particular structure of the C64x. Then, use the debugger to profile the code to
identify any inefficient areas in the code. If the performance is not satisfactory, go
to step2.

Step2 : Use DSP intrinsics and optimization. techniques for code generation to
improve the C codes. Refine the C cade procedures such as compiler options,
intrinsics, statement, data“type modifiers, and code transformations. If the code
efficiency is still not sufficient, proceed to step3.

Step3 : Extract the most time-critical areas and replace the C code with linear
assembly, then use assembly optimizer to optimize the code, such as resource

allocation

Generally, we do not go to step3 because the linear assembly is too detail. Doing

assembly programming is difficult and assembly codes are hard to maintain. The

recommended code development flow involves utilizing the C6000 code generation tools

to aid optimization rather than forcing the programmer to code by hand in assembly.

These advantages allow the compiler to do the instruction selection, parallelizing,

pipelining, and register allocation. Figure 4.1 shows the steps of the software

development flow [6].

34

Phase 1: Write C code I
Develop C Code =

Compile

¥

Profile

Yes
Complete)

No

Refine C code
Phase 2: =
Refine C Code

Compile

>

Frofile

Complete)

optimization?

T Write linear assambly

Phase 3:

Write Linear x .
Assembly Assembly optimize I

>
FProfile
No
Yes

(Complete)

Fig. 4.1 Code development flow of C6000

35

4.2 Profile of AAC on DSP

We do the essential modifications on the MPEG-4 AAC source C code, and then
implement the modified C code on DSP. In order to identify the computational intensive
parts of the MPEG-4 AAC encoder, we first use TI CCS profiler to analyze it. Our test
sequence is “guitar”, and the data length is about 0.1 second. Table 4.1 shows the profile
results at 64k bit rate. We can see clearly that the psycho-acoustic model and the
quantization and bit-allocation module are two major computational parts of the AAC

encoder. Therefore, we should accelerate these two parts.

Function Execution cycles Percent (%)
Total 2,126,810,017 100
Psycho-acoustics 980,246,737 46.09
Filterbank 137,817;289 6.48
Quantization and 1,000,238,751 47.03
Bit-allocation

Others 8,507,240 0.4

Table 4.1 Profile of AAC encoder on C64x DSP

4.3 DSP Code Acceleration Methods

Improving the execution cycles of the AAC encoder is the main task of our system
implementation on DSP. In this section, we will describe several methods that can
accelerate our code and reduce the execution time on the C64x DSP. Some of these

methods are supported by the features of C64x.

4.3.1 Setting of Compiler Options

The Code Composer Studio (CCS) is a useful GUI tool that helps programmers in

36

developing DSP codes. Its compiler offers a complicated optimization process that
includes several advanced techniques and it takes advantages of the features of the C6000
architecture. Hence, we can configure some setting of the compiler options to optimize
our DSP codes efficiently. Table 4.2 shows the compiler options for performance

enhancement and Table 4.3 shows those to avoid.

Option Description

—o3t Represents the highest level of optimization available. Various
loop optimizations are performed, such as software pipelining,
unrolling, and SIMD. Various file level characteristics are also
used to improve performance.

—oil Disables all automatic size—controlled inlining, (which is en-
abled by —03). User specified inlining of functions is still al-
lowed.

—pmi# Combines source files to perform program-level optimization by

allowing visibility to the entire application source.

Table 4.2 Compilér,‘bptioné.l IJOI Pérfpfrﬁ‘ance Enhancement [6]
~ . ‘ .-'.'

Option Description

—qgl—s/ These options limit the amount of optimization across C state-
—s5/—yp menls leading o larger vode sice and slower execuliun,
—mu Disables software pipelining for debugging. Use —ms2/—ms3

instead to reduce code size which will disable software pipelin-
ing among other code size optimizations.

—ol/-00 Always use —02/—03 to maximize compiler analysis and opti-
mization. Use code size flags (—-msn) to tradeoff between per-
formance and code size.

-mz Obsolete. On pre=3.00 tools, this option may have improved
yvour code, but with 3.00+ compilers, this option will decrease
performance and increase code size.

Table 4.3 Compiler Options to Avoid on Performance Enhancement

[6]

37

4.3.2 Fixed-point Coding

The C6000 compiler defines a size for each data type:
[] char 8bits

[] short 16bits

] int 32bits

] long 40bits

[] float 32bits

[] double 64bits

The C64x DSP is a fixed-point processor, so it can only perform fixed-point
operations. Although the C64x DSP can simulate floating-point processing, it takes a lot
of extra clock cycles to do the same job. The “char”, “short”, “int” and “long” are the
fixed-point data types, and the “float” and “double’” are the floating-point data types. We
test C64x DSP processing time of the assembly instructions “add” and “mul” for different
data types. Table 4.4 shows the results.“\We can clearly see that the floating-point data
types need more computation time than the fixed-point data types. Hence, we can
accelerate our DSP codes in computation time efficiently by converting the data types

from floating-point to fixed-point.

Assembly Char short int long float double
Instruction | g 1iv | 16-pit | 32-bit | 40-bit | 32-bit | 64-bit

add 1 1 1 2 77 146

mul 2 2 6 8 54 69

Table 4.4 Processing time on the C64x DSP for different data types

4.3.3 Loop Unrolling

Loop unrolling expands the loops so that all iterations of the loop appear in the code.

38

It often increases the number of instructions available to execute in parallel. When our
codes have conditional instructions, sometimes the compiler may not be sure that the
branch will occur or not. It needs more waiting time for the decision of branch operation.
If we do loop unrolling, some of the overhead for branching instruction will be reduced.

Example 4.1 is the loop unrolling and table 4.5 shows the result.

(@) (b)
[*Before unrolling*/ [*After unrolling*/
int i,a=0,b=0; int i=0,a=0,b=0;
for (i=0;i<10;i++) a+=i; b+=i; i++;
{ a+=i; b+=i; i++;
a+=i; a+=i; b+=i; i++;
b+=i; a+=i; b+=i; i++;
} a+=i; b+=i; i++;
a+=i; b+=i; i++;
at+=li; b+=i; i++;
at+=i; b+=i; i++;
a+=i;b+=i; i++;
at=I;b+=i; i++;
Example 4.1 loop unrolling
(a) (b)
Execution cycles 436 206
Code size 116 476

Table 4.5 Comparison between with unrolling and without unrolling

We can see clearly that the clock cycle decreases after loop unrolling, but the code
size is larger than the original. So generally speaking, if one iteration can execute many

instructions, the code size is larger, but it runs faster.

39

4.3.4 Using Intrinsics

The T1 C6000 compiler provides many special functions that map C codes directly to
inlined C64x instructions, to increase C code efficiently. These special functions are
called intrinsics. So if the instructions have equivalent intrinsic functions, we can replace
them by intrinsic functions directly. The execution time will be decreased because of
using intrinsics. Fig 4.2 shows some examples of the intrinsic functions for the C6000

DSP. The entire list of intrinsics for the C6000 DSP can be found in [6].

Assembly

C Compiler Intrinsic Instruction Description Device
int _abs(int src2); ABS Returns the saturated absolute value of
int_labs(long src2); src2.
int _abs2 (int src2); ABS2 Calculates the absolute value for each 'CB4x

16-hit value.
int _add2(int src?, int src2); ADD2 Adds the upper and lower halves of src1 to

the upper and lower halves of src2 and re-

turns the result. Any overflow from the low-

er half add will not affect the upper half

add.
int _add4 (int src”, int src2); ADD4 Performs 2s—complement addition to pairs "C64x

of packed 8—hit numbers.

Fig 4.2 Intrinsic functions of the TI' C6000 series DSP (partial list) [6]

4.3.5 Packet Data Processing

We often use a single load or store instruction to access multiple data consecutively
located in memory to maximize data throughput. For example, if we can place four 8-bit
data or two 16-bit data in a 32-bit space, we can do four or two operations in one clock
cycle. This method can improve the code efficiency substantially. In addition, some of the

intrinsic functions enhance the efficiency in a similar way.

40

4.3.6 Register and Memory

When the accessed data are located in the external memory, we need more clock
cycles in transfering data time. So we can use registers to store data in order to reduce
transfer time in operation. In DSP code, the pointer, malloc function and so on will locate
data in memory. Therefore, sometimes we can adequately modify code to avoid

frequently accessing data from/to memory so that the execution time will be decreased.

4.3.7 Using Macros

Because the software-pipelined loop can not contain function calls, it takes more
clock cycles to complete the function call. Hence, we can change the functions to the
“define” macros under some conditions. Inzaddition, replacing the function with the
macro can cut down the code for initial function definition and reduce the number of
branches. However, macros are-expanded each time they are called if the function has a

number of instructions, it is not efficient-insmemory usage.

4.3.8 Linear Assembly

When we are not satisfied with the efficiency of assembly codes which are generated
by the TI CCS compiler, we can convert parts of the C codes into linear assembly and
then optimize the assembly directly. But this process generally is too detail and very time
consumption in practice. Hence, we will do this process at last if we have strict constrains

in processor performance and we have no other algorithms selection.

41

4.4 Psychoacoustic Model

From AAC encoding profile in table 4.1, we can see clearly that the psychoacoustic
model plays an important role in execution time. To improve the performance, we replace
the psychoacoustic model with a new algorithm that was proposed by [9]. Next, we will
briefly describe the new algorithm and show the simulation results after improving its

performance.

4.4.1 Optimization of PAM

Firstly, we briefly describe the original psychoacoustic model of AAC encoder. Fig
4.3 [9] is this block diagram of PAM (psychoacoustic model). In steps 1-2, the auditory
spectrum is computed using the FFT..Then, the real-part spectrums lead to the calculation
of partitioned energy, and the imaginary-part spectrums result in the calculation of the
unpredictability measure c(w).=The unpredictablility:measure is first weighted with the
energy in each partition, deriving a partitioned-unpredictability measure. Then in step 5,
both partitioned energy and unpredictability are.convolved with the spreading function in
order to estimate the effects across the partitioned bands. For each partition, the ratio of
the convolved partitioned unpredictability over the convolved partitioned energy
spectrum is determined. Then, the tonality index is derived from the logarithm of this
ratio in step 6 to indicate if a signal is tonal-like. SNR (Signal-to-Noise Ratio) is
computed from the tonality th(b) in step 7 and then the masking partitioned energy
threshold nb(b) is estimated in steps 8-10 and thus the masking curve is estimated. PE
(Perceptual Entropy) is calculated for each block type from the ratio e(b)/nb(b) in steps
11-12 to determine the block type. Finally, SMR (Signal-to-Mask Ratio) is computed in
step 13 as the output. These SMRs are then sent to the bit allocation routine to determine

the number of bits allocated to each subband.

42

linput
FFT 1
¥ step 1-2 e
l step 3-4
ciw]
— elb) I
Spreading cib]
* Function
en(b) step 5 !
step 5 cbib]
+ lstep b
epart(n) tb(b)
step 7 ¥
SMNRE(D)
step 13 !
, ARl nb{b) st 810
SR . !
T ' FE step 11-12
output
bloc‘k_type

Fig 4.3 Block diagram of original PAM [9]

The step 2 and step 4 have high computational complexity because they include
sophisticated mathematical functions. The step 5 includes spreading functions
calculations and convolutions, so it also has high computational complexity. Next, the
algorithm proposed by [9] that can reduce computational complexity of above mentioned
steps will be described. It consists of two points:

B Reduce calculations of spreading functions as fixed-coefficients

The calculations of spreading functions in step 5 are a series of complex functions

such as comparisons, square roots, power of tens, squares, and divisions. They are

calculated at the square number of partitioned bands and repeatedly estimated every
frame. Besides, the spreading functions are only determined by sampling rate and
block types. Therefore, we can reduce the calculations by replacing them with

fixed-coefficients.

B MDCT-based PAM
We know that there is one main filterbank MDCT outside the PAM and there is

43

another filterbank FFT inside the PAM transforming input samples into spectrums in
similar ways. Therefore, we replace FFT by MDCT so that the FFT could be omitted
in order to decrease computational complexity. Steps 2-4 are thus calculated on the
MDCT, but step 5 requires some modification that only the partitioned energies are
convolved with the spreading functions mentioned above because of the lack of phase
information. Step 6 is also modified where Spectral Flatness Measure (SFM) [11] is
used to generate the tonality index from the MDCT coefficients. The SFM is defined
as the ratio of the geometric mean (Gm) of the power spectrum to the arithmetic mean
(Am) of the power spectrum. Then, the SFM is converted to decibels. And the
tonality index tb can be computed by this formula: tb = min (SFMgg / 60 , 1).

Finally, Fig 4.4 [9] is the block diagram of proposed PAM described in it. The steps
2-6 are using MDCT and SFM, and the spreading functions in step 5 are computed with

fixed coefficients.

linput
MOCT
R{w)
SF '
fixed-c oeff l * SEMIBD)
' elh)
" enib)
' th b
epart(n) - i)
step
SMRID)
step 13 !
npart(n) |e nbib) 1%ep 810
¥ *
SPTR PE [Step 11-12
output blocﬂ_type

Fig 4.4 Block diagram of proposed PAM [9]

44

4.4.2 Simulation Results on DSP

In this section, we have simplified the psychoacoustic model by the algorithm in
section 4.4.1 and implemented it on the TI C64x DSP. The fast algorithm result is shown
in Table 4.6. Our test sequence is “guitar”, and the length is about 0.1 second. In the
original AAC encoder program, the Psylnit function calculates the spreading function.
The PsyBufferUpdate function contains the FFT calculation. And the PsyCalculate
function does the masking threshold calculation. We can clearly see that the acceleration
of the PAM is effective by this new algorithm. Also, we have done the sound quality test.
Using the ITU-R BS.1387 PEAQ (perceptual evaluation of audio quality) defined ODG
(objective difference grade), we examine some sequences using the fast algorithm. The
ODG, which is a measure of quality, is calculated as the difference between the quality
rating of the reference and the test signal. The quality ratings are measured with a range
of [-4;0], where -4 stands for very annoying difference and O stands for imperceptible
difference between the reference and the test signal.“This parameter represents the audio
quality well for good quality codecs.

The first test sequence is “guitar* and it has sound variations and is quite complex.
The second test sequence is “organ” and-it"is‘another instrument music. But its sound is
consecutive and delicate. The third test sequence is “eddie_rabbitt” and it is pop music
with human voice. The test results are shown in Tables 4.7, 4.8, and 4.9. From these
results, the quality test seems acceptable and the acceleration is good. The overall

speed-up is around 80 percent, and the ODG drop is less than 0.3 or so.

Original Code Execution Improvement
size cycles (%)
Psylnit 7824 81,831,864

PsyBufferUpd 2312 21,822,065
ate
PsyCalculate 548 63,774,150

45

Fast algorithm| Code Execution

size cycles
Psylnit 5336 63,587,461 22.3
PsyBufferUpd 432 24,004 99.89
ate
PsyCalculate 408 10,630,861 83.33

Table 4.6 The acceleration result of the PAM in the AAC encoder

ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.53| -3.37 | -0.99| -0.38| -0.26 | -0.01| -0.01
Modified | -3.68 | -3.62 | -1.22 | -0.69 | -0.57| -0.36 | -0.28
Table 4.7 The ODG of test sequence “guitar”
ODG 16 32 64 96 128 196 256
kbps | kbps { kbps -| ‘kbps | kbps | kbps | kbps
Original | -3.89 | -3.83 -2.76 | =0.41 |:-0.03| -0.01| -0.01
Modified | -3.76 | -3.67% -2.79| -0.29/| -0.03 | -0.00| -0.01
Table 4.8 The ODG of test sequence “organ”
ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.78 | -3.40| -0.87 | -0.27 | -0.11| -0.00| -0.00
Modified | -3.78 | -3.79 | -1.23| -0.62 | -0.46 | -0.21| -0.00

Table 4.9 The ODG of test sequence “eddie_rabbitt”

4.5 Quantization and Bit Allocation

The quantization and bit allocation module is essential in AAC. Its operation relies on
the information from the psychoacoustic model that provides the best possible listening

quality. And from Table 4.1, we can know that they have high computation load. Next,

46

we use efficient algorithms [12] [13] to replace the original models.

4.5.1 A High Quality Requantization Method

The requantization is used to calculate quantization error in the outer loop of the bit

allocation module. The requantization is described by the following formula:

x _invquant = Sign (x _ quant)-|x _ quant \%

The calucation of X** have high computation load, so the table lookup method is
adopted. We adopt the high quality requantization algorithm in [12] to improve the speed
of our system. The algorithm uses linear interpolation for each range of requantization
and reduces the approximated error quite efficiently. With this approach, the codec
maintains high quality result.

The X has a wide range, so using the whole range lookup table is not suitable. To
reduce memory usage, this approach uses a 256-entry lookup table instead of the whole
range table and its basic operation is shown in the following equation:

A % %
XA:(LXSJ =(ij « 16
8 8

This means that a 256-entry lookup table, which stores the values of X** from X=1 to
256 respectively, can be used. And it uses a directly linear interpolation for the other two
ranges of requantization. The request quantized values are 8191, and there are three

ranges with its dedicated operation for the whole range as shown in Fig 4.5 [12]:

47

® fromX=Ito256:
find the value of f{X) from the look-up table.
® from X=257 to 2048:

o{)£
A5

while rem(X/8) means the remainder of X/8.
® fromX=2049 10 8191:

s) At
AL]

while rem(X/64) means the remainder of X/64.

Fig 4.5 Requantization operation with three ranges [12]

4.5.2 Simulation Results on DSP

Using the above mentioned algorithm, the acceleration result of the requantization on
the T1 C64x DSP is shown in Table 4.10. Our test sequence is the same as above section.
In program, the AACQuantizelnit function consists of the table calculation of X*?. From
this simulation result, we can clearly see that this algorithm is quite efficient because the

acceleration rate achieves 40.63 percent. Besides, the data precision is high enough so

that it does not affect the accuracy loss.

AACQuantizelnitf Code Execution Improvement
size cycles (%)

Original 912 246,364,788

Fast algorithm 1572 146,274,298 40.627

Table 4.10 The acceleration result of the Requantization in the AAC encoder

48

4.5.3 Single Loop Distortion Control Algorithm

Firstly, we briefly the bit allocation algorithm adopted at AAC specification. Fig 4.6
[13] shows the bit allocation processes in MPEG-4 AAC encoder. The outer iteration loop
controls the quantization noise, which comes from the quantization of the spectral signals
within the inner iteration loop. The noise spectrum is computed by multiplying the values
within the scalefactor bands with the actual scalefactors before quantization. After
quantization, the calculation of the quantization noise is processed band-by-band
iteratively. If the noise exceeds the specified threshold, the spectral values of the
scalefactor bands are amplified by increasing the scalefactor by one.

In the inner loop, the encoder iteratively employs the nonuniform quantization, which
has three major steps including the quantization of the spectral values, the calculation of
actual number of bits using Huffman tables, and the computation of the resulting noise.
By applying these three steps iteratively for each frame, the bit allocation algorithm
provides the actual number of bits needed to.encode the source. The quantizer uses the
scalefactor and global gain to fit the requirement for the bit allocation, so we can estimate
the quantization noise from the scalefactor and global gain.

And it adopts three extra conditions to stop the iterative process as follows:

1. None of the scalefactor bands has more than the allowed distortion.

2. The next iteration would cause the amplification for any of the bands to exceed

the maximum allowed distortion value.

3. The next iteration would require all the scale factor bands to be amplified.

49

f De-quantization using new
global gain

v

Calculate the quantization
error in this band

Noise > Masking -
Threshold?

Outer Loop

Amplify MDCT

coefficients in this band Band No. +1

All bands checked 7

Amplified MDCT coefficients
—» Adjust global gain
A 4

Quantize data

Inner Loop

Actual bits > max bits?

New global gain

Fig 4.6 Block diagram of bit allocation [13]

Based on the proposed scheme in [13], we replace the iterative process but retain
roughly the same listening quality. In the noise shaping scheme, the estimated noise is
used to decide the value of scalefactors that can parallelize the quantization noise
spectrum with the masking threshold. Hence the algorithm reduces the times of outer
loop to one step and thus it provides a significant reduction of execution time. The
quantization of the spectral signals xri(j) and its approximation can be derived from

zgain

ixi(j)=n int[(mjm —0.0946] = (xri(§)™ +ei(j))- (Sggiagneijm

50

Where e;i(j) is the estimation error for the quantized spectral signals ixi(j). The

dequantization of ix;(j) equals to

4

xi(§) = sign(xri(J)- (xri(§))°” + ei(i)
The estimation error using the specified gain value can be measured by the mean

square error (MSE) between xri(j) and Qri(j). Thus, the distortion function can be

represented by

1

N (Noise); = E((xn(j)—in(j))z): % E{an(j).eg(]—)}
g E(xri_“l(j).eig(j)j+% E(Xri_l(j)-9i4(j))

To reduce the order in approximation;it_is assumed that and xri(j)) and e;(j) are

independent and e;j(j) is uniform distributed:-Se; we can approximately have:

3
1 gain 5
N (Noise) ~ 0.1640578 -E(xrﬂ(j)j.(2 jz

scale i
In addition, the N(Noise); can be derived from the psychoacoustic model by

N (Noise) = Mi-NMR i

So, we can calculate scale; by

2
0.1640578 - E (xri(j))ja
Mi- NMR i

scalei = 296““(

To determine the scalefactors, which are used to parallelize the estimated noise
spectrum and the masking threshold energy, we let the scale; equal to unity at the band i.
Thus, we can determine the other scalefactors in the remaining bands. After choosing the
scalefactor in each band, we can quantize the spectral signals that are amplified by
scalefactors scale; derived from the above equations. Fig 4.7 [13] shows the flow chart of

this fast bit allocation algorithm.

51

Fsychoacoustic

Wodel: Wi Acguire the Mi from
Psychoacoustic Model
! Mi=S- SMR

Choose NMR,

!

2 l
gczm=§log2 maz

! Calculate the gain

M, NME Scale{max) = 1
E’jlx,?;ljll

+

1 ¥ | If 2log,scale; < 15
0'16405?8‘5{?"?29} Scalefac, = nint(2log,scale;)

MNME Else
z scalefac; = nint{log,scale;)

scale, = 25%

!

Use the scalefactor to amplify the spectral lines

I

Inner loop End

Fig 4.7 Flow chart of the bit allocation algorithm [13]

4.5.4 Simulation Resultson DSP

In this section, we have accelerated the outer loop of bit allocation model by a fast
algorithm and implemented it on the T1 C64x DSP. The result is shown in Table 4.11. Our
test sequence is also the same as the above. In the encoder program, the AACQuantize
function contains the quantization and bit allocation operations. In addition, the outer
loop and the inner loop are also in it. We can clearly see that the acceleration of the outer
loop is efficient by this fast algorithm. Because we do not accelerate the inner loop, its
clock cycles is not improved. Also, we did the sound quality test. Using the ODG
(objective difference grade), we test some sequences on the modified algorithm. These
test sequences are the same as the above tests. The test results are shown in Tables 4.12,
4.13, and 4.14. From these results, the outer loop algorithm is efficient because the
improvement extremely achieves 92.36 percent. Besides, the sound quality is good as the

original algorithm. Because it uses noise estimation to get the adequate scale factors such

52

that the summation of all NMR (Noise to Masking Ratio) values is the least at each frame.
This criterion of the algorithm concerns about the result of psychoacoustics model and

the noise is equally audible in different frequency bands.

Original Code Clock Improvement
size cycles (%)

AACQuantize 1452 51,841,384

OuterLoop 1168 36,775,840

InnerLoop 144 1,078,916

Fast algorithm| Code Clock
size cycles
AACQuantize 1448 17,897,864 65.48

OuterLoop 804 2,809,373 92.36

InnerLoop 144 912,279

Table 4.11 The acceleration result-ofithebit allocation in the AAC encoder

ODG 16 32 64 96 128 196 256

kbps | kbps | kbps | kbps | kbps | kbps | kbps

Original | -3.53| -3.37 | -0.99| -0.38| -0.26 | -0.01| -0.01

Modified | -3.51 | -3.14 | -0.98 | -0.33 | -0.28 | -0.01 | -0.01
Table 4.12 The ODG of test sequence “guitar”

ODG 16 32 64 96 128 196 256

kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.89 | -3.83| -2.76 | -0.41 | -0.03| -0.01| -0.01
Modified | -3.89 | -3.82 | -2.59| -0.23| -0.03| -0.01| -0.01

Table 4.13 The ODG of test sequence “organ”

53

ODG 16 32 64 96 128 196 256

kbps | kbps | kbps | kbps | kbps | kbps | kbps

Original | -3.78 | -3.40| -0.87 | -0.27 | -0.11| -0.00| -0.00

Modified | -3.62 | -3.52 | -0.65| -0.23 | -0.12| -0.00| -0.00
Table 4.14 The ODG of test sequence “eddie_rabbitt”

4.6 The Final Simulation and Acceleration

Results on Tl C64x DSP

After accelerating codes and modifying algorithms, we have efficiently reduced the
computation load of the encoder .on"DSP. Table 4.15 shows the final results. We can
clearly see that after codes acceleration: the performance improvement achieves 23.5
percent. But the improvement is not fast enough. And after algorithms modification, the
final implementation speed is about*22:11-percent of the original execution time. Table
4.16 shows the profile of our final AAC encoder system on TI C64x DSP. We can see that
the psychoacoustic model occupies only 22.75 percent in the final system. Table 4.17
shows the improvement of the major functions compared with original version shown in
Table 4.1. After using fast algorithms, the speed increase of the psychoacoustic model,
quantization, and bit allocation model is drastic compared with the original schemes. The
quantization and bit allocation model achieves 73.52 percent and the psychoacoustic
model even achieves a higher 89.09 percent than the original models. Also, we test final
sound quality. The test sequences are the same as before and we include three additional
sequences. The “TS_01” sequence is a piece of the instrument glockenspiel music. The
“TS_02” sequence is the instrument guitar music. The “TS _03” sequence is the
instrument tongue music. And the three test sequences are retrieved from the European
Broadcasting Union (EBU). Tables 4.18 to 4.23 show the quality results. From these

tables, the quality test results seem acceptable.

54

Total Execution Cycles

Performance
Improvement (%)

Original 2,126,810,017
Code Acceleration 1,627,141,833 23.5
Final 470,273,769 77.89

Table 4.15 The final acceleration result of the AAC encoder

Function Execution cycles Percent (%)
Total 470,273,769 100
Psycho-acoustics 106,983,548 22.75
Filterbank 90,203,329 19.18
Quantization and 264,896,754 56.33
Bit-allocation
Others 8,182,764 1.74
Table 4.16 Profile of final madified AAC encoder on C64x DSP
Function Improvement (%0)
Total 77.89
Psycho-acoustics 89.09
Filterbank 34.55
Quantization and 73.52
Bit-allocation
Table 4.17 Improvement of each part in AAC encoder on C64x DSP
OoDG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.53 | -3.37 | -0.99 | -0.38| -0.26 | -0.01 | -0.01
Modified | -3.65 | -3.59 | -1.12| -0.64 | -0.57 | -0.28 | -0.25

Table 4.18 The ODG of test sequence “guitar”

55

ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.89 | -3.83 | -2.76 | -0.41 | -0.03 | -0.01 | -0.01
Modified | -3.77 | -3.56 | -2.59 | -0.30| -0.03| -0.01 | -0.01
Table 4.19 The ODG of test sequence “organ”
ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.78 | -3.40| -0.87 | -0.27 | -0.11| -0.00 | -0.00
Modified | -3.73 | -3.75| -1.26 | -0.65| -0.46 | -0.21 | -0.00
Table 4.20 The ODG of test sequence “eddie_rabbitt”
ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.51 | -3.80| -2.12[:0.99 | -0.56 | -0.14 | 0.01
Modified | -3.44 | -3.70 |.=2.01.,.-0.80, -0.52 | -0.12| 0.01
Table 4.21-The ODG of test.sequence “TS_01”
ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.79| -3.82| -2.03| -0.38| -0.15| -0.00 | -0.00
Modified | -3.73 | -3.80| -1.89 | -0.45| -0.20| -0.00 | -0.01
Table 4.22 The ODG of test sequence “TS_02”
ODG 16 32 64 96 128 196 256
kbps | kbps | kbps | kbps | kbps | kbps | kbps
Original | -3.61 | -3.32 | -1.42 | -0.49| -0.25| -0.01 | -0.00
Modified | -3.30| -3.07 | -1.15| -0.37 | -0.10| -0.01| -0.01

Table 4.23 The ODG of test sequence “TS_03”

56

Chapter 5
MPEG-4 AAC Codec

Implementation on DSP

In the previous chapter, we describe the acceleration of the MPEG-4 AAC encoder on
DSP. In addition, we use some efficient algorithms which are derived from several papers
to replace time-consuming models. In this chapter, we not only implement the MPEG-4
AAC encoder on DSP, but also implement the decoder on DSP. We will first describe the
system structure of MPEG-4 AAC decoder on-DSP. Secondly, we will describe the
system structure of MPEG-4 AAC encoder on'DSP. Also, we give experimental results of

implementation at the end.

5.1 AAC Decoder Implementation on DSP

We implement the MPEG-4 AAC decoder on DSP by Quixote DSP board described
in chapter 3. As mentioned, the Quixote have efficient hardware to implement our system.
The software development environment CCS (Code Composer Studio) helps us in
writing C/C++ codes. And we use Visual C++ as host program development environment.
The transmission mechanism between PC and DSP adopts the burst block interface,
which has been described in section 3.3, because this mechanism is relatively easy to

implement as comparing to the data streaming mode.

57

5.1.1 Structure of AAC Decoder Implementation

We use the burst block transmission to implement our AAC decoder structure. Hence,
we must create transmitting and receiving buffers at the host and target sides respectively.
The use of the base buffer class allows integer, character, and float data types, but the
receiving buffer at the host side must use the character data type. Our AAC decoder

structure is shown in Fig 5.1.

DSP side IF (first)
Set Configuration
Allocate memory Initialization
and > else = Reset parameter
nitialize state memony Decoding
frame data decoded data
PCsiclk 7~ N 1

Read one frame

from input file Write coded data

Loop when “transfer” is clicked

Fig. 5.1 Structure of AAC decoder implementation on DSP

The host side handles input file read and output file write, and allocates buffers to
store data before and after processing. The transmitting buffer at the host side stores
every frame data from the input file, and the receiving buffer stores decoded data from
the target side. The target side stores the frame data from the host side, and then it does
decoding process. After decoding, the decoded data stored in the buffer will be
transmitted to the host side. And before running the decoding process at the target side,
the DSP board performs some preprocessing and initialization work, including the
memory allocation, state memory initialization and so on. In our program, there is a loop

that does file read, file write, buffer transmission and buffer reception at the host side.

58

And at the target side, the DSP platform does the decoding one frame work, buffer
transmission and buffer reception for every frame. But for the first time, the receiving
buffer at the target side stores the initialization data instead of the decoding frame data.
So, the DSP board will do default object type and samplerate setting, and the aac file
format read. Also note that we must use the character buffer as the receiving buffer at the
host side of our system as mentioned earlier. Therefore, we must convert character data
into integer data from the receiving buffer at the host side and then write them into the

output file.

5.1.2 Implementation Results of AAC Decoder

We have implemented the AAC decoder on DSP, and our test sequence is “guitar”.
The sampling rate is 44.1 kHz. Table 5.1 shows the implementation result. We measure
the average execution time of «decoding one frame. And we have subtracted the
transmission time between the host and the target sides. To measure the transmission time,
we write a null function execution on DSP. And then the execution time on DSP is the
differece between the total time and the transmission time. We can clearly see that the
execution time on DSP is fast enough”to ‘achieve real-time operation. But the current
setup requires the file read and write processing. They increase significantly the
transmission time because we have a loop that processes the transmission between the

host side and the target side for every frame.

Time(s)

AAC decoder 1.7536e-4
s/frame

Table 5.1 Implementation result of AAC decoder on DSP

59

5.2 AAC Encoder Implementation on DSP

In this section, we will describe the MPEG-4 AAC encoder implementation on DSP.
We also give some experimental results of implementation on DSP, including the

compiler optimization.

5.2.1 Structure of AAC Encoder Implementation

Similar to the decoder, we also the adopt burst block transmission to implement the
AAC encoder on DSP. The structure of the encoder is shown in Fig 5.2. The structure of
the burst block transmission has been discussed in Section 5.1.

In this program structure, the host side does file read and write work, and the target
side mainly does the encoding work.. At'first, the host side uses buffer to store one frame
data and then transmit it to the target;side. The target side will do board preprocessing job,
including memory allocation and'so on, until the buffer receives the frame data from the
host side successfully. In addition, we put-AAC encoder initialization on DSP, including
opening the encoder library and configuring.the" options. The opening of the encoder
library consists of default values initialization, default configuration, some coder
functions initialization and so on. When the receiving buffer receives a frame data from
the host side, the DSP board will encode input frame data. After encoding, the coded data
will be stored in transmitting buffer to be sent into host side. And then, the host side will
write the coded data from buffer to file. Every time the host side reads one frame data

from input file, so there is a processing loop that finally completes the encoding task.

60

DSP side

Allocate memory
and
nitialize state memory

| AAC encoder Encodin Reset
initialization g parameter

coded data

frame data

Read one frame

from input file Write coded data

Loop when “transfer” 1= clicked

Fig. 5.2 Structure of AAC encoder implementation on DSP

5.2.2 Implementation Results of AAC Encoder

We have implemented the AAC encoder on DSP, and our test sequence is “guitar”.
The sampling rate is 44.1 kHz. Table 5.2 shows the implementation result. We measure
the average computation time of encoding one frame. And we have subtracted the
transmission time between the host and the target sides. From this table, we can see that
the original computation time is 0.1742 second per frame. This value is not fast enough to
achieve real-time operation. Therefore, we use some code acceleration techniques and
algorithms modification have been described in chapter 4 to accelerate the AAC encoder
system on this Quixote board. These measured values are shown in Table 5.2. And our
final implementation time is 0.008 second per frame. This value is fast and acceptable.

But the transmission time is not included.

61

Time| Without Open Code Code Code
(s) open opt. | opt. level |Acceleration| Acceleration |Acceleration with
level (file level) with PAM bit allocation

AAC 0.1742 0.13925 0.08724 0.0539 0.0474
encoder| s/frame s/frame s/frame s/frame s/frame

Time Final

(s) [|implementation

result

AAC 0.008

encoder s/frame

Table 5.2 Implementation result of AAC encoder on DSP

62

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main goal of this work is to accelerate the MPEG-4 AAC encoder implemented
on the TI C64x DSP processor. Our acceleration methods include the coding style
modification to match the DSP hardware architecture and adopt several fast algorithms.
Based on the profiling data, the psychoacoustic module and the bit-allocation module are
the two heavy-load computational“parts in the:AAC encoder. For the psychoacoustic
model, we reduce the calculation of spreading. functions by using the fixed-coefficients
and eliminate the original FFT calculation by using the MDCT-based spectrum. For
quantization, we use the lookup table*and linear interpolation method to accelerate it. And
in the outer loop of the bit-allocation‘module; the noise estimation algorithm can reduce
the iteration of outer loop to once and thus provides a significant reduction of execution
time. The details and results can be found in chapter 4. The total performance has 77.89
percent improvement compared to the original program.

Furthermore, we have successfully implemented both the encoder and decoder of
MPEG-4 AAC on the DSP platform. Our communication interface between the host and
the target is the burst block transmission due to its simple control and easy
implementation. With our acceleration, the execution speed of both encoder and decoder
on the DSP platform is fast enough to achieve real-time operation. The implementation of
the AAC encoder is about 21.78 times faster than the original version. The details and

results can be found in chapter 5.

63

6.2 Future Work

If we can reduce the transmission time between the host and the target, our system
will run faster. Hence, the transmission time reduction should be studied. At the moments,
we transmit one frame data every time to the DSP side. We may transmit serial frame data
once to reduce the number of transmission, but at the cost of delay and memory.

Also, the board provides us with the FPGA. We can integrate the FPGA
implementation together with DSP to accelerate the overall system. But the transmission
between DSP and FPGA is more complex, and we are unable to use it yet.

In addition, we do not implement some optional tools of the MPEG-4 AAC encoder
on the DSP platform because we mainly focus on the speed of overall system. And the

AAC encoder can be further accelerated by other optimization techniques.

64

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]
[9]

ISO/IEC JTC/SC29/WG11 MPEG, International Standard ISO/IEC 13818-7
“Advanced Audio Coding”, 1997

ISO/IEC JTC/SC29/WG11 MPEG, International Standard ISO/IEC 14496-3
“Advanced Audio Coding”, 1999

T. Painter and A. Spanias, “Perceptual Coding of Digital Audio”, Pro. of the
IEEE, Vol. 88, Issue 4, pp. 451-515, Apr. 2000

M. Wolters and et al., “A closersleok ntoiMPEG-4 High Efficiency AAC”, AES
115th Convention Paper, 2003

Innovative Integration, “Quixote User’s Manual’’, Dec. 2003

Texas Instruments, “TMS320C6000 Programmer’s Guide”, SPRU198F, Feb.
2001

Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide”,
SPRU189F, Jan. 2000

Texas Instruments, “TMS320C64x Technical Overview”, SPRU395B, Jan. 2001

T. H. Tsai, S. W. Huang and L. G. Chen, “Design of a low power psycho-acoustic
model co-processor for MPEG-2/4 AAC LC stereo encoder”, IEEE Int. Symp.

on Circuits and Systems, Vol. 2, pp. 552-555, 25-28 May 2003

[10] Draft revision of recommendation ITU-R BS.1387, “Method for objective

measurements of perceived audio quality”, 1998

[11] J. D. Johnston, “Transform Coding of Audio Signals Using Perceptual Noise

Criteria”, IEEE Journal on Selected Area on Communications, Vol. 6, No 2, Feb.

65

1988

[12] T. H. Tsai and C. C. Yen, “A high quality re-quantization/quantization method for
MP3 and MPEG-4 AAC audio coding”, IEEE Int. Symp. on Circuits and
Systems, Vol. 3, pp.851-854, 26-29 May 2002

[13] C. Y. Lee and et al., “A fast audio bit allocation technique based on a linear R-D
model”, IEEE Trans. on Consumer Electronics, Vol. 48, pp. 662-670, Aug. 2002

[14] C. M. Liu and et al., “A fast bit allocation method for MPEG layer I11”, in Proc.
of ICCE, pp. 22-23, 1999

[15] H. Purnhagen, “An Overview of MPEG-4 Version 2 Audio”, AES 17"
International Conference on High Quality Audio Coding, Sep. 1999

[16] B. Grill, “MPEG-4 audio: A preview into the technology of the future”, 108"
Convention of AES, Feb. 2000

[17] T. Nomura, Y. Takamizawa,.“Processor-Efficient Implementation of a High

Quality MPEG-2 AAC Encader?, presented at AES 110" Convention, May 2001

66

AFROARS L ENANLEET AR, o £ BERE R < F
(AL L AR R A ALttt RP e Y 2
BOL 5 AR EF R APMAE Y o AR L &2 P kv e 5 TMPEG4 %
B AR L HE 2 B ADSP T o R, ERLF A RS E

AB & AL SR RIE s UR YRS C R WML E R E I

