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MPEG-4 先進音訊編解碼器之增速 

及其在 DSP 平台上的實現 

 
學生：王盈閔                                     指導教授：杭學鳴 博士 

 

國立交通大學  電子工程學系電子研究所碩士班 

 

摘要 

 

MPEG-4 先進音訊編碼(AAC)是非常有效率的音訊壓縮編碼技術。它是由

ISO/IEC MPEG 所制定的一套標準。 

在本篇論文當中，我們首先分析 MPEG-4 先進音訊編碼器在 DSP 上的執行計

算複雜度。發現心理聲學模式(psychoacoustic model)和量化及位元編碼(bit 

allocation)所花的執行時脈週期為最多，因此針對它們，我們在 DSP 上的實現

利用比較快速的演算法主要加速之。 

在 DSP 實現方面，為了加速先進音訊編碼器，我們針對 DSP 的架構使用了一

些程式技巧，包括定點式資料型態、TI DSP 的特殊指定群等等。除此之外，我

們也參考了一些快速運行的演算法，並套用在原來的音訊編碼器之心理聲學模式

及量化位元編碼上。經由這些的程式修改，最後的編碼器版本在 DSP 上的執行速

度比原來的有了 77.89%的改善幅度。並且我們也成功的把先進音訊編碼器及解

碼器兩者實現在 II(Innovative Integration) 所提供的 Quixote DSP 平台上。

而在主端及客端的傳輸介面，我們採用了緩衝之區塊傳輸模式，此模式讓我們容

易實現整個架構。最後經由我們的加速及系統實現，此先進音訊編碼及解碼器各

自都可達到即時編解碼的效果。 
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Abstract 
 

MPEG-4 AAC (Advanced Audio Coding) is an efficient audio coding standard. It 

is defined by the ISO/IEC (International Standard Organization) MPEG (Moving 

Pictures Experts Groups) committee. 

In this thesis, we first analyze the computational complexity of the MPEG-4 AAC 

encoder program. We find that the PAM (psychoacoustic model) and the quantization 

and bit allocation module require the most execution cycles on DSP. Hence, we 

mainly propose methods to accelerate them on DSP. 

In order to speed up the AAC encoder on DSP, we use several DSP codes 

acceleration techniques including fixed-point data types, TI (Texas Instruments) DSP 

intrinsic functions and others. In addition, we accelerate the PAM and the quantization 

and bit allocation modules by fast algorithms for DSP implementation. Through these 

modifications, the final AAC encoder version has about 77.89 percent improvement. 

Furthermore, we also successfully implement both the AAC decoder and encoder on 

the II’s (Innovative Integration) Quixote DSP board. We adopt the burst block 

transmission mechanism for communication between the host and the target side. 

Finally, the speed of the AAC encoder and decoder on DSP implementation can 

achieve real-time operation. 
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Chapter 1 

Introduction 
 

 

MPEG stands for ISO “Moving Pictures Experts Groups.” It is a group work under 

the directives of the International Standard Organization (ISO) and the International 

Electro-technical Commission (IEC). This group work concentrates on defining the 

standards for coding moving pictures, audio and related data. 

The MPEG-4 Advanced Audio Coding (AAC) is an efficient audio algorithm 

standardized by ISO/IEC MPEG committee. The AAC can achieve indistinguishable 

quality at 128 kbits/s for stereo signals, and at 320 kbits/s for 5.1 multichannel audio. 

Hence, it can compress audio data at high quality with high compression efficiency. The 

MPEG-4 AAC mainly inherits MPEG-2 AAC (13818-7) and adds several tools to 

enhance the coding performance, such as temporal noise shaping (TNS), perceptual noise 

substitution (PNS), long time prediction (LTP), spectral band replication (SBR) and 

others. 

In this thesis, our aim is to implement the MPEG-4 AAC encoder and decoder on the 

DSP processor. Hence, we adopt the DSP board made by Innovative Integration's Quixote 

to implement our program. The board houses a Texas Instruments' TMS320C6416 DSP 

and a Xilinx Virtex-II FPGA. The TI TMS320C6416 fixed-point processor has a rather 

good performance. Its instruction cycle frequency is 600MHz. It adopts the advanced 

VelociTI very long instruction word (VLIW) architecture that can execute eight 

instructions in parallel. In addition, we accelerate the MPEG-4 AAC encoder by some 

DSP coding techniques and several efficient algorithms. 

Our contributions are the acceleration of the AAC encoder and the implementation of 

the AAC encoder and decoder. Through some DSP codes acceleration techniques and the 

fast algorithms of the PAM (psychoacoustic model) and the quantization and bit 

allocation modules in AAC encoder, the final AAC encoder version has about 77.89 
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percent improvement. Furthermore, the speed of the AAC encoder and decoder on DSP 

implementation can achieve real-time operation. 

This thesis is organized as follows. In chapter 2, we describe operations of MPEG-2 

AAC and MPEG-4 AAC. In chapter 3, we describe the DSP development environment 

and the communication interface provided by the DSP platform. In chapter 4, we speed 

up the AAC encoder program on DSP. In chapter 5, we successfully implement the AAC 

encoder and decoder on DSP platform. Finally, we give a conclusion and future work of 

our system. 
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Chapter 2 

MPEG-2/4 Advanced 

Audio Coding 
 

 

In this chapter, we will briefly introduce several basic concepts and major modules of 

the MPEG-2/4 AAC (Advanced Audio Coding) system. Details can be found in [1] and 

[2] respectively. 

 

 

2.1 MPEG-2 AAC 

In 1994, the MPEG-2 audio standardization committee defined a high quality 

multi-channel standard. It was the first-step of the development of “MPEG-2 AAC”. In 

1997 April, the MPEG-2 AAC (ISO/IEC 13818-7) was standardized by the MPEG 

(Moving Pictures Expert Group). The aim of MPEG-2 AAC was to reach 

“indistinguishable” audio quality at the data rate of 384 kbps or lower for five 

full-bandwidth channel audio signals as specified by the ITU-R (International 

Telecommunication Union, Radio-communication Bureau). Testing results showed that 

MPEG-2 AAC needs 320 kbps to achieve the ITU-R quality requirements. This result 

showed that MPEG-2 AAC satisfied the ITU-R specifications. 

The MPEG-2 AAC provides the transparent audio quality at the cost of discarding 

MPEG-1 backward-compatibility. The MPEG-2 AAC algorithm combines the coding 

efficiency of a high-resolution filter bank, prediction techniques, Huffman coding and 

other tools to achieve the audio quality at low data rates. And like most audio coding 

schemes, the MPEG-2 AAC algorithm compresses signals by removing the redundancy 
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between samples and the irrelevant audio signals. We can use time-frequency analysis for 

removing the redundancy between samples, and use the masking properties of human 

hearing system to remove irrelevant audio signals. Besides, the MPEG-2 AAC system 

offers three profiles to fulfill the demand of different tradeoffs between audio quality, 

memory requirement and system complexity. For this purpose, the three profiles are 

defined as main profile, low-complexity (LC) profile and scalable sampling rate (SSR) 

profile. The main profile is intended for use when the processing power, and especially 

the memory, is not better. The LC profile is intended to use when the computing cycles 

and memory use are constrained, and the SSR profile is in use when a scalable decoder is 

required. 

Next, we will briefly introduce each tool in this section. Fig 2.1 gives an overview of 

the MPEG-2 AAC encoder block diagram. 
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Fig 2.1 Block diagram for MPEG-2 AAC encoder [1] 

 

2.1.1 Psychoacoustic Model 

The psychoacoustic model is an essential component of the AAC encoder that enables 

its high performance. The job of the psychoacoustic model is to analyze the input audio 

signal and determine where the spectrum quantization noise can be allowed and to what 

extent. Then, the encoder uses this information to decide how to represent the input audio 

signal in the most way with the given limited number of code bits. In this process, the 

psychoacoustic model calculates the maximum distortion energy value which can be 
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masked by the signal. And this energy is called threshold. The threshold generation 

process has three inputs. They are: 

1. The shift length for the threshold calculation process is called iblen. This iblen must 

remain constant over any particular application of the threshold calculation process. 

For long FFT iblen = 1024, for short FFT iblen = 128. 

2. For each FFT type, the newest iblen samples of the signal, with the samples delayed 

(either in the filterbank or psychoacoustic calculation) such that the window of the 

psychoacoustic calculation is centered in the time-window of the codec 

time/frequency transform. 

3. The sampling rate. There are sets of tables that will be used in the calculation process, 

and the tables are provided for the standard sampling rates. Sampling rate must 

necessarily remain constant over one implementation of the threshold calculation 

process. 

 

The outputs of the psychoacoustic model are: 

1. a set of Signal-to-Mask Ratios and thresholds, which are to be used by the encoder. 

2. the delayed time domain data (PCM samples), which are to be used by MDCT. 

3. the block type for the MDCT. 

4. an estimate of the amount of  bits should be used for encoding in addition to the 

average available bits. 

 

Fig 2.2 [2] shows the block diagram for the psychoacoustic model in the MPEG-2 

AAC encoder. Unlike the psychoacoustic model 1, this model does not make a 

dichotomous distinction between tonal and non-tonal components. Instead the spectral 

data is transformed to a “partition” domain and the fractions of the tonal and non-tonal 

components are estimated in each partition. This fraction ultimately determines the 

amount of masking. 

For more detailed procedures for calculation, please see [2]. 
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Fig 2.2 Block diagram of psychoacoustic model [2] 

 

2.1.2 Gain Control 

The gain control tool receives the input time-domain signals, and then ouputs 

gain_control_data and a gain controlled signal whose length is equal to the length of the 

MDCT window. The tool consists of a PQF (Polyphase Quadrature Filter), gain detectors 

and gain modifiers. The PQF divides the input signals into four equal width frequency 

bands. The gain detectors produce gain control data, which satisfies the MPEG bitstream 

syntax. They consist of the number of gain changes, the index of gain change positions 

and the index of gain change level. The gain modifier for each PQF band controls the 
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gain of each signal band. And the gain control tool can be applied to each of four bands 

independently. The block diagram for the gain control tool is shown in Fig 2.3. 

 

 
Fig 2.3 Block diagram of gain control tool [2] 

 

2.1.3 Filterbank 

The filterbank maps the signal samples into a spectral representation using a modified 

discrete cosine transformation (MDCT) with critical subsampling and overlapping 

subsequent windows. The MDCT employs TDAC (time-domain aliasing cancellation) 

technique. 

In the encoder, the filterbank takes in the appropriate block of time samples, 

modulates them by an appropriate window function, and performs the MDCT. Each block 

of input samples is overlapped by 50% with the immediately preceding block and the 

following block in order to reduce the boundary effect. 

The mathematical expression of the MDCT is 
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                (2.1) 

where 

n = sample index 

 N = transform block length 

 i = block index 

 k = coefficient index 

 n0 = (N/2+1)/2 

 

Since the window function has a significant effect on the filterbank frequency 

response, the filterbank has been designed to allow a change in window length and shape 

to match to the input signal characteristics. There are two resolutions in AAC, one with 

1024 spectral coefficients (one long window) and one with eight sets of 128 coefficients 

(eight short windows) and the switching between them is supported through the use of 

transition windows. The encoder also selects the optimal shape for each of these windows 

between the Kaiser-Bessel-derived window (KBD) with improved far-off rejection and 

the sine window with a wider main lobe. 

 

 

Fig 2.4 Window shape adaptation process [2] 
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Fig 2.5 Block switching during transient signal conditions [2] 

 

2.1.4 Prediction 

Prediction is used for an improved redundancy reduction and is very effective in the 

stationary parts of a signal. The current spectral coefficient is estimated by the predictor 

based on the corresponding spectral coefficients of the preceding two frames and only the 

prediction errors need to be transmitted. 

For each channel prediction is applied to the spectral components resulting from the 

filterbank. For each spectral component, there is one corresponding predictor resulting in 

a bank of predictors. Each predictor exploits the auto-correlation between the spectral 

component values of consecutive frames. The predictor coefficients are calculated from 

preceding quantized spectral components in the encoder. A second order 

backward-adaptive lattice structure predictor is working on the spectral component values 

of the preceding frames. The predictor parameters are adapted to the current signal 

statistics on a frame-by-frame base, using an LMS-based adaptation algorithm. If the 

prediction is activated, the quantizer is fed with the prediction error. Fig 2.6 shows the 

block diagram of prediction unit for one scalefactor band. 
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Fig 2.6 Prediction tool for one scalefactor band [2] 

 

2.1.5 Temporal Noise Shaping (TNS) 

The Temporal Noise Shaping tool is used to control the temporal shape of the 

quantization noise within each window of the transform, which is needed for transient 

and pitched signals. This is done by applying a filtering process to parts of the spectral 

data of each channel. The tool can provide considerable enhancement to the audio quality 

for the speech and transient signals. 

 

2.1.6 Joint Stereo Coding 

AAC joint stereo coding reduces the needed bitrate for stereo or multichannel signals 

more efficiently than separate coding of several channels. There are two different joint 

stereo methods that can be selected for coding of different frequency bands to optimize 

the resulting bitrate: M/S stereo coding and intensity stereo coding. 

1. M/S stereo coding: 

The decision to code left and right coefficients as either left/right (L/R) or mid/side 



 12

(M/S) is made on a noiseless coding band by noiseless coding band basis for all spectral 

coefficients in the current block. M/S stereo coding is very efficient for near monophonic 

signals, because it use a sum (M) and a difference (S) channel instead of left and right 

channels and the difference signals is very small in this case. If the high correlated left 

and right signals could be summed, the require bits to code this signals will be less. 

Therefore, when the left and right signals’ correlation is higher than a threshold, the M/S 

stereo coding tool will operate on transforming the L/R signals to M/S signals. 

2. Intensity stereo coding: 

The intensity stereo coding tool is used to exploit irrelevance between high frequency 

signals of each pair of channels. It adds high frequency signals from left and right 

channel and multiplies to a factor to rescale the result. The intensity signals are used to 

replace the corresponding left channel high frequency signals, and corresponding signals 

of the right channel are set to zero. In this AAC system, the intensity stereo coding 

mechanism is implemented in the LC profile. 

 

2.1.7 Quantization 

AAC uses the nonuniform power-law quantization, where smaller values are 

quantized finer, so that quantization noise is stronger at larger values and is easier masked. 

Scalefactors are used to scale the spectral coefficients before the quantization to be able 

to control the power of the introduced quantization noise. 

 

 

                   (2.2) 

 

The AAC quantization module consists of three levels. The top level calls a 

subroutine named “outer iteration loop”, which calls the subroutine “inner iteration loop”. 

The outer iteration loop (distortion control loop) controls the quantization noise which is 

produced by the quantization of the frequency domain lines within the inner iteration 

loop to maintain perceptual performance. The inner interation loop (rate control loop) 
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calculates the actual quantization of the frequency domain data to maintain bit rate. 

 

2.1.8 Noiseless Coding 

In the AAC encoder the input to the noiseless coding module is the set of 1024 

quantized spectral coefficients. Since the noiseless coding is done inside the quantizer 

inner loop, it is part of an iterative process that converges when the total bit count is 

within some interval surrounding the allocated bit count. The noiseless coding stage in 

AAC uses sectioning and Huffman coding (entropy coding) and exploits statistical 

redundancy to efficiently encode the 1024 coefficients without further loss of 

information. 

The noiseless coding segments the set of 1024 quantized spectral coefficients, such 

that a single Huffman codebook is used to code each section. The Huffman coding is used 

to represent n-tuples of quantized coefficients, with 12 codebooks can be used. The 

spectral coefficients within n-tuples are ordered and the n-tuple size is two or four 

coefficients. Each codebook specifies the maximum absolute value that it can represent 

and the n-tuple size. 

 

 

2.2 MPEG-4 AAC Version1 

MPEG-4 is formal as its ISO/IEC designation “ISO/IEC 14496”, and it includes the 

major parts: Systems, Audio, Video and DMIF. Specially, compared to previous MPEG 

standard, MPEG-4 has the following concepts: universality, scalability, object-based 

representation, content-based interactivity and natural and synthetic representations. 

MPEG-4 AAC Version 1 was finalized in October 1998 and became an International 

Standard in the first months of 1999. It is fully backward compatible with MPEG-2 AAC, 

and includes some additional tools such as the long term predictor (LTP) tool, perceptual 

noise substitution (PNS) tool and transform-domain weighted interlaced vector 

quantization (TwinVQ) tool. The PNS tool and the LTP tool are available to enhance the 
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coding performance for the noise-like and very tonal signals, respectively. The TwinVQ 

tool is provided to cover very low bitrates. This new scheme which combined AAC with 

TwinVQ is officially called "General Audio (GA)." Next, we will briefly introduce these 

new tools. 

 

 

Fig 2.7 Block diagram of MPEG-4 GA encoder [2] 
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2.2.1 Long Term Prediction (LTP) 

The LTP tool is well-known from speech coding and is used to exploit redundancy in 

the speech signal which is related to the signal periodicity as expressed by the speech 

pitch. The LTP tool has been integrated into the audio coder where quantization and 

coding is performed on the input signal. Fig 2.8 shows the combined LTP and coding 

system. 

 

Fig 2.8 LTP in the MPEG-4 General Audio encoder [2] 

 

The LTP is used to predict the input signal based on the quantized values of the 

preceding frames which were transformed back to a time domain representation by the 

inverse filterbank and the associated inverse TNS operation. Comparing this decoded 

signal to the input signal, the optimum pitch lag and gain factor is determined. Then, the 

difference between the predicted signal and the original signal is calculated and compared 

with the original signal. One of them is selected to be coded on a scalefactor band basis 

depending on which alternative is more favorable. This is achieved by means of the 

“frequency selective switch” (FSS). 

The LTP tool provides considerable coding gain for stationary harmonic signals and 

some gain for non-harmonic tonal signals. Besides, the computational complexity of the 
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LTP tool is much less than original prediction tool. 

 

2.2.2 Perceptual Noise Substitution (PNS) 

The PNS tool allows for a very compact representation of noise-like signal 

components because only the signaling and the energy information is transmitted once for 

a scalefactor band instead of the set of quantized and coded spectral coefficients. 

Therefore, it increases compression efficiency for certain types of input signals. Fig 2.9 

shows the PNS concept. 

 

   
Fig 2.9 Principle of Perceptual Noise Substitution [2] 

 

2.2.3 TwinVQ 

The TwinVQ tool is an alternative VQ-based coding kernel. It can provide good 

coding performance at very low bitrates (at or below 16kbps). 

When it performs the quantization of the spectral coefficients, the spectral 

coefficients will first be normalized to a specified target range and then be quantized by 

using the weighted vector quantization (VQ) process. The Fig 2.10 shows the TwinVQ 

tool module. 
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Fig 2.10 TwinVQ quantization scheme [2] 

 

 

2.3 MPEG-4 AAC Version2 

MPEG-4 AAC Version 2 was finalized in 1999. Compared to MPEG-4 AAC version 

1, it adds some new tools without replacing any existing tools of version 1. So, it is fully 

backward compatible to version 1. The version 2 provides the following new 

functionalities: Error Robustness, Low-Delay Audio Coding, Fine grain scalability and so 

on. Next, we will briefly introduce these new tools in this section. 

 

2.3.1 Error Rubustness 

The Error Robustness tools provide improved performance on error-prone 

transmission channels. The two classes of tools are the Error Resilience (ER) tool and 

Error Protection (EP) tool. 

The ER tool reduces the perceived distortion of the decoded audio signal that is 
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caused by corrupted bits in the bitstream. The following tools are provided to improve the 

error robustness for several parts of an AAC bitstream frame: Virtual CodeBook (VCB), 

Reversible Variable Length Coding (RVLC), and Huffman Codeword Reordering (HCR). 

These tools allow the application of advanced channel coding techniques, which are 

adapted to the special needs of the different coding tools. 

The EP tool provides Unequal Error Protection (UEP) for MPEG-4 Audio. UEP is an 

efficient method to improve the error robustness of source coding schemes. It is used by 

various speech and audio coding systems operating over error-prone channels such as 

mobile telephone networks or Digital Audio Broadcasting (DAB). The bits of the coded 

signal representation are first grouped into different classes according to their error 

sensitivity. Then error protection is individually applied to the different classes, giving 

better protection to more sensitive bits. 

 

2.3.2 Low-Delay Audio Coding 

The MPEG-4 General Audio Coder provides very efficient coding of general audio 

signals at low bitrates. However it has an algorithmic delay of up to several 100ms and is 

thus not well suited for applications requiring low coding delay, such as real-time 

bi-directional communication. To enable coding of general audio signals with an 

algorithmic delay not exceeding 20 ms, MPEG-4 Version 2 specifies a Low-Delay Audio 

Coder which is derived from MPEG-2/4 Advanced Audio Coding (AAC). It operates at 

up to 48 kHz sampling rate and uses a frame length of 512 or 480 samples, compared to 

the 1024 or 960 samples used in standard MPEG-2/4 AAC. Also the size of the window 

used in the analysis and synthesis filterbank is reduced by a factor of 2. No block 

switching is used to avoid the “look-ahead” delay due to the block switching decision. To 

reduce pre-echo phenomenon in case of transient signals, window shape switching is 

provided instead. For non-transient parts of the signal a sine window is used, while a 

so-called low overlap window is used in case of transient signals. Use of the bit reservoir 

is minimized in the encoder in order to reach the desired target delay. As one extreme 

case, no bit reservoir is used at all. 
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2.3.3 Fine Grain Scalability 

Bitrate scalability, also known as embedded coding, is a very desirable functionality. 

In order to provide efficient small step scalability for the AAC, the Bit-Sliced Arithmetic 

Coding (BSAC) tool is available in version 2. This tool is used in combination with the 

AAC coding tools and replaces the noiseless coding of the quantized spectral data and the 

scalfactors. BSAC provides scalability in steps of 1kbps per audio channel, which means 

2kbps steps for a stereo signal. One base layer bitstream and many small enhancement 

layer bitstreams are used. 

 

2.3.4 Parametric Audio Coding 

The Parametric Audio Coding tools combine very low bitrate coding of general audio 

signals with the possibility of modifying the playback speed or pitch during decoding 

without the need for an effects processing unit. In combination with the speech and audio 

coding tools of version 1, improved overall coding efficiency is expected for applications 

of object based coding allowing selection and switching between different coding 

techniques. 

 

2.3.5 CELP Silence Compression 

The silence compression tool reduces the average bitrate because of a lower-bitrate 

compression for silence. In the encoder, a voice activity detector is used to distinguish 

between regions with normal speech activity and those with silence or background noise. 

During normal speech activity, the CELP coding as in version 1 is used. Otherwise a 

Silence Insertion Descriptor (SID) is transmitted at a lower bitrate. This SID enables a 

Comfort Noise Generator (CNG) in the decoder. The amplitude and spectral shape of this 

comfort noise is specified by energy and LPC parameters similar as in a normal CELP 

frame. These parameters are an optional part of the SID and thus can be updated as 
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required. 

 

2.3.6 Extended HVXC 

The variable bitrate mode of 4.0 kbps maximum is additionally supported in version 2 

HVXC. In the version 1 HVXC, variable bitrate mode of 2.0 kbps maximum is supported 

as well as 2.0 and 4.0 kbps fixed bitrate mode. In version 2, the operation of the variable 

bitrate mode is extended to work with 4.0 kbps mode. In the variable bit-rate mode, 

non-speech part is detected from unvoiced signals, and smaller number of bits are used 

for non-speech part to reduce the average bitrate. When the variable bit-rate mode of 4.0 

kbps maximum is used, the average bit rate goes down to approximately 3.0 kbps with 

typical speech items. 
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Chapter 3 

DSP Implementation 

Environment 
 

 

In our project, we choose digital signal processor (DSP) platform to implement 

MPEG-4 AAC encoder and decoder. The DSP baseboard we use is made by Innovative 

Integration's (II’s) Quixote, which houses Texas Instruments' TMS320C6416 DSP chip 

and Xilinx Virtex-II FPGA. In this chapter, we will introduce the DSP baseboard and 

DSP chip. At the end, the data transmission process from the host PC to the target DSP 

and vice versa is also introduced. 

 

 

3.1 DSP Baseboard 
The Quixote DSP Baseboard card is shown in Fig. 3.1 and the architecture is shown 

in Fig. 3.2 [5]. Quixote combines one TMS320C6416 600MHz 32-bit fixed-point DSP 

with one two- or six-million-gate Virtex-II FPGA on the DSP baseboard, utilizing the 

signal processing technology to provide extreme processing flexibility and efficiency and 

deliver high performance.  

Quixote has 32MB SDRAM for use by DSP and 4 or 8Mbytes zero bus turnaround 

(ZBT) SBSRAM for use by FPGA. The SDRAM provides a large, fast external memory 

pool for DSP data and code. The SBSRAM is configured as independent banks for fast 

data processing storage, directly attached to the FPGA. Developers can build complex 

signal processing systems by integrating these reusable logic designs with their specific 

application logic. 
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Fig. 3.1 Innovative Integration’s Quixote DSP Baseboard Card [5] 

 

 

 

Fig. 3.2 Block Diagram of Quixote [5] 
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3.2 DSP Chip 
The TMS320C64x fixed-point DSP is using the VelociTI architecture. The VelociTI is 

a high-performance, advanced VLIW (very long instruction word) architecture, making it 

an excellent choice for multichannel, multifunctional, and performance-driven 

applications. VLIW can achieve high performance through increased instruction-level 

parallelism, performing multiple instructions during a single cycle. Because parallelism 

takes the DSP well beyond the performance capabilities of traditional superscalar systems, 

it is the key to high performance. 

VelociTI is a highly deterministic architecture, having few restrictions on how or 

when instructions are fetched, executed, or stored. It is this architectural flexibility that is 

the key to the breakthrough efficiency levels of the TMS320C6000 Optimizing C 

compiler. VelociTI advanced features include: 

□□ Instruction packing: reduced code size 

□□ All instructions can operate conditionally: flexibility of code 

□□ Variable-width instructions: flexibility of data types 

□□ Fully pipelined branches: zero-overhead branching 

 

 
Fig 3.3 Block diagram of TMS320C6x DSP [6] 
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TMS320C6416 has internal memory includes a two-level cache architecture with 16 

KB of L1 data cache, 16 KB of L1 program cache, and 1 MB L2 cache for data/program 

allocation. Peripherals such as a direct memory access (DMA) controller, power-down 

logic, and external memory interface (EMIF) usually come with the CPU, while 

peripherals such as serial ports and host ports are on only certain devices. 

In the following subsections, we will introduce several important parts of the 

TMS320C64x DSP Chip. 

 

3.2.1 Central Processing Unit (CPU) 
The TMS320C6416 CPU contains of eight independent functional units, sixty-four 

general purpose registers and control registers. Besides above, it also has the program 

fetch unit, instruction dispatch unit (attached with advanced instruction packing), 

instruction decode unit, two data path (A and B, each with four functional units), test unit, 

emulation unit, interrupt logic and two register files (A and B with respect to the two data 

paths). The architecture is illustrated in Fig. 3.3 and Fig. 3.4. 

 

 
Fig. 3.4 The TMS320C64x DSP Chip Architecture and Comparison with Ancient 

TMS320C62x/C67x Chip. 
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The program fetch, instruction dispatch, and instruction decode units can deliver up to 

eight 32-bit instructions to the functional units during one CPU clock cycle. The 

processing of instructions occurs in each of the two data paths (A and B), each of which 

contains four functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers. 

The program pipelining is also the important feature to get parallel instructions 

working properly. There are three stages of pipelining: program fetch, decode, and 

execute. In the fetch stage, the program address is generated in the CPU, and then the 

program address is sent to memory. After a memory read occurs, the fetch packet is 

received at the CPU. In the decode stage, the instructions in execute packet are assigned 

to the appropriate functional units. And then, the source registers, destimation registers, 

and associated paths are decoded for the execution of the instructions in the functional 

units. The execute stage is composed of five phases, and instructions are executed in the 

stage. Different types of instructions require different numbers of phases to complete the 

execution. 
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3.2.2 Data Path 

 

Fig 3.5 TMS320C64x CPU Data Path [6] 

 

There are two general-purpose register files (A and B) in the C6000 data paths as 

shown in Fig 3.5. The C64x DSP register is double the number of general-purpose 

registers that are in the C62x/C67x cores, with 32 32-bit registers. 

The C64x architecture has eight functional units that could be further divided into two 

data paths A and B. Each path has one unit for multiplication operations (.M), one for 

logical and arithmetic operations (.L), one for branch, bit manipulation, and arithmetic 

operations (.S), and one for loading/storing, address calculation and arithmetic operations 
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(.D). Two cross-paths (1x and 2x) allow functional units from one data path to access a 

32-bit operand from the register file on the opposite side. There can be a maximum of 

two cross-path source reads per cycle. Fig 3.6 and Fig 3.7 show the functional units and 

its operations. 

 
Fig. 3.6 Functional Units and Operations Performed [7] 
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Fig. 3.7 Functional Units and Operations Performed (Cont.) [7] 

 

3.2.3 Memory 

3.2.3.1 Internal Memory 
The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is 

organized in separate data and program spaces. When off-chip memory is used, these 

spaces are unified on most devices to a single memory space via the external memory 

interface (EMIF). The C64x has two 64-bit internal ports to access internal data memory 

and a single internal port to access internal program memory, with an instruction-fetch 

width of 256 bits. 

 

3.2.3.2 External Memory and Peripheral Options 
The external memory and peripheral options of C6416 contain 

□ Large on-chip RAM, up to 7M bits 

□ Program cache 
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□ 2-level caches 

□ 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other 

asynchronous memories for a broad range of external memory requirements and 

maximum system performance. 

□ DMA Controller transfers data between address ranges in the memory map 

without intervention by the CPU. The DMA controller has four programmable 

channels and a fifth auxiliary channel. 

□ EDMA Controller performs the same functions as the DMA controller. The 

EDMA has 16 programmable channels, as well as a RAM space to hold multiple 

configurations for future transfers. 

□ HPI is a parallel port through which a host processor can directly access the 

CPU’s memory space. The host device has ease of access because it is the master 

of the interface. The host and the CPU can exchange information via internal or 

external memory. 

□ McBSP (multichannel buffered serial port) is based on the standard serial port 

interface found on the TMS320C2000 and C5000 platform devices. Besides, the 

port can buffer serial samples in memory automatically with the aid of the 

DMA/EDMA controller. It also has multichannel capability compatible with the 

T1, E1, SCSA, and MVIP networking standards. 

 

 

3.3 Data Transmission Mechanism 
Many applications of the Quixote baseboard involve communication with the host 

CPU in some manner. All applications at a minimum must be reset and downloaded from 

the host, even if they are isolated from the host after that. The simplest method supported 

is a mapping of Standard C++ I/O to the Uniterminal applet that allows console-type I/O 

on the host. This allows simple data input and control and the sending of text strings to 

the user. The next level of support is given by the Packetized Message Interface. This 

allows more complicated medium rate transfer of commands and information between 

the host and target. It requires more software support on the host than the Standard I/O 
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does. For full rate data transfers Quixote supports the creation of data streaming to the 

host, for the maximum ability to move data between the target and host. On Quixote 

baseboards, a second type of busmaster communication between target and host is 

available for use, the CPU Busmaster interface. 

 

3.3.1 DSP Streaming Interface 
The DSP Streaming interface is bi-directional. Two streams can run simultaneously, 

one running from the analog peripherals through the DSP into the application. This is 

called the “Incoming Stream”. The other stream runs out to the analog peripherals. This is 

the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there is 

no direct access to analog peripherals from the host. This arrangement allows the DSP to 

process the streams as they move from the application to the hardware. 

DSP Streaming is initiated and started on the Host, using the Caliente component. 

On the target, the DSP interface uses pair of DSP/BIOS Device Drivers, PciIn (on the 

Outgoing Stream) and PciOut (on the Incoming Stream), provided in the Pismo 

peripheral libraries for the DSP. They are capable of copying blocks of data between 

target SDRAM and host bus-master memory via the PCI interface. 

 

3.3.2 Burst Block Transmission 
The interface is based on a streaming model where logically data is an infinite stream 

between the source and destination. This model is more efficient because the signaling 

between the two parties in the transfer can be kept to a minimum and transfers can be 

buffered for maximum throughput. On the other hand, the streaming model has relatively 

high latency for a particular piece of data. This is because a data item may remain in 

internal buffering until subsequence data accumulates to allow for an efficient transfer. 

The interface uses a different model: it transfers discrete blocks between the source 

and destination. Each data buffer is transferred completely to the destination in a single 

operation. The data buffers transferred can be of different sizes. At the destination, the 

destination buffer is re-sized to allow the incoming data to fit. 

In this simple blocking interface, there are sending and receiving functions can be 
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used. The sending function will not return until the transfer has completed and the buffer 

is ready for reuse. Similarly, the receiving function waits until data has arrived from the 

data source and transferred into the data buffer before returning. 

 

3.3.3 Message Exchange 
Besides the above interfaces, the DSP and host have a lower bandwidth 

communications link for sending commands or out-of-band information between target 

and host. Software is provided to build a packet-based message system between the target 

and the host. These packets can provide a simple yet powerful means of sending 

commands and information across the link.    

A set of sixteen mailboxes in each direction to and from host are shared with the DSP 

to allow for an efficient message mechanism that complements the streaming interface. 

The maximum data rate is 56 kbps, and the higher data rate requirements should use the 

streaming interface. 
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Chapter 4 

MPEG-4 AAC Encoder 

Acceleration on DSP 
 

 

In this chapter, we will describe the MPEG-4 AAC code acceleration on DSP. We will 

first introduce TI’s code development environment, describe how to optimize the C/C++ 

code for DSP architecture, and then discuss how to optimize the functions for DSP 

execution. 

 

 

4.1 TI’s Code Development Environment 

In this section, we will briefly introduce the CCS (Code Composer Studio) tool for 

DSP, and describe how to develop C/C++ code for the given DSP architecture. 

 

4.1.1 The Code Composer Studio 

The Code Composer Studio (CCS) is a helpful tool for developing the DSP codes. We 

briefly describe some of its features related to our implementation below. The details can 

be found in [6]. 

 

□□ Compiles code and generates Common Object File Format (COFF) output file. 

□□ Provides debug options such as step over, step in, step out, run free, and so on. 

□□ Watches any memory sections when the DSP halts. 

□□ Probes a PC file stream into or from the target memory location. 
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□□ Counts the instruction cycles between successive profile-points. 

 

We mainly use the CCS tool for debugging, refining, optimizing, and implementing 

our C codes on DSP. The profile-points help us to evaluate if our changes to the codes are 

better or not. Besides, we must write the host code and target code with the burst block 

transmission in order to implement our system on the DSP platform. 

 

4.1.2 Code Development Flow 

The DSP code development can be divided into three steps. 

 Step1：Develop the C code like standard ANSI C code without any regard to the 

particular structure of the C64x. Then, use the debugger to profile the code to 

identify any inefficient areas in the code. If the performance is not satisfactory, go 

to step2.  

 Step2：Use DSP intrinsics and optimization techniques for code generation to 

improve the C codes. Refine the C code procedures such as compiler options, 

intrinsics, statement, data type modifiers, and code transformations. If the code 

efficiency is still not sufficient, proceed to step3. 

 Step3：Extract the most time-critical areas and replace the C code with linear 

assembly, then use assembly optimizer to optimize the code, such as resource 

allocation 

 

Generally, we do not go to step3 because the linear assembly is too detail. Doing 

assembly programming is difficult and assembly codes are hard to maintain. The 

recommended code development flow involves utilizing the C6000 code generation tools 

to aid optimization rather than forcing the programmer to code by hand in assembly. 

These advantages allow the compiler to do the instruction selection, parallelizing, 

pipelining, and register allocation. Figure 4.1 shows the steps of the software 

development flow [6]. 
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Fig. 4.1 Code development flow of C6000 
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4.2 Profile of AAC on DSP 

We do the essential modifications on the MPEG-4 AAC source C code, and then 

implement the modified C code on DSP. In order to identify the computational intensive 

parts of the MPEG-4 AAC encoder, we first use TI CCS profiler to analyze it. Our test 

sequence is “guitar”, and the data length is about 0.1 second. Table 4.1 shows the profile 

results at 64k bit rate. We can see clearly that the psycho-acoustic model and the 

quantization and bit-allocation module are two major computational parts of the AAC 

encoder. Therefore, we should accelerate these two parts. 

 

 Function 
 

Execution cycles Percent (%) 

Total 2,126,810,017 100 

Psycho-acoustics 980,246,737 46.09 

Filterbank 137,817,289 6.48 

Quantization and  
Bit-allocation 

1,000,238,751 47.03 

Others 8,507,240 0.4 
Table 4.1 Profile of AAC encoder on C64x DSP 

 

 

4.3 DSP Code Acceleration Methods 

Improving the execution cycles of the AAC encoder is the main task of our system 

implementation on DSP. In this section, we will describe several methods that can 

accelerate our code and reduce the execution time on the C64x DSP. Some of these 

methods are supported by the features of C64x. 

 

4.3.1 Setting of Compiler Options 

The Code Composer Studio (CCS) is a useful GUI tool that helps programmers in 
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developing DSP codes. Its compiler offers a complicated optimization process that 

includes several advanced techniques and it takes advantages of the features of the C6000 

architecture. Hence, we can configure some setting of the compiler options to optimize 

our DSP codes efficiently. Table 4.2 shows the compiler options for performance 

enhancement and Table 4.3 shows those to avoid. 

 

 
Table 4.2 Compiler Options for Performance Enhancement [6] 

 

 

Table 4.3 Compiler Options to Avoid on Performance Enhancement 

[6] 
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4.3.2 Fixed-point Coding 

The C6000 compiler defines a size for each data type: 

□□  char    8bits 

□□  short   16bits  

□□  int     32bits 

□□  long    40bits  

□□  float    32bits 

□□  double  64bits 

 

The C64x DSP is a fixed-point processor, so it can only perform fixed-point 

operations. Although the C64x DSP can simulate floating-point processing, it takes a lot 

of extra clock cycles to do the same job. The “char”, “short”, “int” and “long” are the 

fixed-point data types, and the “float” and “double” are the floating-point data types. We 

test C64x DSP processing time of the assembly instructions “add” and “mul” for different 

data types. Table 4.4 shows the results. We can clearly see that the floating-point data 

types need more computation time than the fixed-point data types. Hence, we can 

accelerate our DSP codes in computation time efficiently by converting the data types 

from floating-point to fixed-point. 

 

Assembly 
Instruction 

Char 

8-bit 

short 

16-bit 

int 

32-bit 

long 

40-bit 

float 

32-bit 

double 

64-bit 

add 1 1 1 2 77 146 

mul 2 2 6 8 54 69 

Table 4.4 Processing time on the C64x DSP for different data types 

 

4.3.3 Loop Unrolling 

Loop unrolling expands the loops so that all iterations of the loop appear in the code. 
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It often increases the number of instructions available to execute in parallel. When our 

codes have conditional instructions, sometimes the compiler may not be sure that the 

branch will occur or not. It needs more waiting time for the decision of branch operation. 

If we do loop unrolling, some of the overhead for branching instruction will be reduced. 

Example 4.1 is the loop unrolling and table 4.5 shows the result. 

 

(a) 
/*Before unrolling*/ 
 
int i,a=0,b=0; 
for (i=0;i<10;i++) 
{ 
 a+=i; 
 b+=i; 
} 
 

 

(b) 
/*After unrolling*/ 
 
int i=0,a=0,b=0; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 

 

Example 4.1 loop unrolling 

 

 
 (a) (b) 

Execution cycles 436 206 

Code size 116 476 

Table 4.5 Comparison between with unrolling and without unrolling 

We can see clearly that the clock cycle decreases after loop unrolling, but the code 

size is larger than the original. So generally speaking, if one iteration can execute many 

instructions, the code size is larger, but it runs faster. 
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4.3.4 Using Intrinsics 

The TI C6000 compiler provides many special functions that map C codes directly to 

inlined C64x instructions, to increase C code efficiently. These special functions are 

called intrinsics. So if the instructions have equivalent intrinsic functions, we can replace 

them by intrinsic functions directly. The execution time will be decreased because of 

using intrinsics. Fig 4.2 shows some examples of the intrinsic functions for the C6000 

DSP. The entire list of intrinsics for the C6000 DSP can be found in [6]. 

Fig 4.2 Intrinsic functions of the TI C6000 series DSP (partial list) [6] 

 

4.3.5 Packet Data Processing 

We often use a single load or store instruction to access multiple data consecutively 

located in memory to maximize data throughput. For example, if we can place four 8-bit 

data or two 16-bit data in a 32-bit space, we can do four or two operations in one clock 

cycle. This method can improve the code efficiency substantially. In addition, some of the 

intrinsic functions enhance the efficiency in a similar way. 
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4.3.6 Register and Memory 

When the accessed data are located in the external memory, we need more clock 

cycles in transfering data time. So we can use registers to store data in order to reduce 

transfer time in operation. In DSP code, the pointer, malloc function and so on will locate 

data in memory. Therefore, sometimes we can adequately modify code to avoid 

frequently accessing data from/to memory so that the execution time will be decreased. 

 

4.3.7 Using Macros 

Because the software-pipelined loop can not contain function calls, it takes more 

clock cycles to complete the function call. Hence, we can change the functions to the 

“define” macros under some conditions. In addition, replacing the function with the 

macro can cut down the code for initial function definition and reduce the number of 

branches. However, macros are expanded each time they are called if the function has a 

number of instructions, it is not efficient in memory usage. 

 

4.3.8 Linear Assembly 

When we are not satisfied with the efficiency of assembly codes which are generated 

by the TI CCS compiler, we can convert parts of the C codes into linear assembly and 

then optimize the assembly directly. But this process generally is too detail and very time 

consumption in practice. Hence, we will do this process at last if we have strict constrains 

in processor performance and we have no other algorithms selection. 
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4.4 Psychoacoustic Model 

From AAC encoding profile in table 4.1, we can see clearly that the psychoacoustic 

model plays an important role in execution time. To improve the performance, we replace 

the psychoacoustic model with a new algorithm that was proposed by [9]. Next, we will 

briefly describe the new algorithm and show the simulation results after improving its 

performance. 

 

4.4.1 Optimization of PAM 

Firstly, we briefly describe the original psychoacoustic model of AAC encoder. Fig 

4.3 [9] is this block diagram of PAM (psychoacoustic model). In steps 1-2, the auditory 

spectrum is computed using the FFT. Then, the real-part spectrums lead to the calculation 

of partitioned energy, and the imaginary-part spectrums result in the calculation of the 

unpredictability measure c(w). The unpredictablility measure is first weighted with the 

energy in each partition, deriving a partitioned unpredictability measure. Then in step 5, 

both partitioned energy and unpredictability are convolved with the spreading function in 

order to estimate the effects across the partitioned bands. For each partition, the ratio of 

the convolved partitioned unpredictability over the convolved partitioned energy 

spectrum is determined. Then, the tonality index is derived from the logarithm of this 

ratio in step 6 to indicate if a signal is tonal-like. SNR (Signal-to-Noise Ratio) is 

computed from the tonality tb(b) in step 7 and then the masking partitioned energy 

threshold nb(b) is estimated in steps 8-10 and thus the masking curve is estimated. PE 

(Perceptual Entropy) is calculated for each block type from the ratio e(b)/nb(b) in steps 

11-12 to determine the block type. Finally, SMR (Signal-to-Mask Ratio) is computed in 

step 13 as the output. These SMRs are then sent to the bit allocation routine to determine 

the number of bits allocated to each subband. 
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Fig 4.3 Block diagram of original PAM [9] 

The step 2 and step 4 have high computational complexity because they include 

sophisticated mathematical functions. The step 5 includes spreading functions 

calculations and convolutions, so it also has high computational complexity. Next, the 

algorithm proposed by [9] that can reduce computational complexity of above mentioned 

steps will be described. It consists of two points: 

 Reduce calculations of spreading functions as fixed-coefficients 

The calculations of spreading functions in step 5 are a series of complex functions 

such as comparisons, square roots, power of tens, squares, and divisions. They are 

calculated at the square number of partitioned bands and repeatedly estimated every 

frame. Besides, the spreading functions are only determined by sampling rate and 

block types. Therefore, we can reduce the calculations by replacing them with 

fixed-coefficients.  

   

 MDCT-based PAM 

We know that there is one main filterbank MDCT outside the PAM and there is 
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another filterbank FFT inside the PAM transforming input samples into spectrums in 

similar ways. Therefore, we replace FFT by MDCT so that the FFT could be omitted 

in order to decrease computational complexity. Steps 2-4 are thus calculated on the 

MDCT, but step 5 requires some modification that only the partitioned energies are 

convolved with the spreading functions mentioned above because of the lack of phase 

information. Step 6 is also modified where Spectral Flatness Measure (SFM) [11] is 

used to generate the tonality index from the MDCT coefficients. The SFM is defined 

as the ratio of the geometric mean (Gm) of the power spectrum to the arithmetic mean 

(Am) of the power spectrum. Then, the SFM is converted to decibels. And the 

tonality index tb can be computed by this formula: tb = min (SFMdB / 60 , 1). 

 

Finally, Fig 4.4 [9] is the block diagram of proposed PAM described in it. The steps 

2-6 are using MDCT and SFM, and the spreading functions in step 5 are computed with 

fixed coefficients. 

 

 

Fig 4.4 Block diagram of proposed PAM [9] 
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4.4.2 Simulation Results on DSP 

In this section, we have simplified the psychoacoustic model by the algorithm in 

section 4.4.1 and implemented it on the TI C64x DSP. The fast algorithm result is shown 

in Table 4.6. Our test sequence is “guitar”, and the length is about 0.1 second. In the 

original AAC encoder program, the PsyInit function calculates the spreading function. 

The PsyBufferUpdate function contains the FFT calculation. And the PsyCalculate 

function does the masking threshold calculation. We can clearly see that the acceleration 

of the PAM is effective by this new algorithm. Also, we have done the sound quality test. 

Using the ITU-R BS.1387 PEAQ (perceptual evaluation of audio quality) defined ODG 

(objective difference grade), we examine some sequences using the fast algorithm. The 

ODG, which is a measure of quality, is calculated as the difference between the quality 

rating of the reference and the test signal. The quality ratings are measured with a range 

of [-4;0], where -4 stands for very annoying difference and 0 stands for imperceptible 

difference between the reference and the test signal. This parameter represents the audio 

quality well for good quality codecs. 

The first test sequence is “guitar” and it has sound variations and is quite complex. 

The second test sequence is “organ” and it is another instrument music. But its sound is 

consecutive and delicate. The third test sequence is “eddie_rabbitt” and it is pop music 

with human voice. The test results are shown in Tables 4.7, 4.8, and 4.9. From these 

results, the quality test seems acceptable and the acceleration is good. The overall 

speed-up is around 80 percent, and the ODG drop is less than 0.3 or so. 

 

Original Code 
size 

Execution 
cycles 

Improvement 
(%) 

PsyInit 7824 81,831,864  

PsyBufferUpd
ate 

2312 21,822,065  

PsyCalculate 548 63,774,150  
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Fast algorithm Code 
size 

Execution 
cycles 

 

PsyInit 5336 63,587,461 22.3 

PsyBufferUpd
ate 

432 24,004    99.89 

PsyCalculate 408 10,630,861 83.33 

Table 4.6 The acceleration result of the PAM in the AAC encoder 

 

ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.53 -3.37 -0.99 -0.38 -0.26 -0.01 -0.01 

Modified -3.68 -3.62 -1.22 -0.69 -0.57 -0.36 -0.28 
Table 4.7 The ODG of test sequence “guitar” 

 

ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.89 -3.83 -2.76 -0.41 -0.03 -0.01 -0.01 

Modified -3.76 -3.67 -2.79 -0.29 -0.03 -0.00 -0.01 
Table 4.8 The ODG of test sequence “organ” 

 

ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.78 -3.40 -0.87 -0.27 -0.11 -0.00 -0.00 

Modified -3.78 -3.79 -1.23 -0.62 -0.46 -0.21 -0.00 
Table 4.9 The ODG of test sequence “eddie_rabbitt” 

 

 

4.5 Quantization and Bit Allocation 

The quantization and bit allocation module is essential in AAC. Its operation relies on 

the information from the psychoacoustic model that provides the best possible listening 

quality. And from Table 4.1, we can know that they have high computation load. Next, 
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we use efficient algorithms [12] [13] to replace the original models. 

 

4.5.1 A High Quality Requantization Method 

The requantization is used to calculate quantization error in the outer loop of the bit 

allocation module. The requantization is described by the following formula: 

( ) 3
4

___ quantxquantxSigninvquantx ⋅=  

The calucation of X4/3 have high computation load, so the table lookup method is 

adopted. We adopt the high quality requantization algorithm in [12] to improve the speed 

of our system. The algorithm uses linear interpolation for each range of requantization 

and reduces the approximated error quite efficiently. With this approach, the codec 

maintains high quality result. 

The X has a wide range, so using the whole range lookup table is not suitable. To 

reduce memory usage, this approach uses a 256-entry lookup table instead of the whole 

range table and its basic operation is shown in the following equation: 
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8
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4
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This means that a 256-entry lookup table, which stores the values of X4/3 from X=1 to 

256 respectively, can be used. And it uses a directly linear interpolation for the other two 

ranges of requantization. The request quantized values are 8191, and there are three 

ranges with its dedicated operation for the whole range as shown in Fig 4.5 [12]: 
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Fig 4.5 Requantization operation with three ranges [12] 

 

4.5.2 Simulation Results on DSP 

Using the above mentioned algorithm, the acceleration result of the requantization on 

the TI C64x DSP is shown in Table 4.10. Our test sequence is the same as above section. 

In program, the AACQuantizeInit function consists of the table calculation of X4/3. From 

this simulation result, we can clearly see that this algorithm is quite efficient because the 

acceleration rate achieves 40.63 percent. Besides, the data precision is high enough so 

that it does not affect the accuracy loss. 

 

AACQuantizeInit Code 
size 

Execution 
cycles 

Improvement
(%) 

Original 912 246,364,788  

Fast algorithm 1572 146,274,298 40.627 

Table 4.10 The acceleration result of the Requantization in the AAC encoder 
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4.5.3 Single Loop Distortion Control Algorithm 

Firstly, we briefly the bit allocation algorithm adopted at AAC specification. Fig 4.6 

[13] shows the bit allocation processes in MPEG-4 AAC encoder. The outer iteration loop 

controls the quantization noise, which comes from the quantization of the spectral signals 

within the inner iteration loop. The noise spectrum is computed by multiplying the values 

within the scalefactor bands with the actual scalefactors before quantization. After 

quantization, the calculation of the quantization noise is processed band-by-band 

iteratively. If the noise exceeds the specified threshold, the spectral values of the 

scalefactor bands are amplified by increasing the scalefactor by one.  

In the inner loop, the encoder iteratively employs the nonuniform quantization, which 

has three major steps including the quantization of the spectral values, the calculation of 

actual number of bits using Huffman tables, and the computation of the resulting noise. 

By applying these three steps iteratively for each frame, the bit allocation algorithm 

provides the actual number of bits needed to encode the source. The quantizer uses the 

scalefactor and global gain to fit the requirement for the bit allocation, so we can estimate 

the quantization noise from the scalefactor and global gain. 

And it adopts three extra conditions to stop the iterative process as follows: 

1. None of the scalefactor bands has more than the allowed distortion. 

2. The next iteration would cause the amplification for any of the bands to exceed 

the maximum allowed distortion value. 

3. The next iteration would require all the scale factor bands to be amplified. 
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Fig 4.6 Block diagram of bit allocation [13] 

 

Based on the proposed scheme in [13], we replace the iterative process but retain 

roughly the same listening quality. In the noise shaping scheme, the estimated noise is 

used to decide the value of scalefactors that can parallelize the quantization noise 

spectrum with the masking threshold. Hence the algorithm reduces the times of outer 

loop to one step and thus it provides a significant reduction of execution time. The 

quantization of the spectral signals xri(j) and its approximation can be derived from 
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Where ei(j) is the estimation error for the quantized spectral signals ixi(j). The 

dequantization of ixi(j) equals to 

 

 

The estimation error using the specified gain value can be measured by the mean 

square error (MSE) between xri(j) and ( )jrx i . Thus, the distortion function can be 

represented by  

 

 

 

 

 

To reduce the order in approximation, it is assumed that and xri(j)) and ei(j) are 

independent and ei(j) is uniform distributed. So, we can approximately have:  

 

 

 

In addition, the N(Noise)i can be derived from the psychoacoustic model by 

 

 

So, we can calculate scalei by 

 

 

 

To determine the scalefactors, which are used to parallelize the estimated noise 

spectrum and the masking threshold energy, we let the scalei equal to unity at the band i. 

Thus, we can determine the other scalefactors in the remaining bands. After choosing the 

scalefactor in each band, we can quantize the spectral signals that are amplified by 

scalefactors scalei derived from the above equations. Fig 4.7 [13] shows the flow chart of 

this fast bit allocation algorithm. 
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Fig 4.7 Flow chart of the bit allocation algorithm [13] 

 

4.5.4 Simulation Results on DSP 

In this section, we have accelerated the outer loop of bit allocation model by a fast 

algorithm and implemented it on the TI C64x DSP. The result is shown in Table 4.11. Our 

test sequence is also the same as the above. In the encoder program, the AACQuantize 

function contains the quantization and bit allocation operations. In addition, the outer 

loop and the inner loop are also in it. We can clearly see that the acceleration of the outer 

loop is efficient by this fast algorithm. Because we do not accelerate the inner loop, its 

clock cycles is not improved. Also, we did the sound quality test. Using the ODG 

(objective difference grade), we test some sequences on the modified algorithm. These 

test sequences are the same as the above tests. The test results are shown in Tables 4.12, 

4.13, and 4.14. From these results, the outer loop algorithm is efficient because the 

improvement extremely achieves 92.36 percent. Besides, the sound quality is good as the 

original algorithm. Because it uses noise estimation to get the adequate scale factors such 
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that the summation of all NMR (Noise to Masking Ratio) values is the least at each frame. 

This criterion of the algorithm concerns about the result of psychoacoustics model and 

the noise is equally audible in different frequency bands. 

 

Original Code 
size 

Clock 
cycles 

Improvement 
(%) 

AACQuantize 1452 51,841,384  

OuterLoop 1168 36,775,840  

InnerLoop 144 1,078,916  

Fast algorithm Code 
size 

Clock 
cycles 

 

AACQuantize 1448 17,897,864 65.48 

OuterLoop 804 2,809,373    92.36 

InnerLoop 144 912,279  

Table 4.11 The acceleration result of the bit allocation in the AAC encoder 

 

 

ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.53 -3.37 -0.99 -0.38 -0.26 -0.01 -0.01 

Modified -3.51 -3.14 -0.98 -0.33 -0.28 -0.01 -0.01 
Table 4.12 The ODG of test sequence “guitar” 

 

 

ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.89 -3.83 -2.76 -0.41 -0.03 -0.01 -0.01 

Modified -3.89 -3.82 -2.59 -0.23 -0.03 -0.01 -0.01 
Table 4.13 The ODG of test sequence “organ” 
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ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.78 -3.40 -0.87 -0.27 -0.11 -0.00 -0.00 

Modified -3.62 -3.52 -0.65 -0.23 -0.12 -0.00 -0.00 
Table 4.14 The ODG of test sequence “eddie_rabbitt” 

 

 

4.6 The Final Simulation and Acceleration 

Results on TI C64x DSP 

After accelerating codes and modifying algorithms, we have efficiently reduced the 

computation load of the encoder on DSP. Table 4.15 shows the final results. We can 

clearly see that after codes acceleration the performance improvement achieves 23.5 

percent. But the improvement is not fast enough. And after algorithms modification, the 

final implementation speed is about 22.11 percent of the original execution time. Table 

4.16 shows the profile of our final AAC encoder system on TI C64x DSP. We can see that 

the psychoacoustic model occupies only 22.75 percent in the final system. Table 4.17 

shows the improvement of the major functions compared with original version shown in 

Table 4.1. After using fast algorithms, the speed increase of the psychoacoustic model, 

quantization, and bit allocation model is drastic compared with the original schemes. The 

quantization and bit allocation model achieves 73.52 percent and the psychoacoustic 

model even achieves a higher 89.09 percent than the original models. Also, we test final 

sound quality. The test sequences are the same as before and we include three additional 

sequences. The “TS_01” sequence is a piece of the instrument glockenspiel music. The 

“TS_02” sequence is the instrument guitar music. The “TS_03” sequence is the 

instrument tongue music. And the three test sequences are retrieved from the European 

Broadcasting Union (EBU). Tables 4.18 to 4.23 show the quality results. From these 

tables, the quality test results seem acceptable. 
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 Total Execution Cycles Performance 
Improvement (%) 

Original 2,126,810,017  

Code Acceleration 1,627,141,833 23.5 

Final 470,273,769 77.89 

Table 4.15 The final acceleration result of the AAC encoder 

 

Function 
 

Execution cycles Percent (%) 

Total 470,273,769 100

Psycho-acoustics 106,983,548 22.75

Filterbank 90,203,329 19.18

Quantization and 
Bit-allocation 

264,896,754 56.33

Others 8,182,764 1.74
Table 4.16 Profile of final modified AAC encoder on C64x DSP 

 

Function Improvement (%) 

Total 77.89 

Psycho-acoustics 89.09 

Filterbank 34.55 

Quantization and 
Bit-allocation 

73.52 

Table 4.17 Improvement of each part in AAC encoder on C64x DSP 
 
 

ODG 16 
kbps 

32 
kbps 

64 
kbps 

96 
kbps 

128 
kbps 

196 
kbps 

256 
kbps 

Original -3.53 -3.37 -0.99 -0.38 -0.26 -0.01 -0.01 

Modified -3.65 -3.59 -1.12 -0.64 -0.57 -0.28 -0.25 
Table 4.18 The ODG of test sequence “guitar” 
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ODG 16 

kbps 
32 

kbps 
64 

kbps 
96 

kbps 
128 
kbps 

196 
kbps 

256 
kbps 

Original -3.89 -3.83 -2.76 -0.41 -0.03 -0.01 -0.01 

Modified -3.77 -3.56 -2.59 -0.30 -0.03 -0.01 -0.01 
Table 4.19 The ODG of test sequence “organ” 

 
ODG 16 

kbps 
32 

kbps 
64 

kbps 
96 

kbps 
128 
kbps 

196 
kbps 

256 
kbps 

Original -3.78 -3.40 -0.87 -0.27 -0.11 -0.00 -0.00 

Modified -3.73 -3.75 -1.26 -0.65 -0.46 -0.21 -0.00 
Table 4.20 The ODG of test sequence “eddie_rabbitt” 

 
ODG 16 

kbps 
32 

kbps 
64 

kbps 
96 

kbps 
128 
kbps 

196 
kbps 

256 
kbps 

Original -3.51 -3.80 -2.12 -0.99 -0.56 -0.14 0.01 

Modified -3.44 -3.70 -2.01 -0.80 -0.52 -0.12 0.01 
Table 4.21 The ODG of test sequence “TS_01” 

 
ODG 16 

kbps 
32 

kbps 
64 

kbps 
96 

kbps 
128 
kbps 

196 
kbps 

256 
kbps 

Original -3.79 -3.82 -2.03 -0.38 -0.15 -0.00 -0.00 

Modified -3.73 -3.80 -1.89 -0.45 -0.20 -0.00 -0.01 
Table 4.22 The ODG of test sequence “TS_02” 

 
ODG 16 

kbps 
32 

kbps 
64 

kbps 
96 

kbps 
128 
kbps 

196 
kbps 

256 
kbps 

Original -3.61 -3.32 -1.42 -0.49 -0.25 -0.01 -0.00 

Modified -3.30 -3.07 -1.15 -0.37 -0.10 -0.01 -0.01 
Table 4.23 The ODG of test sequence “TS_03” 
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Chapter 5 

MPEG-4 AAC Codec 

Implementation on DSP 
 

 

In the previous chapter, we describe the acceleration of the MPEG-4 AAC encoder on 

DSP. In addition, we use some efficient algorithms which are derived from several papers 

to replace time-consuming models. In this chapter, we not only implement the MPEG-4 

AAC encoder on DSP, but also implement the decoder on DSP. We will first describe the 

system structure of MPEG-4 AAC decoder on DSP. Secondly, we will describe the 

system structure of MPEG-4 AAC encoder on DSP. Also, we give experimental results of 

implementation at the end.  

 

 

5.1 AAC Decoder Implementation on DSP 

We implement the MPEG-4 AAC decoder on DSP by Quixote DSP board described 

in chapter 3. As mentioned, the Quixote have efficient hardware to implement our system. 

The software development environment CCS (Code Composer Studio) helps us in 

writing C/C++ codes. And we use Visual C++ as host program development environment. 

The transmission mechanism between PC and DSP adopts the burst block interface, 

which has been described in section 3.3, because this mechanism is relatively easy to 

implement as comparing to the data streaming mode. 
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5.1.1 Structure of AAC Decoder Implementation 

We use the burst block transmission to implement our AAC decoder structure. Hence, 

we must create transmitting and receiving buffers at the host and target sides respectively. 

The use of the base buffer class allows integer, character, and float data types, but the 

receiving buffer at the host side must use the character data type. Our AAC decoder 

structure is shown in Fig 5.1. 

 

 

Fig. 5.1 Structure of AAC decoder implementation on DSP 

 

The host side handles input file read and output file write, and allocates buffers to 

store data before and after processing. The transmitting buffer at the host side stores 

every frame data from the input file, and the receiving buffer stores decoded data from 

the target side. The target side stores the frame data from the host side, and then it does 

decoding process. After decoding, the decoded data stored in the buffer will be 

transmitted to the host side. And before running the decoding process at the target side, 

the DSP board performs some preprocessing and initialization work, including the 

memory allocation, state memory initialization and so on. In our program, there is a loop 

that does file read, file write, buffer transmission and buffer reception at the host side. 
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And at the target side, the DSP platform does the decoding one frame work, buffer 

transmission and buffer reception for every frame. But for the first time, the receiving 

buffer at the target side stores the initialization data instead of the decoding frame data. 

So, the DSP board will do default object type and samplerate setting, and the aac file 

format read. Also note that we must use the character buffer as the receiving buffer at the 

host side of our system as mentioned earlier. Therefore, we must convert character data 

into integer data from the receiving buffer at the host side and then write them into the 

output file. 

 

5.1.2 Implementation Results of AAC Decoder  

We have implemented the AAC decoder on DSP, and our test sequence is “guitar”. 

The sampling rate is 44.1 kHz. Table 5.1 shows the implementation result. We measure 

the average execution time of decoding one frame. And we have subtracted the 

transmission time between the host and the target sides. To measure the transmission time, 

we write a null function execution on DSP. And then the execution time on DSP is the 

differece between the total time and the transmission time. We can clearly see that the 

execution time on DSP is fast enough to achieve real-time operation. But the current 

setup requires the file read and write processing. They increase significantly the 

transmission time because we have a loop that processes the transmission between the 

host side and the target side for every frame. 

 

 Time(s) 

AAC decoder 1.7536e-4 
s/frame 

Table 5.1 Implementation result of AAC decoder on DSP 
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5.2 AAC Encoder Implementation on DSP 

In this section, we will describe the MPEG-4 AAC encoder implementation on DSP. 

We also give some experimental results of implementation on DSP, including the 

compiler optimization. 

 

5.2.1 Structure of AAC Encoder Implementation 

Similar to the decoder, we also the adopt burst block transmission to implement the 

AAC encoder on DSP. The structure of the encoder is shown in Fig 5.2. The structure of 

the burst block transmission has been discussed in Section 5.1. 

In this program structure, the host side does file read and write work, and the target 

side mainly does the encoding work. At first, the host side uses buffer to store one frame 

data and then transmit it to the target side. The target side will do board preprocessing job, 

including memory allocation and so on, until the buffer receives the frame data from the 

host side successfully. In addition, we put AAC encoder initialization on DSP, including 

opening the encoder library and configuring the options. The opening of the encoder 

library consists of default values initialization, default configuration, some coder 

functions initialization and so on. When the receiving buffer receives a frame data from 

the host side, the DSP board will encode input frame data. After encoding, the coded data 

will be stored in transmitting buffer to be sent into host side. And then, the host side will 

write the coded data from buffer to file. Every time the host side reads one frame data 

from input file, so there is a processing loop that finally completes the encoding task. 
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Fig. 5.2 Structure of AAC encoder implementation on DSP 

 

 

5.2.2 Implementation Results of AAC Encoder  

We have implemented the AAC encoder on DSP, and our test sequence is “guitar”. 

The sampling rate is 44.1 kHz. Table 5.2 shows the implementation result. We measure 

the average computation time of encoding one frame. And we have subtracted the 

transmission time between the host and the target sides. From this table, we can see that 

the original computation time is 0.1742 second per frame. This value is not fast enough to 

achieve real-time operation. Therefore, we use some code acceleration techniques and 

algorithms modification have been described in chapter 4 to accelerate the AAC encoder 

system on this Quixote board. These measured values are shown in Table 5.2. And our 

final implementation time is 0.008 second per frame. This value is fast and acceptable. 

But the transmission time is not included. 
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Time

(s) 

Without

open opt. 

level 

Open 

opt. level 

(file level) 

Code 

Acceleration

Code 

Acceleration 

with PAM  

Code 

Acceleration with 

bit allocation 

AAC 

encoder

0.1742 

s/frame 

0.13925

s/frame 

0.08724 

s/frame 

0.0539 

s/frame 

 0.0474 

s/frame 

 

Time

(s) 

Final 

implementation 

result 

AAC 

encoder

 0.008 

s/frame 

Table 5.2 Implementation result of AAC encoder on DSP 
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Chapter 6 

Conclusions and Future Work 
 

 

6.1 Conclusions 

The main goal of this work is to accelerate the MPEG-4 AAC encoder implemented 

on the TI C64x DSP processor. Our acceleration methods include the coding style 

modification to match the DSP hardware architecture and adopt several fast algorithms. 

Based on the profiling data, the psychoacoustic module and the bit-allocation module are 

the two heavy-load computational parts in the AAC encoder. For the psychoacoustic 

model, we reduce the calculation of spreading functions by using the fixed-coefficients 

and eliminate the original FFT calculation by using the MDCT-based spectrum. For 

quantization, we use the lookup table and linear interpolation method to accelerate it. And 

in the outer loop of the bit-allocation module, the noise estimation algorithm can reduce 

the iteration of outer loop to once and thus provides a significant reduction of execution 

time. The details and results can be found in chapter 4. The total performance has 77.89 

percent improvement compared to the original program. 

Furthermore, we have successfully implemented both the encoder and decoder of 

MPEG-4 AAC on the DSP platform. Our communication interface between the host and 

the target is the burst block transmission due to its simple control and easy 

implementation. With our acceleration, the execution speed of both encoder and decoder 

on the DSP platform is fast enough to achieve real-time operation. The implementation of 

the AAC encoder is about 21.78 times faster than the original version. The details and 

results can be found in chapter 5. 
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6.2 Future Work 

If we can reduce the transmission time between the host and the target, our system 

will run faster. Hence, the transmission time reduction should be studied. At the moments, 

we transmit one frame data every time to the DSP side. We may transmit serial frame data 

once to reduce the number of transmission, but at the cost of delay and memory. 

Also, the board provides us with the FPGA. We can integrate the FPGA 

implementation together with DSP to accelerate the overall system. But the transmission 

between DSP and FPGA is more complex, and we are unable to use it yet. 

In addition, we do not implement some optional tools of the MPEG-4 AAC encoder 

on the DSP platform because we mainly focus on the speed of overall system. And the 

AAC encoder can be further accelerated by other optimization techniques. 
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