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Abstract —This paper generalizes the learning strategy of version
space to manage noisy and uncertain training data. A new learning
algorithm is proposed that consists of two main phases: searching and
pruning. The searching phase generates and collects possible
candidates into a large set; the pruning phase then prunes this set
according to various criteria to find a maximally consistent version
space. When the training instances cannot completely be classified,
the proposed learning algorithm can make a trade-off between
including positive training instances and excluding negative ones
according to the requirements of different application domains.
Furthermore, suitable pruning parameters are chosen according to a
given time limit, so the algorithm can also make a trade-off between
time complexity and accuracy. The proposed learning algorithm is then
a flexible and efficient induction method that makes the version space
learning strategy more practical.

Index Terms —Machine learning, version space, multiple version
spaces, noise, uncertainty, training instance.
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1 INTRODUCTION

IN real applications of machine learning, data provided to learning
systems by experts, teachers, or users usually contain wrong or
uncertain information. Wrong and uncertain information will in
general greatly influence the formation and use of the concepts
derived [12], [18]. Modifying traditional learning methods so that
they work well in noisy and uncertain environments is then very
important.

Several successful learning strategies based on ID3 have been
proposed [5], [14], [19], [20], [21]; most of these use tree-pruning
techniques to cope with the problem of overfitting. As to version-
space-based learning strategies, Mitchell proposed a multiple ver-
sion space learning strategy for managing wrong information [15].
Hirsh handled wrong information by assuming attribute values
had a known bounded inconsistency [9]. Antoniou [1], Carpineto
[4], Haussler [8], Nicolas [17], and Utgoff [24] stu-died the influ-
ence of the language bias on the inconsistency. Bundy et al. [3],
Drastal et al. [7], Hong and Tseng [11], and Smirnov [23] modified
the version space to learn disjunctive concepts. Genetic algorithms
were applied to version space for getting better concepts by De
Raedt and Bruynooghe [6] and Reynolds and Maletic [22]. Also,
fuzzy learning methods were developed to derive fuzzy if-then
rules so that wrong or ambiguous training data can be effectively
processed [13], [25]. Other studies on this field are still in progress.

In this paper, we propose a generalized version space learning
algorithm to manage both noisy and uncertain data. The proposed
learning algorithm can also easily make a trade-off between in-
cluding positive training instances and excluding negative ones
according to requirements of learning problems. Furthermore, the
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learning algorithm provides for a trade-off between computational
time consumed and the accuracy of the final results by allowing
users to assign appropriate values to two pruning factors in the
learning process. When more computational time is used, the con-
cept derived is more consistent with the data.

This new learning algorithm is more efficient than the multiple
version spaces learning algorithm, and unlike Hirsh’s method, it does
not require that we assume the error is bounded. Furthermore, the
new method can process uncertain data. Time complexity is analyzed
and experiments on the Iris Flower Problem confirm that our learning
algorithm works as desired. The generalized version space learning
strategy then improves the original version space learning strategy,
making it more practical for real-world applications.

2 A GENERALIZED VERSION SPACE LEARNING STRATEGY

This section proposes a generalized version space learning algorithm
that provides more functions than the original learning algorithm.
Sets S and G defined in the original version space learning algorithm
are modified to provide these additional functions. In our method,
the hypotheses in S/G no longer necessarily include/exclude all the
positive/negative training instances presented so far, since noisy
and uncertain data may be present. Instead, the most consistent i
hypotheses are maintained in the S set and the most consistent j
hypotheses are maintained in the G set (i and j are two parameters
defined by the user). A numerical measure referred to as the count is
attached to each hypothesis in S/G to summarize all posi-
tive/negative information implicit in the training instances pre-
sented so far. A hypothesis with a higher count in S includes more
positive training instances; a hypothesis with a higher count in G
excludes more negative training instances. The new sets S and G are
then generalizations of the old sets, defined as follows:

S = {s]s is a hypothesis among the first i maximally consistent
hypotheses. No other hypothesis in S exists which is both
more specific than s and has equal or larger count}.

G ={glg is a hypothesis among the first j maximally consistent
hypotheses. No other hypothesis in G exists which is both
more general than g and has equal or larger count}.

The first i/j maximally consistent hypotheses in S/G, however,
are not necessarily the ones with the largest i/j counts. A hypothe-
sis in S that includes much positive information may possibly also
include much negative information. Which hypotheses in S/G are
the first i/j maximally consistent then depends on both sets S and
G (and not only on S itself or on G itself).

For the proposed learning algorithm to make a trade-off be-
tween including positive training instances and excluding nega-
tive ones according to the requirements of specific learning prob-
lems, a parameter called the factor of including positive instances
(FIPI) is incorporated into the algorithm. The value of FIPI is 1 if
the aim of the learning problem is only to include positive training
instances and 0 if the problem aims only to exclude negative ones.
The value of FIPI is usually between 0 and 1, depending on the
need to include positive training instances and exclude negative
ones. FIPI is 0.5 if including positive training instances and ex-
cluding negative ones are of the same importance.

A number between -1 to 1 is used to represent the certainty of
the classification of a training instance, as in the MYCIN [2] system.
The certainty factor (or CF) of a training instance is 1 if the training
instance definitely belongs to the positive class and -1 if the training
instance definitely belongs to the negative class. Otherwise, CF is
assigned a value between -1 and 1 according to the certainty with
which a training instance is judged to belong to the positive class.

Once a certainty factor is attached to each training instance to
represent its uncertainty, each training instance can be thought of
as partially positive and partially negative. Hence sets S and G
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should be processed simultaneously each time a new training in-
stance is presented. For a new training instance with certainty
factor CF, set S should be processed as though (1 + CF)/2 posi-
tive training instances and set G should be processed as though
(1 - CF)/2 negative training instances had been presented. The
new training instance then has an effect measured as (1 + CF)/2 on
set S and an effect measured as (1 - CF)/2 on set G.

The generalized version space learning strategy consists of two
main phases: searching and pruning. The searching phase generates
and collects possible candidates into a large set; the pruning phase
then prunes this set according to the degree of consistency of the
hypotheses in the boundary sets. The same procedure is repeated
until all training instances have been processed. Finally, the maxi-
mally consistent hypotheses are output as the desired hypotheses.
The generalized version space learning algorithm for managing
both noisy and uncertain training instances is stated as follows:

INPUT: A set of n training instances, each with uncertainty
CF, the value of the parameter FIPI, and the maxi-
mum numbers i, j of the hypotheses maintained in S
and G.

The hypotheses in sets S and G that are maximally
consistent with the training instances.

Initialize S to contain only the most specific hy-
pothesis ¢ with count = 0 and initialize G to con-
tain only the most general hypothesis with count =
0 in the whole hypothesis space.

For each newly presented training instance with
uncertainty CF, do STEP 3 to STEP 7.
Generalize/Specialize each hypothesis with count =
¢ In S/G to include/exclude the new train-ing in-
stance; attach new count ¢, + (1 + CF)/2/ ¢, +
(1 - CF)/2 to each newly formed hypothesis in S/G;
call the newly formed set S”/G’ for convenience.
Find the set S”/G” including/excluding only the
new training instance itself, and set the count of each
hypothesisin S”/G” to be (1 + CF)/2/ (1 -CF)/2.
Combine the original S/G, S’/G’, and S”/G” to-
gether to form a new S/G (Fig. 1). If identical
hypotheses with different counts are present in
the combined set, only the hypothesis with the
maximum count is retained. If a particular hy-
pothesis is both more general/specific than an-
other and has an equal or smaller count, discard
that hypothesis.

OUTPUT:

STEP 1.

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6: For each hypothesis s/g with count cs/cy in the
new S/G, find the hypothesis g/s in the new G/S

that is more general/specific than s/g and has the
maximum value of count cg/cs. Calculate the con-

fidence as FIPI x ¢s + (1 = FIPI) x ¢,
Retain the hypotheses with the first i/j highest
confidence in the new S/G and discard the others.

STEP 7:

STEP 8: When there are still new training instances to be
processed, go to STEP 2; otherwise, stop the learn-

ing process.

When the learning process terminates, the hypotheses in sets S
and G that result in the highest confidence are output to form the
version space, which can then be thought of as being possibly
maximally consistent with the training instances. Note that the
output is not necessarily the maximally consistent. The probability
depends on the choice of i, j values. The larger the i, j values are,
the higher the probability is. The generalized version space learn-
ing algorithm then possess the stochastic characteristic. Also, the
generalized version space learning algorithm can be shown to be
equivalent to the original version space learning algorithm in a
learning environment where the latter is applied [10].

3 EXAMPLE

Assume each training instance can be described as an unordered
pair of simple objects characterized by three nominal attributes
[16]. Each object is described by its shape (e.g., circle, triangle),
its color (e.g., red, blue), and its size (e.g., large, small). Assume
the following three uncertain training instances are presented:

Instance 1.  {(Large Red Triangle) (Small Blue Circle)} with CF =1,
Instance2.  {(Large Blue Circle) (Small Red Triangle)} with CF =1,
Instance 3. {(Large Blue Triangle) (Small Blue Triangle)} with CF =

-08.

Also assume FIPI is 0.5, i is 5, and j is 5. The process of manag-
ing Instances 1 and 2 is shown in Fig. 2 (confidence is not shown
here), and the process for managing instance 3 is shown in Fig. 3.

The most promising version space is bounded by the hypo-
thesis {(? Red Triangle) (? Blue Circle)} in S and the hypotheses
{(??Circle) (???)}and {(? Red ?) (? ? ?)} in G.

4 TIME COMPLEXITY

The time complexity of the generalized version space learning
algorithm is analyzed in this section. The following basic unit of
processing time will be used:

DEFINITION (Unit Operation). The process of generating a hypothesis
to include a training instance or to exclude a training instance is
defined as a unit operation.

Also define kg as the maximum number of possible ways to
specialize a hypothesis to exclude a training instance, and define
ks as the maximum number of possible ways to generalize a hy-
pothesis to include a training instance. For the learning algorithm
proposed in Section 2, the processing time includes the required
specialization/generalization processes and checking. Checking is
used for examination of redundancy, subsumption, and contra-
diction between hypotheses in sets S and G. Checking between
any two hypotheses can be finished within a unit operation be-

Fig. 1. Generation of new S and G sets.
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0. Initially

S: ¢
G:{(2,2.D) (2,27}

with count =0
with count = 0

1. {(Large, Red, Triangle) (Small, Blue, Circle)}  CF=1

new S[

2. {(Large,Blue,Circle) (Small, Red, Triangle)}

S’ and S”:{(Large.,Red,Triangle)  with count = 1
(Small,Blue,Circle) }

original S: ¢ with count =0

G2, (2,0} with count =0

CF=1
S’ {(Large, 2, ?7)

(Small, ?, 7)}

{(?, Red, Triangle)

(?, Blue, Circle)}
S”: {(Large, Blue, Circle)

(Small, Red, Triangle)}
riginal S: {(Large, Red, Triangle) with count = 1
(Small, Blue,Circle)}
0] with count =0

with count =2

with count =2

with count = 1

G227 (2.2} with count = 0

Fig. 2. Learning results for Instances 1 and 2.

cause it is simpler than generating a hypothesis to include a train-
ing instance or to exclude a training instance.

Let T(n) denote the time complexity of our generalized version
space learning algorithm in dealing with n training instances. The
time complexity of each step is listed in Table 1.

Therefore,

T(n) = O(1) +
N * (O(i * kg + * kg) + O(kg + kg) + O((i * ko) + (* ko))
+O((i* s)*(j*kg))"'o(iz*ks"'jz* 9) +0(1)

=n* (Ol k)’ + (1 * kg)* + (ko) * (* kg)
=0 * (k) + (1 kg) + (i * k) * (1 Kg).

There are usually more possible ways to exclude a training in-
stance from a hypothesis than to include a training instance in a
hypothesis, so kg is usually larger than k. This also implies that j
must be set larger than i for the generalized version space learning
algorithm to have good accuracy. For this case, the time complex-
ity can be reduced as follows:

T(n) = O(n * (j * ky))’.

For a given learning problem, kg is a constant. The time com-
plexity can then be further reduced as follows:

T(n)=0omn*))°.
5 EXPERIMENTS

To demonstrate the effectiveness of the proposed generalized ver-
sion space learning algorithm, we used it to classify Fisher’s lIris
Data. There are three species of iris flowers to be distinguished: se-
tosa, versicolor, and verginica. There are 50 training instances for
each class. When the concept of setosa is learned, training instances
belonging to setosa are considered to be positive; training instances
belonging to the other two classes are considered to be negative.

The generalized version space learning algorithm was imple-
mented in C language on an IBM PC/AT. The algorithm was run
100 times, using different random partitions of the sample set. The
average classification rates for the three kinds of iris flowers are

S’ {(Large,?,?) with count = 2.1, confidence=1.05

(Small,?,?)}
{(?,?2. Trianglc)
(?,Blue.?)}
X {(Large,Blue,?)
by STEP 7) (Small,?, Triangle)}

with count = 2.1, confidence=1.05

with count = 1.1, confidence=0.55

{(Large,?,Triangle)

by STEP 7) (Small,Blue,?)} with count = 1.1, confidence=0.55

X {(Large,Blue, Triangle)

by STEP7) (SmallBlue. Triangle)} with count = 0.1, confidence=0.05

new S X S7:{(Large Blue,Triangle)
(by STEP 5) (Small,Blue,Triangle)} with count = 0.1

original S:
{(TLarge, 2, 7)
by STEP 5) (Small. 2. 9)
{(?, Red, Triangle)
(?, Blue, Circle)}

{(Large, Blue, Circle)
(Small, Red, Triangle)}

with count =2

with count = 2, confidence=1.45

with count = 1, confidence=0.95

{(Large, Red, Triangle) with count = 1, confidence=0.95
(Small, Blue,Circle)}

with count = 0, confidence=0.45
(by STEP 7)

7 and G : {(?2,7.Circle)

(2,77 with count = 0.9, confidence=1.45
{(?.Red,?) ) .
new G 2.2} with count = 0.9, confidence=1.45
; 2,2
{g:iii?’);] with count = 0.9, confidence=0.45
{Egmgﬁzzg with count = 0.9, contidence=0.45
mall,?,?

original G: {(7.2,7) (2,2,7)} with count = 0, conlidence=1

Fig. 3. Learning results for Instance 3.

TABLE 1
TIME COMPLEXITY IN THE GENERALIZED
VERSION SPACE LEARNING ALGORITHM

Time Complexity

STEP 1 0Q)

STEP 2 n*(STEPs 3 to 7)

STEP 3 O(i*k, +j*k,)

STEP 4 O(k, +k,)

STEP 5 O((i*k, +k, +)? +(*k +h, 1)) = Ok, +(j*k, )
STEP 6 O((i*k, +k, +H)*(j*ky +k, +j)) = O((¥k) * (j¥k,))
STEP 7 Ok, +k, +) *i +(¥k, +k, +))%j) = O *k+j* *k, )
STEP 8 o)

shown in Fig. 4 for i = 10 and different js and in Fig. 5 for j = 25
and different is.

Figs. 4 and 5 show that the classification accuracy increases as i
and j increase. Also, j must be set larger than i for the generalized
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Fig. 4. Accuracy for i = 10 and different js.
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Fig. 5. Accuracy for j = 25 and different is.

version space learning algorithm to have good accuracy, since there
are usually more possible ways to exclude a training instance from
a hypothesis than there are to include a training instance in a hy-
pothesis. For the Iris Flower Learning Problem, the classification
accuracy converges to 1 for setosa, 0.94 for versicolor, and 0.94 for
verginica when i 25 and j > 25. Our method is as accurate (96% in
average) as Hirsh’s IVSM (96%) [9], even though our method does
not assume knowledge of the bounded inconsistency is available.
The time complexity of IVSM however depends on the number of
nearby instances and the maximum possible numbers of hypothe-
ses in both boundary sets [9], but not on the predefined i and j.

Experiments were also conducted to determine the execution
time of the generalized version space learning algorithm for dif-
ferent is and js. Results are shown in Fig. 6 for i = 10 and different
jsand in Fig. 7 for j = 10 and different is.

In Fig. 6, the execution time is approximately propor-
tional to O(j?). In Fig. 7, the execution time converges to a
constant (approximately 5 seconds) for j = 10 and i = 60.
These results are quite consistent with the time complexity
analysis in Section 4.

6 CONCLUSION

We have proposed a generalized version space learning algorithm
that can manage both noisy and uncertain training instances and
find a maximally consistent version space. The parameter FIPI in
the proposed learning algorithm can be adjusted so that the algo-

. /1-__'_'_____'_'______'_'___

20 25 30 35 40

rithm makes a trade-off between including positive training in-
stances and excluding negative ones according to the requirements
of different application domains. Furthermore, suitable i and j can
be chosen according to a given time limit, so that the algorithm
makes a trade-off between time-complexity and accuracy. The
time complexity is analyzed to be O(j?). Finally, experimental re-
sults on lIris data are consistent with the theoretical analysis. Ex-
perimental results also show that our method yields a high accu-
racy. The proposed learning algorithm is then a flexible and effi-
cient induction method.
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