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Motion Information Scalability for
Interframe Wavelet Video Coding

Student: Han-Kuang Shu Advisor: Dr. Hsueh-Ming Hang

Department of Electronics Engineering &
Institute of Electronics
National Chiao Tung University

Abstract

Interframe wavelet coding has the advantage of SNR, temporal, and spatial
scalability. Wavelet Transform Coding is one of the most essential components in the
interframe wavelet coding architecture. The arithmetic entropy subsystem is another
indispensable element in Wavelet Transform Coding. It produces the final compressed
output bit stream.

This thesis contains two major topics. One is an-enhanced entropy coding
scheme that can be incorporated into the interframe wavelet coding architecture.
Another topic is replacing the original separable wavelet by the directional
multiresolution transform.

We modify the entropy coding syntax/scheme originally used in the MPEG SVC
Core Experiment (CE) reference software. We take the advantage of energy clustering
properly to improve coding efficiency. We have observed some bit savings of this
technique in our simulations under the conditions specified by the MPEG core
experiments; however, the full potential of this technique is yet to be further explored.

The directional multiresolution transform decomposes an image into different
resolution and direction components. It seems to be a more compact and efficient
representation of images. We use the directional filter back to replace the separable
wavelet in the MPEG wavelet software. The improvement of PSNR and visual quality

can be observed on the low bitrate compressed images.
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Chapter 1

Introduction

Video applications have been playing an important role in our daily life in
decades with improvement in digital technologies. The applications can be a low
delay issue for interactive videophone systems, low bit rate requirements for mobile
devices, and high quality high-definition television (HDTV) or DVD in our living
room.

In resent years, H.264 is the most effective video compression standard in single
layer coding. Beyond single layer coding, video stream with scalable ability has gain
more and more attention recently for its flexibility in resolution, frame rate and quality.
However, the performance of the scalable video coding still can’t compete with single
layer coding especially on the low bit rate condition. In this thesis, we focus on the

scalable video coding trying to improve the coding efficiency and subjective quality.
1



The thesis contains two independent subjects. One is considering directional contents
in spatial transform and replacing the original transform scheme-wavelet. Another is
inducting block-wise arrangements in entropy coding module to utilize the
phenomenon of energy clustering on bitplanes. The experiments are based on the
reference software of MPEG scalable video coding group proposed by Microsoft.
The thesis is organized as follows. In Chapter 2, the fundamentals of video
coding. Chapter 3 briefly describes the schemes of each module in our reference
software. The method and result of the block-wise bitplane arithmetic coding is
presented in Chapter 4. The directional Multiresolution transform is illustrate and

evaluated in Chapter 5.



Chapter 2
Video Coding

2.1 Video Coding Methods

Video applications have been playing an important role in our daily life in
decades with improvement in digital technologies. The applications can be a low
delay issue for interactive videophone systems, low bit rate requirements for mobile
devices, and high quality high-definition television (HDTV) or DVD in our living
room. In last twenty years, digital video compression advances very fast, and many
techniques are developed. Based on their underlying technologies, these techniques

can be classified into several classes as shown in Figure 2.1.



Video CODEC

Model Based

Signal Based

MCP

MC-DCT

MC-wavelet

TSB

TSB with MC

3AD-wavelet

MCTF-wavelet

Figure 2.1: Classification of video CODEC (MCP: motion compensated prediction, TSB: temporal

subband decomposition, MCTF: motion compensated temporal filtering)

Video CODEC can be firstly classified.into model-based and signal-based. If the

coding algorithms analyze objectsion video frames and adjust coding parameters

according to the analysis results, these coding algerithms are called “model-based

video coding.” We call a algorithm “‘signal-based video coding”, if its coding process

doesn’t contain an explicit model. A model-based coding algorithm needs to construct

and model the object in a video sequence. Therefore, the requirement of computation

is high and the complexity increases. For these reasons, the model-based coding

algorithm often targets on the synthetic video. On the other hand, signal-based coding

methods have a less complicated architecture because there are no object contents and

the process treat the sequence as usual signal. The structure is shown in Figure 2.2.




i

Temporal decomposition
(motion vector prediction,
motion vector search,
MCTF...etc)

A

Spatial decomposition
(DCT, wavelet
transform...etc)

Quantization
(quantization step...etc)

A

Entropy coding
(variable length coding,
CABAC, EZBC...etc)

J

Figure 2.2: The signal=based coding structure.

A video sequence can be divided into three dimensions: temporal, horizontal and
vertical. We often decompose the video sequence by these dimensions. In temporal
axis, the neighboring frames are highly correlated, and using motion vector prediction
can reduce the inter-frame redundancy. Figure 2.3 shows the block diagram of motion
compensated prediction (MCP) that generate motion information and Figure 2.4
shows an example of the frame reconstructed by a reference frame and motion

information.



Orginal [rame(foreman_geil No. 1)

:

Motion vector Motion veclor
I ] 1 i
predictor information

Original frame(foreman_geil No. 2)

Figure 2.3: The motion vector predigti 1eighboring frames and motion vector

Mation vector

: T e—
information

Original [rame(foreman_qeil No. 1) Reconstructed [rame ol foreman_geil No. 2

Figure 2.4: With a reference frame and motion information, original frame could be generated.

Unlike MCP using motion information to reduce temporal redundancy, temporal

subband decomposition (TSB) treats temporal signal as usual signal and 3-D filtering

6



process is performed on video. If TSB coder were incorporated with motion
compensation, we call it “TSB with MC.” The horizontal and vertical signal is
processed by spatial analysis. DCT or wavelet transform is applied to translate signal
into frequency domain. Generally speaking, lower frequency bandx often carry the
most information within a frame. With this property, compression efficiency could be

improved.

2.2 Subband Coding

As described in the previous section, a video sequence can be decomposed
according to three axis - temporal, vertical and horizontal. Vertical and horizontal data
are often inducted into spatial signal. Temporal and spatial signal have different
properties in analyzing methods. If we analysis the temporal frequency of two
neighboring frames from a sequence, the low frequency of temporal signal is
intuitionally the same part of two frames and-the high frequency is the difference part.
When a sequence contains large motions, the'energy of temporal high frequency is
larger than that of a sequence with small motions. DCT or wavelet transform is used
most frequently in spatial analysis. After applying spatial transform, frequency
components of a frame can be classified from low frequency to high frequency. Figure

2.5 shows one kind of 3D-subband decomposition.



HPy | » 11
HPh
LPyv | » 10
HPt
HPv | » 9
LPh
LPyv | » 3
—[HPv| > 7
HPh |—
LPyv | > 6
LPt
—HPv | > 5
LPh | HPy 4
LPy HPh
LPy 3
HPv 2
LPh|
LPy 1
(@)
1|3
6 8 10
2 | 4
5 7 9 11
LPt HPt
(b)

Figure 2.5: Typical 3-D subband decomposition. The numbers on leaves of the tree structure (a)

correspond to subband partitions on (b).
HPt: The high frequency subband signal after temporal decomposition.
LPt: The low frequency subband signal after temporal decomposition.
HPh: The high frequency subband signal after spatial horizontal decomposition.

LPh: The low frequency subband signal after spatial horizontal decomposition.



HPv: The high frequency subband signal after spatial vertical decomposition.

LPv: The low frequency subband signal after spatial vertical decomposition.

2.2.1 Temporal Decomposition

Traditionally, Haar filter is often used on temporal subband decomposition. With
low-pass and high-pass filter applied on the same pixel position in temporal axis, low
frequency signal is gathered on one frame and high frequency is on another frame as
shown in Figure 2.6. We can observe that the energy of temporal high frequency

frame is not reduced to zero and low frequency frame is blurred. It means the energy

compaction of temporal subband filtering is not performed very well.

Figure 2.6: Temporal decomposition. Left: low-pass filtering. Right: high-pass filtering

Kronander[1] proposed another filtering method cooperated with motion
estimation. At first, motion estimation is performed on two consecutive frames, then,
the reconstruction frame is generated by first frame and backward motion vector.
Using second frame and the reconstructed frame generate the temporal high-pass
frame. Then, the high-pass frame and the first frame create the low-pass frame.

The result is shown in Figure 2.7. Better energy compaction can be observed.



Figure 2.7: Temporal filtering with motion compensation. Left: low-pass frame. Right: high-pass frame

2.2.2 Spatial Decomposition

A frame can be separated into several subbands. These subbands have different

frequency range in horizontal and Vertlca1 WLth different analysis and synthesis filters,

7"\ -]
o

the properties of these subbands affect the_ Qrf‘ormance of quantization and

rate-distortion. In video coding atchltecturc, quantlzation and rate-distortion are
z N )

connected next by spatial decomp0s1t10n

185
.-j ‘.‘d:,'

Wavelet transform is the most popular subband transform and well localized,
unlike DCT, in both space and frequency. It removes spatial redundancy and have

good energy compaction. Figure 2.8 is an example of the wavelet transform.

Figure 2.8: An example of “Lena” after transform



According to times that wavelet transform performed on each subband, there are
many ways to decompose an image. An octave-based frequency partition, which is
one kind of partition type and seen in EZW[3], SPITE[4] and EZBC[5][6], is shown

in Figure 2.9.

LL | HL

LH | HH

I.H HH

Figure 2.9:Octave-based frequency partition
(LL: low freqﬁency band in horizontal'and vertical,
LH: low frequency-in horizontal-and high frequency in vertical

HL: high frequency in horizontal and low frequency in vertical

HH: high frequency in both horizontal and vertical)

In MPEG SVC (scalable video coding) group, the spatial decomposition of the

wavelet-based reference software is as shown in Figure 2.10.
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LL | HL

LH | HH

LH | HH | HH | HH

lH | HH | HH | HH

LH | HH | HH | HH

Figure 2.10: Another frequency decomposition arrangement.

In this decomposing flow, based on octave-based frequency partition, the HL, LH and
HH bands generated by first level wavelet decomposition are further performed DWT.
Shapiro[3], the pioneer in embedded coding scheme, proposed EZW in 1992.
This work attracted a lot of research interests and many fallow-up works have been
proposed such as SPITE , EZBC-and EBCOT(7][8]-EBCOT (Embedded Block
Coding with Optimized Truncation) is an'etficient and remarkable embedded coding
scheme proposed by Taubman. Unlike EZW or SPITE which introduces inter-band
dependency, EBCOT only utilizes intra-band dependency. The coding techniques
based on the concepts of EBCOT, such as sequential bit plane coding and effective

R-D optimization, are adopted by the JPEG2000 international standard.
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Chapter 3
Scalable Video«Coding

3.1 What is Scalable Coding?

Generally speaking, scalable functionalities can be divided into spatial, temporal,
SNR and bit rate. The purpose of scalability is that a minimal bit-stream can be
extracted from a video bit-stream, already coded by a scalable video coder, for the
least video requirements in resolution, frame rate and PSNR. When an application
requests a better quality in either resolution or bit rate, we only to extract additional
bit-stream that matches the request and add to the original bit-stream. Thus, this
bit-stream organization is “embedded”. Video coders with scalability should produce
the afore mentioned embedded bitstream, to allow video receiver decoding at different

resolution, frame rate and quality.
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3.2 MPEG SVC Reference Software

SVC received a lot of attention for its flexibility on applications. Therefore, the
MPEG group started activity on this subject in 2004. According to the spatial
transforms used, the proposed standard candidates can be basically classified into two
categories — DCT based and wavelet based. In this thesis, we only focus on
wavelet-based SVC. After visual quality test, the SVC software developed by MSRA
(Microsoft Research Asia) was selected to be one of the SVC reference platforms of
the MPEG SVC. In the following description, we would call this piece of reference
software, MSSVCJ[9] for short.

As mentioned before, MSSVC conforms to the requirements of, temporal, spatial
and PSNR scalability. Its architecture canrbe divided into temporal decomposition,
spatial decomposition, entropy coding and rate-distortion optimization. Figure 3.1

shows the block diagram of MSSVC:

0000 -

wo el F 3008

Temporal 2D Spatial Entro
@ —> Wavelet > Wavelet » Co dirll)g —e—» R-D opt —>»
Decomposition Decomposition
A
Motion .| MV & Mode
Estimation "l Coding

Figure 3.1: The block diagram of 3D subband video coding

3.3 Disadvantage of Wavelet-Based Coder

Although the wavelet-based coding structure enables the coder scalable

capability, current scalable video coding scheme still has some drawbacks. One of its
14



disadvantages is long coding delay owing to the temporal scalability requirement. For
the temporal scalability purpose, the coder has to store a number of frames, and then
decompose these frames along the temporal axis. Storing many frames introduces a
long-term delay and a large amount of storage in computation. Another disadvantage

is its lower coding efficiency at very low bit rates

3.4 Temporal Decomposition of Interframe Wavelet

Due to the use of temporal decomposition, temporal scalability is achieved in
SVC. Motion compensated temporal filtering (MCTF)[1][2] is used to decompose
two temporal neighboring frames into a temporal high frequency frame and a low
frequency frame. The detail MCTF arq‘-described in [1][2]. A video sequence is

partitioned into several groups of plctux J (GOP) and each GOP contains dyadic

number frames. Temporal decomposmon Is. pe}fermed on a GOP. Figure 3.2 shows an

example of GOP=16.

Video Sequence

’:v:::::c::r:::x::::::::::’

GOP
(Group of Pictures)
Corresponding to

temporal level=4

- decomposition
MCTE ~
ICTF { Temporal Low-pass frame
' ' - Temporal High-pass frame
. - E S o -

= P l Frames that remain after
| I J temporal decomposition
o L

1'\'

1'\

N

Figure 3.2: An example of temporal decomposition on GOP = 16.
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For a GOP = 16, 8 temporal low frequency frames and 8 high frequency frames
are generated. MCTF is performed again on the 8 low frequency frames for the
second level temporal decomposition. The decomposition generates 4 temporal low
frequency frames and high frequency frames. The process continues until the fourth
temporal level. By applying MCTF to the fourth temporal level, there are one

temporal low frequency frame and one temporal high frequency frame in the end.

3.5 Spatial Decomposition

The frames generated by temporal decomposition are passed to 2D wavelet
transform. After one level horizontal,and vertical transform, four categories of
subbands are generated. And we furthér apply 2D wavelet on each subband. For
example, in Figure 3.3, the HL;LH and HH band are applied by the 2D wavelet after
the first-level 2D wavelet. The 2D swavelet-is applied again to on the LL band to

obtain the lower frequency bands.

Figure 3.3: Spatial decomposition of a picture

The low-pass and high-pass analysis filters used in wavelet video coder are

shown in Table 3.1.
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Table 3.1: Spatial analysis filter

Low-pass High-pass
0.037829 -0.064539
-0.023849 -0.040690
-0.110624 0.418092
0.377403 0.788485
0.852699 0.418092
0.377403 -0.040690
-0.110624 -0.064539
-0.023849

0.037829

3.6 Entropy Coding — 3D'EBCOT

After temporal and spatial decomposition, the coefficients are passed to entropy
coding module. In MSSVC, 3D EBCOT (3D embedded block coding with optimal
truncation) is performed. 3D EBCOT basically follows the methods of EBCOT in
JPEG2000, which performs well in still image compression, and extends to 3D

context modeling.

3.6.1 Codeblock Partition

Each subband is divided into several codeblocks. The size of 3D codeblocks is at
most 64x64 pixels in spatial and basically 4 temporal neighbor blocks. However, a
subband is not often just 64x64, so the codeblock size varies with subband size. Take

17



a CIF sequence for example, after 3 times spatial decomposition; the size of the third
level LL band in spatial domain is 44x36, much smaller than defined codeblock size.
The whole subband and the same subband position in temporal are covered by one

codeblock as shown in Figure 3.4.

A &

F Y
Y

Figure 3.4: The codeblock assignment about a subband smaller than defined codeblock size - 64x64.

A subband area, which exceeds 64x64, is divided into several codeblocks. The sizes
of codeblocks in this subband are 64x64, 8x64, 64x24 and 8x24 as shown in Figure

3.5.
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Figure 3.5: The codeblock assignment'when'a:subband-is larger than defined codeblock size - 64x64.

3.6.2 Zero coding, Sign coding and Magnitude Refinement

After codeblock assignment, the coefficients are parted into sign data and
absolute value. The absolute value of coefficients on a codeblock is decomposed into
several bit-plane levels and the sign value is separated on a plane.

The first nonzero bit-pane of the coefficients, i.e. not yet significant in previous
bit-plane, are coded by zero coding. If the coefficients become significant at current
bit-plane, the corresponded sign data is also coded by sign coding. Magnitude
refinement is used to code the new information of the coefficients, which have been

significant in previous bit-plane. Figure 3.6 shows an example of coding method and
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bit-plane decomposition.

— b =
i

Bit plane decomposition

—_—

=) —
| e

.
o P

. * zero coding —

|:| : gign coding

|:| ! magnitude refinement

Figure 3.6: An example of bit-plane decomposition and coding method. The scanning order is from
most significant bitplane to less significant bitplane.

=
e
|

Zero coding: When a coefficient is n‘o"t'“yet signisﬁcant in previous bit-plane, this

I

operation is used to coden""t_he‘he‘\';\;ih;fai‘n;lant'"iﬂon, whether the new information
shows this coefficient becomew‘s msi‘gniﬁc“a‘nt‘ ;)r not. The context model considers
not only on spatial neighborhoods but also on temporal correlations. That’s why
this entropy coding method named “3D.” Figure 3.7 shows the neighbors of the

coefficient, which is considered in a context model.
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Figure 3.7: The neighbor of the coefficient considered into context model.

For more details, we consider the context model three categories:
® Immediate horizontal neighbors. We denote the number of these

neighbors, which are significant by h, 0<h<2.

® Immediate vertical neighbors. We denote the number of these

neighbors, which are significant by v, 0<v<2.

® Immediate temporal neighbors. We denote the number of these

neighbors, which are significant by a, 0<a<2.

® Immediate diagonal neighbors. We denote the number of these

neighbors, which are significant by d, 0<d<12

The context assignment map of zero coding described in the 68" MPEG
contribution [9][11](the document of MSSVC) is different to the map that is realized
in MSSVC. We modified the context assignment map from the document version to
the realistic MSSVC version. Table 3.2 lists the modified context assignment map. If
more than one conditions are satisfied, we select the lowest context number. After
context selection, an adaptive context-based arithmetic coder is utilized to code the

significant symbol of zero coding.
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Table 3.2: Context assignmetn map of zero coding

Any subbands but HHH HHH subband
context |h v d Context |d htv+a
] 2 A )8 = 0 >=15 (X
1 1 =] | k4 1 =11 [>=3
2 1 0 >=1 |z 2 >=11 |other
3 1 0 0 >=12 3 =g |>=3
4 1 ] ] >=q 4 == |other
5 il 8] 8] other 5 =5 |==3
5] 0 2 X = 6 >=5 |other
7 0 1 =1 | 7 »= =
8 0 1 0 =12 g8 >=3 |other
2 0 1 6] =4 9 »>=] |>=3
10 0 1 0 other 10 ==1 |other
11 0 0 2 e 11 0 =
12 0 0 1 »=12 12 0 other
13 0 0 1 >=l
14 0 0 1 other
15 0 0 0 >=12
16 0 0 0 >=4
17 0 0 0 other

Sign coding: If a coefficient becomes significant in the current bit-plane, sign
coding performs to code the sign of the coefficient after zero coding. There are also a
kind of context model and context-based arithmetic coders for sign coding to code the
symbol decided by the context model. In order to describe the context module, two
variables, o[1,j,k] and y[1,j,k], are defined.
® o[i,j.k]: A binary-valued state variable. This value is initialed to 0. If a coefficient

of a code block at position [i,j,k] becomes significant, o[i,j,k] is set to 1.
® y[i,j,k]: The sign of the coefficient of a code block at position [i,j,k]. When the

coefficient is positive, the value is 0. On the other hand, if the coefficient is

positive, the value is set to 1.
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Next, three quantities, h, v and a are defined:

® h=min{l, max{-1, ofi-1,j,k] x (1-2%[i-1,j,k])+ o[i+1,j,k]x(1-2¢[i+1,j,k])} }

o V:min{la maX{_la G[iaj_lak] X (1_2X[15J_15k])+ G[iaj+1ak] X (1_2X[17J+15k])}}

L a:min{la max{—l, G[iajak_l] X (I_ZX[1>J5k_1])+ G[i9j5k+1] X (1_2X[lajak+1])}}

The context module of sign coding is listed in Table 3.3. We have to note that y
means the sign prediction of the coefficient according to its neighbor. Adaptive

context-based arithmetic coders finally code the symbol, ¥ XOR 7 .

Table 3.3: Context assignment map of sign coding

h=-1 v -1 ]-1]-1]0 (O |0 |1 |1 |1
a 1430 (1 [ -L40 |1 |-1]0 |1
V4 0 [0 {0:[0-/0.{0 |0 |0 |O
context fO L {2 |3 1445 |6 |7 |8
h=0 v B A e e (I I R I A |
a 1O -0 |1 -1 0 |1
7 00 |0 |O |O |1 |1 |1 |1
context |9 |10 |11 |12 |13 [12|11]|10|9

=1 A% -1 |-1{-1]0 |0 |0 |1 |1 |1
a -170 |1 [-1]0 |1 |-1]0 |1
7 I (1 |1 |1 (1 1|1 |11
context |8 |7 |6 |5 |4 |3 |2 |10

Magnitude Refinement: If the coefficient has been significant in previous bit-plane,
magnitude refinement is used to code the new information of the coefficient. There
are three contexts in this operation. When MR is first performed on the coefficient,

the context is 0. If MR has already used in previous bit-plane and the coefficient has
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at least one significant neighbor, the context is 1. For the rest conditions, the context

1s 2.

3.6.3 Significant Propagation Pass, Magnitude Refinement

Pass and Normalization Pass

In section 3.4.2, we illustrated the coding method for a coefficient, but we didn’t
give a broad view of how to process all coefficients in a codeblock. In this section, we
describe three coding passes. The three coding passes classify the coefficients into
three categories and ZC, SC and MR are applied in each category.

After codeblock partition, bit-plane coding is used to code the coefficients in the
codeblock. For each bit-plane, three passesprocessa “fractional bit-plane” in turn and
scanning order is i-direction first, then j-diréction and k-direction. These passes are
described here.

Significant Propagation Pass:'The coefficients, not significant in previous
bit-plane but having significant neighbor, are process in this pass. ZC is used to code
the value of coefficients in the current bit-plane. If a coefficient becomes significant,
SC is performed to code the sign corresponding to the coefficient in the meantime.

Magnitude Refinement Pass: The coefficients, already significant in previous
bit-plane, are coded in this pass. MR coding is used in this pass.

Normalization Pass: The coefficients, not processed in previous two passes, are
coded in this pass. The coefficients entering this pass are not yet significant and don’t
have preferred neighborhood. ZC is used and SC is also performed if the coefficient

becomes significant.
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3.7 SNR/Rate, Spatial and Temporal Scalability

There are mainly three parameters affect the video viewing quality (1) resolution,
(2) frame rate, (3) distortion of a picture. The feature of scalability video coding is the
ability to achieve the three categories. In this section, we will describe the methods of

to achieve three scalabilities.

3.7.1 SNR/Rate Scalability

As describe before, a video sequence is divided into several GOP(group of
pictures). The number of frames in a GOP is according to the temporal decomposition
level. For example, if temporal decompositiondevelis p, the GOP size is 2*p. The bit
stream after encoding is also arranged according to GOPs in a video sequence. The bit
stream in each GOP contains (1)GOP headet; (2) motion information and (3) residual

image data. Figure 3.8 shows the arrangement of encoded bit stream.

GOP Header| Motion Information Data Residual Image Data
Mt GOP GOP | ... GOP
Header

Figure 3.8: the arrangement of encoded bit stream

Residual image data satisfies the embedded structure and is arranged according
to the importance of data. The information of how many bits are used in each
bit-plane of a codeblock is recorded. These records are the truncation points during

SNR scalability process. The SNR/rate scalability is realized by truncating residual
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image data and the truncation positions are right on the truncation points. With the
increasing of residual image data, the quality of video sequence is also increased.

Figure 3.9 shows the SNR/rate scalability by truncating residual information.

N

N\ B

\

w
N

777

300kbps ... 500kbps ... 1000kbps
PSNR=32.2dB ... .. PSNR=34.6 dB.__ PSNR=38.2 4B
GOP Header|Motion Info. Residual Ima!fge Data

Figure 3.9: SNR/rate scalability can be qohi’c_é_;/c‘x.i ;t)}.’:.tl-:u.?:l_‘l(}a:[ing the embedded bit-stream. The PSNR

performance is incrqaﬁd when bit-rate increase.

j
e
] "1

3.7.2 Spatial Scalability

When 2D wavelet transform is performed, the lowest frequency represents the
lowest resolution frame. As shown in Figure 3.10, adding the information of the HL,
LH and HH band, the larger resolution frame, QCIF resolution, can be reconstructed

by inverse transform. When the data of LHH, HHL and HHH is added, the resolution

of original frame can be reconstructed.
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Figure 3.10: An example of resolution increasing-by 2D wavelet transform

3.7.3 Temporal Scalability

Assume the frame rate of a original video sequence is 30 frames/second. When
the receiver request a video sequence at 7.5 frames/second, the requirement can be
satisfied with the temporal decomposition structure described in Figure 3.2. If 7.5
frames/second is needed, it only has to package enough information from the fourth
temporal level to the third temporal level to the receiver. With this information, the
receiver can reconstruct four temporal low frequency frames in second temporal level.
After normalization, the four low frequency frames compose the video sequence in
7.5 frames/second within a GOP. By the similar reconstructing method, the

requirement of 15 frames/second can be also produced.
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Chapter 4
SB-Reach Method

4.1 Introduction

In the SVC Core Experiment software, the 3D EBCOT entropy coding procedure
is used after the MCTF and the spatial transform. We observe that high-energy
wavelet coefficients often cluster together. Inspired by [5][10], we propose a modified
coding procedure as described in Section 4.2.1 to save coding bits. Essentially, we
construct another layer that records the bit-plane locations of the Significant Bits (SB)
of all coefficients. We observe bit savings of this technique in our simulation;

however, the full potential of this technique is yet to be further explored.
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4.2 Proposed Entropy Coding Scheme

4.2.1 SB-Reach Method

In the core experiment software, MSSVC, the coefficients are coded by the 3D
EBCOT process after the temporal and the spatial subband transforms. Each subband
after wavelet transform is partitioned into several codeblocks; then, the entropy
coding module encodes these codeblocks. According to the coefficient values in a
codeblock, a number of bit-planes are generated, and three coding passes, Significant
propagation pass, Magnitude Refinement pass and Normalization pass, are applied to
these bit planes sequentially.

Initially, all wavelet coefficients are “insignificant”. A coefficient becomes
“significant” when its non-zero bit'is firstfound. The first non-zero bit will thus be
called Significant Bit (SB) (of a-coefficient). For eaclr bit plane, we construct another
binary bit plane — so-called SB-reach plane. As shown in Figure 4.1, a single sample
in the SB-reach plane represents a square mapping block of n by n coefficients. Figure
4.2 shows different size of square mapping block. The size of the SB-reach plane thus
decreases as its representing mapping block becomes larger and same square mapping
block size is applied for all-bitplanes within defined SB-reach depth in a coding block.
By the way, in MSSVC, the size of codeblock is usually 64 by 64, so the size of
square mapping block is at most 32 by 32. The binary sample on an SB-reach plane is
set to 1, if its square mapping block contains one or more significant coefficients. On
the other hand, if the binary sample on the SB-reach plane is 0, it means that all its

associated bits in the coefficient bit plane are zero.
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Figure 4.1: One binary sample on the SB-reach plane is associated with 4x4 mapping block bits
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Figure 4.2: Examples of square mapping block of n by n coefficients on a bitplane

In this modified coding process, we first construct all the SB-reach bit planes up
to the selected “SB-reach depth” as shown in Figure 4.3. Each SB-reach bit plane is
associated with one bit plane of the original coefficients. We first encode an SB-reach
bit plane before encoding its associated coefficient bit plane using the MSSVC
procedure. In encoding an SB-reach plane, we perform the Significant Propagation

Pass and the Normalization Pass following the scanning order in MSSVC. If a sample
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is classified significant in a previous SB-reach plane, it must be a “1” bit in the
current SB-reach plane and thus is not coded. After coding one SB-reach plane, we
code its associated coefficient bit-plane. The coefficients on the bit plane are not
coded, if its corresponding SB-reach plane bit is zero (insignificant). If a bit on the
SB-reach plane is 1, and then its associated coefficient mapping block bits are coded
in the order shown in Figure 4.4. We perform three coding passes as the original CES

does on these coefficient bits.

SB-reach plane (N-1)

A A

i hitplane (M-17

SB reach
T 7 _reach depth
< itplane (H-2) "~
L V4
e .,
hitplane (13
: A
. M- 8B reach depth

Figure 4.3: Construct the SB-reach planes up to the selected “SB-reach plane.”
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kit plane

Figure 4.4: The encoding process of the SB-reach plane and its associated coefficient bit-plane

With the method described above, we try all:combinations of mapping block size
and SB-reach depth, and we then compare the resulting coded bits of all combinations.
The best combination of mapping block size and SB-reach depth is retained and

coded.

4.2.2 Syntax and Architecture Change

On the top of the core experiment software, we changed some syntax and
decoding procedure as follows. We add the SB-reach plane architecture to the original
3D EBCOT. The information for the mapping block size, the SB-reach plane depth,

and the SB-reach planes is added to the original syntax as shown in Figure 4.5.
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Figure 4.5: Changes between the original and the proposed syntax

4.3 Coding Procedure

4.3.1 Definition

Here are some definitions in the newly added terms.

® SB-reach enable: One bit per coding block represents the SB-reach coding is

enabled. “0” = no SB-reach coding; “1” = SB-reach coding enabled.

® Mapping_blk_size: The mapping block size information is defined in Figure 4.2.

Bit pattern “00” = size 4x4; “01” = 8x8; “10” = 16x16; and “11” = 32x32.

® SB-reach depth: The depth of SB-reach planes. Bit pattern “00” = depth 2; “01”

= depth 3; “10” = depth 4; and “11” = depth 5.
® SB_plane: Record SB-reach bits of the corresponding bit-plane

e m nBitDepth: The depth of a codeblock
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4.3.2 Coding steps

1. Initial:
SB_plane old are set to zero.
SB_ETA are set to zero.
SB plane sigma are set to zero.
2. for Mapping_ blk size=n:0
if Mapping blk size is zero then the coding process about SB_plane is skipped
for y= min of SB-reach depth:max of SB-reach depth
for x= m_nBitDepth-1:0
if( x >=m nBitDepth -y )
GenerateSBplane(x , Mapping blk size);
CodeSBplane(Mapping blk size);
Else
Set all of the SB_plane to 1.
Code Bit plane();
Setall of SB_ETA.to'zero;

Pseudo Code
GenerateSBplane(x , Mapping blk size ){
For each (i ,j ,k)
SB_plane(Mapping_blk size, i, j, k) setto ““1”, if one-of the SB of the correspond coefficients

has been reached on the bit-plane(x),

SB plane old(Mapping blk size, i, j, k) =
SB_plane(Mapping blk size, i, j,k) XOR SB_plane old(Mapping blk size, i, j, k)

CodeSBplane(Mapping_blk_size){
for each (i, j, k)
SignificancePropagationPass_SB (Mapping_blk _size, 1, j, k)
NormalizationPass SB(Mapping_blk _size, i, j, k)
Set all of SB_ETA to zero.
H

SignificancePropagationPass SB (Mapping_blk size, i, j, k){
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if(SB_ ETA(Mapping_blk size,i,j,k)=0)
if( SB_plane old(Mapping_blk size, i, j, k)=0 )
if(SB_plane_sigma(Mapping_blk_size, i, j, k)=0 && HasPreferredNeighbor)
code SB_plane(Mapping_blk size, i, j, k);
if SB_plane(Mapping_blk size, i, j, k) is 1
SB_plane sigma(Mapping_blk size, i, j, k) set to 1.
set SB_ ETA(Mapping_blk size, i, j, k) = 1;
H
NormalizationPass SB(Mapping_blk _size, 1, j, k) {
if(SB_ETA(Mapping_blk size, 1,j,k)=0)
if( SB_plane old(Mapping_blk size, i,j, k)=0 )
code SB_plane(Mapping_blk_size, i, j, k)

H
Code_Bit_plane(){

For each (i, j, k)

If( SB_plane(Mapping_blk size, i, j, k)=1 )
All coefficient in the bit plane asseeiated with the SB _plane(Mapping_blk_size, i, j, k) are
coded.

4.4 Simulation Results

We evaluate the performance of our algorithm by measuring the bitrate savings
between the proposed algorithm and the core experiment software. We follow the
Core Experiment (CE) specifications to conduct a series of experiments and to test the
effectiveness of the proposed algorithm. Eight sequences are tested, namely, CREW,
HARBOR, SOCCER, CITY, BUS, FOOTBALL, FOREMAN, and MOBILE, under
different spatial, temporal and bitrate test points. Spatial resolutions are QCIF, CIF,
and 4CIF, temporal resolutions are 15, 30 and 60 frame/sec, and bitrates vary from 96
kbit/sec to 3 Mbit/sec. The objective image qualities, or the PSNR values, are almost
the same between our results and the results from the core experiment software.
Besides, the subjective qualities are almost identical. Therefore, we compare the

resulting bits generated by our algorithm and those by the CE reference software.
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Some savings in bits with our algorithm are observed.

In Table 4.1 to Table 4.2, the bitrate savings are expressed in percentage. In these
tables, each entry is the total bitrate saving accumulated from the 1* bitplane to the
current one. For example, the cumulative biplane 2 means the total bits saved for the
1%, 2" and 3" bitplanes together. The positive numbers denote bitrate savings, while
the negative numbers mean bitrate loss. The LL, LH, HL, and HH bands in these

tables are the spatial subbands of all spatial resolutions accumulated.

Table 4.1: Bitrate savings (in percentage) for the FOREMAN and BUS sequences of the H frames at

temporal levels 1 and 2.

Cumulative FOREMAN BUS

bitplane |LL |LH |HL |HH' JJLL ' “LH |[HL |HH

2 -0.05%| 0.2% [0:28%10.14%]-1.34%|-0.66%|-0.68%|-0.15%

3 0.66% |0.44%0.49%0.36%] 0.31% | 0.56% | 0.29% | 0.44%

4 0.44%10.26%0.27%0.22%]| 0.18% | 0.22% | 0.17% | 0.23%

Table 4.2: Bitrate savings (in percentage) of the H frames at temporal levels 3 and 4.

Cumulative[ FOREMAN BUS

bitplane |LL. |LH |[HL |[HH |LL |LH |HL [HH

2 0.94%|1.11%|0.85%(0.98%|-1.18%|0.01%]-0.44%|0.14%

3 1.54%1.21%|1.13%1.22%| 0.3% | 0.7% | 0.3% | 0.7%

4 0.81%|0.66%|0.59%0.83% 0.27% |0.30%] 0.14% |0.37%
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Table 4.3: Bitrate savings (in percentage) at the bottommost temporal level.

Cumulative]l FOREMAN BUS

bitplane LL LH |HL (HH (LL |LH |HL |HH

2 -0.25%|0.94%0.59%|0.93%0.65%|0.01%0.03%|-0.08%

3 0.09% |1.27%0.99%]1.04%)0.54%|0.42%|0.21%| 0.56%

4 0.05% [0.81%|0.67%10.69%0.33%0.18%]0.11%| 0.28%

As shown in the simulation results regarding to the output bitrates, our algorithm
performs somewhat better than the CE software. In general, we gain more at the
cumulative biplane 3. Particularly, the HH bands at higher temporal levels perform
better. Even better results may be obtained by selecting good context and probability
models for arithmetic coding. Also, we should tune further the parameter values in our

algorithm.

4.5 Appendix A: PSNR'value

PSNR old: PSNR value obtained by the original coding procedure (MSSVC.)
PSNR new: PSNR value obtained by the modified method.
Test sequences: 4CIF - Crew, Harbour, Soccer and City

CIF - BUS, FOOTBALL, FOREMAN and MOBILE

Table 4.4 : PSNR of CREW

PSNR new PSNR old
width height | frames/s | Kbit/s
Y U V |total| Y U V |total
176 144 15.0 96 31.93|35.51|33.97 |32.8731.94 |35.49|33.95|32.87
176 144 15.0 192 34.18|38.07 | 36.41 | 35.2 |34.19|38.13 36.43|35.22
352 288 30.0 384 33.36|37.49 | 36.04 | 34.49 | 33.35 | 37.47 | 36.09 | 34.49
352 288 30.0 750 35.49| 39.4 |38.2936.61|35.49|39.40 | 38.30 | 36.61
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704 576 30.0 1500 35.8 {39.61(39.6337.08|35.80|39.58|39.61|37.06
704 576 60.0 3000 |[36.88| 40.5 | 41 |38.17]36.87|40.48|40.98|38.16
Table 4.5: PSNR of HARBOUR

PSNR new PSNR old
width | height | frames/s | Kbit/s
Y | U| V (|total|] Y | U | V |total
176 144 15.0 96 27.61|38.75(39.22 | 31.4 |27.62|38.7839.27|31.42
176 144 15.0 192 29.22 140.84 | 43.23 {33.49|29.22 | 40.86 | 43.23 | 33.49
352 288 30.0 384 28.87(39.46 | 41.56 | 32.75 | 28.87 139.48 | 41.61 | 32.76
352 288 30.0 750 30.85|41.15|43.01 |34.59 | 30.85 | 41.16 | 43.01 | 34.59
704 576 30.0 1500 |32.37[41.25|43.21|35.65|32.37|41.25|43.21|35.65
704 576 60.0 3000 [34.42(43.04 |45.19|37.65|34.42|43.04|45.20|37.65
Table 4:6: PSNR of SOCCER
PSNR new PSNR old
width height | frames/s | Kbit/s
Y U | V |total| Y | U | V |total
176 144 15.0 96 31.53137.941.39.86 |33.98 | 31.53 | 37.86 | 39.88 | 33.98
176 144 15.0 192 33.38140.24 | 41.62 | 35.9 |33.40|40.21 |41.64 |35.91
352 288 30.0 384 32.53139.59|41.11 | 35.14 | 32.53 | 39.59 | 41.14 | 35.14
352 288 30.0 750 34.52141.43143.21 |37.12|34.50 | 41.44 | 43.20 | 37.11
704 576 30.0 1500 [35.15[41.61|43.44|37.61|35.12|41.61|43.46|37.59
704 576 60.0 3000 |[36.98(43.22| 45 |39.35|36.95|43.22|44.96|39.33
Table 4.7: PSNR of CITY
PSNR new PSNR old
width | height | frames/s | Kbit/s
Y | U| V (|total|] Y | U | V |total
176 144 15.0 64 30.8 [40.14 | 40.88 | 34.03 | 30.80 | 40.14 | 40.88 | 34.03
176 144 15.0 128 33.5 |41.7743.66 |36.57|33.50|41.77 | 43.69 | 36.57
352 288 30.0 256 30.55|41.18|42.82|34.36 | 30.54 | 41.07 | 42.83 | 34.36
352 288 30.0 512 32.98141.99 | 43.61 |36.25]32.98|42.01 |43.62 | 36.26
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704 576 30.0 1024 32.9 (41.59143.73136.16|32.90|41.63|43.73|36.16
704 576 60.0 2048 |35.07[43.17|45.06|38.08 |35.06|43.15|45.06 | 38.08
Table 4.8:PSNR of BUS

PSNR new PSNR old
width | height | frames/s | Kbit/s
Y | U| V (|total|] Y | U | V |total
176 144 7.5 64 24.62 (36.69 [37.04 | 28.7 [24.63 36.69|37.04|28.71
176 144 15.0 96 25.19136.95(37.89(29.27[25.19 | 36.88 | 37.90 | 29.26
352 288 15.0 192 27.47(36.97 | 37.7 {30.76 |27.47|37.00 | 37.70 | 30.76
352 288 15.0 384 30.44| 38.6 |39.87(33.37|30.44 | 38.59 | 39.89 | 33.37
352 288 30.0 512 30.85139.16 | 40.47 | 33.84 | 30.85 | 39.11 | 40.47 | 33.83
Table 4.9:: PSNR of FOOTBALL
PSNR new PSNR old
width height | frames/s | Kbit/s
Y U | Voi|total|] Y | U | V |total
176 144 7.5 128 2848113381 | 36.69 | 30.74 | 28.47 | 33.81 | 36.64 | 30.72
176 144 15.0 192 28.1 [33.28.36.48 |30.36|28.09|33.27|36.39 | 30.34
352 288 15.0 384 31.19134.95|37.31 |32.84 |31.17 | 34.96 | 37.29 | 32.82
352 288 15.0 512 32.57136.08|38.23 | 34.1 |32.52|36.06 |38.23 | 34.06
352 288 30.0 1024 | 34.05[37.4439.46|35.52|34.01 |37.44| 3947 | 35.49
Table 4.10: PSNR of FOREMAN
PSNR new PSNR old
width | height | frames/s | Kbit/s
Y | U| V |total|] Y | U | V |total
176 144 7.5 32 28.97 |37.11 |36.91 [ 31.65 | 28.97 [37.20 {36.90 | 31.67
176 144 15.0 48 29.38 |37.56 |37.74 | 32.14 {29.39 | 37.23 | 37.67 | 32.08
352 288 15.0 96 30.97|37.46 | 38.06 | 33.23 | 30.96 | 37.45 | 38.09 | 33.23
352 288 15.0 192 33.69139.27|40.35 | 35.73 | 33.66 | 39.28 | 40.33 | 35.71
352 288 30.0 256 34.24139.64 4091 | 36.25 | 34.23 | 39.62 | 40.85 | 36.23
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Table 4.11: PSNR of MOBILE

PSNR new PSNR old

width height | frames/s | Kbit/s

Y U V |total| Y U V |total
176 144 7.5 48 22.54 (27.47 12637 | 24 |22.54|27.47|26.51|24.02
176 144 15.0 64 23.08 [28.23 [27.31|24.64|23.08|28.24|27.29 | 24.64
352 288 15.0 128 23.8 |128.48 |28.0425.29(23.80| 2853 |28.10| 25.3
352 288 15.0 256 26.94 (31.37130.76 |28.32126.95|31.38|30.77 | 28.32
352 288 30.0 384 28.5732.74132.39| 29.9 |28.57|32.74132.35| 29.9

4.6 Appendix B: Statistics of SB-Reach Depth and

Block Size

Figure 4.6 to Figure 4.8 show'the distributions-of the block size and SB-reach

depth selected in the tests of BUS,'"FOOTBALL and FOREMAN. From these

statistics, SB-reach disable, 2x2 and 4x4 are the most three popular modes in block

size selection. From the SB-reach depth distribution, we can find that 2 is chosen most

frequently.
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Figure 4.6: (a) Block size distribution and (b) SB-reach depth distribution of BUS
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Figure 4.7: (a) Block size distribution and (b) SB-reach depth distribution of FOOTBALL
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Figure 4.8 (a) Block size distribution and (b) SB-reach depth distribution of FOREMAN

Table 4.12 shows the bits saving ratio and the overhead ratio of the coded BUS,
FOOTBALL and FOREMAN bit streams. The formulas of the bit saving ratio and the
overhead ratio is defined in (4.1) and (4.2) and the meaning of a, b and c is are shown

by Figure 4.9.

Overhead ratio: —— (4.1)

. . . a
Bit saving ratio: —— (4.2)
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original bit stream
{withcnt SEreach method)

b c bit stream with $B-reach method

Figure 4.9: ‘a’ the original bitstream

without SB-reach method and the bitstream ‘b+c’ is the one with

SB-reach method. ‘b’ means the overhead of SB-reach method and ‘c’ means the reduced size bitstream

caa

after using SB-reach method.

Table 4.12: Bit saving ratio and overhead ratio for BUS, FOOTBALL and FOREMAN

decrease ratio(%) |overhead ratio(%)
BUS 0.47 0.3
FOOTBALL 1.31 0.79
FOREMAN 0.53 0.36
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Chapter 5
Directional Mwultiresolution

Transform

5.1. Motivation

In an image and video coding scheme, the spatial transform plays an important
role. The image data is transformed to frequency domain by a spatial transform. For
typical image, the energy is concentrated to some frequency bands, usually lower
frequency bands, and due to the energy compaction property, the compression
efficiency can be improved. There are a few popular spatial transforms used for image
compression, such as FFT, KLT, DCT and wavelet transform. However, for the reason

of performance and realization, most image or video coding systems adopt DCT and
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wavelet transform. 2D-DCT is adopted as the spatial transform module by JPEG,
MPEG-1, MPEG-2 and H.264. In JPEG2000 and interframe wavelet coding schemes,
the wavelet transform is used.

Wavelets are claimed to be more efficient to represent point abrupt changes and
singularities. Because of its good approximation performance in one dimension,
wavelets are used in signal processing very frequently. However, in two dimensions,
the performance is not as good as in the one dimension. 2D separable wavelets are
well adapted to point-singularities, but poor in line- or curve-singularities. In the past
decade, Candes and Donoho [12] pioneered a new representation, which is named
curvelet to approximate the behavior of 2D smooth functions. Inspired by curvelet,
Minh N. Do [13] proposed contourlets to build a new image representation. We will

describe this method and apply contourlet to image coding in the fallowing sections.

5.2 Contourlet

Contourlets proposed by Do combine the'good properties of curvelets and
subband decomposition. It mainly decomposes image in two steps: (1) global
multiscale transforms and (2) local directional transforms. The first step is doing edge
detection and applying a wavelet-like transform. In the second step, local directional
transforms are used to cover contour segments.

In practice, Do suggests a double filter bank approach. His pyramidal directional
filter bank consists of the Laplacian pyramid and the directional filter banks. As
shown in Figure 5.1, The Laplacian pyramid decomposes an image into a lower
frequency band with 1/4 scale of original data and a higher frequency band. The
higher frequency frame is processed further by a directional filter bank, which can

have 4, 8 and 16 bands. The lower frequency band can be remained or it can be
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further decomposed into low-pass and high-pass bands. Laplacian pyramid is used to
cover the point discontinuities and the directional filter bank is used to represent
line-segment structures. Thus, the contourlet provides multiresolution decomposition
and directional decomposition for an image. Because the contourlet uses the
Laplacian pyramid, it contains redundancy factor up to 1.33, and is not critically

sampled.

¥

*
. Down sample by 2 3

A 4
v

Figure 5.1: Block diagram of Pyramidal directional filter bank.-Multiscale decomposition is at the first
stage. Down sampling is applied on the lower:frequency band and higher frequency band is followed

by a directional filter bank.

In the next two sections, we describe the design of Laplacian pyramid (LP) and

directional filter bank (DFB).

5.3 Laplacian Pyramid

Laplacian pyramid, which is proposed by Burt and Adelson[14], is used to
achieve multiscale decomposition. Once Laplacian pyramid is applied, the low-pass
image is generated from original image, and then down sampled. The difference of the
original image and the predicted image produced from the low-pass image produces

the high-pass image. The process can be done iteratively. The coarser down-sampled
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frame of the original image can be then generated.

LP decomposition introduces an over sampling with a ratio of 1.33. On the other
hand, wavelet scheme is critically sampling. Intuitively, we see the drawback of LP
decomposition may influence coding efficiency. However, the LP decomposition does
not have “scrambled” frequency, which happens in the wavelet filter bank. This
situation appears when high-pass signal, which is down sampled, is folded back into
the low frequency band, and cause its spectrum being reflected (see Figure 5.2). LP
decomposition only down sample the low-pass channel and “Scrambled” frequency is

avoided.

Highpass(HP)

Downsampled HP

|
|
il
i

Figure 5.2: Illustration of the * frequency scrambling.” Upper: spectrum after high-pass filtering.
Lower: spectrum after high-pass filtering and downsampling. We can see that the high-pass spectrum is

folded back into the low frequency region.

The architecture of LP is shown in Figure 5.3. H and G are orthogonal filters. X
is the input image. And C is the coarse version of X and D is the difference between

the original image and the reconstruction of C.
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Figure 5.3: The analysis side of LP scheme. C is the coarse version of original image and D is the

difference between C and input X.

The corresponding synthesis side has two input data - C and D. C is up sampled
and then filtered by G. Its output is added by D. The final reconstruction X is then

generated (Figure 5.4).

D

Figure 5.4: The synthesis side of the LP scheme. X’ is the reconstructed image.

In realization, the two filters, H and G., have to be selected. We use the 9/7 filters

for the LP structure. The coefficients of 9/7 filters are shown in Table 5.1[15].

Table 5.1: 9/7 filter taps

h[n] g[n]
0.037829 -0.064539
-0.023849 -0.040690
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-0.110624 0.418092
0.377403 0.788485
0.852699 0.418092
0.377403 -0.040690
-0.110624 -0.064539
-0.023849

0.037829

5.4 Directional Filter Bank

A 2-D Directional filter bank (DFB) is proposed by Bamberger and Smith [16] in
1992. DFB basically partitions the spectrum.of. 2-D.data into wedge-shaped frequency
regions and each partition region corresponds to a-subband. In realization, a tree
structure is used to implement DFB. The number of partition region depends on the
level of tree structure realization. For example (Figure 5.5), if the level of tree

structure is n, 2" wedge-shaped frequency partitions are generated in frequency

domain.
@24
(7,7)
0\1 2/3
4 7
5 6
6 511
7 4
3/72 1\O
('7Z-’- 7Z)

Figure 5.5: DFB with the level of tree structure n = 3 and there are 2’ of frequency partition regions.

48



The construction of DFB involves the QFB’s and fan filters. QFB (quincunx

filter bank) is shown in Figure 5.6.

p4—0—C0)—p4
XX

Figure 5.6: QFB with sub-lattice sampling Q and fan filters. This also forms the first level of DFB with

’

X

two directions.

In current case, Q can only be Q0 and Q1, which represents two-dimensional
quincunx sub-lattice as shown in Figure 5.7.-That is, Q0 and Q1 are applied to the

coordinate indices

(5.1)

Figure 5.7: Quincunx sampling lattice

With the expansion of the QFB’s, the tree structure become larger and the
directions of DFB also increase. In the fallowing discussion, we will use 4-direction

and 8-direction DFB’s in our image coding process.
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5.4.1 Fan Filter Design

The fan filters are the key components of DFB. In this section, we will describe
how to design these filters by using the biorthogonal fan filters designed by Phoong et
al. [17].

To obtain the fan filter, diamond-shaped filters are first designed and then
modulate the diamond-shaped filters to the fan filters. At first an all pass filter is first
established by (5.2) in one dimension. We use the coefficients listed in Table 5.2

(Phoong[17]) as the base of our filter design. The function is derived using {Vk}

according to (5.2). In this case, N1 is 6 and the S ( z) is 12-taps type II filter.

Table 5.2: The base coefficients of 23-45 fan filters

Vi 0.630
V2 -0.193
V3 0.0972
V4 -0.0526
Vs 0.0272
Ve -0.0144

B(2)=D v x(z M+ (5.2)

k=1

Because the fan filters are 2-dimensional filters, the shape of filter taps is
2-dimensional too. In the Phoong’s thesis, the diamond-shaped filter is the goal of the

design. Figure 5.8 shows the ideal diamond-shaped filter.
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Figure 5.8: Ideal diamond-shaped filter

The analysis and synthesis diamond-shaped filters are formed by (5.3).When /[ (z) is

replaced by 5(z,z;"), the 1-dimensional case is turned into 2-dimensional.
ﬁ.“q? PR 1£

@gﬂ;

64N+1 (5.3)

With the 6 coefficients of base taps, analysis filters, H0 and H1, have 23x23 and
45x45 2D taps areas. Also, the distribution of taps has the diamond shape. Figure 5.9
shows the impulse response (coefticients) of HO0(z,,z ) and Figure 5.10 shows the

spectrum of the designed Ho( z,, z,).
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10

Figure 5.9: HO( 2y, 2, )I Iesigﬁed with 6 base taps.
"“ . | ol Wl Y '_‘
| ! ‘"II

Figure 5.10: The spectrum of Ho( Z,, Z, ). The spectrum is FFT shifted. The value 0 and lon the axis
represent - 7 and 7 . The value 0.5 means frequency value 0.
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When the diamond-shaped filter has been designed, the next step is to generate
the fan filters. Fan filters can be viewed as the modulated diamond-shaped filter. The
spectrum of the fan filters is that of the diamond-shaped filter with frequency shifted
by —7 or 7 alongthe X or Y axis. To shift spectrum by —7 or 7, the modulation
operation is applied (5.4).

X [T Jcos (27nf,T) <—>%Xd (f- f0)+%xd (f+1)  (54)
In this case, “ f,”, the frequency shift value, is set to be 7. The period “T” is set to

be 2L The time domain formula can thus be rewritten to X [nT Jcos(nz). The
7

modulation function cos(nz) is in fact a sequence of interleaved +1 and —1. We

multiply the modulation sequence to the taps of the analysis and synthesis

diamond-shaped filters. Figure,..5.11 shows . the spectrum of the analysis

diamond-shaped filter - H0( z,, z;) after-frequency shifted by 7 alone Y axis

U e
il A

Figure 5.11: The modulated diamond-shaped filter - HO(z0,z1) form the fan filter.
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The input and the output energy levels of the 23-45 fan filters should be the same.

The DC value of Ho(z,,2,) and F1(z,,z,) designed is 0.5 (DC value equals sum of

total tap values.). On the other hand, the DC value of H1(z,,z,) and FO(z,,z,) 1s 1.

The DC levels of signals after passing through two analysis filters are not equal, but

the DC value of each analysis and synthesis pair is the same, 0.5*1. Figure 5.12

illustrates DC response of each filter in this structure.

- ==~ Analysis——— - — >+ ———— Synthesis—— —— - »
The DC value of Y0 The DC value of
HO0(Z0,21) is 0.5 F0(Z0,Z1)1is 1
X PR
The DC value of Y1 The DC value of
HOZ0,Z21) is 1 F1(Z0,21)1s 0.5
Total DC Tevel 15 0.5

Figure 5.12: Illustration of DC level in DFB. The DC level of YO is half of Y1 because of the different

DC levels of HO( Z,, Z, ) and H1( Z,,, Z,)

We have to modify the DC levels of the fan filters to produce equal DC levels so

that the total system has equal DC responses. The simplest way to achieve this goal is

to modify the DC value response of HO(z,,z,) and F1(z,,2,) from 0.5 to 1. Thus, the

value of total taps should be multiplied by 2. With this, the signal after passing each

analysis filter bank is at the same DC level and the DC response of total system are 1

after adjustment.
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5.4.2 Quincunx Sampling Lattice

Another key component of DFB is the quincunx sampling lattice. We have
shown the sampling lattice Q0 and QI1[18] in formula (5.1). Other than doing lattice
sampling, Q0 and Q1 also rotates the sampled image by 45" and -45". Figure 5.13

shows an example of downsampling by Q0 and Q1.

@ RO A ©
Figure 5.13: (a)ifhé original image.
(b) Downsampling by Q0.:The original-image is downsamped and rotated by 45

(c) Downsampling by Q1. The original image is downsampled and rotated by -45°

If Q0 and Q1 are used to upsample an image, the image would be rotated by —45
and 45°. The data of the rotated image are distributed as in Figure 5.7. The blank

points are the zero filling point after interpolation.

5.4.3 Patterns of Sampled Images

This section discusses the data formation that presents in the DFB data flow and
the outcome when these data are downsampled by Q0 or Q1.
One of the data formats is simply the normal image representation, square-like or

rectangular-like discrete distribution as shown in Figure 5.14.
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Figure 5.14: Square-like discrete representation.

When the downsampling lattice is applied on a filter bank, we shift one pixel in X or
Y direction on one way of a filter bank and the data are separated into two forms
shown in Figure 5.15(b)(c). In reconstruction, the two separated data can be combined
directly without shifting, if they are arranged in a normal data array. (The data are

arranged in positive X and Y axis?)

(b) ©

Figure 5.15: (a) Data partition of a rectangular-shaped image.

(b)(c) The downsampled version of a rectangular-shaped image. We can see that (c) has the same
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sampling lattice as (b) with apply one pixel shifted along on X or Y direction.

The other sampling pattern appears in DFB is the diamond-shaped images. At the
first level of QFB, an image passes through a fan filter bank and a downsampling
lattice. As describe before, the down-sampling process rotates an image by 45°. Figure

5.16 shows an example of the diamond-shaped pattern.

‘

Figure 5.16: The pattern of a diamond-shape like image.

When downsampling into two images, the sampling point should also shift one
pixel in the X or Y direction on one of the images. As we can see in Figure 5.17(a),
one filter output samples contain the left border and the other contains the right border.
In reconstruction, each set of data is shown in Figure 5.17(b)(c). When combining
these two-separated set of data, we need to shift one of them to overlapping. This

process is not needed when the original image has the rectangular shape.
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Figure 5.17: (a) An example of the diamond-shaped image.(b) and (c) are sampled data from (a) under
the critical sampling condition. When (b) and (c) are combined to reconstruct (a), (c) have to be shifted

to avoid in case of data overlapping.

5.4.4 Equivalent Representation of DFB

In order to achieve eight or more directional frequency partitions, the QFB have
to be combined together with the resampling operations at the third level as shown in

Figure 5.18.
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Figure 5.18: Block diagram of QFB with resampling operation

The resampling matrixes are shown in (5.5). Using these sampling matrixes does
not change the image data rate but rearrange the position of image data. Note that
ROR1 = R2R3 = I2. Figure 5.19 shows an example of “lena” rearrange by the
resampling operation RO and Figure 5.20 shows the output shapes of an image

resampled by RO, R1, R2 and R3, respectively.

R_11
*lo 1)

(2) (b)

Figure 5.19: An example of the resampling operation- RO. Note that the data coordinates are changed

by the “upsampling” process, although the data rate does not increase nor decrease.
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Figure 5.20:Resampled images in four cases

(a) Resampling by RO; (b) Resampling by R1;

(c) Resampling by R2; (d) Resampling by R3.

Figure 5.21 shows the third level DFB on the analysis side and the equivalent
block diagram. Note that it is an example of the filter transform type. Replacing Ri
and Qj, the different frequency partition can be generated.

The left side of Figure 5.21 is the original block diagram of the third level DFB.
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If the “downsampling by R0” is moved forward to the next two branches, the filter
taps of HO and H1 have to be upsampled by RO. After upsampling, the frequency
response of HO and H1 become FO and F1. The combination of two sample matrixes
becomes P0 (P0 = R0*Q0) and Figure 5.22 shows the image with downsampled by Po.
Ro rearranges data but does not change the data rate. On the other hand, Q0 has a real
downsampling property. So P0 can change data rate and reshape the sampled image.
To explain in detail, the image downsampled by Po0 is actually only downsampled
along X-axis and the downsampled data are rearranged into a shape of parallelogram.
To produce more directional frequency partitions, this structure can still be used and
the main difference is only the change of sample matrixes. The equivalent

architectures can be obtained by using a similar method.

b4 = R

l HO E E | FO
L O

Figure 5.21: An example of the third level in DFB. Left: the original block diagram. Right: the

equivalent block diagram.

00 e : the original image

: the resampled image

Figure 5.22: The image of downsampling by PO.
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If the outputs of the equivalent block diagram are connected to the channel or the
synthesis side, the sampling matrix Pi can be facilitated to downsample along one
dimension and no data need arrangment. The equivalent block diagram simplifies
sampling process but the drawback is that the kinds of equivalent filters increased

with the numbers of directional partitions.

5.4.5 The Architecture of Directional Filter Bank

In the previous two sections, we have discussed the basic function of key
components in DFB. DFB can be constructed with these components. Figure 5.6
shows the simplest two-directions filter bank. In the fallowing case, four-directions
filter bank and eight-directions filter bank are introduced.

First, we describe the four-directions filter bank. If the level of tree structure is 2,
the 4 (2*)-directions filter bank is constiucted. The analysis and synthesis sides
contain two stages of tree structure,as shown-in Figure 5.23. The two components

described in the previous section are the keys to'the whole architecture.

T \ > \ Synthests -~ >
pd— )P4

< 1
< ARary

HO FO
P P4
HO FO
A @O
HI F1

HO FO
X © DR ¢
Hl Fl
X oo X
H1 Fl

Figure 5.23: The architecture of 4-directions filter bank.
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The architecture of 8-directions filter bank is the extension of the architecture of
4-directions filter bank. The level of the tree structure is 3. On the first and second
stage, the architecture is the same to the architecture of the 4-directions filter bank. On
the third stage, the analysis and synthesis sides are a little different to the analysis and
synthesis sides on the first and second stage. There are additional sampling processes
at the beginning of the analysis side and at the end of the synthesis side. Figure 5.24

shows the architecture of the 8-directions filter bank.

. 1 ¥ G4 < Q4. 9 q
Bl g s WHREED Pl A wtgeZ s

H1

R anCOSSSCDES T8
@ @ HO F0
BRI C S0
| PP
_ ’ +. @ HO F0
Eow _X @ @ <

ad

Figure 5.24: The architecture of 8-directions filter bank. The first and second stages are extended from

the 4-directions filter bank. The additional sampling processes are on the third stage.

As we describe in the previous section, the additional processes, RO, R1, R3 and
R4, can be moved forward on the QFB analysis side and backward on the synthesis
side. Two components have to be adjusted to represent the equivalent system. One is

resampling the analysis and synthesis filters. The other is modifying the sampling
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lattice Q,, to Q,xR,. In this case, the matrix, Q,xR,, can be facilitated to

downsample along one dimension. Figure 5.25 shows the architecture of 8-directions

filter bank with the equivalent diagrams.

1 Qaraatle :
< ARALYsis > DY RRest T >

Note : d_NO means down sample alone No

Figure 5.25: The architecture of 8-directions filter bank. The equivalent diagram replace the original

diagram (Figure 5.24) on the third level.

5.5 Pyramidal Directional Filter Bank

The pyramidal directional filter bank (PDFB) combines directional and
multiscale decomposition. Multiscale decomposition is first applied to the data and
generates a high-pass frequency image and a low-pass frequency image, where the
low-pass image is subsampled while the high-pass is not. The scheme can be iterated
on the low-pass frequency image a few times if needed. Directional decomposition is
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applied to the high-pass frequency image and the different number of directions is

defined by the user at each scale. Figure 5.26 shows the block diagram of PDFB.

e
LP DFB —
iy
LP DFB
G

— LP DFE —

||-l|+

Figure 5.26: The block diagram of PDEB. Multiseale.decomposition is first applied to generate the
low-pass and high-pass images. The low-pass image can be further decomposed using the same

structure on the next level. A directional decompositioniisapplied to each high-pass channel.

5.6 Experiments and Results

In the experiments, we replace the spatial wavelet transform in MSSVC software
by PDFB. The PDFB is constructed by a three-level multiscale decomposition.
Because of the multiscale decomposition, the PDFB structure still provides resolution
scalability. The numbers of directional decomposition from the first level to the third
level are 8, 4 and 4 (see Figure 5.27). The corresponding frequency partition is shown
in Figure 5.28. We use Laplacian pyramid to achieve multiscale decomposition and

DFB to achieve directional decomposition.
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Figure 5.27: The block diagram of PDFB. In the experiments, low-pass channel generates the coarse
resolution image. The high-pass image is passed to different directional decompositions at different

levels.
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[\

Figure 5.28: The corresponding frequency partition of architecture in Figure 5.27. The number of

(-7,-m)

directional frequency partition is decreased from the higher frequency bands to the lower frequency

bands.

The program is developed based on the MSSVC software. Thus, we compare the
performance of the original scheme (MSSVC) and the same scheme with spatial

transform replaced by multiresolution directional transform (MSSVC-MDT). We also
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compare the results with JPEG2000.

Barbara, fingerprint, Lena and peppers are the test images. The PSNR of
different schemes are compared with respect to compression ratios of 0.625%,
0.9375%, 1.25%, 5% and 10%. Table 5.3 and Figure 5.29 show the results of Barbara.

Table 5.4 and Figure 5.30 show the results of Barbara. Table 5.5 and Figure 5.31 show

the results of Barbara. Table 5.6 and Figure 5.32 show the results of Barbara.

Table 5.3: PSNR of Barbara

barbara
256(k byte)  [ratio(%) PSNR
512(width) MSSVC JPEG2000 MSSVC _MDT
512(height) 0.625 21.41 22.44 22.43
0.9375 23 23.33 22.8
1.25 23.89 23.97 23.86
5 30.85 29.56 28.18
10, 35.5 33.97 31.89
40
35 |
30
—— MSSVC
5T —8— JPEG2000
20 F —&— MSSVC_MDT
15 b
10 F
s |
0 : : : :
0 2 4 6 8 10 12

Figure 5.29: PSNR performance comparison of MSSVC, JPEG2000 and MSSVC_MST for Barbara.
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Table 5.4: PSNR of fingerprint

fingerprint
256(k byte)  ratio(%) PSNR
512(width) MSSVC JPEG2000 MSSVC_MDT
512 (height) 0.625 17.26] 18.26] 18.08
0.9375 18.79 19.41 19.68
1.25 20.62 20.75 20.53
5 27.48 26.63 25.53
10 31.62 30.25 29.41
35
30 b
% b
——MSSVC
20 F —8— JPEG2000
5 1 —A— MSSVC_MDT
10 |
s |
0 :
0 2 4 6 8 10 12

Figure 5.30: PSNR performance comparison of MSSVC, JPEG2000 and MSSVC_MST for fingerprint.

Table 5.5: The PSNR list of Lena

lena

256(k byte)  [ratio(%) PSNR
512(width) MSSVC JPEG2000 MSSVC MDT
512(height) 0.625 25.16 26.75 26.29
0.9375 27.31 28.03 27.5
1.25 28.57 29.31 28.25
5 35.76 35.31 33.64
10 38.87 38.39 36.32
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—&—MSSVC
—l— JPEG2000
—&— MSSVC_MDT

Figure 5.31: PSNR performance comparisons of MSSVC, JPEG2000 and MSSVC_MST for Lena.

Table 5.6: PSNR of peppers

256(k byte) ratio(%) | __ . - PSNR
512(width) MSSVC_MDT
512(height) 26.02 2537
28.01 2634
29.25 27.63
. 34.68 32.66
10 37.07 36.61 34.84

—&— MSSVC
—— JPEG2000
—&— MSSVC_MDT

Figure 5.32: PSNR performance comparison of MSSVC, JPEG2000 and MSSVC_MST for peppers.
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Figure 5.33 (a) and (b) show the reconstructed image of fingerprint using MDT
and wavelet at the ratio of 0.9375. Figure 5.34(a) and (b) show the reconstructed
grayscale image “barbara” coded by MDT and original scheme at compression ratio
of 1.25%. From the PSNR figures, it can be observed that MSSVC_MDT have better
performance than the original scheme-MSSVC at the very low compression ratios
such as 0.625% and 0.9375%. The PSNR difference become larger if many line-like
singularity components present in the test images such as Barbara and fingerprint.
Especially on the visual quality, the line elements are much more clear with
MSSVC MDT at the low compression rates. However, when the compression ratio is
higher such as 5% or 10%, the PSNR performance of MDT scheme is not as good as

that of MSSVC or JPRG2000.
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Figure 5.33: The reconstructed image of fingerprint at the compression ratio of 0.9375 (a) The

reconstructed image by using MDT, (b) The reconstructed image by using original scheme-wavelet.

72



73



JII (i

|
A

l s
i

Figure 5.34: Reconstructed image “barbara” at the compression ratio 1.25%. (a) MDT, (b) the original
MSSVC scheme.
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Chapter 6
Conclusion and.Future
Work

In Chapter 4, we propose an enhanced entropy coding scheme to further increase
the compression efficiency of the interframe wavelet coding algorithm. We modify the
entropy coding unit by adding an extra SB-reach layer. Several test conditions
specified by the core experiment are tested. So far, our proposed algorithm has
somewhat better performance at low- to mid-bitrates comparing to the MPEG Core
Experiment (CE) reference software. Further parameter tuning should provide better
results, and the full potential of this technique is yet to be further explored.

In Chapter 5, we designed and implement the directional multiresolution

transform to replace the conventional separable wavelet transform. The PSNR and the
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subjective quality are better at low bit rates especially on the image with lots of line

singularities. However, the PSNR loss at higher compression ratios needs to be

improved. The possible methods to improve its performance are as fallows.

®  Our program still used the original rate-distortion control. There should have a
lot of space to adjust the RD control scheme to match the directional
decompositions. It is also an important subject to look into the relationship
between the human visual system (HVS) and the directional transform.

® In the thesis, the decomposing numbers in directional filter banks we choose are
8, 4 and 4 from the first resolution level to the last based on the experiments
in[13]. However, with combining different resolution decomposition levels and
the numbers of directional decomposition, many kinds of transform structures
can be generated. The better parameter values.in selecting filter structure for
compression still needs to be further studied.

® We use Laplacian Pyramidto dosthe resolution decomposition and, as we known,
it is an oversampling scheme. Should it be teplaced by other filters? The impact

of this resolution reduction filter can be another research topic
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