
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

考慮障礙物繞線及緩衝器插入之方法研究

Algorithms for Efficient Buffered Interconnect Tree Construction

with Blockages

研 究 生：游宗達

指導教授：陳宏明 博士

中 華 民 國 九 十 四 年 六 月

考慮障礙物繞線及緩衝器插入之方法研究

Algorithms for Efficient Buffered Interconnect Tree

Construction with Blockages

研究生: 游宗達 Student: Tsung-Ta Yu

指導教授: 陳宏明 博士 Advisor: Prof. Hung-Ming Chen

國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of Requirements

for the Degree of
Master of Science

in
Electronics Engineering

June 2005
Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 i

考慮障礙物繞線及緩衝器插入之方法研究

研究生：游宗達 指導教授：陳宏明 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

近來，由於導線延遲己凌駕於電晶體延遲的緣故，致使許多效能導向的繞線及插

入緩衝器的演算法，相繼被提出，以降低導線的延遲。在我們的論文當中，我們提出

了兩種有效率的方法，可以快速建構出效能導向的繞線及插入緩衝器，並考慮避開障

礙物的限制。

第一個演算法，我們修改了[9]中使用的降溫演算法，以階層的方式建構繞線，

並同時考量插入緩衝器的效應。第二個演算法，我們採用兩級最佳化的方式，來達成

繞線和插入緩衝器的任務，首先建構出效能導向的繞線之後，再插入緩衝器，以降低

導線的延遲效應。

最後，我們所提出的兩個方法，與過去所提出的演算法相比，能夠得到更好的效

能，且所需要的運算時間大幅減少。

 ii

Algorithms for Efficient Buffered Interconnect Tree Construction
with Blockages

Student: Tsung-Ta Yu Advisor: Prof. Hung-Ming Chen

Department of Electronics Engineering

& Institute of Electronics
National Chiao Tung University

Abstract

 In recent years, many algorithms for buffered interconnect tree construction were
proposed to minimize interconnect delay due to the interconnect delay becomes more
critical than transistor delay. In this thesis, we proposed two efficient algorithms to
construct buffered interconnect tree with blockages. Our first algorithm modifies the
simulated annealing algorithm [9] to hierarchically construct buffered interconnect tree
considering buffer insertion simultaneously. Our second algorithm adopts two-stage
optimization techniques to construct buffered interconnect tree. First to construct a
performance-driven routing and then insert buffers for it to minimize the interconnect delay.
We will show our algorithms could obtain better performance and more efficient than
pervious algorithms.

 v

誌謝

 首先要特別感謝的人，是我的指導教授陳宏明老師，沒有老師的指導與包

容，學生是不可能有能力完成這篇論文的。

此外，要感謝的是 VDA LAB 實驗室所有的成員，謝謝他們兩年來的砥勵、

幫助及帶給我的歡樂，讓我兩年的生活充滿歡笑及淚水。

家人對我的支持、鼓勵更是我研究路上最大的依靠，對他們的感謝，更是筆

墨難以形容。

最後由衷感謝所有我幫助關懷過我的人。

 游宗達

民國九十四年七月 於新竹

Contents

1 Introduction 1

1.1 Thesis Organization . 3

2 Techniques For Timing Optimization in Interconnect Tree Con-

struction 4

2.1 Preliminaries . 4

2.2 Performance-Driven Interconnect Tree Synthesis 6

2.2.1 Geometric Approaches to Delay Minimization 6

2.3 Van Ginneken’s Algorithm . 9

3 Buffered Interconnect Tree Construction with Simultaneous Topol-

ogy Generation and Buffer Insertion 12

3.1 Clustering . 13

3.2 Simulated Annealing Method For Buffered Tree Construction 14

3.2.1 Decomposition of Routing Tree 15

3.2.2 Component Construction . 16

3.2.3 Routing Tree Perturbation . 17

3.3 Summary . 18

i

4 Buffered Interconnect Tree Construction via Two-Stage Optimiza-

tion 20

4.1 Performance-Driven Tree Construction 20

4.1.1 Routing Grid Graph . 20

4.1.2 Iterated Dominance Algorithm (IDOM) [1] 21

4.2 Buffer Insertion . 23

4.2.1 Efficient Buffer Insertion . 23

4.2.2 Buffered Tree Transformation 25

4.3 Summary . 29

5 Experimental Results 30

6 Conclusion and Future Work 34

Bibliography 35

ii

List of Figures

2.1 (a) solid point is the source (b) hollow points are the sinks (c) black

box is buffer and wire obstacle (d) gray box is buffer obstacle. 5

2.2 Three interconnection trees for the same signal net with s0 at the

center: (a) the shortest paths tree Ts; (b) the minimum spanning

tree TM ; (c) a “tradeoff” between the two constructions. From [4]. . 7

2.3 Sample executions for PD for an 8-sink instance in the Euclidean

plane [4]. The edge labels give the order in which the algorithms

add the edges into the tree. (a) with c=1
3
(radius 15.91, cost=26.34)

(b)with c=2
3
(radius 10.32, cost=29.69). 8

2.4 RSA to add extra Steiner points. (a) Tree cost=13, overlapped

length=4 (b) Tree cost=9, overlapped length=0. Solid circle is the

source, other circles are sinks. 9

2.5 (a) The physical routing topology; (b) the RC network of (a). 10

2.6 Dynamic Programming Algorithm for Buffer Insertion [20]. 11

3.1 Two level routing: clustering all sinks first, and then construct the

low-level buffered tree over each group. The top-level buffered tree is

merged with the low-level buffered trees finally. 13

3.2 K-Center clustering algorithm over a set of sinks S. 14

3.3 16 points example illustrating the K-center algorithm. 15

iii

3.4 The tree has 7 nodes and 6 edges corresponds to (b) in routing graph. 15

3.5 Routing tree decomposition. A tree is composed of two kinds of

components: single component and branch component. 16

3.6 Transformation of non-binary tree to binary tree. 17

3.7 Rotation operations. 18

4.1 Embedding example: (a) grid graph corresponds to (b) physical plane.

In (a), the edge cost equals the length of the shortest path of the end-

points. 21

4.2 Grid graph: The dotted lines are underlying grid lines and the thick

lines are lines for routing. Dark point is the source and gray point are

the sinks. Dark boxes are wire blockages and gray boxes are buffer

blockages. 22

4.3 (a) Illustration of Dominance property and (b) change the tree topol-

ogy to minimize wirelength according to the Dominance property. . . 23

4.4 The Iterated Dominance (IDOM) algorithm. 24

4.5 Execution example of the IDOM algorithm: (a) Initial DOM solu-

tion, having cost 24; (b) Steiner candidate s1 produces a savings of

∆DOM=8, which reduces the overall tree cost to 17; (c) Steiner can-

didate s2 produces a savings of ∆DOM=1, which reduces the overall

tree cost to 16; (d) Final solution, the last Steiner candidate reduces

the tree cost to 15. 24

4.6 Algorithm for merging the children solution sets at branch. 25

4.7 Example of merge operation. The two columns on the left are the

solution sets being merged; pairs of solution combined are surrounded

by circle. The resulting set of solutions appears on the right. 26

iv

4.8 Dynamic Programming Algorithm for Buffer Insertion With Pruning

[15, 20]. 26

4.9 Illustration of tree transformation. 27

4.10 (a) Consider all buffer combinations at candidate point C. (b) Buffer

is not inserted at C. (c) One buffer at C drives t1 and t2. (d) One

buffer at C drives only t1. (e) One buffer at C drives only t2. (f)

Two buffers at C drive t1 and t2 respectively. (g)&(h) Two buffers are

inserted at C, and one buffer decouple t1 or t2. (i) Candidate point

C transform to three pseudo point to handle all buffer combinations. 28

5.1 The decouple function of Two-Stage-Method turn off. Delay = 1309

(ps), wirelength = 65 (mm), # of buffer = 20. 33

5.2 The decouple function of Two-Stage-Method turn on. Delay = 1249

(ps), wirelength = 65 (mm), # of buffer = 21. 33

v

List of Tables

1.1 Complexity of interconnects in each technology generation [6]. 2

5.1 Technology Parameters. 30

5.2 Performance comparison (Buffer Types = 1, Blockages = 11) between

the approaches in [9] and our approaches. Our two-stage approach

has better delay and wirelength in comparison with SA algorithm. . 31

5.3 Buffer Types = 2, Blockages = 11. The 2nd buffer’s parameters:

output resistance=90(Ω), input capacitance= 0.048(pF), intrinsic de-

lay=36.4(ps). 32

vi

Chapter 1

Introduction

With interconnect delay instead of transistor delay and becoming the bottleneck

of circuits in deep submicron (DSM) era, the traditional timing analysis is not ac-

curate any more in current methodology. Interconnect delay should be necessarily

considered. In conventional VLSI circuit design flow, synthesis, circuit partition-

ing, floorplanning, placement and routing were sequentially accomplished. Since

the interconnect delay is more critical, this design methodology faces the timing

closure problem. In order to decrease the design respin, it is desired to minimize the

interconnect delay during chip design.

The reason of the dominance of interconnect delay is that wire delay raises in

square of the length and there are large amount of global interconnects in the design.

The buffers can cut the long wire net and make the wire delay increase proportional

to the length of the wire. Due to the advantage of buffer insertion for satisfying the

timing requirement, buffers are now widely used to minimize the interconnect delay

when planning long global interconnects. Cong [6] expected that close to 800,000

buffers will be required per chip for 50 nanometer technology. Their prediction of

interconnection complexity is shown in Table 5.1. We can foresee that the huge

amount of buffers will be applied on thousands of nets, and the computation load

is high. Hence both the efficiency and performance of buffer insertion algorithm

1

Table 1.1: Complexity of interconnects in each technology generation [6].

Technology(nm) 180 130 100 70
Length(m) 1480 2840 5140 10000
Wire Levels 6-7 7 7-8 8-9

#bufers per chip 25k 54k 230k 797k

should be highly noted.

Many works have studied the problem of inserting buffers to reduce the delay of

signal nets. Van Ginneken [20] first gave the buffer insertion algorithm, which used

dynamic programming technique to find the optimal slack solution on fixed routing

topology. After this work, many extensions were proposed, including incorporate

slew [15], power [15, 18], noise consideration [2], multiple buffer types [14], and

high order delay model [13]. Previous algorithms need an input tree topology, the

solutions may be restricted by the input tree topology. [17] and [16] used A-tree

and P-tree respectively, to simultaneously construct routing tree and perform buffer

insertion. Recently, research on buffer insertion considers blockage avoidance [21,

8, 19, 10, 16, 11, 9]. Since buffered tree construction followed the placement, some

regions are occupied by macro block and wire or buffer cannot be allocated on those

regions. Therefore we need to take those blockages into consideration when inserting

buffers.

Most buffered interconnect tree construction algorithms can be classified into

two-step approach [2, 3, 20] or simultaneous approach [8, 17, 10, 16, 11]. Two-

step approach inserts the buffers on the input tree topology. It is efficient, but the

solution may be limited by input tree topology. Simultaneous approach constructs

the routing tree with buffer insertion simultaneously. It overcomes the restriction of

input tree topology, but loses the efficiency.

In this thesis, we implemented both approaches to construct a buffered tree with

2

minimal Elmore delay, and compare with some recent works to show the effectiveness

of our proposed approaches.

1.1 Thesis Organization

The remaining of thesis is organized as follows. Chapter 2 is the survey on tim-

ing optimization techniques, briefly introduce the optimization techniques we ap-

plied and give a detailed problem description. Chapter 3 presents our hierarchical

buffered routing tree construction using simulated annealing approach. Chapter 4

presents our efficient buffer insertion approach, based on performance-driven tree

construction and van Ginneken algorithm. Chapter 5 shows our experimental result

and comparison with recent works. Chapter 6 presents the conclusion and future

works.

3

Chapter 2

Techniques For Timing
Optimization in Interconnect Tree
Construction

In this chapter, we first introduce the delay model that we adopt and give the

problem definition. Then we review some important works for timing optimization

while routing, including performance-driven tree construction and buffer insertion

techniques.

2.1 Preliminaries

We adopt the Elmore delay model because of its fidelity with respect to physical

delay and its ease of computation. For a wire segment e = (u,v), let re and ce be

the resistance and capacitance of e respectively, both of which are proportional to

wire length le. Letc(Tv) be the load at node v, the Elmore delay of the segment is

expressed as re(
ce

2
+ c(Tv)).

Delay of a driver g is defined similarly as dg + rg · cl, where dg is the intrinsic

delay, rg is the output resistance of the driver and cl is the capacitive load on g’s

output. The required arrival time for a routing tree T driven by gate g is

q(T) = min
sinks

{qu − delay(g → u)}

4

Figure 2.1: (a) solid point is the source (b) hollow points are the sinks (c) black box
is buffer and wire obstacle (d) gray box is buffer obstacle.

where qu is the required arrival time at sink u. If q(T) ≥ 0, T is said to meet

its timing requirements. A special case of required arrival time is maximum delay:

letting qu = 0 for each sink u, the max source-to-sink delay is −q(T).

The goal of our algorithm is to construct a routing tree with buffer insertion

in the presence of wire and buffer obstacles so as to minimize the Elmore delay

from source to sink. In our works, we consider two kinds of objectives. Both the

objectives are given here:

Problem Formulation 1: Given a routing grid G=(V,E), a buffer library B,

a source node s ∈ V , k sink nodes t1, t2, . . . , tk ∈ V of net and blockages. Find a

buffered routing tree T rooted at s and leafed at t1, t2, . . . , tk, such that the maximal

delay is minimal.

Problem Formulation 2: Given a routing grid G=(V,E), a buffer library B,

5

a source node s ∈ V , k sink nodes t1, t2, . . . , tk ∈ V of net and blockages. Find a

buffered routing tree T rooted at s and leafed at t1, t2, . . . , tk, such that the slack1

is maximum.

The difference between formulation 1 and formulation 2 is the measurement of

delay. The former is in top down fashion, the latter is in bottom up fashion. The

problem instance is illustrated in Figure 2.1. Two kinds of blockages are considered

[21]. The gray box represents routing obstacle region where buffer insertion is infea-

sible. The black box represents routing obstacle regions where both wire placement

and buffer insertion are infeasible.

2.2 Performance-Driven Interconnect Tree Syn-

thesis

To achieve a minimum-area layout, circuit interconnections should in general be

realized with minimal wire length. The objective of minimal wire length corresponds

to the Steiner minimal tree (SMT) problem [12]. To achieve a high performance

design, only minimizing the total wire length may cause the poor signal delay from

source to sink. Thus the problem of performance-driven tree construction arises.

An early work of Cohnoon and Randall [5] is notable for its prescient insights. For

any given signal net, [5] proposed the construction of a “maximum performance

tree” corresponding to “a shortest path . . . with minimum total length”, and noted

that such a tree seems difficult to construct. Next, we present the heuristics of

performance-driven tree construction with geometric approaches.

2.2.1 Geometric Approaches to Delay Minimization

C. J. Alpert et al. [4] combined minimum tree cost and minimum tree radius ob-

jectives. Tree cost means the total wire length of the tree. Tree radius means the

1Slack is defined as the difference between the required arrival time and the actual arrival time.

6

Figure 2.2: Three interconnection trees for the same signal net with s0 at the center:
(a) the shortest paths tree Ts; (b) the minimum spanning tree TM ; (c) a “tradeoff”
between the two constructions. From [4].

longest path from source to all sinks, corresponding to the maximum delay of the

tree. Consider a two-terminals net, the optimal delay path is the shortest path from

source to sink. If all sinks connect to the source with shortest path, the total wire

length might be greater than the wire length of the minimum spanning tree. On the

contrary, minimum spanning tree has minimal wire length but tree radius is greater

than shortest path tree. Figure 2.2 demonstrates the tradeoff in area and delay (ra-

dius). [4] presented a straightforward approach to construct the performance driven

tree based on Prim’s minimum spanning tree (MST) and Dijkstra’s shortest path

tree (SPT), we called it PD.

Prim’s algorithm begins initially with the tree consisting only of source s. The

algorithm iteratively adds edge eij and sink si to T, where si and sj are chosen to

minimize dij s.t. sj ∈ T, si ∈ S − T. (2.1)

Dijkstra’s algorithm also begins with the tree consisting only of source s. The

algorithm iteratively adds edge eij and sink si to T, where si and sj are chosen to

minimize lj + dij s.t. sj ∈ T, si ∈ S − T (2.2)

The similarity between (2.1) and (2.2) forms the basis of PD , which iteratively

7

Figure 2.3: Sample executions for PD for an 8-sink instance in the Euclidean plane
[4]. The edge labels give the order in which the algorithms add the edges into the
tree. (a) with c=1

3
(radius 15.91, cost=26.34) (b)with c=2

3
(radius 10.32, cost=29.69).

adds edge eij and sink si to T, where si and sj are chosen to

minimize (c · lj) + dij s.t. sj ∈ T, si ∈ S − T (2.3)

for some choice of c, 0 ≤ c ≤ 1. When c=0, PD is identical to Prim’s algorithm

and constructs trees with minimum cost. As c increases, PD constructs a tree with

higher cost but lower radius, and when c=1 PD is identical to Dijkstra’s algorithm.

Sample executions of PD for c=1
3

and c=2
3

is shown in Figure 2.3. The results show

that the tree radius conflicts with the tree cost.

Rectilinear Steiner Arborescence (RSA) algorithm sweeps the weakness of PD.

This algorithm proposed in [7, 1] can further reduce the tree cost without increasing

the tree radius by means of extra Steiner points. As illustrated in Figure 2.4, the

overlapping edges are eliminated by extra Steiner points. The tree structure from

RSA is good for wire capacitance reduction, and has the better tree radius than PD.

In our works, we will construct the performance driven tree on the basis of

the idea, “maximum performance tree” corresponding to “a shortest path . . . with

8

Figure 2.4: RSA to add extra Steiner points. (a) Tree cost=13, overlapped length=4
(b) Tree cost=9, overlapped length=0. Solid circle is the source, other circles are
sinks.

minimum total length”, brought by Cohnoon and Randall [5].

2.3 Van Ginneken’s Algorithm

In this section, we will explain the procedure of buffer insertion, which executes

in bottom-up fashion [20]. Consider a RC network in Figure 2.5, each sink has a

specified required time and a load capacitance. Using the Elmore delay model, the

delay from source to sinks can be calculated recursively. A subtree rooted at k is

modeled by a set of tuple (Tk, Lk). The definition of duple (Tk, Lk) is :

1. Tk is the required time when the root is driven by a buffer of zero impedance.

2. Lk is the load of the sub-tree.

Because the solutions of internal nodes are not unique except for the leaves, we

should consider all possible combination of children solutions. For instance, if root k

has two children, m and n, m has two solutions (400,10), (200,8), n has one solution

(300,12). After merging the solutions of m and n , root gets two solutions (300,22)

9

Figure 2.5: (a) The physical routing topology; (b) the RC network of (a).

and (200,20). The formulas for evaluating the solution set of root is listed below:

Tk(ith) = min
all child j

(
Tj − rlLj − 1/2rcl2j

)
(ith)

(2.4)

Lk(ith) =
∑

all child j

(Lj + rlj)(ith) (2.5)

where the subscript ith means the ith possible combination of children solution. The

total solution size of node k after combining all children solutions is

∏
all children

(solution size of the jth child)

We then add the buffer at the node k, the new (Tk, Lk)buf is evaluated by

Tkbuf = Tk −Dbuf −RbufLk (2.6)

Lkbuf = Cbuf (2.7)

10

The whole buffer insertion steps are shown in Figure 2.6. The function “Bottom

up” first check whether root is a leaf node (Line 1-3), if not the function is called

recursively to compute the solution for all children (Line 5-6). Then generate all the

possible solutions after combining children solutions (Line 8-10). Finally, evaluate

the solution when root is driven by a newly added buffer (Line 12-14).

Bottom up(root)
1 if root is leaf
2 root → T = Tsink

3 root → L = Lsink

4 else
5 for each child i
6 bottom up(root → childi)
7 // (Evaluate the root solution according to the children solution)
8 for all possible combination of children solutions
9 root → T(ith) = minall child j

(
Tj − rljLj − 1/2rcl2j

)
(ith)

10 root → L(ith) =
∑

all child j (Lj + clj)(ith)

11 // (Evaluate the root solution after adding buffer)
12 for all solutions after connecting children to root
13 root → Tbuf(ith) =

(
root → T(ith)

)−Dbuf −Rbuf

(
root → L(ith)

)
14 root → Lbuf(ith) = Cbuf

Figure 2.6: Dynamic Programming Algorithm for Buffer Insertion [20].

11

Chapter 3

Buffered Interconnect Tree
Construction with Simultaneous
Topology Generation and Buffer
Insertion

In this chapter, we focus on the buffered interconnect tree construction with simul-

taneous topology generation and buffer insertion. The main drawback of concurrent

approaches in tree construction is that it is time consuming. S. Dechu et al. [9]

presented a stochastic search algorithm to efficiently construct a routing tree with

simultaneous buffer insertion and wire sizing in presence of wire and buffer obsta-

cles. They used simulated annealing algorithm to randomly adjust the buffered

tree. Through the stochastic search algorithm, the solution space for buffered tree

topology are quite large. It raises the probability to achieve the minimum tree de-

lay. Nevertheless, uncertainty is this approach’s shortcoming. We desire to diminish

the uncertainty of the stochastic approach by hierarchal decomposition. This inten-

tion of hierarchy decomposition is similar to the Prim-Dijkstra tradeoff algorithm

as mentioned before [4]: reducing the redundant wirelength.

The hierarchical tree that we build is two level structures. The structure also

was used in [3]. We divide all sinks into several groups. Group is composed of closest

sinks, and assigns the nearest sink to source as the root of group. Then construct the

12

Figure 3.1: Two level routing: clustering all sinks first, and then construct the low-
level buffered tree over each group. The top-level buffered tree is merged with the
low-level buffered trees finally.

low-level buffered tree for each of these groups by the simulated annealing method

[9]. Finally, the top-level buffered tree is merged with the low-level subtrees to yield

a solution for the entire net. In the following section, we introduce the clustering

algorithm, and the simulated annealing algorithm for buffered tree construction.

3.1 Clustering

For clustering sinks, we adopt the K-center heuristic [3] which attempts to mini-

mize the maximum radius (distance to cluster center) over all clusters. K-center

iteratively identifies points that are furthest away; which we called the cluster seed.

The complete description of K-center algorithm is shown in Figure 3.2. Step 1 pick

a random sink s, then identifies the sink ŝ furthest away from s, which will lie on

the periphery of the data set. This step identifies ŝ as the first cluster seed, and all

seeds are contained in the set W. Steps 2-5 iteratively find |W | -way clustering N

until the clusters equal the number we assign. Step 3 identifies the next seed which

13

Figure 3.2: K-Center clustering algorithm over a set of sinks S.

is the furthest away from already identified seeds. Steps 4-5 form a clustering by

assigning each sink to the cluster corresponding to its closest seed. Step 6 returns

the final clustering.

Figure 3.3 illustrates an example of the K-center algorithm applied to a 2-

dimensional data set with 16 points, where k=4. In (a), a random point s is chosen

and then the point ŝ which is furthest from s is identified. In (b), this is relabeled

as w1, a cluster seed. The order that the four seeds identified are indicated by the

subscripts: w2 is furthest from w1, w3 is furthest from both w1 and w2, and w4 is

the furthest point from w1,w2 and w3. In (c), each point is mapped to its closest

seed, revealing four clusters.

3.2 Simulated Annealing Method For Buffered Tree

Construction

The main idea of simulated annealing method is to use a reconfigurable buffered tree

to find the buffered tree with minimal delay. A node of a tree indicates a feasible

14

Figure 3.3: 16 points example illustrating the K-center algorithm.

Figure 3.4: The tree has 7 nodes and 6 edges corresponds to (b) in routing graph.

buffer location on the physical plane, and an edge corresponds to the path with the

minimal delay for its two terminals. Figure 3.4 demonstrates how a tree represents

a real routing. The technique is called Embedding by [10].

3.2.1 Decomposition of Routing Tree

One observation for the routing tree structure is that the tree can be seen as the set

of single component and branch component (Figure 3.5). When a node has two or

more children , we identify the node and its children as a branch component. When

15

Figure 3.5: Routing tree decomposition. A tree is composed of two kinds of compo-
nents: single component and branch component.

a node has only one child, we identify the node and its child as a single component.

3.2.2 Component Construction

To evaluate the delay and wirelength of buffered tree, the delay and wirelength of

each component should be pre-computed. To obtain the optimal delay for each

component, we construct the following tables:

1. Length & Delay Table for Wire Path: Compute the shortest path length

dist(a,b) and the delay delay(a,b) for two nodes, where a and b are the lo-

cations of two nodes. Note that no buffer is placed among the path from a to

b.

2. Length & Delay Table for Segment Wire path: Compute the table for optimal

delay of segment wire path Delay(a,b) and table of the length Length(a,b). We

use the dynamic programming technique to construct the tables.

Then we can find the edge cost in the tables, Length(a,b) and Delay(a,b), to evaluate

the cost of each component.

16

Figure 3.6: Transformation of non-binary tree to binary tree.

3.2.3 Routing Tree Perturbation

We use a binary tree to represent a routing tree. In addition, to overcome the

restriction of binary tree for at most two fanout, the dummy node is defined.

Figure 3.6 shows the transformation while a node has high fanout(greater than 2).

We only permit the dummy node being right children of a node, which can avoid

redundant binary tree. The initial tree is a complete binary tree, and all the leaves

are sinks. To reconfigure the tree, four moves are defined to change the tree topology.

In annealing process, we randomly apply these moves and expect to minimize cost

of the tree by serial moves. The cost function is defined as

Tree cost = α× delay + β× wirelength + γ× number of buffers.

The four moves are described below:

1. Move 1 - Component Driver Position Change: In simulated annealing, we

change the positions of component drivers of single component and branch

component. We randomly select one buffer node among 8 adjacent nodes and

change the position of the component driver to that position.

2. Move 2 - Swapping of Sinks: This is a topology changing move. In this move,

17

Figure 3.7: Rotation operations.

we randomly select two sinks driven by two different parents and swap their

parents.

3. Move 3 - Conversion between Dummy and Real Nodes: We select a buffer

node randomly among the tree and make that node dummy if it is real. On

the other hand, make the node real if it is dummy.

4. Move 4 - Rotation: This is also topology changing move. In this move, we have

two types of rotation, one is left rotation and other is right rotation. Figure

3.7 shows these two operations. Using these operations we can get all binary

trees that can be constructed with the given terminals. When we are making

right or left rotations, if a node is violating the restriction, the only right child

of a parent can be dummy, we change that dummy node to real node and then

make the rotation.

3.3 Summary

In this chapter, we first use the K-center heuristic to cluster all sinks into several

groups. We use the two level hierarchy to save the wirelength and obtain lower load.

Then we apply the fast simulated annealing method to construct routing for each

group. The two level hierarchy use the spirit of divide and conquer, it runs faster

18

than flat simulated annealing method and has less wirelength. However it also has

a disadvantages, it may cause a longer tree radius in some cases.

19

Chapter 4

Buffered Interconnect Tree
Construction via Two-Stage
Optimization

4.1 Performance-Driven Tree Construction

4.1.1 Routing Grid Graph

Before constructing the performance driven tree, we should first build the routing

grid graph. Here we overload two concepts for a graph edge and a “physical” (i.e.,

embedded in the plane) edge, when we speak of “connecting a point a to a point

b”. Implicitly, we assume that one possible physical shortest path exist to connect a

and b. For instance, in Figure 4.1, the graph edge eaÃc corresponds to the physical

path a Ã b Ã c or a Ã d Ã c. The grid graph can represent the environment of

physical plane and contain all connections of each point.

Taking the efficiency into consideration, we only select some points in the plane

to construct the grid graph. We sketch the cross lines on the source and sinks and

draw the lines close to the blockage edges, the intersections of these lines are the

candidates that we select to construct the grid graph (Figure 4.2).

The grid graph contains the following data:

20

Figure 4.1: Embedding example: (a) grid graph corresponds to (b) physical plane.
In (a), the edge cost equals the length of the shortest path of the endpoints.

• Source: Coordinate (x,y), output resistance (unit:ohm).

• Sinks: Coordinate (x,y), required time (unit:ps) and load capacitance (unit:pF).

• Blockages: Blockages type and location (x1, y1, x2, y2), where (x1, y1) is

bottom-left point and (x2, y2) is top-right point. We have two blockage types.

Buffer blockages do not permit allocating buffer. Wire blockages do not permit

allocating buffer and wire.

• Table of the shortest path length: Dist(a, b) is the shortest path length

between a and b. Here, we use the Lee’s algorithm to compute the shortest

path length for each path.

4.1.2 Iterated Dominance Algorithm (IDOM) [1]

This section is the procedure of performance driven tree construction, IDOM. IDOM

constructs a shortest path tree with minimum wire length. The spirit of IDOM is

to remove the overlapping paths in shortest path tree to yield the greatest possible

wirelength savings while still maintaining the shortest path property. We define the

dominance property to judge whether a point is a candidate steiner point where is

potentially good for wirelength minimization.

21

Figure 4.2: Grid graph: The dotted lines are underlying grid lines and the thick
lines are lines for routing. Dark point is the source and gray point are the sinks.
Dark boxes are wire blockages and gray boxes are buffer blockages.

Dominance Property: Given a weighted graph G=(V,E), and nodes n0,p,s

∈ V , we say that p dominates s if minpathG(n0,p)=minpathG(n0,s)+minpathG(s,p)

In other words, a node p dominates a node s if there exists a shortest path from

the source to p that also passes through s. Figure 4.3(a) illustrates the condition of

dominance. When one node is dominated by two or more nodes, we can reduce the

total wire length by changing the topology , for example in Figure 4.3(b). In this

case, the original wirelength equals 19, and the improved wirelength equals 15 (get

21% of wirelength reduction).

The notation, DOM(G,N), represents a tree, where G is the grid graph and

22

Figure 4.3: (a) Illustration of Dominance property and (b) change the tree topology
to minimize wirelength according to the Dominance property.

N is the set of nodes in the tree. Consequently, we define the tree cost saving as

∆DOM(G,N’,s)=cost(DOM(G,N’)-cost(DOM(G,(N’
⋃

t))), where N’ is the union

of source, sinks and the set of Steiner candidate S, t is the new added Steiner

candidate. IDOM starts with connecting sinks to source directly and an empty set

of Steiner candidate. Then, iteratively find the Steiner candidate t ∈ V-(N
⋃

S)

which maximizes ∆DOM(G, N’, t) > 0, and put t into the set of Steiner candidate,

S. The method, IDOM, is formally described in Figure 4.4. We use an example in

Figure 4.5 to demonstrate how the IDOM greedily adds Steiner points to construct

a solution. IDOM can reduce 37.5% of total wirelength from this instance.

4.2 Buffer Insertion

4.2.1 Efficient Buffer Insertion

Recall the method of delay calculation and buffer insertion in Section 2.2, the solu-

tion set of a node is evaluated by combining solution set of children. However, some

of the solutions can be pruned according to the property:

For (T, L) , (T ′, L′) ∈ S , if L′ ≥ L and T ′ < T then (T ′, L′) is suboptimal.

23

The Iterated Dominance (IDOM) Heuristic

Input: A weight graph G=(V,E), a net N ⊆ V
Output: A low-cost arborescence T’=(V’,E’) spanning N,

where N ⊆ V’ ⊆ V and E’ ⊆ E
S=∅
Do Forever

T={t ∈ V-(N
⋃

S)} | ∆ DOM(G,N,S
⋃ {t} > 0})

IF T=∅ Then Return DOM(G,N
⋃

S)
Find t ∈ T with maximum ∆ DOM(G,N,S

⋃ {t})
S=S

⋃ {t}

Figure 4.4: The Iterated Dominance (IDOM) algorithm.

Figure 4.5: Execution example of the IDOM algorithm: (a) Initial DOM solution,
having cost 24; (b) Steiner candidate s1 produces a savings of ∆DOM=8, which
reduces the overall tree cost to 17; (c) Steiner candidate s2 produces a savings of
∆DOM=1, which reduces the overall tree cost to 16; (d) Final solution, the last
Steiner candidate reduces the tree cost to 15.

24

Algorithm Merge Solution()

S = ∅
For i = 1 . . . n, n is the number of children

Ptr(i) = children(i)· front
Do Forever Until one of Ptr is null

Temp = Merge ALL Ptr()
S = S

⋃
Temp

Find the critical Ptr(i), and then Ptr(i) = Ptr(i)·next

Figure 4.6: Algorithm for merging the children solution sets at branch.

It is clear that a larger load could only worsen delay of ancestor components. In

other words, we always prefer smaller load and larger required time. Supposing the

sets are arranged in increasing order of load will lead the following property:

Any load required time set S in increasing order of load may be replaced by

S ′ ⊆ S where S ′ is strictly increasing in required time.

For maintaining the above property, we use the linked list to store the solution.

At the branch point, we can efficiently prune the redundant solutions by a merge

technique. The merging procedure is shown in Figure 4.6. At each step we merge the

solutions selected in different solution list. Then we replace the critical one among

the selected solutions with the next solution. The merging process is illustrated in

Fig 4.7. Having the pruning rule, we should modify the algorithm in Section 2.2.

The complete algorithm is listed in Figure 4.8.

4.2.2 Buffered Tree Transformation

Due to the recursion of buffer insertion algorithm, it runs from the leaves to the

root. The tree structure we construct will produce the following condition: sink

25

Figure 4.7: Example of merge operation. The two columns on the left are the
solution sets being merged; pairs of solution combined are surrounded by circle.
The resulting set of solutions appears on the right.

Algorithm Bottom Up(root)

if root is leaf
evaluate the sink solution

else
for i = 1 . . ., n is the number of children

Bottom Up(children(i))
if root is not branch

evaluate the sorted solution for root
else

evaluate all sorted solution of children
Merge Solution()

evaluate the optimal buffer solution

Figure 4.8: Dynamic Programming Algorithm for Buffer Insertion With Pruning
[15, 20].

26

nodes may be the parents of other nodes. To easily execute the buffer insertion

algorithm, we do not permit the sinks having any children. We slightly change the

tree structure, and force all sinks to the leaves of the tree by additional pseudo

nodes. An example is illustrated in Fig 4.9. In this example, the sink, t1, has one

child s1. We then generate a pseudo node, s2, at the same position with t1. We

complete the transformation by producing the edges, es2!s1, es2!t1 and eroot!s2 ,

and breaking the edges, eroot!t1 and et1!s2.

Next, we consider the different conditions of buffer connection at the branch point

and further change the tree topology to handle all possible conditions. In Figure 4.10,

(a) is the topology we considered, it might have buffer conditions, (b), (c), (d), (e),

(f), (g) and (h). Since the optimal solution can be computed by the buffer insertion

algorithm, we can transform the tree with the same technique to the final structure

as (i). Through this simple transform action, we can obtain the solutions better

than the solutions without considering the different buffer connection at branch

point. This is because now we can take all possible conditions of buffer connection

into account, not only (b) and (c). We called this transform action as “decouple

function” in our platform.

Figure 4.9: Illustration of tree transformation.

27

Figure 4.10: (a) Consider all buffer combinations at candidate point C. (b) Buffer
is not inserted at C. (c) One buffer at C drives t1 and t2. (d) One buffer at C
drives only t1. (e) One buffer at C drives only t2. (f) Two buffers at C drive t1 and
t2 respectively. (g)&(h) Two buffers are inserted at C, and one buffer decouple t1
or t2. (i) Candidate point C transform to three pseudo point to handle all buffer
combinations.

28

4.3 Summary

The entire flow of our two-stage buffered tree construction algorithm follows these

steps:

1. Construct the grid graph

2. Construct the performance-driven routing tree based on IDOM algorithm.

3. Transform the tree structure (option: consideration for all possible conditions

of buffer connection at branch point).

4. Execute the buffer insertion algorithm for the tree.

29

Chapter 5

Experimental Results

We have implemented two approaches for buffered interconnect tree construction in

C++ and tested it on Pentium 4 PC 2.4GHz with 512MB memory, one is two-level

hierarchical simulated annealing algorithm and the other is two-stage buffered tree

algorithm. To show the effectiveness of our approaches, we compare the results

with the fast flat simulated annealing algorithm [9]. We use the same technology

parameters given in [19], as shown in Table 5.1. Our chip size is 17 × 17 mm2 with

horizontal and vertical grid lines spaced at 0.5mm distance from each other.

Table 5.1: Technology Parameters.

Wire Capacitance 0.108(pF/µm)
Wire Resistance 0.076 (Ω/µm)

Buffer Output Resistance 180 (Ω)
Buffer Input Capacitance 0.024 (pF)

Buffer Intrinsic Delay 36.4 (ps)

Table 5.2 and 5.3 show the comparison between these four methods. In Table

5.2 and 5.3 , we use a single buffer type and two buffer types respectively. We now

examine the efficiency and performance of these algorithms. For execution time, the

simulated annealing algorithm has long execution time, but the two-stage algorithm

remains the same execution time. This is because the run time of performance

30

Table 5.2: Performance comparison (Buffer Types = 1, Blockages = 11) between
the approaches in [9] and our approaches. Our two-stage approach has better delay
and wirelength in comparison with SA algorithm.

DATA Flat Two-Level Two-Stage Two-Stage
SA SA (Decouple Off) (Decouple On)

name delay WL buf CPU delay WL buf CPU delay WL buf CPU delay WL buf CPU

(ps) (mm) (sec) (ps) (mm) (sec) (ps) (mm) (sec) (ps) (mm) (sec)

NET8 1292 77 20 5.88 1284 73 18 5.05 1309 65 20 0.64 1249 65 21 0.64

NET11 976 78.5 21 8.0 955 74.5 15 4.5 892 66.5 20 0.73 859 66.5 22 0.73

NET18 1239 124 29 8.86 1059 99 21 5.67 1118 94.5 30 1.15 1035 94.5 34 1.15

NET23 1319 141 35 10.23 1100 106 25 6.69 1037 96 32 1.54 992 96 35 1.54

NET25 1084 154 45 11.86 1182 117.5 26 7.5 1055 97.5 33 1.7 999 97.5 37 1.7

driven interconnect tree construction is fixed and the run time of buffer insertion

algorithm is very fast. However the simulated annealing algorithm spends long time

on lookup table construction and also needs time to search the optimal buffered tree,

hence it will use more time when using multiple buffer types. For performance, our

two-stage algorithm has better performance in our most experimental cases. The

main reason is the performance-driven tree has lower load and tree radius, and the

performance is naturally better than the results of simulated annealing algorithm.

In addition, if we turn on the decouple function of the two-stage algorithm, we can

get more delay reduction. Figure 5.1 and 5.2 are examples for “decouple off” and

“decouple on” respectively.

We further discuss these two proposed algorithm in details. The two-level hierar-

chical buffered tree construction is based on simulated annealing algorithm [9]. The

simulated annealing algorithm mainly emphasizes that the execution time is less

than previous simultaneous approaches [16, 11]. However, we find this approach has

a major drawback. Its solution is very uncertain especially when terminal number

of net is large. When terminal number of net is large, the wirelength of buffered

tree constructed by simulated annealing algorithm appears very long. We believe

31

Table 5.3: Buffer Types = 2, Blockages = 11. The 2nd buffer’s parameters: output
resistance=90(Ω), input capacitance= 0.048(pF), intrinsic delay=36.4(ps).

DATA Flat Two-Level Two-Stage Two-Stage
SA SA (Decouple Off) (Decouple On)

name delay WL buf CPU delay WL buf CPU delay WL buf CPU delay WL buf CPU

(ps) (mm) (sec) (ps) (mm) (sec) (ps) (mm) (sec) (ps) (mm) (sec)

NET8 1180 76 23 53.73 1196 74 19 41.94 1085 65 20 0.64 1049 65 23 0.64

NET11 837 80.5 24 61.98 796 74.5 17 42.86 753 66.5 22 0.73 728 66.5 25 0.73

NET18 1104 141.5 36 100 927 104 19 47.95 924 94.5 34 1.15 875 94.5 36 1.15

NET23 1135 173.5 58 127.42 926 114 24 56.08 870 96 32 1.54 838 96 34 1.54

NET25 994 195 55 198 1018 131.5 28 55.31 880 97.5 35 1.7 841 97.5 36 1.7

the longer wirelength is the reason why it has bad performance and use a lot of

buffers. To improve this disadvantage, we try to use two-level hierarchical method

to minimize the wirelength. From our experimental results, the two-level hierarchi-

cal method has better wirelength and use less buffers. However it has a little bad

delay for some cases, we think the result may be caused by the longer tree radius.

To improve the disadvantages of the above algorithms, we propose the method of

two-stage buffered tree construction. We believe performance-driven tree construc-

tion and buffer insertion can be done independently. We do not need to consider

both of them at the same time. If we can construct a interconnect tree which is po-

tentially good for delay and insert buffers for it, we can get a good enough solution.

From our experimental results, our two-stage algorithm has better performance than

the simultaneous approaches and use less buffer resources and wire resources. The

two-stage algorithm is also more efficient than simulated annealing algorithms.

32

Figure 5.1: The decouple function of Two-Stage-Method turn off. Delay = 1309
(ps), wirelength = 65 (mm), # of buffer = 20.

Figure 5.2: The decouple function of Two-Stage-Method turn on. Delay = 1249
(ps), wirelength = 65 (mm), # of buffer = 21.

33

Chapter 6

Conclusion and Future Work

Since the interconnect delay becomes more important, we should take it into consid-

eration during chip design. The buffer insertion algorithm can minimize the delay

of fixed tree. However, the solution may be limited by the input tree. [9] proposed a

fast simulated annealing algorithm which simultaneously constructs the routing tree

and performs buffer insertion. But this algorithm suffers from the problem of un-

certainty when the terminal number of net is large. We try to solve this problem by

clustering. We get wirelength reduction and use less buffer resources. But in some

cases, the clustering algorithm may cause worse delay due to longer tree radius.

We believe that the routing tree construction and buffer insertion can be inde-

pendently performed. We propose the two stage algorithm to efficiently construct

the buffered tree. First we construct a performance-driven interconnect tree, then

apply the buffer insertion algorithm to minimize delay. From the experimental re-

sults, our algorithm is more efficient than [9] and can obtain better delay. We draw

the conclusion that the two-stage algorithm can use less run time and get better

performance than the simultaneous approach by decoupling technique.

In future works, we plan to further improve our two-stage algorithm by wire siz-

ing. We can also find another approach to synthesizing a better performance-driven

tree.

34

Acknowledgment: We thank Dr. Xiaoping Tang and Prof. Chris C. N. Chu

for providing their platforms in experimental results comparison.

35

Bibliography

[1] M. J. Alexander and G. Robins. “New Performance-driven FPGA Routing

Algorithms”. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 15(12):1505–1517, Dec. 1996.

[2] C. J. Alpert, A. Devgan, and S.T. Quay. “Buffer Insertion with Adaptive Block-

age Avoidance”. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 18(11):1633–1645, Nov. 1999.

[3] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A. B. Kahng, B. Liu J. Lillis, S. T.

Quay, S. S. Sapatnekar, and A. J. Sullivan. “Buffered Steiner Trees for Difficult

Instances”. In Proceedings International Symposium on Physical Design, pages

4–9, 2001.

[4] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger. “Prim-

Dijkstra Tradeoffs for Improved Performance-driven Routing Tree Design”.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 14(7):890–896, July 1995.

[5] J. P. Cohoon and L. J. Randall. “Critical Net Routing”. In Proceedings IEEE

International Conference on Computer Design, pages 174–177, 1991.

[6] J. Cong. “Challenges and Opportunities for Design Innovations in Nanometer

Technologies”. In Semiconductor Research Corporation Design Sciences Con-

cept Paper, pages 1–15, 1998.

36

[7] J. Cong, A. B. Kahng, and K.-S. Leung. “Efficient Algorithms for The Mini-

mum Shortest Path Steiner Arborescence Problem with Applications to VLSI

Physical Designs”. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 17(1):24–39, Jan. 1998.

[8] J. Cong and X. Yuan. “Routing Tree Construction Under Fixed Buffer Lo-

cations”. In Proceedings IEEE/ACM Design Automation Conference, pages

379–384, 2000.

[9] S. Dechu, C. Shen, and C. Chu. “An Efficient Routing Tree Construction Algo-

rithm with Buffer Insertion, Wire Sizing and Obstacle Considerations”. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

24(4):600–608, April 2005.

[10] M. Hrkic and J. Lillis. “S-Tree: A Technique for Buffered Routing Tree Syn-

thesis”. In Proceedings IEEE/ACM Design Automation Conference, pages 578–

583, 2002.

[11] M. Hrkic and J. Lillis. “Buffer Tree Synthesis with Consideration of Tempo-

ral Locality, Sink Polarity Reuirements, Solution Cost and Blockages”. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

22(4):481–491, April 2003.

[12] F. K. Hwang, D. S. Richards, and P. Winter. “The Steiner Tree Problem”.

North-Holland Publisher, 1992.

[13] S. S. Sapatnekar J. Hu. “Algorithms for Non-Hanan-Based Optimization for

VLSI Interconnect under a Higher-Order AWE Model”. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 49(4):446–458,

April 2000.

37

[14] M.-H. Lai and D.F. Wong. “Maze Routing with Buffer Insertion and Wiresiz-

ing”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 21(10):1205–1209, Oct. 2002.

[15] J. Lillis, C.-K. Cheng, and T.-T. Lin. “Optimal Wire Sizing and Buffer In-

sertion for Low Power and a Generalized Delay Model”. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 31(3):437–447,

March 1996.

[16] J. Lillis, C.-K. Cheng, T.-T Lin, and C.-Y. Ho. “New Performance Driven

Routing Techniques with Explicit Area/Delay Tradeoff and Simultaneous Wire

Sizing”. In Proceedings IEEE/ACM Design Automation Conference, pages 395–

400, 1996.

[17] T. Okamoto and J. Cong. “Buffered Steiner Tree Construction with Wire

Sizing for Interconnect Layout Optimization”. In Proceedings IEEE/ACM In-

ternational Conference on Computer-Aided Design, pages 44–49, 1996.

[18] R. R. Rao, D. Blaauw, D. Sylvester, C. J. Alpert, and S. Nassif. “An Effi-

cient Surface-Based Low-Power Buffer Insertion Algorithm”. In Proceedings

International Symposium on Physical Design, pages 86–93, 2005.

[19] X. Tang, R. Tian, H. Xiang, and D. F. Wong. “A New Algorithm for Routing

Tree Construction with Buffer Insertion and Wire Sizing under Obstacle Con-

straints”. In Proceedings IEEE/ACM International Conference on Computer-

Aided Design, pages 49–56, 2001.

[20] L. P. P. P. van Ginneken. “Buffer Placement in Distributed RC-tree Network

for Minimal Elmore Delay”. In Proceedings Internationl Symposium on Circuits

and Systems, pages 865–868, 1990.

38

[21] H. Zhou, D.F. Wong, I.-M. Liu, and A. Aziz. “Simultaneous Routing and

Buffer Insertion with Restrictions on Buffer Locations”. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 19(7):819–824,

July 2000.

39

作者簡歷

 游宗達，民國七十年九月出生於花蓮縣。民國九十二年六月畢業於國立交通

大學電子工程學系，並於同年九月進入國立交通大學電子研究所就讀，從事 VLSI
實體設計方面相關研究。民國九十四年六月取得碩士學位，碩士論文題目為『考

慮障礙物繞線及緩衝器插入之方法研究』。

