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摘要 

 

H.264/AVC 是最新一代的視訊壓縮標準，比起 MPEG-2，H.261 及 H.263，H.264

提供了更高的壓縮效能，在相同的壓縮比率下提供更好的影像品質。在本論文中，我

們實作了一個 H.264 的硬體影像解碼器。我們運用各樣的技術及架構，來提高單位時

間資料流通量以及降低功率的消耗，以期達到未來不論在數位電視、無線傳輸等方面

的影像解碼需求。此外，因為多標準解碼器已成為設計潮流，我們把目前最流行且運

用在 DVD 的影像標準規格—MPEG-2 也納入我們的設計範圍。我們期望運用硬體共

用的技巧，在不花費太多額外的硬體架構下，用現有的硬體單來實現 MPEG-2 的硬體

解碼功能。 

從系統設計的角度，在這篇論文我們首先提出了一個雙標準的影像解碼區塊圖，

說明我們共用了那些硬體單元，及主要資料的流動路徑。我們採用了複合式 4 乘 4 區

塊管線化系統架構來減少區間暫存器的使用量並加速系統的單位時間資料流通量。我

們提出的有效率解碼順序也能減少在移動補償及空間預測模組之記憶體存取次數。在

解碼的資料流動路徑中，剩餘像素及預測像素值的相加處發生的資料同步問題我們並

i 



 

提出了一個可變長度先進先出緩充暫存器的解決方案。我們也提出了一個利用 CBP 參

數來節省功率的方法。 

在模組架構設計方面，我們也針對此解碼器的各模組做了介紹。在資料流分析單

元，我們採用階層化的設計方式，不但架構簡單易於設計，也可以有效降低功率消耗。

暫存器共用的技巧也被應用於資料流分析單元，而達到共用暫存器的目的。在空間預

測模組的設計中，我們提出了三種並行的暫存器架構以幫助空間預測的運算，記憶體

存取次數也可以因此減少到最低。其餘模組的設計也包含在這個論文中，許多的技巧

也被應用在節省記憶體存取次數及加快單位時間資料流通率。 

最後本論文利用UMC 0.18um 1P6M製程技術實作了這顆H.264/MPEG-2 雙模式影

像解碼晶片。根據合成與佈局繞線結果，這顆晶片的大小為 3.9×3.9mm2，總邏輯閘數

為 491K，最大操作頻率可達 83.3MHz。支援即時播放 720pHD的H.264 影像串流於

56MHz，720pHD的MPEG-2 影像串流於 35.7MHz在每秒 30 張的規格下。 
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ABSTRACT 
 

H.264/AVC is the newest video coding standard. Compared with MPEG-2, H.261, and 

H.263, H.264 provides better coding efficiency, which means that it provides better image 

quality at the same coding rate. In this thesis, we implemented an H.264 video decoder. We 

adopted various techniques and architectures to accelerate the decoding throughput and the 

reduction on power consumption, to achieve the demands on future digital TV and wireless 

communication. Besides, because the multi-mode video decoder is a design trend, the video 

coding standard – MPEG-2 which has been widely used for DVD video standard is included 

in our design. We expect to use some hardware-sharing techniques to implement the 

MPEG-2 video decoder in the situation that only a few additional hardware modules are 

required. 

From the system point of view, in this thesis we first proposed a block diagram for dual 

mode video decoder, to illustrate the functional blocks we used, and the data path of our 

work. The efficient decoding ordering we proposed can reduces the memory access times 
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on motion compensation and intra prediction modules. In the decoding loop, the 

synchronization problem occurs at the adder that adds the residual pixel values with the 

predicted pixel values. We proposed a variable-length FIFO architecture for the solution to 

this synchronization problem. We also proposed a way to save power by exploiting the 

system parameter “coded-block-pattern”. 

In the architecture design, we give descriptions on all the important modules of this 

decoder. We adopt a hierarchical structure for the syntax parser design. Hierarchical 

structure make the parser easy design, the clock-gating power reduction technique can also 

be effectively applied to save power in this structure. The register sharing technique is also 

applied in the syntax parser unit in order to reduce the amount of register required. In intra 

predictor design, we proposed three kinds of buffers to reduce the design complexity on 

intra predictor. The memory access times can be reduced to minimum for the help of these 3 

buffers. Besides, other important modules like motion compensation, de-blocking filters are 

also included in this thesis. Many techniques are also applied to save memory access times 

and to increase the throughput in these modules. 

At last we implemented this dual mode H.264/MPEG-2 video decoder in UMC 0.18um 

1P6M process. According to the implementation result, the size of his chip is 3.7×3.7 mm2, 

total gate count is 491K, and the maximum working frequency is 83.3MHz. This chip 

supports real time decoding 720pHD H.264 video sequence in 56MHz, 720pHD MPEG-2 

video sequence in 35.7MHz in 30fps. 
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Chapter 1  
Introduction 
 

1.1 Motivation 
H.264 is the new video coding standard developed by MPEG (Moving Picture Experts 

Group) and VCEG (Video Coding Experts Group) that promises to outperform the earlier 

MPEG-4 and H.263 standard, providing better compression of video images. Because of its 

high coding efficiency, it has great potential to be the video standard of the next generation. 

For content storage, like HD-DVD and Blu-Ray in the next generation (both use 450 nm 

Blue-Laser diode), standardized the H.264 with MPEG-2 and WMV-9 with its digital 

content. The video content storage for Sony PS3, which will be phased in in 2006, adopts 

H.264 as its video compression standard as well. For digital broadcasting, like DVB-H of 

handheld digital TV standardized by ETSI, combined the wireless communication 

standard – COFDM with the newest video coding standard – H.264, trying to migrate the 

digital video technology to portable. Another digital broadcasting standard for Set-Top-Box 

like DVB-S2 also exploits the Forward-Error-Correction (FEC) technology (LDPC used) 

with the H.264. 

The H.264 seems so popular and with high potential to be the video coding standard of 

so many applications in the next generation, the demand of the decoder for H.264 is obvious. 

However, the penalty for its high coding efficiency is the large amount of computation. 

From our survey on some technical papers, it seems that the efficiency of the 
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platform-based approach is not that enough to achieve the required throughput of decoder. 

Thus we try to design a dedicated decoder which suits for the digital TV applications. 

Multimode decoder is the trend, and we can see this trend everywhere. For example, 

we can easily find a DVD player which supports decoding VCD, MP3, or even JPG images. 

To design a multimode decoder is then become important for the decoder designs. Thus in 

our design of H.264 decoder, we try to design our decoder multimode. We choose MPEG-2 

because that MPEG-2 is the video standard of DVD, has been widely used today. The 

hardware sharing issue, and many multimode functional block has become great issues in 

our decoder design. 

 

1.2 MPEG-2 Standard Overview 
MPEG-2 is mainly divided into 3 parts, the MPEG system, MPEG video, and MPEG 

audio. In this thesis only MPEG video is concerned. 

1.2.1 Profiles and Levels 

MPEG-2 video is an extension of MPEG-1 video. MPEG-1 is targeted at video with 

bit-rate up to about 1.5 Mbits/s. Compared with MPEG-1, MPEG-2 provides some extra 

coding tools that it can support bit rates of various range. Scalable coding is also included in 

the MPEG-2 standard. There are total 5 profiles in the MPEG-2 standard, which are Simple, 

Main, SNR, Spatial, and High profiles. Above these profiles, the Main profile is the most 

widely used profile. It supports I, P, and B pictures, uses 4:2:0 chroma sampling format, but 

is non-scalable. Main profile is subdivided into 4 levels, which are low, Main, High-1440, 

and High levels. The picture sizes, frame rate, and bit rate constraints for different levels are 

summarized in Table 1.1. 
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Table 1.1: MPEG-2 levels: Picture size, frame-rate and bit rate constraints 

Level Max. frame size Max frame rate Max bit rate 

Low 352 x 288 30 4 

Main 720 x 576 30 15 

High-1440 1440 x 1152 60 60 

High 1920 x 1152 60 80 

 

1.2.2 Picture types 

MPEG-2 contains 3 picture types, the I-picture, P-picture, and B-picture. 

Intra picture (I-picture) is the picture that coded without reference to other pictures. It 

uses the reduction of spatial redundancy to achieve compression. Because that I-picture can 

be decoded independently without referencing to other pictures, I-pictures can be used as 

the access points in the bit-stream where the decoder can start to decode. 

Predictive picture (P-picture) is the picture that coded by motion vectors referencing to 

previous I or P-pictures and residuals. It uses the reduction of temporal redundancy to 

achieve compression. Besides P macroblock blocks in the P-pictures, I macroblock can also 

exist in the P-pictures. Thus the spatial redundancy can also be reduced to achieve 

compression in the P-picture. P-pictures offer increased compression compared to 

I-pictures. 

Bidirectionally-predictive picture (B-picture) is similar to P-picture. Different from 

P-pictures, the reference frames can be either the previous picture, next picture, or both. It 

offers highest degree of compression. 
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1.2.3 Encoder/Decoder Block Diagram 

The encoding process of MPEG-2 video contains the motion estimation and residual 

coding. Fig. 1.1 shows the simple block diagram of the MPEG-2 encoder. An embedded 

decoder inside the encoder calculates the result of the motion compensation so that the 

residual can be calculated by subtracting the input image with the motion compensated 

image. A Discrete-Cosine-Transform transfers the residual values to frequency-related 

domain. By quantizing the transferred coefficients, a Huffman run-length coder is 

responsible for coding the quantized coefficients and then outputting. 
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Video - DCT Quantizer
Run-Length 

Coder
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Quantizer
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+Frame 
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Motion 
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Motion 
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Embedded 
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Fig.1.1 A simple block diagram of MPEG-2 video encoder 

 

Fig. 1.2 shows the simple block diagram of an MPEG-2 video decoder. A parser with 

Huffman run-length decoder decodes the motion vectors and quantized residual values. 

After inverse quantization and inverse DCT transform, the decoder calculates the residual 

values. By adding the motion compensated pixel values, the decoder can recover the 

original picture. At the time when the decoder output the decoded image, a copy of the 

picture must be stored into the frame buffers for the motion compensation process on next 

picture. The detailed decoding process will be described in section 2.1. 
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Fig.1.2 A simple block diagram of MPEG-2 video decoder 

 

1.2.4 Bit-stream structure 

Each picture is divided into several slices. Each slice is divided into several 

macroblocks. Each macroblock is further divided into blocks. A block is a group of 8x8 

pixels, the smallest processing unit of the MPEG-2 system. Fig. 1.3 shows the hierarchical 

bit-stream structure of MPEG-2. 
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Fig.1.3 Hierarchical bit-stream structure of MPEG-2 video 

 

1.3 H.264/AVC Standard Overview 
H.264/AVC is a standard only for videos. Its extreme low data rate is achieved by 

several complex techniques and algorithms such as up to 1/4 resolution for luma and 1/8 for 

chroma on motion vector, several block size from 4x4 to 16x16, several modes in inter/intra 

prediction, CAVLC, or CABAC in context-adaptive entropy coding. 
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1.3.1 Profiles and Levels 

H.264/AVC contains 3 profiles, which are baseline, main, and extended profiles. A new 

profile named “high profile (Fidelity Range Extensions (FRExt))” will be included as well 

and is currently standardized. As Fig. 1.4 shows, I-slice, P-slice and CAVLC are the basic 

parts of the H.264/AVC system. CABAC and interlace is supported in main profile, and 

some extra slice like SP and SI slices, and data partitioning is supported in extended profile. 
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Fig.1.4 H.264 baseline, main, and extended profile 

 

Much more than MPEG-2 levels can be found in the H.264 standard. From level 1 to 

level 5.1, max frame size ranging from 99 to 36,864 macroblocks, max video bit rate 

ranging from 64k to 240,000k bits/s, and motion vector ranging from +/-64 to +/-512 

samples. 
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1.3.2 Encoder/Decoder Block Diagram 

The encoding process for H.264/AVC video is more complex than the encoding 

process of the MPEG-2 video. Fig. 1.5 shows the simple block diagram of the H.264/AVC 

encoder. Same as MPEG-2 encoder, an embedded decoder exists inside the encoder that 

calculates the result of the motion compensation and intra prediction at the decoder side. 

With this embedded decoder, the encoder can foresee the decoded result and precisely 

calculate the residual pixel values without mismatch to the decoder. Besides inter prediction 

(motion compensation), intra prediction is also an important parts that tries to reduce the 

spatial redundancy to increase coding efficiency. Several intra prediction modes can be used 

for the intra predictor, and the prediction mode is decided by a mode decision block at the 

proceedings of the intra predictor. Not only intra prediction, the choices of the motion 

compensator are a lot as well. Various block sizes, multiple reference frames, short/long 

term prediction, and the motion vectors are all decided by motion estimation block. With 

these 2 strong prediction paths, the residual pixels values calculating from subtracting the 

input video with the prediction pixel values is closer to zero. After DCT transformation, 

quantization process, the entropy decoder at last reduces the coding redundancy effectively 

and then outputs the coded pictures. 
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Fig.1.5 A simple block diagram of H.264/AVC video encoder 
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Compared with the encoder, the decoder is simpler because it lacks the decision parts 

like motion estimator and the intra mode decision parts. Fig. 1.6 shows a simple block 

diagram of the H.264/AVC video decoder. After entropy decoding the input bit-stream, the 

inverse quantization process and IDCT transformation transferred the bit-stream data into 

residual pixel values. By adding the predicted pixel values from intra predictor or motion 

compensator, an in-loop filter smoothed the blocking effects and then to both the output 

buffer and frame buffer for future reference. The details of the decoding process will be 

described in section 2.2. 
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Fig.1.6 A simple block diagram of H.264/AVC video decoder 

 

1.3.3 Bit-stream structure 

Same as MPEG-2 bit-stream structure, the H.264 bit-stream is structured hierarchically, 

from block-level to video sequence level. Different from MPEG-2 which is the 8x8-block 

based system, the smallest block size in H.264/AVC system is the group of 4x4 pixels. 

Reference to the annex B in the H.264 standard [7], as Fig. 1.7 shows, data are all packed 

into NAL units. An NAL syntax element is attached in the front of each NAL unit. Each 

NAL unit contains an NAL unit header, which indicates the NAL unit type of the following 

data in this NAL unit, and the type of the RBSP (Raw Byte Sequence Payload) it contains. 

There’re several types of RBSP. For example, the SPS (sequence parameter set), PPS 
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(picture parameter set), and Slice layer RBSP. Slice layer RBSP includes slice header, slice 

data, and sometimes slice ID or redundant picture count of the partitioned slice layer. Slice 

data is composed of macroblocks, each consists of prediction modes (in intra macroblock) 

or sub-macroblock type, motion vectors (in inter macroblock) and the 4x4 block based 

residual data, which contributes the size of the H.264 bit-stream the most. 
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Fig. 1.7 Hierarchical structure of H.264 video bit-stream 

 

1.4 Thesis Organization 
This thesis is organized as follows. At first, the overview of the MPEG-2 and 

H.264/AVC decoding flow is described in Chapter 2. Chapter 3 gives the system level 

design consideration and some system-level schemes in this work, like pipeline architecture, 

decoding ordering, system synchronization, low power mode exploration, and low power 

design between modules. Then, details of the architecture designs of each functional block 

are described in Chapter 4. Finally, the implementation details, conclusion and summary are 

presented in Chapter 5 and Chapter 6, respectively. 
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Chapter 2  
Overview of MPEG-2 and H.264/AVC 
Decoding Flow 
 

The overviews of MPEG-2 decoding flow and H.264/AVC decoding flow will be given 

in this chapter. Though there exists some differences between the decoding flow of 

MPEG-2 and H.264/AVC, similarities like inverse discrete cosine transform, inverse 

quantization, or motion compensation can still be found. In the system point of view, to 

make good use of every functional block suits for both systems is an important issue and 

good innovation of designing a multimode video decoder. 

 

2.1 Overview of MPEG-2 Decoding Flow 
The decoding process is strictly defined in the standard. With the exception of the 

Inverse Discrete Cosine Transform (IDCT) the decoding process is defined such that all 

decoders shall produce numerically identical results. As Fig. 1.2 shows, the decoding 

process mainly includes variable length decoding, inverse scanning process, inverse 

quantization, inverse DCT, and motion compensation. 

2.1.1 Variable length decoding 

The DC coefficients are separated from other coefficients. For DC coefficients, a 

predictor is used for the prediction of the DC coefficients. The predictor shall be reset to a 

certain value at the start of a slice, a non-intra macroblock is decoded, or a macroblock is 

skipped. The differential value (dc_dct_differential) is coded in the bit-stream. Thus the 
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decoder can calculate the DC coefficients (QFS[0]) by 
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Where dc_dct_pred are the values of the 3 predictors, Y(cc=0), Cb(cc=1), and 

Cr(cc=2). The dct_diff is the transformed value from dc_dct_differential. 

For other coefficients, by table lookup of two VLC tables the values of “run” and 

“level” can be decoded. Then the coefficients in a macroblock can be recovered by 

run-length decoding process as the follows. 
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2.1.2 Inverse scanning process 

After total 64 coefficients are decoded by the Huffman run-length VLC decoder 

described above, the inverse scanning process inverse scanned these coefficients to a single 

8x8 block. 2 scan patterns determined by parameter “alternate_scan” can be used. Fig. 2.1 

shows these 2 scan patterns. 
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0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

0 4 6 20 22 36 38 52

1 5 7 21 23 37 39 53

2 8 19 24 34 40 50 54

3 9 18 25 35 41 51 55

10 17 26 30 42 46 56 60

11 16 27 31 43 47 57 61

12 15 28 32 44 48 58 62

13 14 29 33 45 49 59 63

(a) (b)  

Fig. 2.1 Inverse scan pattern (a)alternate_scan=0 (b)alternate_scan=1 

 

2.1.3 Inverse quantization 

As Fig. 2.2 shows, the inverse quantization process can be divided into 3 parts, the 

arithmetic, saturation, and mismatch control parts. In the arithmetic part, DC coefficient is 

separated from all the other coefficients. The parameter “intra_dc_precision” indicates the 

multiplication factor for DC coefficients, ranging from 1 to 8. For other coefficients, a 

weighting matrices W[w][v][u] and the Quant_scale_code determines the multiplication 

factor. W[w][v][u] can be either encoder-defined values or default values. The 

Quant_scale_code can be got by table lookup with the help of parameter 

“quantiser_scale_code” and “q_scale_type” in the bit-stream. 

In the saturation part, the scaled coefficients F’’[v][u] are saturated to F’[v][u] which 

lie in the range of [-2048:+2048]. In mismatch control, a correction is made to just one 

coefficient, F[7][7], adding or subtracting by one. 
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Fig. 2.2 Inverse quantization process 

 

In summary the inverse quantization process is any process numerically equivalent to 
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2.1.4 Inverse Discrete-Cosine-Transform (IDCT) 

The formula of Inverse Discrete-Cosine-Transform is as follows: 
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These transformed values shall be saturated to [-256:+255]. 
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2.1.5 Motion compensation 

As Fig. 2.3 shows, the motion compensation process includes many parts. From the 

bit-stream, parameters like “f_code”, “motion_code”, and “motion_residual” can be 

extracted. With these parameters from bit-stream, a vector decoding module with the vector 

predictors (PMV[r][s][t]) decodes the motion vector vector’[r][s][t] by the following 

process. 
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By scaling with a certain scaling factors, vector[r][s][t] are then sending to the address 

generator of frame buffers. The pixel values read from the frame buffers are then feed 

through a half-pel prediction filter. At the final stage, the decoded pixels is calculated by 

adding the combined predictions p[y][x] with the residual values f[y][x]. Saturation process 

is needed to clamp the result. 

 

16 



 

Prediction
Field/Frame

Selection

Frame Buffer 
Addressing

Frame 
Buffers

Additional 
Dual-Prime 

Arithmetic

Scaling for 
Color 

Components

Half-pel 
Prediction 

Filtering

Combine 

Predictions

Vector 

Decoding

+ Saturation

From
Bit-stream

Decoded

Pixelsf[y][x]

p[y][x]

Half-Pel
Info.

vector[r][s][t]

vector'[r][s][t]

Vector

Predictors d[y][x]

 

Fig. 2.3 Motion compensation process 

 

2.2 Overview of H.264/AVC Decoding Flow 
The H.264/AVC decoding flow is strictly specified in the standard such that all 

decoders shall produce numerically identical results. As Fig. 1.6 shows, the decoding 

process contains entropy decoding, reordering, inverse quantization, inverse integer discrete 

cosine transform, intra prediction, motion compensation, and loopfilter. In this thesis we 

consider the decoding process of baseline profile. 

2.2.1 Entropy decoding 

The H.264 bit-stream mainly contains 2 types of contents, the parameters and the 

coefficients. The parameters are mainly coded by Exp-Golomb code, which is a Universal 

Variable Length Code (UVLC). And the coefficients of residuals are coded by 

Context-based Adaptive Variable Length Code (CAVLC). 

The entropy decoding process for Exp-Golomb code is as follows 

leadingZeroBits=-1; 

for(b=0;!b;leadingZeroBits++) 

b=read_bits(1); 
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code value=2leadingZeroBits-1+read_bits(leadingZeroBits); 

The entropy decoding process for CAVLC is much more complicated than the 

decoding process of Exp-Golomb code. Many different tables are used for decoding the 

parameters like “TrailingOnes”, “TotalCoeff”, “level_prefix”, “total_zeros”, and 

“run_before”. For some coefficients like “TrailingOnes” and “TotalCoeff”, more than one 

table are used for decoding. And the so-called “Context-based Adaptive” VLC is because 

that the CAVLC decoder has to choose the correct table to decode a certain parameter 

according to the number of coefficients in neighboring block (left and upper 4x4 blocks). 

By decoding the intermediate parameters like “trailing_ones_sign_flag”, “level_prefix”, 

“level_suffix”, “total_zeros”, and “run_before”, the run and level of this run-level code can 

be calculated by the procedure defined in the standard. Then a run-level code decoder is 

used to recover the 16 coefficients in that 4x4 block. 

2.2.2 Inverse scanning process 

Input to this functional block is a list of 16 coefficients decoded by CAVLC. These 16 

coefficients are then inverse scanned with a Zig-Zag scan pattern to form a 4x4 block. Fig. 

2.4 shows the Zig-Zag scanning pattern. 
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Fig. 2.4 Zig-Zag scan 
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2.2.3 Inverse quantization & inverse Hadamard transform 

In the inverse quantization process, the operations on DC values are separated from 

other coefficients. Because 4x4 block is the basic unit in H.264 systems, there are total 16 

luma DC coefficients in a macroblock. These 16 DC coefficients in a macroblock are first 

transformed through an inverse Hadamard transform matrix as the follows 
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The result of inverse Hadamard transformation is then scaled by the following formula 

with the given QPY. 
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For the Cb and Cr in a macroblock, the 4 DC coefficients are first transformed through 

a 2x2 inverse transform matrix as the follows 
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After inverse transform, scaling is performed as follows 

19 



 

1))0,0,6%(*(
as derived be shallresult  scaled  theOtherwise,

)16/())0,0,6%(*(
as derived be shallresult  scaled  the12,  toequalor an greater th is QP if Y

>>=

−<<=

C

CC

QPLevelScalefijdcCij

QPQPLevelScalefijdcCij
 

For coefficients other than DC, the scaling function is 

)6/()),,6%(*( qPjiqPLevelScalecd ijij <<=  

With the given qP. 

2.2.4 Inverse Integer Discrete Cosine Transform 

The Inverse Discrete Cosine Transform in H.264 system is much more simplified than 

the traditional Inverse Discrete Cosine Transform. The transform coefficients of 2-D IDCT 

in H.264 system are all simplified to integers. The transform matrix is as the follows. 
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2.2.5 Intra prediction 

The intra prediction process is a new prediction process that MPEG-2 system lacks. 

There are 2 classes of intra prediction modes, the Intra_4x4 prediction mode and 

Intra_16x16 prediction mode. 

There are total 9 sub-modes in Intra_4x4 prediction mode. As Fig. 2.5 shows, these 9 

modes are vertical, horizontal, DC, diagonal down-left, diagonal down-right, vertical-right, 

horizontal-down, vertical-left, and horizontal-up, respectively. In DC modes, the intra 

prediction process is to calculate the mean value of neighboring pixel values. Except for DC 

mode, all the others are directional modes. For directional modes, the intra prediction 

process for the prediction values can all be written as the following formula 

4
2)PPP(P

 valueprediction 3210 ++++
=  
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Where P0, P1, P2, and P3 are all neighboring pixel values 

The P0, P1, P2, and P3 are different neighboring pixel values according to the type of 

mode and the position in the 4x4 block. For example, in mode 3 (diagonal down-left), the 

upper-left corner is predicted by ((A+2B+C)+2)/4, which is equivalent to 

((A+B+B+C)+2)/4; and for upper-right corner of mode 5 (vertical-right), the prediction 

values is calculated by ((2C+2D)+2)/4, which is equivalent to ((C+C+D+D)+2)/4. 

Note that the intra prediction process and the residual adding process are processes that 

must be perform iteratively. That is, for a given 4x4 block, the neighboring pixel values 

(upper and left) for intra prediction must be residual values added. 
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Fig. 2.5 Intra_4x4 prediction modes 

 

In the intra_16x16 prediction mode class, there are total 4 modes – vertical, horizontal, 

DC, and plane modes respectively. The vertical mode and horizontal modes are easiest ones; 

the prediction is down by copying upper or left pixel values directly. In DC mode the mean 

value of all the upper and left neighboring pixel values has to be calculated and the result is 
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assigned to all the pixels in this macroblock. The plane prediction mode is the most 

complex one. The formula for luma samples is given as the follows 
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Fig. 2.6 Intra_16x16 prediction modes 

 

For luma samples in a macroblock, both intra_4x4 prediction modes and intra_16x16 

prediction modes are valid. But for chroma samples, only the 4 modes in intra_16x16 

prediction class are valid and are a little different in parameters from formula for luma 

samples. 

 

2.2.6 Motion compensation 

In motion compensation process, each macroblock can be split into 4 types of 

partitions, 16x16, 8x16, 16x8, and 8x8. If the macroblock is split into 8x8 partitions, each 
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8x8 partition (Sub-Macroblock) can be further split into 4 types of partitions, 8x8, 4x8, 8x4, 

and 4x4. This hierarchical macroblock partition gives flexibilities on motion compensation 

process. 
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Fig. 2.7 Macroblock and Sub-Macroblock partitions 

 

The precision of motion vectors is up to 1/4. Fig. 2.8 shows an example of motion 

vector equals to (+1.50, -0.75). 

 

 
Fig. 2.8 Up to 1/4 motion vector resolution ( mv=(+1.50, -0.75) ) 

 

The motion compensation process requires interpolation process for inter-pixel values. 

As Fig. 2.9 shows, for interpolating pixels with the precision of motion vector up to 1/2, a 

6-tap interpolator is used for the interpolation. For example, pixel “b” is calculated by 
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J)/32)5I-20H20G5F-round((Eb +++=  

For interpolating pixels with the precision of motion vector up to 1/4, a 2-tap 

interpolator is used for the interpolation. For example, pixel “n” is calculated by 

f)/2)round((cn +=  
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Fig. 2.9 Interpolation for pixel values 

 

The motion vector MV is calculated by adding the MVD (motion vector difference) 

with the MVP (motion vector prediction). The MVD is decoded from the bit-stream. MVP 

is calculated from the motion vectors of neighboring blocks. 

2.2.7 De-blocking filter 

Same as MPEG-2, H.264/AVC system is block-based video coding system. Though we 

can perform discrete cosine transform to take advantage of the spatial correlation property 

and exploit motion compensated prediction to improve the compression ratio on the 

block-based systems, the disadvantage of the block-based system lies on the discontinuity 

on each block boundaries which is also known as blocking effects because of the 

quantization loss that annoying the continuity on block boundaries. Moreover, the 

blocking-effect propagated from frame to frame due to the motion compensation. Thus, a 

de-blocking filter is demanded and is included in the H.264 standard as an in-loop filter. 
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As Fig. 2.10 shows, the edge filtering order defined in the standard is a, b, c, d, e, f, g, 

then h. For a given 4x4 blocks, as long as the filter ordering to this 4x4 block is left, right, 

upper, and down, is standard compliant. 

 

a b c d

e

f

g

h

 

Fig. 2.10 Edge filtering order in a macroblock 

 

The filtering process to a certain boundary is through an interpolator. Each filtering 

operation can at most changes 3 pixel values either in both sides of the boundary. The 

choice of filtering outcome depends on the boundary strength and on the gradient of image 

samples across the boundary. The boundary strength bS is in the range of 0 to 4, from no 

filtering to strongest filtering according to the quantiser, coding modes of neighboring 

blocks and the gradient of image samples. 
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Fig. 2.11 Adjacent pixels to horizontal and vertical boundaries 
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Chapter 3  
System Design Of MPEG-2 and 
H.264/AVC Decoder 

 

In this chapter, we show some design techniques like pipeline scheme, synchronization 

problem and solution, decoding ordering, and power saving techniques from the system 

point of view.  

 

3.1 MPEG-2 and H.264/AVC Combined System Decoding 

Flow 
Fig. 3.1 shows our MPEG-2/H.264 combined decoder diagram. Input to this decoder is 

the video bit-stream and a video type signals. This video type signal acknowledges the 

decoder the type of the video bit-stream is feeding. 

For H.264 video bit-stream, an H.264 syntax parser is firstly syntax analyzed the 

bit-stream, stored the system parameter into system-wide shared registers, send the 

bit-stream to the following residual path (CAVLC, 4x4-scaling, 4x4 IDCT) or prediction 

path (H.264 Intra predictor, H.264 Motion Compensator), summed them together with the 

help of synchronizer, a loopfilter process the summed pixel value and then output it both to 

frame buffer or to the display. 

For MPEG-2 video bit-stream, same as the H.264 decoding flow, first, a MPEG-2 

syntax parser analyzed the bit-stream, stored the system parameter into system-wide shared 

registers, send the bit-stream to the following MPEG-2 VLC decoder, 8x8 inverse quantizer, 

8x8 IDCT, MPEG-2 Motion Compensator, and an optional MPEG-2 post filter is at the end 
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of the decoding flow. 

For the hardware sharing issues, we share the registers in syntax parsers, design a 

CAVLC/VLC combined decoder for entropy decoding, a H.264/MPEG-2 combined motion 

compensator, a synchronizer for both system, content memory and frame buffer for both 

systems, and the de-blocking filter for both system which functions as an in-loop filter for 

H.264 system and a post-processing filter for MPEG-2 system. 
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Fig. 3.1 MPEG-2/H.264 Combined Decoder Diagram 

 
3.2 Hybrid 4x4-Block Level Pipeline with Instantaneous 

Switching Scheme for H.264/AVC Decoder 

3.2.1 Hybrid 4x4-Block Level Pipeline Architecture 

The 4x4 block is the smallest group of pixels that the H.264/AVC standard adopts. We 

can see from the standard that a 4x4 Inverse-Discrete-Cosine-Transform (IDCT), a 

4x4-block based inverse scanning process, and a 4x4 inverse quantization matrix for 
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rescaling, are required in decoding H.264/AVC video sequence. Moreover, the smallest intra 

prediction unit is 4x4 sized block, and so do the motion compensation process. Thus in our 

H.264/AVC decoder design, compared with conventional macroblock-level pipelining 

architecture [1] [6], our 4x4-block level pipelining architecture are more suitable for the 

4x4-block based H.264/AVC system. 

Compared with macroblock-level (16x16) and block-level (8x8) pipeline parallelism, a 

trade-off exists between processing cycles and buffer cost. For the processing cycles issue, 

refers to Fig.3.2, we can see that the 4x4-sub-block-level pipeline parallelism requires more 

additional processing cycle than cycles needed of macroblock-level pipeline parallelism. 

Although this penalty has to be paid by the 4x4-sub-block-level pipeline parallelism, the 

cost saved of the buffer storage required is worthy. 
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Fig.3.2 Additional processing cycles required for 4x4-sub-block-level pipeline parallelism 

 

Compared with macroblock-level (16x16) and block-level (8x8) pipeline parallelism, 

because the processing unit of data in each stage is quite smaller (4x4) in 

4x4-sub-block-level pipeline parallelism that the only 4x4-sub-block-level sized buffer 

storage is enough. We can see from Table 3.1, three different parallelisms show the trade-off 

between buffer cost and processing cycles. For 4x4-sub-block-level pipeline parallelism, 
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although 1.26 times processing cycles required compared with macroblock-level pipeline 

parallelism, 15/16 buffer storage can be saved. 

 

Table3.1: Trade-off between processing cycles and buffer cost 

Parallelism Unit of Data Buffer Cost Processing Cycles 

Macroblock-Level 16x16 X16 M cycles/MB 

Block-Level 8x8 X4 1.19*M cycles/MB 

Sub-Block-Level 4x4 X1 1.26*M cycles/MB 

 

Moreover, besides the saving in storage cost, the large amount of power induced by 

these buffers which are active all the time could be greatly reduced as well. As Table 3.3 

shows, the 4x4-sub-block-level sized storage buffers in CAVLC & IDCT consume 

1.453mW and 0.864mW under clock frequency 100MHz, which contribute 2.86% of total 

power (81.072mW) when summed together. But if the macroblock-level sized buffers are 

used instead, the power of these storage buffers would be 23.251mW and 13.824mW, which 

is 15 times greater than the case of 4x4-sub-block-level pipeline parallelism. 

 

Table 3.3 Power dissipated by buffers between pipeline stages 

Storage buffer in CAVLC Storage buffer in IDCT 
Parallelism 

Num. of regs Power Num. of regs Power 

Macroblock-Level 16x16x8 (bits) 23.251 mW 16x16x18 (bits) 13.824 mW 

Block-Level 8x8x8 (bits) 5.813 mW 8x8x18 (bits) 3.456 mW 

Sub-Block-Level 4x4x8 (bits) 1.453 mW 4x4x18 (bits) 0.864 mW 
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Although we saves the cost of storage buffer and the associated power reduction by 

adopting 4x4-sub-block-level pipeline parallelism, this 4x4-sub-block-level pipeline 

parallelism can’t be applied on some other modules which also exist in the decoding flow 

like motion compensator and loopfilter because of their macroblock-level-characteristic. 

Motion compensator must supports inter prediction process for several block sizes, 

from 4x4, 4x8, 8x4, 8x8, 16x8, 8x16, to 16x16. It is hard to divide the inter prediction 

process for block sized modes other than 4x4-block-sized mode into several 

4x4-sub-block-sized inter prediction processes. So we choose to maintain traditional 

macroblock-level pipeline parallelism on motion compensation stage. 

For in-loop filtering operation, i.e. loopfilter, it is also hard to be divided into several 

identical 4x4-sub-block filtering process because the neighboring 4x4-sub-blocks it has to 

fetch is irregular according to inverse scanning sequence. In contrary, the filtering process is 

almost identical in macroblock level. Thus we also choose macroblock-level pipeline 

parallelism for loopfilter. 

In our overall pipeline design, we combine the 4x4-sub-block-level pipeline 

parallelism with macroblock-level pipeline parallelism to a hybrid pipeline scheme that 

suits best for each module. The pipeline parallelism applied for decoding modules is 

summarized in Table 3.4. 
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Table 3.4 Summary of pipeline parallelism applied 

Module Pipeline parallelism 

Intra predictor 4x4-sub-block-level 

CAVLC 4x4-sub-block-level 

De-quantizer 4x4-sub-block-level 

IDCT 4x4-sub-block-level 

Motion compensator Macroblock-level 

Loopfilter Macroblock-level 

 

3.2.2 Instantaneous Switching Scheme 

We also applied an instantaneous switching scheme in our 4x4-sub-block-level 

pipeline design, that is, we switch our pipeline stage as soon as possible. As long as all 

pipelined modules complete their work, we switch the pipeline into next stage 

instantaneously. Because of this instantaneous switching scheme we applied, any pipelined 

module with especially long processing cycles would be the bottleneck of the whole 

decoding system. The pipeline stage must be switched only if all the pipelined modules 

complete their work. So all the other pipelined modules must be idle and wait for the 

pipelined module with especially long processing cycles if exists, bubbles induced in this 

kind of situation would be a lot that degrades overall system throughput much. Thus, we try 

to balance the cycle count required for each modules, so that the idle time of these pipelined 

modules like CAVLC, De-quantization, IDCT, and etc could be minimized that this 

instantaneous switching scheme can be a great help of maximizing our system throughput. 

Fig. 3.3 shows an example pipelining schedule of hybrid 4x4-sub-block-level pipeline 

parallelism with instantaneous switching scheme. 
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Fig. 3.3 An example of the pipelining schedule 

 

3.3 Efficient 1x4 Column-By-Column Decoding Ordering 
Based on our proposed 4x4-sub-block-level pipeline parallelism, we choose 4 pixels 

per cycle as our overall system throughput. The throughput of 4 pixels per cycle is also very 

suitable for the efficient IDCT design, inverse quantizer design, and inter/intra predictor 

design. Limited by the 4x4-sub-block inverse scanning sequence (also the decoding 

sequence) defined by H.264/AVC standard, we have two choices on the decoding ordering 

that are both standard compliant, the 4x1 row-by-row decoding ordering and the 1x4 

column-by-column decoding ordering, as Fig. 3.4 and Fig. 3.5 shows respectively. After the 

analysis for inter and intra predictor on these 2 types of decoding order given in the 

following, we will see that the 1x4 column-by-column decoding ordering is better than 4x1 

row-by-row decoding ordering both in fewer memory access times and fewer decoding 

cycles. 
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Fig. 3.4 4x1 row-by-row decoding ordering 
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Fig. 3.5 1x4 column-by-column decoding ordering 

 

Now we give an analysis for both inter and intra prediction units on these 2 decoding 

ordering. 

 

3.3.1 Analysis on inter prediction unit 

In our inter predictor design also known as motion compensator, an initialization stage 

is required before any contiguous output of motion compensated pixel values. The 
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initialization period requires 18 memory access times for loading related neighboring 

9*6=54 pixel values from the reference frame for the 2-D interpolation (6-tap interpolation 

then 2-tap interpolation) of the target pixel values. 18 cycles (9 pixels per 3 cycles) also 

required for this operation in the initialization stage. After the initialization stage is finished 

for the 1st group of 4 motion compensated pixel values, the loaded pixel values in the 

initialization stage can be reused and only 9 new pixels are needed to be loaded for 

computing the following contiguous output. This computing process requires only 3 

memory access times and 3 cycles for the following contiguous outputs of a group of 4 

motion compensated pixel values. 

For decoding an inter predicted macroblock under 4x1 row-by-row decoding ordering 

and 1x4 column-by-column decoding ordering, we can found that as Fig. 3.6 shows, for the 

4x1 row-by-row decoding ordering, there exists 16 discontinuities (3rd, 7th, 11th, 15th, 19th, 

23rd, 27th, 31st, 35th, 39th, 43rd, 47th, 51st, 55th, 59th and 63rd outputs) in decoding ordering. 

Each discontinuity output of a group of 4 pixel values requires an initialization process. 3 

contiguous outputs are then followed by each discontinuous output. Thus for 4x1 

row-by-row decoding ordering, total memory access times and total decoding cycles are 

16x18 (discontinuous output) + 16x3x3 (contiguous output) = 432 memory access  (3.1) 

16x18 (discontinuous output) + 16x3x3 (contiguous output) = 432 cycles       (3.2) 

As Fig. 3.7 shows, for 1x4-column-by-column decoding ordering, only 8 

discontinuities (7th, 15th, 23rd, 31st, 39th, 47th, 55th and 63rd outputs) exist in decoding 

ordering, which leads to 8 initialization process for these 8 outputs. 7 contiguous outputs are 

then followed by each discontinuous output. Thus for 1x4-column-by-column decoding 

ordering, total memory access times and total decoding cycles are 

8x18 (discontinuous output) + 8x7x3 (contiguous output) = 312 memory access  (3.

3) 

8x18 (discontinuous output) + 8x7x3 (contiguous output) = 312 cycles       (3.4) 
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In summary, for an inter predicted macroblock, the memory access times and decoding 

cycles saved by adopting 1x4-column-by-column decoding ordering instead of 

4x1-row-by-row decoding ordering are both 28%. 
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Fig. 3.6 16 initialization processes in inter predicted macroblock under 4x1 row-by-row 

decoding ordering 
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Fig. 3.7 8 content switches in inter predicted macroblock under 1x4 column-by-column 

decoding ordering 
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3.3.2 Analysis on intra prediction unit 

Based on the H.264/AVC standard, for an Intra4x4 predicted macroblock, the 

neighboring pixels including upper 8 pixels, left 4 pixels plus a corner pixel (total 13 pixels) 

must be loaded before the intra prediction process. Because we follow this rule in our intra 

predictor design, accessing from memory for these 13 pixels are required before each 

intra4x4 prediction process no matter which prediction mode is for this 4x4-sub-block. We 

found that if we choose the 1x4 column-by-column decoding ordering as Fig. 3.5 show, a 

group of 4 pixels of every 4th output is just the left 4 neighboring pixels that originally 

required to be fetched from neighbor for intra prediction on next 4x4-block. For example, as 

Fig. 3.8 shows, the group of 4 pixels in the 3rd output is just the left 4-neighboring pixels to 

be fetched for the following 4x4-sub-block. In this way, this group of 4 pixels can be 

forwarded directly from previous output instead of fetching from memory that reduces the 

memory access times. Same situation also occurs at the 11th, 19th, 27th, 35th, 43rd, 51st, 

59th outputs too. However, for 4x1-row-by-row decoding ordering, this property can not be 

found to reduce the memory access times. In summary, the memory access times can be 

reduced from 3x16=48 times to 3x8+2x8=40 times (17% saved) by adopting 

1x4-column-by-column decoding ordering instead of 4x1-row-by-row decoding ordering. 
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Fig. 3.8 Reduction on memory access of the intra predicted macroblock 

 

3.4 Prediction/Residual Synchronization Scheme 
In both H.264/AVC and MPEG2 decoder designs, there exist 2 decoding paths, say, 

inter/intra prediction path (prediction path) and residual recovery path (residual path). The 

prediction path predicted the pixel values from the motion vector by motion compensator or 

by intra prediction mode by intra predictor. The residual path decodes the residual pixel 

values first by entropy decoding the coded data by CAVLC/CABAC (H.264/AVC) or table 

based VLC (MPEG2). A de-quantization process is then performed on the decoded value. 

Finally, an inverse discrete-cosine-transform (IDCT) transfers the scaled values into 

residual values and output them at the end of the residual path. The decoder has to add the 

predicted pixel values from prediction path with the residual pixel values from residual path 

to reconstruct the original picture before an in-loop filter (H.264/AVC) or a post-filter 

(MPEG2). 

The synchronization problem exists in this adder that adds the pixel values come from 

2 different decoding paths. Because the output timing of these 2 paths is different, we can 

not guarantee the output timing of the pixel values come from 2 paths is simultaneous in a 
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certain cycle. And we can not expect which output comes earlier. Thus a synchronizer is 

required. As Fig. 3.9 shows, we developed a Variable-Length FIFO as a synchronizer for the 

synchronization of prediction path and residual path to solve this problem. 

 

 

Fig. 3.9 A variable-length FIFO is required for the synchronization between intra/inter 

predictor and IDCT 

 

The operation of this variable-length FIFO (VL-FIFO) solution is as Fig. 3.10 shows. 

The signals “sample_valid” and “IDCT_operation” indicates the output valid timing. 

Because these 2 signals are not identical, the VL-FIFO stores the output pixel values from 

either path as long as it comes alone without the company of the output from another path. 

The output of VL-FIFO which had been stored previously waits until the associated values 

come from another path. In this way, the residual adder that adds the values from 

prediction/residual path can correctly add them together at a certain cycle with the help of 

this VL-FIFO as the synchronizer. 
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Fig. 3.10 Operation of variable-length FIFO as a synchronizer 

 

3.5 Power saving by exploiting Coded-Block-Pattern 
H.264/AVC and MPEG-2 both support videos in various data rate. High definition with 

high data rate targets at some high quality video applications like digital home 

entertainment devices, on the other hand, low definition but low data rate targets at 

applications like video transmission in hand held devices. 

In this chapter, a power saving technique will be introduced for some low data-rate 

applications, especially for video sequence of high QP (Quantisation Parameter). The main 

idea of this power saving technique is that we can save power by shutting down the inverse 

quantization and inverse DCT operation at the blocks with all zero coefficients and passing 

these 2 modules directly because the output through these 2 modules are all zeros 

expectedly. 

Residual coefficients which quantized to zeros are more as the QP is increased. Thus in 

high QP video sequence, we can find that there exists many blocks with all-zero-coefficients. 

And the parameter “Coded-Block-Pattern” notifies the decoder the incoming 

all-zero-coefficients blocks in advance. Thus by observing the decoded 
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“Coded-Block-Pattern”, we can foresee the blocks with all-zero-coefficients, shutting down 

the inverse quantizer and IDCT, and then passing the results of all zeros directly to the 

output of the IDCT. Fig. 3.11 shows the block diagram for this power saving technique. 
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Fig. 3.11 Power saving by exploiting Coded-Block-Pattern 

 

Fig. 3.12 shows the simulation results of QP versus bitrate (for QCIF foreman 

sequence) and QP versus the percentage of all zero coefficient blocks. We can see that as the 

QP increased, the bit rate decreased because of the quantization loss increased, which leads 

to the increasing of the percentage of all-zero-coefficient blocks. We can see that this power 

saving technique saves power dissipated from inverse quantization and IDCT from 30% to 

almost 100% at QP from 20 to 50. This savings in power is huge especially in high QP 

sequence. 
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Fig. 3.12 QP versus Bitrate and the percentage of all zero coefficient blocks 

 

3.6 Novel User-Determinable Low Power Mode 

Exploration 
Because H.264 is getting more and more popular in future video applications, and is 

potential in future hand-held devices like PDA, mobile phone, and etc. Thus, to design a 

low-power decoder becomes an important issue. To reduce the power consumption, besides 

the low-power architecture design which will be introduced in the following chapter, a 

novel user-determinable low power mode is introduced here. 

Table 3.5 shows the power profiling of our decoder, reported by PrimePower in 

decoding H.264 video sequence at 100MHz. From this report, we can see that the loopfilter 

consumes highest power among other modules both in decoding I-frame and P-frame. The 

power consumed by loopfilter mainly contributed by 4 single port SRAMs in it. Because the 

main purpose of this loopfilter is to smooth the decoded picture only, we might be able to 

shut down the loopfilter in order to save much power as long as the unsmoothed picture is 
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acceptable. 

Imagine that one day you’re watching a TV program through hand-held device on a 

train. You find that the battery almost ran out. At this time if power-saving solution with the 

acceptable performance degradation trade-off is provided, it would be a very nice choice to 

you. 

Fortunately, the content memory which serves as to isolate the loopfilter from other 

decoding modules, is useless and can be shut-down too when we shut down the loopfilter. 

The power consumes by content memory can also be eliminated in this low-power mode. 

However, loopfilter operation is indispensable in the standard. Thus to make our decoder 

standard-compliant, we leave this performance-power trade-off choice to user by providing 

a user-determinable low-power mode, which leads to this novel work. 
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Table 3.5 Power profiling of decoding H.264 video bit-stream (unit:mW) 

Module I-frame P-frame 

LoopFilter 31.092 27.130 

Content Memory 12.678 10.154 

Motion compensator 10.414 17.152 

VL-FIFO 9.784 10.866 

Intra Predictor 7.090 5.496 

CAVLC 2.604 2.754 

Syntax Parser 1.926 1.280 

IDCT 1.748 0.428 

Inverse Quantizer 1.112 0.260 

Total Core Power 81.072 78.112 

 

Table 3.6 shows the simulation result on power consumption and savings before and 

after the low power mode is enabled. We can see that about 40% power can be saved under 

low-power mode both in decoding I-frame or P-frame. 

 

Table 3.6 Low Power Mode Exploration 

 Normal Mode Low Power Mode Power Saved 

I-Frame 81.072 mW 49.582 mW 38.84 % 

P-Frame 78.112 mW 46.504 mW 40.46 % 
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Chapter 4  
Architecture Design Of 
MPEG-2/H.264/AVC Decoder 

 
In this chapter the architecture and some low-power techniques used in each module of 

the MPEG-2/H.264/AVC decoder will be described in details. Syntax parsers, intra predictor, 

inverse quantizer, inverse DCT, motion compensator, prediction/residual synchronizer, 

in-loop/post filter are included. 

 

4.1 MPEG-2 & H.264/AVC Combined Syntax Parsers 

4.1.1 Low-Power Hierarchical Parser Design 

The syntax structure is defined in the H.264 standard. Combined with the NAL header 

format defined in the Annex B in the standard, as Fig. 1.7 shows, the H.264 video bit-stream 

is organized hierarchically. Thus the syntax parser is designed in hierarchical structure in 

order to make a good use of this property. 
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Fig. 4.1 Hierarchical syntax parser 

 

The syntax parser is designed in hierarchical structure in order to match the 

hierarchical structure of the H.264 bit-stream that standard defines. As Fig. 4.1 shows, an 

NAL header parser, which detects the NAL syntax element and identifies the NAL unit type 

from the NAL unit header is at the first part of the decoder. Depending on the NAL unit type 

it detects, the NAL header parser sends the enable signal to the following 3 units, SPS 

processing unit, PPS processing units, and slice layer processing unit. Each of which is 

responsible for decoding the data that belongs to it. For the slice layer RBSP, instead of 

directly decoding data, slice layer processing unit sends the enable signal to either slice 

header processing unit or slice data processing unit by the aid of a simple acknowledge 

signal from slice header processing unit that always operates in the precedence of the slice 

data processing unit. Slice header processing unit, like SPS and PPS unit, are responsible 

for decoding the parameters which will be used by the other functional blocks in decoding 

times. We use global-wide registers to store these parameters in these units, so that many 

other modules can access easily. Hierarchical structure is also exploited on the slice data 

unit which acknowledges the macroblock processing unit, then the MB prediction unit, 
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sub-MB prediction unit, or the residual processing unit. The residual processing unit wakes 

up CAVLC decoder to decode the entropy encoded residual data when needed. 

Many parameters are needed during decoding each macroblock. There are hundred 

kinds of parameters in the PPS, SPS, slice header, macroblock header, prediction mode, 

prediction weight table, etc. Thus these parameters are needed to be stored either in the 

memory or register files when parsing. And because these parameters are read frequently 

into the prediction unit, de-quantization unit, de-blocking filter and many other functional 

blocks. Using registers to store these parameters is better than memory approach. Because 

the number of parameters is a lot, it is important to save the power consumption on these 

registers. 

To resolve the power issue on the huge amount of registers, we put these system-wide 

registers together inside their belonging syntax parser unit. In that way, we can reduce the 

power dissipation of these registers by disabling their belonging syntax parser units. Fig. 4.2 

shows an example waveform of the enable signals of each syntax-parsing unit. With the aid 

of the enable signals of these syntax parser units to be their sleep controls, we can apply 

gated-clock technique on these syntax parser units easily and to be able to disable all the 

syntax parser at their idle time. 
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Fig. 4.2 An Example waveform of the enable signals in syntax parser 
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Simulation results show that applying the gated clock technique on our hierarchical 

syntax parser, we can greatly save 86% power consumption on these registers. 
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Fig. 4.3 Power reduction on syntax parser  

(A) Without applying gated clock (B) With applying gated clock 

 

4.1.2 Register Sharing Parser Design 

Registers for parameter storage and control circuits are two main components in syntax 

parser design. And because of the various and large amount of system-wide parameters that 

syntax parser are responsible for the storing, registers in syntax parser almost dominate the 

area and also the cost of the syntax parser. 

In our MPEG-2/H.264 dual decoder design, originally we have to design two syntax 

parsers which suits for H.264 syntax system and MPEG-2. For the high throughput issue, 

we custom-built these two syntax parser for the highest efficiency instead of traditional 

embedded software with the RISC solution. Because control circuits is complex but not 

area-expensing, except for the inflexibility, the main cost of our dual parser solution lies on 

the two set of registers for parameter storage of 2 different video coding system. 

Fortunately, for the dual MPEG-2/H.264 decoder design, we can see that whether the 
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decoder is functioned for MPEG-2 system or H.264 system, there is always a set of syntax 

parser in idle situation. Which in terms that there is always a set of registers that would 

never be used. Thus we can combine these 2 set of registers into one set of registers which 

shared for these two video systems. That way, we might be able to reduce the number of 

registers used in syntax parser, and that leads to the reduction on area and power because 

registers consumes lots of power. 

 

Table 4.1 Number of register needed for MPEG-2/H.264 syntax parser 

MPEG-2 H.264 

Module Register needed Module Register needed 

Macroblock 29 regs Macroblock 11 regs

Motion_vectors 25 regs Slice_data 17 regs

Picture_coding_ext 49 regs Slice_header 247 regs

Picture_header 36 regs PictureParameterSet 74 regs

Slice 8 regs SequenceParameterSet 127 regs

Sequence_header 1105 regs  

Total 1252 regs Total 476 regs

 

As Table 4.1 shows, we can see that syntax parser in both these two system requires 

lots of register for parameter storage. And because MPEG-2 system is 8x8 block based 

system, 4 times bigger than the 4x4 block based H.264 system, the registers needed is also 

the more than the H.264 system. The sequence_header module in MPEG-2 syntax parser 

contains 2 set of 8x8 intra and non-intra coefficients of quantization matrix. 512 registers 

needed for each coefficient matrix, which dominates the total number of register needed in 

syntax parser. 
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Because these registers for quantization matrix coefficient storage are large and very 

regular, we make these registers for the sharing registers with H.264 syntax parser. The 

register sharing requires an additional multiplexer, as Fig. 4.4 shows. The select signal to 

this multiplexer is the MPEG-2/H.264 mode input of the decoder.  
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Fig. 4.4 Register sharing technique 

 

In this work, these registers in MPEG-2 system are shared with the 3 main modules 

(Slice_header, PictureParameterSet, SequenceParameterSet) in H.264 system; total 448 

registers are shared and can be saved as result. 
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Fig. 4.5 Register number reduction on syntax parser 

 

Because of the additional multiplexer required for the register sharing technique, the 

total number of combinational circuit increases slightly. But for the reduction on number of 

registers, the total area saved and the power saved is about 20.5% and 22.6%. Table 4.2 

summarizes the result of register-sharing syntax parser compared with original register 
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separate version. 

 

Table 4.2 Area and Power reduction on register-sharing version 

 Separate Version Shared Version Percentage Saved

Combinational Area 32,307 39,993 -23.7% 

Non-Combinational Area 126,066 85,984 31,8% 

Total Area 158,373 125,977 20.5% 

Power Dissipation 14.807 mW 11.463 mW 22.6% 

 

 

4.2 Exp-Golomb Decoder for H.264/AVC syntax parser 
Exp-Golomb code is an UVLC (Universal Variable Length Code) that is used 

extensively for coding of the parameter in syntax element of H.264 bit-stream. 

According to the standard, the processing of the UVLC decoder shall be equivalent to 

the following: 

leadingZeroBits=-1; 

for(b=0;!b;leadingZeroBits++) 

b=read_bits(1); 

code value=2leadingZeroBits-1+read_bits(leadingZeroBits); 

Table 4.3 shows the assignment of bit strings to the code value. 
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Table 4.3 The assignment of bit strings to code value 

Bit string form Range of code value 

1 0 

0 1 x0 1-2 

0 0 1 x1 x0 3-6 

0 0 0 1 x2 x1 x0 7-14 

0 0 0 0 1 x3 x2 x1 x0 15-30 

0 0 0 0 0 1 x4 x3 x2 x1 x0 31-62 

… … 
 

Bit string Code value 

1 0 

010 1 

011 2 

00100 3 

00101 4 

00110 5 

00111 6 

0001000 7 

… … 
 

 

 

4.2.1 Circuit design of Exp-Golomb Decoder 

According to the property that the number of leading zeros corresponding to the length 

of the Exp-Golomb code, we use an up-down counter for controlling the processing cycles 

of an incoming Exp-Golomb code. With the help of this up-down counter, we can also 

easily calculate the power of 2 of this up-down counter for the implementation of the power 

part of the code value. With an accumulator in the ue(v) calculator and some control logics, 

the code value of ue(v) can be calculated. Two output converters at the output stage 

converts the ue(v) (unsigned value) to the se(v) (signed value) and me(v) (mapped value for 

coded_block_pattern), and also te(v) (truncated value), for different requirement of coding 

the system parameters. Fig. 4.6 shows the circuit design of Exp-Golomb decoder. 
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4.2.2 Reusability of the Exp-Golomb Decoder 

From the standard, we can see that the Exp-Golomb code exists in many syntax 

parsing modules in ue(v), se(v), me(v), or te(v) forms. Such as SPS (Sequence Parameter 

Set), PPS (Picture Parameter Set), Slice Data Partition, Slice Header, Reference Picture List 

Reordering, Prediction Weight Table, Decoding Reference Picture Marking, Slice Data, 

Macroblock Layer, Macroblock Prediction, and Sub-Macroblock Prediction. Thus we 

carefully design the interface of the Exp-Golomb Decoder such that a single Exp-Golomb 

decoder can be shared with all these syntax parsing modules. 

The hand-shaking signals to the syntax parsing modules are signal “UVLC_start” and 

“Output valid”. As fig. 4.7 shows, an “OR”-gate OR-ed all the request signals from syntax 

parsing modules to active this Exp-Golomb Decoder. And an “Output valid” signals with 

the result “me(v)”, “se(v)”, or “ue(v)” connect to these syntax parsing modules for the 

acknowledgement of the decoded value by the decoder. Because there is only one module 

sending the request signal to the Exp-Golomb at a certain time according to the content of 

the bit-stream is currently parsing, no conflict will occur and we can thus share a single 

Exp-Golomb Decoder for all the syntax parsing modules. 
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Fig. 4.7 Exp-Golomb Decoder shared for all modules in the syntax parser 

 

 

4.3 H.264/AVC Intra Predictor 
Intra prediction doesn’t exist in MPEG-2 system, but it is the key operation in every 

I-frame of H.264/AVC video stream. In H.264/AVC video system, intra prediction can be 

divided into 2 kinds, the intra4x4 prediction and intra16x16 prediction. There are total 9 

modes in intra4x4 prediction (vertical, horizontal, DC, down-left, down-right, vertical-right, 

horizontal-down, vertical-left, and horizontal-up), and 4 modes in intra16x16 prediction 

(vertical, horizontal, DC, and plane). These 13 modes in total of the intra prediction make 

the result of prediction process very accurate to the original image at various types of 

image. 

Whether the mode is chosen, the neighboring pixels (upper and left) must be loaded 

before the prediction process because the neighboring pixel values exist in the prediction 

formula in all these 13 modes. Thus to load the neighboring pixels become the first 

operation in intra prediction process. In our work, we use 3 types of buffers (upper buffer, 

left buffer, and corner buffer) to store and reuse the neighboring pixels either from/to 

memory or from previous prediction results. The following gives the description on the 

operations of these 3 types of buffers. 

4.3.1 Low-Power Memory Fetch Upper Buffer Design 

To load the upper neighboring pixels is not that direct compared with left neighboring 
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pixels because the macroblock decoding sequence is row-by-row. Because the upper 

neighboring pixels are calculated long before and is dependent on picture width, to store the 

upper pixels in buffers of registers is inefficient and high in cost when decoding 

high-definition pictures. Thus an embedded slice memory is used to store the upper pixels 

that calculated long before. The size of this slice memory is N, the number of macroblock in 

picture width multiplies by 4, and the bandwidth of this slice memory is 32 bits. 

We spend 4 cycles loading upper neighboring pixels from memory to our upper buffer 

at the initial stage of the intra prediction on macroblock. We make the prediction sequence 

same as the 4x4 block inverse raster scanning sequence defined in the standard. This 4x4 

block based prediction sequence is very convenient in implementation of intra4x4 modes 

and is also practicable in implementation of intra16x16 modes in the way that we split the 

intra16x16 prediction process into 16 identical intra4x4 prediction processes. 

Fig. 4.8 and Fig. 4.9 show the operation of the upper buffer. After fetching upper pixels 

from slice memory, these upper buffers are updated with the completion of prediction 

process on every 4x4 block in group of 4 pixels. In this way, only 4 sets of 4-pixel-sized 

buffers are needed for the upper pixel fetching of every 4x4 blocks. At the end, after all 4x4 

blocks are predicted, 4 cycles are needed to store the bottom pixel values to slice memory 

from these upper buffers. This storing operation in memory also replaces the memory 

content of the same address in fetching stage. 

With the help of these upper buffers, the number of memory access can be greatly 

reduces from at least 16 times to only 4 times which is the minimum number of memory 

access of reading operation in all prediction modes. And because memory fetching is very 

time consuming and power consuming, these upper buffers not only improve the throughput 

but also saves lots of power in prediction process. 
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Slice Memory (N x 4 pixels)
N= Number of macroblock in picture width x 4

 
Fig. 4.8 Operation of upper buffer (A) 

 

Slice Memory (N x 4 pixels)

N= Number of macroblock in picture width x 4  

Fig. 4.9 Operation of upper buffer (B) 
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4.3.2 Reusable Left Buffer Design 

Because macroblock are decoded row-by-row, fetching the left neighboring pixels is 

very easy with the help of only a set of left buffers.  

Fig. 4.10 and Fig. 4.11 show the operation of the left buffer. Same as the upper buffer 

but without fetching operation from memory, values in these left buffers are updated with 

the completion of the prediction process on every 4x4 block. In this way, the content stored 

in left buffers is always the left neighboring pixels of the 4x4 block that will be predicted in 

the nearest future. Moreover, only 4 sets of buffers in group of 4 pixels are needed for all 

the fetching operations of left neighboring pixels in a macroblock, which is very efficient 

and the cost is minimum. At the end, when the prediction process on all 4x4 blocks are 

completed, the content of these left buffers are just all updated to the left neighboring pixels 

of the following macroblock to be processed. No additional fetching operations are required 

between macroblocks. 

 

 

Fig. 4.10 Operation of left buffer (A) 
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Fig. 4.11 Operation of left buffer (B) 

 

4.3.3 Reusable Corner Buffer Design 

Corner (upper-left) pixel is also needed for the prediction process in most of prediction 

modes. Because the upper buffers and the left buffers can not cover the corner pixel, an 

additional set of corner buffers are required for the intra prediction process. 

Corner buffers consist of eight 1-pixel-sized buffers. Fig. 4.12 and Fig. 4.13 show the 

operation of these corner buffers. Initially the buffers A1, A2, A3, and C2 are loaded with 

the upper buffer from memory. C1, B1, B2, and B3 are all calculated in the previous 

macroblock can be used directly. 

Same as the upper buffers and left buffers, the corner buffers are updated one by one 

with the completion of the prediction process on every 4x4 block. As Fig. 4.12 shows, the 

corner pixel values in the corner buffers are all updated to the new corner pixel values at the 

nearest down-right 4x4 blocks. At the end, when the prediction process of all the 4x4 blocks 

are completed, as Fig. 4.13 shows, we switch the set A1, A2, A3, and C2 with the set B1, B2, 

B3, and C1. Because at the end of prediction process buffers A1, A2, A3, and C2 are just 

updated to the left corner of the following macroblock, thus we update buffers B3, B2, B1, 

and C1 to the upper corner of the following macroblock. Switching these two sets of corner 
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buffers between macroblocks smoothly accomplished the work of feeding corner values to 

every intra prediction process on 4x4 blocks. 

 

A1 A2 A3

B1

B2

B3

C1 C2

 

Fig. 4.12 Operation of corner buffer (A) 
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Fig. 4.13 Operation of corner buffer (B) 
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4.3.4 Intra Predictor for Directional Based Modes 

With the help of the upper, left, and corner buffer introduced above, the complexity of 

the predictor for directional based modes reduces a lot. In directional based intra prediction 

modes, like vertical, horizontal, down-left, down-right, vertical-right, horizontal-down, 

vertical-left, and horizontal-up both in intra4x4 or intra16x16, the prediction formula can 

always be written as the following form: 

2)2)((],[ >>++++= DCBAyxpred  

Thus in our predictor for directional based modes design, as Fig. 4.14 shows, we 

simply calculate the prediction output by first selecting the corresponding neighboring 

pixels A, B, C, and D from upper, left, or corner buffers, and then do the adding and 

rounding. 

 

Upper Buffer
Corner 
Buffer

Left Buffer

+ +

+

+ 2

>>2

Rounding 
Unit

Prediction Output  

Fig. 4.14 Intra predictor for directional based modes 
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4.3.5 Intra Predictor for DC Mode 

In DC mode, the predictor has to calculate the average pixel value of the upper and left 

neighboring pixels. Thus we can simply design an accumulator to implement this operation. 

And we can increase the throughput by adding some additional adders. 

This intra predictor for DC mode can also be shared with the slope calculator for plane 

prediction, will be described in the following section. 
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Fig. 4.15 Intra predictor for DC mode 

 

4.3.6 Intra Predictor for Plane Prediction 

Plane prediction is the most complex part in intra prediction. The followings are the 

formula of intra plane prediction. 

For luma samples, 
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And for chroma samples, 

)5)16)3(*)3(*((1],[ >>+−+−+= ycxbaClipyxpredC  

Where 

61 



 

∑

∑

=

=

−−−+−+=

−−−−++=

>>+=
>>+=

−+−=

3

0'

3

0'

])'2,1[]'4,1[(*)1'(

])1,'2[]1,'4[(*)1'(

5)16*17(
5)16*17(

])1,7[]7,1[(*16

y

x

ypypyV

xpxpxH

Vc
Hb

ppa

 

Because the prediction values of plane prediction varying smoothly both along the 

x-axis and y-axis in a macroblock (that’s why it named plane prediction), we can see from 

the formula that the value b and c just like the slope of x and y axis in this virtual plane. We 

calculate these slope values first as Fig. 4.16 shows, and for the pipeline issue which will be 

introduced later, 2 sets of registers - slope_b and slope_c (for Y & Cr), slope_d and slope_e 

(for Cb) are used to store the calculated slopes in plane prediction. And also, the 

accumulator part in the slope calculator can be shared with DC predictor which described in 

the previous section. 
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Fig. 4.16 Slope calculator for plane prediction 

 

From [10], for the final prediction output, we can first calculate an intermediate value, 

a1 where 
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Then predL[x,y] can easily be calculate from the a1 
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After calculating the slope b and c, Fig. 4.17 shows the remaining calculation required 

for plane prediction of luma samples. And once the a’ is calculated, those 3 pixels below it 

can be calculated by a’+c, a’+2c, and a’+3c. 

 

*a = previous output, b = slope in x-axis, c = slope in y-axis,
p=upper-right pixel value, q=down-left pixel value

a'=a+b

a'=a-7b+4c

a'=a-7b+4c

a'=a-7b+4c

a'=a-7b+4c

a'=a+b

a'=a+b-4c

a'=a+b-4c

a'=a-15b+4c

a'=16p+16q-
3b-3c+16

 

Fig. 4.17 Required calculation for plane prediction 

 

For hardware sharing and low cost issue, we can rewrite these required calculations as 

the following form, 

bbbcaacbaa
bbcaacbaa

bcaacbaa
cbcbqpacbqpa

+−−+=→+−=
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In this way, no multiplication is required for the plane prediction. Combined with plane 

63 



 

prediction on Cb and Cr, Fig. 4.18 shows the intra predictor for plane prediction. 
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 Fig. 4.18 Intra predictor for plane prediction 

 

Fig. 4.19 shows the pipeline scheme for the situation that plane prediction apples on 

both luma and chroma samples. With the additional slope storage (slope_d and slope_e) for 

slope calculator, the total processing cycles can be reduced. 
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Fig. 4.19 Intra predictor for plane prediction 

 

4.4 MPEG-2 & H.264/AVC Inverse DCT 
Inverse DCT (Discrete-Cosine-Transform) is a key component in decoder design. 

Inverse DCT operation is very complex and time consuming in MPEG-2 system. The 

complexity raises proportional to the square of block size. Thus for the 8x8 block based 
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MPEG-2 system, IDCT is often the bottleneck of the system throughput. In H.264/AVC 

system, though Inverse DCT is simplified to integer transform, we still need to design a 

high throughput IDCT which suits for digital TV application. 

Processing IDCT operation requires many multiplication and addition. From [6][17], 

we can separate a 2-D IDCT into two 1-D IDCTs, by which the computational complexity 

can be greatly reduced. In the 1-D IDCT design, for the trade-off between throughput and 

cost, we have choices to design a serial-in-serial-out version or a parallel-in-parallel-out 

version. From Table 4.3, we can see the result and the comparison for these 2 

implementations. We here choose the parallel-in-parallel-out version 

 

Table 4.3 Area and Power reduction on register-sharing version 

Architecture Serial-in-Serial-out Parallel-in-Parallel-out 

Gate count 22 K 46 K 

Throughput 102 cycles/8x8block 32 cycles/8x8block 

Clock rate for HDTV application* 155 MHz 47 MHz 

*HDTV application: Assuming no any other latency, real time playing sequence of 

1920x1088@30fps 

 

4.4.1 2-Stage IDCT Architecture 

The following shows the formula of a 2-D IDCT. 
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Which equals to the following equations 
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Thus we can split a 2-D IDCT into two 1-D IDCTs with a transpose matrix as Fig. 4.20 

shows. 
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Fig. 4.20 2-stage IDCT architecture 

 

 

4.5 MPEG-2 & H.264/AVC Combined Motion 

Compensator 
Processing motion compensation is the most complex operation in H.264/AVC system. 

Various block size from 4x4 to 16x16 plus up to 1/4 resolution on motion vectors increase 

the complexity on motion compensator design. 

4.5.1 Motion Compensation Engine 
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Fig. 4.21 shows the motion compensation engine. It is composed of motion vector 

predictor, interpolator and reconstruction. Firstly, motion vector predictor generates MVP 

value according to motion vectors of neighboring blocks, which is stored in shift registers 

and mv buffers. The interpolator then fetches the proper samples from external reference 

frame memory according to the address calculated from address generator. These 

interpolated data add to residual data which is calculated from entropy decoder, rescaling 

and IDCT. Finally, the reconstructed data restores to external frame memory after 

de-blocking filter. Two frame memories are exploited to keep current frame and previous 

frame reciprocally. 
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Fig. 4.21 Motion compensation engine 

 

4.5.2 Interpolator 
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Of all the components in motion compensator, the interpolation unit is always the most 

time-consuming both in H.264/AVC and MPEG-2 systems. Some interpolation schemes or 

architectures applied in recent standards have been proposed [1][9][15][16]. They can be 

classified into three structures: 1-D based [1] [15], 2-D based [9] and separate 1-D based [9] 

[16] approaches. 1-D based approach has lowest cost; however, it is not efficient for 

memory access and data reuse, especially in high motion resolution for H.264/AVC. 2-D 

based approach may cause longest latency and highest cost in multiple high coefficients 

interpolation. Among three approaches, separated 1-D approach can achieve the most 

efficient data reuse. Therefore, we developed a novel interpolator based on separate 1-D 

approach to improve the data reuse and greatly reduce the memory access. 

The concept of the interpolator is to separate a 2-D FIR interpolator into vertical and 

horizontal 1-D FIR interpolators. Considering interpolation in H.264/AVC system, the half 

sample is interpolated by applying 6-tap FIR filter (1, -5, 20, -5, 1) and quarter sample is 

performed by using bilinear filter. And for MPEG-2 system, the resolution on motion vector 

is only up to 1/2, this down-compatible interpolator can be shared for both systems. 
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Fig. 4.22 Motion compensation engine 

 

 

4.6 MPEG-2 & H.264/AVC Combined De-blocking Filter 
De-blocking filter can be used as a post-processing operation in MPEG-1/2/4 standard 

The MPEG-2 standard doesn’t mention about the de-blocking filter at all. But it is 

mentioned in MPEG-4 standard with informative process. That is, algorithms and design of 

de-blocking filter in MPEG-2 standard is free to the designer without any constraints that 

the designers have freedom choosing the most suitable architecture and algorithms of the 
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de-blocking filter. However, in H.264/AVC video coding system, because of the importance 

of the de-blocking filter has risen, the de-blocking filter becomes an in-loop filter and is 

definitely included in the H.264/AVC standard. Different from MPEG-2 system, to design a 

standard compliant de-blocking filter is necessary in H.264/AVC system. 

In our work, we combine the post-processing filter for MPEG-2 system with the 

in-loop de-blocking filter in H.264/AVC system into a single de-blocking filter. We maintain 

the filtered edge of 4x4 in H.264/AVC system and 8x8 in MPEG-2 system. For the 8x8 

based de-blocking filter design, we adopted and do a little modification on the 

post-processing de-blocking filter defined in MPEG-4 Annex F.3 as our post-filter for 

MPEG-2 system. 

4.6.1 Triple-Mode Decision 

In the edge filtering design, there are three modes introduced. According to the 

strength and mode decision, we develop triple Pixel-in-Pixel-out (i.e. P-i-P-o) edge filter to 

realize the in/post-loop de-blocking filter. We modify the default mode of post-loop filtering 

process and apply the algorithm of strong and weak mode in the in-loop filter. The default 

mode is of prime concern while the DC offset mode tends to be less occurred. Further, the 

DC offset mode is broadly similar to that in the in-loop filter, in the sense that we can apply 

the filter process of “bS=4” instead of that in MPEG-4 Annex F.3 with a little performance 

loss. Further, we modify the approximated DCT kernel (i.e. [2 -5 5 -2]) into [2 -4 4 -2]. That 

is, we make use of shifter instead of constant multiplier. Based on the above discussion, we 

deduce that three data flows will be generated in our triple P-i-P-o filter algorithm. They are 

strong, weak and skip filtering process. Particularly, the strong mode filtering in in-loop and 

post-loop has been merged into single structure. The data flows of the proposed hybrid filter 

algorithm are depicted on Fig. 4.22. 

 

70 



 

Strong 
Edge Filtering

Post-Loop FilterIn-Loop Filter

Mode Decision
(Strength: bS)

0<bS<4

bS =4 Mode Decision
(Strength: eq_cnt)

eq_cnt>=6

2<=eq_cnt<6

Filter?

Yes

Not filter (Skip mode)

SKIP

In/Post-Loop
Filter

bS =0 eq_cnt<2

Weak 
Edge Filtering

Triple-Mode
Decision

Triple P-i-P-o
Edge Filter

 

Fig. 4.23 The data flow of the in/post-loop filter algorithm 

 

4.6.2 Slice and content memory 

To facilitate the data access with each block pixel or neighboring pixel, we use two 

slice memory (single-port SRAMs) and content memory to keep the neighboring pixel and 

block-content pixel value. The fetching and restoring pixel value is very frequently since 

de-blocking filter in H.264/AVC is performed on each 4x4 block level. To reduce the pin 

counts and speed up the filtering process, internal SRAM module is essential to meet the 

real-time decoding demand. 

The slice memory is used to store the neighboring pixel. It is required to keep them 

until they have been filtered completely. Further, the address depth is decided by the frame 

width in the slice memory. In Fig. 4.24(a), considering the frame size with M×N, each 

square represents the 16x16 MB. Each MB contains the 16 points, and 4x4 pixels within 

each point. When the filtering process is performed from the MB index of B to B+1, the 

pixel data within upper and left neighbor will be updated as the arrows show. The shaded 

region should be kept when the filtering index is B+1. Therefore, the slice memory is used 

to keep the pixel value of upper and left neighbor and contains the size of about 2N × 32 
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for the 4:2:0 format. 

The content memory is used to store the unfiltered pixel value in luma or chroma block. 

The data word-length of memory is 32-bit, and the address depth of content memory is 

decided by the YUV format (4:4:4, 4:2:2 or 4:2:0). For 4:2:0 format, there are 16 blocks of 

luma and 8 blocks of chroma should be stored. Therefore, the size of content memory is 

(16+8)*4 × 32 in total. Further, the data address is increased as the standard-defined block 

ordering of Fig. 4.24(b). The grid region is stored in the slice memory and the dotted region 

is stored in the content memory 
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Fig. 4.24 (a) Slice memory with grid or shaded region and 

(b) Content memory with black-dotted region 

 

4.6.3 Hybrid scheduling 

To reduce the overhead with the reloaded data when switching the filtering edge from 

horizontal to vertical, we adopt a hybrid filter scheduling to re-schedule the 

standard-defined edge. The de-blocking filter in H.264/AVC system is performed in the 

vertical edge first, and then the horizontal edge. Based on the standard-defined filter 

ordering, we can deduce the filter order on each 4x4 block as Fig. 4.25(a). In the filter 

ordering of one 4x4 block, left edge is filtered first and lower edge is the last one. We 

72 



 

develop a novel filter ordering to schedule our filter process on each edge as Fig. 4.25(b). 

Each filter order of one block obeys the rules of the left edge first and the lower edge last. 

Compared to the traditional scheduling [13][14], our method prevents the re-access for 

different direction and combine the vertical and horizontal filter at the rule of 

standard-compliance. 
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Fig. 4.25 Hybrid scheduling method 

 

We use four 4x4 pixel buffer to keep the temporary data in our hybrid scheduling 

process. In Fig. 4.26 (a), each MB has been partitioned into two main parts (i.e. Loop 

Filter-MB-Upper or Lower) to reduce the kept buffer size. Each part is composed of eight 

time-instances to process the filtering procedure in Fig. 4.26 (b). The grid region represents 

the neighboring block and the shaded region is the position of kept data buffer with the size 

of four 4x4 blocks. There is no need to keep the neighboring block as the data buffer in 

certain time instance (except for the initial state t1) because the neighboring block and 

current MB are located at different memory module. Both data of them can be accessed at 

the same time instance and sent to the input of edge filter. 
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Fig. 4.26 The partitioned MB and each time instance when applying the hybrid scheduling 

method 

 

We derived the filter ordering of the proposed hybrid scheduling method in Fig. 

4.26(b). Each bold line represents the edge to be filtered in each time instance. The filtered 

ordering complied with the hybrid scheduling in Fig. 4.25(a) at each time instance t1 ~ t8. 

By the same way, the proposed scheduling is also performed in the block of chroma 4x4 

block. 

The main problem of in/post-loop de-blocking filter is the considerable amount of 

memory access and processing cycles. To apply the proposed hybrid scheduling into the 

overall system and enhance the system throughput, we use a high-throughput architecture of 

de-blocking filter. Fig. 4.27 shows the proposed design with block diagram and data flow 

representation. The external frame buffer is an off-chip memory and the size is decided by 

the frame size. The shaded-arrows denote the data flow inside the de-blocking filter unit, 

and the black-arrows denote the data flow outside. The pixel buffer is used to store the 

intermediate pixel value when applying the proposed hybrid scheduling. It contains four 4×

4 pixel values. Moreover, in each time instance, it locates at the position as the shaded 

regions of Fig. 4.26(b) shows. 
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Fig. 4.27 The block diagram and data flow of the MPEG-2/H.264 combined de-blocking 

filter 
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Chapter 5  
Chip Implementation for Digital TV 
Applications 

 

5.1 System Specification 
In our MPEG-2/H.264 dual mode decoder design, the specification of the MPEG-2 

part is MPEG-2 simple profile at main level (SP@ML), table 5.1 shows the details of this 

profile. In the H.264/AVC part, our specification is H.264/AVC baseline profile at level 3.2, 

table 5.2 shows the details of this profile. 

 

Table 5.1 Simple profile @ Main level of MPEG-2 system 

No. of 
layers 

Layer id Scalable 
mode 

Maximum 
sample 
density 
(H/V/F) 

Maximum 
sample rate

Maximum 
total bit 

rate 
/1000000 

Maximum 
total VBV 

buffer 

Profile and 
level 

indication

1 0 Base 720/576/30 10,368,000 15 1,835,008 SP@ML 

 

Table 5.2 Baseline profile @ level 3.2 of H.264 system 

Level Max 
macroblock 
processing 

rate 
MaxMBPS 

(MB/s) 

Max frame 
size 

MaxFS 
(MBs) 

Max 
decoded 
picture 

buffer size
MaxDPB 

(1024 
bytes) 

Max video 
bit rate 
MaxBR 

(1000 bits/s 
or 1200 
bits/s) 

Max CPB 
size 

MaxCPB 
(1000 bits 
or 1200 

bits) 

Vertical MV 
component 

range 
MaxVmvR 
(luma frame 

samples) 

Min 
compression 

ration 
MinCR 

Max number of 
motion vectors 

per two 
consecutive MBs
MaxMvsPer2MB

3.2 216,000 5,120 7,680.0 20,000 20,000 [-512,+511.75] 4 16 

 

The maximum computational capability is to support real time decoding of 1080i 

(1920x1088) MPEG-2 video sequence and SXGA (1280x1024) H.264 video sequence in 
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30fps. Our operational frequency required for MPEG-2 is 80.92MHz, and for H.264 is 

79.64MHz. 

 

5.2 Design Flow 
We use the standard cell based design flow. Fig. 5.1 shows our design flow from 

system specification to physical-level. 
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System design
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RTL level 
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design
 

Fig. 5.1 Design flow from system specification to physical-level 

 

In system design stage, first we estimated the required throughput for the specification, 

applied the 4x4-sub-block level pipeline scheme and modified it to hybrid scheme for the 

reason that macroblock-level pipelining scheme is suitable for some modules. We carefully 

estimate the efficiency of different decoding ordering for all the modules because it would 

be an important interface between modules. We choose 1x4-column-by-column decoding 

ordering for the implementation at last. Because we aimed at multi-mode decoder design, 

the hardware sharing issue shall be considered as well in this first stage. The overall block 

diagram and data flow is designed in this stage. 

In architecture design stage, we divide the work mainly to 4 people, one for motion 

compensation, one for entropy decoding, one for de-blocking filter, and one for the system 

design and other modules (me). We have to consider the hardware sharing issue for both 

systems in designing each module. The throughput required is the aim of designing each 

module. Under the constraint of the throughput requirement, we focus on the architecture 

design and to make each module low-complexity and low-power. Some low-complexity 

architecture and low-power techniques are derived in this stage. 
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The RTL-design is along with the architecture design. The work for RTL-design is 

mainly to translate the architecture of each module to RTL description. To make the 

synthesis result identical to the architecture of our design is the goal of the RTL-design. Of 

course that some coding techniques for the synthesizer are considered in this stage. To write 

the RTL-code synthesizable and easy understanding is also important. 

In physical design stage the CAD tools are important. To make a good use of these 

tools and to do the remaining job to the best is the key point to our final result. The design 

margin, technology used, some nano effects on deep sub-micron circuits are also needed to 

be considered. At the end of the physical design stage, our work is taped-out for the 

prototyping and final verification. 

 

5.3 Implementation Result 
In our work, we implemented an MPEG-2/H.264 dual mode decoder. Fig. 5.2 shows 

the layout of this work. The total gate count is about 491K, chip size is 3.9x3.9mm2 in 

0.18um technology. Maximum working frequency is 83.3MHz, support decoding 720p 

H.264 video sequence under 56MHz, decoding 720p MPEG-2 video sequence under 

35.7MHz in 30fps. Power consumptions are 44.35mW and 30.15mW, respectively. 
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Fig. 5.2 Layout of this work 
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Table 5.3 Chip details 

Items Specification 

Function H.264 Baseline@Level 3.2 

MPEG-2 SP@ML 

Gate counts 491,260 (On-chip SRAM included) 

Technology 0.18um 1P6M 

Supply voltage 3.3V/1.8V 

Die size 3.9x3.9mm2

Package 208CQFP 

Max working frequency 83.3MHz 

Core Power Consumption 

(720p@30fps) 

44.35mW@56MHz (H.264) 

30.15mW@35.7MHz (MPEG-2) 

 

5.4 Measurement Results and Comparison 
Table 5.4 shows the power report of our work. The power consumption of decoding 

CIF, NTSC, and 720pHD MPEG-2 video sequences are 3.12mW, 11.15mW, and 30.15mW; 

the power consumption of decoding CIF, NTSC, and 720pHD H.264 video sequences are 

4.51mW, 16.39mW, and 44.35mW, respectively. 

 

Table 5.4 Power report 

Items (Core Power) MPEG-2’s power analysis H.264’s power analysis 

720pHD (1280x720) 30.15mW@35.7MHz 44.35mW@56MHz 

NTSC (648x486) 11.15mW@13.2MHz 16.39mW@20.7MHz 

CIF (352x288) 3.12mW@3.7MHz 4.51mW@5.7MHz 
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Table 5.5 shows the comparisons to the State-Of-the-Art. It’s hard to find a pure ASIC 

decoder but RISC included or ARM-based works. Thus it’s hard to have a fair comparisons. 

However, we can still see that our work is a good solution to dual mode H.264/MPEG-2 

decoder. 

 

Table 5.5 Comparisons 

 Proposed [1]-[4] 

ISCAS’05 

VLSI-TSA’05 

C&S [11] 

ISCAS’04 

Conexant [18] 

ISCE’04 

NTU [19] 

ISCAS’05 

Specification 1280x720@30fps 1920x1088@30fps 2048x1024@30fps 2048x1024@30fps

Operating 

Frequency 

56MHz 130MHz (local 

bus:170MHz) 

200MHz 120MHz 

Technology 180nm (1.8V) 130nm (1.2V) 130nm (1.2V) 180nm (1.8V) 

Profile H.264 baseline 

MPEG-2 

SP@ML 

H.264 baseline 

MPEG-4 SP 

H.261,H.263,JPEG

H.264 main H.264 baseline 

Implementation ASIC ARM-based ARM-based ASIC+RISC 

Gate Count 491K 910K 300K 217K 

Internal 

Memory 

24K bytes N/A 74K bytes 10K bytes 

Power 44.35mW 554mW 160mW N/A 

Normalized 

power* 

100.92mW 2422.88mW 691.89mW N/A 

*Normalized to 180nm(1.8v), 2048x1024@30fps 
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Chapter 6  
Conclusion and Future Work 
 
6.1 Conclusion 

In this work, we implemented a dual mode H.264/MPEG-2 video decoder. We adopt 

many design techniques both on system-point-of-view and architectures. 

From the system point of view, first we proposed the hybrid 4x4-sub-block pipelining 

scheme, by which we can save 93.75% intermediate buffers compared with 

macroblock-level pipelining scheme at the penalty of slightly throughput degradation. The 

instantaneous switching scheme reduces the latency to minimum during pipeline stages. 

Second, we proposed the efficient 1x4-column-by-column decoding ordering, by which the 

28% memory access times and 28% processing cycles in motion compensation process can 

be saved. 17% memory access times can be saved as well in intra predictor. Third, we 

proposed a variable length FIFO architecture for the synchronization problems in adding 

pixels from residual/prediction paths. Forth, the exploration on coded-block-pattern 

technique saves power in inverse quantizer and IDCT modules from 30% to 86% under qP 

ranging from 20 to 48. 

In architecture design, first we proposed a hierarchical syntax parser. The hierarchical 

syntax parser is easy to design and is very suitable for the bit-stream in hierarchical 

structure. With the hierarchical enable signals in these parsers, the power savings by 

clock-gating technique can be up to 86% in these parsers. Second, the register sharing 

technique is applied on syntax parsers for both systems. This technique reduces the amount 

of registers required for both system and 26% registers can be saved. Third, we implement 
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the Exp-Golomb decoder for parsing the H.264 bit-stream. The dedicated interface of this 

decoder enables this decoder to be shared for all parsers. Forth, 3 types of reusable buffers 

in intra predictor are proposed. By the aids of these reusable buffers (upper, left, and corner), 

implementation of the directional modes becomes very easy and the memory access times 

can be reduced also. 

In our final chip implementation, the total gate-count is about 491K, maximum 

working frequency is 83.3MHz, supports real time decoding 720pHD H.264 

sequence@56MHz and 720pHD MPEG-2 sequence @35.7MHz in 30fps. The power 

consumption for these 2 systems is 44.35mW (720p H.264 sequence) and 30.15mW (720p 

MPEG-2 sequence), respectively. 

 

6.2 Future Work 
In our future work, first, we will try to integrate and combine more functional blocks 

for both systems like IDCT, and inverse quantizer. For IDCT, we will take efforts on 

splitting the 8x8 IDCT formula into 2-stage 4x4 and 2x2 IDCT so that the 4x4 IDCT 

module for H.264 can be shared for the 8x8 IDCT operation of MPEG-2. Then, we will try 

to add the CABAC with other functional blocks to our current work to support H.264 main 

profile. We will also try to find the critical path in our work such that we can speed up our 

decoder to work under more than 120MHz to support real time decoding 1080i H.264 video 

sequence in 30fps. 

 

 

84 



 

 
Bibliography 
 
[1] Ting-An Lin, Sheng-Zen Wang, Tsu-Ming Liu and Chen-Yi Lee, "An H.264/AVC 

Decoder with 4x4-block level pipeline", ISCAS 2005 

[2] Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, "A Low-Power H.264/AVC Decoder", 
VLSI-TSA 2005 

[3] Sheng-Zen Wang, Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, " A New Motion 
Compensation Design For H.264/AVC Decoder”, ISCAS 2005 

[4] Tsu-Ming Liu, Wen-Ping Lee, Ting-An Lin and Chen-Yi Lee, "A Memory-Efficient 
Deblocking Filter For H.264/AVC Video Coding", ISCAS 2005 

[5] Shih-Hao Wang, Wen-Hsiao Peng et al., “A Platform-Based MPEG-4 Advanced 
Video Coding (AVC) Decoder with Block Level Pipelining”, Information, 
Communications and Signal Processing, ICICS-PCM December 2003 

[6] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen, “Analysis and design of 
macroblock pipelining for H.264/AVC VLSI architecture”, ISCAS 2004 

[7] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, “Draft ITU-T 
Recommendation and Final Draft International Standard of Joint Video Specification” 
ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, May 2003 

[8] Iain E. G. Richardson, “H.264 and MPEG-4 video compression”, John Willey & Sons, 
autumn 2003, ISBN 0-470-84837-5 

[9] Ville Lappalainen, Antti Hallapuro, and Timo D. Hamalainen, “Complexity of 
Optimized H.26L Video Decoder Implementation”, Circuits and Systems for Video 
Technonlogy, IEEE Transactions, July 2003 

[10] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen, “Hardware 
architecture design for H.264/AVC intra frame coder”, ISCAS 2004 

85 



 

[11] Hae-Yong Kang, Kyung-Ah Jeong, Jung-Yang Bae, Young-Su Lee, Seung-Ho Lee, 
“MPEG4 AVC/H.264 decoder with scalable bus architecture and dual memory 
controller”, ISCAS 2004 

[12] K. Suhring, Ed., JM 8.2 reference software (online), 2004. Available at 
ftp://ftp.imtc.org/jvt-experts/ 

[13] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh , Tu-Chih Wang, Te-Hao Chang and 
Liang-Gee Chen, “Architecture Design for Deblocking Filter in H.264/JVT/AVC” 
International Conference on Multimedia and Expo(ICME’03), Vol. 1, pp. I-693-6, July 
2003. 

[14] Miao Sima, Yuanhua Zhou and Wei Zhang, “an Efficient Architecture for Adaptive 
Deblocking Filter of H.264/AVC Video Coding” IEEE Transactions on Consumer 
Electronics, Vol. 50, Issue 1, pp. 292-296, Feb. 2004. 

[15] He-Wei Feng, Zhi-Gang Mao, Jin-Xiang Wang, Dao-Fu Wang, “Design and 
implementation of motion compensation for MPEG-4 AS profile streaming video 
decoding,”. 5th International Conference on ASIC, Oct. 2003. Proceeding. 

[16] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen, “Fully utilized and reusable 
architecture for fractional motion estimation of H.264/AVC,” IEEE International 
Conference on Acoustics, Speech, and Signal Processing, May 2004. 

[17] Shu-Tzu Lin, Chen-Yi Lee, “Analysis and design of a high-throughput two dimension 
inverse scan discrete cosine transform processor”, Master Thesis, Department of 
Electronics Engineering, National Chiao Tung University, Taiwan, June 2000 

[18] Y. Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition H.264/AVC hardware 
video decoder core for multimedia SoC’s,” Proc. ISCE 2004. 

[19] T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai, and L. G. Chen, 
“Architecture Design of H.264/AVC Decoder with Hybrid Task Pipelining for High 
Definition Videos,” Proc. ISCAS 2005. 

 

86 



 

作  者  簡  歷 

 姓名 ：林亭安 

 出生地 ：台灣省台北市 

 出生日期：1980. 11. 24 

 

 學歷： 1987. 9 ~ 1993. 6 台北市立大安國民小學 

   1993. 9 ~ 1996. 6 台北市立和平國民中學 

   1996. 9 ~ 1999. 6 台北市立松山高級中學 

   1999. 9 ~ 2003. 6 國立交通大學 電子工程系 學士 

   2003. 9 ~ 2005. 6 國立交通大學 電子研究所 系統組 碩士 

 

得  獎  事  績 

 2000/06 書卷獎 

 2001/01 書卷獎 

 2003/05  2003 全國 IC 設計競賽設計完整獎 

 2003/06 電子實驗專題競賽榮獲殷之同獎學金 

 2004/05  2004 全國 IC 設計競賽設計完整獎 

 2004/06 書卷獎 

 2004/10  2004 全國系統晶片設計比賽-光電通訊類 SIP 組特優 

 2005/05  2005 全國 IC 設計競賽優等獎 

87 



 

發   表   論   文 

 
 Ting-An Lin, Sheng-Zen Wang, Tsu-Ming Liu and Chen-Yi Lee, "An 

H.264/AVC Decoder with 4x4-block level pipeline", ISCAS 2005 

 

 Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, "A Low-Power 

H.264/AVC Decoder", VLSI-TSA 2005 

 

 Sheng-Zen Wang, Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, "A New 

Motion Compensation Design for H.264/AVC Decoder”, ISCAS 2005 

 

 Tsu-Ming Liu, Wen-Ping Lee, Ting-An Lin and Chen-Yi Lee, "A 

Memory-Efficient Deblocking Filter for H.264/AVC Video Coding", 

ISCAS 2005 

 

 Ting-An Lin, and Chen-Yi Lee, “Predictive Equalizer Design for 

DVB-T system”, ISCAS 2005 

88 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


