Br Sl T AR R E B R 2R

Design and Implementation of Dual Mode

Video Decoder for Digital TV Applications

g4
R D T R

v EREAL e ER S

Bo? B TARZARAERE B ERFETR
Design and Implementation of Dual Mode

Video Decoder for Digital TV Applications

LS N A s Student : Ting-An Lin
R 38y Advisor : Chen-Yi Lee
Bl =2 2 i =~ F
TFIRE GRS AT T LT
A G im 3
A Thesis

Submitted to Institute of Electronics
College of Electrical Engimeering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Electronics Engineering
June 2005

Hsinchu, Taiwan, Republic of China

P EARAY e &R

B WAL AN R RS B RP R R

- ERRIE BEFIE T 2T IR

&

H.264/AVC & _& 37— i~ mﬁﬁ,;%@ﬂﬁﬁ’—-f% » b 42 MPEG-2 » H.261 2 H.263 > H.264
BT LR PRGN > AP IR IFRELF ANPGRS o im0 R
PR TT - B H264 A WP GRBE o APEF LR E 0 kR H P
B B s Ty WHEDAKRT B AT AR jﬂ.‘sﬁ{@%l-i" W
R GFEB R ot FIS SHREIREE S 2 SRR AP p kT E
* & DVD G AR 2R —MPEG-2 » S » AP gkt R o AP Y E AL
* oI A% ?':‘}?f = S Ep et e R Jf#“f v G R B E K F R MPEG-2 hH §8
RS A o

HURARF AR > hEh®me AP FE AR - B R OB R R R

=

~ % 3R& _flm, ERLIT o AR T LN A4 F

S E LSS SR EX LS & AT Rt e Su b ST S SR
PH D hf RS R E R S R e B 2 BRI e e R GRS B

fREG T AL B RIS Y o FlARTRE B FERF Eafp ot 4 DT AR O B AR P T

i

FEOfFA S FoAPL KN - BA* CBP £

i
‘11
13
A
i
4
e
4
th
s
%
IR

%
-
d\
b
3
J
e

BB HRF 26 > AP SHLBEENLRERT A8 ATRRAHE

1 441}

o PR RE R T AR St RS E SRR S W g ot i S .

v F

J

R ELr PITS RE Y ST A I A A E DL B Benp cho b3 AR

PR ARt o AP Z AT Al BRI 2 TR Y o e

ERatt SRS RS B NCREE o R] A s

2B BE Y R B R S H R R S
B 18 A2 1% UMC 0.18um 1P6M® A2 $£ 49 1 7 &3 H.264/MPEG-2 B 5" %
Gfag o * o UG E S0 B MR 0 SH R A1) S 3.9x3.9mm” > LBHER e

5 491K > o= % (FHF 5 ¥ i3 83.3MHz & 4% T g2k 720pHD=H.264 # 1§ 8 in3t

-

56MHz > 720pHDs"MPEG-2 # i 8 /3¢ 35.7MHz te% #) 30 5k cnfe ™ o

il

Design and Implementation of Dual Mode

Video Decoder for Digital TV Applications

Student : Ting-An Lin Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

H.264/AVC is the newest video coding. standard.-Compared with MPEG-2, H.261, and
H.263, H.264 provides better coding efficiency; which means that it provides better image
quality at the same coding rate. In this thesis, we implemented an H.264 video decoder. We
adopted various techniques and architectures to accelerate the decoding throughput and the
reduction on power consumption, to achieve the demands on future digital TV and wireless
communication. Besides, because the multi-mode video decoder is a design trend, the video
coding standard — MPEG-2 which has been widely used for DVD video standard is included
in our design. We expect to use some hardware-sharing techniques to implement the
MPEG-2 video decoder in the situation that only a few additional hardware modules are
required.

From the system point of view, in this thesis we first proposed a block diagram for dual
mode video decoder, to illustrate the functional blocks we used, and the data path of our

work. The efficient decoding ordering we proposed can reduces the memory access times

il

on motion compensation and intra prediction modules. In the decoding loop, the
synchronization problem occurs at the adder that adds the residual pixel values with the
predicted pixel values. We proposed a variable-length FIFO architecture for the solution to
this synchronization problem. We also proposed a way to save power by exploiting the
system parameter “coded-block-pattern”.

In the architecture design, we give descriptions on all the important modules of this
decoder. We adopt a hierarchical structure for the syntax parser design. Hierarchical
structure make the parser easy design, the clock-gating power reduction technique can also
be effectively applied to save power in this structure. The register sharing technique is also
applied in the syntax parser unit in order to reduce the amount of register required. In intra
predictor design, we proposed three kinds of buffers to reduce the design complexity on
intra predictor. The memory access times,¢can be reducedto minimum for the help of these 3
buffers. Besides, other important modules like motion compensation, de-blocking filters are
also included in this thesis. Many techniques-are.also-applied to save memory access times
and to increase the throughput in these modules.

At last we implemented this dual mode H.264/MPEG-2 video decoder in UMC 0.18um
1P6M process. According to the implementation result, the size of his chip is 3.7x3.7 mm?,
total gate count is 491K, and the maximum working frequency is 83.3MHz. This chip

supports real time decoding 720pHD H.264 video sequence in 56MHz, 720pHD MPEG-2

video sequence in 35.7MHz in 30fps.

v

hirRENTE S A LA Bz BEE O LA UE T BT E o EF

7

G- AT bR S 0 AL] 4IRS bk - BT o ERPFR R R e

\4-\

LER RS RS Riddp R e JaiRAG S p koo
FARRMNLADDIT LT HI o bE T RIE o g T o A

B @A G s LF VI R ES AR B X5 1 KA

FRAKHA > LAEALRT | EFFLTEA S FRACRAPE - Rl

o - AR Y R A R Y o dud ik WA P

| & FE e

B REFS Ao R NP RS AAEF] 2 E AT T |

B R AR R WA D R R BLAT e RS B B o

AL prrnEaE - o AR I EFHE A TR ARE > A

—=

Fo oA X w RACRECT] T OB B TR O § 45 05 4 3 | SRR B o
EARGEP BRSO RE AR L Lo L AR T ARy
Fo EEF R 0 4 S g)

BFRE M RS ART A FoSR A T, N b) AR

p:\.},_ *T#I} mﬁ:%(\’_*_) éﬁ 3 m1i2§§_ {#Eiﬁ% \ailzi‘; e },T[, 1_»< %\4 21 'ﬁpﬁﬁ%

b ol
- \2'
i

bt

7 7YY ~ blues ~ %% 2 B (& A AZ4F chmingle & £ o E«ﬁ&ﬁﬂ”,f”: EXI=L
Fhraeh > Q£ NE BT - BIFE > R FIF L PR DGRBS
PAA R RER TR >4 LA BFEFFE PR DR PN XA T E g
FHREE S bR o
RBHrA - Bagiz s der s 4f k22 p i o RBFRP Aed & FFan3 4p

MR bhii- EEFNH P EM - RALREAERBH > AL R

ﬁﬁ*rﬁ 7 }'{;j?rfﬁf@_—o & -}T% mipe ”Afr.;\‘,,_ Avfk A4 ¥ - R AL 7 g. z 1w i

SR RS X0

FEER G b
P AR AT
CEFEITS R S

BE S F

SRR RS

- X G EPEORF EFE - L L R

Bois- B M- 2B P A P—

SRR P ATEIE g s F -

B BITenx oo I P F

d‘i\] fr'

Wrpehs NP2 E - B gl

L R AR it Sk

o FLF I Ay A A EHEFL LY

> %’Eﬁj— i ,ﬁyb?ﬁ_ k;;,;jq}rib\./;g;irz%&%;fém |

vi

. >
EH ~ LI

morning star 7

i? m

Y
i A}

- P i o

TR ks B S

5 e

34

e

Contents

CHAPTER 1 INTRODUCTION.....cccuiiriiirrinsninsnessnisssesssassssessssssssssssassssssssasssssssssssssssssasssses 1
L1 MOTIVATION ..ottt 1
1.2 MPEG-2 STANDARD OVERVIEWcoriiiiiiiniiiiiienieeieeneeereesieeeneeseeesreesineeneesnneennees 2

1.2.1 Profiles and Levelscccccooviioiiiiiiiieiieecieee e 2
1.2.2 PiCUTE TYPES ... et BB BB et 3
1.2.3 Encoder/Decoder Block DIG@FAM. ...coi...............c.ooooueeceeeaiiaiieeiieieeieeeeeeeans 4
1.2.4 Bit-Stream SIUCIHUIE .. oo it e et 5
1.3 H.264/AVC STANDARD OVERVIEW it 5
1.3.1 Profiles and Levels ... e 6
1.3.2 Encoder/Decoder Block Diag@rami..................cccoccueeeeeeieecieacieeieeeiieeieeeieeeians 7
1.3.3 Bit-Stre@m SITUCTUTEccccueiiiiiiiiiieie e 8
1.4 THESIS ORGANIZATIONocuiiiiiiiiiiiiiiiiiie ittt 9

CHAPTER 2 OVERVIEW OF MPEG-2 AND H.264/AVC DECODING FLOW............ 11

2.1 OVERVIEW OF MPEG-2 DECODING FLOW........cccocoiiiiiiiiiiiiiiiiicccc 11
2.1.1 Variable length decOdingccccuvoieiiiiiiiiiiiiiieiie e 11
2.1.2 INVerse SCANNING PPOCESSc..eeeeueeeeieiieeiie et eee e e et es 12
2.1.3 INVerse QUARNTIZATIONccceeeiiuiiiiiieiie et 13
2.1.4 Inverse Discrete-Cosine-Transform (IDCT).............cccccoeeeeeeeeeceenieeieaneenne, 15
2.1.5 MOtION COMPERSALION ...ttt 16

2.2 OVERVIEW OF H.264/AVC DECODING FLOWccccccoiiiiniiiiniiiiiiiciciciceee 17
2.2.1 Entropy deCOdingcccoooioiiiiiiiiiii et 17
2.2.2 INVerse SCANNING PPOCESSccueeiieieiiieie ettt 18
2.2.3 Inverse quantization & inverse Hadamard transform...............cc.ccoeeveeun.. 19
2.2.4 Inverse Integer Discrete Cosine Transformccccoccceccencieviioenieencnnenn. 20
2.2.5 INEPQ PYEiCLION ... s 20
2.2.6 MOtiOn COMPERSALION. ...ttt 22
2.2.7 De-DIOCKING fIltEFcc.ooeeeeieeiieiie et 24

CHAPTER 3 SYSTEM DESIGN OF MPEG-2 AND H.264/AVC DECODER................ 27

3.1 MPEG-2 AND H.264/AVC COMBINED SYSTEM DECODING FLOWcccccocueuneee. 27

3.2 HYBRID 4X4-BLOCK LEVEL PIPELINE WITH INSTANTANEOUS SWITCHING SCHEME

FOR H.264/AVC DECODERcc.oouee fiuren fovestandbesiasdie s tsfeneeeteniessentesseeseeseensessesensenseneennes 28
3.2.1 Hybrid 4x4-Block Level Pipeline Architecture-.....................ccccccooenienennenn. 28
3.2.2 Instantaneous SWitching SEheme ... i i e 32

33 EFFICIENT 1X4 COLUMN-BY-COLUMN DECODING ORDERING.....ccccvterireeriieenieeans 33
3.3.1 Analysis on inter prediCtion UNIL...............c.ocooueeveeeeiiieeeeiie e 34
3.3.2 Analysis on intra prediction URNIL..............c.ccccceiiiiiiiiiiiiiieie e 37

3.4 PREDICTION/RESIDUAL SYNCHRONIZATION SCHEMEc..cccutruienierienieeieaienieeneeneens 38

3.5 POWER SAVING BY EXPLOITING CODED-BLOCK-PATTERN......cccccutiriiiiniieeniieenieeens 40

3.6 NOVEL USER-DETERMINABLE LOW POWER MODE EXPLORATION........c..cccueenurennnen. 42

CHAPTER 4 ARCHITECTURE DESIGN OF MPEG-2/H.264/AVC DECODER.......... 45

4.1 MPEG-2 & H.264/AVC COMBINED SYNTAX PARSERS ...c..covuieiinieienieniieieeie e 45
4.1.1 Low-Power Hierarchical Parser DeSignccccccouoievoeicianieiieiieene 45
4.1.2 Register Sharing Parser DeSIgHcc..ccccueecuieeiiiesieeeiee e 48

4.2 ExP-GOLOMB DECODER FOR H.264/AVC SYNTAX PARSERcc.ccoceerierieniieieneenieenne 51

viii

4.2.1 Circuit design of Exp-Golomb Decoderccccocccuiuviinoiniiininocnnanne. 52

4.2.2 Reusability of the Exp-Golomb Decoderc...ccoovuevcvaniieninaniaannannen. 53
4.3 H.264/AVC INTRA PREDICTOR.....ccctirititieiieniiinieniesitenteete st sttt et estesaeeseeeaesaeens 54
4.3.1 Low-Power Memory Fetch Upper Buffer DeSign...............cccccevevevieeceeanneane. 54
4.3.2 Reusable Left BUffer DeSi@ncccccceiiiiiiiiiiiiiiiieeeee e 57
4.3.3 Reusable Corner Buffer DeSigN...............cccoeuviieiiieeaiieeeiie e 58
4.3.4 Intra Predictor for Directional Based Modes...................cccccccevveancenciannnne. 60
4.3.5 Intra Predictor for DC Mode................cc.cccueiiieaiiiiaiiieaiiee e 61
4.3.6 Intra Predictor for Plane PrediCtionccccccocoiavoieiiianieiiieiieeceee, 61
44 MPEG-2 & H.264/AVC INVERSE DCTccoccoiiiiiiiiiiiiiiciceccccce 64
4.4.1 2-5tage IDCT AFCRILECIUTEc...ccocoeiiiiiiiiiiiiieeeiee e 65
4.5 MPEG-2 & H.264/AVC COMBINED MOTION COMPENSATORcccccueuremrerenrennennens 66
4.5.1 Motion CompenSation ENGINeic:iiti..coueeniiiiiiiiiiiceceee e 66
4.5.2 INLETDOLALON......... 00 35 ceevnpeprsmrss 24 eeeeeitteesiteeetteeeaseesnaaeesnsseesnseeennneeees 67
4.6 MPEG-2 & H.264/AVC COMBINED DE=-BLOCKING FILTERcccocceviiiiiiiiniinnenens 69
4.6.1 Triple-Mode DeECiSIONcc.cccueeeeeieeeiie et eaae e 70
4.6.2 Slice and CONtENt MEMOTY................ccccovuiiiiiiiiiiiiicieeeeee e 71
4.6.3 Hybrid SCREAUIINGc.ooeeeiieiieeieeeee e 72
CHAPTER 5 CHIP IMPLEMENTATION FOR DIGITAL TV APPLICATIONS.......... 77
5.1 SYSTEM SPECIFICATIONccuiiuiiiiiiiiiiitiiii ittt s 77
5.2 DESIGN FLOW...ooiiiiiiiiiiiiiiiiiicec s 78
53 IMPLEMENTATION RESULTocuiiiiiiiiiiiiiiiiiicic e 79
5.4 MEASUREMENT RESULTS AND COMPARISONcccciiiiiiiiiiiiiiiiiiieieiiesie e 81
CHAPTER 6 CONCLUSION AND FUTURE WORK.......icviineinsninnseicsaicssansssnsssssosanens 83
6.1 CONCLUSION ...ttt et s e s &3

6.2 FUTURE WORK

BIBLIOGRAPHY

List of Figures

F1G.1.1 A SIMPLE BLOCK DIAGRAM OF MPEG-2 VIDEO ENCODERccceeeiiuiiieeeririeeeeivreeeennennes 4
F1G.1.2 A SIMPLE BLOCK DIAGRAM OF MPEG-2 VIDEO DECODERc.ceeeruiieeireeniieenieeenneeennnes 5
F1G.1.3 HIERARCHICAL BIT-STREAM STRUCTURE OF MPEG-2 VIDEOcccccviiieeciiiieeeiieee e 5
F1G.1.4 H.264 BASELINE, MAIN, AND EXTENDED PROFILEcuvvvviiiiiiiiiiiiieeeeeeeeeeieiirreeeeeeeeesennns 6
F1G.1.5 A SIMPLE BLOCK DIAGRAM OF H.264/AV C VIDEO ENCODER........ccc0eeevieeerieeereeesreeennnes 7
FIG.1.6 A SIMPLE BLOCK DIAGRAM OF H.264/AVC VIDEO DECODER.........ccccecvrerrieereeirennreeneennns 8
F1G. 1.7 HIERARCHICAL STRUCTURE OF H.264 VIDEO.BIT-STREAM..........cceeriurieeeernreeeeaerreeeennennes 9
FIG. 2.1 INVERSE SCAN PATTERN (A)ALTERNATE..SCAN=0 (B)ALTERNATE SCAN=1cccuvveeunnnn. 13
FIG. 2.2 INVERSE QUANTIZATION PROGESS00emitenerereerereeeeerereeereseesressssssssessssssssssessssssesesrsrene 14
FIG. 2.3 MOTION COMPENSATION PROCESSceuttteitieerieeenreeenireeeseneeessseeensseesnsseessssesssseesssseesnns 17
FIG. 2.4 ZIG-ZIAG SCANooiieeiiiieeeeteee ettt e e et ee e e st eeeesateeeeeaaaeeesssssaeeeassssaaeeansssaaeeassseeeannes 18
FIG. 2.5 INTRA_ 4X4 PREDICTION MODESctiiiuiieriieerieeenueeenseeeseneesssseeessseesnssesssssesssseessssesenns 21
FIG. 2.6 INTRA 16X16 PREDICTION MODESuuttiiiiieriiieeniiteeniieeenieeesiteesniteesniseesseeesneeesseeens 22
F1G. 2.7 MACROBLOCK AND SUB-MACROBLOCK PARTITIONSccccuteerirreeireeenereennreenreeenneeenns 23
Fi1G. 2.8 UP TO 1/4 MOTION VECTOR RESOLUTION (MV=(+1.50, -0.75)) .ceceeriieieniieieeenee, 23
FIG. 2.9 INTERPOLATION FOR PIXEL VALUESuvteititerieeenieeenieeenireeensseesnsseessssessssseessseesssseeenns 24
FIG. 2.10 EDGE FILTERING ORDER IN A MACROBLOCKc.ccctttteeeirieeeesiieeeeesnreeeesnsneeessnsneeeannns 25
FIG. 2.11 ADJACENT PIXELS TO HORIZONTAL AND VERTICAL BOUNDARIEScccceiuvieeeeirrreeanns 25
F1G. 3.1 MPEG-2/H.264 COMBINED DECODER DIAGRAMc..ooieiiiiieiiieeiieeeiiee e e eveeesvee e 28

F1G.3.2 ADDITIONAL PROCESSING CYCLES REQUIRED FOR 4X4-SUB-BLOCK-LEVEL PIPELINE

X1

PARALLELISM .. ettt ettt et e e e et e e e et eee e e e e e e e et eaaeeeeanaeeeaenaaeeenenans 29

FIG. 3.3 AN EXAMPLE OF THE PIPELINING SCHEDULEeiiittttiuiieeeeeeeeeteeeeeeeeeeeeeeeeenenneaeseeeseen 33
FIG. 3.4 4X1 ROW-BY-ROW DECODING ORDERING ...ueettuueeeeeeeeeeeeeaeeeeeeeeeeeeeaeeeeeaaeeeeennaeeeeennns 34
FIG. 3.5 1X4 COLUMN-BY-COLUMN DECODING ORDERING ...cevvvuuuieeeeeeeeeeeineeeeeeeeeeeeneneeeeseeeeeen 34

FIG. 3.6 16 INITIALIZATION PROCESSES IN INTER PREDICTED MACROBLOCK UNDER 4X1
ROW-BY-ROW DECODING ORDERINGccceiiutiieeeiiiieeeeiiteeeeeiireeeeessaseeeessssseessnsssesessssseseens 36

FI1G. 3.7 8 CONTENT SWITCHES IN INTER PREDICTED MACROBLOCK UNDER 1X4
COLUMN-BY-COLUMN DECODING ORDERINGcueiiiiiuiiieeeiiiieeeeiireeeeeiareeeeesnseeeeesssseaeannns 36

F1G. 3.8 REDUCTION ON MEMORY ACCESS OF THE INTRA PREDICTED MACROBLOCK................... 38

FIG. 3.9 A VARIABLE-LENGTH FIFO IS REQUIRED FOR THE SYNCHRONIZATION BETWEEN

INTRA/INTER PREDICTOR AND IDCToooiiiiiiiiiiiiee e 39
F1G. 3.10 OPERATION OF VARIABLE-LENGTH FIFO AS A SYNCHRONIZER........ccvvveeenrreeeeennnennn. 40
F1G. 3.11 POWER SAVING BY EXPLOITING CODED-BLOGK-PATEERN...........ccccevurrrrereeeeeeenrnnnenn. 41
FI1G. 3.12 QP VERSUS BITRATE AND THEPERCENTAGE.OF.ALL ZERO COEFFICIENT BLOCKS......... 42
FIG. 4.1 HIERARCHICAL SYNTAX PARSER.... 00 0 fitsecsesseesitanstereeeeeeeesesureeeeseeeessesisssseseseseessonsssseees 46
F1G. 4.2 AN EXAMPLE WAVEFORM OF THE ENABLE SIGNALS IN SYNTAX PARSER.............cccuvee... 47
FIG. 4.3 POWER REDUCTION ON SYNTAX PARSER.......cuuutiiiiieeeeieiiiitreeeeeeeeeeeeeinrreeeeeeeeeeeennneneess 48
(A) WITHOUT APPLYING GATED CLOCK (B) WITH APPLYING GATED CLOCKccceerveereenneennee. 48
FIG. 4.4 REGISTER SHARING TECHNIQUEuuiiiiiiiiiiiiieeeeeeeeeetteeeeeeeeeeeetessannesssssesssssnnnseeseseeens 50
F1G. 4.5 REGISTER NUMBER REDUCTION ON SYNTAX PARSERccccutiiieiiiriieeeiiiieeeeeireeeeenveeanns 50
FIG. 4.6 CIRCUIT DESIGN OF EXP-GOLOMB DECODERccccciiiiiiiiiiiiieeeeeeeeiecinieeeeeeeeeeeecanveneees 53
F1G. 4.7 EXP-GOLOMB DECODER SHARED FOR ALL MODULES IN THE SYNTAX PARSER.............. 54
FIG. 4.8 OPERATION OF UPPER BUFFER (A)..cccuttitiiiiiieiieiieeiie ettt ettt sttt e 56
FIG. 4.9 OPERATION OF UPPER BUFFER (B)uoiiiiiiiiiiiiiiiicce et 56
FIG. 4.10 OPERATION OF LEFT BUFFER (A) ..eeiuttiiiiiiiieiiesiie ettt ettt et st ettt siae e 57
FIG. 4.11 OPERATION OF LEFT BUFFER (B) ..eeviiiiiiiiiiieeee e 58

FIG. 4.12 OPERATION OF CORNER BUFFER (A)iiitiiiiieiieeiieeiiesie ettt 59

FI1G. 4.13 OPERATION OF CORNER BUFFER (B)ooiiiiiiiiiiiiiiieiece e 59
FIG. 4.14 INTRA PREDICTOR FOR DIRECTIONAL BASED MODEScceeiiiiiiiiiiiiieeeeeeeeeeiirrrreeeeeeens 60
FIG. 4.15 INTRA PREDICTOR FOR DC MODEuutiiiiiiiiiiecciiieeeeciiee et e et aaee e e aaeee e 61
FIG. 4.16 SLOPE CALCULATOR FOR PLANE PREDICTION..........cccccutrrireeeeeeeieinrreeeeeeeeeeeeinrnrreeeeeeeens 62
FIG. 4.17 REQUIRED CALCULATION FOR PLANE PREDICTIONcuvvveiieeeeiieinrieeeeeeeeeeeiinnereeeseeeens 63
FIG. 4.18 INTRA PREDICTOR FOR PLANE PREDICTIONccceeeiiiuiririeeeeeeeeieiinrreeeeeeeeeeeenrnnseeeeeeeens 64
FIG. 4.19 INTRA PREDICTOR FOR PLANE PREDICTIONccccuutiieiiuireeeeeiureeeeeeireeeeesnneeeeensneeeennns 64
FIG. 4.20 2-STAGE IDCT ARCHITECTUREccccciiiiitirtiieeeeeeeeeieitteeeeeeeeeeeeenrreeeeeeeeeeesnsnsseeesaeeens 66

FI1G. 4.24 (A) SLICE MEMORY WITH GRID OR SHADED REGION AND (B) CONTENT MEMORY WITH
BLACK-DOTTED REGION.......cutttiiiiieeiieiiititreeeeeeeeeeeiitreeeeeeeeeeesesssseseseeeeesesssrssssssessessesssssenes 72

FIG. 4.25 HYBRID SCHEDULING METHODcccuuiiiaiianneeeeeeireeeeeiireeeeeeveeeeeeiaseeeeessssseeesnssneseennes 73

FIG. 4.26 THE PARTITIONED MB AND.EACH TIME:NSTANCE WHEN APPLYING THE HYBRID
SCHEDULING METHOD..........500 ... fissfessvmmmsssess s e aseeeeensssseessssessessssssessssssseessssssesssssssseens 74

FIG. 4.27 THE BLOCK DIAGRAM AND DATA FLOW.QF THE MPEG-2/H.264 COMBINED

DE-BLOCKING FILTERcetuuuttttuueeetteeeeteeeeeeteeeeeetaaessetaaessstsnessssanesessanesessunneesssuneseesans 75
FIG. 5.1 DESIGN FLOW FROM SYSTEM SPECIFICATION TO PHYSICAL-LEVEL...cceuueeeeieaeeeeeeaeeeenn. 78
FIG. 5.2 LAYOUT OF THIS WORKueeeeeetttteeeeeeeeeeeeeeeteeeeeeeeeeetenenneaesssesseannnnnaaesseessensennaaesseeeeees 80

xiii

Xiv

List of Tables

TABLE 1.1: MPEG-2 LEVELS: PICTURE SIZE, FRAME-RATE AND BIT RATE CONSTRAINTS............. 3
TABLE3.1: TRADE-OFF BETWEEN PROCESSING CYCLES AND BUFFER COSTcccoevvvireeeirieeeennen. 30
TABLE 3.3 POWER DISSIPATED BY BUFFERS BETWEEN PIPELINE STAGES......cc.ccoeviiiiuiiiereeeeeeeennns 30
TABLE 3.4 SUMMARY OF PIPELINE PARALLELISM APPLIEDcccviiiiiiiiiiiireeeeeeeeeeiniireeeeeeeeeeennnnns 32
TABLE 3.5 POWER PROFILING OF DECODING H.264 VIDEO BIT-STREAM (UNIT:MW) 44
TABLE 3.6 LOW POWER MODE EXPLORATIONcccuutiiiiiiiiieeeeiiieeeeeireeeeeeiveeeeeenneeeeeivaeeeeeneneas 44
TABLE 4.1 NUMBER OF REGISTER NEEDED FOR MPEG-2/H.264 SYNTAX PARSER 49
TABLE 4.2 AREA AND POWER REDUGTION ON REGISTER-SHARING VERSIONcceeeeurieeeennnnen. 51
TABLE 4.3 THE ASSIGNMENT OF BIT STRINGS TO CODE VALUEccoeeiuurriieeeeeeeeeccirreeeeeeeeeeeanns 52
TABLE 4.3 AREA AND POWER REDUCTIONON . REGISTER=SHARING VERSIONceeeeuriieeennnnen. 65
TABLE 5.1 SIMPLE PROFILE (@ MAIN LEVEL OF MPEG-2 SYSTEM.......ccccevviiniiinieniieiceienenn 77
TABLE 5.2 BASELINE PROFILE (@ LEVEL 3.2 OF H.264 SYSTEMcccovtiiiieieniieieeiesieeieeee e 77
TABLE 5.3 CHIP DETALLS....utttteeeeeieeieiiitteeeeeeeeeeeiitueeeeeeeeeeeaeisssseseeeseeesesisssssssssseensessssssssesessssnnnes 81
TABLE 5.4 POWER REPORTccceiiuutiieeiittieeeeeiteeeeeeteeeeesaseeseasasasesaansassesesssssessssesesansssesssnssens 81
TABLE 5.5 COMPARISONSevtiiieiiieietiiteeeeeeeeeeeiitrereeeeaeeeeaeesrseseeeseeesesissssssesaseeesesssssssseseesssnnnes 82

XV

Chapter 1
Introduction

1.1 Motivation

H.264 is the new video coding standard developed by MPEG (Moving Picture Experts
Group) and VCEG (Video Coding Experts Group) that promises to outperform the earlier
MPEG-4 and H.263 standard, providing better compression of video images. Because of its
high coding efficiency, it has great potential to be:the video standard of the next generation.
For content storage, like HD-DVD and Blu-Ray in the next generation (both use 450 nm
Blue-Laser diode), standardized the H.264 with MPEG-2 and WMV-9 with its digital
content. The video content storage for Sony PS3, which will be phased in in 2006, adopts
H.264 as its video compression standard as well. For digital broadcasting, like DVB-H of
handheld digital TV standardized by ETSI, combined the wireless communication
standard — COFDM with the newest video coding standard — H.264, trying to migrate the
digital video technology to portable. Another digital broadcasting standard for Set-Top-Box
like DVB-S2 also exploits the Forward-Error-Correction (FEC) technology (LDPC used)
with the H.264.

The H.264 seems so popular and with high potential to be the video coding standard of
so many applications in the next generation, the demand of the decoder for H.264 is obvious.
However, the penalty for its high coding efficiency is the large amount of computation.
From our survey on some technical papers, it seems that the efficiency of the

1

platform-based approach is not that enough to achieve the required throughput of decoder.
Thus we try to design a dedicated decoder which suits for the digital TV applications.
Multimode decoder is the trend, and we can see this trend everywhere. For example,
we can easily find a DVD player which supports decoding VCD, MP3, or even JPG images.
To design a multimode decoder is then become important for the decoder designs. Thus in
our design of H.264 decoder, we try to design our decoder multimode. We choose MPEG-2
because that MPEG-2 is the video standard of DVD, has been widely used today. The
hardware sharing issue, and many multimode functional block has become great issues in

our decoder design.

1.2 MPEG-2 Standard Overview

MPEG-2 is mainly divided into 3 parts, theyMPEG system, MPEG video, and MPEG

audio. In this thesis only MPEG video:is concerned.
1.2.1 Profiles and Levels

MPEG-2 video is an extension of MPEG-1 video. MPEG-1 is targeted at video with
bit-rate up to about 1.5 Mbits/s. Compared with MPEG-1, MPEG-2 provides some extra
coding tools that it can support bit rates of various range. Scalable coding is also included in
the MPEG-2 standard. There are total 5 profiles in the MPEG-2 standard, which are Simple,
Main, SNR, Spatial, and High profiles. Above these profiles, the Main profile is the most
widely used profile. It supports I, P, and B pictures, uses 4:2:0 chroma sampling format, but
is non-scalable. Main profile is subdivided into 4 levels, which are low, Main, High-1440,
and High levels. The picture sizes, frame rate, and bit rate constraints for different levels are

summarized in Table 1.1.

Table 1.1: MPEG-2 levels: Picture size, frame-rate and bit rate constraints

Level Max. frame size | Max frame rate | Max bit rate
Low 352 x 288 30 4
Main 720 x 576 30 15
High-1440 1440 x 1152 60 60
High 1920 x 1152 60 80

1.2.2 Picture types

MPEG-2 contains 3 picture types, the;l-picture, P-picture, and B-picture.

Intra picture (I-picture) is the pictuse that coded without reference to other pictures. It
uses the reduction of spatial redundancy to achieve compression. Because that I-picture can
be decoded independently without refereneing=to other pictures, I-pictures can be used as
the access points in the bit-stream where the decoder can start to decode.

Predictive picture (P-picture) is the picture that coded by motion vectors referencing to
previous | or P-pictures and residuals. It uses the reduction of temporal redundancy to
achieve compression. Besides P macroblock blocks in the P-pictures, I macroblock can also
exist in the P-pictures. Thus the spatial redundancy can also be reduced to achieve
compression in the P-picture. P-pictures offer increased compression compared to
I-pictures.

Bidirectionally-predictive picture (B-picture) is similar to P-picture. Different from
P-pictures, the reference frames can be either the previous picture, next picture, or both. It

offers highest degree of compression.

1.2.3 Encoder/Decoder Block Diagram

The encoding process of MPEG-2 video contains the motion estimation and residual
coding. Fig. 1.1 shows the simple block diagram of the MPEG-2 encoder. An embedded
decoder inside the encoder calculates the result of the motion compensation so that the
residual can be calculated by subtracting the input image with the motion compensated
image. A Discrete-Cosine-Transform transfers the residual values to frequency-related
domain. By quantizing the transferred coefficients, a Huffman run-length coder is

responsible for coding the quantized coefficients and then outputting.

Input _ _ . _ | Run-Length
Video '©_> DCT §y Quantizer . Coder >

A A
Inverse
Embedded Quantizer
 / Decoder
Motion Y
ESUmaﬂOn IDCT
Motion | Frame
Comp. Stores
A

Fig.1.1 A simple block diagram of MPEG-2 video encoder

Fig. 1.2 shows the simple block diagram of an MPEG-2 video decoder. A parser with
Huffman run-length decoder decodes the motion vectors and quantized residual values.
After inverse quantization and inverse DCT transform, the decoder calculates the residual
values. By adding the motion compensated pixel values, the decoder can recover the
original picture. At the time when the decoder output the decoded image, a copy of the
picture must be stored into the frame buffers for the motion compensation process on next

picture. The detailed decoding process will be described in section 2.1.

4

Input _ | Run-Length .| Inverse .| Output

Bit-stream "] Decoder " | Quantizer > IDCT + Video
Motion | Frame
Comp. stores

Fig.1.2 A simple block diagram of MPEG-2 video decoder

1.2.4 Bit-stream structure

Each picture is divided into several slices. Each slice is divided into several
macroblocks. Each macroblock is further divided into blocks. A block is a group of 8x8
pixels, the smallest processing unit of the MPEG-2 system. Fig. 1.3 shows the hierarchical

bit-stream structure of MPEG-2.

Sequence Layer Start Sequence‘ Picture 0 Picture 1 | =+ Picture N
code | Parameter
Picture Layer Start Picre Slice 0 Slicel | =t Slice N
code flags

Slice Layer Start Shcev Quantization Macroblock 0 | Macroblock 1 | ««+-+ Macroblock N
code | address value
Motion
Macroblock Layer | Address | Modes | Block | Block | <=« +** Block Address | Modes Vectors Block | =+ Block

Fig.1.3 Hierarchical bit-stream structure of MPEG-2 video

1.3 H.264/4AVC Standard Overview

H.264/AVC is a standard only for videos. Its extreme low data rate is achieved by
several complex techniques and algorithms such as up to 1/4 resolution for luma and 1/8 for
chroma on motion vector, several block size from 4x4 to 16x16, several modes in inter/intra

prediction, CAVLC, or CABAC in context-adaptive entropy coding.

1.3.1 Profiles and Levels

H.264/AVC contains 3 profiles, which are baseline, main, and extended profiles. A new
profile named “high profile (Fidelity Range Extensions (FRExt))” will be included as well
and is currently standardized. As Fig. 1.4 shows, I-slice, P-slice and CAVLC are the basic
parts of the H.264/AVC system. CABAC and interlace is supported in main profile, and

some extra slice like SP and SI slices, and data partitioning is supported in extended profile.

Main

Weighted -
SP and S1 prediciion | L_Bstices | \ [Interlace |
slices i

CAVLC

Data
partitioning

Extended

Slice Group
and ASO

Redundant
slices

Baseline

Fig.1.4 H.264 baseline, main, and extended profile

Much more than MPEG-2 levels can be found in the H.264 standard. From level 1 to
level 5.1, max frame size ranging from 99 to 36,864 macroblocks, max video bit rate
ranging from 64k to 240,000k bits/s, and motion vector ranging from +/-64 to +/-512

samples.

1.3.2 Encoder/Decoder Block Diagram

The encoding process for H.264/AVC video is more complex than the encoding
process of the MPEG-2 video. Fig. 1.5 shows the simple block diagram of the H.264/AVC
encoder. Same as MPEG-2 encoder, an embedded decoder exists inside the encoder that
calculates the result of the motion compensation and intra prediction at the decoder side.
With this embedded decoder, the encoder can foresee the decoded result and precisely
calculate the residual pixel values without mismatch to the decoder. Besides inter prediction
(motion compensation), intra prediction is also an important parts that tries to reduce the
spatial redundancy to increase coding efficiency. Several intra prediction modes can be used
for the intra predictor, and the prediction, mode is decided by a mode decision block at the
proceedings of the intra predictor: Not only.intra‘prediction, the choices of the motion
compensator are a lot as well. Various block sizes, multiple reference frames, short/long
term prediction, and the motion vectors are-all decided by motion estimation block. With
these 2 strong prediction paths, the residual pixels values calculating from subtracting the
input video with the prediction pixel values is closer to zero. After DCT transformation,
quantization process, the entropy decoder at last reduces the coding redundancy effectively

and then outputs the coded pictures.

Y+

Input
video

DCT ’—F

ng.rm -
zation

Reorder ’—F

Entropy. NAL
encoder

Motion Motion
Estimation Compensation |Inter prediction
Reference } A A Embedded
Frame o)
y Tntra Mode Tntra Intra pediction Decoder
Decision Prediction
Loop < T T Inverse
Filter Quant.

Fig.1.5 A simple block diagram of H.264/AVC video encoder
7

Compared with the encoder, the decoder is simpler because it lacks the decision parts
like motion estimator and the intra mode decision parts. Fig. 1.6 shows a simple block
diagram of the H.264/AVC video decoder. After entropy decoding the input bit-stream, the
inverse quantization process and IDCT transformation transferred the bit-stream data into
residual pixel values. By adding the predicted pixel values from intra predictor or motion
compensator, an in-loop filter smoothed the blocking effects and then to both the output
buffer and frame buffer for future reference. The details of the decoding process will be

described in section 2.2.

Input Entropy
bit-stream decoder

|

§ Inverse J Loop Output
Reorder Quant. " DET == + ™| Filter ’ Video
Tt tion Prediction

Motion Frame
Compensation Buffer

Inter preMigtion

Fig.1.6 A simple block diagramiof H.264/AVC video decoder

1.3.3 Bit-stream structure

Same as MPEG-2 bit-stream structure, the H.264 bit-stream is structured hierarchically,
from block-level to video sequence level. Different from MPEG-2 which is the 8x8-block
based system, the smallest block size in H.264/AVC system is the group of 4x4 pixels.
Reference to the annex B in the H.264 standard [7], as Fig. 1.7 shows, data are all packed
into NAL units. An NAL syntax element is attached in the front of each NAL unit. Each
NAL unit contains an NAL unit header, which indicates the NAL unit type of the following
data in this NAL unit, and the type of the RBSP (Raw Byte Sequence Payload) it contains.

There’re several types of RBSP. For example, the SPS (sequence parameter set), PPS

8

(picture parameter set), and Slice layer RBSP. Slice layer RBSP includes slice header, slice
data, and sometimes slice ID or redundant picture count of the partitioned slice layer. Slice
data is composed of macroblocks, each consists of prediction modes (in intra macroblock)
or sub-macroblock type, motion vectors (in inter macroblock) and the 4x4 block based

residual data, which contributes the size of the H.264 bit-stream the most.

NAL NAL NAL NAL
Syntax Syntax Syntax Syntax
Element Element Element Element

NAL unit NAL unit NAL unit
PPS- NAL .
SPS-RBSP RBSP uii Slice Layer-RBSP
AL NAL =
Unit Unit STice :
Header Header Header Slice Data
Macro- | Macro- | Macro- |, | Macro-
block block block block
M Sulf)'l i Residual [MaCros ™ TRegidual
ACTobie Data block Data
Predition Predition

Fig. 1.7 Hierarchical structureof H.264 video bit-stream

1.4 Thesis Organization

This thesis is organized as follows. At first, the overview of the MPEG-2 and
H.264/AVC decoding flow is described in Chapter 2. Chapter 3 gives the system level
design consideration and some system-level schemes in this work, like pipeline architecture,
decoding ordering, system synchronization, low power mode exploration, and low power
design between modules. Then, details of the architecture designs of each functional block
are described in Chapter 4. Finally, the implementation details, conclusion and summary are

presented in Chapter 5 and Chapter 6, respectively.

10

Chapter 2
Overview of MPEG-2 and H.264/AVC
Decoding Flow

The overviews of MPEG-2 decoding flow and H.264/AVC decoding flow will be given
in this chapter. Though there exists some differences between the decoding flow of
MPEG-2 and H.264/AVC, similarities like inverse discrete cosine transform, inverse
quantization, or motion compensation can still be found. In the system point of view, to
make good use of every functional block-suits:for'both systems is an important issue and

good innovation of designing a multimode video decoder.

2.1 Overview of MPEG-2 Decoding Flow

The decoding process is strictly defined in the standard. With the exception of the
Inverse Discrete Cosine Transform (IDCT) the decoding process is defined such that all
decoders shall produce numerically identical results. As Fig. 1.2 shows, the decoding
process mainly includes variable length decoding, inverse scanning process, inverse

quantization, inverse DCT, and motion compensation.

2.1.1 Variable length decoding

The DC coefficients are separated from other coefficients. For DC coefficients, a
predictor is used for the prediction of the DC coefficients. The predictor shall be reset to a
certain value at the start of a slice, a non-intra macroblock is decoded, or a macroblock is

skipped. The differential value (dc_dct differential) is coded in the bit-stream. Thus the

11

decoder can calculate the DC coefficients (QFS[0]) by
QFS[0]l=dc _dct pred[ccl+dct diff;
dc _dct pred[cc]= QFS[0];
Where dc dct pred are the values of the 3 predictors, Y(cc=0), Cb(cc=1), and
Cr(cc=2). The dct_diff is the transformed value from dc_dct_differential.
For other coefficients, by table lookup of two VLC tables the values of “run” and

“level” can be decoded. Then the coefficients in a macroblock can be recovered by

run-length decoding process as the follows.
eob not read =1,
while(eob not read){
< decode VLC, decode Escape coded coefficint if required >
if(< decoded VLC indicates End of block >){
eob not read = 0;
while(n < 64)¢{
QFS[n] = 0;
n=n+1;

h
telsed

for(m = 0;m < run;m + +){
QFS[n]=0;
n=n+1;

b
QFS[n] = signed level

n=n+1;

}

2.1.2 Inverse scanning process

After total 64 coefficients are decoded by the Huffman run-length VLC decoder
described above, the inverse scanning process inverse scanned these coefficients to a single
8x8 block. 2 scan patterns determined by parameter “alternate_scan” can be used. Fig. 2.1

shows these 2 scan patterns.

12

(=]
NN
Ch
[«
—
I
S
N
B
[N
oo
=]
o~
1)}

20 2 36 38 52

2 4 7 1B 16 26 29 42 1 5 1 /21 23 /37 39 /58
3 g v VI 25 30 4 43 2 § 19 24 34/ 40 50/ 54
9 U W 24 3 40 44 53 3 9 18 25 B35 M1 ST 55
19 19 23 32 39 45 52 54 10 17 26 30 /42 46 /56 60
20 22 33 38 46 51 55 60 11 16 27 /31 /) 43 /471 51 /61
21 34 37 47 50 56 59 61 12 15 28/ 32/ 44/ 48 58/ 62
35—36 48—49 5758 62—63 13— 29 33 45 49 59 63
(a) (©)

Fig. 2.1 Inverse scan pattern (a)alternate_scan=0 (b)alternate scan=1

2.1.3 Inverse quantization

As Fig. 2.2 shows, the inverse, quantization, process can be divided into 3 parts, the
arithmetic, saturation, and mismatch control:parts. I the arithmetic part, DC coefficient is
separated from all the other coefficients. The parameter “intra dc precision” indicates the
multiplication factor for DC coefficients, ranging-from 1 to 8. For other coefficients, a
weighting matrices W[w][v][u] and the Quant scale code determines the multiplication
factor. W[w][v][u] can be either encoder-defined values or default values. The
Quant scale code can be got by table lookup with the help of parameter
“quantiser_scale code” and “q_scale type” in the bit-stream.

In the saturation part, the scaled coefficients F’[v][u] are saturated to F’[v][u] which
lie in the range of [-2048:+2048]. In mismatch control, a correction is made to just one

coefficient, F[7][7], adding or subtracting by one.

13

QF[V][u] Inverse Fv][u] ' FvIlul| Mismatch F[v][u]
— Quantization & Saturation Clzr;llt?ocl >

Arithmetic

Wlw][v][u] Quant_scale_code

Fig. 2.2 Inverse quantization process

In summary the inverse quantization process is any process numerically equivalent to

/I Arithmetic
for(v=0;v<8;v+0+){
forw=0;u<8;u++){
if((u == 0) & &(v == 0) & &(macroblock_intra)){
F''[v][u]=1intra_dc mult *QF[v}][u};
telse{
if(macroblock intra){
F'"[v][u] = (QqfF[v][u]* Wlw][v][u]* quantisewr scale*2)/32;
telse{
F'"[v][u]= ((QF[v][u]*2) + Sign(QF[v][u])) * W[w][v][u]* quantiser scale)/32;

14

// Saturation
sum =0;
for(v=0;v<8v++){
forw=0;u<8;u++){
if(F'"[v][u] > 2047){
F'[v][u]=2047;
telsed
if(F"[v][u] < -2048){
F'[v][u] =-204S;
telsed
F'[v][u]=F"[v][u];

}
sum =sum + F'[v][u];
F[v][u]=F'[v][u];
}

// Mismatch Control
if((sum & 1) == 0){
f((F[7][7] & 1)!=0){
F[71[7]=F"[71[7]-1;
telsed
F[7][71=F'[7][7]+1;

2.1.4 Inverse Discrete-Cosine-Transform (IDCT)

The formula of Inverse Discrete-Cosine-Transform is as follows:

. (2m2+ bk (n+Dd

x(m,n) = %NZ_iNZ_‘:a(k)a(l)Y(k,l) X CO N

where a(0) = % and a(k)=1 for k=0

and n,m,k,1=0,...,N-1

These transformed values shall be saturated to [-256:1+255].

15

2.1.5 Motion compensation

As Fig. 2.3 shows, the motion compensation process includes many parts. From the
bit-stream, parameters like “f code”, “motion _code”, and “motion_residual” can be
extracted. With these parameters from bit-stream, a vector decoding module with the vector
predictors (PMV|[r][s][t]) decodes the motion vector vector’[r][s][t] by the following

process.
r size =f code[s][t]-1
f=1<<r _size
high = (16*f)-1;
low = ((-16)*f);
range = (32*f);
if((f ==1) || (motion_code[r][s][t] == 0))
delta = motion_code[r][s][t];
else{
delta = ((Abs(motion_code[r][s}{t]) - 1) f) + motion_ residual[r][s][t] +1;
if(motion code[r][s][t] < 0)
delta = -delta;
h
prediction = PMV|[r][s][t];
vector'[r][s][t] = prediction + delta;
if(vector'[r][s][t] < low)
vector'[r][s][t] = vector'[r][s][t] + range;
if(vector'[r][s][t] > high)
vector'[r][s][t] = vector'[r][s][t] - range;
PMV[r][s][t] = vector'[r][s][t];

By scaling with a certain scaling factors, vector[r][s][t] are then sending to the address
generator of frame buffers. The pixel values read from the frame buffers are then feed
through a half-pel prediction filter. At the final stage, the decoded pixels is calculated by
adding the combined predictions p[y][x] with the residual values f]y][x]. Saturation process

is needed to clamp the result.

16

From
Bit-stream

2.2 Overview of H.264/AVC Decoding Flow

The H.264/AVC decoding flow is sstrictly specified in the standard such that all
decoders shall produce numerically identical results. As Fig. 1.6 shows, the decoding
process contains entropy decoding, reordering;.invetse quantization, inverse integer discrete

cosine transform, intra prediction, motion compensation, and loopfilter. In this thesis we

Prediction
Field/Frame > Frame Buffer > Frame
. Addressing Buffers
Selection
A
vector[r][s][t]
Y
Additional Scaling for Half-pel
Dual-Prime > Color » Prediction
Arithmetic \ Components |Half-Pel| Filtering
A vector'[r][s][t] Info.
Y
Vector Combine
Decoding Predictions
A ply]lx]
Y
Vector fly]x]
Predictors

Fig. 2.3 Motion compensation process

consider the decoding process of baseline profile.

2.2.1

The H.264 bit-stream mainly contains 2 types of contents, the parameters and the
coefficients. The parameters are mainly coded by Exp-Golomb code, which is a Universal

Variable Length Code (UVLC). And the coefficients of residuals are coded by

Entropy decoding

Context-based Adaptive Variable Length Code (CAVLC).

Saturation

The entropy decoding process for Exp-Golomb code is as follows

leadingZeroBits=-1;

for(b=0;!b,leadingZeroBits++)

b=read bits(1);

17

Decoded
Pixels

d[y]lx]

code value=2""""¢*B5_] +yeqd bits(leadingZeroBits);

The entropy decoding process for CAVLC is much more complicated than the
decoding process of Exp-Golomb code. Many different tables are used for decoding the
parameters like “TrailingOnes”, “TotalCoeff’, “level prefix”, “total zeros”, and
“run_before”. For some coefficients like “TrailingOnes” and “TotalCoeff’, more than one
table are used for decoding. And the so-called “Context-based Adaptive” VLC is because
that the CAVLC decoder has to choose the correct table to decode a certain parameter
according to the number of coefficients in neighboring block (left and upper 4x4 blocks).
By decoding the intermediate parameters like “trailing ones_sign flag”, “level prefix”,
“level suffix”, “total zeros”, and “run_before”, the run and level of this run-level code can

be calculated by the procedure defined in the standard. Then a run-level code decoder is

used to recover the 16 coefficients in that.4x4 block.
2.2.2 Inverse scanning process

Input to this functional block is a list of 16 coefficients decoded by CAVLC. These 16
coefficients are then inverse scanned with a Zig-Zag scan pattern to form a 4x4 block. Fig.

2.4 shows the Zig-Zag scanning pattern.

2 & 7 12
3 g§ 1 13

9—10 1415

Fig. 2.4 Zig-Zag scan

18

2.2.3 Inverse quantization & inverse Hadamard transform

In the inverse quantization process, the operations on DC values are separated from
other coefficients. Because 4x4 block is the basic unit in H.264 systems, there are total 16
luma DC coefficients in a macroblock. These 16 DC coefficients in a macroblock are first

transformed through an inverse Hadamard transform matrix as the follows

I 1T 1 1lcp ¢y € 51 1 1 1

I 1 -1 -1lf¢y ¢, ¢, c¢51 1 -1 -1
=120 21 1 ey ey ey el -1 -1 1

I =1 1 =1lfc¢, ¢ ¢ ¢yl -1 1 -1

The result of inverse Hadamard transformation is then scaled by the following formula
with the given QPy.

if QP is greater than of equal to 12, the scaled result shall be derived as
dcYij = (fij * LevelScale(OP, %6,0,0)) << (OP, / 6 —2)

Otherwise, the scaled result shall-be.derived as

dcYij = (fij * LevelScale(QP; %6,0,0) +27°% %) << (OP, /6 - 2)

Where
(10 16 13]
VmO fOf (lﬂj) € {(090):(092)9 (290)> (2a2)} 11 18 14
LevelScale(m,i. j) =1 v,y for () € {(1.1.(L3).G.0.G3)}. v=| 1> 29 1°
v, otherwise 16 25 20
18 29 23]

For the Cb and Cr in a macroblock, the 4 DC coefficients are first transformed through

a 2x2 inverse transform matrix as the follows

ro1e, ¢, 1ot
I= o C, C,ll1 -1

After inverse transform, scaling is performed as follows

19

if QP,, is greater than or equal to 12, the scaled result shall be derived as
dcCij = (fij * LevelScale(QP.%6,0,0)) << (QP. /6 —1)

Otherwise, the scaled result shall be derived as

dcCij = (fij * LevelScale(QF, %6,0,0)) >> 1

For coefficients other than DC, the scaling function is
d; = (c; * LevelScale(qP%6,1i, j)) << (qP/6)
With the given gP.
2.2.4 Inverse Integer Discrete Cosine Transform

The Inverse Discrete Cosine Transform in H.264 system is much more simplified than
the traditional Inverse Discrete Cosine Transform. The transform coefficients of 2-D IDCT

in H.264 system are all simplified to integers. The transform matrix is as the follows.

. 1 L || Poo PaniiPoy. Pos |1 2 1 1
ol = 21 -1 2|pg Pyl Pl 1 -1 -2

I =1 =1 1| py Py=bPynipsil -1 -1 2

1 =2 2 —1|psy Py Pun Pufl -2 1 1

2.2.5 Intra prediction

The intra prediction process is a new prediction process that MPEG-2 system lacks.
There are 2 classes of intra prediction modes, the Intra 4x4 prediction mode and
Intra_16x16 prediction mode.

There are total 9 sub-modes in Intra_4x4 prediction mode. As Fig. 2.5 shows, these 9
modes are vertical, horizontal, DC, diagonal down-left, diagonal down-right, vertical-right,
horizontal-down, vertical-left, and horizontal-up, respectively. In DC modes, the intra
prediction process is to calculate the mean value of neighboring pixel values. Except for DC
mode, all the others are directional modes. For directional modes, the intra prediction

process for the prediction values can all be written as the following formula

Py +P, +P,+P,)+2
4

prediction value =

20

Where Py, P;, P», and P; are all neighboring pixel values

The Py, P;, P, and P; are different neighboring pixel values according to the type of
mode and the position in the 4x4 block. For example, in mode 3 (diagonal down-left), the
upper-left corner is predicted by ((A+2B+C)+2)/4, which is equivalent to
((A+B+B+C)+2)/4; and for upper-right corner of mode 5 (vertical-right), the prediction
values is calculated by ((2C+2D)+2)/4, which is equivalent to ((C+C+D+D)+2)/4.

Note that the intra prediction process and the residual adding process are processes that
must be perform iteratively. That is, for a given 4x4 block, the neighboring pixel values

(upper and left) for intra prediction must be residual values added.

0 (vertical) 1 (horizontal) 2(DO)
MJA[B[C|D[E[F[c]H] [M]A]B[C|D[E]F[G]H]| [M]a[B][C|DJE[F[G]H]
I I — I
J] - J [Mean(A|B,C,D,

K| K > K| [LIKL
mAAAL L > L

3 (diagonal down-left) 4, (diagonal down-right) 5 (vertical-right)
MJAa[B[c|D[E[F[c]H] {M[A[B[C]|D[E[F[G]H]| [M]JA[B][C|[D]E[F[G]H]
i I I
J J J
K K K |
L L L

6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)
mla|B][c|p|E[F[G[H] [m[a[B]C]D]E]F][G[H]| [m|[a]B][C|D][E][F]G]H]
I I I
J J J
K K K
L L L \

Fig. 2.5 Intra_4x4 prediction modes

In the intra_16x16 prediction mode class, there are total 4 modes — vertical, horizontal,
DC, and plane modes respectively. The vertical mode and horizontal modes are easiest ones;
the prediction is down by copying upper or left pixel values directly. In DC mode the mean

value of all the upper and left neighboring pixel values has to be calculated and the result is

21

assigned to all the pixels in this macroblock. The plane prediction mode is the most
complex one. The formula for luma samples is given as the follows
pred,[x,y]=Clipl((a+b*(x=T)+c*(y—7)+16) >>5)

Where

a=16*(p[-1,15]+ p[15,—1])
b=G*H+32)>>6
c=(05*V+32)>>6

H= i(x'+l)*(p[8 +x',—1]—- p[6 —x',—1])

x'=0

V=2 (+D)*(p[=18+y'1- p[-16- ')

y'=0

vertical horizontal DC plane
H H H H
r’4 ,/)/
\Y, \Y \ Mean(H,V) \ /

Fig. 2.6 Intra_16x16 prediction modes

For luma samples in a macroblock, both intra_4x4 prediction modes and intra_16x16
prediction modes are valid. But for chroma samples, only the 4 modes in intra 16x16
prediction class are valid and are a little different in parameters from formula for luma

samples.

2.2.6 Motion compensation

In motion compensation process, each macroblock can be split into 4 types of

partitions, 16x16, 8x16, 16x8, and 8x8. If the macroblock is split into 8x8 partitions, each

22

8x8 partition (Sub-Macroblock) can be further split into 4 types of partitions, 8x8, 4x8, 8x4,
and 4x4. This hierarchical macroblock partition gives flexibilities on motion compensation

process.

16
0 0 1
16 0 0 1
1 2 3
16x16 8x16 16x8 8x8
(a) Macroblock partitions
8
0 0 1
8 0 0 1
1 2 3
8x8 4x8 8x4 4x4

(b) Sub-Macroblock partitions

Fig. 2.7 Macroblock and Sub-Macroblock partitions

The precision of motion vectors is up to-1/4. Fig. 2.8 shows an example of motion

vector equals to (+1.50, -0.75).

O OO0 O0O0
O Q0000
& OO
S meve
& OO
@@ @0 O
ONONORORONC,
Fig. 2.8 Up to 1/4 motion vector resolution (mv=(+1.50, -0.75))

OO0OO0O000O0

The motion compensation process requires interpolation process for inter-pixel values.
As Fig. 2.9 shows, for interpolating pixels with the precision of motion vector up to 1/2, a

6-tap interpolator is used for the interpolation. For example, pixel “b” is calculated by

23

b = round((E - 5F + 20G + 20H - 51 + J)/32)

For interpolating pixels with the precision of motion vector up to 1/4, a 2-tap

interpolator is used for the interpolation. For example, pixel “n” is calculated by

n = round((c + £)/2)

O O B
O O
® ®
@)
® O
O O
O O

-\

O O 80O O
O 0@ & O

Fig. 2.9 Interpolation_for pixel values

The motion vector MV is calculated by adding the-MVD (motion vector difference)
with the MVP (motion vector prediction). The MVD is decoded from the bit-stream. MVP

is calculated from the motion vectors of neighboring blocks.
2.2.7 De-blocking filter

Same as MPEG-2, H.264/AVC system is block-based video coding system. Though we
can perform discrete cosine transform to take advantage of the spatial correlation property
and exploit motion compensated prediction to improve the compression ratio on the
block-based systems, the disadvantage of the block-based system lies on the discontinuity
on each block boundaries which is also known as blocking effects because of the
quantization loss that annoying the continuity on block boundaries. Moreover, the
blocking-effect propagated from frame to frame due to the motion compensation. Thus, a

de-blocking filter is demanded and is included in the H.264 standard as an in-loop filter.
24

As Fig. 2.10 shows, the edge filtering order defined in the standard is a, b, ¢, d, e, f, g,
then h. For a given 4x4 blocks, as long as the filter ordering to this 4x4 block is left, right,

upper, and down, is standard compliant.

.] - ® €

[} [[

[} [[

[} [J [
pocsasdocsocgfnocaphocas f

[} [[

[} [[

[} [[
bosedoccdecocboces g

[} [[

[} [[
[XYY h

Fig. 2.10 Edge filtering order in a macroblock

The filtering process to a certaintboundary is through an interpolator. Each filtering
operation can at most changes 3 pixel values either in both sides of the boundary. The
choice of filtering outcome depends on the boundary strength and on the gradient of image
samples across the boundary. The’boundary strength bS is in the range of 0 to 4, from no
filtering to strongest filtering according to the quantiser, coding modes of neighboring

blocks and the gradient of image samples.

p3

p2

pl

p0

p3 [p2 | pl [pO § g0 | ql | g2 | g3 q0

ql

q2

q3

Fig. 2.11 Adjacent pixels to horizontal and vertical boundaries

25

26

Chapter 3
System Design Of MPEG-2 and
H.264/AVC Decoder

In this chapter, we show some design techniques like pipeline scheme, synchronization
problem and solution, decoding ordering, and power saving techniques from the system

point of view.

3.1 MPEG-2 and H.264/AVC Combined System Decoding

Flow

Fig. 3.1 shows our MPEG-2/H.264 combined decoder diagram. Input to this decoder is
the video bit-stream and a video'type signals. This video type signal acknowledges the
decoder the type of the video bit-stream is feeding.

For H.264 video bit-stream, an H.264 syntax parser is firstly syntax analyzed the
bit-stream, stored the system parameter into system-wide shared registers, send the
bit-stream to the following residual path (CAVLC, 4x4-scaling, 4x4 IDCT) or prediction
path (H.264 Intra predictor, H.264 Motion Compensator), summed them together with the
help of synchronizer, a loopfilter process the summed pixel value and then output it both to
frame buffer or to the display.

For MPEG-2 video bit-stream, same as the H.264 decoding flow, first, a MPEG-2
syntax parser analyzed the bit-stream, stored the system parameter into system-wide shared
registers, send the bit-stream to the following MPEG-2 VLC decoder, 8x8 inverse quantizer,
8x8 IDCT, MPEG-2 Motion Compensator, and an optional MPEG-2 post filter is at the end

27

of the decoding flow.

For the hardware sharing issues, we share the registers in syntax parsers, design a
CAVLC/VLC combined decoder for entropy decoding, a H.264/MPEG-2 combined motion
compensator, a synchronizer for both system, content memory and frame buffer for both
systems, and the de-blocking filter for both system which functions as an in-loop filter for

H.264 system and a post-processing filter for MPEG-2 system.

Off chip Frame Buffer

Single port
N : Frame Width Mx8
M : Frame Size ==
H264 Decode JL
H.264/MPEG?2 ‘ __ BUS
8x8 IDCT Combined A;ﬁ
Motion N
Compensator
Combined Single port
Syntax Parser 8x8 Inverse- (Nx2/4)x32 \—
Video type oot Quantization II
Syntax H.264 Intra S Residn

Parser predictor - Adde
.VIdGO L m '?ﬂ Single port Filtered
Bit-strea Shared CAVLC(H.269) /| — sgﬁng ey,) Simate m%xs‘z‘ el

b

I(Normal F

Regs VLC (MPEG?2)
Combined Decoder : H.264 /
Unfiltered . Single port -2 / Mode), | TAME
MPEG2 Pixel valucs/} 96x32 LoopFilter / /f/ E - . output
Syntax H Single port MPEG2 | v
96x32 Post Filter

Parser j . (Low Power

Mode)
{

Fig. 3.1 MPEG-2/H.264 Combined Decoder Diagram

3.2 Hybrid 4x4-Block Level Pipeline with Instantaneous
Switching Scheme for H.264/AVC Decoder

3.2.1 Hybrid 4x4-Block Level Pipeline Architecture

The 4x4 block is the smallest group of pixels that the H.264/AVC standard adopts. We
can see from the standard that a 4x4 Inverse-Discrete-Cosine-Transform (IDCT), a

4x4-block based inverse scanning process, and a 4x4 inverse quantization matrix for

28

rescaling, are required in decoding H.264/AVC video sequence. Moreover, the smallest intra
prediction unit is 4x4 sized block, and so do the motion compensation process. Thus in our
H.264/AVC decoder design, compared with conventional macroblock-level pipelining
architecture [1] [6], our 4x4-block level pipelining architecture are more suitable for the
4x4-block based H.264/AVC system.

Compared with macroblock-level (16x16) and block-level (8x8) pipeline parallelism, a
trade-off exists between processing cycles and buffer cost. For the processing cycles issue,
refers to Fig.3.2, we can see that the 4x4-sub-block-level pipeline parallelism requires more
additional processing cycle than cycles needed of macroblock-level pipeline parallelism.
Although this penalty has to be paid by the 4x4-sub-block-level pipeline parallelism, the

cost saved of the buffer storage required is worthy.

15 15 15
D max(p,,q;) = max()_ psyud;)
i=0

i=0 i=0
e % Magroblock i -
4x4-Sub-Block-Level| Stage 1 [18] [0 T1] "#fa}f 3 T4 []s [efjf 7 [& [of10][1 [1a] [13 T14] [15 [FOTJTAT]]
Pipeline Parallelism | Macroblock i |

|
kStageZ [fis] o [rf2 % 3 j4l{sfel{7]i8] 9 ‘10\‘11‘12‘13‘14\@ 0] 1
Processing Cycle
Difference

-~ | Macroblock i - Macroblock i+1
Macroblock-Level | Stage 18] - {0 [1T2] 3 [4[5 6] 7 | 8 |9Uo\ 1 Jreflulisio] 1 [2]3 \A\l 5]
Pipeline Parallelism Macroblock i-1 E Macroblock i

Qtag62\14\150\ U [2] 3 J4]5]6] 7 [8fofwofufref3]afis] | o [1[2] 3 [4]

Fig.3.2 Additional processing cycles required for 4x4-sub-block-level pipeline parallelism

Compared with macroblock-level (16x16) and block-level (8x8) pipeline parallelism,
because the processing unit of data in each stage is quite smaller (4x4) in
4x4-sub-block-level pipeline parallelism that the only 4x4-sub-block-level sized buftfer
storage is enough. We can see from Table 3.1, three different parallelisms show the trade-off

between buffer cost and processing cycles. For 4x4-sub-block-level pipeline parallelism,

29

although 1.26 times processing cycles required compared with macroblock-level pipeline

parallelism, 15/16 buffer storage can be saved.

Table3.1: Trade-off between processing cycles and buffer cost

Parallelism Unit of Data | Buffer Cost Processing Cycles
Macroblock-Level 16x16 X16 M cycles/MB

Block-Level 8x8 X4 1.19*M cycles/MB
Sub-Block-Level 4x4 X1 1.26*M cycles/MB

Moreover, besides the saving in storage cost, the large amount of power induced by
these buffers which are active all the time could be greatly reduced as well. As Table 3.3
shows, the 4x4-sub-block-level sized sstorage buffers- in CAVLC & IDCT consume
1.453mW and 0.864mW under clock frequency 100MHz, which contribute 2.86% of total
power (81.072mW) when summed togethet. But-if-the macroblock-level sized buffers are
used instead, the power of these storage buffers. would be 23.251mW and 13.824mW, which

is 15 times greater than the case of 4x4-sub-block-level pipeline parallelism.

Table 3.3 Power dissipated by buffers between pipeline stages

Storage buffer in CAVLC Storage buffer in IDCT
Parallelism
Num. of regs Power Num. of regs Power
Macroblock-Level | 16x16x8 (bits) | 23.251 mW | 16x16x18 (bits) | 13.824 mW
Block-Level 8x8x8 (bits) 5.813 mW 8x8x18 (bits) 3.456 mW
Sub-Block-Level 4x4x8 (bits) 1.453 mW 4x4x18 (bits) 0.864 mW

30

Although we saves the cost of storage buffer and the associated power reduction by
adopting 4x4-sub-block-level pipeline parallelism, this 4x4-sub-block-level pipeline
parallelism can’t be applied on some other modules which also exist in the decoding flow
like motion compensator and loopfilter because of their macroblock-level-characteristic.

Motion compensator must supports inter prediction process for several block sizes,
from 4x4, 4x8, 8x4, 8x8, 16x8, 8x16, to 16x16. It is hard to divide the inter prediction
process for block sized modes other than 4x4-block-sized mode into several
4x4-sub-block-sized inter prediction processes. So we choose to maintain traditional
macroblock-level pipeline parallelism on motion compensation stage.

For in-loop filtering operation, i.e. loopfilter, it is also hard to be divided into several
identical 4x4-sub-block filtering process because the neighboring 4x4-sub-blocks it has to
fetch is irregular according to inverse scanning sequence. In contrary, the filtering process is
almost identical in macroblock- level. Thus .we also choose macroblock-level pipeline
parallelism for loopfilter.

In our overall pipeline design; we combine the 4x4-sub-block-level pipeline
parallelism with macroblock-level pipeline parallelism to a hybrid pipeline scheme that
suits best for each module. The pipeline parallelism applied for decoding modules is

summarized in Table 3.4.

31

Table 3.4 Summary of pipeline parallelism applied

Module Pipeline parallelism

Intra predictor 4x4-sub-block-level

CAVLC 4x4-sub-block-level

De-quantizer 4x4-sub-block-level

IDCT 4x4-sub-block-level
Motion compensator Macroblock-level
Loopfilter Macroblock-level

3.2.2 Instantaneous Switching Scheme

We also applied an instantaneous switching scheme in our 4x4-sub-block-level
pipeline design, that is, we switch our pipeline stage as soon as possible. As long as all
pipelined modules complete their work; *we switch. the pipeline into next stage
instantaneously. Because of this instantaneous ‘switching scheme we applied, any pipelined
module with especially long processing cycles would be the bottleneck of the whole
decoding system. The pipeline stage must be switched only if all the pipelined modules
complete their work. So all the other pipelined modules must be idle and wait for the
pipelined module with especially long processing cycles if exists, bubbles induced in this
kind of situation would be a lot that degrades overall system throughput much. Thus, we try
to balance the cycle count required for each modules, so that the idle time of these pipelined
modules like CAVLC, De-quantization, IDCT, and etc could be minimized that this
instantaneous switching scheme can be a great help of maximizing our system throughput.

Fig. 3.3 shows an example pipelining schedule of hybrid 4x4-sub-block-level pipeline

parallelism with instantaneous switching scheme.

32

Tntra Mode / MVD
Decoding Parser

Intra Prediction
Generator

Motion
Compensator

CAVLC/
D ization

Group of pixels in a 4x4 block Pipeline stage switch after the
A operation of CAVLC completes

A "‘~_\ instantaneously
Intra predicted Macroblock H Inter predicted Macroblock I 4 Q-._Inter predicted Macroblock I
0 1 . @7J_4 $ | ™ T . |
4x4-block level | }
- H 0 1 2 Toos 4 (18 0 1 2) 14 15

& | |

IDCT
Residnal Adder

Loop Filter

O () L T O) I
(D L B USSRy

|< Macroblock Index 0 : -' Dﬁ%ﬁé Macroblock Index 1 >|@
Macroblock Level Pipelining) I
I* !

Fig. 3.3 An example of the pipelining schedule

3.3 Efficient Ix4 Column-By-Column Decoding Ordering

Based on our proposed 4x4-sub-block=level pipeline parallelism, we choose 4 pixels

per cycle as our overall system throughput. The throughput of 4 pixels per cycle is also very

suitable for the efficient IDCT design,.inverse quantizer design, and inter/intra predictor

design. Limited by the 4x4-sub-block'inverse scanning sequence (also the decoding

sequence) defined by H.264/AVC standard, we have two choices on the decoding ordering

that are both standard compliant, the 4x1 row-by-row decoding ordering and the 1x4

column-by-column decoding ordering, as Fig. 3.4 and Fig. 3.5 shows respectively. After the

analysis for inter and intra predictor on these 2 types of decoding order given in the

following, we will see that the 1x4 column-by-column decoding ordering is better than 4x1

row-by-row decoding ordering both in fewer memory access times and fewer decoding

cycles.

33

_— D WY
- ;éé
T
": ﬁa % 7229
e o o e

]

RRARRARR

Fig. 3.5 1x4 column-by-column decoding ordering

Now we give an analysis for both inter and intra prediction units on these 2 decoding

ordering.

3.3.1 Analysis on inter prediction unit

In our inter predictor design also known as motion compensator, an initialization stage

is required before any contiguous output of motion compensated pixel values. The

34

initialization period requires 18 memory access times for loading related neighboring
9*6=54 pixel values from the reference frame for the 2-D interpolation (6-tap interpolation
then 2-tap interpolation) of the target pixel values. 18 cycles (9 pixels per 3 cycles) also
required for this operation in the initialization stage. After the initialization stage is finished
for the 1% group of 4 motion compensated pixel values, the loaded pixel values in the
initialization stage can be reused and only 9 new pixels are needed to be loaded for
computing the following contiguous output. This computing process requires only 3
memory access times and 3 cycles for the following contiguous outputs of a group of 4
motion compensated pixel values.

For decoding an inter predicted macroblock under 4x1 row-by-row decoding ordering
and 1x4 column-by-column decoding ordering, we can found that as Fig. 3.6 shows, for the
4x1 row-by-row decoding orderingsthere exists 16 discontinuities (3", 7, 11", 15", 19",
23" 27™ 31, 35" 39™ 43" 47" 51 55" 50® and 63™ outputs) in decoding ordering.
Each discontinuity output of a groupiof 4_pixelvalues requires an initialization process. 3
contiguous outputs are then followed by each discontinuous output. Thus for 4x1
row-by-row decoding ordering, total memory access times and total decoding cycles are

16x18 (discontinuous output) + 16x3x3 (contiguous output) =432 memory access (3.1)
16x18 (discontinuous output) + 16x3x3 (contiguous output) = 432 cycles (3.2)

As Fig. 3.7 shows, for 1x4-column-by-column decoding ordering, only 8
discontinuities (7", 15™, 23 31%, 39™ 47" 55" and 63" outputs) exist in decoding
ordering, which leads to 8 initialization process for these 8 outputs. 7 contiguous outputs are
then followed by each discontinuous output. Thus for 1x4-column-by-column decoding
ordering, total memory access times and total decoding cycles are

8x18 (discontinuous output) + 8x7x3 (contiguous output) = 312 memory access (3.
3)

8x18 (discontinuous output) + 8x7x3 (contiguous output) = 312 cycles (3.4
35

In summary, for an inter predicted macroblock, the memory access times and decoding
cycles saved by adopting 1x4-column-by-column decoding ordering instead of

4x1-row-by-row decoding ordering are both 28%.

Fig. 3.6 16 initialization processes in inter predicted macroblock under 4x1 row-by-row

decoding ordering

TR
//’——_—T' //’—J—
11 T2 222
g /{34567/6/890123

1
T
ey /’_——
sl thirT1 1222 2)2 3|3
sha s|e|7)s
3 4
——t- ——
3 5
4

-
(S}
w
A~
© N
o
—

(¥
\w
X
BE
a\ W
- w
0 W
——0
0 &
\#
=X
—
[N
w L

o~
o
(38
w
~
oIS
~
o wn
~
oo
O W
oo
=
(3]
w

Fig. 3.7 8 content switches in inter predicted macroblock under 1x4 column-by-column

decoding ordering

36

3.3.2 Analysis on intra prediction unit

Based on the H.264/AVC standard, for an Intra4x4 predicted macroblock, the
neighboring pixels including upper 8 pixels, left 4 pixels plus a corner pixel (total 13 pixels)
must be loaded before the intra prediction process. Because we follow this rule in our intra
predictor design, accessing from memory for these 13 pixels are required before each
intra4x4 prediction process no matter which prediction mode is for this 4x4-sub-block. We
found that if we choose the 1x4 column-by-column decoding ordering as Fig. 3.5 show, a
group of 4 pixels of every 4™ output is just the left 4 neighboring pixels that originally
required to be fetched from neighbor for intra prediction on next 4x4-block. For example, as
Fig. 3.8 shows, the group of 4 pixels in the 3" output is just the left 4-neighboring pixels to
be fetched for the following 4x4=sub-blocksdn this way, this group of 4 pixels can be
forwarded directly from previous output instead of fetching from memory that reduces the
memory access times. Same situation-also-eceurs at-the 11th, 19th, 27th, 35th, 43rd, 51st,
59th outputs too. However, for 4x1-row-by-tow decoding ordering, this property can not be
found to reduce the memory access times. In summary, the memory access times can be
reduced from 3x16=48 times to 3x8+2x8=40 times (17% saved) by adopting

1x4-column-by-column decoding ordering instead of 4x1-row-by-row decoding ordering.

37

"\ Y

o N
—_
[
w

N
oo N
=
[=J)
—_

v ow
o w
© w
~
o A~
w v
FNEVY
v

5
2

oW
w
~w
o w
=

+ $ 4

4141414 5/5|5)61|6
415|617 7 910 |1

6
8 2

w

5
6

ISHES
=
w

cnbedndbacatndnddacatndndacnsndnd

Fig. 3.8 Reduction on memory access of the intra predicted macroblock

3.4 Prediction/Residual Synchronization Scheme

In both H.264/AVC and MPEG2 decoderrdesigns, there exist 2 decoding paths, say,
inter/intra prediction path (prediction path) and residual recovery path (residual path). The
prediction path predicted the pixel values from the-motion vector by motion compensator or
by intra prediction mode by intra predictor. ‘The residual path decodes the residual pixel
values first by entropy decoding the coded data by CAVLC/CABAC (H.264/AVC) or table
based VLC (MPEG?2). A de-quantization process is then performed on the decoded value.
Finally, an inverse discrete-cosine-transform (IDCT) transfers the scaled values into
residual values and output them at the end of the residual path. The decoder has to add the
predicted pixel values from prediction path with the residual pixel values from residual path
to reconstruct the original picture before an in-loop filter (H.264/AVC) or a post-filter
(MPEG2).

The synchronization problem exists in this adder that adds the pixel values come from
2 different decoding paths. Because the output timing of these 2 paths is different, we can

not guarantee the output timing of the pixel values come from 2 paths is simultaneous in a

38

certain cycle. And we can not expect which output comes earlier. Thus a synchronizer is
required. As Fig. 3.9 shows, we developed a Variable-Length FIFO as a synchronizer for the

synchronization of prediction path and residual path to solve this problem.

Predicted Value

From Intlra/ Inter
|

Residual Value Variable-Length
From IDCT —— FIFO

To Filter

Fig. 3.9 A variable-length FIFO is required for the synchronization between intra/inter

predictor and IDCT

The operation of this variable-length- FIFO_(VL-FIFO) solution is as Fig. 3.10 shows.
The signals “sample valid” and “IDCT operation” indicates the output valid timing.
Because these 2 signals are not identical, the VL-FIFO stores the output pixel values from
either path as long as it comes alone without the company of the output from another path.
The output of VL-FIFO which had been stored previously waits until the associated values
come from another path. In this way, the residual adder that adds the values from
prediction/residual path can correctly add them together at a certain cycle with the help of

this VL-FIFO as the synchronizer.

39

l
]
]
l

I

[T

VLFIFO ||]
Initial Empty

16 17 (18 | 18 (18 (19| 19 (19 | 20 | 20
15 {15 16 t6 (17 || |e]s|w[w|w]l
[15|16 |16 |16 [1|7 [17|18 [18

s

N ES)
=}
=]

[c[=[sT=[=[=]=]s]e]=] []

(s[=lsl=s=] []

E EEEEEETTTITTT]

(2] GIs[=[=[s[=[=]=]=] I
(] GI=l=Isl=IsTsI=] [T 11

VL-FIFO
Output

5]

< |

Y I 1 0100 |
L | — | E——S——
B HOMB BRAE BREnN 1716] 1o [[l 2] 5 [t]

Fig. 3.10 Operation of variable-length FIFO as a synchronizer

3.5 Power saving by exploiting Coded-Block-Pattern

H.264/AVC and MPEG-2 both support videos.in various data rate. High definition with
high data rate targets at some high quality” video applications like digital home
entertainment devices, on the other hand, low definition but low data rate targets at
applications like video transmission in hand held devices.

In this chapter, a power saving technique will be introduced for some low data-rate
applications, especially for video sequence of high QP (Quantisation Parameter). The main
idea of this power saving technique is that we can save power by shutting down the inverse
quantization and inverse DCT operation at the blocks with all zero coefficients and passing
these 2 modules directly because the output through these 2 modules are all zeros
expectedly.

Residual coefficients which quantized to zeros are more as the QP is increased. Thus in
high QP video sequence, we can find that there exists many blocks with all-zero-coefficients.
And the parameter “Coded-Block-Pattern” notifies the decoder the incoming

all-zero-coefficients blocks in advance. Thus by observing the decoded

40

“Coded-Block-Pattern”, we can foresee the blocks with all-zero-coefficients, shutting down
the inverse quantizer and IDCT, and then passing the results of all zeros directly to the

output of the IDCT. Fig. 3.11 shows the block diagram for this power saving technique.

From Intra/Inter
Predictor

CAVLC(H.264)/

I o
» VLC(MPEG-2) [IVerse » IDCT
Decoder quantizer To Content
Syntax cco 7\ 7\ Memory
Parser Shut-dowj Shut-dowh 0
signal signal
» Coded-Block-Pattern

Fig. 3.11 Power saving by exploiting Coded-Block-Pattern

Fig. 3.12 shows the simulation results of QP versus bitrate (for QCIF foreman
sequence) and QP versus the percentage of all zero-coefficient blocks. We can see that as the
QP increased, the bit rate decreased because of the quantization loss increased, which leads
to the increasing of the percentage of all-zero-coefficient blocks. We can see that this power
saving technique saves power dissipated from inverse quantization and IDCT from 30% to
almost 100% at QP from 20 to 50. This savings in power is huge especially in high QP

sequence.

41

1':":"] T T T T T T T T T T T T T T 1DD
—&=— Bit rate
900 |-| =« Zero coefficient blocks [----------mmmm - 90

800

700

GO0

a00

Bit rate (khits/s)

400

300

200

100

Fig. 3.12 QP versus Bitrate and the percentage of all zero coefficient blocks

3.6 Novel User-Determinable Low Power Mode

Exploration

Because H.264 is getting more and more popular in future video applications, and is
potential in future hand-held devices like PDA, mobile phone, and etc. Thus, to design a
low-power decoder becomes an important issue. To reduce the power consumption, besides
the low-power architecture design which will be introduced in the following chapter, a
novel user-determinable low power mode is introduced here.

Table 3.5 shows the power profiling of our decoder, reported by PrimePower in
decoding H.264 video sequence at I00MHz. From this report, we can see that the loopfilter
consumes highest power among other modules both in decoding I-frame and P-frame. The
power consumed by loopfilter mainly contributed by 4 single port SRAMs in it. Because the
main purpose of this loopfilter is to smooth the decoded picture only, we might be able to

shut down the loopfilter in order to save much power as long as the unsmoothed picture is

42

acceptable.

Imagine that one day you’re watching a TV program through hand-held device on a
train. You find that the battery almost ran out. At this time if power-saving solution with the
acceptable performance degradation trade-off is provided, it would be a very nice choice to
you.

Fortunately, the content memory which serves as to isolate the loopfilter from other
decoding modules, is useless and can be shut-down too when we shut down the loopfilter.
The power consumes by content memory can also be eliminated in this low-power mode.
However, loopfilter operation is indispensable in the standard. Thus to make our decoder
standard-compliant, we leave this performance-power trade-off choice to user by providing

a user-determinable low-power mode, which leads to this novel work.

43

Table 3.5 Power profiling of decoding H.264 video bit-stream (unit:mW)

Module [-frame P-frame
LoopFilter 31.092 27.130
Content Memory 12.678 10.154
Motion compensator 10.414 17.152
VL-FIFO 9.784 10.866
Intra Predictor 7.090 5.496
CAVLC 2.604 2.754
Syntax Parser 1.926 1.280
IDCT 1.748 0.428
Inverse Quantizer 1.112 0.260
Total Core Power 81.072 78.112

Table 3.6 shows the simulation result‘on power consumption and savings before and
after the low power mode is enabled. We can see that about 40% power can be saved under

low-power mode both in decoding I-frame or P-frame.

Table 3.6 Low Power Mode Exploration

Normal Mode Low Power Mode Power Saved
I[-Frame 81.072 mW 49 582 mW 38.84 %
P-Frame 78.112 mW 46.504 mW 40.46 %

44

Chapter 4
Architecture Design Of
MPEG-2/H.264/AVC Decoder

In this chapter the architecture and some low-power techniques used in each module of
the MPEG-2/H.264/AVC decoder will be described in details. Syntax parsers, intra predictor,
inverse quantizer, inverse DCT, motion compensator, prediction/residual synchronizer,

in-loop/post filter are included.

4.1 MPEG-2 & H.264/AVC Combined Syntax Parsers

4.1.1 Low-Power Hierarchical Parser Design

The syntax structure is defined in the H.264 standard. Combined with the NAL header
format defined in the Annex B in the standard, as Fig. 1.7 shows, the H.264 video bit-stream
is organized hierarchically. Thus the syntax parser is designed in hierarchical structure in

order to make a good use of this property.

45

Off-chip Single port
N : Frame Width memory MX8

M : Frame Size
Video Decoder (H.264 part) e
Hierarchical syntax parser . /—J 17
Picture Parameter Set Parser Sub-MB Prediction Inter predictor (—
Processing Unit
H264 [PhSrwgbin :
N Single port memory
Fil

NAL :
Sequence Parameter Set Parser Slice Header .
Tnput header Processing Unit %/[B Ptgdlcttlror! Intra
Request| | parser [Heder Pramar = rocessing Unit predictor
Slice Layer Slice Data Macroblock Residual

; . f M Layer Processing Unit
Processing Unit Processing Unit Processing Unit |__> Coeael

Frame
OUIKDU[

From all

Toallsyntax | Bxp-Golomb @ syntax parser CAVLC

parser units ™| VLC Decoder units Decoder

Single port
96x32

Single port
96x32

Fig. 4.1 Hierarchical syntax parser

The syntax parser is designed in hierarchical structure in order to match the
hierarchical structure of the H.264 bit-stream thatistandard defines. As Fig. 4.1 shows, an
NAL header parser, which detects the NAL syntax €lement and identifies the NAL unit type
from the NAL unit header is at the first*part of the decoder.-Depending on the NAL unit type
it detects, the NAL header parser sends the‘enable signal to the following 3 units, SPS
processing unit, PPS processing units, and slice layer processing unit. Each of which is
responsible for decoding the data that belongs to it. For the slice layer RBSP, instead of
directly decoding data, slice layer processing unit sends the enable signal to either slice
header processing unit or slice data processing unit by the aid of a simple acknowledge
signal from slice header processing unit that always operates in the precedence of the slice
data processing unit. Slice header processing unit, like SPS and PPS unit, are responsible
for decoding the parameters which will be used by the other functional blocks in decoding
times. We use global-wide registers to store these parameters in these units, so that many
other modules can access easily. Hierarchical structure is also exploited on the slice data

unit which acknowledges the macroblock processing unit, then the MB prediction unit,

46

sub-MB prediction unit, or the residual processing unit. The residual processing unit wakes
up CAVLC decoder to decode the entropy encoded residual data when needed.

Many parameters are needed during decoding each macroblock. There are hundred
kinds of parameters in the PPS, SPS, slice header, macroblock header, prediction mode,
prediction weight table, etc. Thus these parameters are needed to be stored either in the
memory or register files when parsing. And because these parameters are read frequently
into the prediction unit, de-quantization unit, de-blocking filter and many other functional
blocks. Using registers to store these parameters is better than memory approach. Because
the number of parameters is a lot, it is important to save the power consumption on these
registers.

To resolve the power issue on the huge amount of registers, we put these system-wide
registers together inside their belonging syntax parser unit. In that way, we can reduce the
power dissipation of these registers by disabling their belonging syntax parser units. Fig. 4.2
shows an example waveform of the enable signals of each syntax-parsing unit. With the aid
of the enable signals of these syntax parser units-to be their sleep controls, we can apply
gated-clock technique on these syntax parser units easily and to be able to disable all the

syntax parser at their idle time.

SPS] |
PPS []
 SliceDuta_| |
VbR | m
»
|
|

Intra predictor |—| |_| |_| |—L
Residual

CAVLC || HEE ||

Fig. 4.2 An Example waveform of the enable signals in syntax parser

47

Simulation results show that applying the gated clock technique on our hierarchical

syntax parser, we can greatly save 86% power consumption on these registers.

Others ExpGolombDecoder Others
o 1%

ExpGolombDecoder
q

De-Quantization

3%
IDCT_Hadamard

6%

1% De-Quantization

3%
\)
IDCT_Hadamard

6%
#_Prediction
10% >

Syntax Parser!
2%

Motion
Compensation
26%

Motion
Compensation

30%

Intrd_Prediction
9% Intr:

Syntax Parser
LoopFilter
19%

LoopFilter
17%

(A) (B)
Fig. 4.3 Power reduction on syntax parser

(A) Without applying gated clock (B)*With applying gated clock

4.1.2 Register Sharing Parser Déesign

Registers for parameter storage and control circuits are two main components in syntax
parser design. And because of the various and large amount of system-wide parameters that
syntax parser are responsible for the storing, registers in syntax parser almost dominate the
area and also the cost of the syntax parser.

In our MPEG-2/H.264 dual decoder design, originally we have to design two syntax
parsers which suits for H.264 syntax system and MPEG-2. For the high throughput issue,
we custom-built these two syntax parser for the highest efficiency instead of traditional
embedded software with the RISC solution. Because control circuits is complex but not
area-expensing, except for the inflexibility, the main cost of our dual parser solution lies on
the two set of registers for parameter storage of 2 different video coding system.

Fortunately, for the dual MPEG-2/H.264 decoder design, we can see that whether the

48

decoder is functioned for MPEG-2 system or H.264 system, there is always a set of syntax
parser in idle situation. Which in terms that there is always a set of registers that would
never be used. Thus we can combine these 2 set of registers into one set of registers which
shared for these two video systems. That way, we might be able to reduce the number of
registers used in syntax parser, and that leads to the reduction on area and power because

registers consumes lots of power.

Table 4.1 Number of register needed for MPEG-2/H.264 syntax parser

MPEG-2 H.264
Module Register needed Module Register needed

Macroblock 29 regs | Macroblock 11 regs
Motion_vectors 25 regs | Slice data 17 regs
Picture coding ext 49 regs | Slice header 247 regs
Picture header 36 regs | PictureParameterSet 74 regs
Slice 8'regs |"SequenceParameterSet 127 regs
Sequence header 1105 regs

Total 1252 regs | Total 476 regs

As Table 4.1 shows, we can see that syntax parser in both these two system requires
lots of register for parameter storage. And because MPEG-2 system is 8x8 block based
system, 4 times bigger than the 4x4 block based H.264 system, the registers needed is also
the more than the H.264 system. The sequence header module in MPEG-2 syntax parser
contains 2 set of 8x8 intra and non-intra coefficients of quantization matrix. 512 registers
needed for each coefficient matrix, which dominates the total number of register needed in

syntax parser.

49

Because these registers for quantization matrix coefficient storage are large and very
regular, we make these registers for the sharing registers with H.264 syntax parser. The
register sharing requires an additional multiplexer, as Fig. 4.4 shows. The select signal to

this multiplexer is the MPEG-2/H.264 mode input of the decoder.

clk
Parameter extracted D 0 _ Parameter for Parameter extracted Parameter for
from MPEG-2 bit-steam " MPEG-2 decoder from MPEG-2 bit-steam MPEG-2 decoder
clk D Q
T |
Parameter extracted D 0 > Parameter for Parameter extracted clk Parameter for
from H.264 bit-steam H.264 decoder from H.264 bit-steam ok H.264 decoder
clk
| —

Fig. 4.4 Register sharing technique

In this work, these registers in MPEG-2 'system ate shared with the 3 main modules
(Slice_header, PictureParameterSet, SequenceParameterSet) in H.264 system; total 448

registers are shared and can be saved as result:

Separate MPEG-2 H.264
Version (1252 regs) (476 regs)

Total 1728 Registers

Register Sharing Pure MPEG-2 Shared Part | | Pure H264 Total 1280 Registers
Version (804 regs) (448 regs) (28 regs) (26% saved)

.
-

Number of register needed in syntax parser

Fig. 4.5 Register number reduction on syntax parser

Because of the additional multiplexer required for the register sharing technique, the
total number of combinational circuit increases slightly. But for the reduction on number of
registers, the total area saved and the power saved is about 20.5% and 22.6%. Table 4.2

summarizes the result of register-sharing syntax parser compared with original register

50

separate version.

Table 4.2 Area and Power reduction on register-sharing version

Separate Version | Shared Version | Percentage Saved
Combinational Area 32,307 39,993 -23.7%
Non-Combinational Area 126,066 85,984 31,8%
Total Area 158,373 125,977 20.5%
Power Dissipation 14.807 mW 11.463 mW 22.6%

4.2 Exp-Golomb Decoder. for H.264/AVC syntax parser
Exp-Golomb code is an UVLC-(Universal Variable Length Code) that is used
extensively for coding of the parameter in syntax element of H.264 bit-stream.

According to the standard, the proeessing-of the UVLC decoder shall be equivalent to

the following:
leadingZeroBits=-1,
for(b=0,!b;leadingZeroBits++)
b=read bits(1);
code value=2""""¢*"P_[1 yoqd bits(leadingZeroBits);

Table 4.3 shows the assignment of bit strings to the code value.

51

Table 4.3 The assignment of bit strings to code value

Bit string | Code value
Bit string form Range of code value 1 0
1 0 010 1
01 xo 1-2 011 2
00 1x; X 3-6 00100 3
000 1x2x; X 7-14 00101 4
00001 x3x2X; Xo 15-30 00110 5
00000 1 x4x3X2X]Xo 31-62 00111 6
0001000 7

4.2.1 Circuit design of Exp-Golomb Decoder

According to the property that the number of leading zeros corresponding to the length
of the Exp-Golomb code, we use an up-down counter for controlling the processing cycles
of an incoming Exp-Golomb code. With the help of this up-down counter, we can also
easily calculate the power of 2 of this up-down counter for the implementation of the power
part of the code value. With an accumulator in the ue(v) calculator and some control logics,
the code value of ue(v) can be calculated. Two output converters at the output stage
converts the ue(v) (unsigned value) to the se(v) (signed value) and me(v) (mapped value for

coded block pattern), and also te(v) (truncated value), for different requirement of coding

the system parameters. Fig. 4.6 shows the circuit design of Exp-Golomb decoder.

52

Up-Down Counter ue(v) caleulator o) 1o me) = ME(Y)
ue(v) to se(v) Se(V)

|—"—‘->| Power of 2 '—E : . > L’E——F ue(v)

0— Output
UVLC_start converter
1
. 11 _Output
Bit_in | Control > alid
Control logic

Fig. 4.6 Circuit Design of Exp-Golomb Decoder

4.2.2 Reusability of the Exp-Golomb Decoder

From the standard, we can see that the Exp-Golomb code exists in many syntax
parsing modules in ue(v), se(v), me(v), or te(v) forms. Such as SPS (Sequence Parameter
Set), PPS (Picture Parameter Set), Sliee Data Partition, Slice Header, Reference Picture List
Reordering, Prediction Weight Table, Decoding. Reference Picture Marking, Slice Data,
Macroblock Layer, Macroblock Prediction, and Sub-Macroblock Prediction. Thus we
carefully design the interface of the Exp-Golomb Decoder such that a single Exp-Golomb
decoder can be shared with all these syntax parsing modules.

The hand-shaking signals to the syntax parsing modules are signal “UVLC _start” and
“Output valid”. As fig. 4.7 shows, an “OR”-gate OR-ed all the request signals from syntax
parsing modules to active this Exp-Golomb Decoder. And an “Output valid” signals with
the result “me(v)”, “se(v)”, or “ue(v)” connect to these syntax parsing modules for the
acknowledgement of the decoded value by the decoder. Because there is only one module
sending the request signal to the Exp-Golomb at a certain time according to the content of

the bit-stream is currently parsing, no conflict will occur and we can thus share a single

Exp-Golomb Decoder for all the syntax parsing modules.

53

From all the VLC_start me(v)

modules in _ > To all the

syntax parser Exp-Golomb [— Se((")) modules in
—— ue(v

Bit in ————» DCCOder > Output valid SYntax parser

Fig. 4.7 Exp-Golomb Decoder shared for all modules in the syntax parser

4.3 H.264/AVC Intra Predictor

Intra prediction doesn’t exist in MPEG-2 system, but it is the key operation in every
[-frame of H.264/AVC video stream. In H.264/AVC video system, intra prediction can be
divided into 2 kinds, the intra4x4 prediction and intral6x16 prediction. There are total 9
modes in intra4x4 prediction (vertical, horizontal, DC, dewn-left, down-right, vertical-right,
horizontal-down, vertical-left, and horizontal-up), and ‘4 modes in intral6x16 prediction
(vertical, horizontal, DC, and plane). These. 13 -modes.in total of the intra prediction make
the result of prediction process very accurate to. the original image at various types of
image.

Whether the mode is chosen, the neighboring pixels (upper and left) must be loaded
before the prediction process because the neighboring pixel values exist in the prediction
formula in all these 13 modes. Thus to load the neighboring pixels become the first
operation in intra prediction process. In our work, we use 3 types of buffers (upper buffer,
left buffer, and corner buffer) to store and reuse the neighboring pixels either from/to
memory or from previous prediction results. The following gives the description on the

operations of these 3 types of buffers.

4.3.1 Low-Power Memory Fetch Upper Buffer Design

To load the upper neighboring pixels is not that direct compared with left neighboring

54

pixels because the macroblock decoding sequence is row-by-row. Because the upper
neighboring pixels are calculated long before and is dependent on picture width, to store the
upper pixels in buffers of registers is inefficient and high in cost when decoding
high-definition pictures. Thus an embedded slice memory is used to store the upper pixels
that calculated long before. The size of this slice memory is N, the number of macroblock in
picture width multiplies by 4, and the bandwidth of this slice memory is 32 bits.

We spend 4 cycles loading upper neighboring pixels from memory to our upper buffer
at the initial stage of the intra prediction on macroblock. We make the prediction sequence
same as the 4x4 block inverse raster scanning sequence defined in the standard. This 4x4
block based prediction sequence is very convenient in implementation of intra4x4 modes
and is also practicable in implementation of intral6x16 modes in the way that we split the
intral 6x16 prediction process into 16 identical intra4x4 prediction processes.

Fig. 4.8 and Fig. 4.9 show the operation of the upper buffer. After fetching upper pixels
from slice memory, these upper buffers_are updated with the completion of prediction
process on every 4x4 block in group of 4 pixels.In this way, only 4 sets of 4-pixel-sized
buffers are needed for the upper pixel fetching of every 4x4 blocks. At the end, after all 4x4
blocks are predicted, 4 cycles are needed to store the bottom pixel values to slice memory
from these upper buffers. This storing operation in memory also replaces the memory
content of the same address in fetching stage.

With the help of these upper buffers, the number of memory access can be greatly
reduces from at least 16 times to only 4 times which is the minimum number of memory
access of reading operation in all prediction modes. And because memory fetching is very
time consuming and power consuming, these upper buffers not only improve the throughput

but also saves lots of power in prediction process.

55

N= Number of macroblock in picture width x 4

Slilce Memlory (N xl 4 pixelf) D

ARG
G

Fig. 4.8 Operation of upper buffer (A)

T TTT T VLT T

-

AN

A

v v v v

Slice Memory (N x 4 pixels) D

N= Number of macroblock in picture width x 4

Fig. 4.9 Operation of upper buffer (B)

56

4.3.2 Reusable Left Buffer Design

Because macroblock are decoded row-by-row, fetching the left neighboring pixels is
very easy with the help of only a set of left buffers.

Fig. 4.10 and Fig. 4.11 show the operation of the left buffer. Same as the upper buffer
but without fetching operation from memory, values in these left buffers are updated with
the completion of the prediction process on every 4x4 block. In this way, the content stored
in left buffers is always the left neighboring pixels of the 4x4 block that will be predicted in
the nearest future. Moreover, only 4 sets of buffers in group of 4 pixels are needed for all
the fetching operations of left neighboring pixels in a macroblock, which is very efficient
and the cost is minimum. At the end, when, the prediction process on all 4x4 blocks are
completed, the content of these left buffersrarejust all updated to the left neighboring pixels
of the following macroblock to be processed. No additional fetching operations are required

between macroblocks.

AN

]

'/-\\

AN

Fig. 4.10 Operation of left buffer (A)

57

T
]

)1

)

g
£

)
,>

i
)

Fig. 4.11 Operation of left buffer (B)

4.3.3 Reusable Corner Buffer Design

Corner (upper-left) pixel is also needed forthe prediction process in most of prediction
modes. Because the upper buffers and the left buffers. can not cover the corner pixel, an
additional set of corner buffers are required for theintra prediction process.

Corner buffers consist of eight 1-pixel-sized buffers-Fig. 4.12 and Fig. 4.13 show the
operation of these corner buffers. Initially the buffers A1, A2, A3, and C2 are loaded with
the upper buffer from memory. C1, Bl, B2, and B3 are all calculated in the previous
macroblock can be used directly.

Same as the upper buffers and left buffers, the corner buffers are updated one by one
with the completion of the prediction process on every 4x4 block. As Fig. 4.12 shows, the
corner pixel values in the corner buffers are all updated to the new corner pixel values at the
nearest down-right 4x4 blocks. At the end, when the prediction process of all the 4x4 blocks
are completed, as Fig. 4.13 shows, we switch the set A1, A2, A3, and C2 with the set B1, B2,
B3, and C1. Because at the end of prediction process buffers Al, A2, A3, and C2 are just
updated to the left corner of the following macroblock, thus we update buffers B3, B2, BI,

and Cl1 to the upper corner of the following macroblock. Switching these two sets of corner

58

buffers between macroblocks smoothly accomplished the work of feeding corner values to

every intra prediction process on 4x4 blocks.

ol Al A2 A3 2
- : O

Bl R

B2

B3

Fig. 4.12 Operation of cotner buffer (A)

Al A2
|

Cl.\ |

BI :\IK\ |
B2 _J\\IJ\

B3 [~ -

(urrent Macrobldck Next Mjacroblogk

Fig. 4.13 Operation of corner buffer (B)

59

4.3.4 Intra Predictor for Directional Based Modes

With the help of the upper, left, and corner buffer introduced above, the complexity of
the predictor for directional based modes reduces a lot. In directional based intra prediction
modes, like vertical, horizontal, down-left, down-right, vertical-right, horizontal-down,
vertical-left, and horizontal-up both in intra4x4 or intral6x16, the prediction formula can
always be written as the following form:

pred[x,y]=(A+B+C+D)+2)>>2

Thus in our predictor for directional based modes design, as Fig. 4.14 shows, we
simply calculate the prediction output by first selecting the corresponding neighboring
pixels A, B, C, and D from upper, left, or corner buffers, and then do the adding and

rounding.

Corngt |
Bufier Upper butfer
Left Buffer

Rounding 0
Unit

>>7

\j
Prediction Output

Fig. 4.14 Intra predictor for directional based modes

60

4.3.5 Intra Predictor for DC Mode

In DC mode, the predictor has to calculate the average pixel value of the upper and left
neighboring pixels. Thus we can simply design an accumulator to implement this operation.
And we can increase the throughput by adding some additional adders.

This intra predictor for DC mode can also be shared with the slope calculator for plane

prediction, will be described in the following section.

Upper Neighboring
Pixels

Rounding |—> DC prediction
output

Left Neighboring
Pixels

Fig. 4.15 Intra predictor for DC mode

4.3.6 Intra Predictor for Plane Prediction

Plane prediction is the most.complex. part in intra prediction. The followings are the
formula of intra plane prediction.

For luma samples,
pred, [x,y]=Clipl((a+b*(x=T)+c*(y—=T)+16) >>5)

Where

a=16*(p[-1,15]+ p[15,—1])
b=(5*H+32)>>6
c=(05*V+32)>>6

H= i(x'ﬂ) *(p[8+x',~1]— p[6 - x',—1])

x'=0

V=2 () *(pl-1.8+y'1- p[-16-»'])

y'=0
And for chroma samples,
pred [x,y]=Clipl((a+b*(x=3)+c*(y—3)+16) >>5)

Where
61

a=16*(p[=1,7]+ p[7,~1])
b=(17*H +16)>>5
c=17*V +16)>>5

H= i(x‘+l)*(p[4+x',—1]—p[2 -x',—-1])

x'=0

V=2 (+D)*(pl=14+ 1= pl-1.2- ']

y'=0

Because the prediction values of plane prediction varying smoothly both along the
x-axis and y-axis in a macroblock (that’s why it named plane prediction), we can see from
the formula that the value b and c just like the slope of x and y axis in this virtual plane. We
calculate these slope values first as Fig. 4.16 shows, and for the pipeline issue which will be
introduced later, 2 sets of registers - slope b and slope c (for Y & Cr), slope d and slope e
(for Cb) are used to store the calculated slopes in plane prediction. And also, the
accumulator part in the slope calculator can:bé shared-with DC predictor which described in

the previous section.

Upper & ~—P
Corner - > 39
Pixels —pu|
Left & — hding & Clipping
Corner - > L
0 Shared with DC predictor _I_LDI_, slope_d

Fig. 4.16 Slope calculator for plane prediction

From [10], for the final prediction output, we can first calculate an intermediate value,

al where

62

al=a+b*(-7)+c*(-7)+16

Then pred, [x,y] can easily be calculate from the al
pred, [0,0] = Clip(al >>5),
pred,[1,0] = Clip((al + b) >>5),
pred,[2,0] = Clip((al + 2b) >>5),......and
pred,[0,1] = Clip((al + ¢) >>5),
pred, [0,2] = Clip((al + 2¢) >>5),......

After calculating the slope b and c, Fig. 4.17 shows the remaining calculation required
for plane prediction of luma samples. And once the a’ is calculated, those 3 pixels below it

can be calculated by a’+c, a’+2¢, and a’+3c.

a'=16p+16q-

3530+ 16 g en BE D A=

a'::aﬁy/ , / /:a-7b+4c
a'=a+b-4¢

/a =a-15b+4c
{

a'+a-7b+4c

o
1
&
~J
o
\i
~
m—
1
[
b
il

0000000

*3 = previous output, b = slope in x-axis, ¢ = slope in y-axis,
p=upper-right pixel value, g=down-left pixel value

Fig. 4.17 Required calculation for plane prediction

For hardware sharing and low cost issue, we can rewrite these required calculations as

the following form,
a'=16p+16q—-3b—-3c+16 > a'=4*(4p+4q—-b—-—c+4)+(b+c)
a=a+b—-4c—>a=a+4(-c)+b
a=a-Tb+4c—>a'=a+4*(c-2b)+b
a=a—-15b+4c—>a'=a+4*(c—-2b-2b)+b

In this way, no multiplication is required for the plane prediction. Combined with plane

63

prediction on Cb and Cr, Fig. 4.18 shows the intra predictor for plane prediction.

0
down_left_corner (Cb) x 16

upper_right_corner (Cb) X 16 —
slope_e —
~slope_d x4 — slope_c
down_left_corner (Cr) x 16 — _
upper_right_corner (Cr) x 16 — H
slope_c —
~slope_b x4 __| slope_b
20 | slope_d LlPrediction
0 0 output 0
- slope_c up_right_corner] “ Prediction
slope_c down_left_corner slope_c — output 1
- - slope_b . Prediction
- slope. g slope_cx2 — output 2
slope_e

. Prediction
slope_c x 3 + ™ clipping output 3

Fig. 4.18 Intra predictor for plane prediction

Fig. 4.19 shows the pipeline scheme for the situation that plane prediction apples on
both luma and chroma samples. With the additional slope storage (slope_d and slope_e) for

slope calculator, the total processing cycles.can be reduced:

Plane prediction
process for luma

alculate Plane prediction
b&c | process for Cr

lane prediction
process for Cb

Calculate

slope_b and slope_c
pe_ pe_ b&c

Calculate

slope_d and slope_e d&e

time

Fig. 4.19 Intra predictor for plane prediction

4.4 MPEG-2 & H.264/AVC Inverse DCT

Inverse DCT (Discrete-Cosine-Transform) is a key component in decoder design.
Inverse DCT operation is very complex and time consuming in MPEG-2 system. The

complexity raises proportional to the square of block size. Thus for the 8x8 block based

64

MPEG-2 system, IDCT is often the bottleneck of the system throughput. In H.264/AVC
system, though Inverse DCT is simplified to integer transform, we still need to design a
high throughput IDCT which suits for digital TV application.

Processing IDCT operation requires many multiplication and addition. From [6][17],
we can separate a 2-D IDCT into two 1-D IDCTs, by which the computational complexity
can be greatly reduced. In the 1-D IDCT design, for the trade-off between throughput and
cost, we have choices to design a serial-in-serial-out version or a parallel-in-parallel-out
version. From Table 4.3, we can see the result and the comparison for these 2

implementations. We here choose the parallel-in-parallel-out version

Table 4.3 Area and Power reduction on register-sharing version

Architecture Serial-in=Serial-out Parallel-in-Parallel-out
Gate count 22 K 46 K
Throughput 102-¢yeles/8x8block 32 cycles/8x8block
Clock rate for HDTV application™ 155 MHz 47 MHz

*HDTYV application: Assuming no any other latency, real time playing sequence of

1920x1088@301ps

4.4.1 2-Stage IDCT Architecture

The following shows the formula of a 2-D IDCT.

x(m,m) = %Nzlfa(k)a(l)ﬂk,l) X COS (2m2+ Dk | cos 2t D

2N

where a(0) = % and a(k)=1 for k#0

and n,m,k,1=0,...,N-1

Which equals to the following equations

65

Z(k,n) = f %a(!)Y(k,l) x COSW
x(m,n) = Z —a(Z)Z(n k) x cos(zm;Nl)”k

Thus we can split a 2-D IDCT into two 1-D IDCTs with a transpose matrix as Fig. 4.20

shows.

IDCT for MPEG-2

Parallel in

v v vly vy
1-D IDCT

1-D IDCT

DcTforese ¥ Y Y Y[V Y ¥V ¥

Parallel out

Fig. 4.20 2-stage IDCT architecture

4.5 MPEG-2 & H.264/AVC Combined Motion

Compensator

Processing motion compensation is the most complex operation in H.264/AVC system.
Various block size from 4x4 to 16x16 plus up to 1/4 resolution on motion vectors increase

the complexity on motion compensator design.
4.5.1 Motion Compensation Engine

66

Fig. 4.21 shows the motion compensation engine. It is composed of motion vector
predictor, interpolator and reconstruction. Firstly, motion vector predictor generates MVP
value according to motion vectors of neighboring blocks, which is stored in shift registers
and mv buffers. The interpolator then fetches the proper samples from external reference
frame memory according to the address calculated from address generator. These
interpolated data add to residual data which is calculated from entropy decoder, rescaling
and IDCT. Finally, the reconstructed data restores to external frame memory after
de-blocking filter. Two frame memories are exploited to keep current frame and previous

frame reciprocally.

Frame
memory

Motion Compensation Engine

$

G . __
—_——rsrssssssss ; H
I] | .
| : 4%x4 | Address .
: I Line MV FIFO mv Buffer |1 :_> Generator -) Memory Controller H
| 7y H
: |_ — g e — — — — — — - l ———————— * by | : oo]
| ij : | Reconfigurable € Read I E
’ Motion Vector Motion Vector || interpolator Data Buffer || ¢
. Predictor Generator | | Lt -
] forH264 BN | — Fosfeessicoterenaiacnead
=== ——= F——1 |
. 0
[]

De-blocking
Filter

r
|
Residual Adder
! |
Intra Decoder I Synchronization |
| Buffer
Syntax LE |

Parser T

Residual Decoder

Fig. 4.21 Motion compensation engine

4.5.2 Interpolator

67

Of all the components in motion compensator, the interpolation unit is always the most
time-consuming both in H.264/AVC and MPEG-2 systems. Some interpolation schemes or
architectures applied in recent standards have been proposed [1][9][15][16]. They can be
classified into three structures: 1-D based [1] [15], 2-D based [9] and separate 1-D based [9]
[16] approaches. 1-D based approach has lowest cost; however, it is not efficient for
memory access and data reuse, especially in high motion resolution for H.264/AVC. 2-D
based approach may cause longest latency and highest cost in multiple high coefficients
interpolation. Among three approaches, separated 1-D approach can achieve the most
efficient data reuse. Therefore, we developed a novel interpolator based on separate 1-D
approach to improve the data reuse and greatly reduce the memory access.

The concept of the interpolator is to separate a 2-D FIR interpolator into vertical and
horizontal 1-D FIR interpolators. Considering interpolation in H.264/AVC system, the half
sample is interpolated by applying 6-tap FIR filter (1, =5, 20, -5, 1) and quarter sample is
performed by using bilinear filter. And-for MPEG-2_system; the resolution on motion vector

is only up to 1/2, this down-compatible intetpelator can be shared for both systems.

68

] Coping il buffer

Switching

=T Thuffer
' miezer [
. : - Context switch
e e = half buffer
s

4 vertical FIR
/ 9 horizontal FIR
Ij 4 bilinear

Fig. 4.22 Motion compensation engine

4.6 MPEG-2 & H.264/AVC Combined De-blocking Filter

De-blocking filter can be used as a post-processing operation in MPEG-1/2/4 standard
The MPEG-2 standard doesn’t mention about the de-blocking filter at all. But it is
mentioned in MPEG-4 standard with informative process. That is, algorithms and design of
de-blocking filter in MPEG-2 standard is free to the designer without any constraints that

the designers have freedom choosing the most suitable architecture and algorithms of the

69

de-blocking filter. However, in H.264/AVC video coding system, because of the importance
of the de-blocking filter has risen, the de-blocking filter becomes an in-loop filter and is
definitely included in the H.264/AVC standard. Different from MPEG-2 system, to design a
standard compliant de-blocking filter is necessary in H.264/AVC system.

In our work, we combine the post-processing filter for MPEG-2 system with the
in-loop de-blocking filter in H.264/AVC system into a single de-blocking filter. We maintain
the filtered edge of 4x4 in H.264/AVC system and 8x8 in MPEG-2 system. For the 8x8
based de-blocking filter design, we adopted and do a little modification on the
post-processing de-blocking filter defined in MPEG-4 Annex F.3 as our post-filter for

MPEG-2 system.
4.6.1 Triple-Mode Decision

In the edge filtering design, there are three-modes introduced. According to the
strength and mode decision, we develop triple Pixel-in-Pixel-out (i.e. P-i-P-0) edge filter to
realize the in/post-loop de-blocking filter: We modify-the default mode of post-loop filtering
process and apply the algorithm of strong and'weak ‘mode in the in-loop filter. The default
mode is of prime concern while the DC offset mode tends to be less occurred. Further, the
DC offset mode is broadly similar to that in the in-loop filter, in the sense that we can apply
the filter process of “bS=4" instead of that in MPEG-4 Annex F.3 with a little performance
loss. Further, we modify the approximated DCT kernel (i.e. [2 -5 5 -2]) into [2 -4 4 -2]. That
is, we make use of shifter instead of constant multiplier. Based on the above discussion, we
deduce that three data flows will be generated in our triple P-i-P-o filter algorithm. They are
strong, weak and skip filtering process. Particularly, the strong mode filtering in in-loop and
post-loop has been merged into single structure. The data flows of the proposed hybrid filter

algorithm are depicted on Fig. 4.22.

70

InLoop Filter

Filter?

Yes

In/Post-Loop
Filter

Not filter(Skip mode)

Post-Loop Filter

bS =0 Mode Decision bS=4 eq _cnt>=6 Mode Decision Triple -MOde
(Strength: bS) * * Strength: eq_cn Decision
Strong
Edge Filtering
0<bS<4 Weak 2<=e(_cnt<6 Trlple P-i-P-o
Edge Filtering Edge Filter
- SKIP -t

Fig. 4.23 The data flow of the in/post-loop filter algorithm

4.6.2 Slice and content memory

To facilitate the data access with each block pixel or neighboring pixel, we use two
slice memory (single-port SRAMS) and-content-memory to keep the neighboring pixel and
block-content pixel value. The fetching and restoring pixel value is very frequently since
de-blocking filter in H.264/AVC is performed on each 4x4 block level. To reduce the pin
counts and speed up the filtering process, internal SRAM module is essential to meet the
real-time decoding demand.

The slice memory is used to store the neighboring pixel. It is required to keep them
until they have been filtered completely. Further, the address depth is decided by the frame
width in the slice memory. In Fig. 4.24(a), considering the frame size with MxN, each
square represents the 16x16 MB. Each MB contains the 16 points, and 4x4 pixels within
each point. When the filtering process is performed from the MB index of B to B+1, the
pixel data within upper and left neighbor will be updated as the arrows show. The shaded
region should be kept when the filtering index is B+/. Therefore, the slice memory is used

to keep the pixel value of upper and left neighbor and contains the size of about 2N x 32

71

for the 4:2:0 format.

The content memory is used to store the unfiltered pixel value in luma or chroma block.
The data word-length of memory is 32-bit, and the address depth of content memory is
decided by the YUV format (4:4:4, 4:2:2 or 4:2:0). For 4:2:0 format, there are 16 blocks of
luma and 8 blocks of chroma should be stored. Therefore, the size of content memory is
(16+8)*4 x 32 in total. Further, the data address is increased as the standard-defined block
ordering of Fig. 4.24(b). The grid region is stored in the slice memory and the dotted region

is stored in the content memory

< frame width = N > ‘

| | ||
Neighbor

. !.ehﬂb ‘ ‘ 16|17

I T 2 ; : : 18[19
frame c 1‘:an16 8 9 12 13

height =M : 1011|1415 20 |21

HEEEEEEEN calas
(a) (b)

Fig. 4.24 (a) Slice memory with grid or shaded region and

(b) Content memory with black-dotted region

4.6.3 Hybrid scheduling

To reduce the overhead with the reloaded data when switching the filtering edge from
horizontal to wvertical, we adopt a hybrid filter scheduling to re-schedule the
standard-defined edge. The de-blocking filter in H.264/AVC system is performed in the
vertical edge first, and then the horizontal edge. Based on the standard-defined filter
ordering, we can deduce the filter order on each 4x4 block as Fig. 4.25(a). In the filter

ordering of one 4x4 block, left edge is filtered first and lower edge is the last one. We

72

develop a novel filter ordering to schedule our filter process on each edge as Fig. 4.25(b).
Each filter order of one block obeys the rules of the left edge first and the lower edge last.
Compared to the traditional scheduling [13][14], our method prevents the re-access for
different direction and combine the vertical and horizontal filter at the rule of

standard-compliance.

37] 5]
33 53]
58] | [20]
3 34] [8]
1 > 2
¥ 45
4 a1 [a3]
3] | [2]
2] []

(a) (b)

Fig.4.25 Hybrid scheduling method

We use four 4x4 pixel buffer to keep the temporary data in our hybrid scheduling
process. In Fig. 4.26 (a), each MB has been partitioned into two main parts (i.e. Loop
Filter-MB-Upper or Lower) to reduce the kept buffer size. Each part is composed of eight
time-instances to process the filtering procedure in Fig. 4.26 (b). The grid region represents
the neighboring block and the shaded region is the position of kept data buffer with the size
of four 4x4 blocks. There is no need to keep the neighboring block as the data buffer in
certain time instance (except for the initial state #/) because the neighboring block and
current MB are located at different memory module. Both data of them can be accessed at

the same time instance and sent to the input of edge filter.

73

1 LF-MB-U -
I L ||
(a) LF-MB = +
s LF-MB-L -
v
y N
§ | | |
(b) t1 2 t3 t4
t5 t6 t7 t8

Fig. 4.26 The partitioned MB and each time instance when applying the hybrid scheduling

method

We derived the filter ordering of the proposed hybrid scheduling method in Fig.
4.26(b). Each bold line represents the edge to be filtered in each time instance. The filtered
ordering complied with the hybrid scheduling in Fig. 4.25(a) at each time instance t1 ~ t8.
By the same way, the proposed scheduling is'also performed in the block of chroma 4x4
block.

The main problem of in/post-loop de-blocking filter is the considerable amount of
memory access and processing cycles. To apply the proposed hybrid scheduling into the
overall system and enhance the system throughput, we use a high-throughput architecture of
de-blocking filter. Fig. 4.27 shows the proposed design with block diagram and data flow
representation. The external frame buffer is an off-chip memory and the size is decided by
the frame size. The shaded-arrows denote the data flow inside the de-blocking filter unit,
and the black-arrows denote the data flow outside. The pixel buffer is used to store the
intermediate pixel value when applying the proposed hybrid scheduling. It contains four 4x
4 pixel values. Moreover, in each time instance, it locates at the position as the shaded

regions of Fig. 4.26(b) shows.

74

Slice Memory

Intra/lnter
Prediction
IDCT o _
Pixel Buffor |- 253 | % 2 |0 External
o
(four 4x4 pos. | o @ |pos Frame
c sub-block)] Memory
Q ‘T w
c =
c
<)
8 T
Triple-Mode
Decision & Control .
De-Blocking
t Filter Unit

Threshold Memory

Fig. 4.27 The block diagram and data flow of the MPEG-2/H.264 combined de-blocking

filter

75

76

Chapter 5

Chip Implementation for Digital TV

Applications

5.1 System Specification

In our MPEG-2/H.264 dual mode decoder design, the specification of the MPEG-2

part is MPEG-2 simple profile at main level (SP@ML), table 5.1 shows the details of this

profile. In the H.264/AVC part, our specification is H.264/AVC baseline profile at level 3.2,

table 5.2 shows the details of this profile.

Table 5.1 Simple profile(@Main level of MPEG-2 system

No. of Layer id Scalable Maximum | -Maximum | Maximum | Maximum | Profile and
layers mode sample sample rate total bit total VBV level
density rate buffer indication
(H/V/F) /1000000
1 0 Base 720/576/30 | 10,368,000 15 1,835,008 SP@ML
Table 5.2 Baseline profile @ level 3.2 of H.264 system
Level Max Max frame Max video Max CPB Vertical MV Min Max number of
macroblock size decoded bit rate size component compression motion vectors
processing MaxFS picture MaxBR MaxCPB range ration per two
rate (MBs) buffer size (1000 bits/s (1000 bits MaxVmvR MinCR consecutive MBs
MaxMBPS MaxDPB or 1200 or 1200 (luma frame MaxMyvsPer2MB
(MB/s) bits/s) bits) samples)
3.2 216,000 5,120 7,680.0 20,000 20,000 [-512,+511.75] 4 16

The maximum computational capability is to support real time decoding of 10801

(1920x1088) MPEG-2 video sequence and SXGA (1280x1024) H.264 video sequence in

77

30fps. Our operational frequency required for MPEG-2 is 80.92MHz, and for H.264 is

79.64MHz.

5.2 Design Flow

We use the standard cell based design flow. Fig. 5.1 shows our design flow from

system specification to physical-level.

System o | Architecture RTL level _ | Physical level

Specification » System design o design o design o design

Fig. 5.1 Design flow from system specification to physical-level

In system design stage, first we estimated the required throughput for the specification,
applied the 4x4-sub-block level pipeline scheme and modified it to hybrid scheme for the
reason that macroblock-level pipelining scheme-is suitable for some modules. We carefully
estimate the efficiency of different decoding ‘ordering for-all the modules because it would
be an important interface between modules. We choose 1x4-column-by-column decoding
ordering for the implementation at last. Because we aimed at multi-mode decoder design,
the hardware sharing issue shall be considered as well in this first stage. The overall block
diagram and data flow is designed in this stage.

In architecture design stage, we divide the work mainly to 4 people, one for motion
compensation, one for entropy decoding, one for de-blocking filter, and one for the system
design and other modules (me). We have to consider the hardware sharing issue for both
systems in designing each module. The throughput required is the aim of designing each
module. Under the constraint of the throughput requirement, we focus on the architecture
design and to make each module low-complexity and low-power. Some low-complexity

architecture and low-power techniques are derived in this stage.

78

The RTL-design is along with the architecture design. The work for RTL-design is
mainly to translate the architecture of each module to RTL description. To make the
synthesis result identical to the architecture of our design is the goal of the RTL-design. Of
course that some coding techniques for the synthesizer are considered in this stage. To write
the RTL-code synthesizable and easy understanding is also important.

In physical design stage the CAD tools are important. To make a good use of these
tools and to do the remaining job to the best is the key point to our final result. The design
margin, technology used, some nano effects on deep sub-micron circuits are also needed to
be considered. At the end of the physical design stage, our work is taped-out for the

prototyping and final verification.

5.3 Implementation Result

In our work, we implemented an MPEG-2/H.264 dual mode decoder. Fig. 5.2 shows
the layout of this work. The total gate. counttis about 491K, chip size is 3.9x3.9mm” in
0.18um technology. Maximum working frequency is 83.3MHz, support decoding 720p
H.264 video sequence under 56MHz, decoding 720p MPEG-2 video sequence under

35.7MHz in 30fps. Power consumptions are 44.35mW and 30.15mW, respectively.

79

CAVLC/

LC

Fig. 5.2 Layout of thiswork

80

Table 5.3 Chip details

Items

Specification

Function

H.264 Baseline@Level 3.2

MPEG-2 SP@ML

Gate counts

491,260 (On-chip SRAM included)

(720p@301ps)

Technology 0.18um 1P6M

Supply voltage 3.3V/1.8V

Die size 3.9x3.9mm’

Package 208CQFP

Max working frequency 83.3MHz

Core Power Consumption | 44.35mW.@56MHz (H.264)

30.15mW@35.7MHz (MPEG-2)

5.4 Measurement Results'and Comparison

Table 5.4 shows the power report of our work. The power consumption of decoding

CIF, NTSC, and 720pHD MPEG-2 video sequences are 3.12mW, 11.15mW, and 30.15mW;

the power consumption of decoding CIF, NTSC, and 720pHD H.264 video sequences are

4.51mW, 16.39mW, and 44.35mW, respectively.

Table 5.4 Power report

Items (Core Power)

MPEG-2’s power analysis

H.264’s power analysis

720pHD (1280x720)

30.15mW@35.7MHz

44.35mW@56MHz

NTSC (648x486)

11.15mW@13.2MHz

16.39mW@20.7MHz

CIF (352x288)

3.12mW@3.7MHz

4.51mW@5.7MHz

81

Table 5.5 shows the comparisons to the State-Of-the-Art. It’s hard to find a pure ASIC

decoder but RISC included or ARM-based works. Thus it’s hard to have a fair comparisons.

However, we can still see that our work is a good solution to dual mode H.264/MPEG-2

decoder.
Table 5.5 Comparisons
Proposed [1]-[4] | C&S [11] Conexant [18] NTU [19]
ISCAS’05 ISCAS’04 ISCE’04 ISCAS’05
VLSI-TSA’05
Specification 1280x720@301ps | 1920x1088@301fps | 2048x1024@301fps | 2048x1024@301fps
Operating 56MHz 130MHz (local.| 200MHz 120MHz
Frequency bus:170MHz)
Technology 180nm (1.8V) 130nm (1:2V) 130nm (1.2V) 180nm (1.8V)
Profile H.264 baseline H.264 baseline H.264 main H.264 baseline
MPEG-2 MPEG-4 SP
SP@ML H.261,H.263,JPEG
Implementation | ASIC ARM-based ARM-based ASICH+RISC
Gate Count 491K 910K 300K 217K
Internal 24K bytes N/A 74K bytes 10K bytes
Memory
Power 44 35mW 554mW 160mW N/A
Normalized 100.92mW 2422 .88mW 691.89mW N/A
power*

*Normalized to 180nm(1.8v), 2048x1024@301ps

82

Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this work, we implemented a dual mode H.264/MPEG-2 video decoder. We adopt
many design techniques both on system-point-of-view and architectures.

From the system point of view, first we proposed the hybrid 4x4-sub-block pipelining
scheme, by which we can save 93.75% intermediate buffers compared with
macroblock-level pipelining scheme.at the pendlty of slightly throughput degradation. The
instantaneous switching scheme reduces the latency. to minimum during pipeline stages.
Second, we proposed the efficient 1x4-column-by-colimn decoding ordering, by which the
28% memory access times and 28% processing cycles in motion compensation process can
be saved. 17% memory access times can be saved as well in intra predictor. Third, we
proposed a variable length FIFO architecture for the synchronization problems in adding
pixels from residual/prediction paths. Forth, the exploration on coded-block-pattern
technique saves power in inverse quantizer and IDCT modules from 30% to 86% under qP
ranging from 20 to 48.

In architecture design, first we proposed a hierarchical syntax parser. The hierarchical
syntax parser is easy to design and is very suitable for the bit-stream in hierarchical
structure. With the hierarchical enable signals in these parsers, the power savings by
clock-gating technique can be up to 86% in these parsers. Second, the register sharing
technique is applied on syntax parsers for both systems. This technique reduces the amount
of registers required for both system and 26% registers can be saved. Third, we implement

&3

the Exp-Golomb decoder for parsing the H.264 bit-stream. The dedicated interface of this
decoder enables this decoder to be shared for all parsers. Forth, 3 types of reusable buffers
in intra predictor are proposed. By the aids of these reusable buffers (upper, left, and corner),
implementation of the directional modes becomes very easy and the memory access times
can be reduced also.

In our final chip implementation, the total gate-count is about 491K, maximum
working frequency is 83.3MHz, supports real time decoding 720pHD H.264
sequence@56MHz and 720pHD MPEG-2 sequence @35.7MHz in 30fps. The power
consumption for these 2 systems is 44.35mW (720p H.264 sequence) and 30.15mW (720p

MPEG-2 sequence), respectively.

6.2 Future Work

In our future work, first, we will:try to integrate and combine more functional blocks
for both systems like IDCT, and inverse squantizer. For-IDCT, we will take efforts on
splitting the 8x8 IDCT formula into 2-stage ‘4x4 and 2x2 IDCT so that the 4x4 IDCT
module for H.264 can be shared for the 8x8 IDCT operation of MPEG-2. Then, we will try
to add the CABAC with other functional blocks to our current work to support H.264 main
profile. We will also try to find the critical path in our work such that we can speed up our
decoder to work under more than 120MHz to support real time decoding 10801 H.264 video

sequence in 30fps.

84

Bibliography

[1]

[4]

Ting-An Lin, Sheng-Zen Wang, Tsu-Ming Liu and Chen-Yi Lee, "An H.264/AVC
Decoder with 4x4-block level pipeline", ISCAS 2005

Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, "A Low-Power H.264/AVC Decoder",
VLSI-TSA 2005

Sheng-Zen Wang, Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, " A New Motion
Compensation Design For H.264/AVC Decoder”, ISCAS 2005

Tsu-Ming Liu, Wen-Ping Lee, Ting-An Lin and Chen-Yi Lee, "A Memory-Efficient
Deblocking Filter For H.264/AVC,Video Coding", ISCAS 2005

Shih-Hao Wang, Wen-Hsiao Peng @t 'al:; <A -Platform-Based MPEG-4 Advanced
Video Coding (AVC) Decoder with Block Level Pipelining”, Information,
Communications and Signal-Processing, TCICS-PCM December 2003

Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen, “Analysis and design of
macroblock pipelining for H.264/AVC VLSI architecture”, ISCAS 2004

Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, “Draft ITU-T
Recommendation and Final Draft International Standard of Joint Video Specification”
ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, May 2003

Iain E. G. Richardson, “H.264 and MPEG-4 video compression”, John Willey & Sons,
autumn 2003, ISBN 0-470-84837-5

Ville Lappalainen, Antti Hallapuro, and Timo D. Hamalainen, “Complexity of
Optimized H.26L Video Decoder Implementation”, Circuits and Systems for Video
Technonlogy, IEEE Transactions, July 2003

[10] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen, “Hardware

architecture design for H.264/AVC intra frame coder”, ISCAS 2004

85

[11] Hae-Yong Kang, Kyung-Ah Jeong, Jung-Yang Bae, Young-Su Lee, Seung-Ho Lee,
“MPEG4 AVC/H.264 decoder with scalable bus architecture and dual memory
controller”, ISCAS 2004

[12] K. Suhring, Ed., JM 8.2 reference software (online), 2004. Available at
ftp://ftp.imtc.org/jvt-experts/

[13] Yu-Wen Huang, To-Wei Chen, Bing-Yu Hsieh , Tu-Chih Wang, Te-Hao Chang and
Liang-Gee Chen, “Architecture Design for Deblocking Filter in H.264/JVT/AVC”
International Conference on Multimedia and Expo(ICME’03), Vol. 1, pp. [-693-6, July
2003.

[14] Miao Sima, Yuanhua Zhou and Wei Zhang, “an Efficient Architecture for Adaptive

Deblocking Filter of H.264/AVC Video Coding” IEEE Transactions on Consumer
Electronics, Vol. 50, Issue 1, pp. 292-296, Feb. 2004.

[15] He-Wei Feng, Zhi-Gang Mao, Jin-Xiang Wang, Dao-Fu Wang, “Design and
implementation of motion compensation ifor MPEG-4 AS profile streaming video
decoding,”. 5th International Conference on. ASIC, Oct. 2003. Proceeding.

[16] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen, “Fully utilized and reusable
architecture for fractional motion. estimationTof H.264/AVC,” IEEE International

Conference on Acoustics, Speech, and Signal Proeessing, May 2004.

[17] Shu-Tzu Lin, Chen-Yi Lee, “Analysis and design of a high-throughput two dimension
inverse scan discrete cosine transform processor”, Master Thesis, Department of

Electronics Engineering, National Chiao Tung University, Taiwan, June 2000

[18] Y. Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition H.264/AVC hardware
video decoder core for multimedia SoC’s,” Proc. ISCE 2004.

[19] T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai, and L. G. Chen,

“Architecture Design of H.264/AVC Decoder with Hybrid Task Pipelining for High
Definition Videos,” Proc. ISCAS 2005.

86

BR 1987.9~1993.6 i F A X R H
1993.9~1996.6 S#F = fcT ER ¢ &
1996.9~1999.6 S#F LG & &
1999. 9 ~ 2003. 6

B 5
2003.9~2005:6 = BRI A8 TIFAL A hle AL

I3
4ok
S

2000/06 % % &

2001/01 % %

2003/05 2003 x B IC & 3+ R 3+ % f

2003/06 T+ F HLAEF L LR F BT &

2004/05 2004 3 B IC &+ 3R 3+ 2 f

2004/06 % % &

2004/10 2004 Bk o ds 303500 -k T 47 SIP g5

2005/05 2005 2 B IC K 3w gk i 5 fF

87

® Ting-An Lin, Sheng-Zen Wang, Tsu-Ming Liu and Chen-Yi Lee, "An
H.264/AVC Decoder with 4x4-block level pipeline", ISCAS 2005

® Ting-An Lin, Tsu-Ming Liu and Chen-Yi

H.264/AVC Decoder", VLSI-TSA 2005

Lee,

"A Low-Power
® Sheng-Zen Wang, Ting-An Lin, Tsu-Ming Liu and Chen-Yi Lee, "A New

ISCAS 2005

Motion Compensation Design for H.264/AVC Decoder”, ISCAS 2005
® Tsu-Ming Liu, Wen-Ping Eee, Ting-An. Lin and Chen-Yi Lee, "A

Memory-Efficient Deblocking Filter for H.264/AVC Video Coding",

DVB-T system”, ISCAS 2005

® Ting-An Lin, and Chen-Y1 Lee, “Predictive Equalizer Design for

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

