
HYDROLOGICAL PROCESSES
Hydrol. Process. 23, 2765–2773 (2009)
Published online 6 July 2009 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/hyp.7374

Optimal control algorithm and neural network for dynamic
groundwater management

Hone-Jay Chu1* and Liang-Cheng Chang2

1 Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Da-an District, Taipei City 106, Taiwan
2 Department of Civil Engineering, National Chiao Tung University, 1001 TA Hsueh Road, Hsinchu, Taiwan, 300, ROC

Abstract:

Researchers have found that obtaining optimal solutions for groundwater resource-planning problems, while simultaneously
considering time-varying pumping rates, is a challenging task. This study integrates an artificial neural network (ANN)
and constrained differential dynamic programming (CDDP) as simulation-optimization model, called ANN-CDDP. Optimal
solutions for a groundwater resource-planning problem are determined while simultaneously considering time-varying pumping
rates. A trained ANN is used as the transition function to predict ground water table under variable pumping conditions. The
results show that the ANN-CDDP reduces computational time by as much as 94Ð5% when compared to the time required
by the conventional model. The proposed optimization model saves a considerable amount of computational time for solving
large-scale problems. Copyright  2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Groundwater is a valuable water resource with many
diverse uses for domestic, agricultural, and industrial pur-
poses. Previous studies have extensively explored ways to
ensure sustainable ground water use, owing to its impor-
tance. Research has employed many optimization tech-
niques in groundwater management planning, including
linear programming, nonlinear programming (Gorelick
et al., 1984; Ahlfeld et al., 1988), mixed-integer pro-
gramming (Rosenwald and Green, 1974), genetic algo-
rithms (GA) (McKinney and Lin, 1994; Wang and Zheng,
1998), and constrained differential dynamic program-
ming (CDDP). Temporal water-resource systems require
that any simulation or optimization model be dynamic
in order to yield satisfactory results, unless the input
assumptions justify a static system. For groundwater
supply, the demand for groundwater may vary over
time, particularly when the aquifer operates conjunc-
tively with the surface water system (Basagaoglu et al.,
1999). Among these methods, CDDP exploits the sequen-
tial time structure of these problems (Jones et al., 1987).
Using CDDP requires that dynamic optimal groundwa-
ter management accommodate these situations. CDDP
significantly reduces dimensionality difficulties associ-
ated with nonlinear dynamic groundwater management
problems (Jones et al., 1987; Chang et al., 1992; Culver
and Shoemaker, 1992; Chang and Hsiao, 2002; Chang
et al., 2007). Jones et al. (1987) used CDDP algorithm
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for unsteady, nonlinear, groundwater management prob-
lems. Due to the stage-wise decomposition of CDDP,
the dimensionality problems associated with embed-
ding the hydraulic equations as constraints in the man-
agement model are significantly reduced. Chang et al.
(1992) employed an optimal control method, called the
Successive Approximation Linear Quadratic Regulator
(SALQR), to design a time-varying pumping system for
contaminated aquifer remediation. Culver and Shoemaker
(1992) found that time-varying policies are more cost-
effective than time-invariant policies. The CDDP used
herein is a modification of SALQR and has been shown
efficient in solving time-varying problems. However,
computational burdens that accompany field-scale prob-
lems hinder using CDDP in actual projects (Mansfield
et al., 1998; Liu and Minsker, 2001).

Artificial neural network (ANN) consists of an inter-
connected group of neurons and processes information
using a connectionist approach to computation (Coulibaly
et al., 2001; Pijanowski et al., 2002). The ANN is an
alternative modelling and simulation tool, especially for
dynamic nonlinear systems (Coppola et al., 2003a,b,
2005, 2007; Becker et al., 2006; Feng et al., 2008).
Recently, many researchers have successfully applied
ANN models in hydrologic modelling, such as typhoon
rainfall forecasting (Lin and Chen, 2005), the deter-
mination of aquifer parameters (Samani et al., 2007),
and regional ground water levels simulation (Coppola
et al., 2003a,b, 2005; Feng et al., 2008). A number
of studies combine the optimization model with ANN
(Rogers and Dowla, 1994; Rogers et al., 1995; Johnson
and Rogers, 2001; Rao et al., 2003, 2005). Rogers and
Dowla (1994) used ANN-GA methodology to replace
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the traditional simulation-optimization model. The model
uses 20 pre-selected extraction locations with steady-
state pumping rate to search for the subset producing
the smallest volume of pumping water over a 40-year
planning period. Rogers et al. (1995) also used ANN-
GA methodology to locate the best pumping patterns for
meeting remediation objectives. Rao et al. (2003) apply
simulated annealing (SA) with an ANN, which replaces
the SHARP (A numerical finite-difference model to sim-
ulate freshwater and saltwater flow separated by a sharp
interface) interface flow model to meet demand during
non-monsoon season without including excessive saltwa-
ter instruction. Rao et al. (2005) use ANN and SA for
planning groundwater development in coastal deltas and
a trained ANN as the SEAWAT (A computer program for
simulation of three-dimensional variable-density ground-
water flow and transport) model to predict final ground-
water concentration under variable pumping condition.
The above researches consider fixed pumping rate in the
design problem, yet they lack system dynamic response,
such as time-varying water level or concentration. Apply-
ing an optimization technique such as GA or SA to solve
time-varying policies would dramatically increase com-
putational resources required. Becker et al. (2006) indi-
cated that simulation-optimization methods including the
ANN-GA model are able to search better solutions than
current trial-and-error approaches. The optimal objective
function values are an average improvement of 20% than
that of trial-and-error methods.

This study presents a novel approach for solving
this optimization problem by effectively combining a
CDDP with an ANN for groundwater management.
The algorithm is a CDDP embedded with an ANN.
The CDDP computes the optimal time-varying pumping
schemes to minimize the operating cost present value
while meeting water demand constraints. The embedded
ANN computes the system response and hydraulic head,
for a pumping policy.

FORMULATION OF THE PROPOSED
MANAGEMENT MODEL

The management model contains an aquifer, which is
a two-dimensional unconfined system. The governing
equation that describes groundwater movement is
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where h denotes the hydraulic head, Kxx and Kyy repre-
sent the principal components of hydraulic conductivity
aligned along x and y coordinate axes, I represents the set
of pumping wells, Sy denotes the specific yield, ui repre-
sents pumping rate located at �xi, yi�, and υ �xi, yi� is the
dirac delta function evaluated at �xi, yi�. Equation (1) is
subject to the appropriate initial and boundary conditions.

The management model is then formulated as follows:
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where Equation (2) represents the operating cost present
value associated with well network I. The decision vari-
able is ui

t which is pumping rate at pumping well i at time
step t. The expression Li

Ł � hi
tC1 simply represents draw-

down at pumping well i. Li
Ł�I� is the distance between

the ground surface and the lower datum of the aquifer
for each well; hi

tC1 denotes hydraulic head at pumping
well i at time t C 1. The term r denotes the interest
rate. The term c2 denotes the cost coefficient of pumpage
and is expressed as c2 D � ð c1 ð t, with t as the
duration of pumping, � the specific gravity, and c1 the
unit cost of electric power. Equation (3), as derived from
Equation (1), represents the system dynamics relation in
the optimization. Equation (4) defines lower limits hmin

on the hydraulic head to avoid damage caused by over-
pumping. Equation (5) represents the requirement that
total demand dt for groundwater supply must be satisfied.
The upper limits of Equation (6) denote the capacity of
each well while the lower limits can be applied to avoid
well installation that has small pumping rates, which are
obviously infeasible. umin and umax denote the minimum
and maximum pumping rate for each well. I is an index
set defining a pumping network and the upper index i
denotes a well in the network design I;  represents the
set of observation wells.

INTEGRATION OF CDDP AND ANN

This study integrates CDDP and ANN to develop
the groundwater management model that is CDDP
with ANN embedded in the optimal present operating
cost evaluation for time-varying pumping defined by
Equations (2) to (6). Figure 1 shows the procedure to
develop the ANN-CDDP model. The approach confronts
the problem by training ANN to predict system response.
Although ANN is trained, the ANN can be coupled with
CDDP. The CDDP can be used to evaluate optimal oper-
ating costs present value. The details are further explained
as follows:

Step 1: Create training data by repeated case simulation
using ISOQUAD

The current work generates training data from 3000 sim-
ulation data by an aquifer simulation model (ISOQUAD
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Create training by
repeated case

simulation using
ISOQUAD

Train ANN to predict the
hydraulic head

Embedding ANN into
CDDP and computing

for optimal policy

Verify the ANN
simulator

Figure 1. Flow chart for ANN-CDDP

(Pinder, 1978)). The total available data has been divided
into two sets, training and validation set: approximately
2500 patterns (samples) were used to train the ANN, and
500 different patterns were used for validation. Here,
the unconfined aquifer simulator is modified from the
ISOQUAD (Pinder, 1978), a two-dimensional confined
aquifer simulator, using the Picard method (Hsiao and
Chang, 2005). The ISOQUAD is the numerical solution
obtained by applying the Galerkin finite-element method
for the space derivative and an implicit finite difference
scheme for the time derivative.

Step 2: Train ANN to predict hydraulic head

The ANN attempts brain simulation (Biological neural
network). The architecture used for ANN is a feed-
forward network, trained by the back-propagation learn-
ing algorithm (Tsai and Lee, 1999; MATLAB, 2000;
Rao et al., 2003, 2005; Coppola, 2003a). ANN has the
phases of neural processing: learning is the process by
which ANN data is encoded with weights. After learn-
ing completion, the weights and bias are updated from the
learning process. The recall process retrieves information
based on weights obtained from the learning process and
predicts output data of a new example. The functions for
a two-layer neural network can be written as (Negnevit-
sky, 2002; Coppola et al., 2003a; Kumar, 2004; Samani

et al., 2007)

Oj D f�netj�, netj D
∑

i

wi,jOi � bj �7�

where Oj denotes the output for node j in the output
layer; Oi denotes the input for node i in the input layer;
f is transfer function; wi,j denotes a connected weight
between jth node in the output layer with ith node in
the input layer; bj represents bias value in the output
layer.

This paper uses the ANN as a dynamic simulator for
determining hydraulic head at time t C 1, which is based
on the pumping rate and hydraulic head at time t. The
ANN training can be done by providing it with dynamic
behaviour information as shown in Figure 2. Equation (8)
is written as the input-output pattern of ANN, where the
output, which is the hydraulic head (htC1) at time t C 1 is
a function of inputs including the pumping rate (ut) and
hydraulic head (ht) at time t:

htC1 D f�ht, ut�, t D 1, 2, . . . , T �8�

The dimension of input vector in Equation (8) is
m C n and the output state vector is n, where n is the
number of observation wells and m is the number of
pumping wells. For example, the ANN includes three
inputs and two outputs if there are a pumping well and
two observation wells.

Step 3: Embedding ANN into CDDP and computing
the optimal policy

The CDDP is a successive approximation technique
for solving optimal control problems and iteratively
determining the optimal solution to the problem stated
in Equations (2) to (6). Murray and Yakowitz (1979);
Jones et al. (1987), and Chang et al. (1992) provide a
detailed discussion of the CDDP algorithm. Compared
with previous studies, Equation (3) is the transition
function to simulate system response induced by control
policy, and Equation (8) is the ANN model of ground
water flow in this study.

The ANN-CDDP computes the optimal solution by
resolving a series of quadratic problems, and the
quadratic approximation of the original problem. The
ANN-CDDP searches for the optimal policy and calcu-
lates optimal operating costs through the backward and
forward sweep. In the backward sweep, the ANN-CDDP
evaluates an update control policy through a series of

h(t+1)
h(t)

u(t)

Figure 2. ANN architecture for the study
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matrix computations with derivative information. The

derivatives in the transition equation,
∂Oj
∂Oi

, are derived
by a single-layer ANN in the following.
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�9�

For a multi-layered network, the derivatives in the
transition equation are derived by ANN in the following
(Dimopoulos et al., 1995; Yang and Chang, 2001):
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where Ok denotes the output for node k in the output
layer; jn, jn � 1, . . ., and j1 denote the neural units in
the nth, n � 1th,. . ., and 1st hidden layer.

While ANN-CDDP is in the forward sweep, ANN can
specify the value of state variables at each time step,
using the initial value of state variables and the transition
equation, Equation (3). Reapplying quadratic program-
ming solves the problem and reveals optimal policy. The
computed optimal policy becomes the nominal policy for
the next iteration. Unless this step satisfies the stopping
criterion, iterations are required.

RESULTS AND DISCUSSION

This study adopts a ground water supply problem, which
is a modification of the example from Hsiao and Chang
(2002) to verify the methodology effectiveness. Figure 3

56

no-flow boundary

no-flow boundary(x,y)=(0,0)

ha

y=3000m

147 352821 4942

x=5000m

hb

777063

55136 342720 4841 766962

54125 332619 4740 756861

53114 322518 4639 746760

52103 312417 4538 736659

5192 302316 4437 726558

5081 292215 4336 716457

h0 =
80m

L =
100m

Figure 3. The aquifer for water supply in Cases 1 and 2

Table I. Aquifer properties and simulation parameters of cases

Parameter Value

Aquifer thickness 100 (m)
Initial ground water head 80 (m)
Horizontal hydraulic conductivity 0Ð005 m/s
Vertical hydraulic conductivity 0Ð005 m/s
Porosity 0Ð2
Specific yield 0Ð1
Cost per kilowatt-hour $1Ð35

displays a hypothetical and unconfined aquifer to demon-
strate the algorithm performance described above. The
3000 m ð 5000 m site includes 77 finite-element nodes,
60 elements, and 5 pumping well locations. No-flow
and constant-head boundaries (ha D hb D 80 m) circum-
vent the flow domain. This work assumes that initial
conditions on hydraulic head distribution prior to pump-
ing are steady state. Aquifer properties and simulation
parameters are listed in Table I. The initial conditions on
hydraulic head are h0 D 80 m and the distance between
the aquifer bottom and ground surface is L D 100 m. This
study calculates the present value of the optimal operat-
ing cost of a well system, which satisfies the maximum
demand of each time step. The following three cases dis-
cuss the effects of water demand curve, total demand,
and model size for the numerical experiment.

Observation well Pumping well

Figure 4. Plan view of Case 1 and Case 2
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Figure 5. Water demand increasing curves in Case1

Copyright  2009 John Wiley & Sons, Ltd. Hydrol. Process. 23, 2765–2773 (2009)
DOI: 10.1002/hyp



OPTIMAL CONTROL ALGORITHM AND NEURAL NETWORK 2769

Case 1: Comparing varying water demands over
a period of 5 years

Figure 4 shows Case 1 and 2, including five pumping
wells (black triangle) and eight observation wells (open
square). This section compares the operation costs of the
pumping policy under each of the three water demand
curves (i.e. linear, concave, and convex) (Basagaoglu
and Yazicigil, 1994), as illustrated in Figure 5. The total
water demand over 5 years is assumed as 110 (106m3).
The management model for Cases 1 and 2 divides the
planning horizon into 20 stages over 5 years and each
time step (t) is 91Ð25 days.

There is a three-layer feed-forward network in the
study. Two thirds of the input neuron number is defined
as the hidden neuron number; this can generate results of
almost similar accuracy but requires much less time to
train (Wang, 1994). In this model, ten hidden neurons are
used in the network to ensure a balance of both accuracy
and computation effort. The ANN inputs are the pumping
rate and hydraulic head at current time and the outputs
are hydraulic head at future time. The inputs dimension
is the 13 and outputs dimension is the 8 where the pump-
ing well numbers are 5 and the observation well numbers
are 8. The transfer functions in the model are hyper-
bolic tangent sigmoid for hidden layers and linear for the
output layer. The neural network model is trained using
an ANN toolbox by MATLAB (2000). A network train-
ing function updates weight and bias values according to
Levenberg-Marquardt optimization. The stopping crite-
rion is based on the mean squared error (MSE) D 10�5.
If the stopping criteria are not met, the algorithm will
continue. After ANN training, this experiment quantifies
error with ANN and the ISOQUAD solution, using the
root mean squared error (RMSE). For the validation data
sets, the RMSE of Case 1 is 0Ð004 m in average. The
relative validation error with respect to average ground
water level is small, illustrating high predictive perfor-
mance. The ANN predicts hydraulic heads accurately
at the selected control locations under variable pump-
ing conditions but condensed surrogate for ground water
flow model in the representative nodes (Coppola et al.,
2003a,b; Feng et al., 2008). The operating cost present
value of the optimal policy is illustrated in Table II. The
operating cost present value is most expensive for the
concave curve and least expensive for the convex curve.
Accuracy of the proposed model can be quantified by
comparing it with the ISOQUAD-CDDP (Chang et al.,
1992; Culver and Shoemaker, 1992). Results demonstrate
that relative error is 0Ð03% or less when calculating costs.

Case 1Ð1, with convex water demand, has the least
operating cost present value. Case 1Ð2, with linear water
demand, has the middle present value of operating cost.
Case 1Ð3, with concave water demand, has the most
operating cost present value. This study explains why
the operational cost for a concave case is more than
that for linear and convex cases. Comparing the convex
curve with the linear and convex curve indicates that
the convex curve (Case 1Ð1) needs less water at early
stages than the other two curves, and has relatively
more requirements at the late stage. Figure 6 shows the
optimal pumping rates determined by ANN-CDDP and
ISOQUAD-CDDP in Case 1. The optimal pumping rates
obtained from the two models are approximate, indicating
that the ANN-CDDP model is a feasible alternative
of ground water management. The figures also imply
a relationship between time-varying pumping rate and
demand under different curves. Case 1Ð1 has more water
pumping than the other cases near the end of the planning
period since the pumping rate is related to water demand
(Figure 6). Based on economic theory, investing $1 today
will yield more than investing $1 tomorrow (Chang et al.,
in press). Nevertheless, computing present operation cost
value near the ending time has more discounting effect.
Case 1Ð1 has the least operating cost present value. The
illustrations explain the resulting optimal operational cost
of three cases.

Case 2: Comparison of total water demand influence
on cost over a period of 5 years

When the total convex water demand curve increases
from 110 (106m3) to 160 (106m3), the optimal manage-
ment model satisfies the different water demands. The
experiment embeds CDDP with ANN, which the ANN
determines future hydraulic head based on the current
pumping rate and hydraulic head. The ANN is same
to Case 1 on the same boundary, time interval, and
well locations. Figure 7 shows the optimal pumping rates
determined by ANN-CDDP in Case 2. Results in the
figure imply a relationship between time-varying pump-
ing rate and demand: the pumping rate increases when
water demand increases. Results are consistent with the
Equation (1) that indicates the more the pumping volume,
the higher the operation cost. Therefore, the operation
cost trend in time is relative to their demand curves
(Chang, et al., in press).

This study finds that optimal pumping strategies satisfy
these total demands using ANN-CDDP and ISOQUAD-
CDDP. Table III shows that operation cost increases
when water demand increases and the accuracy of ANN-
CDDP used can be quantified when compared with

Table II. Comparison of ANN-CDDP and ISOQUAD-CDDP solutions in case 1

Water demand curve form Optimal operating cost
using ANN-CDDP ($)

Optimal operating cost
using ISOQUAD-CDDP ($)

Relative error (%)

Case 1.1 Convex 125 027 125 035 0Ð01
Case 1.2 Linear 133 514 133 539 0Ð02
Case 1.3 Concave 142 041 142 089 0Ð03
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Table III. Comparison of ANN-CDDP and ISOQUAD-CDDP solutions in case 2

Demand Optimal operating cost
using ANN-CDDP ($)

Optimal operating cost
using ISOQUAD-CDDP ($)

Relative error (%)

Case 2Ð1 110 (106m3) 133 514 133 539 0Ð02
Case 2Ð2 135 (106m3) 164 932 164 962 0Ð02
Case 2Ð3 160 (106m3) 197 213 197 270 0Ð03

Table IV. Three case sizes in case 3

Number of nodes Number of elements

Case 3Ð1 91 72
Case 3Ð2 187 160
Case 3Ð3 315 280

Observation well Pumping well

Figure 8. Plan view of Cases 3Ð1 (blue), 3Ð2 (red), and 3Ð3 (green)

ISOQUAD-CDDP: the results demonstrate that relative
error of cost is less than 0Ð05%. Findings show that
increasing demand has no significant effect on the pro-
posed model accuracy. ANN-CDDP has the ability to
minimize the operating cost under the variant total water
demands. Thus, ANN-CDDP is an alternative way for the
dynamic ground water supply optimization.

Case 3: Comparison of the influence of different domain
sizes

This study presents the solutions obtained for three
hypothetical, isotropic, unconfined aquifers with different
dimensions: 600 m ð 1200 m (blue), 1000 m ð 1600 m
(red), and 1400 m ð 2000 m (green). Table IV indicates

the number of finite-element nodes and elements in the
three cases. Figure 8 indicates the three different domains
with finite-element mesh, along with five pumping wells
(black triangle) and five observation wells (open square).
The boundary conditions, initial conditions, and aquifer
properties are the same for Case 1. Table I lists the
aquifer properties and simulation parameters. Based on
the 5-year water demand schedule, the planning horizon
is divided into 60 time steps and each time step in the
management model (t) is 30Ð4 days. Total amount of
water demand is 125 (106m3) for each case and the water
demand curve is assumed linear.

The ANN training data are generated independently
from the simulation results based on different domain
sizes. ANN models are trained using the above-described
procedures, and the input dimension is 10 and the out-
put dimension is 5 where the pumping well numbers
are 5 and observation well numbers are 5. After train-
ing and validation, ANN is embedded in CDDP and
the current study compares the present operating cost
value under different domain sizes between ANN-CDDP
and ISOQUAD-CDDP. Results show that the difference
in cost between ISOQUAD-CDDP and ANN-CDDP for
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Figure 9. Comparison of CPU time each iteration between ANN-CDDP
and ISOQUAD-CDDP at Case 3

Table V. Comparison of ANN-CDDP and ISOQUAD-CDDP solution and CPU time (maximum iteration number is fifty) in case 3

ANN-CDDP ISOQUAD-CDDP Relative error (%)

Case 3Ð1 Optimal operating cost ($) 154 892 154 863 0Ð02
CPU time each iteration (s) 3Ð79 5Ð74

Case 3Ð2 Optimal operating cost ($) 156 033 156 022 0Ð01
CPU time each iteration (s) 4Ð37 29Ð33

Case 3Ð3 Optimal operating cost ($) 157 278 157 268 0Ð01
CPU time each iteration (s) 4Ð30 316Ð26
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each case is 0Ð02% or less. Comparing central process-
ing unit (CPU) iteration time (maximum iteration num-
ber is 50) with both methods, findings in Table V and
Figure 9 show that computational work for ANN-CDDP
in this study does not increase with domain size. The
findings also provide support for the hypothesis that com-
putational work for the ISOQUAD-CDDP model is pro-
portional to O (Ns3), where Ns is the total number of
state variables (Mansfield et al., 1998; Liu and Minsker,
2001). Thus, computational work between both is pro-
portional to domain size. Case 3Ð3 presents a comparative
table involving ISOQUAD-CDDP and ANN-CDDP from
which show that the latter saves significant computational
time. The ANN-CDDP reduces computational time by as
much as 94Ð5% compared to the time required by the
ISOQUAD-CDDP.

CONCLUSIONS

In optimization model, the number of state variables
might be considerable and lead to a computational burden
with real world problems. Therefore, this paper proposes
a new optimization approach in dynamic groundwater
management. The proposed model, which integrates a
neural network (ANN) and CDDP, calculates the optimal
operation cost by considering time-varying pumping rates
for ground water resources management. The proposed
methodology can handle large-field problems by using
the number of observed states irrespective of domain size.
The ANN-CDDP reduces computational time by as much
as 94Ð5% compared to the time required by the conven-
tional model (ISOQUAD-CDDP). The problem is less
complex using this methodology than the conventional
model. Results show that the methodology is suitable for
the large-field control purposes.

Sub-surface pollutant transport is a dynamic process.
Solving large field-scale problems related to groundwater
remediation design is time-consuming, as the search may
require numerous simulation runs for optimal remedia-
tion strategies. The ANN program extends to simulate
time-dependent behaviour in coupled flow and solute-
transport. This study therefore proposes using the ANN-
CDDP model to solve remediation design problems in
the future.
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