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ARTICLE INFO ABSTRACT

Keywords: Utility itemsets typically consist of items with different values such as utilities, and the aim
Utility mining of utility mining is to identify the itemsets with highest utilities. In the past studies on util-
High utility itemsets ity mining, the values of utility itemsets were considered as positive. In some applications,

Association rules however, an itemset may be associated with negative item values. Hence, discovery of high

utility itemsets with negative item values is important for mining interesting patterns like
association rules. In this paper, we propose a novel method, namely HUINIV (High Utility
Itemsets with Negative Item Values)-Mine, for efficiently and effectively mining high utility
itemsets from large databases with consideration of negative item values. To the best of
our knowledge, this is the first work that considers the concept of negative item values
in utility mining. The novel contribution of HUINIV-Mine is that it can effectively identify
high utility itemsets by generating fewer high transaction-weighted utilization itemsets
such that the execution time can be reduced substantially in mining the high utility item-
sets. In this way, the process of discovering all high utility itemsets with consideration of
negative item values can be accomplished effectively with less requirements on memory
space and CPU I/O. This meets the critical requirements of temporal and spatial efficiency
for mining high utility itemsets with negative item values. Through experimental evalua-
tion, it is shown that HUINIV-Mine outperforms other methods substantially by generating
much less candidate itemsets under different experimental conditions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Mining of association rules in large databases is a well studied technique in the field of data mining with typical methods
like Apriori [1,2]. The problem surrounding association rules mining can be decomposed into two steps. The first step in-
volves finding all frequent itemsets (or large itemsets) in a database. Once the frequent itemsets are found, generating asso-
ciation rules is straightforward and can be accomplished in linear time.

Most methods in finding frequent itemsets are designed for traditional databases. However, the frequency of an itemset
may not be a sufficient indicator of significance, because frequency reflects only the number of transactions in the database
that contain that itemset. It does not reveal the utility of an itemset, which can be measured in terms of cost, profit, or other
expressions of user preference. On the other hand, frequent itemsets may only contribute a small portion of the overall profit,
whereas non-frequent itemsets may contribute a large portion of the profit. In reality, a retail business may be most inter-
ested in identifying its most valuable customers (customers who contribute a major fraction of the profits to the company).
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Hence, frequency is not sufficient to answer questions such as whether an itemset is highly profitable, or whether an itemset
has a strong impact.

Utility mining is thus useful in a wide range of practical applications and was recently studied in [7,14,20,22]. However, a
retail business may sale item with negative value. For example, many super markets may promote certain items to attract
customers. In this scenario customers may buy specific items and then receive free goods. Free goods result in negative value
for super markets. However, supermarkets may earn higher profits from other items that are cross-promoted with these free
items. This practice is common. For example, if a customer bought three of item A, he would then receive one free item B as a
promotion from the supermarket. Suppose the supermarket gets five dollars of profit from each unit of item A sold, and loses
two dollars for each unit of item B given away. Although giving away a unit of item B results in a loss of two dollars for super-
markets, they could possibly earn 15 dollars from the three units of item A that are cross-promoted with item B. The super-
market thus may have a net gain of 13 dollars from this promotion. This example demonstrates why we propose the concept
of mining for negative item values in utility mining. This also motivates our research in developing a new scheme for finding
high utility itemsets with negative item values (HUINIV) from large databases.

Recently, a utility mining model has been defined in [22]. Utility is a measure of how “useful” (i.e. “profitable”) an itemset
is. The definition of the utility of an itemset X, u(X), states that it is equal to the sum of the utilities of X of all the transactions
containing X. The goal of utility mining is to identify high utility itemsets, which drive a large portion of the total utility. Tra-
ditional association rules of mining models assume that the utility of each item is always 1 and that the quantity of sales is
either O or 1; thus it is only a special case of utility mining in which the utility or the quantity of sales of each item can be any
number. If u(X) is greater than a specified utility threshold, X is a high utility itemset; otherwise, it is a low utility itemset.
Table 1 is an example of utility mining in a transaction database. The number associated with each transaction in Table 1a is
the sales volume of each item, and the utility of each item is listed in Table 1b. For example, u({A,D})=(1 x5+2 x 6) +
(3x5+5x6)+(3x5+1 x 6)=83. {A,D}is a high utility itemset if the utility threshold is set at 80.

However, a high utility itemset may consist of low utility items. Another possibility is to adopt the level-wise searching
schema that exists in fast algorithms, such as Apriori [3]. This algorithm does not apply to the utility mining model. For exam-
ple, u(A) =55 < 80, A is a low utility item, but its superset {A,D} is a high utility itemset. If Apriori is used to find high utility
itemsets, all combinations of all items must be generated. Moreover, in order to discover a long pattern, the number of can-
didates is prohibitively large. The cost in terms of either computation time or memory is intolerable, regardless of the meth-
od utilized. The challenge of utility mining is not only in restricting the size of the candidate set but also in simplifying the
computation used to calculate its utility. Another challenge of utility mining is finding high utility itemsets with negative
item values from large databases.

In this paper, we explore the issue of efficiently mining high utility itemsets with negative item values in large databases.
We propose an algorithm named HUINIV (High Utility Itemsets with Negative Item Values)-Mine that can discover high utility
itemsets with negative item values from large databases both efficiently and effectively. The underlying idea behind the HUI-
NIV-Mine algorithm is based on the principle of the Two-Phase algorithm [14] and augments with negative item value for
mining high utility itemsets efficiently. The novel contribution of HUINIV-Mine is that it can efficiently identify the utility
of itemsets in large database so that the execution time for producing high utility itemsets with negative item values can
be substantially reduced. That is, HUINIV-Mine can discover high utility itemsets with negative item values using limited
memory and comparatively less computation time by the candidate itemsets filter method. In this way, the process of dis-
covering all high utility itemsets in which all transactions are negative can be achieved effectively with limited memory, less

Table 1
A transaction database and its utility table.
TID Item

A B C D E
(a) Transaction table
T, 1 0 0 2 1
T, 0 1 2 6 0
T3 3 0 0 5 0
Ty 1 0 0 0 1
Ts 0 1 2 6 0
Ts 0 1 1 0 2
T, 2 0 0 0 0
Ts 3 0 0 1 0
Ty 0 1 1 4 0
T1o 1 0 0 0 1
Item Value ($) (per unit)
(b) The utility table
A 5
B -3
C -2
D 6
E 10
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candidate itemsets, and CPU I/O. This meets the critical requirements of time and spatial efficiency for mining large dat-
abases. Through experimental evaluation, HUINIV-Mine is shown to produce fewer candidate itemsets in the process of find-
ing high utility itemsets with negative item values, so it outperforms other methods in terms of efficiency. We found that the
average improvement of HUINIV-Mine compared to the MEU algorithm is about 99.2%. Moreover, it also achieves high sca-
lability in dealing with large databases. To the best of our knowledge, this is the first work to propose a negative item concept
in utility mining and the first work on mining high utility itemsets with negative item values from large database.

The rest of this paper is organized as follows: Section 2 provides an overview of related work. Section 3 describes the pro-
posed approach, HUINIV-Mine, for finding the high utility itemsets with negative item values. In Section 4, we describe our
experimental results for evaluating the proposed method. The conclusion of the paper is provided in Section 5.

2. Related work

Apriori [3], DHP [16], Partition [13], and Anti-Skew Algorithms [17] have been proposed to find frequent itemsets using
association rules mining. Many important applications have established the need for incremental mining. This is due to the
increasing use of record-based databases to which data are being added continuously. Many algorithms like FUP [8], FUP; [9]
and UWEP [4,5] have been proposed to find frequent itemsets in incremental databases. The FUP algorithm updates the asso-
ciation rules in a database when new transactions are added to it. The algorithm FUP is based on the framework of Apriori
and is designed to discover new frequently occurring itemsets iteratively. The idea is to store the counts of all the frequent
itemsets found in a previous mining operation. Using these stored counts and examining the newly added transactions, the
overall count of these candidate itemsets is then obtained by scanning the original database. An extension to the work in [8]
was reported in [9] where the authors proposed the algorithm FUP, for updating the existing association rules when trans-
actions are added to or deleted from the database. UWEP (Update With Early Pruning) is an efficient incremental algorithm,
that counts the original database at most once, and the increment exactly once. In addition, the number of candidates gen-
erated and counted is minimized.

A formal definition of utility mining and a theoretical model were proposed in [22], namely MEU, where utility is defined
as the combination of utility of information in each transaction with additional resources. Since this model cannot rely on the
downward closure property of Apriori to restrict the number of itemsets to be examined, a heuristic is used to predict
whether an itemset should be added to the candidate set. However, the prediction usually overestimates; especially at
the beginning stages, where the number of candidates approaches the number of all the combinations of items. The exam-
ination of all combinations is impractical, in terms of both computational cost and memory space, whenever the number of
items is large or the utility threshold is low. Although this algorithm is not efficient or scalable, it is by far the best available
to solve this specific problem.

Another algorithm named Two-Phase, proposed in [14], is based on the definition in [22] and is able to the find high util-
ity itemsets. The Two-Phase algorithm is used to prune down the number of candidates and can obtain the complete set of
high utility itemsets. In the first phase, a model that applies to the “transaction-weighted downward closure property” of
search space is used to expedite the identification of candidates. In the second phase, one extra database scan is performed
to identify high utility itemsets. However, this algorithm can not deal with negative item values in utility mining. In order to
find high utility itemsets with negative item values some candidate itemsets are lost. Hence, the Two-Phase algorithm fo-
cuses on positive item values and is not suited to negative item values in utility mining.

An algorithm named THUI (Temporal High Utility Itemsets) was proposed in [20]. It is the first algorithm proposed for
finding temporal high utility itemsets in temporal databases. The algorithm integrated the advantages of the Two-Phase
algorithm [14] and the SWF algorithm [12] and augment with the incremental mining techniques for mining temporal high
utility itemsets efficiently. However, this algorithm only focuses on high utility itemsets with positive item values and is not
suited to negative item values. Hence, the algorithm cannot find high utility itemsets with negative item values.

Although there exist numerous studies on high utility itemset mining as described above, there is no algorithm proposed
to find high utility itemsets with negative item values in large databases. This motivates our exploration of the issue of effi-
ciently mining high utility itemsets with negative item values from large databases.

3. Proposed method: HUINIV-Mine

In this section, we present the HUINIV-Mine method. Section 3.1 describes the basic concept of HUINIV-Mine. Section 3.2
gives an example of mining temporal high utility itemsets. The procedure of the HUINIV-Mine algorithm is provided in Sec-
tion 3.3.

3.1. Basic concept of HUINIV-Mine

The goal of utility mining is to discover all itemsets whose utility values exceed a user specified threshold in a transaction
database. In [22] the goal of utility mining is to find all high utility itemsets. An itemset X is a high utility itemset if u(X) > ¢,
where X C I and ¢ is the minimum utility threshold, otherwise, it is a low utility itemset. For example, in Table 1,
u(A,T;)=1x5=5,u({A,E}, T1) =u(A,T;) +u(E,T{)=1 x 5+ 1 x 10 = 15, and u({A,E}) = u({A,E}, T;) + u({A,E}, T4) + u({A,E}, T1o) =
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E},T,) + u({AE},T4) + u({A E},T10) = 15+ 15+ 15 =45. If ¢ = 80, {A E} is a low utility itemset. However, if an item is a low utility
item, its superset may be a high utility itemset. For example, u(A) =55 < 80, A is a low utility item, but its superset {A,D} is a high
utility itemset because u({A,D}) = 83 > 80. Hence, all the combinations of all items should be processed in order to ensure that no
high utility itemset will be lost. But the high cost of either computational time or memory is intolerable. In the formal definition of
the utility mining problem, these terms can be generally defined as follows by referring to [22]:

o [={iyip,...,in} is a set of items.

e D={Ty,T,,..., Ty} is a transaction database where each transaction T; € D is a subset of I.

e 0(ip, Ty), local transaction utility value, represents the quantity of item iy in transaction T,. For example, o(A,Ts) = 3, in Table
1a.

e s(ip), external utility, is the value associated with item i, in the Utility Table. This value reflects the importance of an item,
which is independent of transactions. For example, in Table 1b, the external utility of item A, s(A), is 5.

e u(ip, Tq), utility, the quantitative measure of utility for item i, in transaction Ty, is defined as: o(ip, Tq) x s(ip). For example, u(
A, T3)=3 x 5, in Table 1.

o u(X,Ty), utility of an itemset X in transaction Tq, is defined as >, u(ip, Tq), where X = {i, i, .., i} is a k-itemset, X C T, and
1<k<m

e u(X), utility of an itemset X, is defined as > r.pax c (X, TQ).

Liu et al. [14] proposed the Two-Phase algorithm for pruning candidate itemsets and simplifying the calculation of utility.
First, Phase I overestimates some low utility itemsets, but it never underestimates any itemsets. For example in Table 1, the
transaction utility of transaction Tq, denoted as tu(Ty), is the sum of the utilities of all items in Tq : tu(Tq) = > ;,.q,1(ip, Tq). And
the transaction-weighted utilization of an itemset X, denoted as twu(X), is the sum of the transaction utilities of all transactions
containing X : twu(X) = >y rept(Tq). For example, twu(A) = tu(Ty) + tu(Ts) + tu(Ta) + tu(T7) + tu(Tg) + tu(Ti0) = 27 + 45 +
15+10+21+15=133 and twu({AE})=tu(T;)+ tu(Ty) + tu(T10) =27 +15+15=57. In fact, u(A)=u({A},T;)+u({A},-
(A) = u({A}. T1) + u({A}, T3) + u({A}, Ta) + u({A}, T7) + u({A}, Ts) + u({A}. T10) =5+ 15+ 5+ 10+ 15+ 5= 55 and u({A,E}) = u({A,E},-
({A,E}) = u({A,E}, T1) + u({A,E}, T4) + u({A E}, T10) =15+ 15+ 15=45. So while Phase [ overestimates some low utility
itemsets, it never underestimates any itemsets whatsoever. Table 2 gives the transaction utility of each transaction in Table
1. One extra database scan is performed to filter the overestimated itemsets in phase II. For example, twu(A) = 126 > 80 but
u(A) =55 < 80. After estimating the utility of item {A}, item {A} is pruned since its utility, 55, is lower than 80,; otherwise, it is
a high utility itemset. In the end, all of high utility itemsets have been discovered in this way. However, we cannot apply the
Two-Phase algorithm to databases whose items include negative values. Some high utility itemsets may be lost in this way.
For example, twu({B,D}) = tu(T,) + tu(Ts) + tu (Tg) =29 +29+19=77. If ¢=80, twu({B,D})=77 <80 is a low transaction-
weighted utilization itemset, then {B,D} will be deleted. In fact, u({B,D}) = u({B,D}, T») + u({B,D}, Ts) + u({B,D}, Tg) =33 +
33 +21=387>80. {B,D} should be a high utility itemset. Thus, the Two-Phase algorithm is not sufficient to answer question
regarding items with negative values. As one possible solution that find high utility itemset, utility mining, useful over a
wide range of practical applications, was recently studied in [7,14,20,22]. This also motivates our research in developing a
new scheme for finding high utility itemsets with negative item values (HUINIV) from large databases.

Our algorithm HUINIV-Mine is based on the principle of the Two-Phase algorithm [14], and focuses on improving the re-
sponse time by reducing candidate itemsets and CPU I/O in using transaction itemsets without negative value.. In essence, by
removing items with negative values from a transaction in a large database, algorithm HUINIV-Mine employs a filtering
threshold within the database to deal with the transaction-weighted utilization itemsets (TWUI) generated. Table 3 gives
the transaction utility without negative item values for each transaction in Table 1. In this way, HUINIV-Mine can overesti-
mate some low utility itemsets, but it never underestimates any itemsets and it never loses any itemsets that may be of high
utility. In processing a database, a transaction-weighted utilization set of itemsets is generated by HUINIV-Mine. Explicitly, a
transaction-weighted utilization set of itemsets is composed of the TWUI that were generated from the previous transaction-
weighted utilization candidate sets during the previous phase. After the processing, the algorithm HUINIV-Mine outputs a
high transaction-weighted utilization set of itemsets. However, some of the high transaction-weighted utilization sets of
itemsets should be pruned in advance. Each item of the itemset that has negative value will never be part of a high utility
itemset. At least one item within an timeset should have positive value, or the itemset need not scan the database. Hence, the
algorithm HUINIV-Mine outputs real high transaction-weighted utilization candidate itemsets after filtering some itemsets.

Table 2

Transaction utility of the transaction database.

TID Transaction utility TID Transaction utility
T 27 Ts 15

T, 29 T; 10

T 45 Tg 21

Ty 15 To 19

Ts 29 Tio 15




C.-J. Chu et al./Applied Mathematics and Computation 215 (2009) 767-778 771

Table 3

Transaction utility without negative item values of the transaction database.

TID Transaction utility without negative item values TID Transaction utility without negative item values
it 27 Ts 20

T, 36 T, 10

T3 45 Tg 21

Ty 15 Ty 24

Ts 36 Tio 15

Finally, HUINIV-Mine computes the occurrence counts of itemsets in the memory and then deletes itemsets that do not sat-
isfy utility threshold within the database so as to find high utility itemsets with negative item values.

Taking these design features under consideration, the algorithm HUINIV-Mine is shown to perform very well at mining
high utility itemsets with negative item values from large databases. In Section 3.2, we give an example of mining high utility
itemsets with negative item values from large databases. The proposed algorithm, HUINIV-Mine, is described in detail in Sec-
tion 3.3.

3.2. An example of mining high utility itemsets with negative item values

The proposed HUINIV-Mine algorithm can be best understood from the illustrative transaction database shown in Table 1
and Fig. 1 in which a scenario for generating high utility itemsets from large databases to mine high utility itemsets with
negative item values is given. This type of illustrative transaction database resembles items that are sold by supermarkets
in real life. This also means that utility mining has real-life applications. We set the utility threshold at 80 with 10 transac-
tions. Without loss of generality, the mining problem can be decomposed into two procedures:

1. TWUI procedure: This procedure deals with mining the transaction database to generate TWUI.
2. Filter procedure: The procedure deals with filtering negative itemsets and generating high utility itemsets with negative
item values from large databases.

The TWUI procedure is only utilized for the initial utility mining in the database. For the mining high utility itemsets, the
filter procedure is employed. Consider the database in Table 1. Each transaction is scanned sequentially for the generation of
candidate 1-itemsets in the first scan of the database. Itemsets whose transaction-weighted utility is below the utility
threshold are removed. Then, as shown in Fig. 1, only {A,B,C,D}, marked by “©®”, remain as high transaction-weighted utili-
zation 1-itemsets. Although items B and C have negative values, they may constitute high utility itemset by combining with

Cj | transaction-weighted utility Cp | transaction-weighted utility C3 | ransaction-weighted utility
© A 133 AB 0 @BCD 96
@ B 116 AC 0
@ C 116 © AD 93
@ D 189 @ BC 116
E T @ BD 96
@ CD 96
High transaction-weighted Candidates utility
utilization candidate itemsets A 55
A @ D 144
B Prune negative itemnset @ AD 93
C @ BD 87
D @ CD 36
AD ECD 77
BC
BD
CD
BCD

Fig. 1. High utility itemsets generated from database by HUINIV-Mine.
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other items. These items should be preserved to combine with other items to generate the next candidate itemsets. The can-
didate 2-itemsets {AB,AC,AD,BC,BD, (D} are generated by high transaction-weighted utilization 1-itemsets. In the same way,
only {AD,BC,BD,CD}, marked by “®”, remain as high transaction-weighted utilization 2-itemsets. The candidate 3-itemsets
{BCD} are generated by high transaction-weighted utilization 2-itemsets; high transaction-weighted utilization 3-itemsets
being those whose transaction-weighted utility is above the utility threshold.

We could get high transaction-weighted utilization candidate itemsets {A,B,C,D,AD,BC,BD,CD,BCD}. However, some of
the high transaction-weighted utilization sets of itemsets should be pruned in advance. If each item of the itemset’s value
is negative, it will not be a high utility itemset. For example, {B, C,BC} should be deleted. Hence, algorithm HUINIV-Mine out-
puts only six real high transaction-weighted utilization candidate itemsets {A,D,AD,BD,CD,BCD} after filtering the itemsets.
Finally, all candidates can be stored in main memory, and we can find high utility itemsets with negative item values when
the scan of the database is performed. The resulting high utility itemsets are {D}, {AD}, {BD} and {CD} because
u(D) = 144 > 80, u({A,D}) = 83 > 80, u({B,D}) = 87 > 80 and u({B,E}) = 86 > 80 as shown in Fig. 1.

3.3. HUINIV-Mine Algorithm

For clarification, the meanings of various symbols used are given in Table 4. The algorithm of HUINIV-Mine is shown in
Fig. 2. Initially, it input the database DB (in step 1), and it finds high transaction-weighted utilization 1-itemsets from step
2 to step 5. The transaction-weighted utility without negative item value of itemset I is recorded in Ltwu. An itemset, whose
Ltwu > threshold (in step 3), will be kept in htwu (in step 4). Next, we use high transaction-weighted utilization itemsets to
generate transaction-weighted utilization candidate itemsets. Then we scan the database to find high transaction-weighted
utilization itemsets from step 6 to step 13. After identifying all htwu, we perform a last scan of the database from Step 14 to
Step 19. Since each item'’s value in the itemset is negative, it cannot be a high utility itemset. At least one item’s value in
itemset I should be positive (in step 14), or else the itemset does not need to scan the database. Finally, those itemsets sat-
isfying the constraint that Lhtwu > threshold are finally obtained as the high utility itemsets with negative item values.

4. Experimental evaluation

To evaluate the performance of HUINIV-Mine, we conducted experiments using synthetic datasets generated via a ran-
domized dataset generator provided by IBM Quest [3]. However, the IBM Quest data generator only generates quantities
of 0 or 1 for each item in a transaction. In order to fit databases into the scenario of utility mining, we randomly generate
the quantity of each item in each transaction, ranging from 1 to 5; much like the model used in [14,20]. Utility tables are
also synthetically created by assigning a utility value to each item randomly, ranging from —100 to 1000. Since it is observed
from real databases that most items are in the low value range and low negative value range, we generate the utility values
using a log normal distribution; similarly to the model used in [14,20]. Fig. 3 shows the utility value distribution of 1000
items.

The simulation is implemented in C++ and conducted in a machine with 2.4 GHz CPU and 1G memory. The MEU algorithm
[22] is also utilized in a negative itemsets scenario for comparison with the HUINIV-Mine algorithm. The scenario using MEU
consists of scanning the database after collecting the data to find high utility itemsets with negative item values. The main
performance metric used is execution time. We recorded the time that HUINIV-Mine uses to find high utility itemsets with
negative item values. The number of candidate itemsets compared of HUINIV-Mine and MEU is presented in Section 4.1. Sec-
tion 4.2 shows comparison in performance of a variety of IBM Quest data with HUINIV-Mine. The results of scale-up exper-
iments are presented in Section 4.3. Section 4.4 shows the performance of HUINIV-Mine with real data.

4.1. Evaluation of number of generated candidates

In this experiment, we compare the average number of candidates generated in the first database scan with different sup-
port values for HUINIV-Mine and MEU [22]. Tables 5-8 show the average number of candidates generated by HUINIV-Mine
and MEU. The number of items is set at 1000, and the minimum utility threshold varies from 0.2% to 1%. The number of can-
didate itemsets generated by HUINIV-Mine during the first database scan decreases dramatically as the threshold increases.
Particularly when the utility threshold is set to 1%, the number of candidate itemsets is generally 588, including all various

Table 4

Meanings of symbols used.

DB Database

Threshold Utility threshold in database

twu Transaction-weighted utilization itemsets without negative item values
htwu; High transaction-weighted utilization i-itemsets without negative item values
Lvalue Each item’s value

hui High utility itemsets with negative item values
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Algorithm HUINIV-Mine

1.  Input: DB

2. fork=1lton /f Find high transaction-weighted utilization 1-itemsets

3 if {twu = threshold )

4, htwu =htwu; U Itwuy,

5. end

6 fori=2; htwu# @; 1+

7 Itwu =Ltwu_gen(htwu;.,), # Generate transaction-weighted utilization i-candidate itemsets
8. if (Itwus# @)

9. fork=1ton

10. if @twu = threshold )

11. htwu; =htwu; U Ltwu,

12 end

12, end

14 for each itemset IE htwu# ¢ && Lvalue > 0/ Find high utility itemsets with negative itern values
15. fork=1ton

16 if Chtwu = threshold)

17. hui=hui | Lhtwu,

18. end

19 end

20, retum hug

Fig. 2. Algorithm of HUINIV-Mine.

Utility Value Distribution
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100 / \
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. // \\

0
-100 50 250 400 600 800 1000
utility value

number of items

Fig. 3. Utility value distribution in utility table.
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Table 5
The number of candidate itemsets and high utility itemsets generated from database T10.14.D100K.
Threshold (%) Databases

T10.14.D100K

HUINIV-Mine MEU High utility itemsets
0.2 11,306 499,500 285
0.3 3928 499,500 183
0.4 1691 499,500 115
0.6 846 499,500 58
0.8 676 499,500 29
1 588 499,500 14

candidate itemsets in database T10.14.D100K where T denotes the average size of the transactions and I the average number
of frequent itemsets. However, the number of candidates generated by MEU is always 499,500 because it needs to process all
combinations of 1000 items to generate only 2-candidate itemsets. HUINIV-Mine generates far fewer candidates when com-

pared to MEU.
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Table 6
The number of candidate itemsets and high utility itemsets generated from database T10.16.D100K.
Threshold (%) Databases

T10.16.D100K

HUINIV-Mine MEU High utility itemsets
0.2 16,304 499,500 335
0.3 5336 499,500 197
0.4 2469 499,500 130
0.6 1056 499,500 69
0.8 755 499,500 29
1 644 499,500 19
Table 7
The number of candidate itemsets and high utility itemsets generated from database T20.14.D100K.
Threshold (%) Databases

T20.14.D100K

HUINIV-Mine MEU High utility itemsets
0.2 20,026 499,500 118
0.3 7958 499,500 55
0.4 3754 499,500 29
0.6 1308 499,500 8
0.8 774 499,500 4
1 599 499,500 2
Table 8
The number of candidate itemsets and high utility itemsets generated from database T20.16.D100K.
Threshold (%) Databases

T20.16.D100K

HUINIV-Mine MEU High utility itemsets
0.2 27,357 499,500 127
0.3 8441 499,500 56
0.4 4095 499,500 23
0.6 1438 499,500 7
0.8 823 499,500 4
1 637 499,500 3

We obtain similar experimental results from different datasets. For example, only 644 candidate itemsets are generated
by HUINIV-Mine, but 499,500 candidate itemsets are generated by MEU, respectively, when the utility threshold is set as 1%
in dataset T10.14.D100K. In the case of datasets T20.14.D100K and T20.16.D100K, more candidates are generated, because
each transaction is longer than those in T10.14.D100K and T10.14.D100K. Overall, our algorithm HUINIV-Mine always gener-
ates far fewer candidates when compared to MEU for various kinds of databases. Thus, HUINIV-Mine is verified to be very
effective in pruning candidate itemsets to find high utility itemsets with negative item values.

It is observed that HUINIV-Mine obtains fewer candidate itemsets than MEU with high stability with regard to finding high
utility itemsets with negative item values. To measure how many candidate itemsets could be reduced substantially by using
HUINIV-Mine compared to MEU algorithm, we define the Improvement Ratio as follows:

(candidate itemsets of MEU) — (candidate itemsets of HUIVP-Mine)
candidate itemsets of MEU

From the data illustrated in Table 5, we see that the Improvement Ratio is about 99.8% with the threshold set as 1%. In Table
8, the average improvement is about 99.2% with the minimum utility threshold varied from 0.2% to 1%. Obviously, HUINIV-
Mine reduces substantially the candidate itemsets for finding high utility itemsets with negative item values. Moreover, the
high utility itemsets obtained by MEU are not suitable for applications in large database since MEU requires more database
scans, and increased execution times and candidate itemsets to find high utility itemsets with negative item values. Thus,
HUINIV-Mine meets the requirements of being highly effective in terms of candidate itemsets for large database mining.

Improvement Ratio =

4.2. Evaluation of execution time

In this experiment, we show only the performance of HUINIV-Mine since MEU requires much higher execution time (long-
er than 10 h) to complete the second scan lacks basis for comparison because the number of candidate itemsets generated is
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always 499,500. Therefore, HUINIV-Mine meets the requirements of efficiency in terms of execution time for large database
mining.

Figs. 4 and 5 show the execution times forHUINIV-Mine as the minimum utility threshold is decreased from 1% to 0.2%. It
is observed that when the minimum utility threshold is high, there are only a limited number of high utility itemsets pro-
duced. However, as the minimum utility threshold decreases, the execution times increase with more high utility itemsets
produced. As shown in Figs. 4 and 5, the margin grows as the minimum utility threshold increases for different average sizes
of transaction.

4.3. Scale-up on incremental mining

In this experiment, we investigate the effects of varying incremental transaction size |d| on the scalability of proposed
scheme in terms of execution time. To further understand the impact of |d| on the performance of HUINIV-Mine, we con-
ducted scale-up experiments with minimum support threshold set as 0.2% and 0.4%, respectively. Fig. 6 shows the experi-
mental results, where the values in y-axis correspond to the execution time of HUINIV-Mine under different values of |d|.
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Fig. 4. Execution time for HUINIV on T20.16.D100K and T10.16.D100K.
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Fig. 5. Execution time for HUINIV on T20.14.D100K and T10.14.D100K.
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Fig. 6. Scale-up performance results for HUINIV on T10.14.D100KdnK.

Although it can be seen that the execution time increases with the growth of the incremental transaction number |d|, HUI-
NIV-Mine can still find high utility itemsets with negative item values with at most 4 database scans. In comparison, MEU
requires 1000 database scans under various incremental transactions. This result also indicates that HUINIV-Mine is scalable
for mining database with incremental transactions.

4.4. Evaluation with real data

We also evaluate our algorithm HUINIV-Mine with real data, BMS-POS. The BMS-POS dataset contains several years worth
of point-of-sale data from a large electronics retailer. Since this retailer has so many different products, we used product cat-
egories as items. Each item thus represents a category, rather than an individual product. The transaction in this dataset is a
customer’s purchase transaction consisting of all product categories purchased at one time. The goal of this dataset is to find
associations between product categories purchased by customers in a single visit to the retailer. Table 9 characterizes BMS-
POS in terms of the number of transactions, the number of distinct items, the maximum transaction size, and the average
transaction size.

This data set was used in the KDD-Cup 2000 competition and was recently made publicly available by Blue Martini Soft-
ware (downloaded from http://www.ecn.purdue.edu/KDDCUP). In order to render databases suitable for utility mining, we
also randomly generate the quantity of each item in each transaction, ranging from 1 to 5. Utility tables are also synthetically
created by assigning a utility value to each item randomly, ranging from 1 to 1000.

Table 10 shows the average number of candidates generated by HUINIV-Mine and MEU. The number of items is set at
1000, and the minimum utility threshold varies from 0.2% to 1%. The number of candidate itemsets generated by HUINIV-

Table 9
Database BMS-POS characteristics.
Transactions Distinct items Maximum transaction size Average transaction size
BMS-POS
515,597 1657 164 6.5
Table 10
The number of candidate itemsets and high utility itemsets generated on database BMS-POS.
Threshold (%) Databases
BMS-POS
HUINIV-Mine MEU High utility itemsets
0.2 59,066 499,500 151
0.3 31,485 499,500 66
0.4 19,488 499,500 34
0.6 9603 499,500 16
0.8 5728 499,500 7

1 3789 499,500 4
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Fig. 7. Execution time for HUINIV on BMS-POS.

Mine during the first database scan decreases dramatically as the threshold increases. Particularly when the utility threshold
is set to 1%, the number of candidate itemsets is generally 3789, including all various candidate itemsets within the database
BMS-POS. However, the number of candidates generated by MEU is always 499,500 because it must process all combinations
of 1000 items to generate only 2-candidate itemsets. It is observed thatHUINIV-Mine still generates far fewer candidates
when compared to MEU even using the real data. Hence, this result indicates that HUINIV-Mine is useful for mining high util-
ity itemsets with negative item values from both artificial data and real data. Fig. 7 shows the execution times for HUINIV-
Mine as the minimum utility threshold is decreased from 1% to 0.2%.

5. Conclusions

In this paper, we addressed the problem of discovering high utility itemsets with negative item values in large databases,
i.e., the itemsets containing negative item values that are larger than threshold in large databases. We propose a new ap-
proach, namely HUINIV-Mine, which can identify high utility itemsets with negative item values in large databases both effi-
ciently and effectively. The novel contribution of HUINIV-Mine is that it can effectively identify high utility itemsets with
negative item values in less high TWUI such that the execution time can be reduced efficiently for mining all high utility
itemsets with negative item values in large databases. In this way, the process of discovering all high utility itemsets con-
taining negative item values can be achieved effectively with limited memory space, less candidate itemsets and CPU [/O.
This meets the critical requirements of time and space efficiency for mining high utility itemsets with negative item values.

The experimental results show that HUINIV-Mine can find high utility itemsets with negative item values with higher per-
formance by generating fewer candidate itemsets compared to other algorithms under varied experimental conditions. It
was found that HUINIV-Mine delivers an average improvement around 99.2% over MEU method in terms of execution per-
formance. That is, the advantage of HUINIV-Mine over MEU is stable and less execution time is taken when the concept of
negative item values is considered. Hence, HUINIV-Mine is promising for mining high utility itemsets in large databases with
negative item values. In the future, we would explore to extend the concepts proposed in this work for discovering high util-
ity itemsets with negative item values in temporal databases [6,10,11,21] or data streams [15,18,19].
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