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大  型  資  訊  檢  索  系  統  之  轉  置  檔  案  設  計 

研究生：鄭哲聖    指導教授：單智君教授 

國立交通大學資訊工程學系 

摘要 

本論文主要在探討各種改善資訊檢索效率的技術。最近幾年來，資訊檢索系統已廣泛地使用

於各種應用中，例如：搜尋引擎、數位圖書館、基因序列分析等。為了在大量的資料中有效

率地搜尋，資訊檢索系統採用已壓縮的轉置檔案來迅速地找到使用者所需要的資料。在轉置

檔案中，每一個字彙都有一個相對應的文件編號串列(稱為轉置串列)來指示那一個文件包含

這個字彙。大型資訊檢索系統的查詢處理時間大多花在讀取與解壓縮各個出現在查詢中的字

彙所對應到的轉置串列。由於每新增一個文件就會使得出現在文件中的字彙所對應的轉置串

列長度增加，因此轉置串列的長度與文件數目呈現正比關係。這意味著查詢處理時間與文件

數目亦呈現正比關係。所以，發展有效率的演算法來降低轉置串列的處理(讀取、解壓縮、

與合併)時間就成了設計大型資訊檢索系統的成功關鍵。 

 

本論文將探討下列的研究議題： 

(1) 發展一個有效率的編碼方法來縮減轉置檔案所佔用的空間 

在這個議題中我們透過轉置檔案的壓縮來減少磁碟的輸出與輸入所需的時間並藉以改善

查詢處理時間，但這卻會帶來額外的解壓縮時間。本議題的目標即是設計一個可節省空

間並可快速解碼的方法來壓縮轉置檔案。我們以壓縮率最高的內插編碼法為基礎，採用

遞迴移除與迴圈展開的技巧來加速內插編碼法的編碼與解碼速度。實驗顯示與其他已知

的編碼法比較，我們所提的方法提供了快速的解碼與良好的壓縮效能。 

(2) 發展雙層可跳躍式轉置檔案來除去多餘的解碼 

在這個議題中我們提出一個雙層可跳躍式轉置檔案來減少查詢處理時所需的轉置串列解

壓縮時間。這個議題所面臨的困難是利用目前的可跳躍式機制來實作雙層可跳躍式轉置

檔案所需耗用的空間太大。為了設計一個節省空間並可有效加速查詢處理的雙層可跳躍

式轉置檔案，在以區塊空間預估為基礎，我們發展了一個新的跳躍機制。這個機制可以
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搭配目前已知的可跳躍式機制在相當小的空間耗用下實作雙層可跳躍式轉置檔案。實驗

顯示我們所提的雙層可跳躍式轉置檔案可以同時加速連接式布林查詢與排名查詢。 

(3) 利用文件編號來使得轉置檔案最佳化 

在這個議題中我們提出一個文件編號演算法以加速查詢地處理速度。我們觀察到透過指

派合適的編號給文件可以讓轉置串列在使用相同的編碼方法下被壓縮的更好，並提升查

詢處理的速度。本議題我們提出一個新的演算法，稱為 Partition-based document identifier 

assignment (PBDIA) 演算法，來為文件產生合適的編號。這個演算法可以有效率地指派

連續的編號給那些包含有經常被查詢的字彙之文件，使得經查被查詢的字彙之轉置串列

可以被壓縮得更好。實驗顯示我們所提的 PBDIA 演算法可以有效縮短查詢處理時間。 

(4) 發展平行資訊檢索系統上的轉置檔案切割方法 

在這個議題中我們針對平行資訊檢索系統提出一個轉置檔案切割方法。叢集系統利用分

散在各工作站上的轉置檔案，以平行計算的方式處理查詢。此演算法的目的是降低處理

查詢地平均時間。我們首先採用 PBDIA 演算法讓包含經查被查詢的字彙之文件可以被指

派連續的編號。然後，再採用交錯式切割方案來分配轉置檔案到各工作站上。實驗顯示

利用此步驟切割轉置檔案，可以達到負載與儲存量的平衡，以及幾近理想的速度提升。 

 

本論文之研究成果包括： 

• 在縮減轉置檔案所佔用的空間方面，我們所提出的編碼方法除了可提供優越的壓縮效果

外，在查詢處理速度上也比目前最常使用的Golomb coding還快了大約30%。 

• 在除去多餘的解碼方面，我們所提出的雙層可跳躍式轉置檔案比起目前的單層可跳躍式轉

置檔案在連接式布林查詢的處理速度上最高可提升16%，而在排名查詢的處理速度上最高

可提升44%。 

• 在轉置檔案最佳化方面，我們所提出的PBDIA演算法可以在數秒的時間內為1GB大小的文

件集產生合適的文件編號並使得查詢處理速度最高可提升25%。 

• 在平行資訊檢索方面，我們所提出轉置檔案切割步驟可以改善只使用交錯式切割方案的平

行查詢處理速度達14%到17%，無論一個叢集有多少台工作站。 
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Abstract 

This dissertation investigates a variety of techniques to improve efficiency in information 

retrieval (IR). Information retrieval systems (IRSs) are widely used in many applications, such as 

search engines, digital libraries, genomic sequence analyses, etc. To efficiently search vast amount 

of data, a compressed inverted file is used in an IRS to locate the desired data quickly. An inverted 

file contains, for each distinct term in the collection, a posting list. The query processing time of a 

large-scale IRS is dominated by the time needed to read and decompress the posting list for each 

query term. Moreover, adding a document into the collection is to add one document identifier into 

the posting list for each term appearing in the document, hence the length of a posting list increases 

with the size of document collection. This implies that the time needed to process posting lists 

increase as the size of document collection grows. Therefore, efficient approaches to reduce the 

time needed to read, decompress, and merge the posting lists are the key issues in designing a large-

scale IRS. Research topics to be studied in this dissertation are 

(1) Efficient coding method for inverted file size reduction 

The first topic is to propose a novel size reduction method for compressing inverted files. 

Compressing an inverted file can greatly improve query performance by reducing disk I/Os, but 
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this adds to the decompression time required. The objective of this topic is to develop a method 

that has both the advantages of compression ratio and fast decompression. Our approach is as 

follows. The foundation is interpolative coding, which compresses the document identifiers with 

a recursive process taking care of clustering property and yields superior compression. However, 

interpolative coding is computationally expensive due to a stack required in its implementation. 

The key idea of our proposed method is to facilitate coding and decoding processes for 

interpolative coding by using recursion elimination and loop unwinding. Experimental results 

show that our method provides fast decoding speed and excellent compression. 

(2) Two-level skipped inverted file for redundant decoding elimination 

The second topic is to propose a two-level skipped inverted file, in which a two-level skipped 

index is created on each compressed posting list, to reduce decompression time. A two-level 

skipped index can greatly reduce decompress time by skipping over unnecessary portions of the 

list. However, well-known skipping mechanisms are unable to efficiently implement the two-

level skipped index due to their high storage overheads. The objective of this topic is to develop 

a space-economical two-level skipped inverted file to eliminate redundant decoding and allow 

fast query evaluation. For this purpose, we propose a novel skipping mechanism based on block 

size calculation, which can create a skipped index on each compressed posting list with very 

little or no storage overhead, particularly if the posting list is divided into very small blocks. 

Using a combination of our skipping mechanism and well-known skipping mechanisms can 

implement a two-level skipped index with very little storage overheads. Experimental results 

showed that using such a two-level skipped index can simultaneously allow extremely fast 

query processing of both conjunctive Boolean queries and ranked queries. 

(3) Document identifier assignment algorithm design for inverted file optimization 
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The third topic is to propose a document identifier assignment (DIA) algorithm for fast query 

evaluation. We observe that a good DIA can make the document identifiers in the posting lists 

more clustered, and result in better compression as well as shorter query processing time. The 

objective of this topic is to develop a fast algorithm that finds an optimal DIA to minimize the 

average query processing time in an IRS. In a typical IRS, the distribution of query terms is 

skewed. Based on this fact, we propose a partition-based DIA (PBDIA) algorithm, which can 

efficiently assign consecutive document identifiers to those documents containing frequently 

used query terms. Therefore, the posting lists for frequently used query terms can be 

compressed better without increasing the complexity of decoding processes. This can result in 

reduced query processing time. 

(4) Inverted file partitioning for parallel IR 

The fourth topic is to propose an inverted file partitioning approach for parallel IR. The inverted 

file is generally partitioned into disjoint sub-files, each for one workstation, in an IRS that runs 

on a cluster of workstations. When processing a query, all workstations have to consult only 

their own sub-files in parallel. The objective of this topic is to develop an inverted file 

partitioning approach that minimizes the average query processing time of parallel query 

processing. Our approach is as follows. The foundation is interleaving partitioning scheme, 

which generates a partitioned inverted file with interleaved mapping rule and produces a near-

ideal speedup. The key idea of our proposed approach is to use the PBDIA algorithm to enhance 

the clustering property of posting lists for frequently used query terms before performing the 

interleaving partitioning scheme. This can aid the interleaving partitioning scheme to produce 

superior query performance. 
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The results of this dissertation include: 

• For inverted file size reduction, the proposed coding method allows query throughput rate of 

approximately 30% higher than well-known Golomb coding and still provides superior 

compression. 

• For redundant decoding elimination, the proposed two-level skipped inverted file improves the 

query speed for conjunctive Boolean queries by up to 16%, and for ranked queries up to 44%, 

compared with the conventional one-level skipped inverted file. 

• For inverted file optimization, the PBDIA algorithm only takes a few seconds to generate a DIA 

for a collection of 1GB, and improves query speed by up to 25%. 

• For parallel IR, the proposed approach can further improve the parallel query speed for 

interleaving partitioning scheme by 14% to 17% no matter how many workstations are in the 

cluster. 
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Chapter 1 Introduction 

Interest in information retrieval (IR) is growing rapidly, and many systems such as search 

engines, digital libraries, genomic sequence analyses, etc., are developed to efficiently search 

through terabytes of data and quickly identify the data relevant to the user query. One of the major 

problems faced by those systems is that the information explosion overwhelms the load of CPU and 

disk on an information retrieval server. For example, the size of Web has doubled in less than two 

years (Lawrence & Giles, 1999). This requires using parallel architectures to speed up search. 

Recently, cluster computing has revived the field of parallelism for IR. This dissertation proposes 

methodologies to improve the efficiency of an IRS that runs on a cluster of workstations. Efficiency 

here means that queries are processed faster without upgrading the hardware or the same throughput 

is achieved by a smaller machine configuration. The key idea is developing efficient algorithms to 

reduce space and time needed to store and operate on the most-widely-used indexing structure, 

called the inverted file. The objective is to increase the efficiency of an IRS without increasing the 

hardware cost of the cluster. To achieve the objective, this dissertation deals with inverted file size 

reduction, redundant decoding elimination, inverted file optimization, and parallel IR. 

This chapter is outlined as follows. Section 1.1 and Section 1.2 present research background 

and research objectives. Section 1.3 presents an overview on all research topics in this dissertation. 

Section 1.4 presents the organization of this dissertation. 

 

1.1 Background: IRS Runs on Cluster of Workstations 

Parallel computing hardware has been used extensively to increase the data handling and query 

handling capacity of IRSs. Recently, the Multiple Instruction Multiple Data (MIMD) model of 
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parallelism, implemented as a cluster of workstations, has become the dominant parallel IR 

architecture. Inktomi, FAST, and Google are all understood to use it.  

In this dissertation, we intend to reduce query processing time of an IRS by using a cluster as 

the server architecture. The cluster consists of identical workstations − each has its own CPU, 

memory, and disk − interconnected by a local area network (cf. Figure 1.1). Such an IRS works as 

follows. Each query is broadcast to all workstations in the cluster and each of them processes the 

query over the index for the piece of the collection for which they are responsible. The workstation 

may need to communicate with each other to exchange global statistical information. They 

definitely need to communication with each other to form merged results.  

 

 

A specific data structure, called “inverted index”, is consulted to find answers for a query (cf. 

Figure 1.2). An inverted index consists of an index file and an inverted file. An index file is a set of 

records, each containing a keyword term t and a pointer to the posting list for term t. An inverted 

file contains, for each distinct term t in the collection, a posting list of the form  
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Figure 1.1  The concerned clustered architecture. 
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PLt =<id1, id2, …, idft>, 

where idi is the identifier of the document that contains t, and frequency ft is the number of 

documents in which t appears. The document identifiers are within the range 1...N, where N is the 

number of documents in the indexed collection. For ranking evaluation, each idi may be stored with 

a within-document frequency fqi to indicate term t appears in the document idi a total of fqi times. In 

a large document collection, posting lists are usually compressed, and decompression of posting 

lists is hence required during query processing. 

 

In a typical IRS, a few frequently used query terms constitute a large portion of all term 

occurrences in queries (Jansen et al., 1997). This suggests that it is advisable to store the index 

records for frequently used query terms in RAM to greatly reduce index search time. Hence, the 

significant portion of query processing time is to read and decompress the compressed posting list 

for each query term. This paper restricts attention to inverted file side only and investigates the 

efficient approaches to reduce space and time needed to store and operate on the inverted file and 

improve the overall IR performance. 
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Figure 1.2 Inverted index and document collection. 
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The major challenges imposed by very large scale IR (particularly on World Wide Web) are: 

1. For a large-scale IRS, the access time and storage space of an inverted file become considerably 

large (Rillof & Hollaar, 1996; Baeza-Yates & Ribeiro-Neto, 1999). The challenge is how to 

improve IR performance while reducing storage requirements for a large inverted file. 

2. As a document collection grows, the number of occurrences of common terms is likely to 

increase in proportion. This means that posting lists for common terms will be longer, 

increasing processing time during query processing.  The challenge is how to speed up query 

processing by skipping over unnecessary portions of the lists without degrading retrieval 

effectiveness. 

3. For an IRS running on a cluster of workstations, an inverted file should be partitioned and 

distributed onto disks of multiple workstations. The challenge is how to partition the inverted 

file such that, during query processing, all workstations have to consult only their own local 

portion of the partitioned inverted file in parallel and obtain high parallel efficiency. 

 

1.2 Objective: Inverted File Design for Large-Scale Information Retrieval 

System 

The objective of this dissertation is to increase the efficiency of an IRS without increasing the 

hardware cost of the cluster by developing efficient algorithms that reduce the time needed to read, 

decompress, and merge posting lists for query terms. To achieve our research objective, we 

investigate several issues as follows:  

● Inverted file size reduction 

Since large inverted files demand greater I/O to read them, the size directly affects the processing 

time. To solve problems such as the slow response time and the large disk space required in large 
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scale IRSs, a coding method with fast decoding and good compression should be developed. We 

notice that in an inverted file the document identifiers for a given word are usually clustered. If a 

coding can take advantage of clustering property, excellent compression can be achieved. 

However, the mechanisms of decoding for all well-known coding methods that can exploit 

clustering property well are more complex, which reduce the ability of searching performance at 

some degree. Therefore, the key to this issue is to develop a new coding method that can exploit 

clustering property well and allow extremely fast decompression. 

● Redundant decoding elimination 

The query performance on a compressed inverted file can be improved by using skipping 

mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; Anh & Moffat, 1998). Although 

compression can greatly reduce disk access time, the compressed posting list for each query term 

must be completely decompressed in order to be randomly accessed to any posting in it. When 

processing queries, it is usually that only a subset of the postings in a posting list needs to be 

examined. To remove redundant decoding, skipping mechanisms (Moffat et al., 1995; Moffat & 

Zobel, 1996; Anh & Moffat, 1998) that allow queries to be processed with only partial decoding 

of the list have been proposed. A common technique of skipping mechanisms is to divide the 

posting list into blocks and add auxiliary information into each block, so that the postings within 

a block can be quickly skipped without decoding them if they are useless in set operations during 

query processing. There are two important types of queries: conjunctive Boolean queries and 

ranked queries. For conjunctive Boolean queries large blocks provide faster searching for 

candidates, whereas for ranked queries small blocks do (Moffat & Zobel, 1996; Anh & Moffat, 

1998). Although all well-known skipping mechanisms can work well for large blocks, we 

observe that they can incur high storage overheads if the posting lists are divided into small 
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blocks. The increase in disk I/O time outweighs the reduction in decompression time. Therefore, 

the key to this issue is developing a novel skipping mechanism that can support small blocks with 

very little storage overhead should be developed. 

● Inverted file optimization 

The query processing time in a large-scale IRS is dominated by the time needed to read and 

decompress the posting lists for the terms involved in the query (Moffat & Zobel 1996), and we 

observe that the query processing time grows with the total encoded size of the corresponding 

posting lists. This is because the disk transfer rate is near constant, and the decoding processes of 

most encoding methods used for compressing inverted files are on a bit-by-bit basis. If we can 

reduce the total encoded size of the corresponding posting lists without increasing decompression 

times, a shorter query processing time can be obtained. A document identifier assignment (DIA) 

can make the document identifiers in the posting lists evenly distributed, or clustered. Clustered 

document identifiers generally can improve the compression efficiency without increasing the 

complexity of decoding process, hence reduce the query processing time. The key to this issue is 

developing a fast algorithm to finding a near-optimal DIA that reduces the average query 

processing time in an IRS when the probability distribution of query terms is given. 

● Parallel IR 

To process the ever-increasing volume of data while still providing acceptable response times, 

parallel processing algorithms specifically for IR were developed. The key to this issue is to 

partition the inverted file into sub-files each for one workstation such that, during query 

processing, all workstations have to consult their own sub-files in parallel and query processing 

time can be reduced. To achieve high parallel efficiency, a partitioned inverted file to be 

distributed on the set of workstations should: (1) eliminate the communication overhead of 
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transferring postings between workstations during query processing, (2) balance amount of 

postings to be processed during parallel query processing, and (3) keep compression efficiency in 

the partitioned compressed inverted file. 

 

1.3 Research Topics 

This dissertation proceeds by dealing with the following research topics: 

(1) Efficient coding method for inverted file size reduction, 

(2) Two-level skipped inverted file for redundant decoding elimination, 

(3) Document identifier assignment algorithm design for inverted file optimization, and 

(4) Inverted file partitioning for parallel IR. 

The first topic is to propose a novel size reduction method for compressing inverted files. 

Compressing an inverted file can greatly improve query performance by reducing disk I/Os, but this 

adds to the decompression time required. The objective of this topic is to develop a method that has 

both the advantages of compression ratio and fast decompression. Our approach is as follows. The 

foundation is interpolative coding, which compresses the document identifiers with a recursive 

process taking care of clustering property and yields superior compression. However, interpolative 

coding is computationally expensive due to a stack required in its implementation. The key idea of 

our proposed method is to facilitate coding and decoding processes for interpolative coding by 

using recursion elimination and loop unwinding. Experimental results show that our method 

provides fast decoding speed and excellent compression. 

The second topic is to propose a two-level skipped inverted file, in which a two-level skipped 

index is created on each compressed posting list, to reduce decompression time. A two-level 

skipped index can greatly reduce decompress time by skipping over unnecessary portions of the list. 
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However, well-known skipping mechanisms are unable to efficiently implement the two-level 

skipped index due to their high storage overheads. The objective of this topic is to develop a space-

economical two-level skipped inverted file to eliminate redundant decoding and allow fast query 

evaluation. For this purpose, we propose a novel skipping mechanism based on block size 

calculation, which can create a skipped index on each compressed posting list with very little or no 

storage overhead, particularly if the posting list is divided into very small blocks. Using a 

combination of our skipping mechanism and well-known skipping mechanisms can implement a 

two-level skipped index with very little storage overheads. Experimental results showed that using 

such a two-level skipped index can simultaneously allow extremely fast query processing of both 

conjunctive Boolean queries and ranked queries. 

The third topic is to propose a document identifier assignment (DIA) algorithm for fast query 

evaluation. We observe that a good DIA can make the document identifiers in the posting lists more 

clustered, and result in better compression as well as shorter query processing time. The objective 

of this topic is to develop a fast algorithm that finds an optimal DIA to minimize the average query 

processing time in an IRS. In a typical IRS, the distribution of query terms is skewed. Based on this 

fact, we propose a partition-based DIA (PBDIA) algorithm, which can efficiently assign 

consecutive document identifiers to those documents containing frequently used query terms. 

Therefore, the posting lists for frequently used query terms can be compressed better without 

increasing the complexity of decoding processes. This can result in reduced query processing time. 

The fourth topic is to propose an inverted file partitioning approach for parallel IR. The 

inverted file is generally partitioned into disjoint sub-files, each for one workstation, in an IRS that 

runs on a cluster of workstations. When processing a query, all workstations have to consult only 

their own sub-files in parallel. The objective of this topic is to develop an inverted file partitioning 
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approach that minimizes the average query processing time of parallel query processing. Our 

approach is as follows. The foundation is interleaving partitioning scheme, which generates a 

partitioned inverted file with interleaved mapping rule and produces a near-ideal speedup. The key 

idea of our proposed approach is to use the PBDIA algorithm to enhance the clustering property of 

posting lists for frequently used query terms before performing the interleaving partitioning scheme. 

This can aid the interleaving partitioning scheme to produce superior query performance. 

We show the overview of the research topics in Table 1.1 and the recommended inverted file 

design flowchart in Figure 1.3. 

 

 

 

Topic 1: 
Inverted file 

size reduction

Topic 2: 
Redundant
decoding 

elimination

Topic 3: 
DIA-based 
inverted file 
optimization 

Topic 4: 
Parallel IR

load time          + + +     −     +

decompression time              −        + + +      +   

merge time               no change        + + +   no change 

Notation: “+”: advantage, and “−”: disadvantage.

Posting list 
processing 

+ + + 
(parallelized)

+ + + 
(parallelized)

+ + + 
(parallelized)

Table 1.1  The overview of the research topics. 
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1.4 Dissertation Organization 

The remainder of this dissertation is organized as follows. Chapter 2 presents a novel size 

reduction method, which has both the advantages of compression ratio and fast decompression, for 

compressing inverted files. Chapter 3 presents the proposed two-level skipped inverted file, in 

which a two-level skipped index is created on each compressed posting list, to reduce 

decompression time. Chapter 4 presents the proposed DIA algorithm for fast query evaluation. 

Chapter 5 presents a novel inverted file partitioning approach for parallel IR. Chapter 6 presents the 

conclusion. 

Inverted File Design

Topic 1: Inverted File Size Reduction Topic 2: Redundant Decoding Elimination

Topic 3: Inverted File Optimization
Topic 4: 
Parallel IR 

Interleaving partitioning scheme

 
Yes

No

 
YesNo 

end

good scalability

Figure 1.3 Recommended inverted file design flowchart. 

skipping mechanisms? 

cluster computing? 
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Chapter 2 Inverted File Size Reduction 

An inverted file contains, for each distinct term t in the collection, a posting list of the form 

PLt = < id1, id2, …, idft >, 

where idi is the identifier of the document that contains t, and ft is the total number of documents in 

which t appears. To process a query, the IRS retrieves the posting lists for the terms appearing in 

the query, and then performs some set operations, such as intersection and union, on the posting 

lists to obtain the answer list (Frankes & Baeza-Yates, 1992; Witten et al., 1999). 

Compression of inverted files has significant advantages for large-scale IRSs. This is because 

the total time of transferring a compressed posting list and subsequently decompressing it is 

potentially much less than that of transferring an uncompressed posting list. A popular compression 

technique (Witten et al., 1999) is to sort the document identifiers of each posting list in increasing 

order, and then replace each document identifier (except the first one) with the distance between 

itself and its predecessor to form a list of d-gaps. For example, the posting list <13, 18, 22, 35, 42> 

can be transformed into the d-gap list as <13, 5, 4, 13, 7>. Although every document identifier is 

distinct, their d-gaps show some probability distributions. Many coding methods, such as unary 

coding (Elias, 1975), γ coding (Elias, 1975), Golomb coding (Golomb, 1966; Witten et al., 1999), 

skewed Golomb coding (Teuhola, 1978), batched LLRUN coding (Fraenkel & Klein, 1985; Moffat 

& Zobel, 1992), variable byte coding (Scholer et al., 2002), and word-aligned “Carryover-12” 

mechanism (Anh & Moffat, 2005), have been proposed for compressing posting lists by estimates 

for these d-gaps probability distributions. The more accurately the estimate, the greater the 

compression can be achieved. 
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The document identifiers for any given word are not uniformly distributed, since the documents 

in the collection are inserted in chronological order and the word’s popularity changes over time 

(Moffat and Stuiver, 2000). These document identifiers tend to be clustered, and inverted file 

compression may benefit if this clustering can be taken into account. Based on the d-gap technique, 

some coding methods, such as skewed Golomb coding and batched LLRUN coding, can capture 

clustering of documents via accurate estimates to achieve satisfactory compression performance. 

However, the estimates in these methods are relatively sophisticated, which require more 

decompression time, so they are not yet applied in real IRSs. 

Recently, Moffat and Stuiver (2000) have proposed interpolative coding. It is independent of the 

estimates for the d-gaps probability distributions. By using clustering with a recursive process of 

calculating ranges and codes in an interpolative order, superior compression performance can be 

achieved. However, interpolative coding is computationally expensive due to a stack required in its 

implementation, which prohibits it from being widely used in real-world IRSs. 

In terms of query throughput rates, Trotman (2003) shows that for small posting lists Golomb 

coding is recommended, whereas for large posting lists variable byte coding is recommended. 

Furthermore, Anh and Moffat (2005) show that word-aligned “Carryover-12” mechanism allows a 

query throughput rate that is higher than Golomb coding and variable byte coding, regardless of the 

lengths of the posting lists. Although these compression methods provide high query throughput 

rates, their compression efficiencies need to be improved. 

In this chapter, we develop a new coding method based on interpolative coding combined with a 

d-gap compression scheme. We call it the unique-order interpolative coding. The results of this 

research showed that the unique-order interpolative coding can take advantage of document 

identifier clustering in posting lists to achieve good compression performance. Nevertheless, the 
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decoding speed of this new method is even faster than that of Golomb coding and word-aligned 

“Carryover-12” mechanism. 

This chapter is organized as follows. In Section 2.1, we present the interpolative coding that is 

the most space efficient method known to compress inverted files. In Section 2.2, we present the 

unique-order interpolative coding. Then we show the quantitative analysis and the performance 

evaluation in Section 2.3 and Section 2.4. In Section 2.5, we present the possible application of the 

unique-order interpolative coding. Finally, Section 2.6 presents our summary. 

 

2.1 Well-known Interpolative Coding 

2.1.1 Algorithm description 

Moffat and Stuiver (2000) have proposed a compression technique called interpolative coding. 

It makes full use of the clustering in a recursive process of calculating ranges and codes, and 

demonstrates superior compression performance. In this method, the storing order as well as lower 

bound lo and upper bound hi of every document identifier x are calculated, and then function 

Binary_Code(x, lo, hi) is called to encode x in some appropriate manner. The simplest mechanism 

uses only binary code to encode x in ⎡ ⎤)1(log2 +− lohi  bits. The algorithm is described in Figure 

2.1.  

This interpolative coding is best illustrated with an example. Consider the posting list <1, 2, 5, 6, 

8, 10, 13> of ft=7 document identifiers in a collection of N=20 documents. According to the 

algorithm in Figure 2.1, the middle item in the list, the identifier 6, is encoded. This identifier must 

take on a value ranged from 1 to 20. Additionally, since there are three other identifiers on each side 

of this middle item, its possible value range is further limited to from 4 to 17. We represent this fact 

with (x, lo, hi) = (6, 4, 17), indicating that the document identifier x is within the range lo…hi. Once 
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the coding of document identifier 6 is accomplished, the three document identifiers on the left hand 

side may take on values 1 to 5 and those three on the right hand side 7 to 20. According to the same 

rule, the three document identifiers on the left can be processed first, followed by those three on the 

right. Therefore, the complete sequence of (x, lo, hi) triples generated by algorithm 

Interpolative_Code are (6, 4, 17), (2, 2, 4), (1, 1, 1), (5, 3, 5), (10, 8, 19), (8, 7, 9), and (13, 11, 20). 

Using the simplest implementation of Binary_Code, the corresponding codewords are 4, 2, 0, 2, 4, 2, 

and 4 bits long.  

Using a centered minimal binary code, the compression efficiency of interpolative coding can 

be further improved (Moffat and Stuiver, 2000). The centered minimal binary code works in the 

following way. Support that a number in the range 1…r is to be coded. A simple binary code 

assigns codewords ⎡ ⎤r2log  bits long to all values 1 through r, and wastes ⎡ ⎤ rr −2log2  codewords. 

That is, ⎡ ⎤ rr −2log2  of the codewords can be shortened by one bit without loss of unique 

decodability. These minimal codewords are then centered on the encoding range. Numbers at the 

extremes of the range requires one bit more for storage than those in the center. 

Algorithm Interpolative_Code(PL, f, lo, hi); 
Input: PL ( [ ]fPL ...1  is a sorted list of f document identifiers, all in the range lo...hi) 
Output: bitstring to represent [ ]fPL ...1  
begin 
        if f = 0 then return; 

if f = 1 then output bitstring by invoking Binary_Code(PL[1], lo, hi) and then return; 
h:=(f +1) div 2; 
f1:=h-1; 
f2:=f-h; 
L1:= [ ])1...(1 −hPL ; 
L2:= [ ]fhPL )...1( + ; 
Output bitstring by invoking Binary_Code(PL[h], lo+f1, hi-f2); 
Call Interpolative_Code(L1, f1, lo, PL[h]-1); 
Call Interpolative_Code(L2, f2, PL[h]+1, hi); 

end 
Figure 2.1 Interpolative coding. 
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2.1.2 Observation and improvement 

The major overhead of interpolative coding is that a recursive process is used to calculate the 

order and range of every document identifier. Although a recursive process can be converted to a 

non-recursive one (Tenenbaum et al., 1990), the converted code requires a stack, which makes the 

coding and decoding very slow. This is why interpolative coding is not widely used in IRSs. 

We observed that the calculation of the order and range for every document identifier can be 

accelerated by storing partial results in memory. Consider a general posting list PLt = <id1, id2, …, 

idft >, where ft is the number of documents containing term t, idk<idk+1, and all document identifiers 

are within the range 1…N. Using the interpolative coding method in Figure 2.1, for every ft , we can 

obtain the full sequence of triples for the list. Some examples are shown in Table 2.1. These triple 

sequences are useful for interpolative coding to calculate the order and range for each document 

identifier. For example, consider the posting list PLt = <id1=1, id2=2, id3=5, id4=7, id5=8> of ft =5 

document identifiers in a collection of N=10 documents. The values of this list can be calculated 

using ft = 5 triples in Table 2.1. The full sequence of triples are (id3, 3, N-2) = (5, 3, 8), (id1, 1, id3-2) 

= (1, 1, 3), (id2, id1+1, id3-1) = (2, 2, 4), (id4, id3+1, N-1) = (7, 6, 9), and (id5, id4+1, N) = (8, 8, 10). 

Storing such a table containing a full set of triple sequences in memory is helpful for the coding and 

decoding processes of interpolative coding. Compared with the method in Figure 2.1, this improved 

method eliminates need for a stack in the document identifier order and range calculation, saving a 

large amount of time. 

Table 2.1 Some examples of the full sequence of triples for the general posting list. 
ft The full sequence of triples for the general posting list 
1 (id1, 1, N) 
2 (id1, 1, N-1), (id2, id1+1, N) 
3 (id2, 2, N-1), (id1, 1, id2-1), (id3 , id2+1, N) 
4 (id2, 2, N-2), (id1, 1, id2-1), (id3, id2+1, N-1), (id4, id3+1, N) 
5 (id3, 3, N-2), (id1, 1, id3-2), (id2, id1+1, id3-1), (id4, id3+1, N-1), (id5, id4+1, N) 
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The triples for each ft can easily be represented as a two-dimensional array I_Triple consisting 

of ft rows and 5 columns. This representation for ft=5 is shown in Figure 2.2. The first row of the 

array represents the first triple, and the second row represents the second triple, and so forth. The 

first column is used to denote the index of the document identifier in the posting list for the first 

element of the triple. For example, I_Triple[3][1] is 2, meaning the first value of No. 3 triple is id2. 

The second and third columns denote the index of the document identifier in the posting list and the 

offset for the second element of the triple. For example, I_Triple[3][2] and I_Triple[3][3] are two 1s, 

meaning the second value of No. 3 triple is id1+1. Finally, the fourth and fifth columns denote the 

index of the document identifier in the posting list and the offset for the third element of the triple. 

For example, I_Triple[3][4] and I_Triple[3][5] are 3 and –1, meaning the third value of No. 3 triple 

is id3-1. To make this representation more practical and convenient, two extra values are used for 

each posting list: idft+1=0 and idft+2=N. Therefore, the first triple (id3, 3, N-2) in Figure 2.2 can be 

represented as 3, 6, 3, 7, and -2.  

 
                                         index         index         offset         index         offset 
 

I_Triple[m][n] n=1 n=2 n=3 n=4 n=5 
m=1 3 6 3 7 -2 
m=2 1 6 1 3 -2 
m=3 2 1 1 3 -1 
m=4 4 3 1 7 -1 
m=5 5 4 1 7 0 

 
                                     1st element          2nd element               3rd element 
                                    of the triple         of the triple               of the triple 
Figure 2.2 Given a general posting list PLt: <id1, id2, id3, id4, id5 > of ft=5 document identifiers, and 
set idft+1= id6=0 and  idft+2= id7=N. The corresponding triples: (id3, 3, N-2), (id1, 1, id3-2), (id2, id1+1, 
id3-1), (id4, id3+1, N-1), (id5, id4+1, N) can be represented with the I_Triple[ft][5]. 

The algorithm in Figure 2.3 can be used to generate the corresponding triples for each ft and 

store them in I_Triple[ft][5]. For a sub-posting list   PL[index …(index+k-1)] among idlo_index+lo and 

1st triple 
2nd triple 
3rd triple 
4th triple 
5th triple 
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idhi_index+hi, Compute_I_Triple(index, k, lo_index, lo, hi_index, hi) can be called to generate the 

corresponding triples and store them in a two-dimensional array I_Triple. 

 
Algorithm Generate_I_Triple(PL, f, N); 
Input: PL ( [ ]fPL ...1  is a sorted list of f document identifiers, all in the range 1...N, and to simplify 

the algorithm we set [ ])1( +fPL  to 0, and [ ])2( +fPL  to N) 
Output: I_Triple[f ][5] to represent the triples 
begin 
  n:=1;  /* n is a global variable*/ 
  Compute_I_Triple(1, f, f+1, 1, f+2, 0);  /* generate I_Triple[f ][5] */ 
  return I_Triple; 
end 
 
procedure Compute_I_Triple(index, k, lo_index, lo, hi_index, hi) 
begin 
  if k=0 then return; 
  if k=1 then  
    I_Triple[n][1]:=index; 
    I_Triple[n][2]:=lo_index; 
    I_Triple[n][3]:=lo; 
    I_Triple[n][4]:=hi_index; 
    I_Triple[n][5]:=hi; 
    n++; 
    return; 
  h:=(k-1)/2; 
  f1:=h; 
  f2:=k-h-1; 
  I_Triple[n][1]:=h+index; 
  I_Triple[n][2]:=lo_index; 
  I_Triple[n][3]:=lo+f1; 
  I_Triple[n][4]:=hi_index; 
  I_Triple[n][5]:=hi-f2; 
  n++; 
  Compute_I_Triple (index, f1, lo_index, lo, index+h, -1); 
  Compute_I_Triple (index+h+1, f2, index+h, 1, hi_index, hi); 
end 
 
Figure 2.3 The algorithm for generating I_Triple. 
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2.1.3 Remarks 

Although the procedure Compute_I_Triple in Figure 2.3 also uses recursive process, it can be 

processed off-line and one can store the I_Triples of different fts in memory. This can reduce the 

on-line decoding time dramatically. With the I_Triple, one can easily find minimal binary code in 

encoding a posting list, as shown in the following: 

for m:=1 to ft do 
output bitstring by invoking Binary_Code(PL[I_Triple[m][1]], 

PL[I_Triple[m][2]]+I_Triple[m][3], 
PL[I_Triple[m][4]]+I_Triple[m][5] ); 
 

However, this improved method still requires large memory space. For example, each triple 

contains five integers. If an integer takes 4-byte storage space, the memory requirement for a triple 

is 20 bytes. Therefore, in a posting list with ft document identifiers, 20×ft bytes are required. The 

maximum ft in present IRSs can reach up to thousands or millions, which means the memory space 

required for I_Triple storage is ten thousands or even ten millions of bytes. This makes it 

impossible using memory to accelerate coding and decoding with interpolative code. Furthermore, 

using I_Triple to encode and decode requires extra memory access time, which makes the decoding 

speed slow. 

 

2.2 Proposed Method: Unique-Order Interpolative Coding 

The recursive process makes the decoding of interpolative coding slow. Although using 

memory to store partial results of the recursive process can accelerate the coding and decoding of 

interpolative coding, a large amount of memory is required to store the I_Triple for each ft. We 

develop a new method called unique-order interpolative coding in which only one I_Triple is 

required for the entire coding and decoding process of all posting lists no matter how many 

different values of ft are present. Then we introduce loop unwinding to replace I_Triple with 
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constant values. The number of memory accesses to I_Triple can therefore be reduced, which 

accelerates the whole process. 

2.2.1 The coding method 

This subsection presents the details of our proposed coding method. Two key decisions are to be 

made in the coding method. 

A. Decomposition of a posting list into blocks to take advantage of interpolative coding 

In a posting list PLt=<id1, id2, …, idft > of ft document identifiers, where idk<idk+1 and all 

document identifiers are within the range 1…N. A group size g is first determined. Then PLt is 

divided into ⎥
⎥

⎤
⎢
⎢

⎡
=

g
fm t  blocks, each having g document identifiers except possibly the last block. 

We define the first document identifier in each block to be a boundary pointer, the document 

identifiers between boundary pointers to be inner pointers, and those in the last block except the 

boundary pointer to be residual pointers. The PLt can then be compressed as follows. The boundary 

pointers and their subsequent residual pointers together can be regarded as a sub-posting list, and a 

suitable d-gap compression scheme with high decoding speed can be used for compression. The 

inner pointers in each block are compressed via interpolative coding. With this new method (see 

Figure 2.4), each inner block contains a constant number (g-1) of inner pointers, enabling the use of 

only one I_Triple in coding and decoding. Compared with interpolative coding, this new method 

allows document identifiers to be stored in a fixed order, hence the name unique-order interpolative 

coding. When gft ≤  or m=1 or g=1, no inner pointers are present, and we apply only a d-gap 

compression scheme. 
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PLt = < id1, id2, …, idft >                        : boundary pointer 

                        Group size g, and m= ⎥
⎥

⎤
⎢
⎢

⎡
g
ft  blocks                                                : block 

 
 
 

id1  id2 …… idg        idg+1  idg+2 …… id2g           id2g+1  ……      id(m-1)g+1  ……idft 
 
 
 
 
 
 

Figure 2.4 The illustration of unique-order interpolative coding. 

B. Choice of a suitable coding method for boundary and residual pointers 

Compared with the d-gaps of a traditional d-gap compression scheme, the d-gaps of unique-

order interpolative coding extracted from every group of document identifiers are potentially much 

larger and may cause a decrease in compression efficiency. Therefore, a suitable coding method is 

required to encode the boundary pointers to improve compression efficiency. To simplify 

implementation, the boundary and residual pointers are encoded with the same method. 

In this chapter, we recommend Golomb coding and r coding for encoding the d-gaps of unique-

order interpolative coding. Golomb coding is very suitable for encoding the d-gaps of unique-order 

interpolative coding, since the d-gaps extracted from every group of document identifiers are 

roughly of the same length. Using γ coding is also a relatively economical choice when the 

document identifiers in a posting list are also close together, and the d-gaps are small. Other coding 

methods are not disregarded. We are still looking for a faster and more compact coding method to 

encode the d-gaps of unique-order interpolative coding. 

The inner pointers 
encoded using 
interpolative coding 

The inner pointers 
encoded using 
interpolative coding 

The residual pointers 
encoded with d-gap 
technique 

d-gap d-gap d-gap d-gap d-gap d-gap 
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To improve the compression efficiency of the d-gaps of unique-order interpolative coding, the 

value g is subtracted from the d-gap of all boundary pointers (except the first one) without loss of 

unique decodability. This approach works the best when the original d-gaps are small. 

2.2.2 Illustration 

This unique-order interpolative coding is best illustrated with an example. Given a posting list 

<5, 8, 12, 13, 15, 18, 23, 28, 29, 32, 33> of 11 document identifiers, let the group size g be 4, the 

document identifiers 5, 15, and 29 are therefore the boundary pointers, the document identifiers 32 

and 33 are the residual pointers, and the others are the inner pointers. Let [idi, idi+1, …, idj] 

represent idi, idi+1, …, idj encoded in interpolative code. Since the two successive boundary pointers 

must be known before interpolative coding of the inner pointers, the boundary pointer of each block 

is stored before coding of the inner pointers. Therefore, the posting list is to be stored as 

<5, 15, [8, 12, 13], 29, [18, 23, 28], 32, 33>, 

where [8, 12, 13]and [18, 23, 28] are in interpolative codes, and 5, 15, 29, 32, 33 in d-gaps. The 

resulted list is 

<5, 10(=15-5), [8, 12, 13], 14(=29-15),  [18, 23, 28], 3(=32-29), 1(=33-32)>. 

Next, since there are three document numbers between each pair of boundary pointers, the list can 

be simplified as 

<5, 7(=10-3), [8, 12, 13], 11(=14-3), [18, 23, 28], 3, 1>. 

In decoding, the first two d-gaps, 5 and 7, are retrieved to obtain the first two boundary pointers, 

which are 5 and 15(=5+7+3). Interpolative coding is then used to obtain [8, 12, 13]. Then, the d-gap, 

11, is retrieved to obtain the next boundary point, 29(=15+11+3), and interpolative coding is used to 

obtain [18, 23, 28]. Finally, the residual pointers 32(=3+29) and 33(=1+32) are obtained by the 

remaining d-gaps. 
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Now, consider a general posting list PLt = <id1, id2, …, idft> encoded using unique-order 

interpolative coding with group size g=4, the PLt can be represented as  

<id1, id5, [id2,   id3,  id4], 
id9, [id6,   id7,     id8], 
id13, [id10,  id11,   id12], … >,  

where id1, id5, id9, id13 are encoded using a d-gap coding method and [id2, id3, id4],  [id6, id7, id8], 

[id10, id11, id12] are encoded using interpolative coding. The example list can be further represented 

(using triple representation in Section 2) as 

<id1, id5 - id1 - 3,  (id3, id1+2, id5-2), (id2, id1+1, id3-1), (id4, id3+1, id5-1), 
id9 - id5 - 3,  (id7, id5+2, id9-2), (id6, id5+1, id7-1), (id8, id7+1, id9-1), 
id13- id9 - 3,  (id11, id9+2, id13-2), (id10, id9+1, id11-1), (id12, id11+1, id13-1), … >. 

We observed that the I_Triple for [idi, idi+1, idi+2] can be converted to the I_Triple for [idi+4, idi+5, 

idi+6] by adding 4 (which is the value of g) to the indices of document identifiers in the I_Triple for 

[idi, idi+1, idi+2]. Therefore, only one I_Triple is required in coding and decoding, which accelerates 

the whole process. If we use Golomb coding to encode boundary pointers and residual pointers, this 

new coding method can be shown as the following program in Figure 2.5. 
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Algorithm Unique_Order_Interpolative_Code(PL, f, N, g); 

Input: PL (PL[1...f] is a sorted list of document numbers, all in the range 1...N), and  
group size g(an integer); 

Output: Bitstring (the compressed posting list PL) 
begin 
  if gf ≤  then  // compressed by Golomb coding 

    ⎡ ⎤fNb /69.0: ×= ; 
prev_document_identifier:=0; 
for i:=1 to f 

append Golomb_Code(PL[i]-prev_document_identifier, b) to Bitstring; 
prev_document_identifier:= PL[i]; 

  else  // compressed by unique-order interpolative coding 
            ⎡ ⎤gfm /= ;  

        ⎡ ⎤))1()1(/(69.0: −×−−×= gmfNb ; 
             

// encode the first boundary pointer 
append Golomb_Code(PL[1], b) to Bitstring; 

         
// generate I_Triple 
n:=0; 
I_Triple:=Compute_I_Triple(2, g-1, 1, 1, g+1, -1); 

     
for i:=0 to (m-2) do 

                        index:=i×g; 
                  

// encode boundary pointer 
                        append Golomb_Code(PL[index+g+1]-PL[index+1]-g+1, b) to Bitstring; 
 
                        // encode inner pointers 

for j:=1 to g-1 do     
                          append Binary_Code(PL[index+I_Triple[j][1]], 
                                                 PL[index+I_Triple[j][2]]+I_Triple[j][3], 
                                   PL[index+I_Triple[j][4]]+I_Triple[j][5]) to Bitstring;  
              
            // encode residual pointers 

for i:=(m-1)×g+2 to f 
                append Golomb_Code(PL[i]-PL[i-1], b) to Bitstring; 
   
  return BitString;  
end 
Figure 2.5 Unique-order interpolative coding (using Golomb coding to encode boundary and 
residual pointers). 
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2.2.3 Implementation optimization 

This subsection presents how to use loop unwinding to accelerate the encoding and decoding of 

unique-order interpolative coding. Note that once the group size g is determined, the program in 

Figure 2.5 can be further accelerated. For example, for g=4, the following program segment in 

Figure 2.5 

 
for i:=0 to (m-1) do 

                        index:=i×g; 
                  

// encode boundary pointer 
                        append Golomb_Code(PL[index+g+1]-PL[index+1]-g+1, b) to Bitstring; 

 
// encode inner pointers, 8 memory accesses are required for encoding each inner 
// pointer: 5 for I_Triple accesses and 3 for PL accesses 
for j:=1 to g-1 do      

                                      append Binary_Code(PL[index+I_Triple[j][1]], 
                                                    PL[index+I_Triple[j][2]]+I_Triple[j][3], 
                                                PL[index+I_Triple[j][4]]+I_Triple[j][5]) to Bitstring; 

can be converted to 

for i:=0 to (m-1) do 
                        index:=i×4; 
                  

// encode boundary pointer 
                        append Golomb_Code(PL[index+5]-PL[index+1]-3, b) to Bitstring; 

 
// loop unwinding, only 3 memory accesses of PL are required for encoding each 
// inner pointer 

             append Binary_Code(PL[index+3], PL[index+1]+2, PL[index+5]-2) to Bitstring; 
             append Binary_Code(PL[index+2], PL[index+1]+1, PL[index+3]-1) to Bitstring; 
             append Binary_Code(PL[index+4], PL[index+3]+1, PL[index+5]-1) to Bitstring; 

In other words, once the group size g has been determined, the I_Triple accesses in loop can be 

eliminated in unique-order interpolative coding. So the 8-3=5 times memory accesses for each 

document identifier can be avoided, which in turn accelerates the encoding process. By using the 

same approach, the decoding of unique-order interpolative coding can also be accelerated. 
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2.3 Quantitative Analysis 

Give a posting list ><= fididdPL ,...,,  21  of f document identifiers, where 1+< kk idid , and all 

document identifiers are within the range 1...N. As stated in Section 2.2, the first step in unique-

order interpolative coding is to determine the group size g. Once g is determined, the PL will be 

divided into ⎥
⎥

⎤
⎢
⎢

⎡
=

g
fm  blocks, with the first (m-1) blocks containing g document identifiers and the 

last block containing gmf )1( −−  document identifiers. The boundary pointers and the residual 

pointers will be coded by efficient prefix-free coding methods such as Golomb coding and γ coding, 

in d-gap manner, and the inner document identifiers will be coded by the interpolative coding. 

Let the function ),( fNF  represent bits needed for compressing the f document identifiers 

ranging from 1 to N. Theoretically, the following approximate formulas can then be achieved 

(Golomb, 1966; Gallager & Van Voorhis, 1975; Mcllroy, 1982; Elias, 1975; Moffat & Stuiver, 

2000). 

Golomb coding: )log2(),( 2 f
NffNG +×≤                                                    (2.1) 

γ coding: )log21(),( γ 2 f
NffN ×+×≤                                                          (2.2) 

Interpolative coding: )log5783.2(),( 2 f
NffNI +×≤                                     (2.3) 

If Golomb coding is used to encode the boundary pointers and residual pointers, then the 

maximum number of bits required to store these f-(m-1)(g-1) boundary and residual pointers is  

)
)1)(1(

log2())1)(1(( 2 −−−
+×−−−

gmf
Ngmf                                            (2.4) 

If we use γ coding to encode these pointers, then the maximum number of bits required is 
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)
)1)(1(

log21())1)(1(( 2 −−−
×+×−−−

gmf
Ngmf                                       (2.5) 

Based on Eq.(2.3), the number of bits required to code the inner pointers ((m-1) groups, (g-1) 

document identifiers in each group) is 

∑
−

=
⎥
⎦

⎤
⎢
⎣

⎡
−

+×−
1

1
2 )

1
log5783.2()1(

m

i

i

g
Ng , where 11)1(1 −−= +−×+× igigi ididN                 (2.6) 

Since 

∑
−

=

≤
1

1

m

i
i NN                                                              (2.7) 

and the sum of the logarithms of the (m-1) individual ranges is maximized when all 
1−g

Ni  are equal, 

one obtains 

)
)1)(1(

log5783.2()1)(1()
1

log5783.2()1( 2

1

1
2 −−

+×−−≤⎥
⎦

⎤
⎢
⎣

⎡
−

+×−∑
−

= gm
N

gm
g
Ng

m

i

i       (2.8) 

Therefore, if Golomb coding is used to encode the boundary and residual pointers, then the 

maximum number of bits required by the unique-order interpolative coding is at most 

)
)1)(1(

log2())1)(1(( 2 −−−
+×−−−

gmf
Ngmf + )

)1)(1(
log5783.2()1)(1( 2 −−

+×−−
gm

N
gm    (2.9) 

Or if we use γ coding, it is 

)
)1)(1(

log21())1)(1(( 2 −−−
×+×−−−

gmf
Ngmf + )

)1)(1(
log5783.2()1)(1( 2 −−

+×−−
gm

N
gm     (2.10) 

Eqs. (2.9) and (2.10) can be simplified under the condition that no residual pointers exist. For 

example, when f=(m-1)g+1, Eq. (2.9) can be rewritten as: 

]log
)

1
(log)1()1(5783.2log2

[ 2

22

f
N

g
g

gggg
f +−

×−+−×++
×                    (2.11) 
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and some examples of the maximum number of bits required for unique-order interpolative coding 

are derived in Table 2.2. 

Table 2.2 Some examples of the maximum number of bits required for unique-order interpolative 
coding if Golomb coding is used to encode boundary pointers under the condition that no residual 
pointers exist. 

g maximum number of bits required 
 

2 ]log29.3[ 2 f
Nf +×  

 
4 ]log25.3[ 2 f

Nf +×  

 
8 ]log05.3[ 2 f

Nf +×  

 
16 ]log88.2[ 2 f

Nf +×  

 
32 ]log76.2[ 2 f

Nf +×  

 

The results in Table 2.2 showed that when Golomb coding is used to encode boundary pointers, 

the maximum number of bits required in unique-order interpolative coding has inverse relationship 

with group size g: the maximum number of bits decreases with increase in group size g and 

increases with decrease in g. On the other hand, if the number of document identifiers is less than 

(g+1), unique-order interpolative coding cannot be used. We design an experiment in Section 2.4 to 

find a suitable group size g. 

The results in Eqs. (2.9) and (2.10), and Table 2.2 can be improved if Eq.(2.3) can be improved. 

For example, the maximum number of bits required for interpolative coding to encode a posting list 

with 3 document identifiers ranging from 1 to N is 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ loglog)2(log 222 baN ++−                                              (2.12) 

since the middle item requires ⎡ ⎤)2(log2 −N  bits, and the left and right items require  

⎡ ⎤ ⎡ ⎤ba 22 loglog +  bits where a, b are two positive integers and a+b=(N-1). Since 
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⎡ ⎤ NN 22 log1)2(log +<−                                                                                      (2.13) 

and 

⎡ ⎤ ⎡ ⎤ 2
log

2
log2)log1()log1(loglog 222222

NNbaba ++<+++<+                   (2.14) 

hence  

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ )
3

log92.1(3loglog)2(log 2222
NbaN +×<++−                                       (2.15) 

We replace Eq.(2.3) with Eq.(2.15) when group size g=4, and the maximum number of bits required 

for the unique-order interpolative coding under the condition that no residual pointers exist is 

therefore 

]log76.2[ 2 f
Nf +×                                                     (2.16) 

Compared with the figure in Table 2.2, a much tighter upper bound is obtained. 

To further understand the characteristics of unique-order interpolative coding, we conducted 

following experiments. We used encoding methods such as Golomb coding, skewed Golomb 

coding, batched LLRUN coding, interpolative coding, variable byte coding, Carryover-12 

mechanism, unique-order interpolative coding 1 (group size g=4; boundary pointers and residual 

pointers by Golomb coding), unique-order interpolative coding 2 (group size g=4; boundary 

pointers and residual pointers by γ coding) in compression. In the first experiment (Table 2.3(a)), f 

= 1,000,000 gaps were drawn from a geometric distribution and compressed using the eight 

methods. The Golomb coding performs the best, since it is a minimum-redundancy code for 

geometric gap distribution (Gallager and Van Voorhis 1975). Compared with other methods, 

unique-order interpolative coding is not suitable for a geometric distribution when 2562 <<
f
N . 
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But when 
f
N  increases, the performance of unique-order interpolative coding 1 improves 

proportionally. When 2≤
f
N , the results of unique-order interpolative coding 2 are satisfying. For 

most cases in the first experiment, both variable byte coding and Carryover-12 mechanism are 

inefficient in compression. 

Table 2.3 Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps: 
average bits per gap 

Average gap（N/f）, Geometric Distribution Coding Methods 
1 2 4 8 16 32 64 128 256 512 1024 2048

Golomb coding 1.00 2.33 3.30 4.39 5.43 6.45 7.46 8.47 9.47 10.47 11.47 12.47
Skewed Golomb coding 1.00 2.53 3.51 4.60 5.64 6.66 7.67 8.68 9.68 10.68 11.68 12.68
Batched LLRUN coding 1.00 2.27 3.46 4.50 5.53 6.52 7.52 8.52 9.52 10.52 11.52 12.53
Interpolative coding 0.00 2.15 3.45 4.59 5.66 6.69 7.70 8.71 9.71 10.71 11.71 12.72
Variable byte coding 8.00 8.00 8.00 8.00 8.00 8.14 9.08 10.93 12.87 14.24 15.07 15.52
Carryover-12 mechanism 1.07 2.88 4.11 5.17 6.18 7.38 8.75 9.90 10.58 12.30 14.41 15.56
Unique-order interpolative coding 1 3.00 4.19 5.13 5.97 6.76 7.53 8.29 9.06 9.89 10.77 11.68 12.77
Unique-order interpolative coding 2 0.25 2.33 3.91 5.31 6.64 7.92 9.19 10.45 11.70 12.96 14.21 15.46
Self-entropy 0.00 2.00 3.24 4.35 5.40 6.42 7.43 8.44 9.44 10.44 11.43 12.43
(a) Geometric distribution 
 

Average gap（N/f）, Skewed Distribution Coding Methods 
1 2 4 8 16 32 64 128 256 512 1024 2048

Golomb coding 1.40 2.60 3.30 4.29 5.33 6.37 7.39 8.40 9.40 10.40 11.40 12.41
Skewed Golomb coding 1.80 2.31 2.92 3.76 4.80 5.79 6.80 7.82 8.82 9.83 10.83 11.83
Batched LLRUN coding 1.40 2.31 2.86 3.60 4.61 5.66 6.70 7.71 8.71 9.71 10.70 11.71
Interpolative coding 0.84 1.53 2.07 2.90 3.97 5.07 6.15 7.19 8.21 9.23 10.23 11.24
Variable byte coding 8.00 8.00 8.00 8.00 8.10 8.58 9.38 10.11 10.63 11.28 12.43 13.80
Carryover-12 mechanism 1.07 2.36 2.90 3.72 4.84 6.02 6.98 7.9 9.35 10.90 12.08 12.57
Unique-order interpolative coding 1 3.60 3.96 4.30 4.80 5.51 6.30 7.11 7.94 8.76 9.60 10.51 11.62
Unique-order interpolative coding 2 1.25 1.90 2.47 3.33 4.53 5.88 7.21 8.53 9.81 11.07 12.33 13.60
Self-entropy 0.97 1.77 2.30 3.05 4.06 5.10 6.15 7.18 8.19 9.19 10.19 11.20
(b) Skewed geometric distribution 

 

In the second experiment, for each value of 
f
N  the sequence of f = 1,000,000 geometrically 

distributed gaps was broken into chunks of 200 contiguous values. The chunks were then placed in 

groups of five. In the first three chunks of each group, all gaps were multiplied by a factor of 0.1; 

whereas in the other two chunks all gaps were multiplied by a factor of 2.35. This process created 
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artificial clusters of gaps much similar than the average, and about 60% of the values were coded 

into these clusters, while the overall average gap remained the same. This better resembles the 

distribution of real document collections. The results are shown in Table 2.3(b). Compared with 

skewed Golomb coding, batched LLRUN coding, and interpolative coding, the compression 

efficiency of Golomb coding is not as good as others, meaning it is unable to exploit clustering well. 

The compression results of unique-order interpolative coding for a skewed geometric distribution 

are better than that for a geometric distribution. This means that unique-order interpolative coding 

does take a good advantage of the clustering property. For 32≤
f
N , we prefer to use the unique-

order interpolative coding 2; while for 
f
N >32, we suggest unique-order interpolative coding 1. 

Similar to that for a geometric distribution, the unique-order interpolative coding 1 performs better 

as 
f
N becomes larger. Again, both variable byte coding and Carryover-12 mechanism are inefficient 

in compression for most cases in the second experiment. From Table 2.3(b), interpolative coding 

can even outperform self-entropy. This is due to the fact that interpolative coding does not use the 

gap value in encoding directly, but instead uses a minimal binary code to encode every gap after it 

is converted to a triple. 

 

2.4 Performance Evaluation 

An experimental information retrieval system was implemented to evaluate the various coding 

methods. Experiments were conducted on some real-life document collections, and query 

processing time and storage requirements for each coding method were measured. 
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2.4.1 Document collections and queries 

Five document collections were used in the experiments. Their statistics are listed in Table 2.4. 

In this table, N denotes the number of documents; n is the number of distinct terms; F is the total 

number of terms in the collection; and f indicates the number of document identifiers that appear in 

an inverted file. 

Table 2.4 Statistics of document collections 
                                                                  Collection 

 Bible DBbib FBIS LAT TREC
Documents N 31,101 32,472 130,471 131,896 262,367
# of terms F 884,746 2,320,610 72,922,893 72,087,460 145,010,353
Distinct terms n 8,965 58,536 214,310 168,251 317,393
# of document identifier count f 701,304 1,694,491 28,628,698 32,483,656 61,112,354
Average gap size fnN /× 398 1122 977 683 1363
Total size (Mbytes)  4.69 21.30 470 475 945

 

Collection Bible is the King James version of the Bible, in which each verse is considered as a 

document. The second collection, DBbib, is a set of citations to chapters appearing in the database 

literature. The third and forth collections, FBIS (Foreign Broadcast Information Service) and LAT 

(LA Times), are disk 5 of the TREC-6 collection that is used internationally as a test bed for 

research in information retrieval techniques (Voorhees and Harman, 1997). The final collection 

TREC includes the FBIS and LAT collections. 

Since effectiveness of coding methods relies heavily on clustering of documents, inverted files 

for these collections were built with a Greedy-NN algorithm (Shieh et al., 2003). These inverted 

files were then used to test the advantages and shortcomings of various coding methods. 

We followed the method (Moffat and Zobel, 1996) to evaluate performance with random 

queries. For each document collection, 1000 documents were randomly selected to generate a query 

set. A query was generated by selecting words from a word list of a specific document, combined 

by some randomly generated Boolean operators ANDs and ORs. To form the document word list, 
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words in the document were case folded, and stop words such as “the” and “this” were eliminated. 

For example, a query word list may be “inverted file document collection built”, a query may be 

“(inverted <AND> file <AND> document <AND> collection) <OR> built”. For each query, there 

existed at least one document in the document collection that satisfied the query. The generated 

queries followed a Zipf-like distribution P ~ 1/ρ0.55, where P is the probability of accessing each 

query, and ρ is the popularity rank for the test query stream. This is widely believed to closely 

resemble the distribution of real queries (Breslau et al., 1999). 

2.4.2 Performance results 

In this subsection, we first present the compression performance of unique-order interpolative 

coding versus different group size g. We then present the compression performance of different 

coding methods. Finally, we present the search performance of different coding methods. 

Compression performance of unique-order interpolative coding 

In this subsection, Golomb coding was used to code both boundary pointers and residual 

pointers. This is due to the fact that the average gap sizes in Table 2.4 are relatively big, Golomb 

coding was recommended according to Table 2.3(b). The compression result is shown in Table 2.5, 

and the metric used is the average number of bits per document identifier BPI, defined as follows: 

f
BPI

 identfiersdocument  ofnumber 
file inverted compressed  theof size The

= . 

For each term t, the cost of using r coding to encode the frequency ft is calculated and included in 

the presented results.  

Note that for group size g=4 and g=8, unique-order interpolative coding achieved good 

compression. For a simple implementation, we suggest using g=4. In the following experiments, 

Golomb coding was used to code both boundary pointers and residual pointers for unique-order 

interpolative coding, and group size g was set to 4 unless otherwise stated. 
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Table 2.5 Compression performance of unique-order interpolative coding versus different group size g 

Group Size Collection 
g Bible DBbib FBIS LAT TREC 
1 6.11 6.20 5.27 5.31 5.49 
2 5.64 5.47 4.84 4.91 4.99 
3 5.61 5.31 4.80 4.89 4.94 
4 5.46 5.11 4.66 4.74 4.78 
5 5.52 5.13 4.71 4.80 4.82 
6 5.52 5.10 4.71 4.79 4.81 
7 5.47 5.04 4.65 4.74 4.75 
8 5.42 4.98 4.59 4.68 4.69 
9 5.47 5.01 4.64 4.72 4.73 

10 5.51 5.03 4.67 4.75 4.76 
 

Compression performance of different coding methods 

We now compare the effectiveness of the eight coding methods: γ coding, Golomb coding, 

batched LLRUN coding, skewed Golomb coding, interpolative coding, variable byte coding, 

Carryover-12 mechanism, and unique-order interpolative coding. For each term t, the cost of using r 

coding to encode the frequency ft is calculated and included in the presented results. Moreover, any 

necessary overheads, such as the complete set of models and model selectors for the batched 

LLRUN coding, are also calculated and included. However, the cost of storing the parameter b for 

each posting list in Golomb coding (Witten et al., 1999) is not calculated nor included. This is 

because the parameter b for each posting list in Golomb coding can be calculated via stored 

frequency ft using Witten’s approximation. The results are shown in Table 2.6. Notice that: 

1. Both variable byte coding and Carryover-12 mechanism are inefficient in compression of 

inverted files. 

2. For the other coding methods, the compression efficiencies of both γ coding and Golomb coding 

are relatively low because of the simple models they use. 
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3. The compression efficiencies of batched LLRUN, skewed Golomb, interpolative, and unique 

order interpolative coding methods are relatively good. This shows that clustering is a good 

compression aid. 

4. The compression efficiency of unique-order interpolative coding is only inferior to that of 

interpolative coding, meaning that it does take a good advantage of the clustering property. 

Table 2.6 Compression Performance of different coding methods. 

                                         Collection Coding Methods 
Bible DBbib FBIS LAT TREC 

γ coding 6.58 5.96 5.38 5.63 5.63 
Golomb coding 6.11 6.20 5.27 5.31 5.49 
Batched LLRUN coding 5.52 4.88 4.63 4.78 4.84 
Skewed Golomb coding 5.92 5.75 5.04 5.07 5.10 
Interpolative coding 5.37 4.89 4.58 4.65 4.62 
Variable byte coding 9.10 9.54 8.88 8.89 8.84 
Carryover-12 mechanism 7.14 7.99 6.23 6.13 5.95 
Unique-order interpolative coding 5.46 5.11 4.66 4.74 4.78 
 

Search performance of different coding methods 

The query processing time includes (1) disk access time, (2) decompression time, and (3) 

document identifiers comparison time. Experiments showed that disk access time and 

decompression time occupy more than 90% of query processing time. And document identifier 

comparison time is not a function of the coding method used. Therefore the search performance 

metric is defined as 

     Search Time (ST) = Disk Access Time (AT) + Decompression Time (DT). 

And the speedups of all coding methods relative to Golomb coding, for all test collections, were 

calculated. 

All experiments described in this subsection were run on an Intel P4 2.4GHz PC with 256MB 

DDR memory running Linux operating system 2.4.12. The hard disk was 40GB, and the data 

transfer rate was 25MB/sec. Intervening processes and disk activities were minimized during 
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experimentation. All decoding mechanisms were written in C, compiled with gcc, and optimized as 

follows: 

1. Replaced subroutines with macros. 

2. Careful choice for compiler optimization flags. 

3. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU. 

4. Implemented the integer logarithm function ⎡ ⎤)i(log2  with a lookup table. 

Let z be a 256-entry array, and z[k] be ⎡ ⎤)1(log2 +k  where 2550 ≤≤ k . The function ⎡ ⎤)i(log2  

can be implemented in C as follows (v is the returned value of ⎡ ⎤)i(log2 ): 

do { 
       register int __i  = (i) - 1; 

(v) = _B_i>>16 ?  (_B_i>>24 ? 24 + z[_B_i>>24] : 16 + z[_B_i>>16]) :  
(_B_i>>  8 ?   8 + z[_B_i>>8]   : z[_B_i]) ; 

} while (0); 

5. Implemented the integer logarithm function ⎣ ⎦)i(log2  also with a lookup table. 

The array z is the same as that used in the function ⎡ ⎤)i(log2 . The function ⎣ ⎦)i(log2  can be 

implemented in C as follows (v is the returned value of ⎣ ⎦)i(log2 ): 

do { 
       register int __i  = (i) ; 
       (v) = _B_i>>16 ?  (_B_i>>24 ? 23 + z[_B_i>>24] : 15 + z[_B_i>>16]) :    

(_B_i>>  8 ?   7 + z[_B_i>>8]   : z[_B_i] - 1) ; 
} while (0); 

6. A 256-entry lookup table is used to locate the exact bit location of the first “1” bit in a byte. 

For example, in the byte 00101000 the first “1” bit is in location 3. This can accelerate the 

decoding process of unary codes because no bit-by-bit decoding is required. 

7. Access to binary codes with masking and shifting operations, and no bit-by-bit decoding is 

required. 
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With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-

bit decoding is required. 

Other optimizations included: The Huffman code of batched LLRUN coding was implemented 

with canonical prefix codes (Turpin, 1998). The canonical prefix codes can be decoded via fast 

table look-up. And for the interpolative coding method, recursive process was transformed to non-

recursive process, at the cost of an explicit stack (Tenenbaum et al., 1990). 

The search performance measurements are shown in Table 2.7. Key findings are: 

 

1. Although variable byte coding and Carryover-12 mechanism gave fast decoding, r coding and 

unique-order interpolative coding achieved higher query throughput rates. This is because the 

disk access time (AT) of variable byte coding and Carryover-12 mechanism is much higher than 

that of r coding and unique-order interpolative coding. 

2. For collection DBbib, the decoding times (DT) of r coding and unique-order interpolative 

coding are less than that of Carryover-12. This is because a large portion of the d-gaps of 

frequently used query terms for DBbib is of value 1. Both r coding and unique-order 

interpolative coding can encode these d-gaps very economically. This also makes the decoding 

times of r coding and unique-order interpolative coding for these d-gaps very low. 

3. Batched LLRUN coding, skewed Golomb coding, and interpolative coding gave better 

compression rates than Golomb coding. However, their complex decoding mechanisms 

prohibited them from being used in real-world IRSs. 

4. Experimental results showed that r coding, Carryover-12 mechanism, and unique-order 

interpolative coding were recommended for real-world IRSs. Their query throughput rates were 

all much higher than that of Golomb coding. 
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Table 2.7 Search performance of different coding methods (AT is the disk access time, DT is the 
decoding time, ST=AT+DT is the search time, and SP is the performance relative to the Golomb 
coding) 

Coding Method         Collection 
  Bible DBbib FBIS LAT TREC
γ coding AT(us) 125 202 1125 1168 2149
 DT(us) 70 188 952 980 1696
 ST(us) 195 390 2077 2148 3845
 SP 1.14 1.50 1.20 1.23 1.20
Golomb coding AT(us) 131 306 1282 1321 2422
 DT(us) 92 280 1200 1314 2179
 ST(us) 223 586 2482 2635 4601
 SP 1.00 1.00 1.00 1.00 1.00
Batched LLRUN coding AT(us) 116 381 1101 1134 2086
 DT(us) 130 192 1688 1771 3013
 ST(us) 246 573 2789 2905 5099
 SP 0.91 1.02 0.89 0.91 0.90
Skewed Golomb coding AT(us) 117 331 1120 1150 2097
 DT(us) 122 201 1492 1577 2696
 ST(us) 239 532 2612 2727 4793
 SP 0.93 1.10 0.95 0.97 0.96
Interpolative coding AT(us) 111 137 1024 995 1916
 DT(us) 243 688 3094 3266 5598
 ST(us) 354 825 4118 4261 7514
 SP 0.63 0.71 0.60 0.62 0.61
Variable byte coding AT(us) 214 918 3134 3489 5506
 DT(us) 22 90 336 388 633
 ST(us) 236 1008 3470 3877 6139
 SP 0.95 0.58 0.72 0.68 0.75
Carryover-12 mechanism AT(us) 145 311 1498 1491 2566
 DT(us) 52 190 765 825 1368
 ST(us) 197 501 2263 2316 3934
 SP 1.13 1.17 1.10 1.14 1.17
Unique-order interpolative coding AT(us) 113 182 1066 1076 2011
 DT(us) 82 169 1041 1041 1909
 ST(us) 195 351 2107 2117 3920
 SP 1.14 1.67 1.18 1.24 1.17
 

5. To obtain better compression rates, Golomb coding and unique-order interpolative coding use a 

minimal binary code in their codewords. To decode a minimal binary code, “toggle point” 

calculations are required and slow down query evaluation. Rice coding is a variant of Golomb 
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coding where the value b is restricted to be a power of 2. The advantage of this restriction is that 

there is no “toggle point” calculation required. The disadvantage of this restriction is the slightly 

worse compression than that of Golomb coding. If we use Rice coding to encode the boundary 

and residual pointers in unique-order interpolative coding and use a simple binary code to 

encode the (x, lo, hi) triples for the inner pointers, there is no “toggle point” calculation required 

for unique-order interpolative coding. Table 2.8 showed that Rice coding allowed query 

throughput rates of approximately 8% higher than Golomb coding, and unique-order 

interpolative coding without “toggle point” calculation allowed query throughput rates of 

approximately 30% higher than Golomb coding. Experimental results further showed that the 

decoding time of unique-order interpolative coding without “toggle point” calculation is even 

less than that of Carryover-12 mechanism. 

6. Experimental results showed that a good coding method must be characterized by both high 

compression ratio and high decompression rate. The unique-order interpolative coding is such a 

good method. 

Table 2.8 Search performance of Rice coding and unique-order interpolative coding (AT is the disk 
access time, DT is the decoding time, ST=AT+DT is the search time, and SP is the performance 
relative to the Golomb coding). 

Coding Method  Collection 
  Bible DBbib FBIS LAT TREC
Rice coding AT(us) 133 286 1305 1345 2462
 DT(us) 74 267 1004 1069 1808
 ST(us) 207 553 2309 2414 4270
 SP 1.08 1.06 1.07 1.09 1.08
Unique-order interpolative codinga AT(us) 119 193 1128 1137 2127
 DT(us) 55 141 747 772 1363
 ST(us) 174 334 1875 1909 3490
 SP 1.28 1.75 1.32 1.38 1.32
a The boundary and residual pointers are encoded in Rice codes, the (x, lo, hi) triples for the inner 
pointers are encoded in simple binary codes, and group size g is 4. 
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2.5 Other Application 

Unique-order interpolative coding, like interpolative coding, can be directly applied to encode 

strictly ascending integer sequences. One such example is encoding of within-document frequencies 

of posting lists. If ranked queries are to be supported, it is also necessary to store with each 

document identifier the frequency of the term appearing within that document, giving the posting 

list the form: 

<(id1, ft,1), (id2, ft,2), …, (idft, ft,ft) >, 

where ft is the number of documents containing term t, idk<idk+1, and ft,i is the frequency of term t in 

document i, tfi ≤≤1 . The within-document frequencies can be compressed in exactly the same 

manner of compressing document pointers: if there are ft entries in a posting list and a total of Ft 

occurrences of that term in the collection, the sequence of cumulative sums of the ft,i values also 

forms a strictly increasing integer sequence, and all of the existing compression methods are 

applicable. Because the within-document frequencies are typically small, according to Table 2.3(b), 

unique-order interpolative coding should use γ coding to encode within-document frequencies. 

Table 2.9 shows the cost, in bits per pointer, of storing the within-document frequencies for the five 

test collections. Test results showed that unique-order interpolative coding achieved very good 

compression, second to only the interpolative coding. Considering also the performance results in 

Tables 2.7, we conclude that the unique-order interpolative coding is very suitable for encoding 

within-document frequencies of posting lists. 
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Table 2.9 Within-document frequency index compression of all posting lists, in average bits per pointer. 
Coding Methods                                                                          Collection 
 Bible DBbib FBIS LAT TREC 

1.26 1.37 2.55 2.22 2.37 
1.38 1.44 2.14 2.00 2.07 
1.30 1.50 2.29 2.09 2.20 
1.38 1.44 2.14 2.00 2.05 
1.45 1.60 2.39 2.26 2.35 
0.86 0.92 1.78 1.77 1.75 
8.11 8.19 8.04 8.02 8.03 
2.04 2.75 3.22 2.99 3.07 

Unary coding 
γ coding 
Golomb coding 
Batched LLRUN coding 
Skewed Golomb coding 
Interpolative coding 
Variable byte coding 
Carryover-12 mechanism 
Unique-order interpolative codinga 0.96 1.02 1.92 1.76 1.84 
a The boundary and residual pointers are encoded in γ codes and group size g is 4. 
 

2.6 Summary 

This chapter proposes a novel coding method, the unique-order interpolative coding, to 

compress inverted files in IRSs. This method is much easier to implement than interpolative coding. 

Furthermore, it is custom designed to suit the clustering property of document identifiers, a property 

that has been observed in real-world document collections. Experiments with the inverted files of 

five test databases show that this method yields superior performance in both fast querying and 

space-efficient indexing. This work shows a feasible way in building a responsive and storage-

economical IRS. 
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Chapter 3 Redundant Decoding Elimination 

To provide fast query processing, inverted indexes are widely used in information retrieval 

systems (IRSs) (Witten et al., 1999; Zobel et al., 1998). An inverted index consists of an index file 

and an inverted file. An index file is a set of records, each containing a keyword term t and a pointer 

to the posting list for term t. An inverted file contains, for each distinct term t in the collection, a 

posting list of the form 

( ) ( ) ( ) >=<
tt fft fqidfqidfqidPL ,,...,,,, 2211 , 

where a posting (id,fq) indicates that term t appears in the document whose identifier is id a total of 

fq times (fq is referred to as the within-document frequency), and ft (referred to as the document 

frequency of term t) is the number of documents in which term t appears. In a large-scale IRS, 

posting lists are usually compressed, and decompression of posting lists is hence required during 

query processing (Zobel & Moffat, 1995; Witten et al., 1999). A query consists of keyword terms. 

To process a query, the query evaluation engine searches the index file for the query terms to 

retrieve and decompress the corresponding posting lists. Set operations, such as intersection, union, 

and difference, are then performed on the posting lists to obtain the query output. The results in the 

query output are possibly ranked by calculating and examining the score of each document, where 

the score is usually a function of the within-document frequency and the document frequency of 

term t (Salton, 1989; Salton & McGill, 1983). 

In a typical IRS, a few frequently used query terms constitute a large portion of all term 

occurrences in queries (Jansen et al., 1997). This suggests that it is advisable to store the index 

records for frequently used query terms in RAM to greatly reduce index search time. Hence, the 

query processing time of a large-scale IRS is dominated by the time needed to read and decompress 
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the compressed posting list for each query term (Moffat & Zobel, 1996). Moreover, adding a 

document into the collection is to add one document identifier into the posting list for each term 

appearing in the document, hence the length of a posting list increases with the size of document 

collection. This implies that the time to process posting lists increase as the size of document 

collection grows. Therefore, further improvement in retrieving and decompressing posting lists 

becomes necessary. 

Compression of an inverted file is the most popular technique used to increase query throughput 

(Zobel & Moffat, 1995; Williams & Zobel, 1999; Trotman, 2003). This is because the total time of 

transferring a compressed posting list and subsequently decompressing it is potentially much less 

than that of transferring an uncompressed posting list. To achieve good compression, the postings in 

a posting list should be sorted in order of increasing document identifier. Two popular approaches 

for compressing the document identifiers in the identifier-ordered postings are d-gap compression 

approach (Moffat & Zobel, 1992; Witten et al., 1999) and interpolative coding approach (Moffat & 

Stuiver, 2000). The d-gap compression approach consists of two steps. It first replaces each 

document identifier (except the first one) with the distance between itself and its predecessor. For 

example, the document identifiers in the identifier-ordered postings <13, 18, 22, 35, 42> can be 

transformed into the d-gaps as <13, 5, 4, 13, 7>. And the second step is to encode these d-gaps 

using an appropriate coding method, such as unary coding (Elias, 1975), γ coding (Elias, 1975), or 

Golomb coding (Golomb, 1966; Witten et al., 1999). The common nature of these coding methods 

is their variable-length representations in which small d-gaps can be coded more economically than 

large ones. Interpolative coding approach, on the other hand, directly compresses the original 

document identifiers with a recursive process calculating the lower and upper bounds of every 

document identifier. Then every document identifier is encoded in a binary code. Moffat & Stuiver 
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(2000) showed that the compression result of interpolative coding is better than that of d-gap 

compression approach. The drawback of interpolative coding is its slow decompression due to a 

stack required in its decoding loops. The within-document frequencies in the identifier-ordered 

postings can also be encoded efficiently by using γ coding or interpolative coding (Bell et al., 1993; 

Moffat & Zobel, 1992; Moffat & Stuiver, 2000). 

The query performance on a compressed inverted file can be further improved by using 

skipping mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; Anh & Moffat, 1998). Although 

compression can greatly reduce disk access time, the compressed posting list for each query term 

must be completely decompressed in order to be randomly accessed to any posting in it. Where as 

in processing queries, usually only a subset of the postings in a posting list needs to be examined. 

To save redundant decoding, skipping mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; 

Anh & Moffat, 1998) that allow queries to be processed with only partial decoding of the list have 

been proposed. A common skipping mechanism is to divide the posting list into blocks and add 

auxiliary information into each block, so that the postings within a block can be quickly skipped 

without decoding them if they are useless in set operations during query processing. There are two 

important types of queries: conjunctive Boolean queries and ranked queries. For conjunctive 

Boolean queries large blocks provide faster searching for candidates, whereas for ranked queries 

small blocks are favored (Moffat & Zobel, 1996; Anh & Moffat, 1998). We observed that all well-

known skipping mechanisms can incur high storage overheads if the posting lists are divided into 

small blocks. The increase in disk I/O time outweighs the reduction in decompression time. 

Therefore, a novel skipping mechanism that can support small blocks with very little storage 

overhead should be developed. 
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In this chapter, we deal with posting list skipping problem for both the conjunctive Boolean 

queries and ranked queries in one design. We propose a two-level skipped inverted file, in which a 

two-level skipped index is created on each compressed posting list, to remove redundant decoding 

and allow fast query evaluation. We first employ well-known skipping mechanisms to create the 

first-level index on each posting list by dividing the list into blocks. The first-level index is 

constructed with large blocks and designed for optimizing the query performance of conjunctive 

Boolean queries.  A novel skipping mechanism is then proposed to create the second-level index on 

each block for optimizing the query performance of ranked queries. It first divides each block into 

sub-blocks, each containing a fixed number of postings. Then it employs functions to accurately 

calculate the maximum required bits that will be allocated and reserved to store the postings within 

a sub-block, and that can be easily skipped. The novel skipping mechanism works the best for small 

sub-blocks and has significant advantages for ranked queries. Experimental results show that the 

proposed two-level skipped inverted file provides excellent query speed on both conjunctive 

Boolean queries and ranked queries with very little or no storage overhead. 

The remainder of this chapter is organized as follows. Section 3.1 describes two well-known 

skipping mechanisms and their posting list structures for inverted files. Our test document 

collection is described in Section 3.2. In Section 3.3, we present the proposed two-level skipped 

inverted file. The performance evaluation is presented in Section 3.4. Finally, Section 3.5 presents 

our summary. 

 

3.1 Two Well-known Skipping Mechanisms and Their Posting List Structures 

Moffat & Zobel (1996) and Moffat et al. (1995) proposed two well-known skipping 

mechanisms to eliminate redundant decoding and allow fast candidate searching. Two posting list 
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structures are employed in their proposed skipping mechanisms. This section presents these two 

posting list structures, and comments on them. 

3.1.1 Skipped inverted file 

Moffat & Zobel (1996) proposed the skipped inverted file to avoid redundant decoding and 

allow fast processing of conjunctive search queries. The idea is to divide the compressed posting 

list into blocks each containing a fixed number, k, of postings. The first document identifier of each 

block is referred to as the critical document identifier, and it is associated with some extra bits that 

specify the location of the next critical document identifier. For example, consider the set of (id,fq) 

postings in a given posting list 

(4,2), (6,1), (11,1), (13,2), (14,1), (19,2), (24,1), (27,2), (30,2), (42,1)… 

For the number of postings per block k=3, the posting list can be represented as 

((4,a1),2), (6,1), (11,1), ((13,a2),2), (14,1), (19,2), ((24,a3),1), (27,2), (30,2), ((42,a4),1)…, 

where ai is the address of the first bit of the (i+1)th critical document identifier. The document 

identifiers (except the critical document identifier) within a block can be stored as d-gaps: 

((4,a1),2), (2,1), (5,1), ((13,a2),2), (1,1), (5,2), ((24,a3),1), (3,2), (3,2), ((42,a4),1)…, 

Finally, the critical document identifiers and the addresses can also be stored as d-gaps: 

((4,a1),2), (2,1), (5,1), ((9, a2-a1),2), (1,1), (5,2), ((11,a3-a2),1), (3,2), (3,2), ((18,a4-a3),1)…, 

To search the compressed posting list for a document identifier id, the first step is searching in 

the critical document identifier list and the second step is searching in one targeted block. Note that 

within each block each (id,fq) posting is still code-dependent upon its predecessor. If the candidate 

answers do not exist in that block, the postings (except the critical document identifier) within a 

block can be quickly skipped without decoding, resulting in reduced decompression time. When 

implementing a skipped inverted file, Golomb coding is used to code the d-gaps of document 
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identifiers and the addresses, whereas γ coding is used to code the within-document frequencies 

(Moffat & Zobel, 1996). 

3.1.2 Blocked inverted file 

The skipped inverted file uses k-posting blocks, so the blocks themselves are of differing length. 

On alternative, called blocked inverted file in which the posting list can be modified to provide 

faster checking of individual candidates, is to break the posting lists into blocks of the same size in 

bits (Moffat et al., 1995). The first document identifier of each block is also called critical document 

identifier. Let b be the number of bits for each block, then the ith block starts at bit location 

1+(i−1)×b. Therefore, the address that specify the location of next critical document identifier can 

be omitted in a blocked posting list. Counterbalancing this gain, on average half a (id,fq) posting per 

block will be lost. Each compressed (id,fq) posting in a posting list occupies about 8 bits (Witten et 

al., 1999), so 4 bits per block will be unused. 

In a blocked posting list, the critical document identifier can be stored completely 

uncompressed, and a binary search for critical document identifier can be carried out. This clearly 

offers much faster accesses to candidates than the skipped inverted file since there is no decoding of 

the critical document identifier required, and only logarithmically many of them have to be 

examined (Moffat et al., 1995). However, this leads to additional space wastage. For a collection of 

N=1,000,000 documents to be indexed and the number of bits per block b=128, the use of an 

uncompressed critical document identifier adds about 10% to the size of the compressed inverted 

file (Moffat et al., 1995). The space overhead ratio will increase if the size of document collection N 

grows or the number of bits per block b decreases. In implementing a blocked inverted file, Golomb 

coding is used to code the d-gaps of document identifiers (except critical document identifiers), 

whereas γ coding is used to code the within-document frequencies (Moffat et al., 1995). 
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Moffat et al. (1995) indicated that a binary search for the compressed critical document 

identifiers can be carried out if the blocks are stored in interpolative manner, and reduced space 

overheads can be achieved. This, however, leads to slow decompression for critical document 

identifiers due to a stack required in its decoding loops. Therefore, the blocked inverted file to be 

implemented in this chapter uses uncompressed critical document identifiers. 

3.1.3 Remarks 

For both skipped inverted files and blocked inverted files, we cannot find a fixed value of k or b 

to simultaneously optimize the query evaluation of conjunctive Boolean queries and ranked queries. 

This is because conjunctive Boolean queries favor large blocks, whereas for ranked queries favor 

small blocks. Two different indexes might be constructed if speed on both types of query is at a 

premium (Moffat & Zobel, 1996). A trivial solution to this problem is to employ a two-level 

skipping mechanism, where the first level of skipping divides the compressed posting list into large 

blocks for optimizing the query performance of conjunctive Boolean queries, and the second level 

divides each large block into small sub-blocks for optimizing the query performance of ranked 

queries. However, both skipped inverted file and blocked inverted file are inappropriately used for 

smaller sub-blocks due to their high storage overheads. To create a space-efficient two-level 

skipped index for providing excellent speed on both types of query, we propose a novel skipping 

mechanism to support smaller sub-blocks with very little or no storage overhead in Section 3.3. 
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3.2 Test Data 

The document collection used for the experiments in this research is the disk 5 of the TREC-6 

collection (Voorhees & Harman, 1997). We have broken the longer documents into pages of around 

1000 bytes to ensure that retrieved text is always of a size that can be digested by the user (Zobel et 

al., 1995). In the paged form of the test document collection, there are 1,025,469 pages totaling 

945MB, an average of 141.4 terms per page, and 317,393 distinct terms, after folding all letters to 

lowercase and removing variant endings using Lovin’s stemming algorithm (Lovins, 1968). Each 

page is mapped to a unique document identifier. The inverted file comprises 93,226,576 stored 

(id,fq) postings. 

3.2.1 Conjunctive Boolean queries 

We followed the method (Moffat & Zobel, 1996) to generate random conjunctive Boolean 

queries. For the test document collection, 300 pages were randomly selected to generate a query set. 

A query was generated by selecting words from the word list of a specific page. The number of 

terms per query ranged from 1 to 8. For example, a query containing 5 terms may be “inverted file 

document collection built”. For each query, there existed at least one page that was relevant to the 

query. We also made the generated query set have the following characteristics: (1) Query 

repetition frequencies followed a Zipf distribution (Xie & O’Hallaron, 2002); (2) The terms per 

query distribution followed a shifted negative binomial distribution (Wolfram, 1992). This made the 

distribution of generated queries closely resemble the distribution of real queries. Table 3.1 shows 

the average number of candidate pages and the average number of (id,fq) postings considered when 

processing the generated queries, for each query size. 
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Table 3.1 Processing of generated conjunctive Boolean queries. 

Number of terms Average number of candidate pages Average number of (id,fq) postings
1 42,763 42,763 
2 4,814 85,223 
3 1,096 127,491 
4 459 169,343 
5 211 210,665 
6 113 251,728 
7 43 292,476 
8 22 333,082 

 

3.2.2 Ranked queries 

50 pages were randomly selected to generate the test ranked query set. For each of the selected 

pages, we eliminated stopwords and removed all nonalphabetic characters, and case-folded and 

stemmed the resulting words. This gave a set of 50 queries containing, on average 50.2 distinct 

terms, and on average 2,050,000 of the (id,fq) postings processed per query, and 41,000 postings 

per term per query. We allowed multiple appearances of terms to influence the weighting given to 

that term. When using the continue algorithm (Moffat & Zobel, 1996) to evaluate ranked queries, 

the average number of (id,fq) postings needed to be checked against the posting list for each query 

term may range from 0.2 to 2.0 percent of N, where N is the number of pages in the collection. 

 

3.3 Proposed Two-level Skipped Inverted Files 

In this section, we first describe the framework of the proposed two-level skipped inverted file. 

Then we propose a novel skipping mechanism to optimize the query performance of ranked queries 

with very little or no storage overhead. 

3.3.1 Framework of proposed approach 

For skipped inverted files, Moffat & Zobel (1996) showed that the total decoding time required 

to search a posting list containing p postings for c candidates can be minimized if the posting list is 
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divided into blocks each containing ccp2  postings. According to Table 3.1, this indicates that 

the number of postings per block, k, should be set at a value ranged from 6 to 88 for optimizing the 

query performance of conjunctive Boolean queries; while according to Section 3.2.2, this indicates 

that the number of postings per block, k, should be set at a value ranged from 3 to 9 for optimizing 

the query performance of ranked queries. However, we observed that a skipped inverted file is 

inappropriately used for ranked queries. When k ≤ 8 the size of the skipped inverted file is much 

larger than that of an un-skipped compressed inverted file, this incurs more read time and 

dramatically absorbs the CPU gains. A novel skipping mechanism that can support smaller blocks 

with little space overhead should be developed. We also observed that blocked inverted files are 

faced with the same problem. 

In this chapter, we propose a two-level inverted file, in which a two-level index is created on 

each compressed posting list, to simultaneously optimize the query performance of conjunctive 

Boolean queries and ranked queries. The idea is that the first-level index is designed for optimizing 

the query performance of conjunctive Boolean queries, whereas the second-level index is designed 

for ranked queries. We observed that well-known skipping mechanisms can work well for the first-

level indexing; hence the key to the proposed two-level skipped inverted file is to develop a novel 

skipping mechanism that can efficiently support the second-level indexing. The framework of the 

proposed two-level skipped index on each compressed posting list is as follows: 

The first-level index: One of the skipping mechanisms proposed by Moffat et al. (1995) and 

Moffat & Zobel (1996) is first used to create the first-level index on each compressed posting list by 

dividing the posting list into large blocks and adding auxiliary information into each block to skip 

over unnecessary portions of the list. 
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The second-level index: A novel skipping mechanism is then proposed to create the second-level 

index on each large block by dividing the block into sub-blocks and adding auxiliary information 

into each sub-block to skip over unnecessary portions of the block. 

To ensure that skipped inverted files do not become too large, we require that every block 

contains at least 17 postings. This adds about 10% to the size of the un-skipped compressed 

inverted file and can reduce considerable decompression time with acceptable space overhead. For 

blocked inverted files, we also require that every block contains at least 128 bits. This is because 

that each compressed (id,fq) posting occupies about 8 bits (Witten et al., 1999); a skipped inverted 

file with k=17 corresponds to a blocked inverted file with b of about 128. 

The next section describes the proposed skipping mechanism for the second-level index. 

3.3.2 Proposed skipping mechanism 

In this section, we first describe the proposed skipping mechanism based on maximum required 

bits (MRB) calculation. Then we present the recommended coding method and its MRB function for 

the document identifiers and the within-document frequencies within a sub-block. Finally, we 

present the implementation optimization technique. 

The design 

In this sub-section, we propose a novel skipping mechanism based on maximum required bits 

(MRB) calculation (cf. Fig. 3.1) to efficiently create a second-level index on each block for the first 

level of skipping. Consider a given block containing n postings 

(id1,fq1), (id2,fq2), (id3,fq3), …, (idn,fqn) 

where idi<idi+1. We first replace the within-document frequency fqi with the Fi, where ∑
=

=
i

j
ji fqF

1

 is 

referred to as the cumulative within-document frequency. Next a sub-block size g is determined. 

The block is then divided into ⎡ ⎤gnm =  sub-blocks, each having g postings except possibly the 
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last block. We define the first posting in each sub-block to be a critical pair consisting of a 

document identifier and a cumulative within-document frequency, the postings between critical 

pairs to be inner postings, and those in the last sub-block except the critical pair to be the residual 

postings. The critical pairs and their subsequent residual postings together can be regarded as a sub- 

posting list, on which the document identifiers can be encoded in Golomb coding with the d-gap 

technique and the cumulative within-document frequencies can be encoded in γ coding also with 

the d-gap technique. For the inner postings within a sub-block, the document identifiers and the 

cumulative within-document frequencies are stored separately (cf. Fig. 3.1). Assume that the 

document identifiers in the inner postings are to be compressed with compression method C1, 

 

(id1,fq1), (id2,fq2), (id3,fq3), …, (idn,fqn) 

(id1,F1), (id2,F2), (id3,F3), …, (idn,Fn) 

∑
=

=
i

j
ji fqF

1

sub-block size was set to g, and ⎥
⎥

⎤
⎢
⎢

⎡
=

g
nm  sub-blocks 

id1,F1 id2,…,idg F2,…,Fg idg+1,Fg+1 idg+2,…,id2g Fg+2,…,F2g id(m-1)g+1,F(m-1)g+1 ……(idn,Fn)

d-gaps d-gaps d-gaps 
d-gaps d-gaps

: sub-block

: critical pair 

: Wastage 

The residual 
postings 

),1( 112 gFFMRB gC −−+),1( 111 gididMRB gC −−+ ),1( 1122 gFFMRB ggC −− ++

inner postings inner postings

bits bits bits bits

Figure 3.1 Illustration of the proposed skipping mechanism. Assume that the document identifiers
in the inner postings are to be compressed with compression method C1, and the cumulative
within-document frequencies are with compression method C2. The function MRBC(xj+g−xj−1,g) 
can calculate the maximum required bits that need to be allocated to store the strictly ascending
integer sequences xj+1,xj+2,…xj+g-1 compressed with method C, where x can be either id or F and C
can be either C1 or C2. 

),1( 1121 gididMRB ggC −− ++
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and the cumulative within-document frequencies are with compression method C2. We want to find 

two functions MRBC1(DIi,g) and MRBC2(DFi,g) to precisely calculate the maximum required bits 

that need to be allocated to store the document identifiers compressed with method C1 and the 

cumulative within-document frequencies compressed with method C2, respectively, in the inner 

postings within the ith sub-block, where DIi=ICi−ICi+1−1 and ICi is the document identifier for the ith 

critical pair, and DFi=FCi−FCi+1−1 and FCi is the cumulative within-document frequency for the ith 

critical pair. Since the maximum number of bits for the document identifiers and the cumulative 

within-document frequencies in the inner postings within a sub-block is known, those identifiers 

and frequencies that are useless in set operations during query processing can be skipped easily. In 

this mechanism, the critical pair for the (i+1)th sub-block should be stored before the inner postings 

for the ith sub-block. Compared with the skipping mechanism proposed by Moffat & Zobel (1996), 

this mechanism does not require extra bits to specify the location of critical document identifiers. 

However, the space overhead of this mechanism is still possibly high if the estimation function is 

not accurate. The key to the success of this skipping mechanism is to find efficient coding methods 

with accurate functions for compressing the document identifiers and the cumulative within-

document frequencies in the inner postings within a sub-block. 

 Recommended coding method and its MRB function for inner postings 

For the proposed skipping mechanism, interpolative coding is recommended for compressing 

both the document identifiers and the cumulative within-document frequencies. The reasons are: 

(1) Interpolative coding can yield superior compression performance for both document identifiers 

and cumulative within-document frequencies (Moffat & Stuiver, 2000). 
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(2) When the group size g is known, Chapter 2 showed that the decoding process for interpolative 

coding can be greatly facilitated using recursion elimination and loop unwinding, this provides 

high query throughput rate. 

(3) Consider a sequence of (g−1) numbers xj+1 to xj+g-1 constrained by xj<xj+1<xj+2<…<xj+g-1< xj+g. 

When the group size g=4, we can show that the maximum required bits for the interpolative 

coding can be derived as 
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where )1( −−= + jgj xxD  and ⎡ ⎤ 2)2(log2 −−= Dh . This function is the closed form of 

Eq.(2.12) and can calculate the maximum required bits for the document identifiers and the 

cumulative within-document frequencies in the inner postings within a sub-block with very little 

space overhead. 

With interpolative coding, to allow different values of g, one can easily show that 

⎡ ⎤ )4,()4,()6(log)8,( 2 qMRBpMRBDgDMRB interpinterpinterp ++−==  

and this can be converted to 

       

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

<+×++
+×≤<+×++
+×≤<+×++

+×≤<++
=
=
=
=

==

                  727    817
727726     717 
726725     517 
            72510    417 

                     10         8
                      9          6
                      8          3
                      7           0

)8,(

Dif )(h
Dif)(h
Dif )(h

D if)(h
 if  D 
 if   D
 if   D
if   D

gDMRB

h

hh

hh

hinterp                              (3.2) 

where )1( −−= + jgj xxD , 2
2

)6(log2 −⎥⎥
⎤

⎢⎢
⎡ −

=
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where )1( −−= + jgj xxD , 2
4

)14(log2 −⎥⎥
⎤

⎢⎢
⎡ −

=
Dh , and p, q are two positive integers and p+q=D-1. 

The proposed skipping mechanism can be directly employed to create the first-level index by 

dividing the compressed posting list into blocks each containing g postings. Table 2 shows the size 

of the inverted files constructed using the proposed skipping mechanism with different g values. 

The results show that this skipping mechanism can efficiently support smaller sub-blocks. The size 

of inverted files constructed using this mechanism can be even smaller than that of a compressed 

inverted file in which the document identifiers are compressed in Golomb codes with the d-gap 

technique and the within-document frequencies are in γ codes. Note that the file size increases as 

the value of g increases, so this skipping mechanism works the best for smaller blocks. 
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When this skipping mechanism is employed to create the second-level index, to optimize the 

query performance of ranked queries requires that the sub-block size be set at smaller values of g. 

For a simple implementation and which requires space efficiency, we suggest g=4. Note that when 

applying this skipping mechanism to a blocked inverted file to create the second-level index on 

each block, a unary code should be added in each block to indicate the number of sub-blocks in the 

block. Other coding methods are not disregarded. We are still looking for a faster and more 

effective coding method to encode the document identifiers or the cumulative within-document 

frequencies. 

Table 3.2 Sizes of inverted files constructed using the proposed skipping mechanism with different 
g values. 

Size Inverted file organization 
MB % 

   
compressed inverted file 93.28 100.0 
   
the inverted file by the proposed skipping mechanism   
g=4 89.33 95.8 
g=8 93.06 99.8 
g=16 96.21 103.1 

 

Implementation optimization 

To skip over unnecessary inner postings, this skipping mechanism requires calculating the 

maximum required bits for both document identifiers and cumulative within-document frequencies. 

We observed that in most cases the gap value D in Eq. (3.1) is less than 256. Therefore, a 256-entry 

array z is used to facilitate the calculation of the maximum required bits, and z[i]=MRBinterp(i, g=4), 

i= xj+g− xj−1, for 2553 ≤≤ i . Whenever the gap value in Eq. (3.1) is less than 256, we can obtain 

the corresponding maximum required bits with only one array access. This greatly reduces the CPU 

time and improves query performance. 
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3.4 Performance Evaluation 

This section presents our experiments to evaluate the efficiency of various inverted file 

organizations. We used the standard (un-skipped) compressed inverted file as the baseline, in which 

d-gaps are encoded in Golomb codes with the parameter b chosen appropriately for each posting list 

(Witten et al., 1999), and within-document frequencies are encoded in γ codes (Bell et al., 1993; 

Moffat & Zobel, 1992). This baseline is then used to evaluate other fine-tuned skipped inverted file 

organizations. 

Four skipped inverted file organizations are evaluated in our experiments: the skipped inverted 

file (described in Section 3.1.1), the blocked inverted file (described in Section 3.1.2), the skipped 

inverted file with the 2nd-level index, and the blocked inverted file with the 2nd-level index. The 2nd-

level index is created using the skipping mechanism (g=4) described in Section 3.3.2. 

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running 

Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec. 

Intervening processes and disk activities were minimized with best effort during experimentation. 

In Section 3.4.1, we present the sizes for various inverted file organizations. In Section 3.4.2, 

we present the time taken to process the generated queries described in Section 3.2 to measure the 

query performance of various inverted file organizations. 

3.4.1 Sizes for various inverted file organizations 

The actual size for each inverted file organization is shown in Table 3.3. As expected, the sizes 

of the skipped inverted files and the blocked inverted files are larger than that of standard 

compressed inverted file. The space overheads associated with both the skipped inverted files and 

the blocked inverted files increase as the block length decreases. This confirms that smaller blocks 

are inappropriate for both the skipped inverted file and the blocked inverted file. The skipping 



 

 76

mechanism proposed in Section 3.3.2 is used to create the 2nd-level index on each block for both the 

skipped inverted files and the blocked inverted files. Experimental results show that the skipping 

mechanism can incur no space overhead in creating the 2nd-level index. Furthermore, we observed 

that the size of the skipped inverted file with the 2nd-level index can even be less than that of 

standard compressed inverted file for larger k values. This provides a space-economical way to 

implementing a two-level skipped inverted file. 

 

Table 3.3 Sizes of various inverted file organizations. The sizes are presented in both megabytes 

and ratio to the standard compressed inverted file size. For skipped inverted files, k is the number of 

postings per block. For blocked inverted files, b is the length of each block in bits. 
Size Inverted file organization 
MB % 

   
compressed inverted file 93.28 100.0 
   
skipped inverted file    
k=17 102.74 110.1 
k=33 98.63 105.7 
k=65 96.24 103.2 
   
blocked inverted file   
b=128 107.89 115.7 
b=256 101.11 108.4 
b=512 98.10 105.2 
   
skipped inverted file with 2nd-level indexa   
k=17 98.34 105.4 
k=33 94.50 101.3 
k=65 92.27 98.9 
   
blocked inverted file with 2nd-level indexa   
b=128 107.61 115.4 
b=256 100.40 107.6 
b=512   97.20 104.2 
a the 2nd-level index is created by using the novel skipping mechanism (g=4) described in Section 3.3.2 
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3.4.2 Elapsed time required to process queries 

In this subsection, we present the time taken to process the conjunctive Boolean queries and 

the ranked queries, with various inverted file organizations. The query processing time (QPT) 

presented includes: (1) the disk read time of compressed posting list for each query term, and (2) 

the CPU time measured from the query being issued until the list of answer document identifiers 

being finalized. The QPT does not include the time taken to retrieve and display answers. All 

programs were optimized as follows: 

1. Replaced subroutines with macros. 

2. Careful choice for compiler optimization flags. 

3. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU. 

4. Implemented the integer logarithm functions ⎡ ⎤)i(log2  and ⎣ ⎦)i(log2  with a 256-entry lookup 

table. 

5. Another 256-entry lookup table was used to locate the exact bit location of the first “1” bit in a 

byte. 

6. Accessed to binary codes with masking and shifting operations, and no bit-by-bit decoding were 

required. 

With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-

bit decoding is required. 

Conjunctive Boolean queries 

When processing a conjunctive Boolean query, the posting lists for the query terms are 

processed in order of increasing document frequency ft. The time taken to process the conjunctive 

Boolean queries with various inverted file organizations is shown in Table 3.4. Except for single-

term query, both the skipped inverted files and the blocked inverted files can improve query 
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performance by skipping over unnecessary portions of the compressed posting lists. Experimental 

results show that the skipped inverted file can achieve an average speedup of 2.80 to 3.04, and the 

blocked inverted file 3.08 to 3.33, compared with the standard compressed inverted file. When the 

number of terms ≥ 4, the blocked inverted files far outperform the skipped inverted files. This is 

because the number of candidate answers is much less when the number of terms ≥  4 (cf. Table 3.1) 

and the binary search supported by blocked inverted file works well. 

Experimental results also show that the 2nd-level index created by the skipping mechanism has 

substantial and consistent potential to improve the query performance. For the skipped inverted file, 

the 2nd-level index can improve the average query speed by up to 11%; while for the blocked 

inverted file, it can be up to 16%. 

Ranked queries 

Ranked queries are disjunctive rather than conjunctive, in that any document containing any of 

the queried terms is considered a candidate. Skipping mechanisms do not necessarily yield 

significant benefits in the evaluation of ranked queries. To improve ranked query evaluation with 

skipping mechanisms, Moffat & Zobel (1996) proposed a pruning algorithm, called continue 

algorithm, to reduce the number of candidates during the evaluation of ranked queries. They 

showed that the continue algorithm for ranked queries can exploit fast search made possible by 

skipping mechanisms, and results in improved ranked query evaluation without any substantial 

degradation in retrieval effectiveness. We adopt the continue algorithm to evaluate ranked queries 

in this experiment. The similarity of a query and a document was calculated by the cosine measure 

(Salton, 1989; Salton & McGill, 1983). The maximum number of accumulators was set at 0.2, 0.5, 

1.0 and 2.0 percent of N (the number of pages in the test collection). 
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Table 3.4 Conjunctive Boolean query performance of various inverted file organizations (QPT is 
the average query processing time of conjunctive Boolean queries, in ms; SP is the speedup relative 
to the standard compressed inverted file). For skipped inverted files, k is the number of postings per 
block. For blocked inverted files, b is the length of each block in bits. 

Inverted file organization 
skipped inverted file
                                  

blocked inverted file
                                  

skipped inverted file 
with 2nd-level indexa 

blocked inverted file 
with 2nd-level indexa

Number of 
terms compressed 

inverted file 
k=17 k=33 k=65 b=128 b=256 b=512 k=17 k=33 k=65 b=128 b=256 b=512

               
QPT 3.60 3.68 3.65 3.63 3.84 3.82 3.81 3.92 3.83 3.75 3.92 3.94 3.90 1 
SP 1.00  0.98 0.99 0.99 0.94 0.94 0.94 0.92 0.94 0.96 0.92 0.91 0.92

      
QPT 6.82 5.16 5.43 5.79 6.10 6.16 6.37 5.10 5.05 5.04 5.83 5.50 5.31 2 
SP 1.00  1.32 1.26 1.18 1.12 1.11 1.07 1.34 1.35 1.35 1.17 1.24 1.28

      
QPT 9.42 4.25 4.27 4.61 4.30 4.53 4.98 4.22 3.88 3.83 4.09 3.93 3.92 3 
SP 1.00  2.22 2.21 2.04 2.19 2.08 1.89 2.23 2.43 2.46 2.30 2.40 2.40

      
QPT 11.23 3.72 3.45 3.53 3.08 3.23 3.51 3.69 3.20 3.01 2.97 2.87 2.86 4 
SP 1.00  3.02 3.26 3.18 3.65 3.48 3.20 3.04 3.51 3.73 3.78 3.91 3.93

      
QPT 11.98 3.37 2.95 2.89 2.39 2.46 2.66 3.35 2.80 2.53 2.35 2.26 2.25 5 
SP 1.00  3.55 4.06 4.15 5.01 4.87 4.50 3.58 4.28 4.74 5.10 5.30 5.32

      
QPT 12.40 3.15 2.63 2.48 1.96 2.01 2.15 3.10 2.45 2.21 1.95 1.87 1.87 6 
SP 1.00  3.94 4.71 5.00 6.33 6.17 5.77 4.00 5.06 5.61 6.36 6.63 6.63

      
QPT 13.04 3.05 2.45 2.24 1.67 1.68 1.80 3.01 2.35 2.03 1.70 1.64 1.62 7 
SP 1.00  4.28 5.32 5.82 7.81 7.76 7.24 4.33 5.55 6.42 7.67 7.95 8.05

      
QPT 13.99 3.04 2.33 2.01 1.43 1.43 1.50 3.02 2.15 1.89 1.48 1.42 1.42 8 
SP 1.00  4.60 6.00 6.96 9.78 9.78 9.33 4.63 6.51 7.40 9.45 9.85 9.85

      
QPT 10.31 3.68 3.40 3.39 3.10 3.17 3.35 3.68 3.21 3.04 3.04 2.93 2.89 Avg 
SP 1.00  2.80 3.03 3.04 3.33 3.25 3.08 2.80 3.21 3.39 3.39 3.52 3.57

a the 2nd-level index is created by the skipping mechanism (g=4) described in Section 3.3.2 

The time taken to process the ranked queries with various inverted file organizations is shown 

in Table 3.5. Experimental results show that the skipped inverted file can achieve an average 

speedup of 1.23 to 1.59, and the blocked inverted file can achieve an average speedup of 1.09 to 

1.36, compared with the standard compressed inverted file. In most cases, the skipped inverted files 

outperform the blocked inverted files. This is because that the number of candidate answers is 

larger and the binary search supported by blocked inverted files cannot be used to produce good 

performance. For both the skipped inverted files and the blocked inverted files, smaller blocks 

provide better query performance. This confirms our assessment that small blocks have significant 
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advantages for ranked queries. As the maximum number of accumulators increases, the query 

speedup of both the skipped inverted files and the blocked inverted files decreases. When the 

maximum number of accumulators was set at 2.0 percent of N, the query performance of the 

skipped inverted file (k=65) and all the blocked inverted files were even worse than that of the 

standard compressed inverted file. To improve the ranked query performance, the 2nd-level index 

created by the skipping mechanism is applied to the skipped inverted files and the blocked inverted 

files. For the skipped inverted file, the 2nd-level index can improve the average query speed by up to 

38%; while for the blocked inverted file, it can improve the average query speed by up to 44%. This 

fact shows that a space-efficient 2nd-level index can provide fast candidate search for ranked queries. 

Table 3.5 Ranked query performance of various inverted file organizations (QPT is the average 
query processing time of ranked queries, in mini-seconds; SP is the speedup relative to the standard 
compressed inverted file). For skipped inverted files, k is the number of postings per block. For 
blocked inverted files, b is the length in bits of each block. 

Inverted file organization 
skipped inverted file
                                  

blocked inverted file
                                  

skipped inverted file 
with 2nd-level indexa 

blocked inverted file 
with 2nd-level indexa

% of N 
compressed 
inverted file 

k=17 k=33 k=65 b=128 b=256 b=512 k=17 k=33 k=65 b=128 b=256 b=512
               

QPT 100.4 38.2 41.2 50.3 36.0 43.7 55.8 36.1 33.0 33.9 33.1 34.2 36.6 0.2 
SP 1.00  2.63 2.44 2.00 2.79 2.30 1.80 2.78 3.04 2.96 3.03 2.94 2.74

       
QPT 109.0 57.6 65.2 78.1 64.5 74.3 99.4 53.7 51.9 53.7 59.1 58.2 59.2 0.5 
SP   1.00  1.89 1.67 1.40 1.69 1.47 1.10 2.03 2.10 2.03 1.84 1.87 1.84

       
QPT 116.1 79.8 90.7 105.2 96.5 105.0 116.8 74.5 73.4 75.4 88.7 84.3 82.6 1.0 
SP 1.00  1.45 1.28 1.10 1.20 1.11 0.99 1.56 1.58 1.54 1.31 1.38 1.41

       
QPT 124.1 107.7 119.7 132.7 133.4 136.2 142.1 102.0 100.9 101.6 124.3 114.3 108.82.0 
SP 1.00  1.15 1.03 0.94 0.93 0.91 0.87 1.22 1.23 1.22 1.00 1.09 1.14

       
QPT 112.4 70.8 79.2 91.6 82.6 89.8 103.5 66.6 64.8 66.2 76.3 72.8 71.8 Avg 
SP 1.00  1.59 1.42 1.23 1.36 1.25 1.09 1.69 1.73 1.70 1.47 1.54 1.57

a the 2nd-level index is created by using the novel skipping mechanism (g=4) described in Section 3.3.2 
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3.5 Summary 

This chapter proposes a two-level skipped inverted file to facilitate fast conjunctive Boolean 

queries and ranked queries. For this purpose, well-known skipping mechanisms are first used to 

create the first-level index on each compressed posting list by dividing the posting list into large 

blocks for optimizing conjunctive Boolean queries. Then a skipping mechanism is proposed to 

create the second-level index on each block by dividing the large block into small sub-blocks for 

optimizing ranked queries. Compared with well-known skipping mechanisms, this novel skipping 

mechanism can support second level of skipping with no storage overhead. Experiments clearly 

indicate that the proposed two-level skipped inverted file can improve the query speed for 

conjunctive Boolean queries by up to 16%, and for ranked queries by up to 44%, compared with the 

conventional one-level skipped index. This provides a very simple and attractive way to building a 

fast and space-economical IRS. 
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Chapter 4 Inverted File Optimization 

Inverted files are widely used in modern large-scale IRSs for fast query evaluation. 

Compressing an inverted file can greatly increase query throughput (Zobel & Moffat, 1995; 

Williams & Zobel, 1999). This is because the total time of transferring a compressed posting list 

and subsequently decompressing it is potentially much less than that of transferring an 

uncompressed posting list. The query processing time in a large-scale IRS is dominated by the time 

needed to read and decompress the posting lists for the terms involved in the query (Moffat & Zobel 

1996), and we observe that the query processing time grows with the total encoded size of the 

corresponding posting lists. This is because the disk transfer rate is near constant, and the decoding 

processes of most encoding methods used in the d-gap compression approach are on a bit-by-bit 

basis. If we can reduce the total encoded size of the corresponding posting lists without increasing 

decompression times, a shorter query processing time can be obtained. 

A document identifier assignment (DIA) can make the document identifiers in the posting lists 

evenly distributed, or clustered. Clustered document identifiers generally result in better 

compression efficiency of the coding methods used for compressing inverted files without 

increasing the complexity of decoding process, hence reduce the query processing time. In this 

chapter, we consider the problem of finding an optimal DIA for the inverted file to minimize the 

average query processing time when the probability distribution of query terms is given. The DIA 

problem, that is known to be NP-complete via a reduction to the rectilinear traveling salesman 

problem (TSP), is a generalization of the problems solved by Olken & Rotem (1986), Shieh et al. 

(2003), and Gelbukh et al. (2003). Their research results showed that this kind of optimization 

problem can be effectively solved by the well-known TSP heuristic algorithms. The greedy nearest 
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neighbor (Greedy-NN) algorithm performs the best on average, but its high complexity discourages 

its use in modern large-scale IRSs. 

In this chapter, we propose a fast heuristic, called partition-based document identifier 

assignment (PBDIA) algorithm, to find a good DIA that can make the document identifiers in the 

posting lists for frequently used query terms more clustered. This can greatly improve the 

compression efficiency of the posting lists for frequently used query terms. Where the probability 

distribution of query terms is skewed, as is the typical case in a real-world IRS, the experimental 

results show that the PBDIA algorithm can yield a competitive performance versus the Greedy-NN 

for the DIA problem. The experimental results also show that the DIA problem has significant 

advantages for both long queries. 

The remainder of this chapter is organized as follows. Section 4.1 describes the inverted index 

and explains why a DIA can affect the storage space required and change query performance. 

Section 4.2 derives a cost model for the DIA problem, and presents how to use the well-known TSP 

heuristic algorithms to solve this optimization problem. In Section 4.3, we propose a fast PBDIA 

algorithm. We show the performance evaluation in Section 4.4. Finally, Section 4.5 presents our 

summary. 

 

4.1 General Framework 

The data structures of an inverted index are depicted in Figure 4.1. An inverted index consists 

of an index file and an inverted file. An index file is a set of records, each containing a keyword 

term t and a pointer to the posting list for term t. An inverted file contains, for each distinct term t in 

the collection, a posting list of the form  

PLt =<id1, id2, …, idft>, 
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 where idi is the identifier of the document that contains t, and frequency ft is the number of 

documents in which t appears. The document identifiers are within the range 1...N, where N is the 

number of documents in the indexed collection. In a large document collection, posting lists are 

usually compressed, and decompression of posting lists is hence required during query processing. 

Zipf (1949) observed that the set of frequently used terms is small. According to Zipf’s law, 

95% of words in all documents fall in a vocabulary with no more than 8000 distinct terms. This 

suggests that it is advisable to store the index records of frequently used terms in RAM to greatly 

reduce index search time. Hence, the significant portion of query processing time is to read and 

decompress the compressed posting list for each query term. This chapter restricts attention to 

inverted file side only and investigates the DIA problem to improve the efficiency of an inverted 

file and the overall information retrieval (IR) performance. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Inverted index and document collection 

 

Compression of an inverted file is the most popular technique used to increase query 

throughput (Zobel & Moffat, 1995; Williams & Zobel, 1999; Trotman, 2003). This is because the 
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total time of transferring a compressed posting list and subsequently decompressing it is potentially 

much less than that of transferring an uncompressed posting list. To achieve good compression, the 

document identifiers in a posting list should be sorted in increasing order and compressed using the 

d-gap compression approach (Moffat & Zobel, 1992; Witten et al., 1999) or the interpolative coding 

approach (Moffat & Stuiver, 2000). Both approaches can yield superior compression if the 

document identifiers in the posting lists are clustered.  

Consider a document collection of 6 documents shown in Figure 4.2(a). Each document 

contains one or more terms. The document d1 contains term 1 and term 2, document d2 contains 

term 2, etc. In Figures 2.2(b) and 2.2(c), the notation di j in DIAs I and II denotes that the 

document identifier j is assigned to the document di. According to the documents in Figure 4.2(a) 

and the DIAs I and II, the obtained posting lists and d-gap lists are shown in Figures 4.2(b) and 

4.2(c). For DIA I, the d-gap values have nine 1s, two 2s, two 3s and one 4; whereas for DIA II, the 

d-gap values have eleven 1s, one 2 and two 3s. With γ coding in Table 4.1, the compressed inverted 

file requires 26 bits for DIA I, whereas it requires 20 bits for DIA II. If every term is queried with 

equal probability, the query processing costs for DIA II will be much lower than that of DIA I. This 

is because DIA II can result in better compression for the given coding method without increasing 

the complexity of decoding process, hence improve query throughput by reducing both the retrieval 

and decompression times of posting lists. This example shows that different DIAs can result in 

different compression results and different query throughputs for a given coding method. In next 

section, we will introduce a query cost function for the DIA problem, and then derive a method to 

find a good DIA to shorten average query processing time when the probability distribution of 

query terms is given. 
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 document d1     document d2     document d3    document d4    document d5    document d6 

(a) Example documents 
 

DIA I: { d1 1, d2 2, d3 3, d4 4, d5 5, d6 6} 
 

Posting list of term 1: <1, 4, 5, 6>      d-gap list of term 1: <1, 3, 1, 1> 
Posting list of term 2: <1, 2, 3, 4, 6>    d-gap list of term 2: <1, 1, 1, 1, 2> 

 Posting list of term 3: <4, 6>    d-gap list of term 3: <4, 2> 
 Posting list of term 4: <3, 4, 5>   d-gap list of term 4: <3, 1, 1> 
                    
 Total bits required to encode d-gaps with γ code = 26 bits 

(b) DIA I result 
 

DIA II: { d1 3, d2 5, d3 4, d4 1, d5 6, d6 2} 
 

 Posting list of term 1: <1, 2, 3, 6>       d-gap list of term 1: <1, 1, 1, 3> 
 Posting list of term 2: <1, 2, 3, 4, 5>    d-gap list of term 2: <1, 1, 1, 1, 1> 
 Posting list of term 3: <1, 2>    d-gap list of term 3: <1, 1> 
 Posting list of term 4: <1, 4, 6>   d-gap list of term 4: <1, 3, 2> 
  
 Total bits required to encode d-gaps with γ code = 20 bits 

(c) DIA II result 

Figure 4.2 An example to show different DIAs result in different compression results 

 
d-gap value 

x 
γ code 

1 0 
2 10 0 
3 10 1 
4 110 00 

Table 4.1 Some example codes for γ coding 

 

term 1 
term 2 term 2 

term 2 
term 4 

term 1 
term 2 
term 3 
term 4

term 1 
term 4 

term 1 
term 2 
term 3 
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4.2 Document Identifier Assignment Problem and Its Algorithm 

The DIA problem is the problem of assigning document identifiers to a set of documents in an 

inverted file-based IRS in order to minimize the average query processing time when the 

probability distribution of query terms is given. In this section, we first formalize the problem, and 

then show how to use the well-known greedy nearest neighbor (Greedy-NN) algorithm to solve this 

problem. 

4.2.1 Problem mathematical formulation 

Let D={d1, d2, …,dN} be a collection of N documents to be indexed, and π :{ d1, d2, …, 

dN } {1, 2, …, N} be a DIA that assigns a unique identifier within the range 1…N to each 

document in D. Let ft be the total number of documents in which term t appears and dt(1), dt(2), …, 

dt(ft) be documents containing term t, then the posting list of the term t can be represented as 

PLt=<π(dt(1)), π(dt(2)),…, π(dt(ft))>. Without loss of generality, we assume that π(dt(1))<π(dt(2))<…< 

π(dt(ft)). Assume a coding method C which requires C(x) bits to encode a d-gap x. The size of a 

posting list PLt for term t can then be expressed as 

))()(( )1()(
1

−
=

−∑ itit

ft

i

ddC ππ                                                                                                    (4.1) 

where we let dt(0)=0 and π(dt(0))=0 to simplify the expression of Eq.(4.1). Assume that the 

probability of a term t appearing in a query is pt. Let Xt be a random Boolean variable representing 

whether term t appears in a query: Xt=1 if term t appears in a query and Xt=0 otherwise. The query 

processing time TimeQP of posting list processing includes (1) retrieval time TimeR of posting list 

PLt for each query term t, (2) decompression time TimeD of posting list PLt for each query term t, 

and (3) document identifier comparison time TimeComp. Since the document identifier comparison 
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time is relatively small (about 10% of query processing time) and does not change with different 

DIAs, the query processing time in this chapter is defined only as 

))()(( tDtR
t

tQP PLTimePLTimeXTime +×= ∑                                                                  (4.2) 

The average query processing time AvgTimeQP is the expected value of TimeQP. That is, 

∑ +×=
t

tDtRtQP PLTimePLTimepAvgTime ))()((                                                            (4.3) 

Since the disk transfer rate is near constant and the decoding processes of most coding methods 

used in d-gap compression approach are on a bit-by-bit basis, the retrieval and decompression times 

of a posting list PLt for the term t appearing in a query grows with the size of the posting list PLt. So 

∑
=

−−×=+
tf

i
itittDtR ddCPLTimePLTime

1
)1()( ))()((constant)()( ππ                                    (4.4) 

Substituting Eq.(4.4) into Eq.(4.3), we obtain 

∑ ∑
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−−××=
t
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itittQP
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ddCpAvgTime
1

)1()( ))()((constant ππ                                                 (4.5) 

We thus define the objective function Cost(π) to reflect the average query processing time 

AvgTimeQP : 

∑ ∑
=

−−×=
t

f

i
ititt

t

ddCpCost
1

)1()( ))()(()( πππ                                                                       (4.6) 

The objective of this research is to find a DIA π : D {1,2,3…,N} such that )(πCost  is 

minimal. This optimization problem is called the DIA problem, and it is reduced to the simple DIA 

(SDIA) problem if the value of pt for each term t is set to 1. The SDIA problem is the problem of 

finding a DIA to minimize the size of inverted file, and it is known to be NP-complete via a 

reduction to the rectilinear traveling salesman problem (Olken & Rotem 1986). Since the DIA 

problem is a generalization of the SDIA problem, the DIA problem is also a NP-complete problem. 
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4.2.2 Solving DIA problem via the well-known Greedy-NN algorithm 

The research works of Shieh et al. (2003) and Gelbukh et al. (2003) indicated that finding the 

near-optimal solution for the SDIA problem can be recast as the traveling salesman problem (TSP), 

and also showed that heuristic algorithms for the TSP can be applied to the SDIA problem to find a 

near-optimal DIA. Compared with those well-known TSP heuristic algorithms, such as insertion 

heuristic algorithm and spanning tree based algorithm, Shieh et al. (2003) showed that the Greedy-

NN algorithm performs better for the SDIA problem on average. In this section, we first show how 

to solve the SDIA problem using the Greedy-NN algorithm. Then, we show how to transform the 

DIA problem into the SDIA problem, and explain why the Greedy-NN algorithm can provide better 

performance than the other TSP heuristic algorithms for the DIA problem. 

Solving SDIA problem via Greedy-NN algorithm 

Shieh et al. (2003) showed that the SDIA problem can be solved by using TSP heuristic 

algorithms. Given a collection of N documents, a document similarity graph (DSG) can be 

constructed. In a DSG, each vertex represents a document, and the weight on an edge between two 

vertices represents the similarity of these two corresponding documents. The similarity Sim(di, dj) 

between two documents di and dj is defined as: 

( )
∑
∩∈

=
)()(

1  ),(
ji dTdTt

ji ddSim                                                                                                   (4.7) 

where T(di) and T(dj) denote the set of terms appearing in di and dj, respectively, and ∩ denotes the 

intersection operator. Hence, the similarity between two documents is the number of common terms 

appearing in both documents. The DSG for the example documents in Figure 4.2(a) is shown in 

Figure 4.3. A TSP heuristic algorithm can then be used to find a path of the DSG visiting each 

vertex exactly once with maximal sum of similarities. If we follow the visiting order of vertices on 

the path to assign document identifiers, the sum of d-gap values for an inverted file can be 
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decreased, and the size of inverted file compressed via the d-gap compression approach can be 

reduced. Shieh et al. (2003) showed that the Greedy-NN algorithm (Figure 4.4) can provide 

excellent performance for the SDIA problem. 

We now show how to obtain a DIA for the example documents in Figure 4.2. In Step 1, we 

construct the DSG (Figure 4.3) for the given documents, where V={d1, d2, d3, d4, d5, d6}. In Step 2, 

we pick d4 as v1 since the sum of similarity values associated with its adjacent edges is maximal 

(=10). In Step 3, we have V'={d1, d2, d3, d5, d6}. In Step 4, we pick d6 as v2 since d6 is the vertex v in 

V' such that the edge (v,v1) has the maximal similarity value. In Step 5, we have V'={d1, d2, d3, d5}. 

Repeat Steps 4 and 5 as needed, we can then sequentially pick d1 as v3, d3 as v4, d2 as v5, and d5 as v6. 

Hence, we have a TSP path: {d4, d6, d1, d3, d2, d5}, and a DIA π = {d1 3, d2 5, d3 4, d4 1, 

d5 6, d6 2}. 

 

 

 

 

 

 

 

Figure 4.3 The DSG for the example documents in Figure 4.2(a). 
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Algorithm Greedy_nearest_neighbor 
Input:  

D={d1, d2, …, dN}: a collection of N documents to be indexed. 
Output:  

A TSP path: the visiting order of vertices is { }Nvvv ,...,, 21  
Method: 

1. Construct the DSG(V, E), where V is a set of vertices (in which each vertex represents a 
document) and E is a set of edges (in which each edge has a similarity value associated with it); 

2. Pick a vertex v∈V as v1 such that the sum of similarity values associated with the adjacent 
edges of v is maximal; 

3. ;1:    };{: 1 =−=′ ivVV  
4. Find v in V ′  such that the similarity value of the edge (v,vi) is maximal: if more than one such 

vertex exist, select one randomly; 
5. };{:       ;:     ;1: ii vVVvvii −′=′=+=  
6. If i<N then goto 3; 
7. Output a TSP path with its visiting order of vertices being { }Nvvv ,...,, 21  

Figure 4.4 The Greedy-NN algorithm for the SDIA problem. 

 

Transforming DIA problem into SDIA problem 

We use a matrix A to represent the input document collection, in which a row corresponds to a 

term and a column corresponds to a document. The entry Ai,j is a 1 if term i appears in document dj, 

and 0 otherwise. The SDIA problem is to determine whether there exists a permutation of the 

columns of A that results in a matrix B such that 

( ) ( ) kizCjizjizC
n

i

f

j

i

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−∑ ∑

= =1 2

)1,()1,(),(                                                                    (4.8) 

where C is a coding method which requires C(x) bits to encode a d-gap x, n is the number of terms, 

fi is the total number of documents in which term i appears, z(i,j) is a function that returns the 

column index of the jth nonzero entry at row i, and k is a given integer used to determine whether 

there exists a permutation of columns of A such that the total encoded size of an inverted file is less 

than k. The DIA problem is to determine whether there exists a permutation of the columns of A 

that results in a matrix B such that 
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where pi is the probability of a term i appearing in a query and k' is a given integer used to 

determine whether there exists a permutation of columns of A such that the mean encoded size 

needed to read and decompress a posting list during query processing is less than k'. 

To show how to transform the DIA problem into the SDIA problem, we use the document 

collection in Figure 4.2(a) as an example instance of the DIA problem, and assume that the 

probabilities of terms being queried are p1=0.2, p2=0.3, p3=0.1, and p4=0.4. Figure 4.5(a) shows the 

matrix A of Figure 4.2(a). Then we construct a new matrix A′ for the SDIA problem by duplicating 

each row of matrix A in a certain number of times based on the given probabilities of terms 

appearing in a query, as shown in Figure 4.5(b). In matrix A′, the row of matrix A corresponding to 

term i is duplicated mi times, where mi=rows(A′)×pi and rows(A′) denotes the number of rows of 

matrix A′. The rows(A′) can be any positive integer such that mi=rows(A′) ×pi is an integer for every 

i. In this example, we let rows(A′) be 10. One can easily show that the optimal solution of matrix A′ 

for the SDIA problem is also the optimal solution of matrix A for the DIA problem when the 

probabilities p1=0.2, p2=0.3, p3=0.1, and p4=0.4 are given. 

Using the same approach, it is obvious that one can transform any instance A of the DIA 

problem into an instance A′ of the SDIA problem such that the optimal solution of matrix A′ for the 

SDIA problem is also the optimal solution of matrix A for the DIA problem when the probabilities 

pi for 1 ≤ i ≤ n are given, where n denotes the number of distinct terms. Since the research work of 

Shieh et al. (2003) showed that the Greedy-NN algorithm performs the best for the SDIA problem 

on average, one can show that the Greedy-NN algorithm can provide better performance than the 

other TSP heuristic algorithms for the DIA problem. Therefore, the DIA problem can be solved 
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using the Greedy-NN algorithm described in Figure 4.4, if the similarity Sim(di, dj) between two 

documents di and dj  in a DSG is redefined as: 

( )
∑
∩∈

=
)()(

  ),(
ji dTdTt

tji pddSim                                                                                                 (4.10) 

where the probability of a term t appearing in a query is known to be pt. 

               

probability d1 d2 d3 d4 d5 d6 
p1=0.2    term 1  1 0 0 1 1 1 
p2=0.3    term 2 1 1 1 1 0 1 
p3=0.1    term 3  0 0 0 1 0 1 
p4=0.4    term 4  0 0 1 1 1 0 

(a) An example instance for the DIA problem: Matrix A corresponds to the 
document collection in Figure 4.2(a), and the probabilities of terms appearing in 
a query are p1=0.2, p2=0.3, p3=0.1, and p4=0.4. 

 
           

d1 d2 d3 d4 d5 d6 
1 0 0 1 1 1 
1 0 0 1 1 1 
1 1 1 1 0 1 
1 1 1 1 0 1 
1 1 1 1 0 1 
0 0 0 1 0 1 
0 0 1 1 1 0 
0 0 1 1 1 0 
0 0 1 1 1 0 
0 0 1 1 1 0 

(b) Matrix A′ is the corresponding instance of Figure 4.5(a) for the SDIA problem. In 
matrix A′, Rowtermi of matrix A is duplicated mi times, where mi=rows(A′) ×pi and 
rows(A′) denotes the number of rows of matrix A′. 

Figure 4.5 An example to illustrate how to transform an instance of the DIA problem into an 
instance of the SDIA problem 

 

Although the Greedy-NN algorithm is very simple to implement, it is not very applicable to 

large-scale IRSs due to its high complexity. Given a collection of N documents and n distinct terms, 

the number of comparisons for calculating Sim(di,dj) given fixed i and j is O(n), hence the total 

Rowterm1 of matrix A is duplicated 
m1=rows(A′) ×p1=2 times 
Rowterm2 of matrix A is duplicated 
m2=rows(A′) ×p2=3 times 

Rowterm3 the matrix A is duplicated 
m3=rows(A′) ×p3=1 time 

Rowterm4 of matrix A is duplicated 
m4=rows(A′) ×p4=4 times 

Matrix A′: 

Matrix A: 
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number of comparisons to construct a DSG for the Greedy-NN algorithm is O(N2×n). An algorithm 

with lower complexity yet still generates satisfactory results should be developed. 

 

4.3 Partition-based Document Identifier Assignment Algorithm 

Since the DIA problem is an NP-complete problem, the effort in search for an effective low-

complexity method is needed. Although the Greedy-NN algorithm can be used to solve the DIA 

problem, its complexity is too high. In this section, we first present an optimal DIA algorithm for a 

single query term, and then propose an efficient partition-based document identifier assignment 

(PBDIA) algorithm for the DIA problem. 

4.3.1 Generating an optimal DIA for a single query term 

Consider a posting list PLt for term t with ft document identifiers in a collection of N 

documents. Using the d-gap technique, we can obtain ft d-gap values: d-gap1, d-gap2,…, d-gapft. 

Assume a coding method C which requires C(x) bits to encode a d-gap x. We want to know which 

d-gap probability distribution can minimize the size of posting list PLt after compression using 

method C. That is, we want to know which d-gap probability distribution can minimize 

∑
=

tf

i
id-gapC

1

)(                                                                                                                    (4.11) 

subject to 

kd-gapf
tf

i
it ≤≤ ∑

=1

 and                                                                                                    (4.12) 

kd-gapi ≤≤1  for all i, ki ≤≤1                                                                                     (4.13) 

where k is the largest document identifier in the posting list PLt. It is known that C(x) is 

approximately proportional to log2(x) for many popular coding methods, such as γ coding, skewed 
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Golomb coding, and batched LLRUN coding. For these coding methods, we can use dynamic 

programming technique (Bellman and Dreyfus, 1962) and find that minimizing Eq.(4.11) should 

meet two requirements: (1) maximize the number of d-gap values of 1; and (2) minimize the largest 

document identifier, i.e., k, in the posting list PLt. If a DIA for term t can satisfy the above two 

requirements, the best compression and the fastest query speed for the posting list PLt can be 

achieved. 

According to the above observation, we propose the simple partition-based document 

identifier assignment (SPBDIA) algorithm to generate optimal DIAs for a given query term t. The 

SPBDIA algorithm consists of a partitioning procedure, an ordering procedure, and a document 

identifier assignment procedure. The partitioning procedure divides the given documents into two 

partitions in terms of query term t: one partition P(t) consists of documents containing query term t ; 

the other partition P(t') is made up of the documents without t. Then, the ordering procedure sets the 

order of partitions as P(t) followed by P(t'). Finally, the document identifier assignment procedure 

generates an appropriate DIA for the ordered partitions according to query term t: the documents in 

partition P(t) are assigned smaller consecutive document identifiers, while the documents in 

partition P(t') assigned larger consecutive document identifiers. The SPBDIA algorithm is 

illustrated in the following Example. 

Example. There is a collection of 500 documents, among which 300 documents contain query term 

t. After partitioning, P(t) has 300 documents and P(t') has 200 documents. Then, the ordering 

procedure sets the order of partitions P(t) followed by P(t'). Finally, the document identifier 

assignment procedure assigns the document identifiers 1~300 to the 300 documents in partition P(t) 

and assigns the document identifiers 301~500 to the 200 documents in partition P(t'). ■ 

Documents in a partition can be arbitrarily assigned identifiers within the given range, hence the 
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number of possible DIAs for the above Example is 300!×200!. Each of the 300!×200! DIAs 

satisfies the two requirements for minimizing Eq.(4.11), and hence gives both the best posting list 

compression and fastest query speed for query term t. The SPBDIA algorithm is simple, and its 

complexity is O(N). 

4.3.2 Efficient PBDIA algorithm for DIA problem 

In a real-world IRS, a few frequently used query terms constitute a large portion of all term 

occurrences in queries (Jansen et al. 1998). This fact indicates that a DIA algorithm that allows 

those frequently used query terms to have better posting list compression can result in reduced 

average query processing time. Based on the SPBDIA algorithm, an efficient partition-based 

document identifier assignment (PBDIA) algorithm for the DIA problem can be developed. 

Like the SPBDIA algorithm, the PBDIA algorithm also partitions the document set, orders these 

partitions, and then assigns document identifiers. The flowchart of the PBDIA algorithm is shown 

in Figure 4.6. The partitioning and ordering procedures of the PBDIA algorithm iterate n times 

given that there are n query terms. Then, the document identifier assignment procedure is 

performed as the last step of the PBDIA algorithm. Terms that are queried more frequently should 

take higher priority in document partitioning and partition ordering. Let the most frequently queried 

term be assigned rank 1, the second most frequently queried term rank 2, and so on. We use trank i to 

represent the ith ranked query term. The partitioning and ordering procedures of the PBDIA 

algorithm should proceed by considering trank 1 first, then trank 2, and so on. 

Both the PBDIA partitioning and ordering procedures are invoked once per iteration. The 

PBDIA partitioning procedure first divides each partition generated in the previous iteration into 

two partitions using the SPBDIA partitioning procedure. The PBDIA ordering procedure then 

assigns each newly generated partition a partition order. Each partition P in the PBDIA 
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Figure 4.6 The flowchart for the PBDIA algorithm 
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algorithm hence can be uniquely identified by an iteration number i and a partition order j, and we 

use the notation Pi,j to represent the jth ordered partition of the ith iteration. For example, the notation 

P2,3 represents the 3rd ordered partition of the 2nd iteration. Initially, we use the notation P0,1 to 

represent the partition that contains all documents in an input document collection. In the following, 

we describe in detail the partitioning, ordering, and document identifier assignment procedures of 

the PBDIA algorithm. 

PBDIA partition procedure 

Let Pi-1,1, Pi-1,2, …, and Pi-1,k be nonempty partitions generated in iteration i-1. The PBDIA 

partitioning procedure invoked in the ith iteration divides each partition Pi-1,j into a partition pair {Pi-

1,j(trank i), Pi-1,j(t'rank i)} for j=1,2,…,k, where the partition Pi-1,j(trank i) consists of the documents in Pi-

1,j containing the query term trank i, and Pi-1,j(t′rank i) consists of the documents in Pi-1,j without the 

query term trank i. Since Pi-1,j is nonempty, at least one of the two partitions Pi-1,j(trank i) and Pi-1,j(t'rank i) 

is nonempty for j=1,2,…,k. 

PBDIA ordering procedure 

Let {Pi-1,1(trank i), Pi-1,1(t'rank i)}, {Pi-1,2(trank i), Pi-1,2(t'rank i)}, …, and {Pi-1,k(trank i), Pi-1,k(t'rank i)} be 

the partition pairs generated by PBDIA partitioning procedure in iteration i. Let |Pi| denote the 

number of nonempty partitions of the above partitions. The PBDIA ordering procedure invoked in 

the ith iteration assigns a unique partition order, from |Pi| to 1 and in descending order, to each 

nonempty partition, starting from {Pi-1,k(trank i), Pi-1,k(t'rank i)}, then {Pi-1,k-1(trank i), Pi-1,k-1(t'rank i)}, and 

so on. 

Now let us consider the ordering of partition pair {Pi-1,k(trank i), Pi-1,k(t'rank i)}. Three cases exist. 

Case 1: Both Pi-1,k(trank i) and Pi-1,k(t'rank i) are nonempty 

The ordering procedure assigns |Pi| to Pi-1,k(t'rank i), and |Pi|-1 to Pi-1,k(trank i). Pi-1,k(t'rank i) is 



 

 99

hereafter denoted as
iPiP , , and Pi-1,k(trank i) as 1, −iPiP . 

Case 2: Pi-1,k(trank i) is empty, and Pi-1,k(t'rank i) is nonempty 

The ordering procedure assigns |Pi| to Pi-1,k(t'rank i), and ignores Pi-1,k(trank i). Pi-1,k(t'rank i) is hereafter 

denoted as
iPiP , . 

Case 3: Pi-1,k(trank i) is nonempty, and Pi-1,k(t'rank i) is empty 

The ordering procedure assigns |Pi| to Pi-1,k(trank i), and ignores Pi-1,k(t'rank i). Pi-1,k(trank i) is hereafter 

denoted as
iPiP , . 

Next we consider the ordering of partition pairs {Pi-1,j(trank i), Pi-1,j(t'rank i)}, where j=1,2,…,k-1. 

Let the next largest partition order to be assigned be s. Since PBDIA ordering procedure orders {Pi-

1,j+1(trank i), Pi-1,j+1(t'rank i)} before {Pi-1,j(trank i), Pi-1,j(t'rank i)}, Pi,s+1 is hence used to denote either Pi-

1,j+1(trank i) or Pi-1,j+1(t'rank i). Again, three cases exist for {Pi-1,j(trank i), Pi-1,j(t'rank i)}: 

Case 1: Both Pi-1,j(trank i) and Pi-1,j(t'rank i) are nonempty 

There exist two subcases. 

SubCase1.a: Pi,s+1 is used to denote Pi-1,j+1(trank i) 

The ordering procedure assigns s to Pi-1,j(trank i), and s-1 to Pi-1,j(t'rank i). Pi-1,j(trank i) is hereafter 

denoted as Pi,s, and Pi-1,j(t'rank i) as Pi,s-1. 

SubCase1.b: Pi,s+1 is used to denote Pi-1,j+1(t'rank i) 

The ordering procedure assigns s to Pi-1,j(t'rank i), and s-1 to Pi-1,j(trank i). Pi-1,j(t'rank i) is hereafter 

denoted as Pi,s, and Pi-1,j(trank i) as Pi,s-1. 

Case 2: Pi-1,j(trank i) is empty, and Pi-1,j(t'rank i) is nonempty 

The ordering procedure assigns s to Pi-1,j(t'rank i), and ignores Pi-1,j(trank i). Pi-1,j(t'rank i) is hereafter 

denoted as Pi,s. 

Case 3: Pi-1,j(trank i) is nonempty, and Pi-1,j(t'rank i) is empty 
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The ordering procedure assigns s to Pi-1,j(trank i), and ignores Pi-1,j(t'rank i). Pi-1,j(trank i) is hereafter 

denoted as Pi,s. 

PBDIA document identifier assignment procedure 

The document identifier assignment procedure, the last step of PBDIA algorithm, is 

straightforward. Let Pn,1, Pn,2, …, and Pn,k be the generated ordered partitions of the iteration n. This 

procedure assigns consecutive document identifiers to documents in the same partition, and 

consecutive identifier groups to consecutive ordered partitions. The first (smallest) document 

identifier is assigned to a document in the first ordered partition (Pn,1). And the ordering of 

documents in a partition is irrelevant and can be arbitrary. 

 

To obtain a good DIA, the partitions must be properly ordered. We explain why the PBDIA 

ordering procedure is proper: Note that the PBDIA ordering procedure always assigns consecutive 

partition orders to two nonempty partitions of a partition pair. This makes documents in the same 

partition in iteration i remain in the same or neighboring partitions in iteration i+1. According to the 

PBDIA document identifier assignment procedure, documents in the same partition in iteration i 

will eventually be assigned consecutive or at least adjacent document identifiers. That is, once the 

order of partitions is generated at the end of iteration i, the compression performance for the posting 

list of trank i is determined. Hence, the posting list of trank 1 has the best compression, then that of trank2, 

and so on. This is because the PBDIA algorithm considers the trank 1 first, then trank 2, and so on, in its 

iterations.  
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Algorithm Partition_based_document_identifier_assignment 

Input: 
D={d1, d2, …, dN}: a collection of N documents to be indexed. 
T={t1, t2, …, tn}: a set of n distinct terms appearing in D. 
Prob={p1, p2, …, pn}: pi denotes the probability of the term ti ∈T appearing in a query. 

Output: 
A document identifier assignment π :{ d1, d2, …, dN } {1, 2, …, N} for the DIA. 

Method: 
1. Create an empty doubly linked list PartList;  // to store partition 
2. Create an empty doubly linked list TempList;  //to store partition pairs 
3. Assign all documents in D to a new partition P, and add P to the PartList; 
4. Sort the terms in T in descending order according to their probabilities. Let trank 1, trank 2, …, trank n 

represent the sorted list. 
5. for i:=1 to n do 

5.1 while PartList is not empty do  /*partitioning procedure*/ 
5.1.1 Get a partition P from the head of PartList, and then remove P from PartList; 
5.1.2  // At least one of the partitions P(trank i) and P(t'rank i) should be nonempty 

Let P(trank i) be the partition containing the documents that are included in P and do 
contain the term trank i ; let P(t'rank i) be the partition containing the documents that are 
included in P and do not contain the term trank i ; 

5.1.3 Add the partition pair {P(trank i),P(t'rank i)} to the tail of TempList; 
5.2 while TempList is not empty do  /*ordering procedure*/ 

5.2.1 Get a partition pair {P(trank i),P(t'rank i)} from the tail of TempList, and then remove 
{P(trank i),P(t'rank i)} from TempList; 

5.2.2 if P(trank i) is empty then add P(t'rank i) to the front of PartList and go to step 5.2; 
5.2.3 if P(t'rank i) is empty then add P(trank i) to the front of PartList and go to step 5.2; 
5.2.4 if PartList is empty then 

Add P(t'rank i) to the PartList; add P(trank i) to the front of PartList; 
else  //PartList is not empty 

Get a partition P from the head of PartList, and get a document d∈P ; 
if the document d contain the term trank i then  

Add P(trank i) to the front of PartList; add P(t'rank i) to the front of PartList; 
else // the document d does not contain the term trank i 

Add P(t'rank i) to the front of PartList; add P(trank i) to the front of PartList; 
6. i:=1; 
7. while PartList is not empty do  /*document identifier assignment procedure*/ 

7.1 Get a partition P from the head of PartList, and then remove P from PartList; 
7.2 while P is not empty do   

7.2.1 Get a document d∈P, and remove d from P; 
7.2.2 Assign document identifier i to the document d, and then i:=i+1; 

Figure 4.7 The PBDIA algorithm for the DIA problem 
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The PBDIA algorithm is given in Figure 4.7. A doubly linked list is used to store the partitions, 

and the two links of a partition maintain the ordering among these partitions. Given a collection of 

N documents and n distinct query terms, the number of comparisons for assigning documents to 

partitions in each iteration is O(N). Since the PBDIA algorithm iterates for n times, the total number 

of comparisons for the PBDIA algorithm is O(N×n). Compared with the Greedy-NN algorithm, this 

complexity of PBDIA algorithm is distinctively low. This advantage brings the PBDIA algorithm a 

dark side, of course. Although the PBDIA algorithm targets on improving the compression 

efficiency for the frequently used query terms, it unavoidably decreases that for the other query 

terms. In reality, it is often the case that the popularities of the assorted query terms are very 

unbalanced. And this imbalance nature makes the PBDIA algorithm achieve very good query 

performance. In Section 4.4, we compare the search performance of the Greedy-NN and PBDIA 

algorithms for real-life document collections. 

 

4.4 Performance Evaluation 

This section describes our experiments for evaluating the different DIA algorithms. 

Experiments were conducted on real-life document collections, and the average query processing 

time and the storage requirement for each DIA algorithm were measured. 

4.4.1 Document collections and queries 

Three document collections were used in the experiments. Their statistics are listed in Table 

4.2. In this table, N denotes the number of documents; n is the number of distinct terms; F is the 

total number of terms in the collection; and f indicates the number of document identifiers that 

appear in an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT 

(LA Times) are disk 5 of the TREC-6 collection that is used internationally as a test bed for research 
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in IR techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS and LAT. 

Table 4.2 Statistics of document collections 
                                                                               Collection 

 FBIS LAT TREC
# of documents N 130,471 131,896 262,367
# of terms F 72,922,893 72,087,460 145,010,353
# of distinct terms n 214,310 168,251 317,393
# of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes)  470 475 945

 

We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries. 

For each document collection, 300 documents were randomly selected to generate a query set. A 

query was generated by selecting words from the word list of a specific document. To form the 

word list of a document, words in the document were folded to lower case, and stop words such as 

“the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For example, 

a query containing 5 terms may be “inverted file document collection built”. For each query, there 

existed at least one document in the document collection that is relevant to the query. We also made 

the generated query set for each document collection have the following characteristics: (1) Query 

repetition frequencies followed a Zipf distribution 6.0
1~)(
ρ

qPr , where Pr(q) is the probability of 

query q appearing in generated query set, and ρ is the popularity rank of query q; (2) The terms per 

query distribution followed the shifted negative binomial distribution 

12.1 )15.0()85.0(
2
8.0

)( −
⎟⎟
⎠

⎞
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⎝

⎛
−
−
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x
x

xf , where f(x) is the probability of a query containing x words. This 

made the distribution of generated queries closely resemble the distribution of real queries (Xie & 

O’Hallaron, 2002; Wolfram, 1992). 
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4.4.2 Performance results 

In this sub-section, we first present the actual times taken by the Greedy-NN and the PBDIA 

algorithms. Then we present the query performance of different DIA algorithms. Finally, we 

present the compression performance of different DIA algorithms. 

The inverted files of the three test collections were constructed according to the DIAs 

generated by different DIA algorithms. We tested four different DIA algorithms: “Random”, 

“Default”, “Greedy-NN”, and “PBDIA”. The Random algorithm means that the document in a 

collection is randomly assigned document identifier. The Default algorithm means that the 

document in a collection is assigned document identifier in chronological order. The Greedy-NN 

and PBDIA algorithms were described in Section 3.2 and Section 4.2, respectively. For each DIA 

algorithm, we also tested five coding methods: γ coding (Elias 1975), Golomb coding (Golomb 

1966; Witten et al. 1999), skewed Golomb coding (Teuhola 1978), batched LLRUN coding 

(Fraenkel & Klein 1985), and unique-order interpolative coding method (Cheng et al. 2004). For the 

following experiments, the parameter b for each posting list in Golomb coding was calculated using 

Witten’s approximation (Witten et al. 1999), and the parameter g for unique-order interpolative 

coding was set to 4 (Cheng et al. 2004). 

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running 

Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec. 

Intervening processes and disk activities were minimized during experimentation. 

Time taken by Greedy-NN and PBDIA algorithms 

 In Table 4.3, the performance in terms of completion time is shown. The times reported are 

the actual times taken by the algorithms to generate a DIA for the given document collection that 

has been inverted. Please note that the times presented in Table 4.3 consider neither the time spent 
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in preliminary inversion of the document collection, nor the time needed to rebuild an inverted file 

with a new DIA.  

Table 4.3 shows that the PBDIA algorithm is much faster than the Greedy-NN algorithm. 

This fact makes the PBDIA algorithm viable for use in large-scale IRSs. Such a fast DIA algorithm 

can be very useful for situations such as: 

1. Dynamically changing probability distribution of query terms, and 

2. Dynamically changing document collection. 

Table 4.3 Time consumed by the Greedy-NN and the PBDIA algorithms 
Collection DIA algorithm 
FBIS LAT TREC 

Greedy-NN 23 hrs 59 mins 24 hrs 37 mins 198 hrs 2 mins 
PBDIA 9 secs 10 secs 18 secs 

 

Query performance of different DIA algorithms 

In Table 4.4, the average query processing time (AvgTimeQP) and the speedup relative to the 

Default algorithm (SP) were measured according to Eq.(4.3). In Table 4.5, the average number of 

bits required to retrieve and decode an identifier during query processing (AvgBPIQP) and the 

improvement over the Default algorithm (Imp) were measured according to Eq.(4.6). For each 

document collection, the generated query set was divided into three subsets: the short query set, the 

medium-length query set, and the long query set. The number of terms per query for the short, 

medium-length, and long query sets range from 1 to 8, 9 to 20, and 21 to 65, respectively. 

All decoding mechanisms were optimized, including: 

1. Replaced subroutines with macros. 

2. Replaced calls to the log function with fast bit shifts. 

3. Careful choice for compiler optimization flags. 

4. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU. 
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Furthermore, the Huffman code of batched LLRUN coding was implemented with canonical prefix 

codes that can be decoded via a fast table look-up (Turpin 1998). With these optimizations, 

decoding of a document identifier only required tens of ns. 

The experimental results are shown in Tables 4.4 and 4.5. Key findings are: 

1. Table 4.4 shows that the query performance of the Default algorithm can be 10% faster than the 

Random algorithm. This indicates that the Default algorithm already captures some clustering 

nature, thus can serve as a rigid baseline in comparison with other fine-tuned algorithms. 

2. Comparing Tables 4.4 and 4.5, one should observe that AvgTimeQP is proportional to AvgBPIQP. 

This verifies Eq. (4.4) in Section 3.1, and explains why a good DIA can result in better 

compression and reduced query processing time. 

3. From Table 4.5, one should observe that both the Greedy-NN and PBDIA algorithms can result 

in better compression of posting lists for all tested coding methods except Golomb coding. This 

indicates that the Greedy-NN and PBDIA algorithms can improve the cache efficiency if a 

posting list cache is implemented. 

4. Table 4.4 shows that both the Greedy-NN and PBDIA algorithms can reduce average query 

processing time for all tested coding methods except Golomb coding. And the query speedup 

differences between the Greedy-NN and PBDIA algorithms were only 3% on average. 

Considering the algorithm complexity, the PBDIA algorithm is a good choice for the DIA 

problem. 

5. From Table 4.4, one should observe that Golomb coding cannot benefit much from the Greedy-

NN and PBDIA algorithms in terms of query performance. This is because Golomb coding 

assumes that the d-gap values in a posting list following a Bernoulli model (Witten et al. 1999), 
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hence both the compression result and the query processing time of Golomb coding are 

independent of d-gap distribution. 

6. From Table 4.4, one should observe that the query speedup obtained by the PBDIA algorithm 

becomes higher as the query length increases. This is because that, as the number of query terms 

increases, more frequently used query terms are likely to be included, resulting in more 

advantage due to the PBDIA algorithm. 

7. Table 4.4 shows that both γ coding and unique-order interpolative coding are recommended for 

real-world IRSs due to their fast query throughputs. In addition, compared with the other tested 

coding methods, these two coding methods benefit more from the PBDIA algorithm. We 

conclude that the PBDIA algorithm is viable for use in real-world IRSs. 

8. Table 4.4 shows that the PBDIA algorithm can reduce average query processing time by up to 

20% for an inverted file in which the document identifiers in a posting list are sorted in 

ascending order. To allow extremely fast processing of conjunctive queries and ranked queries 

using the same index, most IRSs in use today adopt the skipped inverted files (Moffat & Zobel, 

1996) or the blocked inverted files (Moffat et al., 1995). Both the skipped and blocked inverted 

files are identifier-ordered arrangement. Therefore, the PBDIA algorithm can also be applied to 

those inverted files, and reduce the time needed to process a query against those inverted files. 

Since skipped inverted files and blocked inverted files are widely used in modern large-scale 

IRSs, we believe that the PBDIA algorithm can contribute in real-world IRSs. 
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Table 4.4 Query performance of different DIA algorithms (AvgTimeQP is the average query 
processing time, and SP is the speedup relative to the Default algorithm) 
(a) short queries 

Coding Methods 
 

γ coding 
 

Golomb coding 
Skewed 

Golomb coding 
Batched 

LLRUN coding 
Unique-order 

Interpolative coding

 
 
 

Collection 

DIA 
algorithm 

AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP 

Random 2989 0.93 2858 0.98 3894 0.96 3748 0.97 2746 0.95
Default 2789 1.00 2802 1.00 3754 1.00 3636 1.00 2614 1.00

Greedy-NN 2431 1.15 2790 1.00 3348 1.12 3275 1.11 2315 1.13

 
FBIS 

PBDIA 2529 1.10 2808 1.00 3427 1.10 3320 1.10 2333 1.12
Random 2829 0.96 2704 0.99 3737 0.98 3654 0.97 2564 0.97
Default 2724 1.00 2688 1.00 3645 1.00 3542 1.00 2476 1.00

Greedy-NN 2268 1.20 2653 1.01 3137 1.16 3143 1.13 2085 1.19

 
LAT 

PBDIA 2379 1.15 2644 1.02 3234 1.13 3231 1.10 2150 1.15
Random 5822 0.90 5573 0.97 7556 0.93 7217 0.94 5448 0.91
Default 5244 1.00 5380 1.00 7026 1.00 6781 1.00 4942 1.00

Greedy-NN 4431 1.18 5353 1.01 6139 1.14 6032 1.12 4256 1.16

 
TREC 

PBDIA 4606 1.14 5292 1.02 6254 1.12 6171 1.10 4313 1.15

(b) medium-length queries 
Coding Methods 

 
γ coding 

 
Golomb coding 

Skewed 
Golomb coding 

Batched 
LLRUN coding 

Unique-order 
Interpolative coding

 
Collection DIA 

algorithm 

AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP 

Random 9388 0.93 8972 0.98 12222 0.97 11749 0.97 8613 0.95
Default 8758 1.00 8795 1.00 11795 1.00 11402 1.00 8201 1.00

Greedy-NN 7563 1.16 8746 1.01 10426 1.13 10225 1.12 7205 1.14

 
FBIS 

PBDIA 7838 1.12 8798 1.00 10650 1.11 10387 1.10 7223 1.14
Random 8997 0.97 8605 1.00 11842 0.98 11562 0.97 8192 0.97
Default 8684 1.00 8564 1.00 11580 1.00 11229 1.00 7932 1.00

Greedy-NN 7126 1.22 8407 1.02 9851 1.18 9852 1.14 6607 1.20

 
LAT 

PBDIA 7434 1.17 8359 1.02 10098 1.15 9982 1.12 6755 1.17
Random 18475 0.92 17689 0.97 23936 0.94 22724 0.95 17273 0.93
Default 16935 1.00 17153 1.00 22594 1.00 21666 1.00 16004 1.00

Greedy-NN 14069 1.20 16942 1.01 19493 1.16 19058 1.14 13598 1.18

 
TREC 

PBDIA 14611 1.16 16713 1.03 19809 1.14 19280 1.12 13722 1.17

(c) long queries 
Coding Methods 

 
γ coding 

 
Golomb coding 

Skewed 
Golomb coding 

Batched 
LLRUN coding 

Unique-order 
Interpolative coding

 
 
 

Collection 

DIA 
algorithm 

AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP AvgTimeQP 
(us) 

SP 

Random 20210 0.92 19399 0.98 26526 0.95 26049 0.96 18423 0.94
Default 18594 1.00 18939 1.00 25316 1.00 24984 1.00 17269 1.00

Greedy-NN 15882 1.17 18971 1.00 22131 1.14 21957 1.14 14979 1.15

 
FBIS 

PBDIA 15871 1.17 18953 1.00 21972 1.15 22143 1.13 14377 1.20
Random 18029 0.96 17116 1.00 23591 0.98 22646 0.97 16477 0.97
Default 17392 1.00 17035 1.00 23011 1.00 22033 1.00 15964 1.00

Greedy-NN 13875 1.25 16624 1.02 19173 1.20 18984 1.16 13046 1.22

 
LAT 

PBDIA 13996 1.24 16298 1.05 19023 1.21 19212 1.15 12817 1.25
Random 37881 0.93 36023 0.98 49012 0.95 46584 0.96 35266 0.94
Default 35096 1.00 35231 1.00 46547 1.00 44588 1.00 33008 1.00

Greedy-NN 28372 1.24 34469 1.02 39489 1.18 38592 1.16 27523 1.20

 
TREC 

PBDIA 29152 1.20 33809 1.04 39766 1.17 39089 1.14 27401 1.20
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Table 4.5 AvgBPIQP of different DIA algorithms (AvgBPIQP is the average number of bits required 
to retrieve and decode an identifier during query processing, and Imp is the improvement over the 
Default algorithm) 
(a) short queries 

Coding Methods 
 

γ coding 
 

Golomb coding 
Skewed 

Golomb coding 
Batched 

LLRUN coding 
Unique-order 

Interpolative coding

 
 

Collection 

DIA 
algorithm 

AvgBPIQP Imp 
(%) 

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp 
(%) 

AvgBPIQP Imp
(%) 

Random 3.56 -10.6 3.21 0.3 3.31 -7.1 3.25 -5.5 3.15 -7.9
Default 3.22 --- 3.22 --- 3.09 --- 3.08 --- 2.92 --- 

Greedy-NN 2.78 13.7 3.24 -0.6 2.73 11.7 2.69 12.7 2.63 9.9

 
FBIS 

PBDIA 2.95 8.4 3.23 -0.3 2.84 8.1 2.76 10.4 2.69 7.9
Random 3.32 -6.8 2.98 0.0 3.05 -4.8 3.00 -3.8 2.87 -4.7
Default 3.11 --- 2.98 --- 2.91 --- 2.89 --- 2.74 --- 

Greedy-NN 2.56 17.7 3.00 -0.7 2.48 14.8 2.47 14.5 2.35 14.2

 
LAT 

PBDIA 2.73 12.2 2.97 0.3 2.59 11.0 2.59 10.4 2.42 11.7
Random 3.75 -13.3 3.38 0.3 3.46 -9.5 3.40 -8.2 3.34 -10.6
Default 3.31 --- 3.39 --- 3.16 --- 3.14 --- 3.02 --- 

Greedy-NN 2.78 16.0 3.41 -0.6 2.72 13.9 2.69 14.3 2.65 12.3

 
TREC 

PBDIA 2.94 11.2 3.37 0.6 2.81 11.1 2.81 10.5 2.70 10.6

(b) medium-length queries 
Coding Methods 

 
γ coding 

 
Golomb coding 

Skewed 
Golomb coding 

Batched 
LLRUN coding 

Unique-order 
Interpolative coding

 
Collection DIA 

algorithm 

AvgBPIQP Imp 
(%) 

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp 
(%) 

AvgBPIQP Imp
(%) 

Random 3.57 -10.9 3.21 0.3 3.31 -6.8 3.25 -5.5 3.15 -7.9
Default 3.22 --- 3.22 --- 3.10 --- 3.08 --- 2.92 --- 

Greedy-NN 2.75 14.6 3.24 -0.6 2.70 12.9 2.66 13.6 2.61 10.6

 
FBIS 

PBDIA 2.92 9.3 3.24 -0.6 2.81 9.4 2.75 10.7 2.66 8.9
Random 3.37 -6.3 3.03 0.3 3.11 -4.4 3.06 -3.7 2.94 -4.6
Default 3.17 --- 3.04 --- 2.98 --- 2.95 --- 2.81 --- 

Greedy-NN 2.58 18.6 3.06 -0.7 2.50 16.1 2.48 15.9 2.39 14.9

 
LAT 

PBDIA 2.73 13.9 3.02 0.7 2.59 13.1 2.60 11.9 2.44 13.1
Random 3.83 -12.0 3.42 0.3 3.53 -8.3 3.47 -7.1 3.40 -9.0
Default 3.42 --- 3.43 --- 3.26 --- 3.24 --- 3.12 --- 

Greedy-NN 2.82 17.5 3.45 -0.6 2.76 15.3 2.74 15.4 2.71 13.1

 
TREC 

PBDIA 2.99 12.6 3.41 0.6 2.85 12.6 2.86 11.7 2.75 11.9

(c) long queries 
Coding Methods 

 
γ coding 

 
Golomb coding 

Skewed 
Golomb coding 

Batched 
LLRUN coding 

Unique-order 
Interpolative coding

 
 

Collection 

DIA 
algorithm 

AvgBPIQP Imp 
(%) 

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp 
(%) 

AvgBPIQP Imp
(%) 

Random 3.31 -12.2 3.02 0.3 3.09 -8.4 3.03 -6.7 2.90 -9.0
Default 2.95 --- 3.03 --- 2.85 --- 2.84 --- 2.66 --- 

Greedy-NN 2.50 15.3 3.06 -1.0 2.47 13.3 2.43 14.4 2.37 10.9

 
FBIS 

PBDIA 2.57 12.9 3.05 -0.7 2.47 13.3 2.48 12.7 2.34 12.0
Random 3.58 -6.2 3.21 0.3 3.28 -4.1 3.23 -3.5 3.13 -4.3
Default 3.37 --- 3.22 --- 3.15 --- 3.12 --- 3.00 --- 

Greedy-NN 2.66 21.1 3.24 -0.6 2.58 18.1 2.55 18.2 2.50 16.7

 
LAT 

PBDIA 2.73 19.0 3.19 0.9 2.58 18.1 2.63 15.7 2.48 17.3
Random 3.85 -10.6 3.43 0.3 3.54 -7.3 3.47 -6.1 3.41 -7.9
Default 3.48 --- 3.44 --- 3.30 --- 3.27 --- 3.16 --- 

Greedy-NN 2.78 20.1 3.46 -0.6 2.73 17.3 2.70 17.4 2.69 14.9

 
TREC 

PBDIA 2.92 16.1 3.41 0.9 2.79 15.5 2.81 14.1 2.71 14.2
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Compression performance of different DIA algorithms 

The compression results are shown in Table 4.6, and the metric used is the average number of 

bits per identifier BPI, defined as follows: 

f
BPI

 identfiersdocument  ofnumber 
file inverted compressed  theof size The

= . 

To reduce average query processing time, both the Greedy-NN and PBDIA algorithms target 

on improving the compression efficiency for the frequently used query terms. However, this is at 

the cost of sacrificing the compression efficiency for the less frequently used query terms. We need 

to know how much space overhead is needed to trade for this speed advantage. Results in Table 4.6 

show that the Greedy-NN and PBDIA algorithms can speed up query processing with very little or 

no storage overhead. 

Table 4.6 Compression performance of different DIA algorithms (BPI is the average bits per 
identifier of the inverted file for the test collection, and Imp is the improvement over the Default 
algorithm) 

Coding Methods 
 
 

γ coding 

 
Golomb 
coding 

Skewed 
Golomb 
coding 

Batched 
LLRUN 
coding 

Unique-order
Interpolative 

coding 

 
 

Collection 

 

DIA 
algorithm 

BPI Imp 
(%) 

BPI Imp 
(%) 

BPI Imp 
 (%)

BPI Imp 
(%) 

BPI Imp 
(%) 

Random 7.06 -19.7 5.28 0.0 5.75 -10.6 5.38 -8.5 5.36 -10.3
Default 5.90 --- 5.28 --- 5.20 --- 4.96 --- 4.86 --- 

Greedy-NN 5.86 0.7 5.28 0.0 5.33 -2.5 4.88 1.6 4.85 0.2

 
FBIS 

PBDIA 6.17 -4.6 5.28 0.0 5.42 -4.2 5.06 -2.0 4.95 -1.9
Random 7.12 -6.6 5.33 0.0 5.73 -3.2 5.43 -2.8 5.42 -3.8
Default 6.68 --- 5.33 --- 5.55 --- 5.28 --- 5.22 --- 

Greedy-NN 6.06 9.3 5.32 0.2 5.26 5.2 5.00 5.3 4.91 5.9

 
LAT 

PBDIA 6.35 4.9 5.32 0.2 5.33 4.0 5.12 3.0 5.01 4.0
Random 7.39 -16.7 5.50 -0.4 5.92 -9.2 5.59 -7.5 5.59 -9.6
Default 6.33 --- 5.48 --- 5.42 --- 5.20 --- 5.10 --- 

Greedy-NN 6.08 3.95 5.49 -0.2 5.39 0.6 5.03 3.3 4.99 2.2

 
TREC 

PBDIA 6.36 -0.5 5.49 -0.2 5.45 -0.6 5.18 0.4 5.08 0.4
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4.5 Summary 

In this chapter, we study the DIA-based inverted file optimization techniques for an IRS. With 

an inverted file, we first define a cost model for query evaluation. Based on this model, we propose 

an efficient heuristic, called partition-based document identifier assignment (PBDIA) algorithm, to 

generate a good DIA for the inverted file to reduce average query processing time. The PBDIA 

algorithm can efficiently assign consecutive document identifiers to the documents containing 

frequently used query terms. This makes the d-gaps of posting lists for frequently used query terms 

very small, and results in better compression for popular coding methods without increasing the 

complexity of decoding processes. This can result in reduced query processing time. For the fastest 

unique-order interpolative coding, experimental results show that the PBDIA algorithm can reduce 

the average query processing time by up to 20%. We also point out that the DIA problem has vital 

effects on the performance of long queries. Compared with the well-known Greedy-NN algorithm, 

the PBDIA algorithm is much faster and yields very competitive performance for the DIA problem. 

This fact should make the PBDIA algorithm viable for use in modern large-scale inverted file-based 

IRSs. 
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Chapter 5 Parallel IR 

The rapid growth in Internet usage brings wide variety of applications as well as new system 

design challenges on information retrieval systems (IRSs). The problem of information explosion 

overwhelms the load of CPU and disk on an information retrieval (IR) server. In this chapter, we 

intend to reduce query processing time of an IRS by using a cluster as the server architecture. 

Queries are processed on a cluster of workstations − each has its own CPU, memory, and disk − 

interconnected by a local area network. For example, Google search engine is a cluster of more than 

6000 PCs and each PC contains Gigabytes of random access memory. The key research issue here 

is to partition the inverted file into sub-files each for one workstation such that, during query 

processing, all workstations have to consult their own sub-files in parallel and query processing 

time can be reduced. 

Two main approaches for partitioning inverted files are in general use: the TermID partitioning 

approach (Reddaway, 1991; Stanfill et al., 1989; Ribeiro-Neto et al., 1999) and the DocID 

partitioning approach (Hawking, 1996; Aalbersberg & Sijstermans, 1990; Stanfill & Thau, 1991; 

Hollaar, 1991). The TermID partitioning approach takes a posting list as an object to be allocated, 

whereas the DocID partitioning approach takes the set of all postings referring to a document 

identifier as an object. MacFarlane (2000) and Ma et al. (2002) showed that the DocID partitioning 

approach is a better inverted file distribution method. This is because that the DocID partitioning 

approach can parallelize both CPU computation and disk accesses without inducing communication 

overhead of transferring posting lists between workstations. 

With the DocID partitioning approach, Ma et al. (2002) proposed some partitioning algorithms 

to partition and distribute the inverted file onto disks of workstations such that the average query 
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processing time of parallel query processing can be minimized. They have shown that the 

interleaving partitioning scheme can partition an inverted file with good load balance and produce a 

near-ideal speedup. We observe that the document identifier clustering plays an important role for 

this interleaving partitioning scheme in load balance and query speedup. Hence, we propose using 

the PBDIA algorithm (described in Section 4.3) to enhance the clustering property of document 

identifiers in posting lists by assigning consecutive identifiers to those documents containing 

frequently used query terms. Experimental results show that the PBDIA algorithm can aid the 

interleaving partitioning scheme to achieve a better load balance and improve the parallel query 

performance by a factor of 1.13 to 1.18 no matter how many workstations are in the cluster. The 

PBDIA algorithm has substantial and consistent potential to improve the performance of an IRS run 

on a cluster of workstations. This shows that the clustering property should deserve much attention 

in parallel IR. 

The remainder of this chapter is organized as follows. Section 5.1 describes the concerned 

inverted file partitioning problem. The interleaving partitioning scheme is described in Section 5.2. 

In Section 5.3, we present the framework of the proposed approach to partition an inverted file. 

Performance evaluation is presented in Section 5.4. Finally, Section 5.5 presents our summary. 

 

5.1 Inverted File Partitioning Problem 

The inverted file partitioning problem considered in this chapter is as follows. The inputs to an 

inverted file partitioning algorithm are 

 a compressed inverted file for sequential processing, 

 popularities of terms appearing in queries, and 

 number of workstations. 
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The output is a partitioned compressed inverted file to be distributed on the set of workstations. 

The objective is to minimize the average query processing time of parallel query processing. Issues 

to the objective are 

 eliminating the communication overhead of transferring postings between workstations 

during query processing, 

 balancing amount of postings to be processed during parallel query processing, and  

 keeping compression efficiency in the partitioned compressed inverted file. 

Ma et al. (2002) have proven that this problem is known to be NP-complete since it is identical 

to the multiprocessor scheduling problem defined in Garey & Johnson (1979). Hence, a heuristic 

algorithm for this optimization problem should be developed. 

 

5.2 Fundamental: Interleaving Partitioning Scheme 

In Section 5.2.1, we describe the well-known interleaving partitioning scheme that apply 

interleaved mapping rule to generate a partitioned inverted file and produce a near-ideal speedup. In 

Section 5.2.2, we describe how to improve the average processing time through document identifier 

assignment on the partitioned inverted file generated with the interleaving partitioning scheme. 

5.2.1 Algorithm description 

Figure 5.1 shows the idea of the interleaving mapping rule. Each workstation is mapped with a 

set of interleaved document identifiers. Let M be the number of workstations and N be the number 

of documents. The rule for mapping document identifiers to workstations is as follows. 

Rule 1 The interleaved mapping rule maps a document identifier i to a workstation WSk with a 

function Aintlv: 

M
M

iiiAk intlv ×⎥⎦
⎥

⎢⎣
⎢ −

−==
)1()(                                                     (5.1)    
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With the interleaved mapped rule, postings in a posting list are supposed to be evenly distributed 

regardless of the document identifier clustering. 

 

To keep compression efficiency, each workstation represents documents using local document 

identifiers. The mapping rule Aintlv increases the gap between document identifiers after partitioning. 

The gap between document identifiers in a local posting list is at least M. And compression methods 

can not work well on the local inverted file if documents are presented with the original document 

identifiers. We notice that, for a workstation WSk, the local document identifier for a document 

identifier i mapped to WSk can be obtained as following rule. 

Rule 2 In the partitioned inverted file generated by interleaved mapping rule, a document i is 

represented as local document identifier LIDintlv(i): 

⎣ ⎦ 1/)1()( +−= MiiLIDintlv                                                   (5.2)       

document identifiers: 1      2      3      4      5      6      7      8      9 
 
 
 
                                       WS1               WS2               WS3 

(a) Mapping document identifiers to workstation IDs 

posting list: 2, 3, 5, 7, 8, 11, 12, 13, 15, 16  
 
represented using 
original document identifier:   7,  13,  16        2, 5, 8, 11        3, 12, 15 
 
represented using 
local document identifier:        3,  5,  6            1, 2, 3, 4          1, 4, 5 
 
                                                     WS1                  WS2                 WS3 
 
                               (b) Partitioning a posting list 

Figure 5.1 Partitioning with interleaved mapping rule 
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Note that the original document identifier i mapped to WSk then can be obtained using the following 

equation 

kiLIDMi intlv +−×= )1)((                                                (5.3)   

Figure 5.2 presents the algorithm to generate a partitioned inverted file with interleaved 

mapping rule. The time complexity is O(f) where f  is the number of postings in the input inverted 

file. 

Algorithm Interleaving_partitioning_scheme 

Input: 

IF: the inverted file for sequential query processing. IF consists of a set of posting lists PLt for 

each term t. 

Output: 

LIF={LIF1,LIF2,…,LIFM}: the set of local inverted files LIFk for each  workstation WSk. Each 

LIFk consists of a set of local posting lists PLt(WSk) for each term t. 

Method: 

1. for each term t do  

1.1 for each document identifier i ∈ PLt do 

1.1.1   ⎣ ⎦ MMiik ×−−← /)1(  

1.1.2   ⎣ ⎦ 1/)1( +−←′ Mii  

1.1.3   append i′ to PLt(WSk) 

Figure 5.2 Interleaving partitioning scheme 

 

5.2.2 How to improve parallel query processing through document identifier assignment 

In this subsection, we use an example to show how to improve parallel query processing 

through document identifier assignment. Consider term t appears in documents d1, d3, d4, d6, d8, d10, 

d18, d22, d23, d26, d34, d35, d45, d46, d47. There are two workstations in the cluster. We have two 

document identifier assignments DIA I and DIA II (cf. Figure 5.3). The notation di j in DIAs I and 

II denotes that the document identifier j is assigned to the document di. For each DIA, we can obtain  
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Term t appears in documents d1, d3, d4, d6, d8, d10, d18, d22, d23, d26, d34, d35, d45, d46, d47. 
(a) DIA I: { d1→1, d3→3, d4→4, d6→6, d8→8, d10→10, d18→18, d22→22, 

d23→23, d26→26, d34→34, d35→35, d45→45, d46→46, d47→47}. 
(1) The posting list PLt for DIA I 

PLt: <1, 3, 4, 6, 8, 10, 18, 22, 23, 26, 34, 35, 45, 46, 47> 
(2) The posting list PLt for DIA I is partitioned into two sub-posting lists PLt(WS1) and PLt(WS2) 

using the interleaving partitioning scheme (α is a constant) 
(i) original document identifier representation   

sub-posting lists                                            bits after compression    QPT     PQPT 
PLt(WS1): <1, 3, 23, 35, 45, 47>                           30 bits                     30α 
PLt(WS2): <4, 6, 8, 10, 18, 22, 26, 34, 46>           45 bits                     45α 

(ii) local document identifier representation 
sub-posting lists                                            bits after compression    QPT     PQPT 
PLt(WS1): <1, 2, 12, 18, 23, 24>                           20 bits                     20α 
PLt(WS2): <2, 3, 4, 5, 9, 11, 13, 17, 23>               27 bits                     27α 

(b) DIA II: { d1→1, d3→2, d4→3, d6→4, d8→5, d10→6, d18→7, d22→8,  
d23→9, d26→10, d34→11, d35→12, d45→13, d46→14, d47→15} 

(1) The posting list PLt for DIA II 
PLt: <1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15> 

(2) The posting list PLt for DIA II is partitioned into two sub-posting lists PLt(WS1) and 
PLt(WS2) using the interleaving partitioning scheme (α is a constant) 
(i) original document identifier representation 

sub-posting lists                                            bits after compression    QPT     PQPT 
PLt(WS1): <1, 3, 5, 7, 9, 11, 13, 15>                      22 bits                    22α 
PLt(WS2): <2, 4, 6, 8, 10, 12, 14>                          21 bits                    21α 

(ii) local document identifier representation 
sub-posting lists                                            bits after compression    QPT     PQPT 
PLt(WS1): <1, 2, 3, 4, 5, 6, 7, 8>                            8 bits                       8α 
PLt(WS2): <1, 2, 3, 4, 5, 6, 7>                                7 bits                       7α 
 

Figure 5.3 An example to show how to improve parallel query processing through document 
identifier assignment. There are two workstations in the cluster. The interleaving partitioning 
scheme is employed to partition the posting list PLt. All sub-posting lists are encoded in γ codes 
with the d-gap technique. QPT is the query processing time and PQPT is the parallel query 
processing time. 
 
a posting list PLt for term t and the PLt can be partitioned into two sub-posting lists PLt(WS1) and 

PLt(WS2) using the interleaving partitioning scheme. Assume that all sub-posting lists are encoded 

45α

27α

22α

8α
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in γ codes with the d-gap technique, where the γ code represents an integer x in ⎣ ⎦x2log21+  bits. 

Based on Eq.(4.4), we can derive the query processing time (QPT) of WS1 for term t and that of WS2 

for term t. Then the parallel query processing time can be calculated using the time the last 

workstation finishes its job. This example confirms that local document identifier representation can 

improve the compression efficiency. We then observe that the compression efficiency of DIA II is 

better than that of DIA I. This implies that the query processing time of DIA II is shorter than that 

of DIA I since the query processing time is proportional to the total size of encoded posting list. The 

parallel query processing time of DIA II is also shorter than that of DIA I. Hence, this example 

shows that the clustering property in the posting list plays an important role in interleaving partition 

scheme. 

 

5.3 Framework of Proposed Approach 

 

 

Inverted file 

Query Log 

PBDIA 
algorithm 

interleaving
partitioning 

scheme 

WS1 

Part of the  
inverted file

WS2 

Part of the  
inverted file

WSk 

Part of the  
inverted file

k (workstations) 

ft     posting list PLt 
22  3, 5, 6, 7, 105, 200,… 
8    500, 502, 600, 762, …
73  102, 103, 105, 111, …

100  4, 5, 6, 7,  8, 10, 33…

Figure 5.4 The proposed approach to partition an inverted file for an IRS that runs on a 
cluster of workstations. 
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In Section 5.2.2, we have observed that the clustering property plays an important role for 

interleaving partitioning scheme in both the load balance and the compression efficiency. Since the 

distribution of query terms is skewed, we recognize that the PBDIA can be employed to aid 

interleaving partitioning scheme to produce superior performance. The Figure 5.4 shows our 

proposed approach to partition an inverted file for an IRS that runs on a cluster of workstations. The 

performance evaluation is shown in next section. 

 

5.4 Performance Evaluation 

This section investigates the document identifier assignment (DIA) problem in an IRS that 

runs on a cluster of workstations. Experiments were conducted on real-life document collections. 

We measured the sequential query processing time for each workstation and calculated the parallel 

query processing time. The storage requirement of the partitioned inverted files was also presented. 

5.4.1 Test collection and query set 

Three document collections were used in the experiments. Their statistics are listed in Table 2. 

In this table, N denotes the number of documents; n is the number of distinct terms; F is the total 

number of terms in the collection; and f indicates the number of document identifiers that appear in 

an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT (LA Times) 

are disk 5 of the TREC-6 collection that is used internationally as a test bed for research in IR 

techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS and LAT. 

Table 5.1 Statistics of document collections 
                                                                               Collection 

 FBIS LAT TREC
# of documents N 130,471 131,896 262,367
# of terms F 72,922,893 72,087,460 145,010,353
# of distinct terms n 214,310 168,251 317,393
# of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes)  470 475 945
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We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries. 

For each document collection, 300 documents were randomly selected to generate a query set. A 

query was generated by selecting words from the word list of a specific document. To form the 

word list of a document, words in the document were folded to lower case, and stop words such as 

“the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For example, 

a query containing 5 terms may be “inverted file document collection built”. For each query, there 

existed at least one document in the document collection that is relevant to the query. We also made 

the generated query set for each document collection have the following characteristics: (1) Query 

repetition frequencies followed a Zipf distribution 6.0
1~)(
ρ

qPr , where Pr(q) is the probability of 

query q appearing in generated query set, and ρ is the popularity rank of query q; (2) The terms per 

query distribution followed the shifted negative binomial distribution 

12.1 )15.0()85.0(
2
8.0

)( −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= x

x
x

xf , where f(x) is the probability of a query containing x words. This 

made the distribution of generated queries closely resemble the distribution of real queries (Xie & 

O’Hallaron, 2002; Wolfram, 1992). 

5.4.2 Performance results 

This subsection shows the experimental results. These results include: (1) speedup of parallel 

query processing, and (2) compression efficiency. 

Speedup of parallel query processing 

This subsection investigates the DIA problem in an IRS that runs on a cluster of workstations. 

Assuming k workstations, the inverted file is generally partitioned into k disjoint sub-files, each for 

one workstation. Table 5.2 shows the performance of parallel query processing using interleaving 

partitioning scheme with either the Default algorithm or the PBDIA algorithm, where the Default 
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algorithm means that the documents in a collection are assigned document identifiers in 

chronological order. The Default algorithm is widely used in modern IRSs, and it already captures 

some clustering nature. Hence, the Default algorithm can serve a rigid baseline in comparison with 

the PBDIA algorithm.  The metric is the speedup relative to sequential query processing with 

Default algorithm. Experiments were conducted on the TREC collection. The sub-file on each 

workstation was compressed using the unique-order interpolative coding method (g=4). The parallel 

query processing time was defined as max[T1,T2,…,Tk], where Ti ( ki ≤≤1 ) was the time needed to 

retrieve and decompress the (partial) posting lists for the query terms on the ith workstation. The 

experimental results show that the interleaving partitioning scheme can yield near-ideal speedups, 

as reported in Ma et al. (2002). In addition, using the PBDIA algorithm to enhance the clustering 

property of posting lists for frequently used query terms, the interleaving partitioning scheme yields 

super-linear speedups. Hence the DIA problem should deserve much attention in parallel IR. 

 

Table 5.2 Speedup of parallel query processing 

The number of workstations Collection Approach 
1a 2 4 6 8 10 

FBIS Default + Interleaving partitioning 1.00 1.89 3.73 5.58 7.41 9.30 
 PBDIA + Interleaving partitioning 1.14 2.16 4.26 6.37 8.45 10.60
        
LAT Default + Interleaving partitioning 1.00 1.90 3.76 5.63 7.46 9.37 
 PBDIA + Interleaving partitioning 1.18 2.25 4.44 6.65 8.80 11.04
        
TREC Default + Interleaving partitioning 1.00 1.90 3.75 5.61 7.44 9.35 
 PBDIA + Interleaving partitioning 1.17 2.23 4.41 6.57 8.70 10.93

a Without interleaving partitioning 

 

Compression Efficiency 

To reduce average query processing time of parallel query processing, the PBDIA algorithm 

improves the compression efficiency for the frequently used query terms. However, this is at the 
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cost of sacrificing the compression efficiency for the less frequently used query terms. We need to 

know how much space overhead is needed to trade for this speed advantage. Average bits per 

document identifier of the different partitioning approaches are shown in Table 5.3. The sub-file on 

each workstation was compressed using the unique-order interpolative coding method (g=4). 

Results in Table 5.3 show that the PBDIA algorithms can speed up query processing with very little 

or no storage overhead. 

 

Table 5.3 Compression performance of different partitioning approaches 

The number of workstations Collection Approach 
1a 2 4 6 8 10 

FBIS Default + Interleaving partitioning 4.86 4.88 4.86 4.85 4.83 4.82 
 PBDIA + Interleaving partitioning 4.95 4.98 4.96 4.95 4.95 4.94 
        
LAT Default + Interleaving partitioning 5.22 5.23 5.23 5.21 5.19 5.17 
 PBDIA + Interleaving partitioning 5.01 5.02 5.01 5.01 4.99 4.97 
        
TREC Default + Interleaving partitioning 5.10 5.13 5.12 5.10 5.07 5.05 
 PBDIA + Interleaving partitioning 5.08 5.11 5.08 5.07 5.05 5.04 

a Without interleaving partitioning 

 

5.5 Summary 

This chapter is to propose an inverted file partitioning algorithm for parallel information 

retrieval. The inverted file is generally partitioned into disjoint sub-files, each for one workstation, 

in an IRS that runs on a cluster of workstations. When processing a query, all workstations have to 

consult only their own sub-files in parallel. The objective of this chapter is to develop an inverted 

file partitioning algorithm that minimizes the average query processing time of parallel query 

processing. Our approach is as follows. The foundation is interleaving partitioning scheme, which 

generates a partitioned inverted file with interleaved mapping rule and produces near-ideal speedup. 
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The key idea of our proposed algorithm is to use the document identifier assignment algorithm to 

enhance the clustering property of posting lists for frequently used query terms. This can aid the 

interleaving partitioning scheme to produce superior query performance. 
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Chapter 6 Conclusions 

This dissertation studies methodologies to improve the efficiency of an IRS that runs on a 

cluster of workstations. The key idea is developing efficient algorithms to reduce space and time 

needed to store and operate on the most-widely-used indexing structure, called the inverted file. The 

objective is to increase the efficiency of an IRS without increasing the hardware cost of the cluster. 

Research issues are 

(1) Inverted file size reduction, 

(2) Redundant decoding elimination, 

(3) Inverted file optimization, and 

(4) Parallel IR 

The contributions of this dissertation are involved in the two important research directions: 

(1) Efficient indexing and fast searching for large scale IRSs, and  

(2) Parallel IR. 

Based on the results of this dissertation, various new research topics in these two directions can be 

studied. 

 

6.1 Dissertation Summary 

The research topics in the dissertation are 

(1) Efficient coding method for inverted file size reduction, 

(2) Two-level skipped inverted file for redundant decoding elimination, 

(3) Document identifier assignment algorithm design for inverted file optimization, and 

(4) Inverted file partitioning for parallel IR. 



 

 125

The primary results of these research topics are: 

(1) For inverted file size reduction, we propose a novel coding method, called unique-order 

interpolative coding, to compress inverted files. This method facilitates the decoding process for 

interpolative coding using recursive elimination and loop unwinding. This method has both the 

advantages of compression ratio and fast decompression. Experimental results show that this 

method allows query throughput rate of approximately 30% higher than well-known Golomb 

coding and still provides superior compression. 

(2) For redundant decoding elimination, we propose a two-level skipped inverted file to 

simultaneously provide excellent query speed on both conjunctive Boolean queries and ranked 

queries with very little or no space overhead. We first employ well-known skipping 

mechanisms to create the first-level index on each compressed posting list by dividing the list 

into large blocks. Then we propose a novel skipping mechanism to create the second-level index 

on each large block by dividing the block into small sub-blocks. The first-level index is 

constructed to optimize the query performance of conjunctive Boolean quires, whereas the 

second-level index is to optimize the query performance of ranked queries. Experimental results 

show that the proposed two-level skipped inverted file improves the query speed for conjunctive 

Boolean queries by up to 16%, and for ranked queries up to 44%, compared with the 

conventional one-level skipped inverted file. 

(3) For inverted file optimization, we propose a fast document identifier assignment (DIA) 

algorithm, called partition-based DIA (PBDIA) algorithm, to generate a good DIA for the 

inverted file to optimize average query processing time when the distribution of query terms is 

known. In a typical IRS, a few frequently used query terms constitute a large portion of all term 

occurrences in queries. Based on this fact, the PBDIA algorithm assigns consecutive document 
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identifiers to those documents containing frequently used query terms. Experimental results 

show that the PBDIA algorithm only takes a few seconds to generate a DIA for a collection of 

1GB, and improves query speed by up to 25%. 

(4) For parallel IR, we propose a novel approach that partitions an inverted file to minimize parallel 

query processing time. The interleaving partitioning scheme has been proven that it can 

partition an inverted file with good load balance and produce near-ideal speedup. We observe 

that the cluster property plays an important role for interleaving partitioning scheme in the load 

balance and the query speed. We propose using the PBDIA algorithm to enhance the cluster 

property of document identifiers in posting lists. Experimental results show that the PBDIA 

algorithm can further improve the parallel query speed for interleaving partitioning scheme by 

14% to 17% no matter how many workstations are in the cluster. 

 

To verify scalability of our research works, we concatenated the FBIS and LAT to form a bigger 

collection TREC. Except for the topic 2 (2-level skipped inverted file), FBIS, LAT, and TREC were 

used to evaluate our proposed methods in the other three research topics. In these topics, the 

performance of our proposed methods for TREC is not worse than that for FBIS and LAT. This 

indicates that our proposed methods provide good scalability. We believe that this is also true for 

topic 2 since the topic 2 adopts the same idea of topic 1 to accelerate the decoding process of 

interpolative coding. 

 

There are several issues that need to be discussed: 

(1) Inverted file updating 
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Although our research works focus only on static document collections, they can still work well 

for dynamically changing collections with very few modifications.  

For dealing with changes due to inserted documents, sparing free space for each posting list can 

be allocated to allow future expansion (Brown et al., 1994), and the postings in the posting lists 

should be stored in descending order by document identifier since it is typically more efficient 

to insert at the head of the list than in any other location. This does not affect the performance of 

our research works. 

For dealing with changes due to deleted documents, a searchable update log can be used to store 

the postings of deleted documents between periodic rebuilds. When (partially) rebuilding 

inverted file, query processing is used to search both the inverted file and the update log, and 

merge the results of both. This can be accelerated by using our research works. 

(2) Disk design considerations 

We use an IDE hard disk per workstation in our experiments. However, low disk throughput is 

one of the main impediments to improving the performance of our research works (see Table 

2.8). How to increase disk throughput with different disk organizations/architectures is a very 

interesting research topic. For example, SCSI disk drives and disk arrays can be employed to 

improve disk throughput. For SCSI disk drives, to amortize the cost of a disk access, the 

controller read a fixed number of consecutive blocks ahead and stores them in its cache. How to 

adjust the block size and the number of read-ahead blocks is an important issue. For disk arrays, 

the simplest and best-known technique for balancing load is striping. Striping groups several 

sequential disk blocks in units of fixed size and lays those units out across the physical disks in 

round-robin fashion. How to adjust the size of striping unit is an important issue. 

(3) Fast document retrieval 
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There are two techniques used to evaluate queries in modern large-scale IRSs: eager (or term-at-

a-time) query evaluation and lazy (or document-at- a-time) query evaluation (Turtle & Flood, 

1995). In the first case, the posting list of one of query terms is computed first (usually, 

choosing the rarest term), and then, it is merged or filtered with the other lists. When evaluating 

is lazy, instead, posting lists are scanned in parallel, retrieving in sequence each document 

satisfying the query. The latter approach is essential in very large document collections, where 

the actual number of documents that could be retrieved is guessed, and the scan for documents 

satisfying the query is stopped as soon as enough documents have been retrieved. In this 

dissertation, we use eager query evaluation to verify our research works. However, we believe 

our research can still work well for lazy query evaluation. This is because lazy evaluation 

requires keeping constantly in sync several posting lists. To perform this operation efficiently, it 

is essential that a skip method is available that allows the caller to quickly reach the first 

document identifier larger than or equal to a given one. Our proposed two-level skipped 

inverted file can work well for this problem. 

 

6.2 Contribution and Suggested Work 

The contributions of this dissertation are involved in the two important research directions: 

(1) Efficient indexing and fast searching for large scale IRSs 

With the Internet explosive growth, the index structuring for large scale IRSs become more and 

more important. The barriers to make the efficient index structuring feasible were the changes 

of IRS scale and user query behavior. This dissertation presents the keys to eliminate the 

barriers: inverted file compression, skipped inverted file, and inverted file optimization. Based 
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on the results in this dissertation, various new topics can be investigated, including multimedia 

IR indexing, various search techniques, and inverted file caching. 

(2) Parallel IR 

The importance of parallel IR comes from the high performance requirement brought by 

Internet growth. The barrier to make parallel IR feasible was the lack of inverted file 

partitioning method to achieve ideal speedup. This dissertation presents the key to eliminate the 

barrier: the interleaving partitioning scheme with the PBDIA algorithm. Based on results in this 

dissertation, various research topics on parallel IR can be studies. These research topics include 

parallel DIA algorithm, parallel index rebuilding, parallel ranking, and incremental update of 

partitioned inverted file. 
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