A F Rt R s OB MR ORGP

Inverted File Design for Large-Scale Information Retrieval System

R B 4

R I R

PoER R4 e £ N0

R A N ;L
SR R

Inverted File Design for Large-Scale Information Retrieval System

R S LS Student : Cher-Sheng Cheng

R EFE K Advisor : Prof. Jean Jyh-Jiun Shann

=L+ g
FRaEd
L=

A Dissertation
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in
Computer Science and Information Engineering

Aug 2005

Hsinchu, Taiwan, Republic of China

PR R L £ AN

AR

BN TAERELTIL

WX OREBEGELE
AR FH M T £ & YT F

CFRRX A Y B R E A %X BT R %

SMBERHAL, FEAZAGHERT -

A 2 \j;\ /Z@ WL
GHER : %§,é5 éﬁ z \ﬁv%y%

i %1/4 17 5 571
\ /

Y v
— %ﬁ &

% x 42 [?4‘%/?%

PEREA ALtwm £ N =1 B

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

Date: Aug 30, 2005
We have carefully read the dissertation entitled Inverted File Design
for Large-Scale Information Retrieval System submitted by

Cher-Sheng Cheng in partial fulfillment of the requirements of the degree of
Doctor of Philosophy and recommend its acceptance.

Sog g Js ol N T o

loptip Qrnf Jom e Ao
"7? v

W g \fi NN

Thesis Advisor: ___ o Gk L ﬂ“‘ f’"‘“‘» A ——

Chairman: ?7/’ %

B > 2 i * ¥
PHRLIH® 22T FF TERIED

AL TRELECH? 0 L AR IE A ET R 2F
o ,9,94§_&)§“1§ﬁp9»91__1§§,«7%—‘ °

me AR A AFTRRR A EE ARG
hFRR I B

Bt [J7FX

A ERRFE LR R HEER VL R SRS
FhuREa ANRSFER TFREL S TRLT 208
Bw i ¢ BE I 2P i B i
Bl 2 4218 7 1 1B %WWT&’MW%~“¢§$ﬁﬂ?§L%
Fs s £l T L TR
@E%\T$EEQ§|JE'1 o
He 2 PR ORI PR R

A

&

m’;t

ARE DAL AE rnneer WY EARBEYI 9p o

Tk e v e L W =3 x®I6E9? 9p o

B CETE

. BEER

PEARIME(? 09 P

1 %

s

AT 2 9B ERY 1IEHBEFE LI E 2
;[_\WQ’%EEI P~ 3 ’J\\)%’}:ﬁu /J “L"Vﬁ%—%%—’\;{ i
b g | E AR g

AERE L E e 0 B A TR

HrFe

AA BN EIT Y

AL U RERE L SF o Atiadid
%WFE@ IS AEIE, 2 WA B g H R 2P
10 B A B FE R A el Sl 0 F v
FRRYPRIN O FEFFEFRTS 5 -
m?h"ﬁ%%%%%@ﬁ%?midﬁ%%@ﬁ%%%ﬂ
LGSRSO e v
i -& 1 B#Q}E‘?o

B L EE
2o BE R

PERARYL A9 09 P

%%

[

A

ID:GT008517802

AEREL R B %Y 0 R AAN R L AR FR AR
B ABERS 1 BYBEREIE -2 He o

Ho P A F ARG A s R kut
ﬁ%%ﬁ3ﬁﬁ%ﬁﬁ

PREEEA TR FITRL IR 2% (7HL) 22 H a8
&ﬁ@iﬁ*%’lm%% PR 2 X i Y %ﬁéﬂ L i
v N A EH s T ;ﬂﬂz—ﬁil"’ﬁ’ L R e R A i AP
?\n Fg—ﬁ_ﬂ"s \-aﬁﬁ—’é.ﬁé—}’\lﬁ/{:ﬂz ol]"J”;ﬁ’ ﬁ'_’}:ﬁ %‘—rg\‘g\;
JIJ"/‘PO
MAFATAEFIRF 2R 2 RF T80 5% o e ¥ (Tl ip i
HEFHL o

L TR

mrge: B R

AF94E09% 09p

Lo rpEd g 2288 Dolers o B9 - PR R igz 2 2 (#
LA Rk~ FEEREE)Z T 7 - DO pEL R R e
2 -4 W R A AR 6

W
R @R E 0 F AR S SR Wit H 2 T 113 F 5% 3 o
WA AT R B A B AR R ML FA A RRGE ST P
BIEf R RiaAKY c BRPHTRE R BN EKIE S 2R EP K MG J
R SR & (& S AL B R

T o RENGRHmY AP Faw L AR o

BHB A S IR R R SR M2 AR RS R

E#HF T s - BAR

B R A AR EERE S AR PREAY

BG4k AR AR S

RO A M n A A GRECE I L Gkl s @ » JEAT

Q\'é?ff'_ o ﬁx|9),i. F&]’;"\'mi—)‘ ﬁ‘bqll\ ’ /31‘/11"&,1 Kj\'&pﬁ‘x'lif"‘ mi}:]]ﬁ?"’k’,\;f ’g‘} ¥

1P _% NN
X T T

CRRE R SE o A

S

LT B 2005 &£ 8 *

AT R AR R R
FiAmyE R T T
Bl ~FFa1my i
#E

A LR AIFF L TAR R RT OP c AT B E K TR A R L
WA P 0 blde FHF RIS ATIBEIAFE o 0 Ax BT
Fr40F > FRRE REY C RGIEERKFIRIAZFH IR T F75 L TR - b
R o F - BT ARG - BAAREOY PR I EBE P AR AN B 22 3
5ﬁ3ﬁ°*ﬂ?ﬂﬁ?ﬁﬁﬁﬁﬁ&£%@*?ﬁiﬁﬁﬁﬂﬁﬁﬁﬁmmiﬁﬁﬂwi
BT Y B S o d ST ERTH - B2]—j}g ¢ E IR E g gt g o8
LR FIMEE R SR RS B FRI VMR BRARF A ALEF S
Bep R EIRL M oo pd o RGO e B RTE MR B ORIZGE P~ AR
.&?ﬁiﬁ)ﬁﬁ&fjﬁdﬁﬁ;{glkﬂj

T
s
o

X

ok
A

b

o

=i

MR Rk S A o

R HAF T 5 R P RAL

(1) # B - BF el kigRpu EpEqkr oz 7
GEBERALY A S B AR R KR Bl S~ TR PR S g e
BHRSIFR > Ripdir g d R DBRRGEER o AR HFT K- BT S Y Z

TF PR R 2 A RGGREF o AP UREF AR DN BRBZ L AH FT

i 505 2 IR BT R e P RSS2 R R AR R R e
A ik B 0 AT 5 R R P SNRAS B AR R BT ¢

Q) % BT HESREGF R T RafRg
R BRAEY A PRS- BEATHESEELAS P LT R ik B P SR
@%%ﬁoéﬁ%%ﬁﬁﬁﬁﬂﬁ&ﬂ?Bﬁﬁ?wgﬁﬁﬂ%?ﬁ%%?wgﬁﬁﬁ
FENFHEY DT LA STRF - BEYZRIT G ocbeid A AITDER T BE
FHEEAE ANFAITIEG L AR APFE T - BEATORERS c SRHEFHT

PR B e e BB S A A g P T TR A TSRS o B %
BT AP ATIRER TOBME S R AR T e B RN R A S L A

Q) fI*>2me kR FEEHEERGEL

BEBRALY AP - B EREFEE N AR AIEE R - A PRETIE B
PRE RN RLE Y BE UREE P AR PR DR 2 T ARG TR
ST g R oo ARALA PR D - BATOUR E 2 o L5 Partition-based document identifier
assignment (PBDIA) % & /2 » k32 #4224 £ chimil - EBFEZT G e g
BFSpPELITE S T EFAAERNTF R REPLEARE[NTRAZEE B A
LR AEE {4 o S BT A P 1k PBDIA G B 2 T 1 ki b RILRER

@)% BT F A 45t i b 2

i BREY APEHFTETARE (RN - BEE R B2 o LR LR &
Fe 1 T e B RE > ML AR D N T A3 o IR E 2 PP R M e
By TIOERE o AP AR PBDIAGE ZiRe g AR BAADF R 2 ¥ BT gy
R L R AR ISR L AR AR EE AT LT o AR T
FiU g I B E R ?-"1i§§']ﬁ$‘bh’l;‘57? e o R SITIR M e B S o

rhT LAY AR

EFEE AR TR DB B AP TR MO S 208 0 T kS R ARR ST %
b A B AT R L P ECK % éhGolomb coding:B -1 % $30% o
B SRR G o AR R T RS R AR AR B T g
BRI HAA AR R P RFTRD1% 4 e LA AL E R B3
7 2 44% o
AR R EE 2 G o AP ATk I PPBDIAR B2 T 2 licfy PR S IGB A] e
PEA LRI PRI REAFRITEREF 7RI 25% -

BT EFARE S G APTRNER A S IT LR E TR AN F T

&

-
\p,*@

=83

Uik B 4% 7% m- BEETF 50 01 i

10

Inverted File Design for Large-Scale Information Retrieval System

Student: Cher-Sheng Cheng Advisor: Prof. Jean Jyh-Jiun Shann

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

This dissertation investigates a variety of techniques to improve efficiency in information
retrieval (IR). Information retrieval systems (IRSs) are widely used in many applications, such as
search engines, digital libraries, genomic sequence analyses, etc. To efficiently search vast amount
of data, a compressed inverted file 1s used in an IRS to locate the desired data quickly. An inverted
file contains, for each distinct term in the collection, a posting list. The query processing time of a
large-scale IRS is dominated by the time needed to read and decompress the posting list for each
query term. Moreover, adding a document into the collection is to add one document identifier into
the posting list for each term appearing in the document, hence the length of a posting list increases
with the size of document collection. This implies that the time needed to process posting lists
increase as the size of document collection grows. Therefore, efficient approaches to reduce the
time needed to read, decompress, and merge the posting lists are the key issues in designing a large-
scale IRS. Research topics to be studied in this dissertation are
(1) Efficient coding method for inverted file size reduction

The first topic is to propose a novel size reduction method for compressing inverted files.

Compressing an inverted file can greatly improve query performance by reducing disk I/Os, but

11

this adds to the decompression time required. The objective of this topic is to develop a method
that has both the advantages of compression ratio and fast decompression. Our approach is as
follows. The foundation is interpolative coding, which compresses the document identifiers with
a recursive process taking care of clustering property and yields superior compression. However,
interpolative coding is computationally expensive due to a stack required in its implementation.
The key idea of our proposed method is to facilitate coding and decoding processes for
interpolative coding by using recursion elimination and loop unwinding. Experimental results
show that our method provides fast decoding speed and excellent compression.
(2) Two-level skipped inverted file for redundant decoding elimination

The second topic is to propose a two-level skipped inverted file, in which a two-level skipped
index is created on each compressed posting list, to reduce decompression time. A two-level
skipped index can greatly reduce decompress time by skipping over unnecessary portions of the
list. However, well-known skipping mechanisms are unable to efficiently implement the two-
level skipped index due to their high storage overheads. The objective of this topic is to develop
a space-economical two-level skipped inverted file to eliminate redundant decoding and allow
fast query evaluation. For this purpose, we propose a novel skipping mechanism based on block
size calculation, which can create a skipped index on each compressed posting list with very
little or no storage overhead, particularly if the posting list is divided into very small blocks.
Using a combination of our skipping mechanism and well-known skipping mechanisms can
implement a two-level skipped index with very little storage overheads. Experimental results
showed that using such a two-level skipped index can simultaneously allow extremely fast
query processing of both conjunctive Boolean queries and ranked queries.

(3) Document identifier assignment algorithm design for inverted file optimization

12

The third topic is to propose a document identifier assignment (DIA) algorithm for fast query
evaluation. We observe that a good DIA can make the document identifiers in the posting lists
more clustered, and result in better compression as well as shorter query processing time. The
objective of this topic is to develop a fast algorithm that finds an optimal DIA to minimize the
average query processing time in an IRS. In a typical IRS, the distribution of query terms is
skewed. Based on this fact, we propose a partition-based DIA (PBDIA) algorithm, which can
efficiently assign consecutive document identifiers to those documents containing frequently
used query terms. Therefore, the posting lists for frequently used query terms can be
compressed better without increasing the complexity of decoding processes. This can result in
reduced query processing time.
(4) Inverted file partitioning for parallel IR

The fourth topic is to propose an inverted file partitioning approach for parallel IR. The inverted
file is generally partitioned into disjoint sub-files, each for one workstation, in an IRS that runs
on a cluster of workstations. When processing a query, all workstations have to consult only
their own sub-files in parallel. The objective of this topic is to develop an inverted file
partitioning approach that minimizes the average query processing time of parallel query
processing. Our approach is as follows. The foundation is interleaving partitioning scheme,
which generates a partitioned inverted file with interleaved mapping rule and produces a near-
ideal speedup. The key idea of our proposed approach is to use the PBDIA algorithm to enhance
the clustering property of posting lists for frequently used query terms before performing the
interleaving partitioning scheme. This can aid the interleaving partitioning scheme to produce

superior query performance.

13

The results of this dissertation include:

e For inverted file size reduction, the proposed coding method allows query throughput rate of
approximately 30% higher than well-known Golomb coding and still provides superior
compression.

e For redundant decoding elimination, the proposed two-level skipped inverted file improves the
query speed for conjunctive Boolean queries by up to 16%, and for ranked queries up to 44%,
compared with the conventional one-level skipped inverted file.

e For inverted file optimization, the PBDIA algorithm only takes a few seconds to generate a DIA
for a collection of 1GB, and improves query speed by up to 25%.

e For parallel IR, the proposed approach can further improve the parallel query speed for
interleaving partitioning scheme by 14% to 17% no matter how many workstations are in the

cluster.

14

Contents

ADSTFACT 1IN CRINESE ...ttt bt b et bt s ettt e s bt e beneeneneas 9
AADSTIACT.....c..ceiaee ettt bbbt b bbbttt ettt enene 11
CONTEINTS ...ttt ettt s a e et s b et e a e bt et e a e e ne e s e e nnes 15
ST OF FIQUIES ...ttt ettt ettt et b e e te e st e b e s te e s e s eesaessesseeseessesseessessenseas 17
LISE OF TADIES ...ttt 18
Chapter 1 INTrOAUCTION.........oocviiiieiecee ettt ettt ettt et e s e ae e eae e aeeeaaeeeeas 19
1.1 Background: IRS Runs on Cluster of Workstationsccoecevcueeviiriieniienieeieeie e 19

1.2 Objective: Inverted File Design for Large-Scale Information Retrieval System................. 22

1.3 RESEATCH TOPICS c.uvvieiiiieiiieeiie ettt ettt ettt eve e e e et e eteeesaeessseeesaeessseessseesnseesnseas 25

1.4 Dissertation OrGaniZation............eiuerierierierieeieeie ettt et ettt et b e bt e bt e sieenseesaeenee 28
Chapter 2 Inverted File Size REAUCHIONoooveivieiiiiiieeeeceeeee et 29
2.1 Well-known Interpolative COAING. ... couuiieaiiieerieniianrieerieenieeneeesieesseeesineesseessseeenseeensneenns 31
2.1.1 AIZOTIthm dESCTIPLION ..viieurieerieiriiiesiieiereseaeesineesbaeeteeeeeeensaeensseessseesnseesnseeeseeenseeennns 31

2.1.2 Observation and IMPIOVEMENLEcc.eerveereeiiueaseesineeeeeeeereeeeseessseessessseessesssesssesssens 33

2. 1.3 REIMATKS. ...t eiiiteeneeie ettt et ete et e e ssasnesas e enssas st ennashseenseensaenseessaeseesseenseesseenseensenns 36

2.2 Proposed Method: Unique-Order Interpolative Coding........cccccvevveeiieniieciienieieeieeeeee, 36
2.2.1 The coding MEthOd........oiiiiieeit e sttt ettt ettt e enbe e b e ebeeee e 37

2.2.2 TITUSETALION cuvrerr i iesuiesuessueessnesnnesunesnsesnnsesbaennsenseesssshsee s senbasseeensesnseenseenseenseensesnsesnsennsenn 39

2.2.3 Implementation OPtIMIZATIONeeeiviieiierreeneeeeiieeetiesssisseeeeeeaeesreeeseeesseeeseeenseeennns 42

2.3 QUANTITATIVE ANALYSIS ..c..veeuiiiiii ettt it ettt ettt b b et bE e s h e bt et e bt e sbeenbee bt enaeesaeenee 43

2.4 Performance Evalu@tionccooiiiniiiiiiiiiie ittt ettt ettt 48
2.4.1 Document collections and QUETIES «..icuiriiiiiiiiiineeeereiueeieeeeeieerteeieeneeeieeseeereenseenseas 49

2.4.2 Performance rESULLS......coueeiie ittt sttt 50

2.5 Other APPIICALION......cccieeiuiireiieiiieeteete e eree et e et esaaesbeeesseeenseeesseeeseeennseannseessseesnseennes 57

I 11 110 0 T 1y 58
Chapter 3 Redundant Decoding EIIMINALIONccciiiiiiriiiieiieceeceeeeeeeeeee e 59
3.1 Two Well-known Skipping Mechanisms and Their Posting List Structures.............c........ 62
3.1.1 Skipped INVETted fIlec.eeviiiiieiieeiieeie e 63

3.1.2 Blocked IVErted fIlecccuiriiiiiiiiiieeieee et 64

3 1.3 REMATKS.eieiiieiiieiee et ettt ettt ettt e sb et sb b et e saeesnaens 65

B2 TESE DIALA ...ttt st b et e st e s e et eeateas 66
3.2.1 Conjunctive BOOIEan qUETIESc.cecueriirieriieieeieeie ettt et e e 66

3.2.2 RANKEA QUETICS ...cuvvieieiieiieeiie ettt ettt ettt stt e s te e et e e e e e esteeensaeensaeesaeenssaeenneas 67

3.3 Proposed Two-level Skipped Inverted Filesccocoviiiiiniiniiniieniiieeeee e 67
3.3.1 Framework of proposed approach...........ccceeecueeeiieeiiieeciie et 67

3.3.2 Proposed skipping MEChaNISMcccueeriuieriieeiieeiie ettt e ereeeeee e e aee e 69

3.4 Performance Evaluationccocuoiiiiiiiiiiiiiii e e 75
3.4.1 Sizes for various inverted file Organizations............ceecueercveeriiieeiieerie e 75

3.4.2 Elapsed time required tO ProCESS QUETIESeevierueeruierueerreeniierieenieesseesseesseesseesseesseensaens 77

3.5 SUMMATY ettt et ettt et e s e st e et ee e bt e eateeesteeabeesabeesnseesnseesnseeenneeenes 81
Chapter 4 Inverted File OptimizZation...........c.c.oovioiiiiiiieceeeeeeeeeeeeee e e e 82
4.1 General FramewWOTK.........coouiiiiiiiiieiie ettt st 83

15

4.2 Document Identifier Assignment Problem and Its Algorithmccccoocoviiiininiininnene 87

4.2.1 Problem mathematical formulation.............ccoeceeviierieeriienieieeeeeeeee e 87
4.2.2 Solving DIA problem via the well-known Greedy-NN algorithm.................ccceuee..e. 89
4.3 Partition-based Document Identifier Assignment Algorithmccoecvevieniiiieninneeniens 94
4.3.1 Generating an optimal DIA for a single query termcocceeveerienienienienienee 94
4.3.2 Efficient PBDIA algorithm for DIA problemccccceeviiiiiieiiieiieceeceeceeeieee 96
4.4 Performance Evaluationccc.ooiiiiiiiiiiiiieieeeete et 102
4.4.1 Document collections and QUETIEScceevveeriuieeiiieeiieeiieerieeeseeeseeeeseeesaeeeaeesaneas 102
4.4.2 Performance TESULLScccueiiuiiriiiiieiieiieeet ettt 104
L TN Y0101 10 | PSSR 111
Chapter S5 PArallel TRc.ooeieeeeeeeeee ettt ettt e beete s e saeesaensens 112
5.1 Inverted File Partitioning Problem.............cccoeviiiiiiiiiiiiieiceeeeeee e 113
5.2 Fundamental: Interleaving Partitioning Scheme...........cccccevvierieniiiniiinecece e 114
5.2.1 AlgOTithim deSCTIPLIONeeuvieiiieeiieie ettt ettt se e s saeeneee e e saenneas 114

5.2.2 How to improve parallel query processing through document identifier assignment
.. 116
5.3 Framework of Proposed Approachooiiiiiiciiini et 118
5.4 Performance Evaluation .i.cci.ooiiiiiiiiiiiiie it sttt 119
5.4.1 Test collection and QUETY SEL....ccceiitlouiiiiteiineeie ettt siee st ee st e st st seee e siee e 119
5.4.2 Performance TESUILS ... oo i et bt sttt ste e st ettt et e et e e enseenaeas 120
TR TN 0100002 oy s St SO S B e TR S 122
Chapter 6 CONCIUSIONS.....oociiiitieeeciiisiiiiss i esesesseessassasesensassessasiesaessaeseessesseessassassesseessessesssassens 124
6.1 DiSSETtation SUMIMATY ...uveeetierieesteesiseeesseesinreeitaeassaesesssienesansaessseessseessseessseessssesssseessseennes 124
6.2 Contribution and Suggested WOrkKccc.ciiimiiiiiiieesieeeeeeeee e 128
RETEIEICES ...ttt ettt ettt s e steb ettt bttt ebeeas 130

16

List of Figures

Figure 1.1 The concerned clustered architecturecooiiiiiiiiiiiiiiiiiiiii e, 20
Figure 1.2 Inverted index and document collectioncoviiiiiiiiiiiiiiiiiiiiiiinenee, 21
Figure 1.3 Recommended inverted file design flowchart..................coooiiiiiiiiiiiiiiiin, 28
Figure 2.1 Interpolative COAINgG........oiuiiniintitiit e e e aeae e 32
Figure 2.2 An illustration of two-dimensional array |_Triple....................ooooiiiil. 34
Figure 2.3 The algorithm for generating |_Triple............coooiiiiiiii e 35
Figure 2.4 The illustration of unique-order interpolative coding...............ccooeviiiiiiiiniennnnn.. 38
Figure 2.5 Unique-order interpolative COAINg.ouiiuiiuiitiiiii e eeeaans 41
Figure 3.1 The illustration of the proposed skipping mechanism..................cccooviiiiinninnnn.. 70
Figure 4.1 Inverted index and document collectioncoooviiiiiiiiiiiiiiiiiiiieeene, 84
Figure 4.2 An example to show different DIAs result in different compression results............... 86
Figure 4.3 The DSG for the example documents in Figure 4.2(a)..........cccovviiiiiiiiiiiininan... 90
Figure 4.4 The Greedy-NN algorithm for the SDIA problem.........c.....coooiiiiiiiiiiii 91
Figure 4.5 An example to illustrate how to transform an instance of the DIA problem into an
instance of the SDIA problem.ot 93
Figure 4.6 The flowchart for the PBDIA algorithm............... ... 97
Figure 4.7 The PBDIA algorithm for the DIA problem...............cco.cooiiiiiiiiiiiii, 101
Figure 5.1 Partitioning with interleaved mapping rule................ccooo 115
Figure 5.2 Interleaving partitioning SCHEMIE. .. ueuiiutiiiiit et ian e 116

Figure 5.3 An example to show how to improve parallel query processing through

document identifier aSSIZNMENT.ouiiuiinteiiiee ittt e e eeeaenaans 117
Figure 5.4 The proposed approach to partition an inverted file for an IRS that runs on a cluster

OF WOTKSTAtIONSttt ittt 118

17

List of Tables

Table 1.1 The overview of the research tOPICS.c.ovuviiriiitt i 27
Table 2.1 Some examples of the full sequence of triples for the general posting list 33
Table 2.2 Some examples of the maximum number of bits required for unique-order

interpolative coding if Golomb coding is used to encode boundary pointers under

the condition that no residual pointers eXist............ooeeiiiiiiiiiiiii i, 45
Table 2.3 Compression results for geometric and skew geometric distributions of f = 1,000,000

APS: AVETAZE DILS POI AP ...ttt ittt et e ettt et e 47
Table 2.4 Statistics of document COLECTIONS.eiuitiitiii i, 49

o P . B I PP 51
Table 2.6 Compression Performance of different coding methods.....................cooiii 52
Table 2.7 Search performance of different coding methods.......c.........c 55
Table 2.8 Search performance of Rice coding and unique-order interpolative coding................. 56
Table 2.9 Within-document frequency index compression of all posting lists, in average bits per

001011 o e e S B 58
Table 3.1 Processing of generated conjunctive Boolean queries...................c..coevviiiiiiinininn. 67
Table 3.2 Size of the inverted files constructed using the proposed skipping mechanism with

different values Of Q..ouiini it 74
Table 3.3 Size of various inverted file Organizations. ... oovievr et viinn i 76
Table 3.4 Conjunctive Boolean query performance of various inverted file organizations............ 79
Table 3.5 Ranked query performance of various inverted file organizations............................ 80
Table 4.1 Some example codes fOr ¥ COING........o.veviiiiiei i 86
Table 4.2 Statistics of document COIECHONS.uutiie it 103
Table 4.3 Time consumed by the Greedy-NN and the PBDIA algorithms............................ 105
Table 4.4 Query performance of different DIA algorithms.................cooiiiiiiiiiiiii i, 108
Table 4.5 AvgBPIgp of different DIA algorithms................ooiiiii 109
Table 4.6 Compression performance of different DIA algorithms..................cocoii. 110
Table 5.1 Statistics of document COLECHIONS.o.eiuiniitiii e 119
Table 5.2 Speedup of parallel QUETY ProCESSING.coueitiitiii it 121
Table 5.3 Compression performance of different partitioning approaches..................coeieenne 122

18

Chapter 1 Introduction

Interest in information retrieval (IR) is growing rapidly, and many systems such as search
engines, digital libraries, genomic sequence analyses, etc., are developed to efficiently search
through terabytes of data and quickly identify the data relevant to the user query. One of the major
problems faced by those systems is that the information explosion overwhelms the load of CPU and
disk on an information retrieval server. For example, the size of Web has doubled in less than two
years (Lawrence & Giles, 1999). This requires using parallel architectures to speed up search.
Recently, cluster computing has revived the field of parallelism for IR. This dissertation proposes
methodologies to improve the efficiency of an IRS that runs on a cluster of workstations. Efficiency
here means that queries are processed faster without upgrading the hardware or the same throughput
is achieved by a smaller machine configuration. The key idea is developing efficient algorithms to
reduce space and time needed to store and operate on the most-widely-used indexing structure,
called the inverted file. The objective is to increase the efficiency of an IRS without increasing the
hardware cost of the cluster. To achieve the objective, this dissertation deals with inverted file size
reduction, redundant decoding elimination, inverted file optimization, and parallel IR.

This chapter is outlined as follows. Section 1.1 and Section 1.2 present research background
and research objectives. Section 1.3 presents an overview on all research topics in this dissertation.

Section 1.4 presents the organization of this dissertation.

1.1 Background: IRS Runs on Cluster of Workstations

Parallel computing hardware has been used extensively to increase the data handling and query

handling capacity of IRSs. Recently, the Multiple Instruction Multiple Data (MIMD) model of

19

parallelism, implemented as a cluster of workstations, has become the dominant parallel IR
architecture. Inktomi, FAST, and Google are all understood to use it.

In this dissertation, we intend to reduce query processing time of an IRS by using a cluster as
the server architecture. The cluster consists of identical workstations — each has its own CPU,
memory, and disk — interconnected by a local area network (cf. Figure 1.1). Such an IRS works as
follows. Each query is broadcast to all workstations in the cluster and each of them processes the
query over the index for the piece of the collection for which they are responsible. The workstation
may need to communicate with each other to exchange global statistical information. They

definitely need to communication with each other to form merged results.

user queries

Y (broadcast to all workstations)
A 4 A\ 4 A\ 4
workstation workstation workstation
Wn Wor ey
RAM RAM RAM
Disk | DT QP —————————) [Disk
part of part of part of
inverted file inverted file inverted file

Figure 1.1 The concerned clustered architecture.

A specific data structure, called “inverted index”, is consulted to find answers for a query (cf.
Figure 1.2). An inverted index consists of an index file and an inverted file. An index file is a set of
records, each containing a keyword term t and a pointer to the posting list for term t. An inverted

file contains, for each distinct term t in the collection, a posting list of the form

20

PL; =<idy, idy, ..., ids>,
where id; is the identifier of the document that contains t, and frequency f; is the number of
documents in which t appears. The document identifiers are within the range 1...N, where N is the
number of documents in the indexed collection. For ranking evaluation, each id; may be stored with
a within-document frequency fq; to indicate term t appears in the document id; a total of fg; times. In
a large document collection, posting lists are usually compressed, and decompression of posting
lists is hence required during query processing.

doc. identifier=1

| terms ointer fi posting lists i i computer. . !

0 ISR DN R N ! i | ...architecture. .. :

i |architecture »1252 1,2,5,10,12 .| & doc. 1der}tiﬁer=2 i

: b ...architecture... !

i computer »1355 1,3,7,10, 12 ... i i doc. identifier=3 i

| __indexfile inverted file { & |0 comPuer- |

| doc. identifier=4 i

answer list of "computer" <and> "architecture": 1,10,12,... i !

answer list of "computer" <or> "architecture": 1,2,3,5,7,...

document collection
Figure 1.2 Inverted index and document collection.

In a typical IRS, a few frequently used query terms constitute a large portion of all term
occurrences in queries (Jansen et al., 1997). This suggests that it is advisable to store the index
records for frequently used query terms in RAM to greatly reduce index search time. Hence, the
significant portion of query processing time is to read and decompress the compressed posting list
for each query term. This paper restricts attention to inverted file side only and investigates the
efficient approaches to reduce space and time needed to store and operate on the inverted file and

improve the overall IR performance.

21

The major challenges imposed by very large scale IR (particularly on World Wide Web) are:

1. For a large-scale IRS, the access time and storage space of an inverted file become considerably
large (Rillof & Hollaar, 1996; Baeza-Yates & Ribeiro-Neto, 1999). The challenge is how to
improve IR performance while reducing storage requirements for a large inverted file.

2. As a document collection grows, the number of occurrences of common terms is likely to
increase in proportion. This means that posting lists for common terms will be longer,
increasing processing time during query processing. The challenge is how to speed up query
processing by skipping over unnecessary portions of the lists without degrading retrieval
effectiveness.

3. For an IRS running on a cluster of workstations, an inverted file should be partitioned and
distributed onto disks of multiple workstations. The challenge is how to partition the inverted
file such that, during query processing, all workstations have to consult only their own local

portion of the partitioned inverted file in parallel and obtain high parallel efficiency.

1.2 Objective: Inverted File Design for Large-Scale Information Retrieval

System

The objective of this dissertation is to increase the efficiency of an IRS without increasing the
hardware cost of the cluster by developing efficient algorithms that reduce the time needed to read,
decompress, and merge posting lists for query terms. To achieve our research objective, we
investigate several issues as follows:

e Inverted file size reduction
Since large inverted files demand greater I/O to read them, the size directly affects the processing

time. To solve problems such as the slow response time and the large disk space required in large

22

scale IRSs, a coding method with fast decoding and good compression should be developed. We
notice that in an inverted file the document identifiers for a given word are usually clustered. If a
coding can take advantage of clustering property, excellent compression can be achieved.
However, the mechanisms of decoding for all well-known coding methods that can exploit
clustering property well are more complex, which reduce the ability of searching performance at
some degree. Therefore, the key to this issue is to develop a new coding method that can exploit
clustering property well and allow extremely fast decompression.
e Redundant decoding elimination

The query performance on a compressed inverted file can be improved by using skipping
mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; Anh & Moffat, 1998). Although
compression can greatly reduce disk access time, the compressed posting list for each query term
must be completely decompressed in order to be randomly accessed to any posting in it. When
processing queries, it is usually that only a subset of the postings in a posting list needs to be
examined. To remove redundant decoding, skipping mechanisms (Moffat et al., 1995; Moffat &
Zobel, 1996; Anh & Moftat, 1998) that allow queries to be processed with only partial decoding
of the list have been proposed. A common technique of skipping mechanisms is to divide the
posting list into blocks and add auxiliary information into each block, so that the postings within
a block can be quickly skipped without decoding them if they are useless in set operations during
query processing. There are two important types of queries: conjunctive Boolean queries and
ranked queries. For conjunctive Boolean queries large blocks provide faster searching for
candidates, whereas for ranked queries small blocks do (Moffat & Zobel, 1996; Anh & Moffat,
1998). Although all well-known skipping mechanisms can work well for large blocks, we

observe that they can incur high storage overheads if the posting lists are divided into small

23

blocks. The increase in disk I/O time outweighs the reduction in decompression time. Therefore,
the key to this issue is developing a novel skipping mechanism that can support small blocks with
very little storage overhead should be developed.
e Inverted file optimization
The query processing time in a large-scale IRS is dominated by the time needed to read and
decompress the posting lists for the terms involved in the query (Moffat & Zobel 1996), and we
observe that the query processing time grows with the total encoded size of the corresponding
posting lists. This is because the disk transfer rate is near constant, and the decoding processes of
most encoding methods used for compressing inverted files are on a bit-by-bit basis. If we can
reduce the total encoded size of the corresponding posting lists without increasing decompression
times, a shorter query processing time can be obtained. A document identifier assignment (DIA)
can make the document identifiers in the posting lists evenly distributed, or clustered. Clustered
document identifiers generally can improve the compression efficiency without increasing the
complexity of decoding process, hence reduce the query processing time. The key to this issue is
developing a fast algorithm to finding a near-optimal DIA that reduces the average query
processing time in an IRS when the probability distribution of query terms is given.
e Parallel IR

To process the ever-increasing volume of data while still providing acceptable response times,
parallel processing algorithms specifically for IR were developed. The key to this issue is to
partition the inverted file into sub-files each for one workstation such that, during query
processing, all workstations have to consult their own sub-files in parallel and query processing
time can be reduced. To achieve high parallel efficiency, a partitioned inverted file to be

distributed on the set of workstations should: (1) eliminate the communication overhead of

24

transferring postings between workstations during query processing, (2) balance amount of
postings to be processed during parallel query processing, and (3) keep compression efficiency in

the partitioned compressed inverted file.

1.3 Research Topics

This dissertation proceeds by dealing with the following research topics:
(1) Efficient coding method for inverted file size reduction,
(2) Two-level skipped inverted file for redundant decoding elimination,
(3) Document identifier assignment algorithm design for inverted file optimization, and
(4) Inverted file partitioning for parallel IR.

The first topic is to propose a novel size reduction method for compressing inverted files.
Compressing an inverted file can greatly improve query performance by reducing disk I/Os, but this
adds to the decompression time required. The objective of this topic is to develop a method that has
both the advantages of compression ratio and fast decompression. Our approach is as follows. The
foundation is interpolative coding, which compresses the document identifiers with a recursive
process taking care of clustering property and yields superior compression. However, interpolative
coding is computationally expensive due to a stack required in its implementation. The key idea of
our proposed method is to facilitate coding and decoding processes for interpolative coding by
using recursion elimination and loop unwinding. Experimental results show that our method
provides fast decoding speed and excellent compression.

The second topic is to propose a two-level skipped inverted file, in which a two-level skipped
index is created on each compressed posting list, to reduce decompression time. A two-level

skipped index can greatly reduce decompress time by skipping over unnecessary portions of the list.

25

However, well-known skipping mechanisms are unable to efficiently implement the two-level
skipped index due to their high storage overheads. The objective of this topic is to develop a space-
economical two-level skipped inverted file to eliminate redundant decoding and allow fast query
evaluation. For this purpose, we propose a novel skipping mechanism based on block size
calculation, which can create a skipped index on each compressed posting list with very little or no
storage overhead, particularly if the posting list is divided into very small blocks. Using a
combination of our skipping mechanism and well-known skipping mechanisms can implement a
two-level skipped index with very little storage overheads. Experimental results showed that using
such a two-level skipped index can simultaneously allow extremely fast query processing of both
conjunctive Boolean queries and ranked queries.

The third topic is to propose a document identifier assignment (DIA) algorithm for fast query
evaluation. We observe that a good DIA can make the document identifiers in the posting lists more
clustered, and result in better compression as well as shorter query processing time. The objective
of this topic is to develop a fast algorithm that finds an optimal DIA to minimize the average query
processing time in an IRS. In a typical IRS, the distribution of query terms is skewed. Based on this
fact, we propose a partition-based DIA (PBDIA) algorithm, which can efficiently assign
consecutive document identifiers to those documents containing frequently used query terms.
Therefore, the posting lists for frequently used query terms can be compressed better without
increasing the complexity of decoding processes. This can result in reduced query processing time.

The fourth topic is to propose an inverted file partitioning approach for parallel IR. The
inverted file is generally partitioned into disjoint sub-files, each for one workstation, in an IRS that
runs on a cluster of workstations. When processing a query, all workstations have to consult only

their own sub-files in parallel. The objective of this topic is to develop an inverted file partitioning

26

approach that minimizes the average query processing time of parallel query processing. Our
approach is as follows. The foundation is interleaving partitioning scheme, which generates a
partitioned inverted file with interleaved mapping rule and produces a near-ideal speedup. The key
idea of our proposed approach is to use the PBDIA algorithm to enhance the clustering property of
posting lists for frequently used query terms before performing the interleaving partitioning scheme.
This can aid the interleaving partitioning scheme to produce superior query performance.

We show the overview of the research topics in Table 1.1 and the recommended inverted file

design flowchart in Figure 1.3.

Table 1.1 The overview of the research topics.

Posting list Topic 1: Topic 2: Topic 3: Topic 4:
processing Inverted file Redundant DIA-based Parallel IR
size reduction decoding inverted file
elimination optimization
: +4+
load time +++ — + (parallelized)
SO +++
decompression time - +++ +
P (parallelized)
merge time no change +++ no change T +
(parallelized)
Notation: “+”: advantage, and “—": disadvantage.

27

Inverted File Design

Topic 4:

Topic 3: Inverted File Optimization Parallel IR

cluster computing?

No

Interleaving partitioning scheme

No

A 4

<
-1

skipping mechanisms?

Topic 1: Inverted File Size Reduction

good scalability
Yes

A\ 4

Topic 2: Redundant Decoding Elimination

o\
» end)¢

Figure 1.3 Recommended inverted file design flowchart.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents a novel size

reduction method, which has both the advantages of compression ratio and fast decompression, for

compressing inverted files. Chapter 3 presents the proposed two-level skipped inverted file, in

which a two-level skipped index is created on each compressed posting list, to reduce

decompression time. Chapter 4 presents the proposed DIA algorithm for fast query evaluation.

Chapter 5 presents a novel inverted file partitioning approach for parallel IR. Chapter 6 presents the

conclusion.

28

Chapter 2 Inverted File Size Reduction

An inverted file contains, for each distinct term t in the collection, a posting list of the form
PL;=<idy, idy, ..., ids>,
where id; is the identifier of the document that contains t, and f; is the total number of documents in
which t appears. To process a query, the IRS retrieves the posting lists for the terms appearing in
the query, and then performs some set operations, such as intersection and union, on the posting
lists to obtain the answer list (Frankes & Baeza-Yates, 1992; Witten et al., 1999).

Compression of inverted files has significant advantages for large-scale IRSs. This is because
the total time of transferring a compressed posting list and subsequently decompressing it is
potentially much less than that of transferring an uncompressed posting list. A popular compression
technique (Witten et al., 1999) is to sort the document identifiers of each posting list in increasing
order, and then replace each document identifier (except the first one) with the distance between
itself and its predecessor to form a list of d-gaps. For example, the posting list <13, 18, 22, 35, 42>
can be transformed into the d-gap list as <13, 5, 4, 13, 7>. Although every document identifier is
distinct, their d-gaps show some probability distributions. Many coding methods, such as unary
coding (Elias, 1975), y coding (Elias, 1975), Golomb coding (Golomb, 1966; Witten et al., 1999),
skewed Golomb coding (Teuhola, 1978), batched LLRUN coding (Fraenkel & Klein, 1985; Moffat
& Zobel, 1992), variable byte coding (Scholer et al., 2002), and word-aligned “Carryover-12~
mechanism (Anh & Moffat, 2005), have been proposed for compressing posting lists by estimates
for these d-gaps probability distributions. The more accurately the estimate, the greater the

compression can be achieved.

29

The document identifiers for any given word are not uniformly distributed, since the documents
in the collection are inserted in chronological order and the word’s popularity changes over time
(Moffat and Stuiver, 2000). These document identifiers tend to be clustered, and inverted file
compression may benefit if this clustering can be taken into account. Based on the d-gap technique,
some coding methods, such as skewed Golomb coding and batched LLRUN coding, can capture
clustering of documents via accurate estimates to achieve satisfactory compression performance.
However, the estimates in these methods are relatively sophisticated, which require more
decompression time, so they are not yet applied in real IRSs.

Recently, Moffat and Stuiver (2000) have proposed interpolative coding. It is independent of the
estimates for the d-gaps probability distributions. By using clustering with a recursive process of
calculating ranges and codes in an interpolative order, superior compression performance can be
achieved. However, interpolative coding is computationally expensive due to a stack required in its
implementation, which prohibits it from being widely used in real-world IRSs.

In terms of query throughput rates, Trotman (2003) shows that for small posting lists Golomb
coding is recommended, whereas for large posting lists variable byte coding is recommended.
Furthermore, Anh and Moffat (2005) show that word-aligned “Carryover-12” mechanism allows a
query throughput rate that is higher than Golomb coding and variable byte coding, regardless of the
lengths of the posting lists. Although these compression methods provide high query throughput
rates, their compression efficiencies need to be improved.

In this chapter, we develop a new coding method based on interpolative coding combined with a
d-gap compression scheme. We call it the unique-order interpolative coding. The results of this
research showed that the unique-order interpolative coding can take advantage of document

identifier clustering in posting lists to achieve good compression performance. Nevertheless, the

30

decoding speed of this new method is even faster than that of Golomb coding and word-aligned
“Carryover-12” mechanism.

This chapter is organized as follows. In Section 2.1, we present the interpolative coding that is
the most space efficient method known to compress inverted files. In Section 2.2, we present the
unique-order interpolative coding. Then we show the quantitative analysis and the performance
evaluation in Section 2.3 and Section 2.4. In Section 2.5, we present the possible application of the

unique-order interpolative coding. Finally, Section 2.6 presents our summary.

2.1 Well-known Interpolative Coding

2.1.1 Algorithm description

Moffat and Stuiver (2000) have proposed a compression technique called interpolative coding.
It makes full use of the clustering in a recursive process of calculating ranges and codes, and
demonstrates superior compression performance. In this method, the storing order as well as lower
bound lo and upper bound hi of every document identifier X are calculated, and then function
Binary_Code(x, lo, hi) is called to encode X in some appropriate manner. The simplest mechanism

uses only binary code to encode X in |_10g2(hi —lo+ 1)—‘ bits. The algorithm is described in Figure

2.1.

This interpolative coding is best illustrated with an example. Consider the posting list <1, 2, 5, 6,
8, 10, 13> of fi=7 document identifiers in a collection of N=20 documents. According to the
algorithm in Figure 2.1, the middle item in the list, the identifier 6, is encoded. This identifier must
take on a value ranged from 1 to 20. Additionally, since there are three other identifiers on each side
of this middle item, its possible value range is further limited to from 4 to 17. We represent this fact

with (X, lo, hi) = (6, 4, 17), indicating that the document identifier X is within the range lo...hi. Once

31

the coding of document identifier 6 is accomplished, the three document identifiers on the left hand
side may take on values 1 to 5 and those three on the right hand side 7 to 20. According to the same
rule, the three document identifiers on the left can be processed first, followed by those three on the
right. Therefore, the complete sequence of (X, lo, hi) triples generated by algorithm
Interpolative_Code are (6, 4, 17), (2,2, 4), (1, 1, 1), (5, 3, 5), (10, 8, 19), (8, 7, 9), and (13, 11, 20).
Using the simplest implementation of Binary_Code, the corresponding codewords are 4, 2, 0, 2, 4, 2,
and 4 bits long.

Using a centered minimal binary code, the compression efficiency of interpolative coding can
be further improved (Moffat and Stuiver, 2000). The centered minimal binary code works in the

following way. Support that.a number in the range 1...r is to be coded. A simple binary code
assigns codewords |—10g2 r-| bits long to all values 1 through r, and wastes 2Meerl ¢ codewords.
That is, 21— of the codewords can be shortened by one bit without loss of unique

decodability. These minimal codewords are then centered on the encoding range. Numbers at the

extremes of the range requires one bit more for storage than those in the center.

Algorithm Interpolative_Code(PL, f, lo, hi);
Input: PL (PL[l... f] is a sorted list of f document identifiers, all in the range lo...hi)
Output: bitstring to represent PL[l .. f]
begin
if f = 0 then return;
if f =1 then output bitstring by invoking Binary_Code(PL[1], lo, hi) and then return;
h:=(f +1) div 2;
fi:=h-1;
fo:=f-h;
Ly:=PL[l..(h-D)];
Ly=PL[(h+1)..f];
Output bitstring by invoking Binary_Code(PL[h], lo+f;, hi-f,);
Call Interpolative_Code(L1, f1, lo, PL[h]-1);
Call Interpolative_Code(L,, f,, PL[h]+1, hi);
end
Figure 2.1 Interpolative coding.

32

2.1.2 Observation and improvement

The major overhead of interpolative coding is that a recursive process is used to calculate the
order and range of every document identifier. Although a recursive process can be converted to a
non-recursive one (Tenenbaum et al., 1990), the converted code requires a stack, which makes the
coding and decoding very slow. This is why interpolative coding is not widely used in IRSs.

We observed that the calculation of the order and range for every document identifier can be
accelerated by storing partial results in memory. Consider a general posting list PL; = <ids, idy, ...,
idy >, where f; is the number of documents containing term t, idy<idy+1, and all document identifiers
are within the range 1...N. Using the interpolative coding method in Figure 2.1, for every f;, we can
obtain the full sequence of triples for the list: Some examples are shown in Table 2.1. These triple
sequences are useful for interpolative coding to calculate the order and range for each document
identifier. For example, consider the posting list PL; = <id;=1, id,=2, id3=5, id,=7, ids=8> of f; =5
document identifiers in a collection of N=10 documents. The values of this list can be calculated
using f; = 5 triples in Table 2.1. The full sequence of triples are (ids, 3; N-2) = (5, 3, 8), (idy, 1, id3-2)
=(1, 1, 3), (id, id1+1, id3-1) = (2, 2, 4), (id4, ids+1, N-1) = (7, 6, 9), and (ids, ids+1, N) = (8, 8, 10).
Storing such a table containing a full set of triple sequences in memory is helpful for the coding and
decoding processes of interpolative coding. Compared with the method in Figure 2.1, this improved
method eliminates need for a stack in the document identifier order and range calculation, saving a

large amount of time.

Table 2.1 Some examples of the full sequence of triples for the general posting list.

fi The full sequence of triples for the general posting list

1 (idg, 1, N)

2 (idg, 1, N-1), (idg, id1+1, N)

3 (idz, 2, N-1), (id1, 1, id2-1), (id3 , id2t1, N)

4 (ida, 2, N-2), (idy, 1, id2-1), (ids, id2+1, N-1), (ids, ids+1, N)

5 (ids, 3, N-2), (id1, 1, id3-2), (idy, id1+1, ids-1), (ids, ids+1, N-1), (ids, ids+1, N)

33

The triples for each f; can easily be represented as a two-dimensional array |_Triple consisting
of f; rows and 5 columns. This representation for f=5 is shown in Figure 2.2. The first row of the
array represents the first triple, and the second row represents the second triple, and so forth. The
first column is used to denote the index of the document identifier in the posting list for the first
element of the triple. For example, |_Triple[3][1] is 2, meaning the first value of No. 3 triple is id,.
The second and third columns denote the index of the document identifier in the posting list and the
offset for the second element of the triple. For example, |_Triple[3][2] and |_Triple[3][3] are two s,
meaning the second value of No. 3 triple is id;+1. Finally, the fourth and fifth columns denote the
index of the document identifier in the posting list and the offset for the third element of the triple.
For example, |_Triple[3][4] and |_Triple[3][5] are 3 and -1, meaning the third value of No. 3 triple
is ids-1. To make this representation more practical and convenient, two extra values are used for
each posting list: ids+1=0 and idg+2=N. Therefore, the first triple (id3, 3, N-2) in Figure 2.2 can be

represented as 3, 6, 3, 7, and -2,

index index offset index offset
I_Triple[m][n] n=1 n=2 n=3 n=4 n=>5
m:1 3 6 3 7 -2 —» ISt trlple
m=2 1 6 1 3 -2 —» ond triple
m=3 2 1 1 3 -1 —» 3 triple
m=4 4 3 1 7 -1 > 4 riple
m=5 5 4 1 7 0 > 5™triple
N N 4
1* element 2™ element 3" element
of the triple of the triple of the triple

Figure 2.2 Given a general posting list PLy: <idy, id,, ids, id,, id5> of f=5 document identifiers, and
set ids+1= i1dg=0 and ids.>= id;,=N. The corresponding triples: (ids, 3, N-2), (id1, 1, ids-2), (id, id1+1,
ids-1), (id4, id3+1, N-1), (ids, ids+1, N) can be represented with the I_Triple[f][5].

The algorithm in Figure 2.3 can be used to generate the corresponding triples for each f; and

store them in |_Triple[f][5]. For a sub-posting list PL[index ...(index+k-1)] among id,_ingex*10 and

34

i0hi_index+hi, Compute_I_Triple(index, k, lo_index, lo, hi_index, hi) can be called to generate the

corresponding triples and store them in a two-dimensional array |_Triple.

Algorithm Generate_|_Triple(PL, f, N);
Input: PL (PL[l... f] is a sorted list of f document identifiers, all in the range 1...N, and to simplify
the algorithm we set PL[(f +1)] to 0, and PL[(f +2)] to N)
Output: |_Triple[f][5] to represent the triples
begin
n:=1; /* nis a global variable*/
Compute_I_Triple(1, f, f+1, 1, f+2, 0); /* generate |_Triple[f][5] */
return |_Triple;
end

procedure Compute_|_Triple(index, k, lo_index, lo, hi_index, hi)

begin

if k=0 then return;

if k=1 then
I_Triple[n][1]:=index;
I_Triple[n][2]:=lo_index;
I_Triple[n][3]:=lo;
I_Triple[n][4]:=hi_index;
I_Triple[n][5]:=hi;
n++;
return;

h:=(k-1)/2;

f1:=h;

fo:=k-h-1;

|_Triple[n][1]:=h+index;
|_Triple[n][2]:=lo_index;
|_Triple[n][3]:=lo+f;;
|_Triple[n][4]:=hi_index;
|_Triple[n][5]:=hi-fy;
n++;

Compute_I_Triple (index, f1, lo_index, lo, index+h, -1);

Compute_I|_Triple (index+h+1, f,, index+h, 1, hi_index, hi);
end

Figure 2.3 The algorithm for generating I_Triple.

35

2.1.3 Remarks
Although the procedure Compute_I|_Triple in Figure 2.3 also uses recursive process, it can be

processed off-line and one can store the |_Triples of different fis in memory. This can reduce the

on-line decoding time dramatically. With the |_Triple, one can easily find minimal binary code in

encoding a posting list, as shown in the following:

for m:=1 to f; do
output bitstring by invoking Binary_Code(PL[l_Triple[m][1]],

PL[I_Triple[m][2]]+]_Triple[m][3],
PL[I_Triple[m][4]]+]_Triple[m][5]);

However, this improved method still' requires large memory space. For example, each triple

contains five integers. If an integer takes 4-byte storage space, the memory requirement for a triple

is 20 bytes. Therefore, in a posting list with f, document identifiers, 20xf; bytes are required. The

maximum f;in present IRSs can reach up to thousands or millions, which means the memory space

required for |_Triple storage is ten thousands or even ten millions of bytes. This makes it

impossible using memory to accelerate coding and decoding with interpolative code. Furthermore,

using |_Triple to encode and decode requires extra memory access time, which makes the decoding

speed slow.

2.2 Proposed Method: Unique-Order Interpolative Coding

The recursive process makes the decoding of interpolative coding slow. Although using
memory to store partial results of the recursive process can accelerate the coding and decoding of
interpolative coding, a large amount of memory is required to store the |_Triple for each . We
develop a new method called unique-order interpolative coding in which only one I_Triple is
required for the entire coding and decoding process of all posting lists no matter how many

different values of f; are present. Then we introduce loop unwinding to replace |_Triple with

36

constant values. The number of memory accesses to |_Triple can therefore be reduced, which
accelerates the whole process.
2.2.1 The coding method

This subsection presents the details of our proposed coding method. Two key decisions are to be
made in the coding method.
A. Decomposition of a posting list into blocks to take advantage of interpolative coding

In a posting list PL=<id;, idy, ..., id;z > of fi document identifiers, where idk<idyx+1 and all

document identifiers are within the range 1...N. A group size g is first determined. Then PL; is

divided into m = {%—I blocks, each having g document identifiers except possibly the last block.
We define the first document identifier in each block to be a boundary pointer, the document
identifiers between boundary pointers to be inner pointers, and those in the last block except the
boundary pointer to be residual pointers. The PL; can then be compressed as follows. The boundary
pointers and their subsequent residual pointers together can be regarded as a sub-posting list, and a
suitable d-gap compression scheme with high decoding speed can be used for compression. The
inner pointers in each block are compressed via interpolative coding. With this new method (see
Figure 2.4), each inner block contains a constant number (g-1) of inner pointers, enabling the use of
only one |_Triple in coding and decoding. Compared with interpolative coding, this new method

allows document identifiers to be stored in a fixed order, hence the name unique-order interpolative

coding. When f, < g or m=1 or g=1, no inner pointers are present, and we apply only a d-gap

compression scheme.

37

PLi=<idy, idy, ..., idg > Q : boundary pointer

Group size g, and m= {L—‘ blocks : block
g

d-gap d-gap d- d-gap d-gap d-gap
LN aWa
Q) idy ... idy | (GgeD)idgsz o ity | (gD Wgrio.--i0h

\ J \ J |

The inner pointers The inner pointers The residual pointers
encoded using encoded using encoded with d-gap
interpolative coding interpolative coding technique

Figure 2.4 The illustration of unique-order interpolative coding.
B. Choice of a suitable coding method for boundary and residual pointers

Compared with the d-gaps of a traditional d-gap compression scheme, the d-gaps of unique-
order interpolative coding extracted from every group of document identifiers are potentially much
larger and may cause a decrease in compression efficiency. Therefore, a suitable coding method is
required to encode the boundary pointers to improve compression efficiency. To simplify
implementation, the boundary and residual pointers are encoded with the same method.

In this chapter, we recommend Golomb coding and r coding for encoding the d-gaps of unique-
order interpolative coding. Golomb coding is very suitable for encoding the d-gaps of unique-order
interpolative coding, since the d-gaps extracted from every group of document identifiers are
roughly of the same length. Using y coding is also a relatively economical choice when the
document identifiers in a posting list are also close together, and the d-gaps are small. Other coding
methods are not disregarded. We are still looking for a faster and more compact coding method to

encode the d-gaps of unique-order interpolative coding.

38

To improve the compression efficiency of the d-gaps of unique-order interpolative coding, the
value g is subtracted from the d-gap of all boundary pointers (except the first one) without loss of
unique decodability. This approach works the best when the original d-gaps are small.

2.2.2 Illustration

This unique-order interpolative coding is best illustrated with an example. Given a posting list
<5, 8, 12, 13, 15, 18, 23, 28, 29, 32, 33> of 11 document identifiers, let the group size g be 4, the
document identifiers 5, 15, and 29 are therefore the boundary pointers, the document identifiers 32
and 33 are the residual pointers, and the others are the inner pointers. Let [id;, idi+1, ..., idj]
represent id;, idi+1, ..., idj encoded in interpolative code. Since the two successive boundary pointers
must be known before interpolative coding of the inner pointers, the boundary pointer of each block
is stored before coding of the inner pointers. Therefore, the posting list is to be stored as

<5, 15, [8, 12, 13], 29, [18, 23, 28], 32, 33>,
where [8, 12, 13]and [18, 23, 28] are in interpolative codes, and 5, 15, 29, 32, 33 in d-gaps. The
resulted list is
<5, 10(=15-5), [8, 12, 13], 14(=29-15), [18, 23, 28], 3(=32-29), 1(=33-32)>.
Next, since there are three document numbers between each pair of boundary pointers, the list can
be simplified as
<5, 7(=10-3), [8, 12, 13], 11(=14-3), [18, 23, 28], 3, 1>.

In decoding, the first two d-gaps, 5 and 7, are retrieved to obtain the first two boundary pointers,
which are 5 and 15(=5+7+3). Interpolative coding is then used to obtain [8, 12, 13]. Then, the d-gap,
11, is retrieved to obtain the next boundary point, 29(=15+11+3), and interpolative coding is used to
obtain [18, 23, 28]. Finally, the residual pointers 32(=3+29) and 33(=1+32) are obtained by the

remaining d-gaps.

39

Now, consider a general posting list PL; = <idy, idy, ..., id> encoded using unique-order

interpolative coding with group size g=4, the PL; can be represented as

<id1, id5, [idz, id3, id4],
idg, [ids, id7, idg],
idi3, [ido, idig, idia], ... >,

where ids, ids, idg, id;3 are encoded using a d-gap coding method and [idy, ids, id4], [ids, id7, idg],
[1d10, id11, i1d12] are encoded using interpolative coding. The example list can be further represented

(using triple representation in Section 2) as

<idy, ids - id; - 3, (idg, idy+2, id5-2), (idz, id+1, idg-l), (id4, ids+1, id5-1),
ids - ids - 3. (idy, ids+2, ide-2). (ide. ids* 1. id-1). (ids. idy+1. idg-1).
idi3- idg - 3, (idy1, idg+2, 1d13-2), (id1p, Idgt1, id11-1), (id1p, id11+1, idis-1), ... >.

We observed that the |_Triple for [id;, idis1, idir2] can be converted to the |_Triple for [idi:4, idiss,
idi+6] by adding 4 (which is the value of g) to the indices of document identifiers in the 1_Triple for
[id;, idis1, idi2]. Therefore, only one |_Triple is required in coding and decoding, which accelerates
the whole process. If we use Golomb coding to encode boundary pointers and residual pointers, this

new coding method can be shown as the following program in Figure 2.5.

40

Algorithm Unique Order Interpolative Code(PL, f, N, g);

Input: PL (PL[1...f] is a sorted list of document numbers, all in the range 1...N), and
group size g(an integer);
Output: Bitstring (the compressed posting list PL)
begin
if f <g then // compressed by Golomb coding
b:=[0.69xN/f];
prev_document_identifier:=0;
for i:=1 to f
append Golomb_Code(PL[i]-prev_document _identifier, b) to Bitstring;
prev_document_identifier:= PL[i];
else // compressed by unique-order interpolative coding

m=[f/g];
b:=[0.69x N /(f —(m=T1)x(g—1)];

// encode the first boundary pointer
append Golomb_Code(PL[1], b) to Bitstring;

// generate I Triple
n:=0;
|_Triple:=Compute_I_Triple(2, g-1, 1, 1, g+1, -1);

for i:=0 to (m-2) do
index:=ixg;

// encode boundary pointer
append Golomb_Code(PL[index+g+1]-PL[index+1]-g+1, b) to Bitstring;

// encode inner pointers
for j:==1to g-1do
append Binary_Code(PL[index+1_Triple[j][1]],
PL[index+1_Triple[j][2]]+]_Triple[j][3],
PL[index+1_Triple[j][4]]+|_Triple[j][5]) to Bitstring;

// encode residual pointers
for i:=(m-1)xg+2 to f
append Golomb_Code(PL[i]-PL[i-1], b) to Bitstring;

return BitString;

end
Figure 2.5 Unique-order interpolative coding (using Golomb coding to encode boundary and

residual pointers).

41

2.2.3 Implementation optimization

This subsection presents how to use loop unwinding to accelerate the encoding and decoding of
unique-order interpolative coding. Note that once the group size g is determined, the program in
Figure 2.5 can be further accelerated. For example, for g=4, the following program segment in

Figure 2.5

for i:=0 to (m-1) do
index:=ixg;

// encode boundary pointer
append Golomb_Code(PL[index+g+1]-PL[index+1]-g+1, b) to Bitstring;

// encode inner pointers, 8 memory accesses are required for encoding each inner
// pointer: 5 for |_Triple accesses and 3 for PL accesses
for j:==1to g-1 do
append Binary_Code(PL[index-+I_Triple[j][1]],
PL[index+1_Triple[j][2]]+]_Triple[j][3],
PL[index+I_Triple[j][4]]+]_Triple[j][5]) to Bitstring;

can be converted to

for i:=0 to (m-1) do
index:=ix4;

/I encode boundary pointer
append Golomb_Code(PL[index+5]-PL[index+1]-3, b) to Bitstring;

// loop unwinding, only 3 memory accesses of PL are required for encoding each
// inner pointer

append Binary_Code(PL[index+3], PL[index+1]+2, PL[index+5]-2) to Bitstring;
append Binary_Code(PL[index+2], PL[index+1]+1, PL[index+3]-1) to Bitstring;
append Binary_Code(PL[index+4], PL[index+3]+1, PL[index+5]-1) to Bitstring;

In other words, once the group size g has been determined, the I_Triple accesses in loop can be
eliminated in unique-order interpolative coding. So the 8-3=5 times memory accesses for each
document identifier can be avoided, which in turn accelerates the encoding process. By using the

same approach, the decoding of unique-order interpolative coding can also be accelerated.

42

2.3 Quantitative Analysis
Give a posting list PL=<d,,id,,...,id; > of f document identifiers, where id, <id,,,, and all

document identifiers are within the range 1...N. As stated in Section 2.2, the first step in unique-

order interpolative coding is to determine the group size g. Once ¢ is determined, the PL will be

divided into m = {i—‘ blocks, with the first (m-1) blocks containing g document identifiers and the
g

last block containing f —(m—1)g document identifiers. The boundary pointers and the residual
pointers will be coded by efficient prefix-free coding methods such as Golomb coding and y coding,
in d-gap manner, and the inner document identifiers will be coded by the interpolative coding.

Let the function F(N,) represent bits needed for compressing the f document identifiers

ranging from 1 to N. Theoretically, the following approximate formulas can then be achieved

(Golomb, 1966; Gallager & Van Voorhis, 1975; Mcllroy, 1982; Elias, 1975; Moffat & Stuiver,

2000).
Golomb coding: G(N, f) < f x(2 +log, %) (2.1)
y coding: y(N, f)< f x(1+2xlog2%) (2.2)
Interpolative coding: I(N, f) < f x(2.5783 + log, %) (2.3)

If Golomb coding is used to encode the boundary pointers and residual pointers, then the
maximum number of bits required to store these f-(m-1)(g-1) boundary and residual pointers is

(f~m=1)g-1)x(2+log, +— _Nl)(g_l)) (2.4)

If we use y coding to encode these pointers, then the maximum number of bits required is

43

(f—(m-1(g-1))x(1+2xlog, f(m fll)(g _1)) (2.5)

Based on Eq.(2.3), the number of bits required to code the inner pointers ((m-1) groups, (g-1)

document identifiers in each group) is

m-1

Z[(g —~1)x(2.5783 + log, %)} where N; =id;,, —id), —1 (2.6)

Since

m-1

DN, <N (2.7)

i=1

and the sum of the logarithms of the (m-1) individual ranges is maximized when all are equal,

one obtains

m-1

N, N

Therefore, if Golomb coding is used to encode the boundary and residual pointers, then the

maximum number of bits required by the unique-order interpolative coding is at most

(M =1)(d N Mo 1)(g— N 0
(F ~(m=1)(g = 1) (2 +log, 7— == I HM=D(g - 1) (2.5783 + log, - —-—0) (2.9)

Or if we use y coding, it is
(] N FM—1)(g —1)x Ny @0
(f =(M=1)(g = D)1+ 2 xlog, T) T (M =109 =D x(2.5783 + log, o —r0) (2.10)

Egs. (2.9) and (2.10) can be simplified under the condition that no residual pointers exist. For

example, when f=(m-1)g+1, Eq. (2.9) can be rewritten as:

2+ 1log, g+2.5783x (g — 1)+ (g — 1) 1og2(il)

f x| g +10g2%] 2.11)
g

44

and some examples of the maximum number of bits required for unique-order interpolative coding
are derived in Table 2.2.

Table 2.2 Some examples of the maximum number of bits required for unique-order interpolative
coding if Golomb coding is used to encode boundary pointers under the condition that no residual
pointers exist.

g maximum number of bits required
2 f x[3.29 +log, fﬁ]
N
4 f x[3.25+1og, f_]
N
8 f x[3.05+log, T]
N
16 f x[2.88 +log, T]
N
32 f x[2.76 + log, T]

The results in Table 2,2 showed that when Golomb coding is used to encode boundary pointers,
the maximum number of bits required in unique-order interpolative coding has inverse relationship
with group size ¢: the maximum number of bits decreases with increase in group size g and
increases with decrease in g. On the other hand, if the number of document identifiers is less than
(g+1), unique-order interpolative coding cannot be used. We design an experiment in Section 2.4 to
find a suitable group size g.

The results in Egs. (2.9) and (2.10), and Table 2.2 can be improved if Eq.(2.3) can be improved.
For example, the maximum number of bits required for interpolative coding to encode a posting list

with 3 document identifiers ranging from 1 to N is
[log,(N —2)|+[log, a]+[log, b] (2.12)
since the middle item requires |_log2(N — 2)_| bits, and the left and right items require

[log, a]+[log, b| bits where a, b are two positive integers and a+b=(N-1). Since

45

[log,(N —=2)|<1+1log, N (2.13)

and
N N
|_10g2 a_|+ |_10g2 b—‘ <(1+1log,a)+(1+log, b)<2+log, B + log, By (2.14)
hence
[log,(N —2)]+[log, a|+[log, b|<3x(1.92 +log, %) (2.15)

We replace Eq.(2.3) with Eq.(2.15) when group size g=4, and the maximum number of bits required
for the unique-order interpolative coding under ithe condition that no residual pointers exist is

therefore

f x[2.76+log, %] (2.16)

Compared with the figure in Table 2.2, a much tighter upper bound is obtained.

To further understand the characteristics of unique-order interpolative coding, we conducted
following experiments. We used. encoding methods such as Golomb coding, skewed Golomb
coding, batched LLRUN coding, interpolative coding, variable byte coding, Carryover-12
mechanism, unique-order interpolative coding 1 (group size g=4; boundary pointers and residual
pointers by Golomb coding), unique-order interpolative coding 2 (group size g=4; boundary
pointers and residual pointers by y coding) in compression. In the first experiment (Table 2.3(a)), f
= 1,000,000 gaps were drawn from a geometric distribution and compressed using the eight
methods. The Golomb coding performs the best, since it is a minimum-redundancy code for

geometric gap distribution (Gallager and Van Voorhis 1975). Compared with other methods,

unique-order interpolative coding is not suitable for a geometric distribution when 2 <) <256.

46

N . : . . .)
But when 3 increases, the performance of unique-order interpolative coding 1 improves

proportionally. When % <2, the results of unique-order interpolative coding 2 are satisfying. For

most cases in the first experiment, both variable byte coding and Carryover-12 mechanism are

inefficient in compression.

Table 2.3 Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps:
average bits per gap

Coding Methods Average gap (N/f) , Geometric Distribution

1 2 4 8 16 32 64 128 256 512 1024 2048
Golomb coding 1.00 233330 439 543 645 7.46 847 947 1047 11.47 12.47
Skewed Golomb coding 1.00--2.53 3.51 4.60 564 6.66 767 868 968 10.68 11.68 12.68
Batched LLRUN coding 1.00 - 227 346 450 553 652 7.52 852 9.52 10.52 11.52 12.53
Interpolative coding 0.00 2.15 345 459 566 6.69 7.70 871 9.71 10.71 11.71 12.72
Variable byte coding 8.00 8.00 8.00 800 800 814 9.08 10.93 12.87 14.24 15.07 15.52
Carryover-12 mechanism 1.07 288 4.11 5.17 6.18 7.38 875 9.90 10.58 12.30 14.41 15.56

Unique-order interpolative coding 1~ 3.00 4.19- 5.13 597 6.76. 7.53. 829 9.06 9.89 10.77 11.68 12.77
Unique-order interpolative coding2 0.25 233 391 531 6.64 7.92 '9.19 1045 11.70 12.96 14.21 15.46

Self-entropy 0.00 2.00 324 435 540 642 743 844 9.44 10.44 1143 12.43

(a) Geometric distribution

Coding Methods Average gap (N/f) , Skewed Distribution

1 2 4 8 16 32 64 128 256 512 1024 2048
Golomb coding 1.40 +2.60 3.30 429 533 637 739 840 9.40 10.40 11.40 12.41
Skewed Golomb coding 1.80 231 292 376 4.80 579 680 7.82 882 9.83 10.83 11.83
Batched LLRUN coding 1.40 231 286 3.60 4.61 566 6.70 7.71 871 9.71 10.70 11.71
Interpolative coding 0.84 1.53 .2.07 290 397 507 6.15 7.19 821 923 1023 11.24
Variable byte coding 8.00. 8.00 8.00 800 810 858 9.38 10.11 10.63 11.28 12.43 13.80
Carryover-12 mechanism 1.07 236 290 3.72 484 6.02 698 79 935 1090 12.08 12.57

Unique-order interpolative coding 1~ 3.60 3.96 4.30 4.80 551 630 7.11 794 876 9.60 10.51 11.62
Unique-order interpolative coding2 1.25 190 247 3.33 453 588 7.21 853 9.81 11.07 12.33 13.60

Self-entropy 097 177 230 3.05 4.06 5.10 6.15 7.18 819 9.19 10.19 11.20

(b) Skewed geometric distribution

In the second experiment, for each value of % the sequence of f = 1,000,000 geometrically

distributed gaps was broken into chunks of 200 contiguous values. The chunks were then placed in
groups of five. In the first three chunks of each group, all gaps were multiplied by a factor of 0.1;

whereas in the other two chunks all gaps were multiplied by a factor of 2.35. This process created

47

artificial clusters of gaps much similar than the average, and about 60% of the values were coded
into these clusters, while the overall average gap remained the same. This better resembles the
distribution of real document collections. The results are shown in Table 2.3(b). Compared with
skewed Golomb coding, batched LLRUN coding, and interpolative coding, the compression
efficiency of Golomb coding is not as good as others, meaning it is unable to exploit clustering well.
The compression results of unique-order interpolative coding for a skewed geometric distribution

are better than that for a geometric distribution. This means that unique-order interpolative coding

does take a good advantage of the clustering property. For %S 32, we prefer to use the unique-

order interpolative coding 2; while for %>32, we suggest unique-order interpolative coding 1.

Similar to that for a geometric distribution, the unique-order interpolative coding 1 performs better

as %becomes larger. Again, both variable byte coding and Carryover-12 mechanism are inefficient

in compression for most cases in the second experiment. From Table 2.3(b), interpolative coding
can even outperform self-entropy. This is due to the fact that interpolative coding does not use the
gap value in encoding directly, but instead uses a minimal binary code to encode every gap after it

is converted to a triple.

2.4 Performance Evaluation

An experimental information retrieval system was implemented to evaluate the various coding
methods. Experiments were conducted on some real-life document collections, and query

processing time and storage requirements for each coding method were measured.

48

2.4.1 Document collections and queries

Five document collections were used in the experiments. Their statistics are listed in Table 2.4.
In this table, N denotes the number of documents; n is the number of distinct terms; F is the total
number of terms in the collection; and f indicates the number of document identifiers that appear in
an inverted file.

Table 2.4 Statistics of document collections

Collection
Bible DBbib FBIS LAT TREC
Documents N 31,101 32,472 130,471 131,896 262,367
of terms F 884,746 2,320,610 72,922,893 72,087,460 145,010,353
Distinct terms n 8,965 58,536 214,310 168,251 317,393

of document identifier count f 701,304 1,694,491 28,628,698 32,483,656 61,112,354
Average gap size Nxn/ f 398 1122 977 683 1363

Total size (Mbytes) 4.69 21.30 470 475 945

Collection Bible is the King James version of the Bible, in which each verse is considered as a
document. The second collection, DBbIb, is a set of citations to chapters appearing in the database
literature. The third and forth collections, FBIS (Foreign Broadcast Information Service) and LAT
(LA Times), are disk 5 of the TREC-6 collection that is used internationally as a test bed for
research in information retrieval techniques (Voorhees and Harman, 1997). The final collection
TREC includes the FBIS and LAT collections.

Since effectiveness of coding methods relies heavily on clustering of documents, inverted files
for these collections were built with a Greedy-NN algorithm (Shieh et al., 2003). These inverted
files were then used to test the advantages and shortcomings of various coding methods.

We followed the method (Moffat and Zobel, 1996) to evaluate performance with random
queries. For each document collection, 1000 documents were randomly selected to generate a query
set. A query was generated by selecting words from a word list of a specific document, combined

by some randomly generated Boolean operators ANDs and ORs. To form the document word list,

49

words in the document were case folded, and stop words such as “the” and “this” were eliminated.
For example, a query word list may be “inverted file document collection built”, a query may be
“(inverted <AND> file <AND> document <AND> collection) <OR> built”. For each query, there
existed at least one document in the document collection that satisfied the query. The generated

queries followed a Zipf-like distribution P ~ 1/p">°

, where P is the probability of accessing each
query, and p is the popularity rank for the test query stream. This is widely believed to closely
resemble the distribution of real queries (Breslau et al., 1999).
2.4.2 Performance results

In this subsection, we first present the compression performance of unique-order interpolative
coding versus different group size g. We then present the compression performance of different
coding methods. Finally, we present the search performance of different coding methods.
Compression performance of unique-order interpolative coding

In this subsection, Golomb coding was used to code both boundary pointers and residual
pointers. This is due to the fact that the average gap sizes in Table 2.4 are relatively big, Golomb
coding was recommended according to Table 2.3(b). The compression result is shown in Table 2.5,

and the metric used is the average number of bits per document identifier BPI, defined as follows:

BP| — The size of the compressed inverted file

number of document identfiers f

For each term t, the cost of using r coding to encode the frequency f; is calculated and included in
the presented results.

Note that for group size g=4 and @=S8, unique-order interpolative coding achieved good
compression. For a simple implementation, we suggest using g=4. In the following experiments,
Golomb coding was used to code both boundary pointers and residual pointers for unique-order

interpolative coding, and group size g was set to 4 unless otherwise stated.

50

Table 2.5 Compression performance of unique-order interpolative coding versus different group size ¢

Group Size Collection
g Bible DBbib FBIS LAT TREC
1 6.11 6.20 5.27 5.31 5.49
2 5.64 5.47 4.84 491 4.99
3 5.61 5.31 4.80 4.89 4.94
4 5.46 5.11 4.66 4.74 4.78
5 5.52 5.13 4.71 4.80 4.82
6 5.52 5.10 4.71 4.79 4.81
7 5.47 5.04 4.65 4.74 4.75
8 5.42 4.98 4.59 4.68 4.69
9 5.47 5.01 4.64 4.72 4.73
10 5.51 5.03 4.67 4.75 4.76

Compression performance of different coding methods
We now compare the effectiveness of the eight coding methods: y coding, Golomb coding,
batched LLRUN coding, skewed Golomb coding, interpolative coding, variable byte coding,
Carryover-12 mechanism, and unique-order interpolative coding. For each term t, the cost of using r
coding to encode the frequency f; is calculated and included in the presented results. Moreover, any
necessary overheads, such as the complete set of models and model selectors for the batched
LLRUN coding, are also calculated and included. However, the cost of storing the parameter b for
each posting list in Golomb coding (Witten et al., 1999) is not calculated nor included. This is
because the parameter b for each posting list in Golomb coding can be calculated via stored
frequency f; using Witten’s approximation. The results are shown in Table 2.6. Notice that:
1. Both variable byte coding and Carryover-12 mechanism are inefficient in compression of
inverted files.
2. For the other coding methods, the compression efficiencies of both y coding and Golomb coding

are relatively low because of the simple models they use.

51

3. The compression efficiencies of batched LLRUN, skewed Golomb, interpolative, and unique
order interpolative coding methods are relatively good. This shows that clustering is a good
compression aid.

4. The compression efficiency of unique-order interpolative coding is only inferior to that of
interpolative coding, meaning that it does take a good advantage of the clustering property.

Table 2.6 Compression Performance of different coding methods.

Coding Methods Collection
Bible DBbib FBIS LAT TREC

y coding 6.58 5.96 5.38 5.63 5.63
Golomb coding 6.11 6.20 5.27 5.31 5.49
Batched LLRUN coding 5.52 4.88 4.63 4.78 4.84
Skewed Golomb coding 5.92 5.75 5.04 5.07 5.10
Interpolative coding 5.37 4.89 4.58 4.65 4.62
Variable byte coding 9.10 9.54 8.88 8.89 8.84
Carryover-12 mechanism 7.14 7.99 6.23 6.13 5.95
Unique-order interpolative coding 546 5.11 4.66 4.74 4.78

Search performance of different coding methods

The query processing ‘time includes (1) disk access time, (2) decompression time, and (3)
document identifiers comparison time. Experiments showed that disk access time and
decompression time occupy more than 90% of query processing time. And document identifier
comparison time is not a function of the coding method used. Therefore the search performance
metric is defined as

Search Time (ST) = Disk Access Time (AT) + Decompression Time (DT).

And the speedups of all coding methods relative to Golomb coding, for all test collections, were
calculated.

All experiments described in this subsection were run on an Intel P4 2.4GHz PC with 256MB
DDR memory running Linux operating system 2.4.12. The hard disk was 40GB, and the data

transfer rate was 25MB/sec. Intervening processes and disk activities were minimized during

52

experimentation. All decoding mechanisms were written in C, compiled with gcc, and optimized as

follows:

1.

2.

Replaced subroutines with macros.
Careful choice for compiler optimization flags.
Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

Implemented the integer logarithm function |_10g2 (i)—| with a lookup table.
Let z be a 256-entry array, and z[K] be !_logz(k + 1)_| where 0 <k <255. The function !_log2 (i)—‘
can be implemented in C as follows (v is the returned value of]—log2 (i)—|):

do {
registerint 1 =(i) - 1;
(v)= B i>>16? (B i>>24?24+7z[B >>24]:16+z[B i>>16]):
(B 1>> 87 8+z[B i>>8] :z[B i]);
}+ while (0);

Implemented the integer logarithm function |_log2 (i)J also with a lookup table.
The array z is the same as that used in the function |—log2 (i)—‘. The function Llog2 (i)J can be
implemented in C as follows (v is the returned value of |_log2 (i)J):

do {
registerint i =(i);
(v)=_B i>>16? (B i>>24?23+z[B i>>24]:15+z[B i>>16]):
(B> 8?7 7+z[B i>>8] :z[B i]-1);
}+ while (0);

A 256-entry lookup table is used to locate the exact bit location of the first “1” bit in a byte.

For example, in the byte 00101000 the first “1” bit is in location 3. This can accelerate the
decoding process of unary codes because no bit-by-bit decoding is required.

Access to binary codes with masking and shifting operations, and no bit-by-bit decoding is

required.

53

With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-

bit decoding is required.

Other optimizations included: The Huffman code of batched LLRUN coding was implemented

with canonical prefix codes (Turpin, 1998). The canonical prefix codes can be decoded via fast

table look-up. And for the interpolative coding method, recursive process was transformed to non-

recursive process, at the cost of an explicit stack (Tenenbaum et al., 1990).

1.

The search performance measurements are shown in Table 2.7. Key findings are:

Although variable byte coding and Carryover-12 mechanism gave fast decoding, r coding and
unique-order interpolative coding achieved higher query throughput rates. This is because the
disk access time (AT) of variable byte coding and Carryover-12 mechanism is much higher than
that of r coding and unique-order interpolative coding.

For collection DBbib, the decoding times (DT) of r coding and unique-order interpolative
coding are less than that of Carryover-12. This 1s because a large portion of the d-gaps of
frequently used query terms for DBbib is of value 1. Both r coding and unique-order
interpolative coding can encode these d-gaps very economically. This also makes the decoding

times of r coding and unique-order interpolative coding for these d-gaps very low.

. Batched LLRUN coding, skewed Golomb coding, and interpolative coding gave better

compression rates than Golomb coding. However, their complex decoding mechanisms
prohibited them from being used in real-world IRSs.

Experimental results showed that r coding, Carryover-12 mechanism, and unique-order
interpolative coding were recommended for real-world IRSs. Their query throughput rates were

all much higher than that of Golomb coding.

54

Table 2.7 Search performance of different coding methods (AT is the disk access time, DT is the
decoding time, ST=AT+DT is the search time, and SP is the performance relative to the Golomb

coding)
Coding Method Collection
Bible DBbib FBIS LAT TREC
y coding AT(us) 125 202 1125 1168 2149
DT(us) 70 188 952 980 1696
ST(us) 195 390 2077 2148 3845
SP 1.14 1.50 1.20 1.23 1.20
Golomb coding AT(us) 131 306 1282 1321 2422
DT (us) 92 280 1200 1314 2179
ST(us) 223 586 2482 2635 4601
SP 1.00 1.00 1.00 1.00 1.00
Batched LLRUN coding AT(us) 116 381 1101 1134 2086
DT (us) 130 192 1688 1771 3013
ST(us) 246 573 2789 2905 5099
SP 0.91 1.02 0.89 0.91 0.90
Skewed Golomb coding AT(us) 117 331 1120 1150 2097
DT(us) 122 201 1492 1577 2696
ST(us) 239 532 2612 2727 4793
SP 0.93 1.10 0.95 0.97 0.96
Interpolative coding AT(us) 111 137 1024 995 1916
DT (us) 243 688 3094 3266 5598
ST(us) 354 825 4118 4261 7514
SP 0.63 0.71 0.60 0.62 0.61
Variable byte coding AT(us) 214 918 3134 3489 5506
DT(us) 22 90 336 388 633
ST(us) 236 1008 3470 3877 6139
SP 0.95 0.58 0.72 0.68 0.75
Carryover-12 mechanism AT(us) 145 311 1498 1491 2566
DT (us) 52 190 765 825 1368
ST(us) 197 501 2263 2316 3934
SP 1.13 1.17 1.10 1.14 1.17
Unique-order interpolative coding ~ AT(us) 113 182 1066 1076 2011
DT (us) 82 169 1041 1041 1909
ST(us) 195 351 2107 2117 3920
SP 1.14 1.67 1.18 1.24 1.17

5. To obtain better compression rates, Golomb coding and unique-order interpolative coding use a

minimal binary code in their codewords. To decode a minimal binary code, “toggle point”

calculations are required and slow down query evaluation. Rice coding is a variant of Golomb

55

coding where the value b is restricted to be a power of 2. The advantage of this restriction is that
there is no “toggle point” calculation required. The disadvantage of this restriction is the slightly
worse compression than that of Golomb coding. If we use Rice coding to encode the boundary
and residual pointers in unique-order interpolative coding and use a simple binary code to
encode the (X, lo, hi) triples for the inner pointers, there is no “toggle point” calculation required
for unique-order interpolative coding. Table 2.8 showed that Rice coding allowed query
throughput rates of approximately 8% higher than Golomb coding, and unique-order
interpolative coding without “toggle point” calculation allowed query throughput rates of
approximately 30% higher than Golomb coding. Experimental results further showed that the
decoding time of unique-order interpolative coding without “toggle point” calculation is even
less than that of Carryover-12 mechanism.

6. Experimental results showed that a good coding method must be characterized by both high
compression ratio and high decompression rate. The unique-order interpolative coding is such a
good method.

Table 2.8 Search performance of Rice coding and unique-order interpolative coding (AT is the disk

access time, DT is the decoding time, ST=AT+DT is the search time, and SP is the performance
relative to the Golomb coding).

Coding Method Collection
Bible DBbib FBIS LAT TREC
Rice coding AT(us) 133 286 1305 1345 2462
DT(us) 74 267 1004 1069 1808
ST(us) 207 553 2309 2414 4270
SP 1.08 1.06 1.07 1.09 1.08
Unique-order interpolative coding” AT(us) 119 193 1128 1137 2127
DT (us) 55 141 747 772 1363
ST(us) 174 334 1875 1909 3490
SP 1.28 1.75 1.32 1.38 1.32

* The boundary and residual pointers are encoded in Rice codes, the (X, lo, hi) triples for the inner
pointers are encoded in simple binary codes, and group size g is 4.

56

2.5 Other Application

Unique-order interpolative coding, like interpolative coding, can be directly applied to encode
strictly ascending integer sequences. One such example is encoding of within-document frequencies
of posting lists. If ranked queries are to be supported, it is also necessary to store with each
document identifier the frequency of the term appearing within that document, giving the posting
list the form:

<(idy, f1), (id2, fi2), ..., (idg, fiq) >,
where f; is the number of documents containing term t, idy<idy+1, and f;; is the frequency of term t in

document i, 1 <i < f,. The within-document frequencies can be compressed in exactly the same

manner of compressing document pointers: if there are f; entries in a posting list and a total of F;
occurrences of that term in the collection, the sequence of cumulative sums of the f;; values also
forms a strictly increasing integer sequence, and all of the existing compression methods are
applicable. Because the within-document frequencies are typically small, according to Table 2.3(b),
unique-order interpolative coding should use y coding to encode within-document frequencies.
Table 2.9 shows the cost, in bits per pointer, of storing the within-document frequencies for the five
test collections. Test results showed that unique-order interpolative coding achieved very good
compression, second to only the interpolative coding. Considering also the performance results in
Tables 2.7, we conclude that the unique-order interpolative coding is very suitable for encoding

within-document frequencies of posting lists.

57

Table 2.9 Within-document frequency index compression of all posting lists, in average bits per pointer.

Coding Methods Collection

Bible DBbib FBIS LAT TREC
Unary coding 1.26 1.37 2.55 2.22 2.37
y coding 1.38 1.44 2.14 2.00 2.07
Golomb coding 1.30 1.50 2.29 2.09 2.20
Batched LLRUN coding 1.38 1.44 2.14 2.00 2.05
Skewed Golomb coding 1.45 1.60 2.39 2.26 2.35
Interpolative coding 0.86 0.92 1.78 1.77 1.75
Variable byte coding 8.11 8.19 8.04 8.02 8.03
Carryover-12 mechanism 2.04 2.75 3.22 2.99 3.07
Unique-order interpolative coding” 0.96 1.02 1.92 1.76 1.84

* The boundary and residual pointers are encoded in y codes and group size g is 4.

2.6 Summary

This chapter proposes a mnovel coding method, the unique-order interpolative coding, to
compress inverted files in IRSs. This method is much easier to implement than interpolative coding.
Furthermore, it is custom designed to suit the clustering property of document identifiers, a property
that has been observed in real-world document collections. Experiments with the inverted files of
five test databases show that this method yields superior performance in both fast querying and
space-efficient indexing. This work shows a feasible way in building a responsive and storage-

economical IRS.

58

Chapter 3 Redundant Decoding Elimination

To provide fast query processing, inverted indexes are widely used in information retrieval
systems (IRSs) (Witten et al., 1999; Zobel et al., 1998). An inverted index consists of an index file
and an inverted file. An index file is a set of records, each containing a keyword term t and a pointer
to the posting list for term t. An inverted file contains, for each distinct term t in the collection, a

posting list of the form
PL, =<(id,, fch)s (idza fqz)""’(idfg qu1)>7

where a posting (id,fq) indicates that term t appears in the document whose identifier is id a total of
fq times (fq is referred to as the within-document frequency), and f; (referred to as the document
frequency of term t) is the number of documents in which term t appears. In a large-scale IRS,
posting lists are usually compressed, and decompression of posting lists is hence required during
query processing (Zobel & Moffat, 1995; Witten et al., 1999). A query consists of keyword terms.
To process a query, the query evaluation engine searches the index file for the query terms to
retrieve and decompress the corresponding posting lists. Set operations, such as intersection, union,
and difference, are then performed on the posting lists to obtain the query output. The results in the
query output are possibly ranked by calculating and examining the score of each document, where
the score is usually a function of the within-document frequency and the document frequency of
term t (Salton, 1989; Salton & McGill, 1983).

In a typical IRS, a few frequently used query terms constitute a large portion of all term
occurrences in queries (Jansen et al., 1997). This suggests that it is advisable to store the index
records for frequently used query terms in RAM to greatly reduce index search time. Hence, the

query processing time of a large-scale IRS is dominated by the time needed to read and decompress

59

the compressed posting list for each query term (Moffat & Zobel, 1996). Moreover, adding a
document into the collection is to add one document identifier into the posting list for each term
appearing in the document, hence the length of a posting list increases with the size of document
collection. This implies that the time to process posting lists increase as the size of document
collection grows. Therefore, further improvement in retrieving and decompressing posting lists
becomes necessary.

Compression of an inverted file is the most popular technique used to increase query throughput
(Zobel & Moffat, 1995; Williams & Zobel, 1999; Trotman, 2003). This is because the total time of
transferring a compressed posting list and subsequently decompressing it is potentially much less
than that of transferring an uncompressed posting list. To achieve good compression, the postings in
a posting list should be sorted in order of increasing document identifier. Two popular approaches
for compressing the document identifiers in the identifier-ordered postings are d-gap compression
approach (Moffat & Zobel, 1992; Witten et al., 1999) and interpolative coding approach (Moffat &
Stuiver, 2000). The d-gap compression approach consists of two steps. It first replaces each
document identifier (except the first one) with the distance between itself and its predecessor. For
example, the document identifiers in the identifier-ordered postings <13, 18, 22, 35, 42> can be
transformed into the d-gaps as <13, 5, 4, 13, 7>. And the second step is to encode these d-gaps
using an appropriate coding method, such as unary coding (Elias, 1975), y coding (Elias, 1975), or
Golomb coding (Golomb, 1966; Witten et al., 1999). The common nature of these coding methods
is their variable-length representations in which small d-gaps can be coded more economically than
large ones. Interpolative coding approach, on the other hand, directly compresses the original
document identifiers with a recursive process calculating the lower and upper bounds of every

document identifier. Then every document identifier is encoded in a binary code. Moffat & Stuiver

60

(2000) showed that the compression result of interpolative coding is better than that of d-gap
compression approach. The drawback of interpolative coding is its slow decompression due to a
stack required in its decoding loops. The within-document frequencies in the identifier-ordered
postings can also be encoded efficiently by using y coding or interpolative coding (Bell et al., 1993;
Moftat & Zobel, 1992; Moffat & Stuiver, 2000).

The query performance on a compressed inverted file can be further improved by using
skipping mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; Anh & Moftat, 1998). Although
compression can greatly reduce disk access time, the compressed posting list for each query term
must be completely decompressed in order to be randomly accessed to any posting in it. Where as
in processing queries, usually only a subset of the postings in a posting list needs to be examined.
To save redundant decoding, skipping mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996;
Anh & Moffat, 1998) that allow queries to be processed with only partial decoding of the list have
been proposed. A common skipping mechanism is to divide the posting list into blocks and add
auxiliary information into each block, so that the postings within a block can be quickly skipped
without decoding them if they are useless in set operations during query processing. There are two
important types of queries: conjunctive Boolean queries and ranked queries. For conjunctive
Boolean queries large blocks provide faster searching for candidates, whereas for ranked queries
small blocks are favored (Moffat & Zobel, 1996; Anh & Moffat, 1998). We observed that all well-
known skipping mechanisms can incur high storage overheads if the posting lists are divided into
small blocks. The increase in disk I/O time outweighs the reduction in decompression time.
Therefore, a novel skipping mechanism that can support small blocks with very little storage

overhead should be developed.

61

In this chapter, we deal with posting list skipping problem for both the conjunctive Boolean
queries and ranked queries in one design. We propose a two-level skipped inverted file, in which a
two-level skipped index is created on each compressed posting list, to remove redundant decoding
and allow fast query evaluation. We first employ well-known skipping mechanisms to create the
first-level index on each posting list by dividing the list into blocks. The first-level index is
constructed with large blocks and designed for optimizing the query performance of conjunctive
Boolean queries. A novel skipping mechanism is then proposed to create the second-level index on
each block for optimizing the query performance of ranked queries. It first divides each block into
sub-blocks, each containing a fixed number of postings. Then it employs functions to accurately
calculate the maximum required bits that will be allocated and reserved to store the postings within
a sub-block, and that can be easily skipped. The novel skipping mechanism works the best for small
sub-blocks and has significant advantages for ranked queries. Experimental results show that the
proposed two-level skipped inverted file provides excellent query speed on both conjunctive
Boolean queries and ranked queries with very little or no storage overhead.

The remainder of this chapter is organized as follows. Section 3.1 describes two well-known
skipping mechanisms and their posting list structures for inverted files. Our test document
collection is described in Section 3.2. In Section 3.3, we present the proposed two-level skipped
inverted file. The performance evaluation is presented in Section 3.4. Finally, Section 3.5 presents

our summary.

3.1 Two Well-known Skipping Mechanisms and Their Posting List Structures

Moffat & Zobel (1996) and Moffat et al. (1995) proposed two well-known skipping

mechanisms to eliminate redundant decoding and allow fast candidate searching. Two posting list

62

structures are employed in their proposed skipping mechanisms. This section presents these two
posting list structures, and comments on them.
3.1.1 SKkipped inverted file

Moffat & Zobel (1996) proposed the skipped inverted file to avoid redundant decoding and
allow fast processing of conjunctive search queries. The idea is to divide the compressed posting
list into blocks each containing a fixed number, k, of postings. The first document identifier of each
block is referred to as the critical document identifier, and it is associated with some extra bits that
specify the location of the next critical document identifier. For example, consider the set of (id,fq)
postings in a given posting list

(4,2), (6,1), (11,1),(13,2), (14,1),(19,2), (24,1), (27,2), (30,2), (42,1)...
For the number of postings per block k=3, the posting list can be represented as
((4,a1),2), (6,1), (11,1), ((13,a2),2), (14,1), (19,2), ((24,a3),1), (27,2), (30,2), ((42,84),1)...,
where a; is the address of the first bit of the (i+1)™ critical document identifier. The document
identifiers (except the critical document identifier) within a block can be stored as d-gaps:
((4.,21),2), (2,1), (5,1), (13,82),2), (1,1), (5.2), ((24,83),1), (3,2), (3.2), ((42,a4),1)...,
Finally, the critical document identifiers and the addresses can also be stored as d-gaps:

((4,21),2), (2,1), (5,1), (9, @-a1),2), (L,1), (5,2), (1 1a3-a2),1), (3,2), (3,2), ((18,a4-3),1)...,

To search the compressed posting list for a document identifier id, the first step is searching in
the critical document identifier list and the second step is searching in one targeted block. Note that
within each block each (id,fq) posting is still code-dependent upon its predecessor. If the candidate
answers do not exist in that block, the postings (except the critical document identifier) within a
block can be quickly skipped without decoding, resulting in reduced decompression time. When

implementing a skipped inverted file, Golomb coding is used to code the d-gaps of document

63

identifiers and the addresses, whereas y coding is used to code the within-document frequencies
(Moftat & Zobel, 1996).
3.1.2 Blocked inverted file

The skipped inverted file uses k-posting blocks, so the blocks themselves are of differing length.
On alternative, called blocked inverted file in which the posting list can be modified to provide
faster checking of individual candidates, is to break the posting lists into blocks of the same size in
bits (Moffat et al., 1995). The first document identifier of each block is also called critical document
identifier. Let b be the number of bits for each block, then the i™ block starts at bit location
1+(i—1)xb. Therefore, the address that specify the location of next critical document identifier can
be omitted in a blocked posting list. Counterbalancing this gain, on average half a (id,fq) posting per
block will be lost. Each compressed (id,fq) posting in a posting list occupies about 8 bits (Witten et
al., 1999), so 4 bits per block will be unused.

In a blocked posting list, the critical document identifier can be stored completely
uncompressed, and a binary search for critical document identifier can be carried out. This clearly
offers much faster accesses to candidates than the skipped inverted file since there is no decoding of
the critical document identifier required, and only logarithmically many of them have to be
examined (Moffat et al., 1995). However, this leads to additional space wastage. For a collection of
N=1,000,000 documents to be indexed and the number of bits per block b=128, the use of an
uncompressed critical document identifier adds about 10% to the size of the compressed inverted
file (Moffat et al., 1995). The space overhead ratio will increase if the size of document collection N
grows or the number of bits per block b decreases. In implementing a blocked inverted file, Golomb
coding is used to code the d-gaps of document identifiers (except critical document identifiers),

whereas vy coding is used to code the within-document frequencies (Moffat et al., 1995).

64

Moffat et al. (1995) indicated that a binary search for the compressed critical document
identifiers can be carried out if the blocks are stored in interpolative manner, and reduced space
overheads can be achieved. This, however, leads to slow decompression for critical document
identifiers due to a stack required in its decoding loops. Therefore, the blocked inverted file to be
implemented in this chapter uses uncompressed critical document identifiers.

3.1.3 Remarks

For both skipped inverted files and blocked inverted files, we cannot find a fixed value of k or b
to simultaneously optimize the query evaluation of conjunctive Boolean queries and ranked queries.
This is because conjunctive Boolean queries favor large blocks, whereas for ranked queries favor
small blocks. Two different indexes might be constructed if speed on both types of query is at a
premium (Moffat & Zobel, 1996). A trivial solution to this problem is to employ a two-level
skipping mechanism, where the first level of skipping divides the compressed posting list into large
blocks for optimizing the query performance of conjunctive Boolean queries, and the second level
divides each large block into small sub-blocks for optimizing the query performance of ranked
queries. However, both skipped inverted file and blocked inverted file are inappropriately used for
smaller sub-blocks due to their high storage overheads. To create a space-efficient two-level
skipped index for providing excellent speed on both types of query, we propose a novel skipping

mechanism to support smaller sub-blocks with very little or no storage overhead in Section 3.3.

65

3.2 Test Data

The document collection used for the experiments in this research is the disk 5 of the TREC-6
collection (Voorhees & Harman, 1997). We have broken the longer documents into pages of around
1000 bytes to ensure that retrieved text is always of a size that can be digested by the user (Zobel et
al., 1995). In the paged form of the test document collection, there are 1,025,469 pages totaling
945MB, an average of 141.4 terms per page, and 317,393 distinct terms, after folding all letters to
lowercase and removing variant endings using Lovin’s stemming algorithm (Lovins, 1968). Each
page is mapped to a unique document identifier. The inverted file comprises 93,226,576 stored
(id,fq) postings.

3.2.1 Conjunctive Boolean queries

We followed the method (Moffat & Zobel, 1996) to generate random conjunctive Boolean
queries. For the test document collection, 300 pages were randomly selected to generate a query set.
A query was generated by selecting words from the word list of a specific page. The number of
terms per query ranged from 1 to 8. For example, a query containing 5 terms may be “inverted file
document collection built”. For each query, there existed at least one page that was relevant to the
query. We also made the generated query set have the following characteristics: (1) Query
repetition frequencies followed a Zipf distribution (Xie & O’Hallaron, 2002); (2) The terms per
query distribution followed a shifted negative binomial distribution (Wolfram, 1992). This made the
distribution of generated queries closely resemble the distribution of real queries. Table 3.1 shows
the average number of candidate pages and the average number of (id,fq) postings considered when

processing the generated queries, for each query size.

66

Table 3.1 Processing of generated conjunctive Boolean queries.

Number of terms ~ Average number of candidate pages Average number of (id,fq) postings

1 42,763 42,763
2 4,814 85,223
3 1,096 127,491
4 459 169,343
5 211 210,665
6 113 251,728
7 43 292,476
8 22 333,082

3.2.2 Ranked queries

50 pages were randomly selected to generate the test ranked query set. For each of the selected
pages, we eliminated stopwords and removed all nonalphabetic characters, and case-folded and
stemmed the resulting words. This gave a set of 50 queries containing, on average 50.2 distinct
terms, and on average 2,050,000 of the (id,fq) postings processed per query, and 41,000 postings
per term per query. We allowed multiple appearances of terms to influence the weighting given to
that term. When using the continue algorithm (Moffat & Zobel, 1996) to evaluate ranked queries,
the average number of (id,fq) postings needed to be checked against the posting list for each query

term may range from 0.2 to 2.0 percent of N, where N is the number of pages in the collection.

3.3 Proposed Two-level Skipped Inverted Files

In this section, we first describe the framework of the proposed two-level skipped inverted file.
Then we propose a novel skipping mechanism to optimize the query performance of ranked queries
with very little or no storage overhead.

3.3.1 Framework of proposed approach
For skipped inverted files, Moffat & Zobel (1996) showed that the total decoding time required

to search a posting list containing p postings for ¢ candidates can be minimized if the posting list is

67

divided into blocks each containing 2@ / C postings. According to Table 3.1, this indicates that

the number of postings per block, k, should be set at a value ranged from 6 to 88 for optimizing the
query performance of conjunctive Boolean queries; while according to Section 3.2.2, this indicates
that the number of postings per block, k, should be set at a value ranged from 3 to 9 for optimizing
the query performance of ranked queries. However, we observed that a skipped inverted file is
inappropriately used for ranked queries. When k < 8 the size of the skipped inverted file is much
larger than that of an un-skipped compressed inverted file, this incurs more read time and
dramatically absorbs the CPU gains. A novel skipping mechanism that can support smaller blocks
with little space overhead should be developed. We also observed that blocked inverted files are
faced with the same problem.

In this chapter, we propose a two-level inverted file, in which a two-level index is created on
each compressed posting, list, to simultaneously optimize the query performance of conjunctive
Boolean queries and ranked queries. The idea is that the first-level index is designed for optimizing
the query performance of conjunctive Boolean queries, whereas the second-level index is designed
for ranked queries. We observed that well-known skipping mechanisms can work well for the first-
level indexing; hence the key to the proposed two-level skipped inverted file is to develop a novel
skipping mechanism that can efficiently support the second-level indexing. The framework of the
proposed two-level skipped index on each compressed posting list is as follows:

The first-level index: One of the skipping mechanisms proposed by Moffat et al. (1995) and
Moffat & Zobel (1996) is first used to create the first-level index on each compressed posting list by
dividing the posting list into large blocks and adding auxiliary information into each block to skip

over unnecessary portions of the list.

68

The second-level index: A novel skipping mechanism is then proposed to create the second-level
index on each large block by dividing the block into sub-blocks and adding auxiliary information
into each sub-block to skip over unnecessary portions of the block.

To ensure that skipped inverted files do not become too large, we require that every block
contains at least 17 postings. This adds about 10% to the size of the un-skipped compressed
inverted file and can reduce considerable decompression time with acceptable space overhead. For
blocked inverted files, we also require that every block contains at least 128 bits. This is because
that each compressed (id,fq) posting occupies about 8 bits (Witten et al., 1999); a skipped inverted
file with k=17 corresponds to a blocked inverted file with b of about 128.

The next section describes the proposed skipping mechanism for the second-level index.

3.3.2 Proposed skipping mechanism

In this section, we first describe the proposed skipping mechanism based on maximum required
bits (MRB) calculation. Then we present the recommended coding method and its MRB function for
the document identifiers and the within-document frequencies within a sub-block. Finally, we
present the implementation optimization technique.

The design

In this sub-section, we propose a novel skipping mechanism based on maximum required bits

(MRB) calculation (cf. Fig. 3.1) to efficiently create a second-level index on each block for the first

level of skipping. Consider a given block containing n postings

(idlsfql)a (id2>fq2)7 (id37fq3)a cees (Idnafqn)

where id;<id;;;. We first replace the within-document frequency fq; with the Fi, where F, = Z fq; is
=]

referred to as the cumulative within-document frequency. Next a sub-block size g is determined.

The block is then divided into m = |_n/ g—‘ sub-blocks, each having g postings except possibly the

69

last block. We define the first posting in each sub-block to be a critical pair consisting of a
document identifier and a cumulative within-document frequency, the postings between critical
pairs to be inner postings, and those in the last sub-block except the critical pair to be the residual
postings. The critical pairs and their subsequent residual postings together can be regarded as a sub-
posting list, on which the document identifiers can be encoded in Golomb coding with the d-gap
technique and the cumulative within-document frequencies can be encoded in y coding also with
the d-gap technique. For the inner postings within a sub-block, the document identifiers and the
cumulative within-document frequencies are stored separately (cf. Fig. 3.1). Assume that the

document identifiers in the inner postings are to be compressed with compression method Cl1,

(idy,fqu), (id>,fq), (1d3,fq3), . .-, (idn,fGn)
F= Z fq i : sub-block
j=1

(id1,F1), (id,Fa), (ids,Fs), .., (idn,Fn) () critical pair

n Wastage
sub-block size was set to g, and M = | — | sub-blocks
g

d- d- d-
gaps gaps gaps d-gaps d-gaps

inner postings inner postings

id;,F,

)

@Idgu» .dzgl g oF l ____________ @ (idy,Fn)

MRBCI(idg+I _idl -19) MRBcz(Fg+1 -19) MRBC[(Id -19) MRB 2 (R,

bits bits bits bits

29+ g+l

o~ Fou=1.09) The residual
postings

Figure 3.1 Illustration of the proposed skipping mechanism. Assume that the document identifiers
in the inner postings are to be compressed with compression method C1, and the cumulative
within-document frequencies are with compression method C2. The function MRBc(Xj+g—Xj—1,9)
can calculate the maximum required bits that need to be allocated to store the strictly ascending
integer sequences Xj+1,Xj+2,...Xjrg-1 compressed with method C, where X can be either id or F and C
can be either C1 or C2.

70

and the cumulative within-document frequencies are with compression method C2. We want to find
two functions MRB¢(Dl;,g) and MRBcy(DF;,9) to precisely calculate the maximum required bits
that need to be allocated to store the document identifiers compressed with method C1 and the
cumulative within-document frequencies compressed with method C2, respectively, in the inner
postings within the i™ sub-block, where DI=ICi~ICi:;—1 and IC; is the document identifier for the i™
critical pair, and DF=FC;—FC;;;—1 and FC; is the cumulative within-document frequency for the it
critical pair. Since the maximum number of bits for the document identifiers and the cumulative
within-document frequencies in the inner postings within a sub-block is known, those identifiers
and frequencies that are useless in set operations during query processing can be skipped easily. In
this mechanism, the critical pair for the (i+1)™ sub=block should be stored before the inner postings
for the i™ sub-block. Compared with the skipping mechanism proposed by Moffat & Zobel (1996),
this mechanism does not require extra bits to specify the location of critical document identifiers.
However, the space overhead of this mechanism is still possibly high if the estimation function is
not accurate. The key to the success of this skipping mechanism is to find efficient coding methods
with accurate functions for compressing the document identifiers and the cumulative within-
document frequencies in the inner postings within a sub-block.
Recommended coding method and its MRB function for inner postings

For the proposed skipping mechanism, interpolative coding is recommended for compressing
both the document identifiers and the cumulative within-document frequencies. The reasons are:
(1) Interpolative coding can yield superior compression performance for both document identifiers

and cumulative within-document frequencies (Moffat & Stuiver, 2000).

71

(2) When the group size g is known, Chapter 2 showed that the decoding process for interpolative
coding can be greatly facilitated using recursion elimination and loop unwinding, this provides
high query throughput rate.

(3) Consider a sequence of (g—1) numbers Xj:1 to Xjig-1 constrained by Xj<Xj+1<Xj2<...<Xjsg-1< Xjrg.
When the group size g=4, we can show that the maximum required bits for the interpolative

coding can be derived as

0 if D=3

2 if D=4
3h+1)+1if4<D<3x2"+3
3h+1)+2 if3x2"+3<D

MRB, .\, (D,g =4) = (3.1)

where D =(Xx;,, —X;—1) and h= |—log2(D —2)—‘—2 . This function is the closed form of

Eq.(2.12) and can calculate the maximum required bits for the document identifiers and the
cumulative within-document frequencies in the inner postings within a sub-block with very little

space overhead.
With interpolative coding, to allow different values of g, one can easily show that
MRBinterp(Da g= 8) > |_10g2(D - 6)—‘ + MRBinterp(p>4) + MRBinterp (q>4)

and this can be converted to

0 if D=7
3 if D=8
6 if D=9
8 if D=10

MRBinterp(D’ g= 8) = (32)

7h+1)+4 if10<D<5x2"+7
Th+1)+5 if 5x2"+7<D<6x2"+7
Th+1)+7 if 6x2"+7<D<7x2"+7
7h+1)+8 if 7x2"+7<D

(D-6)

where D =(X;,, —X; =1), h= [log2 —I— 2, and p, g are two positive integers and p+gq=D-1.

72

Applying the same approach, we have

MRBinterp(Da g= 16) = ’_logz (D - 14)—‘ + MRBinterp(psg) + MRBinterp(qag)

and this can be converted to

0 if D=15
if D=16
8 if D=17
11 if D=18
15 if D=19
17 if D=20
20 if D=21
22 if D=22 (3.3)

MRB,,, (D, g = 16) = -
men (D 0=10 =0 5 11 i 22<D<9%2" +15

15(h+1D)+12 if 9x2"+15<D<10x2"+15
15(h+1)+14 if 10x2"+15<D<11x2"+15
15(h+1)+15 if 11x2"+15<D<12x2"+15
15(h+1)+18 if 12x2"+15<D <13x2" +15
15(h+1)+19 if 13x2"+15<D<14x2"+15
15(h+1)+ 21 if 14x2"+15<D <15x2" +15
15(h+1)+22 if 15x2"+15<D

(D-14)

where D = (X;,, —X; 1), h= [log2 —‘— 2, and p, g are two positive integers and p+g=D-1.

The proposed skipping mechanism can be directly employed to create the first-level index by
dividing the compressed posting list into blocks each containing g postings. Table 2 shows the size
of the inverted files constructed using the proposed skipping mechanism with different g values.
The results show that this skipping mechanism can efficiently support smaller sub-blocks. The size
of inverted files constructed using this mechanism can be even smaller than that of a compressed
inverted file in which the document identifiers are compressed in Golomb codes with the d-gap
technique and the within-document frequencies are in y codes. Note that the file size increases as

the value of g increases, so this skipping mechanism works the best for smaller blocks.

73

When this skipping mechanism is employed to create the second-level index, to optimize the
query performance of ranked queries requires that the sub-block size be set at smaller values of g.
For a simple implementation and which requires space efficiency, we suggest g=4. Note that when
applying this skipping mechanism to a blocked inverted file to create the second-level index on
each block, a unary code should be added in each block to indicate the number of sub-blocks in the
block. Other coding methods are not disregarded. We are still looking for a faster and more
effective coding method to encode the document identifiers or the cumulative within-document
frequencies.

Table 3.2 Sizes of inverted files constructed using the proposed skipping mechanism with different

g values.
Inverted file organization Size
MB %

compressed inverted file 93.28 100.0
the inverted file by the proposed skipping mechanism

g=4 89.33 95.8
g=8 93.06 99.8
g=16 96.21 103.1

Implementation optimization

To skip over unnecessary inner postings, this skipping mechanism requires calculating the
maximum required bits for both document identifiers and cumulative within-document frequencies.
We observed that in most cases the gap value D in Eq. (3.1) is less than 256. Therefore, a 256-entry
array z is used to facilitate the calculation of the maximum required bits, and z[i]=MRBintery(i, g=4),
i= Xj+g— Xj—1, for 3 <i<255. Whenever the gap value in Eq. (3.1) is less than 256, we can obtain
the corresponding maximum required bits with only one array access. This greatly reduces the CPU

time and improves query performance.

74

3.4 Performance Evaluation

This section presents our experiments to evaluate the efficiency of various inverted file
organizations. We used the standard (un-skipped) compressed inverted file as the baseline, in which
d-gaps are encoded in Golomb codes with the parameter b chosen appropriately for each posting list
(Witten et al., 1999), and within-document frequencies are encoded in y codes (Bell et al., 1993;
Moftat & Zobel, 1992). This baseline is then used to evaluate other fine-tuned skipped inverted file
organizations.

Four skipped inverted file organizations are evaluated in our experiments: the skipped inverted
file (described in Section 3.1.1), the blocked inverted file (described in Section 3.1.2), the skipped
inverted file with the 2™-level index, and the blocked inverted file with the 2™-level index. The 2"-
level index is created using the skipping mechanism (g=4) described in Section 3.3.2.

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running
Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec.
Intervening processes and disk activities were minimized with best effort during experimentation.

In Section 3.4.1, we present the sizes for various inverted file organizations. In Section 3.4.2,
we present the time taken to process the generated queries described in Section 3.2 to measure the
query performance of various inverted file organizations.

3.4.1 Sizes for various inverted file organizations

The actual size for each inverted file organization is shown in Table 3.3. As expected, the sizes
of the skipped inverted files and the blocked inverted files are larger than that of standard
compressed inverted file. The space overheads associated with both the skipped inverted files and
the blocked inverted files increase as the block length decreases. This confirms that smaller blocks

are inappropriate for both the skipped inverted file and the blocked inverted file. The skipping

75

mechanism proposed in Section 3.3.2 is used to create the 2™-level index on each block for both the
skipped inverted files and the blocked inverted files. Experimental results show that the skipping
mechanism can incur no space overhead in creating the 2"-level index. Furthermore, we observed
that the size of the skipped inverted file with the 2"-level index can even be less than that of
standard compressed inverted file for larger k values. This provides a space-economical way to

implementing a two-level skipped inverted file.

Table 3.3 Sizes of various inverted file organizations. The sizes are presented in both megabytes
and ratio to the standard compressed inverted file size. For skipped inverted files, K is the number of

postings per block. For blocked inverted files, b is the length of each block in bits.

Inverted file organization Size

MB %
compressed inverted file 93.28 100.0
skipped inverted file
k=17 102.74 110.1
k=33 98.63 105.7
k=65 96.24 103.2
blocked inverted file
b=128 107.89 115.7
b=256 101.11 108.4
b=512 98.10 105.2
skipped inverted file with 2"%-level index
k=17 98.34 105.4
k=33 94.50 101.3
k=65 92.27 98.9
blocked inverted file with 2"-level index*
b=128 107.61 1154
b=256 100.40 107.6
b=512 97.20 104.2

% the 2"-level index is created by using the novel skipping mechanism (g=4) described in Section 3.3.2

76

3.4.2 Elapsed time required to process queries

In this subsection, we present the time taken to process the conjunctive Boolean queries and
the ranked queries, with various inverted file organizations. The query processing time (QPT)
presented includes: (1) the disk read time of compressed posting list for each query term, and (2)
the CPU time measured from the query being issued until the list of answer document identifiers
being finalized. The QPT does not include the time taken to retrieve and display answers. All
programs were optimized as follows:
1. Replaced subroutines with macros.
2. Careful choice for compiler optimization flags.
3. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

4. Implemented the integer logarithm functions ﬁog2 (i)_| and Llog2 (i)J with a 256-entry lookup

table.
5. Another 256-entry lookup table was used to locate the exact bit location of the first “1” bit in a
byte.
6. Accessed to binary codes with masking and shifting operations, and no bit-by-bit decoding were
required.
With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-
bit decoding is required.
Conjunctive Boolean queries
When processing a conjunctive Boolean query, the posting lists for the query terms are
processed in order of increasing document frequency fi. The time taken to process the conjunctive
Boolean queries with various inverted file organizations is shown in Table 3.4. Except for single-

term query, both the skipped inverted files and the blocked inverted files can improve query

77

performance by skipping over unnecessary portions of the compressed posting lists. Experimental
results show that the skipped inverted file can achieve an average speedup of 2.80 to 3.04, and the
blocked inverted file 3.08 to 3.33, compared with the standard compressed inverted file. When the
number of terms > 4, the blocked inverted files far outperform the skipped inverted files. This is
because the number of candidate answers is much less when the number of terms > 4 (cf. Table 3.1)
and the binary search supported by blocked inverted file works well.

Experimental results also show that the 2"-level index created by the skipping mechanism has
substantial and consistent potential to improve the query performance. For the skipped inverted file,
the 2"-level index can improve the average query speed by up to 11%; while for the blocked
inverted file, it can be up to 16%.

Ranked queries

Ranked queries are disjunctive rather than conjunctive, in that any document containing any of
the queried terms is considered a candidate. Skipping mechanisms do not necessarily yield
significant benefits in the evaluation of ranked queries. To improve ranked query evaluation with
skipping mechanisms, Moffat & Zobel (1996) proposed a pruning algorithm, called continue
algorithm, to reduce the number of candidates during the evaluation of ranked queries. They
showed that the continue algorithm for ranked queries can exploit fast search made possible by
skipping mechanisms, and results in improved ranked query evaluation without any substantial
degradation in retrieval effectiveness. We adopt the continue algorithm to evaluate ranked queries
in this experiment. The similarity of a query and a document was calculated by the cosine measure
(Salton, 1989; Salton & McGill, 1983). The maximum number of accumulators was set at 0.2, 0.5,

1.0 and 2.0 percent of N (the number of pages in the test collection).

78

Table 3.4 Conjunctive Boolean query performance of various inverted file organizations (QPT is
the average query processing time of conjunctive Boolean queries, in ms; SP is the speedup relative
to the standard compressed inverted file). For skipped inverted files, k is the number of postings per
block. For blocked inverted files, b is the length of each block in bits.

Inverted file organization

compressed skipped inverted file blocked inverted file skipped inverted file blocked inverted file
inverted file

with 2nd-level index® with 2nd-level index®
k=17 k=33 k=65 b=128 b=256 b=512 k=17 k=33 k=65 b=128 b=256 b=512

Number of

terms

1 QPT
SP

2 QPT
SP

3 QPT
SP

4 QPT
SP

5 QPT
SP

6 QPT
SP

7 QPT
SP

8 QPT
SP

Avg QPT
SP

3.60
1.00

6.82
1.00

9.42
1.00

11.23
1.00

11.98
1.00

12.40
1.00

13.04
1.00

13.99
1.00

10.31
1.00

368 365 363 384 382 381 392 383 375 392 394 390
098 099 099 094 094 094 092 094 09 092 091 092

516 543 579 6.10 6.16 637 510 505 504 583 550 531
1.32 126 118 1.12 1.11 107 134 135 135 117 124 128

425 427 461 430 453 498 422 388 383 409 393 392
222 221 204 219 208 1.8 223 243 246 230 240 240

372 345 353 3.08 323 351 369 320 3.01 297 287 286
302 326 3.18 3.65 348 320 3.04 351 373 378 391 393

337 295 289 239 246 266 335 280 253 235 226 225
355 406 415 501 487 450 358 428 474 510 530 532

315 263 248 196 201 215 310 245 221 195 187 1.87
394 471 5.00 633 6.17 577 400 506 561 636 663 6.63

305 245 224 167 168 180 3.01 235 203 170 164 1.62
428 532 582 781 7.6 724 433 555 642 7.67 795 8.05

304 233 201 143 143 150 3.02° 215 1.89 148 142 142
4.60. 6.00 6.96 9.78 9.78 933 463 651 740 945 985 9.85

368 340 339 3.10 3.17 335 3.68 321 3.04 3.04 293 289
280 3.03 304 333 325 308 280 321 339 339 352 357

* the 2nd-level index is created by the skipping mechanism (g=4) described in Section 3.3.2

The time taken to process the ranked queries with various inverted file organizations is shown

in Table 3.5. Experimental results show that the skipped inverted file can achieve an average

speedup of 1.23 to 1.59, and the blocked inverted file can achieve an average speedup of 1.09 to

1.36, compared with the standard compressed inverted file. In most cases, the skipped inverted files

outperform the blocked inverted files. This is because that the number of candidate answers is

larger and the binary search supported by blocked inverted files cannot be used to produce good

performance. For both the skipped inverted files and the blocked inverted files, smaller blocks

provide better query performance. This confirms our assessment that small blocks have significant

79

advantages for ranked queries. As the maximum number of accumulators increases, the query
speedup of both the skipped inverted files and the blocked inverted files decreases. When the
maximum number of accumulators was set at 2.0 percent of N, the query performance of the
skipped inverted file (k=65) and all the blocked inverted files were even worse than that of the
standard compressed inverted file. To improve the ranked query performance, the 2™-level index
created by the skipping mechanism is applied to the skipped inverted files and the blocked inverted
files. For the skipped inverted file, the 2"%-level index can improve the average query speed by up to
38%; while for the blocked inverted file, it can improve the average query speed by up to 44%. This
fact shows that a space-efficient 2"-level index can provide fast candidate search for ranked queries.
Table 3.5 Ranked query performance of various inverted file organizations (QPT is the average
query processing time of ranked queries, in mini-seconds; SP is the speedup relative to the standard

compressed inverted file). For skipped inverted files, k is the number of postings per block. For
blocked inverted files, b is the length in bits of each block.

% of N Inverted file organization
compressed skipped inverted file blocked inverted file skipped inverted file blocked inverted file
inverted file with 2nd-level index” with 2nd-level index®

k=17 k=33 k=65 b=128 b=256 b=512 k=17 k=33 k=65 b=128 b=256 b=512

0.2 QPT 1004 3820 412 503 36.0 43.7 558 361 33.0 339 331 342 366
SP 1.00 263 244 2,00 279 230 1.80 .2.78 3.04 296 3.03 294 274

0.5 QPT 109.0 57.6 652 781 645 743 994 537 519 537 59.1 582 592
SP 1.00 1.89 1.67- 140 1.69 147 1.10 2.03 210 203 1.84 187 1.84

1.0 QPT 116.1 79.8 90.7 1052 96.5 105.0 116.8 74.5 734 754 88.7 843 82.6
SP 1.00 145 128 1.10 120 1.11 099 156 158 154 131 138 1.4l

2.0 QPT 124.1 107.7 119.7 132.7 1334 136.2 142.1 102.0 100.9 101.6 1243 1143 108.8
SP 1.00 .15 1.03 094 093 091 087 122 123 122 1.00 1.09 1.14

Avg QPT 1124 708 792 91.6 826 898 1035 66.6 648 662 763 728 7T1.8
SP 1.00 1.59 142 123 136 125 1.09 1.69 173 170 147 154 1.57

? the 2nd-level index is created by using the novel skipping mechanism (g=4) described in Section 3.3.2

80

3.5 Summary

This chapter proposes a two-level skipped inverted file to facilitate fast conjunctive Boolean
queries and ranked queries. For this purpose, well-known skipping mechanisms are first used to
create the first-level index on each compressed posting list by dividing the posting list into large
blocks for optimizing conjunctive Boolean queries. Then a skipping mechanism is proposed to
create the second-level index on each block by dividing the large block into small sub-blocks for
optimizing ranked queries. Compared with well-known skipping mechanisms, this novel skipping
mechanism can support second level of skipping with no storage overhead. Experiments clearly
indicate that the proposed two-level skipped inverted file can improve the query speed for
conjunctive Boolean queries by up to 16%, and for ranked queries by up to 44%, compared with the
conventional one-level skipped index. This provides a very simple and attractive way to building a

fast and space-economical IRS.

81

Chapter 4 Inverted File Optimization

Inverted files are widely used in modern large-scale IRSs for fast query evaluation.
Compressing an inverted file can greatly increase query throughput (Zobel & Moffat, 1995;
Williams & Zobel, 1999). This is because the total time of transferring a compressed posting list
and subsequently decompressing it is potentially much less than that of transferring an
uncompressed posting list. The query processing time in a large-scale IRS is dominated by the time
needed to read and decompress the posting lists for the terms involved in the query (Moffat & Zobel
1996), and we observe that the query processing time grows with the total encoded size of the
corresponding posting lists. This is because the disk transfer rate is near constant, and the decoding
processes of most encoding methods used in the d-gap compression approach are on a bit-by-bit
basis. If we can reduce the total encoded size of the corresponding posting lists without increasing
decompression times, a shorter query processing time can be obtained.

A document identifier assignment (DIA) can make the document identifiers in the posting lists
evenly distributed, or clustered. Clustered document identifiers generally result in better
compression efficiency of the coding methods used for compressing inverted files without
increasing the complexity of decoding process, hence reduce the query processing time. In this
chapter, we consider the problem of finding an optimal DIA for the inverted file to minimize the
average query processing time when the probability distribution of query terms is given. The DIA
problem, that is known to be NP-complete via a reduction to the rectilinear traveling salesman
problem (TSP), is a generalization of the problems solved by Olken & Rotem (1986), Shieh et al.
(2003), and Gelbukh et al. (2003). Their research results showed that this kind of optimization

problem can be effectively solved by the well-known TSP heuristic algorithms. The greedy nearest

82

neighbor (Greedy-NN) algorithm performs the best on average, but its high complexity discourages
its use in modern large-scale IRSs.

In this chapter, we propose a fast heuristic, called partition-based document identifier
assignment (PBDIA) algorithm, to find a good DIA that can make the document identifiers in the
posting lists for frequently used query terms more clustered. This can greatly improve the
compression efficiency of the posting lists for frequently used query terms. Where the probability
distribution of query terms is skewed, as is the typical case in a real-world IRS, the experimental
results show that the PBDIA algorithm can yield a competitive performance versus the Greedy-NN
for the DIA problem. The experimental results also show that the DIA problem has significant
advantages for both long queries.

The remainder of this chapter is organized as follows. Section 4.1 describes the inverted index
and explains why a DIA can affect the storage space required and change query performance.
Section 4.2 derives a cost model for the DIA problem, and presents how to use the well-known TSP
heuristic algorithms to solve this optimization problem. In Section 4.3, we propose a fast PBDIA
algorithm. We show the performance evaluation in Section 4.4. Finally, Section 4.5 presents our

summary.

4.1 General Framework

The data structures of an inverted index are depicted in Figure 4.1. An inverted index consists
of an index file and an inverted file. An index file is a set of records, each containing a keyword
term t and a pointer to the posting list for term t. An inverted file contains, for each distinct term t in
the collection, a posting list of the form

PLi=<idy, idy, ..., ids>,

83

where id; is the identifier of the document that contains t, and frequency f; is the number of
documents in which t appears. The document identifiers are within the range 1...N, where N is the
number of documents in the indexed collection. In a large document collection, posting lists are
usually compressed, and decompression of posting lists is hence required during query processing.
Zipf (1949) observed that the set of frequently used terms is small. According to Zipf’s law,
95% of words in all documents fall in a vocabulary with no more than 8000 distinct terms. This
suggests that it is advisable to store the index records of frequently used terms in RAM to greatly
reduce index search time. Hence, the significant portion of query processing time is to read and
decompress the compressed posting list for each query term. This chapter restricts attention to
inverted file side only and investigates the DIA problem to improve the efficiency of an inverted

file and the overall information retrieval (IR) performance.

doc. identifier=1

ointer fi posting lists

-
5
72]

i ! ...computer. .. i

I EUUUUUUDR AU B B ro ...architecture... !

i architecture »250 1,2,5.10,12 ... i doc. ider}tiﬁer=2 i

: o ...architecture. .. :

i computer >33 1,3,7. 10,92 ... i i doc. identifier=3 i
i____i_nfd_efi file] i p_v_e_r:[g(_i_f}}e__“““_j i ... computer ... |

' doc. identifier=4 i

answer list of "computer" <and> "architecture": 1,10,12,... i i

answer list of "computer" <or> "architecture": 1,2,3,5.7,...

document collection

Figure 4.1 Inverted index and document collection

Compression of an inverted file is the most popular technique used to increase query

throughput (Zobel & Moffat, 1995; Williams & Zobel, 1999; Trotman, 2003). This is because the

84

total time of transferring a compressed posting list and subsequently decompressing it is potentially
much less than that of transferring an uncompressed posting list. To achieve good compression, the
document identifiers in a posting list should be sorted in increasing order and compressed using the
d-gap compression approach (Moffat & Zobel, 1992; Witten et al., 1999) or the interpolative coding
approach (Moffat & Stuiver, 2000). Both approaches can yield superior compression if the
document identifiers in the posting lists are clustered.

Consider a document collection of 6 documents shown in Figure 4.2(a). Each document
contains one or more terms. The document d; contains term 1 and term 2, document d, contains
term 2, etc. In Figures 2.2(b) and 2.2(c), the notation di=j in DIAs I and II denotes that the
document identifier j is assigned to the document di. According to the documents in Figure 4.2(a)
and the DIAs I and II, the obtained posting lists and d-gap lists are shown in Figures 4.2(b) and
4.2(c). For DIA 1, the d-gap values have nine 1s, two 2s, two 3s and one 4; whereas for DIA 11, the
d-gap values have eleven 1s, one 2 and two 3s. With y coding in Table 4.1, the compressed inverted
file requires 26 bits for DIA I, whereas it requires 20 bits for DIA II. If every term is queried with
equal probability, the query processing costs for DIA II will be much lower than that of DIA I. This
is because DIA II can result in better compression for the given coding method without increasing
the complexity of decoding process, hence improve query throughput by reducing both the retrieval
and decompression times of posting lists. This example shows that different DIAs can result in
different compression results and different query throughputs for a given coding method. In next
section, we will introduce a query cost function for the DIA problem, and then derive a method to
find a good DIA to shorten average query processing time when the probability distribution of

query terms is given.

85

term 1
term 2

term 1
term 2

term 2

term 2 term 4

term 3
term 4

term 1
term 4

term 1
term 2
term 3

document d,

documentd, document d;

(a) Example documents

document d4

document ds

DIAT: { d]%l, d292, d393, d494, d595, d696}

Posting list of term 1: <1, 4, 5, 6>
Posting list of term 2: <1, 2, 3, 4, 6>
Posting list of term 3: <4, 6>
Posting list of term 4: <3, 4, 5>

Total bits required to encode d-gaps with y code = 26 bits

d-gap list of term 1:
d-gap list of term 2:
d-gap list of term 3:
d-gap list of term 4:

(b) DIA T result

DIATE {d>3, d:>5, d; >4, di>1; ds>6, dge>2)

Posting list of term 1: <1, 2, 3, 6>
Posting list of term 2: <1, 2, 3,4, 5>
Posting list of term.3: <1, 2>
Posting list of term 4: <1, 4, 6>

Total bits required to encode d-gaps with y code = 20 bits

d-gap list of term 1:
d-gap list of term 2:
d-gap list of term 3:
d-gap list of term 4:

(c) DIA II result

document dg

<1,3,1, 1>
<1,1,1,1,2>
<4,2>

3,1, 1>

<1,1,1,3>
<1, 1,11, 1>
<1, 1>
<1,3,2>

Figure 4.2 An example to show different DIAs result in different compression results

d-gap value y code
X
1 0
2 100
3 10 1
4 110 00

Table 4.1 Some example codes for y coding

86

4.2 Document ldentifier Assignment Problem and Its Algorithm

The DIA problem is the problem of assigning document identifiers to a set of documents in an
inverted file-based IRS in order to minimize the average query processing time when the
probability distribution of query terms is given. In this section, we first formalize the problem, and
then show how to use the well-known greedy nearest neighbor (Greedy-NN) algorithm to solve this
problem.

4.2.1 Problem mathematical formulation

Let D={d;, dy, ...,dn} be a collection of N documents to be indexed, and 7« :{ di, d, ...,
dv }=21{1, 2, ..., N} be a DIA that assigns a unique identifier within the range 1...N to each
document in D. Let f; be the total number of documents in which term t appears and dy), dy), ...,

dyy be documents containing term t, then the posting list of the term t can be represented as
PL=<n(dy1)), m(dy2)),- .-, T[(dt(ft))>. Without loss of generality, we assume that (i) <n(dy2))<...<
m(dyty). Assume a coding method C which requires C(X) bits to encode a d-gap X. The size of a

posting list PL; for term t can then be expressed as
ft
ZC(”(dt(i)) _ﬂ-(dt(i—l))) 4.1
i1

where we let dy=0 and m(dyp)=0 to simplify the expression of Eq.(4.1). Assume that the
probability of a term t appearing in a query is pr. Let X; be a random Boolean variable representing
whether term t appears in a query: X=1 if term t appears in a query and X=0 otherwise. The query
processing time Timegp of posting list processing includes (1) retrieval time Timeg of posting list
PL; for each query term t, (2) decompression time Timep of posting list PL; for each query term t,

and (3) document identifier comparison time TiMecomp. Since the document identifier comparison

87

time is relatively small (about 10% of query processing time) and does not change with different

DIAs, the query processing time in this chapter is defined only as

Timey, = th x (Time, (PL,) + Time, (PL,)) (4.2)

The average query processing time AvgTimegp is the expected value of Timegp. That is,

AvgTime,, = z p, x (Time, (PL,) + Time, (PL,)) (4.3)

Since the disk transfer rate is near constant and the decoding processes of most coding methods
used in d-gap compression approach are on a bit-by-bit basis, the retrieval and decompression times

of a posting list PL; for the term t appearing in a query grows with the size of the posting list PL;. So
f
Time, (PL,) + Time, (PL,) = constant x ZC(ﬂ'(d i) — (i) (4.4)
=)
Substituting Eq.(4.4) into Eq.(4.3), we obtain

fl
AvgTimey, = constant x Z p, x ZC(n(dt(i)) —7(dyi) (4.5)
t

i=1
We thus define the objective function Cost(m) to reflect the average query processing time

AvgTimegp :
fy
Cost(z) = > P, x 2,C(x(dy)) = 7(dy 1)) (4.6)

The objective of this research is to find a DIA © : D>{1,2,3...,N} such that Cost(r) is
minimal. This optimization problem is called the DIA problem, and it is reduced to the simple DIA
(SDIA) problem if the value of p; for each term t is set to 1. The SDIA problem is the problem of
finding a DIA to minimize the size of inverted file, and it is known to be NP-complete via a
reduction to the rectilinear traveling salesman problem (Olken & Rotem 1986). Since the DIA

problem is a generalization of the SDIA problem, the DIA problem is also a NP-complete problem.

88

4.2.2 Solving DIA problem via the well-known Greedy-NN algorithm

The research works of Shieh et al. (2003) and Gelbukh et al. (2003) indicated that finding the
near-optimal solution for the SDIA problem can be recast as the traveling salesman problem (TSP),
and also showed that heuristic algorithms for the TSP can be applied to the SDIA problem to find a
near-optimal DIA. Compared with those well-known TSP heuristic algorithms, such as insertion
heuristic algorithm and spanning tree based algorithm, Shieh et al. (2003) showed that the Greedy-
NN algorithm performs better for the SDIA problem on average. In this section, we first show how
to solve the SDIA problem using the Greedy-NN algorithm. Then, we show how to transform the
DIA problem into the SDIA problem, and explain why the Greedy-NN algorithm can provide better
performance than the other TSP heuristic algorithms for the DIA problem.
Solving SDIA problem via Greedy-NN algorithm

Shieh et al. (2003) showed that the SDIA problem can be solved by using TSP heuristic
algorithms. Given a collection of N documents, a document similarity graph (DSG) can be
constructed. In a DSG, each vertex represents a document, and the weight on an edge between two
vertices represents the similarity of these two corresponding documents. The similarity Sim(d;, dj)

between two documents d; and d; is defined as:

Sim(d,,d))= D1 4.7)

te(T ()T (d)))

where T(d;) and T(d;) denote the set of terms appearing in d; and d;, respectively, and N denotes the
intersection operator. Hence, the similarity between two documents is the number of common terms
appearing in both documents. The DSG for the example documents in Figure 4.2(a) is shown in
Figure 4.3. A TSP heuristic algorithm can then be used to find a path of the DSG visiting each
vertex exactly once with maximal sum of similarities. If we follow the visiting order of vertices on

the path to assign document identifiers, the sum of d-gap values for an inverted file can be

&9

decreased, and the size of inverted file compressed via the d-gap compression approach can be
reduced. Shieh et al. (2003) showed that the Greedy-NN algorithm (Figure 4.4) can provide
excellent performance for the SDIA problem.

We now show how to obtain a DIA for the example documents in Figure 4.2. In Step 1, we
construct the DSG (Figure 4.3) for the given documents, where V={d;, d,, ds, ds, ds, d¢}. In Step 2,
we pick d4 as v, since the sum of similarity values associated with its adjacent edges is maximal
(=10). In Step 3, we have V'={d,, d,, d3, ds, d¢}. In Step 4, we pick ds as Vv, since d¢ is the vertex V in
V' such that the edge (v,v;) has the maximal similarity value. In Step 5, we have V'={d,, d,, ds, ds}.
Repeat Steps 4 and 5 as needed, we can then sequentially pick d, as v3, ds as V4, d; as Vs, and ds as V.
Hence, we have a TSP path: {d4, d¢, d;, ds, da, ds}, and a DIA = {d;>3, d,>5, d;2>4, d4>1,

ds>6, dg>2}.

Figure 4.3 The DSG for the example documents in Figure 4.2(a).

90

Algorithm Greedy_nearest_neighbor

Input:

D={d;, dy, ..., dy}: a collection of N documents to be indexed.
Output:

A TSP path: the visiting order of vertices is {V1 Vs geens Vy }
Method:

1. Construct the DSG(V, E), where V is a set of vertices (in which each vertex represents a
document) and E is a set of edges (in which each edge has a similarity value associated with it);

2. Pick a vertex veV as v; such that the sum of similarity values associated with the adjacent
edges of v is maximal;

3.V'=V —{v}; i=1

4. Find v in V' such that the similarity value of the edge (Vv,vi) is maximal: if more than one such
vertex exist, select one randomly;

S5.i=i+L v,=v; V'i=V'—-{v};

6. If i<N then goto 3;

7. Output a TSP path with its visiting order of vertices being {V1 Vs seees Vi }

Figure 4.4 The Greedy-NN algorithm for the SDIA problem.

Transforming DIA problem into SDIA problem

We use a matrix A to represent the input document collection, in which a row corresponds to a
term and a column corresponds to a document. The entry A;jis a 1 if term i appears in document dj,
and 0 otherwise. The SDIA problem is to determine whether there exists a permutation of the

columns of A that results in a matrix B such that

n fi

Z[ZC(za, D=z j-D)+ C(z(i,n)j <k (4.8)
i=1 \ j=2

where C is a coding method which requires C(X) bits to encode a d-gap X, n is the number of terms,
fi is the total number of documents in which term i appears, z(i,j) is a function that returns the
column index of the j™ nonzero entry at row i, and k is a given integer used to determine whether
there exists a permutation of columns of A such that the total encoded size of an inverted file is less

than k. The DIA problem is to determine whether there exists a permutation of the columns of A

that results in a matrix B such that

91

> x (Zc(z(i, i) =2, j— 1)+ C(z(i,l))j <k’ (4.9)

i=1 =2
where p; is the probability of a term i appearing in a query and K' is a given integer used to
determine whether there exists a permutation of columns of A such that the mean encoded size
needed to read and decompress a posting list during query processing is less than k'.

To show how to transform the DIA problem into the SDIA problem, we use the document
collection in Figure 4.2(a) as an example instance of the DIA problem, and assume that the
probabilities of terms being queried are p;=0.2, p,=0.3, p3=0.1, and p4s=0.4. Figure 4.5(a) shows the
matrix A of Figure 4.2(a). Then we construct a new matrix A’ for the SDIA problem by duplicating
each row of matrix A in a certain number of times based on the given probabilities of terms
appearing in a query, as shown in Figure 4.5(b). In matrix'A’, the row of matrix A corresponding to
term i is duplicated m; times, where mi=rows(A")xp; and rows(A") denotes the number of rows of
matrix A’. The rows(A") can be any positive integer such that m=rows(A’) xp; is an integer for every
I. In this example, we let rows(A") be 10. One can easily show that the optimal solution of matrix A’
for the SDIA problem is also the optimal solution of matrix A for the DIA problem when the
probabilities p;=0.2, p»=0.3, p3=0.1, and p4=0.4 are given.

Using the same approach, it is obvious that one can transform any instance A of the DIA
problem into an instance A’ of the SDIA problem such that the optimal solution of matrix A’ for the
SDIA problem is also the optimal solution of matrix A for the DIA problem when the probabilities
pi for 1 <i < n are given, where n denotes the number of distinct terms. Since the research work of
Shieh et al. (2003) showed that the Greedy-NN algorithm performs the best for the SDIA problem
on average, one can show that the Greedy-NN algorithm can provide better performance than the

other TSP heuristic algorithms for the DIA problem. Therefore, the DIA problem can be solved

92

using the Greedy-NN algorithm described in Figure 4.4, if the similarity Sim(d;, dj) between two

documents d; and d; in a DSG is redefined as:

Sim(d,,d))= >.p, (4.10)

te(T(d)T(d)))

where the probability of a term t appearing in a query is known to be px.

Matrix A:
probability d; d, d; ds ds ds
P1=0.2 term I 1 0 0 1 1 1
P2=0.3 term 2 1 1 1 1 0 1
ps=0.1 term 3 0 0 0 1 0 1
Ps=0.4 term 4 0 0 1 1 1 0

(a) An example instance for the DIA problem: Matrix A corresponds to the
document collection in Figure 4.2(a), and the probabilities of terms appearing in
a query are p;=0.2, p»=0.3, ps=0.1, and ps=0.4.

Matrix A" d, d, ds ds ds de
RoOWierm1 of matrix A is duplicated 1 0 0 1 1 1
m;=rows(A") xp;=2 times 1 0 0 1 1 1
Rowiermz of matrix A is duplicated | 1 1 1 0 1
My=rows(A") xp,=3 times 1 1 1 1 0 1

o : 1 1 1 1 0 1

RoOWierm3 the matrix A is duplicated 0 0 0] 0]
m3=rows(A’) xps=1 time 0 0 1 1 1 0
ROWierma Of matrix A is duplicated 0 0 1 1 1 0
m4=rows(A") xps=4 times 0 0 1 1 1 0
0 0 1 1 1 0

(b) Matrix A' is the corresponding instance of Figure 4.5(a) for the SDIA problem. In
matrix A’, ROWemi of matrix A is duplicated m; times, where mi=rows(A”") xp; and
rows(A") denotes the number of rows of matrix A’.

Figure 4.5 An example to illustrate how to transform an instance of the DIA problem into an
instance of the SDIA problem

Although the Greedy-NN algorithm is very simple to implement, it is not very applicable to
large-scale IRSs due to its high complexity. Given a collection of N documents and n distinct terms,

the number of comparisons for calculating Sim(d;,d;) given fixed i and j is O(n), hence the total

93

number of comparisons to construct a DSG for the Greedy-NN algorithm is O(N*xn). An algorithm

with lower complexity yet still generates satisfactory results should be developed.

4.3 Partition-based Document Identifier Assignment Algorithm

Since the DIA problem is an NP-complete problem, the effort in search for an effective low-
complexity method is needed. Although the Greedy-NN algorithm can be used to solve the DIA
problem, its complexity is too high. In this section, we first present an optimal DIA algorithm for a
single query term, and then propose an efficient partition-based document identifier assignment
(PBDIA) algorithm for the DIA problem.

4.3.1 Generating an optimal DIA for a single query term

Consider a posting list PL; for term t with f; document identifiers in a collection of N
documents. Using the d-gap technique, we can obtain f; d-gap values: d-gap;, d-gapa,..., d-gaps.
Assume a coding method C which requires C(X) bits to encode a d-gap x. We want to know which
d-gap probability distribution can minimize the size of posting list PL; after compression using

method C. That is, we want to know which d-gap probability distribution can minimize

fi
> C(d-gap,) (4.11)
i=1
subject to
fl
f, <> d-gap, <k and (4.12)
i=1
1<d-gap, <k foralli, 1<i<k (4.13)

where k is the largest document identifier in the posting list PLi. It is known that C(x) is

approximately proportional to log,(X) for many popular coding methods, such as y coding, skewed

94

Golomb coding, and batched LLRUN coding. For these coding methods, we can use dynamic
programming technique (Bellman and Dreyfus, 1962) and find that minimizing Eq.(4.11) should
meet two requirements: (1) maximize the number of d-gap values of 1; and (2) minimize the largest
document identifier, i.e., k, in the posting list PL;. If a DIA for term t can satisfy the above two
requirements, the best compression and the fastest query speed for the posting list PL; can be
achieved.

According to the above observation, we propose the simple partition-based document

identifier assignment (SPBDIA) algorithm to generate optimal DIAs for a given query term t. The
SPBDIA algorithm consists of a partitioning procedure, an ordering procedure, and a document
identifier assignment procedure. The partitioning procedure divides the given documents into two
partitions in terms of query term t: one partition P(t) consists of documents containing query term t ;
the other partition P(1') is made up of the documents without t. Then, the ordering procedure sets the
order of partitions as P(t) followed by P(t'). Finally, the document identifier assignment procedure
generates an appropriate DIA for the ordered partitions according to query term t: the documents in
partition P(t) are assigned smaller consecutive document identifiers, while the documents in
partition P(t') assigned larger consecutive document identifiers. The SPBDIA algorithm is
illustrated in the following Example.
Example. There is a collection of 500 documents, among which 300 documents contain query term
t. After partitioning, P(t) has 300 documents and P(t') has 200 documents. Then, the ordering
procedure sets the order of partitions P(t) followed by P(t'). Finally, the document identifier
assignment procedure assigns the document identifiers 1~300 to the 300 documents in partition P(t)
and assigns the document identifiers 301~500 to the 200 documents in partition P(t'). m

Documents in a partition can be arbitrarily assigned identifiers within the given range, hence the

95

number of possible DIAs for the above Example is 300!x200!. Each of the 300!x200! DIAs
satisfies the two requirements for minimizing Eq.(4.11), and hence gives both the best posting list
compression and fastest query speed for query term t. The SPBDIA algorithm is simple, and its
complexity is O(N).
4.3.2 Efficient PBDIA algorithm for DIA problem

In a real-world IRS, a few frequently used query terms constitute a large portion of all term
occurrences in queries (Jansen et al. 1998). This fact indicates that a DIA algorithm that allows
those frequently used query terms to have better posting list compression can result in reduced
average query processing time. Based on the SPBDIA algorithm, an efficient partition-based
document identifier assignment (PBDIA) algorithm for the DIA problem can be developed.
Like the SPBDIA algorithm, the PBDIA algorithm also partitions the document set, orders these
partitions, and then assigns document identifiers. The flowchart of the PBDIA algorithm is shown
in Figure 4.6. The partitioning and ordering procedures of the PBDIA algorithm iterate n times
given that there are n query terms. Then, the document identifier assignment procedure is
performed as the last step of the PBDIA algorithm. Terms that are queried more frequently should
take higher priority in document partitioning and partition ordering. Let the most frequently queried
term be assigned rank 1, the second most frequently queried term rank 2, and so on. We use ik j to
represent the i™ ranked query term. The partitioning and ordering procedures of the PBDIA
algorithm should proceed by considering t,. ; first, then t;,nx 2, and so on.

Both the PBDIA partitioning and ordering procedures are invoked once per iteration. The
PBDIA partitioning procedure first divides each partition generated in the previous iteration into
two partitions using the SPBDIA partitioning procedure. The PBDIA ordering procedure then

assigns each newly generated partition a partition order. Each partition P in the PBDIA

96

f1stiteration 0 § o
partitioning procedure|q{ lrank 1 (

<+—

P (i) s Poy (V)

¢

ordering procedure

terms

PO,l(trankl) - Pl,l H PO,I(t'rankl) - PI,Z
i 2nd iteration i
I partitioning procedure i
Requires i l i
a total of ! i
n lteratlops’ : {Pl,l (trank 2) o Pl,l (t'ra.nk 2)}5 {PI,Z (trank 2) H P1,2 (t'rank 2)} i
where n is i l !
the number ! i
of query i ordering procedure :

Pl,l (t'rank2) - PZ,] s Pl,l (trank2) - P2,2 ’ P1,2 (trank2) — P2,3 ’ Pl,2 (t'rankZ) - P2,4

ordering procedure

\ + nth iteration PoisPoas Pssoes P

document identifier assignment procedure

A document identifier assignment « for the DIA problem

Figure 4.6 The flowchart for the PBDIA algorithm

97

algorithm hence can be uniquely identified by an iteration number i and a partition order j, and we
use the notation Pjj to represent the jth ordered partition of the i™ jteration. For example, the notation
P,3 represents the 3" ordered partition of the 2" iteration. Initially, we use the notation Py to
represent the partition that contains all documents in an input document collection. In the following,
we describe in detail the partitioning, ordering, and document identifier assignment procedures of
the PBDIA algorithm.
PBDIA partition procedure

Let Pi.11, Pii2, ..., and Pi;x be nonempty partitions generated in iteration i-1. The PBDIA
partitioning procedure invoked in the i iteration divides each partition Pi.1j into a partition pair {P;.
1,j(teank i), Pi1j(trank i)} for j=1,2,...K, where the partition P;.; j(tranki) consists of the documents in P;.
1,j containing the query term tpnx i, and Py j(t'ank i) consists of the documents in Pj.;j without the
query term trnki. Since Pjjj is nonempty, at least one of the two partitions Pi.j j(trank i) and Pi_ j(t'rank i)
is nonempty for j=1,2,... K.
PBDIA ordering procedure

Let {Pi-11(trank i), Pict,1(Crank)§5 {Pi12(tiank)5 Pict2(trank)5 -2 and {Piy k(trank i), Piot k(trank i)} be
the partition pairs generated by PBDIA partitioning procedure in iteration i. Let |Pj| denote the
number of nonempty partitions of the above partitions. The PBDIA ordering procedure invoked in
the i iteration assigns a unique partition order, from |Pj| to 1 and in descending order, to each
nonempty partition, starting from {Pi.; x(trank i), Pi-1 k(Trank i) }»> then {Pi x1(tranki)s Pi-ik-1(Trank i)}, and
so on.

Now let us consider the ordering of partition pair {Pi.j k(trank i), Pi-1 x(t'rank i)} . Three cases exist.
Case 1: Both Pi_j k(trank i) and Pi_j k(t'rank i) are nonempty

The ordering procedure assigns |Pi| to Pijx(t'rank i), and |Pi|-1 to Pi.jx(trank i)- Pi-1k(trank i) 18

98

hereafter denoted as Pi,‘,,_ E

and Pi.; k(trank i) as P,

ifRl-1°
Case 2: Pij k(tiank i) 1s empty, and Pj_j k(t'ank i) 1S nonempty
The ordering procedure assigns |Pi| to Pi.j x(t'rank i), and ignores Pi_j x(trank i)- Pi-1 x(t'rank i) 18 hereafter

denoted as Piv\P- -

Case 3: Pi_j k(trank i) 1s nonempty, and Pi_j k(t'rank i) 1S empty
The ordering procedure assigns |Pj| to Pi_j k(trank i), and ignores Pi_j k(t'iank i). Pi-1 k(trank i) 1S hereafter

denoted as Pi"P_ -

Next we consider the ordering of partition pairs {Pi.j(trank i), Pi-1j(t'anki)}, Where j=1,2,....k-1.
Let the next largest partition order to be assigned be s. Since PBDIA ordering procedure orders {P;.
1j+1(trank i) Pictjr1(trank i)} before {Piij(trank i), Pi-1j(trank i)}, Pis+1 18 hence used to denote either Pj.
1,j+1(teank i) OF Pict j1(t'rank). Again, three cases exist for {Pi_i j(twanki), Pi-1,j(t'rank i)}
Case 1: Both Pj_y j(trank i) and Pi j(t'ank i) are nonempty
There exist two subcases.
SubCasel.a: P4 is used to denote Pi.j j+1(trank i)
The ordering procedure assigns S to Piyj(tiank i), and S-1 to Pi.j j(t'rank i)- Pi-1j(trank i) 1S hereafter
denoted as Pis, and Pi.j j(t'rank i) as Pis-1.
SubCasel.b: Pis; is used to denote Pi.j j+1(t'rank i)
The ordering procedure assigns S to Pi.j j(t'rank i), and s-1 to Pi_y j(trank i) Pi-1j(t'rank i) 1s hereafter
denoted as Pis, and Pi.j j(trank i) as Pis-1.
Case 2: Pi_j j(trank i) s empty, and Pi. j(t'vank i) is nonempty
The ordering procedure assigns S to Pij(t'ank i), and ignores Pi.jj(trank i). Pi-1j(t'ank i) is hereafter
denoted as Pis.

Case 3: Pi.1 j(trank i) 1s nonempty, and Pj_; j(t'rank i) 1S empty

99

The ordering procedure assigns S to Pijj(twank i), and ignores Pijj(t'rank i). Pi-1j(trank i) is hereafter
denoted as Pjs.
PBDIA document identifier assignment procedure

The document identifier assignment procedure, the last step of PBDIA algorithm, is
straightforward. Let Py 1, Pn2, ..., and Py be the generated ordered partitions of the iteration n. This
procedure assigns consecutive document identifiers to documents in the same partition, and
consecutive identifier groups to consecutive ordered partitions. The first (smallest) document
identifier is assigned to a document in the first ordered partition (Pn;). And the ordering of

documents in a partition is irrelevant and can be arbitrary.

To obtain a good DIA, the partitions must be properly ordered. We explain why the PBDIA
ordering procedure is proper: Note that the PBDIA ordering procedure always assigns consecutive
partition orders to two nonempty partitions of a partition pair. This makes documents in the same
partition in iteration i remain in the same or neighboring partitions in iteration i+1. According to the
PBDIA document identifier assignment procedure, documents in the same partition in iteration i
will eventually be assigned consecutive or at least adjacent document identifiers. That is, once the
order of partitions is generated at the end of iteration i, the compression performance for the posting
list of trank i is determined. Hence, the posting list of t.,k 1 has the best compression, then that of tinko,
and so on. This is because the PBDIA algorithm considers the ty 1 first, then t.x 2, and so on, in its

iterations.

100

Algorithm Partition_based_document_identifier_assignment

Input:
D={d;, dy, ..., dx}: a collection of N documents to be indexed.
T={ty, to, ..., ty}: a set of n distinct terms appearing in D.
Prob={pi, p2, ..., Pn}: pi denotes the probability of the term t; €T appearing in a query.
Output:
A document identifier assignment 7 :{ d1, dp, ..., dn } 2 {1, 2, ..., N} for the DIA.
Method:
1. Create an empty doubly linked list PartList; // to store partition
2. Create an empty doubly linked list TempList; //to store partition pairs
3. Assign all documents in D to a new partition P, and add P to the PartList;
4. Sort the terms in T in descending order according to their probabilities. Let trank 1, trank 2, ... trank n
represent the sorted list.
5. for i:=1 tondo
5.1 while PartList is not empty do /*partitioning procedure*/
5.1.1 Get a partition P from the head of PartList, and then remove P from PartList;
5.1.2 // At least one of the partitions P(tyanki)and P(t'rnk i) should be nonempty
Let P(trank i) be the partition containing the documents that are included in P and do
contain the term tynk i ; let P(t'ank i) be the partition containing the documents that are
included in P and do not contain the term tiani ;
5.1.3 Add the partition pair {P(tanki),P(tanki)} to the tail of TempList;
5.2 while TempList is not empty do /*ordering procedure*/
5.2.1 Get a partition pair {P(trank i);P(t'rank i)} from the tail of TempList, and then remove
{P(trank i),P(t'zank i)} from TempList;
5.2.2 if P(tank i) is empty then add P(t'nk i) to the front of PartList and go to step 5.2;
5.2.3 if P(t'1ank i) is empty then add P(t;.nx i) to the front of PartList and go to step 5.2;
5.2.4 if PartList is empty then
Add P(t'unk i) to the PartList; add P(t.nx) to the front of PartList;
else //PartList is not empty
Get a partition P from the head of PartList, and get a document deP ;
if the document d contain the term t;anx i then
Add P(tnk i) to the front of PartList; add P(t'.nx i) to the front of PartList;
else // the document d does not contain the term teank i
Add P(t'4nk i) to the front of PartList; add P(t;nk i) to the front of PartList;
6.1:=1;
7. while PartList is not empty do /*document identifier assignment procedure*/
7.1 Get a partition P from the head of PartList, and then remove P from PartList;
7.2 while P is not empty do
7.2.1 Get a document deP, and remove d from P;
7.2.2 Assign document identifier i to the document d, and then i:=i+1;

Figure 4.7 The PBDIA algorithm for the DIA problem

101

The PBDIA algorithm is given in Figure 4.7. A doubly linked list is used to store the partitions,
and the two links of a partition maintain the ordering among these partitions. Given a collection of
N documents and n distinct query terms, the number of comparisons for assigning documents to
partitions in each iteration is O(N). Since the PBDIA algorithm iterates for n times, the total number
of comparisons for the PBDIA algorithm is O(Nxn). Compared with the Greedy-NN algorithm, this
complexity of PBDIA algorithm is distinctively low. This advantage brings the PBDIA algorithm a
dark side, of course. Although the PBDIA algorithm targets on improving the compression
efficiency for the frequently used query terms, it unavoidably decreases that for the other query
terms. In reality, it is often the case that the popularities of the assorted query terms are very
unbalanced. And this imbalance nature makes the PBDIA algorithm achieve very good query
performance. In Section 4.4, we compare the search performance of the Greedy-NN and PBDIA

algorithms for real-life document collections.

4.4 Performance Evaluation

This section describes our experiments for evaluating the different DIA algorithms.
Experiments were conducted on real-life document collections, and the average query processing
time and the storage requirement for each DIA algorithm were measured.

4.4.1 Document collections and queries

Three document collections were used in the experiments. Their statistics are listed in Table
4.2. In this table, N denotes the number of documents; n is the number of distinct terms; F is the
total number of terms in the collection; and f indicates the number of document identifiers that
appear in an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT

(LA Times) are disk 5 of the TREC-6 collection that is used internationally as a test bed for research

102

in IR techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS and LAT.

Table 4.2 Statistics of document collections

Collection
FBIS LAT TREC
of documents N 130,471 131,896 262,367
of terms F 72,922,893 72,087,460 145,010,353
of distinct terms n 214,310 168,251 317,393
of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes) 470 475 945

We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries.
For each document collection, 300 documents were randomly selected to generate a query set. A
query was generated by selecting words from the word list of a specific document. To form the
word list of a document, words in the document were folded to lower case, and stop words such as
“the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For example,
a query containing 5 terms may be “inverted file document collection built”. For each query, there
existed at least one document in the document collection that is relevant to the query. We also made

the generated query set for each document collection have the following characteristics: (1) Query

repetition frequencies followed a Zipf distribution Pr(q) ~ where Pr(q) is the probability of

0.6 °

query q appearing in generated query set, and p is the popularity rank of query (; (2) The terms per

query distribution followed the shifted negative binomial distribution

x—-0.8
f(x)= ())(0.85)1'2 (0.15)*"", where f(x) is the probability of a query containing X words. This
X —

made the distribution of generated queries closely resemble the distribution of real queries (Xie &

O’Hallaron, 2002; Wolfram, 1992).

103

4.4.2 Performance results

In this sub-section, we first present the actual times taken by the Greedy-NN and the PBDIA
algorithms. Then we present the query performance of different DIA algorithms. Finally, we
present the compression performance of different DIA algorithms.

The inverted files of the three test collections were constructed according to the DIAs
generated by different DIA algorithms. We tested four different DIA algorithms: “Random”,
“Default”, “Greedy-NN”, and “PBDIA”. The Random algorithm means that the document in a
collection is randomly assigned document identifier. The Default algorithm means that the
document in a collection is assigned document identifier in chronological order. The Greedy-NN
and PBDIA algorithms were described in Section 3.2 and Section 4.2, respectively. For each DIA
algorithm, we also tested five coding methods: y coding (Elias 1975), Golomb coding (Golomb
1966; Witten et al. 1999), skewed Golomb coding (Teuhola 1978), batched LLRUN coding
(Fraenkel & Klein 1985), and unique-order interpolative coding method (Cheng et al. 2004). For the
following experiments, the parameter b for each posting list in Golomb coding was calculated using
Witten’s approximation (Witten et al. 1999), and the parameter g for unique-order interpolative
coding was set to 4 (Cheng et al. 2004).

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running
Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec.
Intervening processes and disk activities were minimized during experimentation.
Time taken by Greedy-NN and PBDIA algorithms

In Table 4.3, the performance in terms of completion time is shown. The times reported are
the actual times taken by the algorithms to generate a DIA for the given document collection that

has been inverted. Please note that the times presented in Table 4.3 consider neither the time spent

104

in preliminary inversion of the document collection, nor the time needed to rebuild an inverted file
with a new DIA.

Table 4.3 shows that the PBDIA algorithm is much faster than the Greedy-NN algorithm.
This fact makes the PBDIA algorithm viable for use in large-scale IRSs. Such a fast DIA algorithm
can be very useful for situations such as:
1. Dynamically changing probability distribution of query terms, and
2. Dynamically changing document collection.

Table 4.3 Time consumed by the Greedy-NN and the PBDIA algorithms

DIA algorithm Collection

FBIS LAT TREC
Greedy-NN 23 hrs 59 mins 24 hrs 37 mins 198 hrs 2 mins
PBDIA 9 secs 10 secs 18 secs

Query performance of different DIA algorithms

In Table 4.4, the average query processing time (AvgTimegp) and the speedup relative to the
Default algorithm (SP) were measured according to Eq.(4.3). In Table 4.5, the average number of
bits required to retrieve and decode an identifier during query processing (AvgBPlgp) and the
improvement over the Default algorithm (Imp) were measured according to Eq.(4.6). For each
document collection, the generated query set was divided into three subsets: the short query set, the
medium-length query set, and the long query set. The number of terms per query for the short,
medium-length, and long query sets range from 1 to 8, 9 to 20, and 21 to 65, respectively.

All decoding mechanisms were optimized, including:
1. Replaced subroutines with macros.
2. Replaced calls to the log function with fast bit shifts.
3. Careful choice for compiler optimization flags.

4. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

105

Furthermore, the Huffman code of batched LLRUN coding was implemented with canonical prefix
codes that can be decoded via a fast table look-up (Turpin 1998). With these optimizations,
decoding of a document identifier only required tens of ns.

The experimental results are shown in Tables 4.4 and 4.5. Key findings are:

1. Table 4.4 shows that the query performance of the Default algorithm can be 10% faster than the
Random algorithm. This indicates that the Default algorithm already captures some clustering
nature, thus can serve as a rigid baseline in comparison with other fine-tuned algorithms.

2. Comparing Tables 4.4 and 4.5, one should observe that AvgTimegp is proportional to AvgBPIgp.
This verifies Eq. (4.4) in Section 3.1, and explains why a good DIA can result in better
compression and reduced query processing time.

3. From Table 4.5, one should observe that both the Greedy-NN and PBDIA algorithms can result
in better compression of posting lists for all tested coding methods except Golomb coding. This
indicates that the Greedy-NN and PBDIA algorithms can improve the cache efficiency if a
posting list cache is implemented.

4. Table 4.4 shows that both the Greedy-NN and PBDIA algorithms can reduce average query
processing time for all tested coding methods except Golomb coding. And the query speedup
differences between the Greedy-NN and PBDIA algorithms were only 3% on average.
Considering the algorithm complexity, the PBDIA algorithm is a good choice for the DIA
problem.

5. From Table 4.4, one should observe that Golomb coding cannot benefit much from the Greedy-
NN and PBDIA algorithms in terms of query performance. This is because Golomb coding

assumes that the d-gap values in a posting list following a Bernoulli model (Witten et al. 1999),

106

hence both the compression result and the query processing time of Golomb coding are
independent of d-gap distribution.

. From Table 4.4, one should observe that the query speedup obtained by the PBDIA algorithm
becomes higher as the query length increases. This is because that, as the number of query terms
increases, more frequently used query terms are likely to be included, resulting in more
advantage due to the PBDIA algorithm.

Table 4.4 shows that both y coding and unique-order interpolative coding are recommended for
real-world IRSs due to their fast query throughputs. In addition, compared with the other tested
coding methods, these two coding methods benefit more from the PBDIA algorithm. We
conclude that the PBDIA algorithm is viable for use in real-world IRSs.

Table 4.4 shows that the PBDIA algorithm can reduce average query processing time by up to
20% for an inverted file in which the document identifiers in a posting list are sorted in
ascending order. To allow extremely fast processing of conjunctive queries and ranked queries
using the same index, most IRSs in use today adopt the skipped inverted files (Moffat & Zobel,
1996) or the blocked inverted files (Moffat et al., 1995). Both the skipped and blocked inverted
files are identifier-ordered arrangement. Therefore, the PBDIA algorithm can also be applied to
those inverted files, and reduce the time needed to process a query against those inverted files.
Since skipped inverted files and blocked inverted files are widely used in modern large-scale

IRSs, we believe that the PBDIA algorithm can contribute in real-world IRSs.

107

Table 4.4 Query performance of different DIA algorithms (AvgTimegp is the average query
processing time, and SP is the speedup relative to the Default algorithm)

(a) short queries

Coding Methods
DI.A Skewed Batched Unique-order
algorithm y coding Golomb coding Golomb coding LLRUN coding Interpolative coding
Collection AvgTimege | SP | AvgTimege | SP | AvgTimege | SP | AvgTimege | SP | AvgTimege | SP
(us) (us) (us) (us) (us)
Random 2989 0.93 2858 0.98 3894 0.96 3748 0.97 2746 0.95
FBIS Default 2789 1.00 2802 1.00 3754 1.00 3636 1.00 2614 1.00
Greedy-NN 2431 1.15 2790 1.00 3348 1.12 3275 1.11 2315 1.13
PBDIA 2529 1.10 2808 1.00 3427 1.10 3320 1.10 2333 1.12
Random 2829 0.96 2704 0.99 3737 0.98 3654 0.97 2564 0.97
LAT Default 2724 1.00 2688 1.00 3645 1.00 3542 1.00 2476 1.00
Greedy-NN 2268 1.20 2653 1.01 3137 1.16 3143 1.13 2085 1.19
PBDIA 2379 1.15 2644 1.02 3234 1.13 3231 1.10 2150 1.15
Random 5822 0.90 5573 0.97 7556 0.93 7217 0.94 5448 091
TREC Default 5244 1.00 5380 1.00 7026 1.00 6781 1.00 4942 1.00
Greedy-NN 4431 1.18 5353 1.01 6139 1.14 6032 1.12 4256 1.16
PBDIA 4606 1.14 5292 1.02 6254 1.12 6171 1.10 4313 1.15
(b) medium-length queries
DIA Coding Methods
Collection leorith Skewed Batched Unique-order
algorithm y codin, Golomb coding Golomb coding LLRUN coding Interpolative coding
AvgTimege SP AvgTimege SP AvgTimege SP AvgTimege SP AvgTimege SP
(us) (us) (us) (us) (us)
Random 9388 0.93 8972 0.98 12222 0.97 11749 0.97 8613 0.95
FBIS Default 8758 1.00 8795 1.00 11795 1.00 11402 1.00 8201 1.00
Greedy-NN 7563 1.16 8746 1.01 10426 1.13 10225 1.12 7205 1.14
PBDIA 7838 1.12 8798 1.00 10650 1.11 10387 1.10 7223 1.14
Random 8997 0.97 8605 1.00 11842 0.98 11562 0.97 8192 0.97
LAT Default 8684 1.00 8564 1.00 11580 1.00 11229 1.00 7932 1.00
Greedy-NN 7126 1.22 8407 1.02 9851 1.18 9852 1.14 6607 1.20
PBDIA 7434 1.17 8359 1.02 10098 1:15 9982 1.12 6755 1.17
Random 18475 0.92 17689 0.97 23936 0.94 22724 0.95 17273 0.93
TREC Default 16935 1.00 17153 1.00 22594 1.00 21666 1.00 16004 1.00
Greedy-NN 14069 1.20 16942 1.01 19493 1.16 19058 1.14 13598 1.18
PBDIA 14611 1.16 16713 1.03 19809 1.14 19280 1.12 13722 1.17
(c) long queries
Coding Methods
DI,A Skewed Batched Unique-order
algorithm vy coding Golomb coding Golomb coding LLRUN coding Interpolative coding
Collection AvgTimege | SP | AvgTimege | SP | AvgTimege | SP | AvgTimege | SP | AvgTimege | SP
(us) (us) (us) (us) (us)
Random 20210 0.92 19399 0.98 26526 0.95 26049 0.96 18423 0.94
FBIS Default 18594 1.00 18939 1.00 25316 1.00 24984 1.00 17269 1.00
Greedy-NN 15882 1.17 18971 1.00 22131 1.14 21957 1.14 14979 1.15
PBDIA 15871 1.17 18953 1.00 21972 1.15 22143 1.13 14377 1.20
Random 18029 0.96 17116 1.00 23591 0.98 22646 0.97 16477 0.97
LAT Default 17392 1.00 17035 1.00 23011 1.00 22033 1.00 15964 1.00
Greedy-NN 13875 1.25 16624 1.02 19173 1.20 18984 1.16 13046 1.22
PBDIA 13996 1.24 16298 1.05 19023 1.21 19212 1.15 12817 1.25
Random 37881 0.93 36023 0.98 49012 0.95 46584 0.96 35266 0.94
TREC Default 35096 1.00 35231 1.00 46547 1.00 44588 1.00 33008 1.00
Greedy-NN 28372 1.24 34469 1.02 39489 1.18 38592 1.16 27523 1.20
PBDIA 29152 1.20 33809 1.04 39766 1.17 39089 1.14 27401 1.20

108

Table 4.5 AvgBPlgp of different DIA algorithms (AvgBPlgp is the average number of bits required
to retrieve and decode an identifier during query processing, and Imp is the improvement over the
Default algorithm)

(a) short queries

Coding Methods
DI,A Skewed Batched Unique-order
Collection algorithm y coding Golomb coding Golomb coding LLRUN coding Interpolative coding
AvgBPlgp Imp AvgBPlgp Imp AvgBPlgp Imp AvgBPIlgp Imp AvgBPlgr Imp
(%) (%) (%) (%) (%)
Random 3.56 -10.6 3.21 0.3 331 -7.1 3.25 -5.5 3.15 -7.9
FBIS Default 3.22 - 3.22 - 3.09 - 3.08 - 2.92 —
Greedy-NN 2.78 13.7 3.24 -0.6 2.73 11.7 2.69 12.7 2.63 9.9
PBDIA 2.95 8.4 3.23 -0.3 2.84 8.1 2.76 10.4 2.69 7.9
Random 3.32 -6.8 2.98 0.0 3.05 -4.8 3.00 -3.8 2.87 -4.7
LAT Default 3.11 - 2.98 - 291 - 2.89 - 2.74 -
Greedy-NN 2.56 17.7 3.00 -0.7 2.48 14.8 2.47 14.5 2.35 14.2
PBDIA 2.73 12.2 2.97 0.3 2.59 11.0 2.59 10.4 2.42 11.7
Random 3.75 -13.3 3.38 0.3 3.46 -9.5 3.40 -8.2 3.34 -10.6
TREC Default 3.31 - 3.39 - 3.16 - 3.14 - 3.02 -
Greedy-NN 2.78 16.0 3.41 -0.6 2.72 13.9 2.69 14.3 2.65 12.3
PBDIA 2.94 11.2 3.37 0.6 2.81 11.1 2.81 10.5 2.70 10.6
(b) medium-length queries
Coding Methods
Collection DI.A Skewed Batched Unique-order
algorithm y coding Golomb coding Golomb coding LLRUN coding Interpolative coding
AvgBPlgp Imp AvgBPlgp Imp AvgBPlgp Imp AvgBPIlgp Imp AvgBPlgp Imp
(%) (%) (%) (%) (%)
Random 3.57 -10.9 3.21 0.3 3.31 -6.8 3.25 -5.5 3.15 -7.9
FBIS Default 3.22 - 3.22 - 3.10 - 3.08 - 2.92 —
Greedy-NN 2.75 14.6 3.24 -0.6 2.70 12.9 2.66 13.6 2.61 10.6
PBDIA 2.92 9.3 3.24 -0.6 2.81 94 2.75 10.7 2.66 8.9
Random 3.37 -6.3 3.03 0.3 3.11 -4.4 3.06 -3.7 2.94 -4.6
LAT Default 3.17 --- 3.04 --- 2.98 == 2.95 --- 2.81 -
Greedy-NN 2.58 18.6 3.06 -0.7 2.50 16:1 2.48 15.9 2.39 14.9
PBDIA 2.73 13.9 3.02 0.7 2.59 13.1 2.60 11.9 2.44 13.1
Random 3.83 -12.0 3.42 0.3 3.53 -8.3 3.47 -7.1 3.40 -9.0
TREC Default 3.42 - 3.43 - 3.26 -— 3.24 - 3.12 -
Greedy-NN 2.82 17.5 3.45 -0.6 2.76 15.3 2.74 15.4 2.71 13.1
PBDIA 2.99 12.6 3.41 0.6 2.85 12.6 2.86 11.7 2.75 11.9
(c) long queries
Coding Methods
DI.A Skewed Batched Unique-order
Collection algorithm y coding Golomb coding Golomb coding LLRUN coding Interpolative coding
AvgBPlgp Imp AvgBPlgp Imp AvgBPlgp Imp AvgBPlgp Imp AvgBPlgp Imp
(%) (%) (%) (%) (%)
Random 3.31 -12.2 3.02 0.3 3.09 -8.4 3.03 -6.7 2.90 -9.0
FBIS Default 2.95 - 3.03 - 2.85 - 2.84 - 2.66 -
Greedy-NN 2.50 15.3 3.06 -1.0 2.47 13.3 243 14.4 2.37 10.9
PBDIA 2.57 12.9 3.05 -0.7 2.47 13.3 2.48 12.7 2.34 12.0
Random 3.58 -6.2 3.21 0.3 3.28 -4.1 3.23 -3.5 3.13 -4.3
LAT Default 3.37 --- 3.22 - 3.15 - 3.12 - 3.00 —
Greedy-NN 2.66 21.1 3.24 -0.6 2.58 18.1 2.55 18.2 2.50 16.7
PBDIA 2.73 19.0 3.19 0.9 2.58 18.1 2.63 15.7 2.48 17.3
Random 3.85 -10.6 3.43 0.3 3.54 -7.3 3.47 -6.1 3.41 -7.9
TREC Default 3.48 - 3.44 - 3.30 - 3.27 - 3.16 —
Greedy-NN 2.78 20.1 3.46 -0.6 2.73 17.3 2.70 17.4 2.69 14.9
PBDIA 2.92 16.1 3.41 0.9 2.79 15.5 2.81 14.1 2.71 14.2

109

Compression performance of different DIA algorithms
The compression results are shown in Table 4.6, and the metric used is the average number of
bits per identifier BPI, defined as follows:

BP| — The size of the compressed inverted file

number of document identfiers f

To reduce average query processing time, both the Greedy-NN and PBDIA algorithms target
on improving the compression efficiency for the frequently used query terms. However, this is at
the cost of sacrificing the compression efficiency for the less frequently used query terms. We need
to know how much space overhead is needed to trade for this speed advantage. Results in Table 4.6
show that the Greedy-NN and PBDIA algorithms can speed up query processing with very little or
no storage overhead.

Table 4.6 Compression performance of different DIA algorithms (BPI is the average bits per

identifier of the inverted file for the test collection, and Imp is the improvement over the Default
algorithm)

Coding Methods

Skewed Batched Unique-order

Collection DIA Golomb Golomb LLRUN Interpolative

algorithm v coding coding coding coding coding

BPI Imp |- BPI Imp | -BPI Imp BPI Imp | BPI Imp

(%) (%) (%) (%) (%)
Random 7.06 | -19.7] :5.28 00| 575 | -10.6 | 538 -8.5] 536 | -10.3

FBIS Default 5.90 --—- 5.28 -—- 5.20 -—- 4.96 -—- 4.86 ---
Greedy-NN | 5.86 0.7] 5.28 0.0 533 -2.5] 4.88 1.6 | 4.85 0.2
PBDIA 6.17 -4.6 | 528 0.0] 5.42 -4.2 | 5.06 -2.0 | 495 -1.9
Random 7.12 -6.6 | 5.33 0.0 5.73 -3.2 | 543 2.8 | 542 -3.8

LAT Default 6.68 --—- 5.33 -—- 5.55 -—- 5.28 -—- 5.22 ---
Greedy-NN | 6.06 93] 532 0.2] 5.26 521 5.00 53] 491 5.9
PBDIA 6.35 49| 5.32 0.2 | 533 4.0 5.12 3.0 5.01 4.0
Random 739 | -16.7 | 5.50 -04] 592 -9.2 | 5.59 -7.51 5.59 -9.6

TREC Default 6.33 -—- 5.48 -—- 5.42 -—- 5.20 -—- 5.10 ---
Greedy-NN | 6.08 | 3.95| 549 -0.2 | 5.39 0.6 5.03 331 499 2.2
PBDIA 6.36 -0.5| 549 -0.2 | 545 -0.6 | 5.18 04] 5.08 0.4

110

4.5 Summary

In this chapter, we study the DIA-based inverted file optimization techniques for an IRS. With
an inverted file, we first define a cost model for query evaluation. Based on this model, we propose
an efficient heuristic, called partition-based document identifier assignment (PBDIA) algorithm, to
generate a good DIA for the inverted file to reduce average query processing time. The PBDIA
algorithm can efficiently assign consecutive document identifiers to the documents containing
frequently used query terms. This makes the d-gaps of posting lists for frequently used query terms
very small, and results in better compression for popular coding methods without increasing the
complexity of decoding processes. This can result in reduced query processing time. For the fastest
unique-order interpolative coding, experimental results show that the PBDIA algorithm can reduce
the average query processing time by up to 20%. We also point out that the DIA problem has vital
effects on the performance of long queries. Compared with the well-known Greedy-NN algorithm,
the PBDIA algorithm is much faster and yields very competitive performance for the DIA problem.
This fact should make the PBDIA algorithm viable for use in modern large-scale inverted file-based

IRSs.

111

Chapter 5 Parallel IR

The rapid growth in Internet usage brings wide variety of applications as well as new system
design challenges on information retrieval systems (IRSs). The problem of information explosion
overwhelms the load of CPU and disk on an information retrieval (IR) server. In this chapter, we
intend to reduce query processing time of an IRS by using a cluster as the server architecture.
Queries are processed on a cluster of workstations — each has its own CPU, memory, and disk —
interconnected by a local area network. For example, Google search engine is a cluster of more than
6000 PCs and each PC contains Gigabytes of random access memory. The key research issue here
is to partition the inverted file into sub-files each for one workstation such that, during query
processing, all workstations have to consult their own sub-files in parallel and query processing
time can be reduced.

Two main approaches for partitioning inverted files are in general use: the TermlID partitioning
approach (Reddaway, 1991; Stanfill et al., 1989; Ribeiro-Neto et al., 1999) and the DoclD
partitioning approach (Hawking, 1996; Aalbersberg & Sijstermans, 1990; Stanfill & Thau, 1991;
Hollaar, 1991). The TermID partitioning approach takes a posting list as an object to be allocated,
whereas the DoclD partitioning approach takes the set of all postings referring to a document
identifier as an object. MacFarlane (2000) and Ma et al. (2002) showed that the DoclD partitioning
approach is a better inverted file distribution method. This is because that the DoclD partitioning
approach can parallelize both CPU computation and disk accesses without inducing communication
overhead of transferring posting lists between workstations.

With the DoclD partitioning approach, Ma et al. (2002) proposed some partitioning algorithms

to partition and distribute the inverted file onto disks of workstations such that the average query

112

processing time of parallel query processing can be minimized. They have shown that the
interleaving partitioning scheme can partition an inverted file with good load balance and produce a
near-ideal speedup. We observe that the document identifier clustering plays an important role for
this interleaving partitioning scheme in load balance and query speedup. Hence, we propose using
the PBDIA algorithm (described in Section 4.3) to enhance the clustering property of document
identifiers in posting lists by assigning consecutive identifiers to those documents containing
frequently used query terms. Experimental results show that the PBDIA algorithm can aid the
interleaving partitioning scheme to achieve a better load balance and improve the parallel query
performance by a factor of 1.13 to 1.18 no matter how many workstations are in the cluster. The
PBDIA algorithm has substantial and consistent potential to improve the performance of an IRS run
on a cluster of workstations. This shows that the clustering property should deserve much attention
in parallel IR.

The remainder of this chapter is organized as follows. Section 5.1 describes the concerned
inverted file partitioning problem. The interleaving partitioning scheme is described in Section 5.2.
In Section 5.3, we present the framework of the proposed approach to partition an inverted file.

Performance evaluation is presented in Section 5.4. Finally, Section 5.5 presents our summary.

5.1 Inverted File Partitioning Problem

The inverted file partitioning problem considered in this chapter is as follows. The inputs to an
inverted file partitioning algorithm are

e acompressed inverted file for sequential processing,

e popularities of terms appearing in queries, and

e number of workstations.

113

The output is a partitioned compressed inverted file to be distributed on the set of workstations.
The objective is to minimize the average query processing time of parallel query processing. Issues
to the objective are

e climinating the communication overhead of transferring postings between workstations

during query processing,

e balancing amount of postings to be processed during parallel query processing, and

e keeping compression efficiency in the partitioned compressed inverted file.

Ma et al. (2002) have proven that this problem is known to be NP-complete since it is identical
to the multiprocessor scheduling problem defined in Garey & Johnson (1979). Hence, a heuristic

algorithm for this optimization problem should be developed.

5.2 Fundamental: Interleaving Partitioning Scheme

In Section 5.2.1, we describe the well-known interleaving partitioning scheme that apply
interleaved mapping rule to generate a partitioned inverted file and produce a near-ideal speedup. In
Section 5.2.2, we describe how to improve the average processing time through document identifier
assignment on the partitioned inverted file generated with the interleaving partitioning scheme.

5.2.1 Algorithm description

Figure 5.1 shows the idea of the interleaving mapping rule. Each workstation is mapped with a
set of interleaved document identifiers. Let M be the number of workstations and N be the number
of documents. The rule for mapping document identifiers to workstations is as follows.

Rule 1 The interleaved mapping rule maps a document identifier i to a workstation WSy with a

fU nCtI0n Aint|v:

v |G=D]
k= Ay (i) =i [—M J M (5.1)

114

With the interleaved mapped rule, postings in a posting list are supposed to be evenly distributed

regardless of the document identifier clustering.

2 3 4 5 6 7 8 9
WS, WSs

Sy

document identifiers: 1
w

(a) Mapping document identifiers to workstation IDs

posting list: 2, 3,5, 7,8, 11, 12,13, 15, 16

represented using : :
original document identifier: 7, 13, 16 ~ 2,5,8, 11 | 3,12,15

represented using
local document identifier: 35,6 1,2,3,4 | 1,4,5

WS, WS, WSs

(b) Partitioning a posting list

Figure 5.1 Partitioning with interleaved mapping rule

To keep compression efficiency, each workstation represents documents using local document
identifiers. The mapping rule Ajnyy increases the gap between document identifiers after partitioning.
The gap between document identifiers in a local posting list is at least M. And compression methods
can not work well on the local inverted file if documents are presented with the original document
identifiers. We notice that, for a workstation WSy, the local document identifier for a document
identifier i mapped to WS, can be obtained as following rule.

Rule 2 In the partitioned inverted file generated by interleaved mapping rule, a document i is
represented as local document identifier LIDjngy(i):

LID, () =[(i-1)/M |+1 (5.2)

115

Note that the original document identifier i mapped to WSy then can be obtained using the following
equation
i =M x(LID,,,, (-1 +k (5.3)
Figure 5.2 presents the algorithm to generate a partitioned inverted file with interleaved
mapping rule. The time complexity is O(f) where f is the number of postings in the input inverted
file.

Algorithm Interleaving_partitioning_scheme
Input:
IF: the inverted file for sequential query processing. IF consists of a set of posting lists PL; for
each term t.
Output:
LIF={LIF,LIF,,...,LIFu}: the set of local inverted files LIFy for each workstation WSy. Each
LIF consists of a set of local posting lists PLi(\WSy) for each term t.
Method:
1. for each term t do
1.1 for each document identifier i € PL; do
LIl kei=[(i-1)/M|xM
112 i« [(i-1)/M |+1
1.1.3 append i'to PL{(WSy)

Figure 5.2 Interleaving partitioning scheme

5.2.2 How to improve parallel query processing through document identifier assignment

In this subsection, we use an example to show how to improve parallel query processing
through document identifier assignment. Consider term t appears in documents d;, ds, ds, dg, ds, djo,
dis, dao, d23, dog, d34, d3s, dss, da, ds7. There are two workstations in the cluster. We have two
document identifier assignments DIA I and DIA 11 (cf. Figure 5.3). The notation d;=>] in DIAs I and

IT denotes that the document identifier j is assigned to the document d;. For each DIA, we can obtain

116

Termt appears in documents d], d3, d4, d6, dg, d]o, d]g, dzz, d23, d26, d34, d35, d45, d46, d47.
(a) DIAT: { d1—>1, d3—>3, d4—>4, d6—>6, dg—>8, d1o—>10, d18—>18, d22—>22,
d23—>23, d26—>26, d34—>34, d35—>35, d45—>45, d46—>46, d47—>47}.
(1) The posting list PL; for DIA I
PL: <1, 3,4, 6,8, 10, 18, 22, 23, 26, 34, 35, 45, 46, 47>
(2) The posting list PL; for DIA I is partitioned into two sub-posting lists PL{(WS;) and PL{(WS,)
using the interleaving partitioning scheme (o is a constant)
(1) original document identifier representation

sub-posting lists bits after compression QPT PQPT

PL{(WS)): <1, 3, 23, 35, 45, 47> 30 bits 300

PL{(WS,): <4, 6, 8, 10, 18, 22, 26, 34, 46> 45 bits 450 } 45a
(i1) local document identifier representation

sub-posting lists bits after compression QPT PQPT

PL{(WS)): <1, 2, 12, 18, 23, 24> 20 bits 20 } 7

PL(WS,): <2,3,4,5,9,11,13,17,23> 27 bits 27a

(b) DIA II: { d1—>1, d3—>2, d4—>3, d6—>4, dg—>5, d10—>6, d18—>7, d22—>8,
d23—>9, d26—> 10, d34—>1 1, d35—> 12, d45—> 13, d46—> 14, d47—> 15}
(1) The posting list PL; for DIA II
PL:<1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15>
(2) The posting list PL; for DIA II is partitioned into two sub-posting lists PL{(WS;) and
PL{(WS,) using the interleaving partitioning scheme (o is a constant)
(1) original document identifier representation

sub-posting lists bits after compression QPT PQPT

PL(WS)): <1, 3,5,7,9, 11,13, 15> 22 bits 22a.

PL(WS,): <2, 4, 6,8, 10, 12, 14> 21 bits 21a } 22a
(i1) local document identifier representation

sub-posting lists bits after compression QPT PQPT

PL(WS;): <1,2,3,4,5,6,7, 8 8 bits 8a

PL(WS,): <1,2,3,4,5,6, 7> 7 bits Ta } 8o

Figure 5.3 An example to show how to improve parallel query processing through document
identifier assignment. There are two workstations in the cluster. The interleaving partitioning
scheme is employed to partition the posting list PL;. All sub-posting lists are encoded in y codes

with the d-gap technique. QPT is the query processing time and PQPT is the parallel query
processing time.

a posting list PL; for term t and the PL; can be partitioned into two sub-posting lists PL(WS;) and

PL{(WS,) using the interleaving partitioning scheme. Assume that all sub-posting lists are encoded

117

in y codes with the d-gap technique, where the y code represents an integer X in 1+ 2_log2 XJ bits.

Based on Eq.(4.4), we can derive the query processing time (QPT) of WS, for term t and that of WS,
for term t. Then the parallel query processing time can be calculated using the time the last
workstation finishes its job. This example confirms that local document identifier representation can
improve the compression efficiency. We then observe that the compression efficiency of DIA II is
better than that of DIA 1. This implies that the query processing time of DIA II is shorter than that
of DIA I since the query processing time is proportional to the total size of encoded posting list. The
parallel query processing time of DIA II is also shorter than that of DIA 1. Hence, this example
shows that the clustering property in the posting list plays an important role in interleaving partition

scheme.

5.3 Framework of Proposed Approach

S
Part of the

fi posting list PL;

2213, 5, 6, 7, 105, 200,... inverted file
8 |500, 502, 600, 762, ... _ WS
73[102, 103, 105, 111, ... k (workstations) !
00| 4, 5, 6,7, 8, 10,33... l ——
: : Part of the
Inverte(-i e PBDIA interleaving inverted file

\ 4

algorithm partitioning

scheme

/.
\

WS,

Part of the

inverted file

WSy

Figure 5.4 The proposed approach to partition an inverted file for an IRS that runs on a
cluster of workstations.

118

In Section 5.2.2, we have observed that the clustering property plays an important role for
interleaving partitioning scheme in both the load balance and the compression efficiency. Since the
distribution of query terms is skewed, we recognize that the PBDIA can be employed to aid
interleaving partitioning scheme to produce superior performance. The Figure 5.4 shows our
proposed approach to partition an inverted file for an IRS that runs on a cluster of workstations. The

performance evaluation is shown in next section.

5.4 Performance Evaluation

This section investigates the-document identifier assignment (DIA) problem in an IRS that
runs on a cluster of workstations. Experiments were conducted on real-life document collections.
We measured the sequential query processing time for each workstation and calculated the parallel
query processing time. The storage requirement of the partitioned inverted files was also presented.
5.4.1 Test collection and query set

Three document collections were used in the experiments. Their statistics are listed in Table 2.
In this table, N denotes the number of documents; n is the number of distinct terms; F is the total
number of terms in the collection; and findicates the number of document identifiers that appear in
an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT (LA Times)
are disk 5 of the TREC-6 collection that is used internationally as a test bed for research in IR
techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS and LAT.

Table 5.1 Statistics of document collections

Collection
FBIS LAT TREC
of documents N 130,471 131,896 262,367
of terms F 72,922,893 72,087,460 145,010,353
of distinct terms n 214,310 168,251 317,393
of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes) 470 475 945

119

We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries.
For each document collection, 300 documents were randomly selected to generate a query set. A
query was generated by selecting words from the word list of a specific document. To form the
word list of a document, words in the document were folded to lower case, and stop words such as
“the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For example,
a query containing 5 terms may be “inverted file document collection built”. For each query, there
existed at least one document in the document collection that is relevant to the query. We also made

the generated query set for each document collection have the following characteristics: (1) Query

repetition frequencies followed a Zipf distribution Pr(q) ~ where Pr(q) is the probability of

0.6 °

query q appearing in generated query set, and p is the popularity rank of query (; (2) The terms per

query distribution followed the shifted negative binomial distribution
x—0.8 12 i : . .)
f(x)= 5 (0.85)“(0.15) ", where f(x) is the probability of a query containing X words. This
X —_

made the distribution of generated queries closely resemble the distribution of real queries (Xie &
O’Hallaron, 2002; Wolfram, 1992).
5.4.2 Performance results

This subsection shows the experimental results. These results include: (1) speedup of parallel
query processing, and (2) compression efficiency.
Speedup of parallel query processing

This subsection investigates the DIA problem in an IRS that runs on a cluster of workstations.
Assuming k workstations, the inverted file is generally partitioned into K disjoint sub-files, each for
one workstation. Table 5.2 shows the performance of parallel query processing using interleaving

partitioning scheme with either the Default algorithm or the PBDIA algorithm, where the Default

120

algorithm means that the documents in a collection are assigned document identifiers in
chronological order. The Default algorithm is widely used in modern IRSs, and it already captures
some clustering nature. Hence, the Default algorithm can serve a rigid baseline in comparison with
the PBDIA algorithm. The metric is the speedup relative to sequential query processing with
Default algorithm. Experiments were conducted on the TREC collection. The sub-file on each
workstation was compressed using the unique-order interpolative coding method (g=4). The parallel
query processing time was defined as max[Ty,T,,...,Tk], where T; (1 <i <k) was the time needed to
retrieve and decompress the (partial) posting lists for the query terms on the i™ workstation. The
experimental results show that the interleaving partitioning scheme can yield near-ideal speedups,
as reported in Ma et al. (2002). In addition, using the PBDIA algorithm to enhance the clustering
property of posting lists for frequently used query terms, the interleaving partitioning scheme yields

super-linear speedups. Hence the DIA problem should deserve much attention in parallel IR.

Table 5.2 Speedup of parallel query processing

Collection Approach The number of workstations
1° 2 4 6 8 10
FBIS Default + Interleaving partitioning 1.00 1.89 3.73 558 741 9.30

PBDIA + Interleaving partitioning 1.14 216 426 637 8.45 10.60

LAT Default + Interleaving partitioning 1.000 190 3.76 5.63 7.46 937
PBDIA + Interleaving partitioning 1.18 225 444 6.65 8.80 11.04

TREC Default + Interleaving partitioning 1.00 190 3.75 5.61 7.44 935
PBDIA + Interleaving partitioning 1.17 223 441 6.57 870 10.93
* Without interleaving partitioning

Compression Efficiency
To reduce average query processing time of parallel query processing, the PBDIA algorithm

improves the compression efficiency for the frequently used query terms. However, this is at the

121

cost of sacrificing the compression efficiency for the less frequently used query terms. We need to
know how much space overhead is needed to trade for this speed advantage. Average bits per
document identifier of the different partitioning approaches are shown in Table 5.3. The sub-file on
each workstation was compressed using the unique-order interpolative coding method (g=4).
Results in Table 5.3 show that the PBDIA algorithms can speed up query processing with very little

or no storage overhead.

Table 5.3 Compression performance of different partitioning approaches

Collection Approach The number of workstations
1° 2 4 6 8 10
FBIS Default + Interleaving partitioning 486 488 486 485 483 482

PBDIA + Interleaving partitioning 495 498 496 495 495 494

LAT Default + Interleaving partitioning 522 523 523 521 519 5.17
PBDIA + Interleaving partitioning 5.01 5.02 501 501 499 497

TREC Default + Interleaving partitioning 5.10 5.13 5.12 5.10 5.07 5.05
PBDIA + Interleaving partitioning 508 5.11 5.08 5.07 5.05 5.04
* Without interleaving partitioning

5.5 Summary

This chapter is to propose an inverted file partitioning algorithm for parallel information
retrieval. The inverted file is generally partitioned into disjoint sub-files, each for one workstation,
in an IRS that runs on a cluster of workstations. When processing a query, all workstations have to
consult only their own sub-files in parallel. The objective of this chapter is to develop an inverted
file partitioning algorithm that minimizes the average query processing time of parallel query
processing. Our approach is as follows. The foundation is interleaving partitioning scheme, which

generates a partitioned inverted file with interleaved mapping rule and produces near-ideal speedup.

122

The key idea of our proposed algorithm is to use the document identifier assignment algorithm to
enhance the clustering property of posting lists for frequently used query terms. This can aid the

interleaving partitioning scheme to produce superior query performance.

123

Chapter 6 Conclusions

This dissertation studies methodologies to improve the efficiency of an IRS that runs on a
cluster of workstations. The key idea is developing efficient algorithms to reduce space and time
needed to store and operate on the most-widely-used indexing structure, called the inverted file. The
objective is to increase the efficiency of an IRS without increasing the hardware cost of the cluster.
Research issues are
(1) Inverted file size reduction,

(2) Redundant decoding elimination,
(3) Inverted file optimization, and
(4) Parallel IR
The contributions of this dissertation are involved in the two important research directions:
(1) Efficient indexing and fast searching for large scale IRSs, and
(2) Parallel IR.
Based on the results of this dissertation, various new research topics in these two directions can be

studied.

6.1 Dissertation Summary

The research topics in the dissertation are
(1) Efficient coding method for inverted file size reduction,
(2) Two-level skipped inverted file for redundant decoding elimination,
(3) Document identifier assignment algorithm design for inverted file optimization, and

(4) Inverted file partitioning for parallel IR.

124

The primary results of these research topics are:

(1) For inverted file size reduction, we propose a novel coding method, called unique-order
interpolative coding, to compress inverted files. This method facilitates the decoding process for
interpolative coding using recursive elimination and loop unwinding. This method has both the
advantages of compression ratio and fast decompression. Experimental results show that this
method allows query throughput rate of approximately 30% higher than well-known Golomb
coding and still provides superior compression.

(2) For redundant decoding elimination, we propose a two-level skipped inverted file to
simultaneously provide excellent query speed on both conjunctive Boolean queries and ranked
queries with very little or no space overhead. We first employ well-known skipping
mechanisms to create the first-level index on each compressed posting list by dividing the list
into large blocks. Then we propose a novel skipping mechanism to create the second-level index
on each large block by dividing the block into small sub-blocks. The first-level index is
constructed to optimize the query performance of conjunctive Boolean quires, whereas the
second-level index is to optimize the query performance of ranked queries. Experimental results
show that the proposed two-level skipped inverted file improves the query speed for conjunctive
Boolean queries by up to 16%, and for ranked queries up to 44%, compared with the
conventional one-level skipped inverted file.

(3) For inverted file optimization, we propose a fast document identifier assignment (DIA)
algorithm, called partition-based DIA (PBDIA) algorithm, to generate a good DIA for the
inverted file to optimize average query processing time when the distribution of query terms is
known. In a typical IRS, a few frequently used query terms constitute a large portion of all term

occurrences in queries. Based on this fact, the PBDIA algorithm assigns consecutive document

125

identifiers to those documents containing frequently used query terms. Experimental results
show that the PBDIA algorithm only takes a few seconds to generate a DIA for a collection of
1GB, and improves query speed by up to 25%.

(4) For parallel IR, we propose a novel approach that partitions an inverted file to minimize parallel
query processing time. The interleaving partitioning scheme has been proven that it can
partition an inverted file with good load balance and produce near-ideal speedup. We observe
that the cluster property plays an important role for interleaving partitioning scheme in the load
balance and the query speed. We propose using the PBDIA algorithm to enhance the cluster
property of document identifiers in posting lists. Experimental results show that the PBDIA
algorithm can further improve the parallel query speed for interleaving partitioning scheme by

14% to 17% no matter how many workstations are in the cluster.

To verify scalability of our research works, we concatenated the FBIS and LAT to form a bigger
collection TREC. Except for the topic 2 (2-level skipped inverted file), FBIS, LAT, and TREC were
used to evaluate our proposed methods in the other three research topics. In these topics, the
performance of our proposed methods for TREC is not worse than that for FBIS and LAT. This
indicates that our proposed methods provide good scalability. We believe that this is also true for
topic 2 since the topic 2 adopts the same idea of topic 1 to accelerate the decoding process of

interpolative coding.

There are several issues that need to be discussed:

(1) Inverted file updating

126

Although our research works focus only on static document collections, they can still work well
for dynamically changing collections with very few modifications.
For dealing with changes due to inserted documents, sparing free space for each posting list can
be allocated to allow future expansion (Brown et al., 1994), and the postings in the posting lists
should be stored in descending order by document identifier since it is typically more efficient
to insert at the head of the list than in any other location. This does not affect the performance of
our research works.
For dealing with changes due to deleted documents, a searchable update log can be used to store
the postings of deleted documents between periodic rebuilds. When (partially) rebuilding
inverted file, query processing is used to search both the inverted file and the update log, and
merge the results of both. This can be accelerated by using our research works.

(2) Disk design considerations
We use an IDE hard disk per workstation in our experiments. However, low disk throughput is
one of the main impediments to improving the performance of our research works (see Table
2.8). How to increase disk throughput with different disk organizations/architectures is a very
interesting research topic. For example, SCSI disk drives and disk arrays can be employed to
improve disk throughput. For SCSI disk drives, to amortize the cost of a disk access, the
controller read a fixed number of consecutive blocks ahead and stores them in its cache. How to
adjust the block size and the number of read-ahead blocks is an important issue. For disk arrays,
the simplest and best-known technique for balancing load is striping. Striping groups several
sequential disk blocks in units of fixed size and lays those units out across the physical disks in
round-robin fashion. How to adjust the size of striping unit is an important issue.

(3) Fast document retrieval

127

There are two techniques used to evaluate queries in modern large-scale IRSs: eager (or term-at-
a-time) query evaluation and lazy (or document-at- a-time) query evaluation (Turtle & Flood,
1995). In the first case, the posting list of one of query terms is computed first (usually,
choosing the rarest term), and then, it is merged or filtered with the other lists. When evaluating
is lazy, instead, posting lists are scanned in parallel, retrieving in sequence each document
satisfying the query. The latter approach is essential in very large document collections, where
the actual number of documents that could be retrieved is guessed, and the scan for documents
satisfying the query is stopped as soon as enough documents have been retrieved. In this
dissertation, we use eager query evaluation to verify our research works. However, we believe
our research can still work well for lazy query evaluation. This is because lazy evaluation
requires keeping constantly in sync several posting lists. To perform this operation efficiently, it
is essential that a skip method is available that allows the caller to quickly reach the first
document identifier larger than or equal to a given one. Our proposed two-level skipped

inverted file can work well for this problem.

6.2 Contribution and Suggested Work

The contributions of this dissertation are involved in the two important research directions:

(1) Efficient indexing and fast searching for large scale IRSs
With the Internet explosive growth, the index structuring for large scale IRSs become more and
more important. The barriers to make the efficient index structuring feasible were the changes
of IRS scale and user query behavior. This dissertation presents the keys to eliminate the

barriers: inverted file compression, skipped inverted file, and inverted file optimization. Based

128

on the results in this dissertation, various new topics can be investigated, including multimedia
IR indexing, various search techniques, and inverted file caching.
(2) Parallel IR

The importance of parallel IR comes from the high performance requirement brought by
Internet growth. The barrier to make parallel IR feasible was the lack of inverted file
partitioning method to achieve ideal speedup. This dissertation presents the key to eliminate the
barrier: the interleaving partitioning scheme with the PBDIA algorithm. Based on results in this
dissertation, various research topics on parallel IR can be studies. These research topics include
parallel DIA algorithm, parallel index rebuilding, parallel ranking, and incremental update of

partitioned inverted file.

129

References

Aalbersberg, 1.J. & Sijstermans, F. (1990). InfoGuide: A full-text document retrieval system. In
AM. Tjoa & R. Wagner (Eds.), Proceedings of the international conference of database
and expert systems applications (DEXA'90), (pp.12-21). Berlin: Springer-Verlag.

Anh, V.N. & Moffat, A. (1998). Compressed inverted files with reduced decoding overheads. In R.
Wilkinson, B. Croft, and C.V. Rijsbergen (Eds.), Proceedings of the 21st annual
international ACM SIGIR conference on Research and Development in Information
Retrieval, (pp. 290-297), Melbourne. New York: ACM Press.

Anh, V.N. & Moffat, A. (2005). Inverted index compression using word-aligned binary codes.
Information Retrieval, 8(1), 151-166.

Bell, T.C., Moffat, A., Nevill-Manning, C.G., Witten, [.H., and Zobel, J. (1993). Data compression
in full-text retrieval systems. Journal of the American Society for Information Science,
44(9), 508-531.

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and zipf-like
distributions: evidence and implications. In Proceedings of Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM '99),
(pp- 126-134), New York, Mar. Los Alamitos, CA: IEEE Computer Society Press.

Brown, E.W., Callan, J.P., and Croft, W.B. (1994). Fast incremental indexing for full-text
information retrieval. In Proceedings of the 20th Very Large Data Base Conference
(VLDB'94) , (pp. 192-202).

Cheng, C.S., Shann, J.J.J., and Chung, C.P. (2005). Unique-order interpolative coding for fast
querying and space-efficient indexing in information retrieval systems. To appear in

Information Processing and Management.

130

Cheng, C.S., Shann, J.J.J., and Chung, C.P. (2004). A Unique-Order Interpolative Code for Fast
Querying and Space-Efficient Indexing in Information Retrieval Systems. In P.K. Srimani
et al. (Eds.), Proceedings of ITCC 2004 International Conference on Information
Technology: Coding and Communications Volume 2, (pp. 229-235), Las Vegas, Nevada,
Apr. Los Alamitos, CA: IEEE Computer Society Press.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, IT-21(2), 194-203.

Faloutsos, C. (1985). Access methods for text. ACM Computing Surveys, 17(1), 49-74.

Fraenkel, A.S. & Klein, S.T. (1985). Novel Compression of sparse bit-string— Preliminary report.

In A. Apostolico & Z. Galil (Eds.) Combinatorial Algorithms on Words: Vol. 12, NATO
ASI Serials F. (pp. 169-183). Berlin: Springer-Verlag.

Frakes, W.B. & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms.
Upper Saddle River, NJ: Prentice Hall.

Gallager, R.G. & Van Voorhis, D.C. (1975). Optimal source codes for geometrically distributed
alphabets. IEEE Transactions on Information Theory, IT-21(2), 228-230.

Gelbukh, A., Han, S.Y., and Sidorov, G. (2003). Compression of boolean inverted files by
document ordering. In Proceedings of 2003 IEEE International Conference on Natural
Language Processing and Knowledge Engineering (IEEE NLPKE-2003), (pp. 244-249),
Beijing, China, Oct. Los Alamitos, CA: IEEE Computer Society Press.

Golomb, S.W. (1966). Run Length Encoding. IEEE Transactions on Information Theory, IT-12(3),
399-401.

Hawking, D. (1996). Document retrieval performance on parallel systems. In H.R. Arabnial, ed,

Proceedings of the 1996 International Conference on Parallel and Distributed Processing

131

Techniques and Applications, Sunnyvale, (pp. 1354-1365), California, August. Athens:
CSREA Press.

Hollaar, L.A. (1991). Special-purpose hardware for text searching: past experience, future potential.
Information Processing & Management, 27 (4): 371-378.

Janson, B.J., Spink, A., Bateman, J., and Saracevic, T. (1998). Real life information retrieval: a
study of user queries on the Web. SIGIR Forum, 32(1), 5-17.

Kobayashi, M. & Takeda, K. (2000). Information retrieval on the web. ACM Computing Surveys,
32(2), 144-173.

Lawrence, S. & Giles, C. (1999). Accessibility of information on the web. Nature, 400, 107-109.

Lovins, J.B. (1968). Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics, 11,22-31.

Ma, Y.C., Chen, T.F., and Chung, C.P. (2002). Posting file partitioning and parallel information
retrieval. Journal of Systems and Software, 63(2), 113-127.

MacFarlane, A. (2000). Distributed inverted files and performance: a study of parallelism and data
distribution methods in IR (Ph.D. thesis). London: City University.

Mcllroy, M.D. (1982). Development of a spelling list. IEEE Transactions on Communications,
COM-30(1), 91-99.

Moftat, A. & Stuiver, L. (2000). Binary interpolative coding for effective index compression.
Information Retrieval, 3(1), 25-47.

Moffat, A. & Zobel, J. (1992). Parameterised compression for sparse bitmaps. In N. Belkin, P.
Ingwersen, and A.M. Pejtersen (Eds.), Proceedings of 15th annual international ACM-
SIGIR Conference on Research and Development in Information Retrieval, (pp. 274-285),

Copenhagen, Jun. New York: ACM Press.

132

Moffat, A. & Zobel J. (1996). Self-indexing inverted files for fast text retrieval. ACM Transactions
on Information Systems, 14(4), 349-379.

Moffat, A., Zobel, J., and Klein, S.T. (1995). Improved inverted file processing for large text
databases. In R. Sacks-Davis & J. Zobel (Eds.), Proceedings of 6th Australasian Database
Conference, (pp. 162-171), Adelaide, Australia, Jan.

Olken, F. & Rotem, D. (1986). Rearranging data to maximize the efficiency of compression. In
Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database
systems, (pp. 78-90), Cambridge, Massachusetts, United States, Mar. New York: ACM
Press.

Reddaway, S.F. (1991). High speed text retrieval from large databases on a massively parallel
processor. Information Processing & Management, 27 (4): 311-316.

Ribeiro-Neto, B., Moura, E.S., Neubert, M.S., and Ziviani, N. (1999). Efficient distributed
algorithms to build inverted files. In M. Hearst, F. Gey, and R. Tong (Eds.), Proceedings
for the 22nd International Conference on the Research and Development in Information
Retrieval (SIGIR'99), (pp. 105-112). New York: ACM Press.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer. Reading, Mass: Addison-Wesley.

Salton, G. & McGill, M.J. (1983). Introduction to Modern Information Retrieval. New York:
McGraw-Hill.

Scholer, F., Williams, H.E., Yiannis, J., and Zobel, J. (2002). Compression of inverted indexes for
fast query evaluation. In M. Beaulieu, R. Baeza-Yates, S.H. Myaeng, and K. Jarvelin

(Eds.), Proceedings of the 25th annual international ACM SIGIR conference on Research

133

and Development in Information Retrieval, (pp. 222-229), Tampere, Finland. New York:
ACM Press.

Shieh, W.Y., Chen, T.F., Shann, J.J., and Chung, C.P. (2003). Inverted file compression through
document identifier reassignment. Information Processing and Management, 39(1), 117-
131.

Stanfill, C., Thau, R., and Waltz, D. (1989). A parallel Indexed algorithm for Information Retrieval.
In N.J. Belkin & C.J. Van Rijsbergen (Eds.), Proceedings of the 12th annual conference on
research and development in Information Retrieval (SIGIR'89), (pp. 88-97). New
York:ACM Press.

Stanfill, C. & Thau, R. (1991). Information retrieval on the connection machine: 1 to 8192
Gigabytes. Information Processing & Management, 27 (4): 285-310.

Tenenbaum, A.M., Langsam, Y., and Augenstein, M.J. (1990). Data structures using C. Englewood
CLiffs, N.J. 07632: Prentice-Hall.

Teuhola, J. (1978). A Compression method for clustered bit-vectors. Information Processing Letters,
7(6), 308-311.

Trotman, A. (2003). Compressing inverted files. Information Retrieval, 6(1), 5-19.

Turpin, A. (1998). Efficient prefix coding (Ph.D. thesis). Melbourne: University of Melbourne.

Turtle, H. & Flood, J. (1995). Query evaluation: strategies and optimizations. Information
Processing & Management, 31(6): 831-850.

Voorhees, E. & Harman, D. (1997). Overview of the sixth text retrieval conference (TREC-6). In
E.M. Voorhees & D.K. Harman (Eds.), Proceedings of the Sixth Text REtrieval Conference

(TREC-6), (pp. 1-24). Gaithersburg, MD: NIST.

134

Williams, H.E. & Zobel, J. (2002). Indexing and retrieval for genomic databases. IEEE
Transactions on Knowledge and Data Engineering, 14(1), 63-78.

Williams, H.E. & Zobel, J. (1999). Compressing integers for fast file access. The Computer Journal,
42(3), 193-201.

Witten, I.H., Moffat, A., and Bell, T.C. (1999). Managing Gigabytes: Compressing and Indexing on
Documents and Images, Second Edition. San Francisco, CA: Morgan Kaufmann Publishers.

Wolfram, D. (1992). Applying informetric characteristics of databases to ir system file design, part i:
informetric models. Information Processing and Management, 28(1), 121-133.

Xie, Y. & O’Hallaron, D. (2002). Locality in search engine queries and its implications for caching.
In P. Kermani, F. Bauer, and P. Morreale (Eds.), Proceedings of the 21th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM'02), (pp.
1238-1247), New York, Jun.

Zipf G. (1949). Human Behavior and the Principle of Least Effort. New York: Addison-Wesley.

Zobel, J. & Moffat, A. (1995). Adding compression to a full-text retrieval system. Software
Practice and Experience, 25(8), 891-903.

Zobel, J., Moftfat, A., and Ramamohanarao, K. (1998). Inverted files versus signature files for text

indexing. ACM Transactions on Database Systems, 23(4), 453-490.

135

