

 1

國 立 交 通 大 學

資訊工程學系

博 士 論 文

大 型 資 訊 檢 索 系 統 之 轉 置 檔 案 設 計

Inverted File Design for Large-Scale Information Retrieval System

研 究 生：鄭哲聖

指導教授：單智君 教授

中 華 民 國 九 十四 年 八 月

 2

大 型 資 訊 檢 索 系 統 之 轉 置 檔 案 設 計

Inverted File Design for Large-Scale Information Retrieval System

研 究 生：鄭哲聖 Student：Cher-Sheng Cheng

指導教授：單智君 教授 Advisor：Prof. Jean Jyh-Jiun Shann

國 立 交 通 大 學
資 訊 工程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science and Information Engineering

Aug 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年八月

 3

 4

 5

國 立 交 通 大 學

博碩士論文全文電子檔著作權授權書

本授權書所授權之學位論文，為本人於國立交通大學資訊工程學系

所＿＿組， 94 學年度第 1 學期取得博士學位之論文。

論文題目：大型資訊檢索系統之轉置檔案設計

指導教授：單智君 教授

■ 同意 □不同意

本人茲將本著作，以非專屬、無償授權國立交通大學與台灣聯合大

學系統圖書館：基於推動讀者間「資源共享、互惠合作」之理念，

與回饋社會與學術研究之目的，國立交通大學及台灣聯合大學系統

圖書館得不限地域、時間與次數，以紙本、光碟或數位化等各種方

法收錄、重製與利用；於著作權法合理使用範圍內，讀者得進行線

上檢索、閱覽、下載或列印。

論文全文上載網路公開之範圍及時間：

本校及台灣聯合大學系統區域網路 ■中華民國 95 年 9 月 9 日公開

校外網際網路 ■中華民國 96 年 9 月 9 日公開

授 權 人：鄭哲聖

親筆簽名：______________________

中華民國 94 年 09 月 09 日

 6

國 立 交 通 大 學

博碩士紙本論文著作權授權書

本授權書所授權之學位論文，為本人於國立交通大學資訊工程學系

所 ＿＿組， 94 學年度第 1 學期取得博士學位之論文。
論文題目：大型資訊檢索系統之轉置檔案設計
指導教授：單智君 教授

■ 同意

本人茲將本著作，以非專屬、無償授權國立交通大學，基於推動讀

者間「資源共享、互惠合作」之理念，與回饋社會與學術研究之目

的，國立交通大學圖書館得以紙本收錄、重製與利用；於著作權法

合理使用範圍內，讀者得進行閱覽或列印。

本論文為本人向經濟部智慧局申請專利(未申請者本條款請不予理

會)的附件之一，申請文號為：____________________，請將論文延

至____年____月____日再公開。

授 權 人：鄭哲聖

親筆簽名：______________________

中華民國 94 年 09 月 09 日

 7

國家圖書館博碩士論文電子檔案上網授權書

ID:GT008517802

本授權書所授權之學位論文，為本人於國立交通大學資訊工程學系所
＿＿組， 94 學年度第 1 學期取得博士學位之論文。

論文題目：大型資訊檢索系統之轉置檔案設計

指導教授：單智君 教授

茲同意將授權人擁有著作權之上列論文全文（含摘要），非專屬、無償

授權國家圖書館，不限地域、時間與次數，以微縮、光碟或其他各種數

位化方式將上列論文重製，並得將數位化之上列論文及論文電子檔以上

載網路方式，提供讀者基於個人非營利性質之線上檢索、閱覽、下載或

列印。

※ 讀者基於非營利性質之線上檢索、閱覽、下載或列印上列論文，應依著作權法相關

規定辦理。

授權人：鄭哲聖

親筆簽名：_______________

民國 94 年 09 月 09 日

1. 本授權書請以黑筆撰寫，並列印二份，其中一份影印裝訂於附錄三之二(博
碩士紙本論文著作權授權書)之次頁﹔另一份於辦理離校時繳交給系所助

理，由圖書館彙總寄交國家圖書館。

 8

誌 謝

這本論文得以順利完成，首先要感謝我的指導教授單智君老師以及實驗室的鍾崇斌老師。由

於兩位老師在研究上的嚴格督促，以及在生活上的鼓勵與關懷，協助我克服許多研究上的困

難並順利完成這本論文。還要感謝口試委員蔡尚榮教授、李素瑛教授、邱舉明教授、陳添福

教授、和郭大維教授諸多的寶貴意見與指正，使得本這本論文的內容能更加完整。

感謝盧能彬、邱日清、江衍源、徐日明、林光彬、馬詠程、謝萬雲、喬偉豪等學長與同學，

在各方面對我的啟發與協助。也感謝實驗室中的每一個成員與歷屆學弟妹在我研究生涯中所

給予的幫助與鼓勵，支持我度過這漫長而充實的求學歲月。

感謝父母親與岳父母對我的諄諄教誨，因為您們的關心與包容，才讓我可以無後顧之憂地完

成學位。最後感謝我的妻子葉妍伶，謝謝妳一路走來始終如一的鼓勵與支持，讓我可以全心

地完成這本論文。

謹以此論文，獻給各位。

鄭哲聖 2005 年 8 月

 9

大 型 資 訊 檢 索 系 統 之 轉 置 檔 案 設 計

研究生：鄭哲聖 指導教授：單智君教授

國立交通大學資訊工程學系

摘要

本論文主要在探討各種改善資訊檢索效率的技術。最近幾年來，資訊檢索系統已廣泛地使用

於各種應用中，例如：搜尋引擎、數位圖書館、基因序列分析等。為了在大量的資料中有效

率地搜尋，資訊檢索系統採用已壓縮的轉置檔案來迅速地找到使用者所需要的資料。在轉置

檔案中，每一個字彙都有一個相對應的文件編號串列(稱為轉置串列)來指示那一個文件包含

這個字彙。大型資訊檢索系統的查詢處理時間大多花在讀取與解壓縮各個出現在查詢中的字

彙所對應到的轉置串列。由於每新增一個文件就會使得出現在文件中的字彙所對應的轉置串

列長度增加，因此轉置串列的長度與文件數目呈現正比關係。這意味著查詢處理時間與文件

數目亦呈現正比關係。所以，發展有效率的演算法來降低轉置串列的處理(讀取、解壓縮、

與合併)時間就成了設計大型資訊檢索系統的成功關鍵。

本論文將探討下列的研究議題：

(1) 發展一個有效率的編碼方法來縮減轉置檔案所佔用的空間

在這個議題中我們透過轉置檔案的壓縮來減少磁碟的輸出與輸入所需的時間並藉以改善

查詢處理時間，但這卻會帶來額外的解壓縮時間。本議題的目標即是設計一個可節省空

間並可快速解碼的方法來壓縮轉置檔案。我們以壓縮率最高的內插編碼法為基礎，採用

遞迴移除與迴圈展開的技巧來加速內插編碼法的編碼與解碼速度。實驗顯示與其他已知

的編碼法比較，我們所提的方法提供了快速的解碼與良好的壓縮效能。

(2) 發展雙層可跳躍式轉置檔案來除去多餘的解碼

在這個議題中我們提出一個雙層可跳躍式轉置檔案來減少查詢處理時所需的轉置串列解

壓縮時間。這個議題所面臨的困難是利用目前的可跳躍式機制來實作雙層可跳躍式轉置

檔案所需耗用的空間太大。為了設計一個節省空間並可有效加速查詢處理的雙層可跳躍

式轉置檔案，在以區塊空間預估為基礎，我們發展了一個新的跳躍機制。這個機制可以

 10

搭配目前已知的可跳躍式機制在相當小的空間耗用下實作雙層可跳躍式轉置檔案。實驗

顯示我們所提的雙層可跳躍式轉置檔案可以同時加速連接式布林查詢與排名查詢。

(3) 利用文件編號來使得轉置檔案最佳化

在這個議題中我們提出一個文件編號演算法以加速查詢地處理速度。我們觀察到透過指

派合適的編號給文件可以讓轉置串列在使用相同的編碼方法下被壓縮的更好，並提升查

詢處理的速度。本議題我們提出一個新的演算法，稱為 Partition-based document identifier

assignment (PBDIA) 演算法，來為文件產生合適的編號。這個演算法可以有效率地指派

連續的編號給那些包含有經常被查詢的字彙之文件，使得經查被查詢的字彙之轉置串列

可以被壓縮得更好。實驗顯示我們所提的 PBDIA 演算法可以有效縮短查詢處理時間。

(4) 發展平行資訊檢索系統上的轉置檔案切割方法

在這個議題中我們針對平行資訊檢索系統提出一個轉置檔案切割方法。叢集系統利用分

散在各工作站上的轉置檔案，以平行計算的方式處理查詢。此演算法的目的是降低處理

查詢地平均時間。我們首先採用 PBDIA 演算法讓包含經查被查詢的字彙之文件可以被指

派連續的編號。然後，再採用交錯式切割方案來分配轉置檔案到各工作站上。實驗顯示

利用此步驟切割轉置檔案，可以達到負載與儲存量的平衡，以及幾近理想的速度提升。

本論文之研究成果包括：

• 在縮減轉置檔案所佔用的空間方面，我們所提出的編碼方法除了可提供優越的壓縮效果

外，在查詢處理速度上也比目前最常使用的Golomb coding還快了大約30%。

• 在除去多餘的解碼方面，我們所提出的雙層可跳躍式轉置檔案比起目前的單層可跳躍式轉

置檔案在連接式布林查詢的處理速度上最高可提升16%，而在排名查詢的處理速度上最高

可提升44%。

• 在轉置檔案最佳化方面，我們所提出的PBDIA演算法可以在數秒的時間內為1GB大小的文

件集產生合適的文件編號並使得查詢處理速度最高可提升25%。

• 在平行資訊檢索方面，我們所提出轉置檔案切割步驟可以改善只使用交錯式切割方案的平

行查詢處理速度達14%到17%，無論一個叢集有多少台工作站。

 11

Inverted File Design for Large-Scale Information Retrieval System

Student: Cher-Sheng Cheng Advisor: Prof. Jean Jyh-Jiun Shann

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

This dissertation investigates a variety of techniques to improve efficiency in information

retrieval (IR). Information retrieval systems (IRSs) are widely used in many applications, such as

search engines, digital libraries, genomic sequence analyses, etc. To efficiently search vast amount

of data, a compressed inverted file is used in an IRS to locate the desired data quickly. An inverted

file contains, for each distinct term in the collection, a posting list. The query processing time of a

large-scale IRS is dominated by the time needed to read and decompress the posting list for each

query term. Moreover, adding a document into the collection is to add one document identifier into

the posting list for each term appearing in the document, hence the length of a posting list increases

with the size of document collection. This implies that the time needed to process posting lists

increase as the size of document collection grows. Therefore, efficient approaches to reduce the

time needed to read, decompress, and merge the posting lists are the key issues in designing a large-

scale IRS. Research topics to be studied in this dissertation are

(1) Efficient coding method for inverted file size reduction

The first topic is to propose a novel size reduction method for compressing inverted files.

Compressing an inverted file can greatly improve query performance by reducing disk I/Os, but

 12

this adds to the decompression time required. The objective of this topic is to develop a method

that has both the advantages of compression ratio and fast decompression. Our approach is as

follows. The foundation is interpolative coding, which compresses the document identifiers with

a recursive process taking care of clustering property and yields superior compression. However,

interpolative coding is computationally expensive due to a stack required in its implementation.

The key idea of our proposed method is to facilitate coding and decoding processes for

interpolative coding by using recursion elimination and loop unwinding. Experimental results

show that our method provides fast decoding speed and excellent compression.

(2) Two-level skipped inverted file for redundant decoding elimination

The second topic is to propose a two-level skipped inverted file, in which a two-level skipped

index is created on each compressed posting list, to reduce decompression time. A two-level

skipped index can greatly reduce decompress time by skipping over unnecessary portions of the

list. However, well-known skipping mechanisms are unable to efficiently implement the two-

level skipped index due to their high storage overheads. The objective of this topic is to develop

a space-economical two-level skipped inverted file to eliminate redundant decoding and allow

fast query evaluation. For this purpose, we propose a novel skipping mechanism based on block

size calculation, which can create a skipped index on each compressed posting list with very

little or no storage overhead, particularly if the posting list is divided into very small blocks.

Using a combination of our skipping mechanism and well-known skipping mechanisms can

implement a two-level skipped index with very little storage overheads. Experimental results

showed that using such a two-level skipped index can simultaneously allow extremely fast

query processing of both conjunctive Boolean queries and ranked queries.

(3) Document identifier assignment algorithm design for inverted file optimization

 13

The third topic is to propose a document identifier assignment (DIA) algorithm for fast query

evaluation. We observe that a good DIA can make the document identifiers in the posting lists

more clustered, and result in better compression as well as shorter query processing time. The

objective of this topic is to develop a fast algorithm that finds an optimal DIA to minimize the

average query processing time in an IRS. In a typical IRS, the distribution of query terms is

skewed. Based on this fact, we propose a partition-based DIA (PBDIA) algorithm, which can

efficiently assign consecutive document identifiers to those documents containing frequently

used query terms. Therefore, the posting lists for frequently used query terms can be

compressed better without increasing the complexity of decoding processes. This can result in

reduced query processing time.

(4) Inverted file partitioning for parallel IR

The fourth topic is to propose an inverted file partitioning approach for parallel IR. The inverted

file is generally partitioned into disjoint sub-files, each for one workstation, in an IRS that runs

on a cluster of workstations. When processing a query, all workstations have to consult only

their own sub-files in parallel. The objective of this topic is to develop an inverted file

partitioning approach that minimizes the average query processing time of parallel query

processing. Our approach is as follows. The foundation is interleaving partitioning scheme,

which generates a partitioned inverted file with interleaved mapping rule and produces a near-

ideal speedup. The key idea of our proposed approach is to use the PBDIA algorithm to enhance

the clustering property of posting lists for frequently used query terms before performing the

interleaving partitioning scheme. This can aid the interleaving partitioning scheme to produce

superior query performance.

 14

The results of this dissertation include:

• For inverted file size reduction, the proposed coding method allows query throughput rate of

approximately 30% higher than well-known Golomb coding and still provides superior

compression.

• For redundant decoding elimination, the proposed two-level skipped inverted file improves the

query speed for conjunctive Boolean queries by up to 16%, and for ranked queries up to 44%,

compared with the conventional one-level skipped inverted file.

• For inverted file optimization, the PBDIA algorithm only takes a few seconds to generate a DIA

for a collection of 1GB, and improves query speed by up to 25%.

• For parallel IR, the proposed approach can further improve the parallel query speed for

interleaving partitioning scheme by 14% to 17% no matter how many workstations are in the

cluster.

 15

Contents

Abstract in Chinese ..9
Abstract ...11
Contents ..15
List of Figures ...17
List of Tables ..18
Chapter 1 Introduction..19

1.1 Background: IRS Runs on Cluster of Workstations ..19
1.2 Objective: Inverted File Design for Large-Scale Information Retrieval System.................22
1.3 Research Topics ...25
1.4 Dissertation Organization...28

Chapter 2 Inverted File Size Reduction ...29
2.1 Well-known Interpolative Coding..31

2.1.1 Algorithm description ...31
2.1.2 Observation and improvement ..33
2.1.3 Remarks...36

2.2 Proposed Method: Unique-Order Interpolative Coding...36
2.2.1 The coding method..37
2.2.2 Illustration ...39
2.2.3 Implementation optimization ..42

2.3 Quantitative Analysis ...43
2.4 Performance Evaluation ...48

2.4.1 Document collections and queries ..49
2.4.2 Performance results ...50

2.5 Other Application...57
2.6 Summary ..58

Chapter 3 Redundant Decoding Elimination ..59
3.1 Two Well-known Skipping Mechanisms and Their Posting List Structures62

3.1.1 Skipped inverted file ...63
3.1.2 Blocked inverted file ...64
3.1.3 Remarks...65

3.2 Test Data ..66
3.2.1 Conjunctive Boolean queries ..66
3.2.2 Ranked queries ..67

3.3 Proposed Two-level Skipped Inverted Files ..67
3.3.1 Framework of proposed approach...67
3.3.2 Proposed skipping mechanism..69

3.4 Performance Evaluation ...75
3.4.1 Sizes for various inverted file organizations...75
3.4.2 Elapsed time required to process queries ..77

3.5 Summary ..81
Chapter 4 Inverted File Optimization..82

4.1 General Framework..83

 16

4.2 Document Identifier Assignment Problem and Its Algorithm ...87
4.2.1 Problem mathematical formulation...87
4.2.2 Solving DIA problem via the well-known Greedy-NN algorithm..............................89

4.3 Partition-based Document Identifier Assignment Algorithm ..94
4.3.1 Generating an optimal DIA for a single query term ...94
4.3.2 Efficient PBDIA algorithm for DIA problem ...96

4.4 Performance Evaluation ...102
4.4.1 Document collections and queries ..102
4.4.2 Performance results ...104

4.5 Summary ..111
Chapter 5 Parallel IR...112

5.1 Inverted File Partitioning Problem...113
5.2 Fundamental: Interleaving Partitioning Scheme..114

5.2.1 Algorithm description ...114
5.2.2 How to improve parallel query processing through document identifier assignment

..116
5.3 Framework of Proposed Approach ..118
5.4 Performance Evaluation ...119

5.4.1 Test collection and query set...119
5.4.2 Performance results ...120

5.5 Summary ..122
Chapter 6 Conclusions ...124

6.1 Dissertation Summary..124
6.2 Contribution and Suggested Work ...128

References ...130

 17

List of Figures

Figure 1.1 The concerned clustered architecture ………………………………………….……..20
Figure 1.2 Inverted index and document collection ……………………………………….……..21
Figure 1.3 Recommended inverted file design flowchart………………………………………….28
Figure 2.1 Interpolative coding……………………………………………………………..…….32
Figure 2.2 An illustration of two-dimensional array I_Triple…………………………………….34
Figure 2.3 The algorithm for generating I_Triple…………………………………………………35
Figure 2.4 The illustration of unique-order interpolative coding……………………………….…38
Figure 2.5 Unique-order interpolative coding………………………………………………………41
Figure 3.1 The illustration of the proposed skipping mechanism……………………………….…70
Figure 4.1 Inverted index and document collection ……………………………………………….84
Figure 4.2 An example to show different DIAs result in different compression results…………...86
Figure 4.3 The DSG for the example documents in Figure 4.2(a)…………………………………90
Figure 4.4 The Greedy-NN algorithm for the SDIA problem……………………………………...91
Figure 4.5 An example to illustrate how to transform an instance of the DIA problem into an

 instance of the SDIA problem…………………………………………………………...93
Figure 4.6 The flowchart for the PBDIA algorithm…………………………………………..……97
Figure 4.7 The PBDIA algorithm for the DIA problem…………………………………………101
Figure 5.1 Partitioning with interleaved mapping rule…………………………………………..115
Figure 5.2 Interleaving partitioning scheme……………………………………………………..116
Figure 5.3 An example to show how to improve parallel query processing through

document identifier assignment………………………………………………………117
Figure 5.4 The proposed approach to partition an inverted file for an IRS that runs on a cluster

of workstations………………………………………………………………………..118

 18

List of Tables

Table 1.1 The overview of the research topics……………………………………………………...27
Table 2.1 Some examples of the full sequence of triples for the general posting list ……………..33
Table 2.2 Some examples of the maximum number of bits required for unique-order

interpolative coding if Golomb coding is used to encode boundary pointers under
the condition that no residual pointers exist……………………………………………...45

Table 2.3 Compression results for geometric and skew geometric distributions of f = 1,000,000
gaps: average bits per gap………………………………………………………………..47

Table 2.4 Statistics of document collections……………………………………………………......49
Table 2.5 Compression performance of unique-order interpolative coding versus different group size

 g…………………………………………………………………………………………51
Table 2.6 Compression Performance of different coding methods……………………………..…..52
Table 2.7 Search performance of different coding methods………………………………………..55
Table 2.8 Search performance of Rice coding and unique-order interpolative coding……………..56
Table 2.9 Within-document frequency index compression of all posting lists, in average bits per

pointer………………………………………………………………………………………..58
Table 3.1 Processing of generated conjunctive Boolean queries……………………………….......67
Table 3.2 Size of the inverted files constructed using the proposed skipping mechanism with

 different values of g.…………………………………………………………….……….74
Table 3.3 Size of various inverted file organizations……………………………………..….…..…76
Table 3.4 Conjunctive Boolean query performance of various inverted file organizations….……..79
Table 3.5 Ranked query performance of various inverted file organizations………………….…...80
Table 4.1 Some example codes for γ coding……………………………………………….…..…...86
Table 4.2 Statistics of document collections………………………………………………………103
Table 4.3 Time consumed by the Greedy-NN and the PBDIA algorithms…………………….….105
Table 4.4 Query performance of different DIA algorithms…………………………………….…108
Table 4.5 AvgBPIQP of different DIA algorithms………………………………………………….109
Table 4.6 Compression performance of different DIA algorithms………………………………110
Table 5.1 Statistics of document collections………………………………………………………119
Table 5.2 Speedup of parallel query processing…………………………………………………...121
Table 5.3 Compression performance of different partitioning approaches………………………..122

 19

Chapter 1 Introduction

Interest in information retrieval (IR) is growing rapidly, and many systems such as search

engines, digital libraries, genomic sequence analyses, etc., are developed to efficiently search

through terabytes of data and quickly identify the data relevant to the user query. One of the major

problems faced by those systems is that the information explosion overwhelms the load of CPU and

disk on an information retrieval server. For example, the size of Web has doubled in less than two

years (Lawrence & Giles, 1999). This requires using parallel architectures to speed up search.

Recently, cluster computing has revived the field of parallelism for IR. This dissertation proposes

methodologies to improve the efficiency of an IRS that runs on a cluster of workstations. Efficiency

here means that queries are processed faster without upgrading the hardware or the same throughput

is achieved by a smaller machine configuration. The key idea is developing efficient algorithms to

reduce space and time needed to store and operate on the most-widely-used indexing structure,

called the inverted file. The objective is to increase the efficiency of an IRS without increasing the

hardware cost of the cluster. To achieve the objective, this dissertation deals with inverted file size

reduction, redundant decoding elimination, inverted file optimization, and parallel IR.

This chapter is outlined as follows. Section 1.1 and Section 1.2 present research background

and research objectives. Section 1.3 presents an overview on all research topics in this dissertation.

Section 1.4 presents the organization of this dissertation.

1.1 Background: IRS Runs on Cluster of Workstations

Parallel computing hardware has been used extensively to increase the data handling and query

handling capacity of IRSs. Recently, the Multiple Instruction Multiple Data (MIMD) model of

 20

parallelism, implemented as a cluster of workstations, has become the dominant parallel IR

architecture. Inktomi, FAST, and Google are all understood to use it.

In this dissertation, we intend to reduce query processing time of an IRS by using a cluster as

the server architecture. The cluster consists of identical workstations − each has its own CPU,

memory, and disk − interconnected by a local area network (cf. Figure 1.1). Such an IRS works as

follows. Each query is broadcast to all workstations in the cluster and each of them processes the

query over the index for the piece of the collection for which they are responsible. The workstation

may need to communicate with each other to exchange global statistical information. They

definitely need to communication with each other to form merged results.

A specific data structure, called “inverted index”, is consulted to find answers for a query (cf.

Figure 1.2). An inverted index consists of an index file and an inverted file. An index file is a set of

records, each containing a keyword term t and a pointer to the posting list for term t. An inverted

file contains, for each distinct term t in the collection, a posting list of the form

CPU
RAM

workstation
(WS1)

Disk
part of
inverted file

CPU
RAM

workstation
(WS2)

Disk
part of
inverted file

CPU
RAM

workstation
(WSn)

Disk
part of
inverted file

user queries

(broadcast to all workstations)

Figure 1.1 The concerned clustered architecture.

Internet

 21

PLt =<id1, id2, …, idft>,

where idi is the identifier of the document that contains t, and frequency ft is the number of

documents in which t appears. The document identifiers are within the range 1...N, where N is the

number of documents in the indexed collection. For ranking evaluation, each idi may be stored with

a within-document frequency fqi to indicate term t appears in the document idi a total of fqi times. In

a large document collection, posting lists are usually compressed, and decompression of posting

lists is hence required during query processing.

In a typical IRS, a few frequently used query terms constitute a large portion of all term

occurrences in queries (Jansen et al., 1997). This suggests that it is advisable to store the index

records for frequently used query terms in RAM to greatly reduce index search time. Hence, the

significant portion of query processing time is to read and decompress the compressed posting list

for each query term. This paper restricts attention to inverted file side only and investigates the

efficient approaches to reduce space and time needed to store and operate on the inverted file and

improve the overall IR performance.

………

architecture

computer

index file

1, 2, 5, 10, 12 …

1, 3, 7, 10, 12 …

terms pointer

252

355

ft posting lists

inverted file

…computer…
…architecture…

…architecture…
… … … … …

… … … … …
… computer …

… … … … …
… … … … …

doc. identifier=1

doc. identifier=2

doc. identifier=3

doc. identifier=4

document collection

answer list of "computer" <and> "architecture": 1,10,12,…
answer list of "computer" <or> "architecture": 1,2,3,5,7,…

………………

……… ……………… …

……… ……………… …

……………

…

Figure 1.2 Inverted index and document collection.

 22

The major challenges imposed by very large scale IR (particularly on World Wide Web) are:

1. For a large-scale IRS, the access time and storage space of an inverted file become considerably

large (Rillof & Hollaar, 1996; Baeza-Yates & Ribeiro-Neto, 1999). The challenge is how to

improve IR performance while reducing storage requirements for a large inverted file.

2. As a document collection grows, the number of occurrences of common terms is likely to

increase in proportion. This means that posting lists for common terms will be longer,

increasing processing time during query processing. The challenge is how to speed up query

processing by skipping over unnecessary portions of the lists without degrading retrieval

effectiveness.

3. For an IRS running on a cluster of workstations, an inverted file should be partitioned and

distributed onto disks of multiple workstations. The challenge is how to partition the inverted

file such that, during query processing, all workstations have to consult only their own local

portion of the partitioned inverted file in parallel and obtain high parallel efficiency.

1.2 Objective: Inverted File Design for Large-Scale Information Retrieval

System

The objective of this dissertation is to increase the efficiency of an IRS without increasing the

hardware cost of the cluster by developing efficient algorithms that reduce the time needed to read,

decompress, and merge posting lists for query terms. To achieve our research objective, we

investigate several issues as follows:

● Inverted file size reduction

Since large inverted files demand greater I/O to read them, the size directly affects the processing

time. To solve problems such as the slow response time and the large disk space required in large

 23

scale IRSs, a coding method with fast decoding and good compression should be developed. We

notice that in an inverted file the document identifiers for a given word are usually clustered. If a

coding can take advantage of clustering property, excellent compression can be achieved.

However, the mechanisms of decoding for all well-known coding methods that can exploit

clustering property well are more complex, which reduce the ability of searching performance at

some degree. Therefore, the key to this issue is to develop a new coding method that can exploit

clustering property well and allow extremely fast decompression.

● Redundant decoding elimination

The query performance on a compressed inverted file can be improved by using skipping

mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; Anh & Moffat, 1998). Although

compression can greatly reduce disk access time, the compressed posting list for each query term

must be completely decompressed in order to be randomly accessed to any posting in it. When

processing queries, it is usually that only a subset of the postings in a posting list needs to be

examined. To remove redundant decoding, skipping mechanisms (Moffat et al., 1995; Moffat &

Zobel, 1996; Anh & Moffat, 1998) that allow queries to be processed with only partial decoding

of the list have been proposed. A common technique of skipping mechanisms is to divide the

posting list into blocks and add auxiliary information into each block, so that the postings within

a block can be quickly skipped without decoding them if they are useless in set operations during

query processing. There are two important types of queries: conjunctive Boolean queries and

ranked queries. For conjunctive Boolean queries large blocks provide faster searching for

candidates, whereas for ranked queries small blocks do (Moffat & Zobel, 1996; Anh & Moffat,

1998). Although all well-known skipping mechanisms can work well for large blocks, we

observe that they can incur high storage overheads if the posting lists are divided into small

 24

blocks. The increase in disk I/O time outweighs the reduction in decompression time. Therefore,

the key to this issue is developing a novel skipping mechanism that can support small blocks with

very little storage overhead should be developed.

● Inverted file optimization

The query processing time in a large-scale IRS is dominated by the time needed to read and

decompress the posting lists for the terms involved in the query (Moffat & Zobel 1996), and we

observe that the query processing time grows with the total encoded size of the corresponding

posting lists. This is because the disk transfer rate is near constant, and the decoding processes of

most encoding methods used for compressing inverted files are on a bit-by-bit basis. If we can

reduce the total encoded size of the corresponding posting lists without increasing decompression

times, a shorter query processing time can be obtained. A document identifier assignment (DIA)

can make the document identifiers in the posting lists evenly distributed, or clustered. Clustered

document identifiers generally can improve the compression efficiency without increasing the

complexity of decoding process, hence reduce the query processing time. The key to this issue is

developing a fast algorithm to finding a near-optimal DIA that reduces the average query

processing time in an IRS when the probability distribution of query terms is given.

● Parallel IR

To process the ever-increasing volume of data while still providing acceptable response times,

parallel processing algorithms specifically for IR were developed. The key to this issue is to

partition the inverted file into sub-files each for one workstation such that, during query

processing, all workstations have to consult their own sub-files in parallel and query processing

time can be reduced. To achieve high parallel efficiency, a partitioned inverted file to be

distributed on the set of workstations should: (1) eliminate the communication overhead of

 25

transferring postings between workstations during query processing, (2) balance amount of

postings to be processed during parallel query processing, and (3) keep compression efficiency in

the partitioned compressed inverted file.

1.3 Research Topics

This dissertation proceeds by dealing with the following research topics:

(1) Efficient coding method for inverted file size reduction,

(2) Two-level skipped inverted file for redundant decoding elimination,

(3) Document identifier assignment algorithm design for inverted file optimization, and

(4) Inverted file partitioning for parallel IR.

The first topic is to propose a novel size reduction method for compressing inverted files.

Compressing an inverted file can greatly improve query performance by reducing disk I/Os, but this

adds to the decompression time required. The objective of this topic is to develop a method that has

both the advantages of compression ratio and fast decompression. Our approach is as follows. The

foundation is interpolative coding, which compresses the document identifiers with a recursive

process taking care of clustering property and yields superior compression. However, interpolative

coding is computationally expensive due to a stack required in its implementation. The key idea of

our proposed method is to facilitate coding and decoding processes for interpolative coding by

using recursion elimination and loop unwinding. Experimental results show that our method

provides fast decoding speed and excellent compression.

The second topic is to propose a two-level skipped inverted file, in which a two-level skipped

index is created on each compressed posting list, to reduce decompression time. A two-level

skipped index can greatly reduce decompress time by skipping over unnecessary portions of the list.

 26

However, well-known skipping mechanisms are unable to efficiently implement the two-level

skipped index due to their high storage overheads. The objective of this topic is to develop a space-

economical two-level skipped inverted file to eliminate redundant decoding and allow fast query

evaluation. For this purpose, we propose a novel skipping mechanism based on block size

calculation, which can create a skipped index on each compressed posting list with very little or no

storage overhead, particularly if the posting list is divided into very small blocks. Using a

combination of our skipping mechanism and well-known skipping mechanisms can implement a

two-level skipped index with very little storage overheads. Experimental results showed that using

such a two-level skipped index can simultaneously allow extremely fast query processing of both

conjunctive Boolean queries and ranked queries.

The third topic is to propose a document identifier assignment (DIA) algorithm for fast query

evaluation. We observe that a good DIA can make the document identifiers in the posting lists more

clustered, and result in better compression as well as shorter query processing time. The objective

of this topic is to develop a fast algorithm that finds an optimal DIA to minimize the average query

processing time in an IRS. In a typical IRS, the distribution of query terms is skewed. Based on this

fact, we propose a partition-based DIA (PBDIA) algorithm, which can efficiently assign

consecutive document identifiers to those documents containing frequently used query terms.

Therefore, the posting lists for frequently used query terms can be compressed better without

increasing the complexity of decoding processes. This can result in reduced query processing time.

The fourth topic is to propose an inverted file partitioning approach for parallel IR. The

inverted file is generally partitioned into disjoint sub-files, each for one workstation, in an IRS that

runs on a cluster of workstations. When processing a query, all workstations have to consult only

their own sub-files in parallel. The objective of this topic is to develop an inverted file partitioning

 27

approach that minimizes the average query processing time of parallel query processing. Our

approach is as follows. The foundation is interleaving partitioning scheme, which generates a

partitioned inverted file with interleaved mapping rule and produces a near-ideal speedup. The key

idea of our proposed approach is to use the PBDIA algorithm to enhance the clustering property of

posting lists for frequently used query terms before performing the interleaving partitioning scheme.

This can aid the interleaving partitioning scheme to produce superior query performance.

We show the overview of the research topics in Table 1.1 and the recommended inverted file

design flowchart in Figure 1.3.

Topic 1:
Inverted file

size reduction

Topic 2:
Redundant
decoding

elimination

Topic 3:
DIA-based
inverted file
optimization

Topic 4:
Parallel IR

load time + + + − +

decompression time − + + + +

merge time no change + + + no change

Notation: “+”: advantage, and “−”: disadvantage.

Posting list
processing

+ + +
(parallelized)

+ + +
(parallelized)

+ + +
(parallelized)

Table 1.1 The overview of the research topics.

 28

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents a novel size

reduction method, which has both the advantages of compression ratio and fast decompression, for

compressing inverted files. Chapter 3 presents the proposed two-level skipped inverted file, in

which a two-level skipped index is created on each compressed posting list, to reduce

decompression time. Chapter 4 presents the proposed DIA algorithm for fast query evaluation.

Chapter 5 presents a novel inverted file partitioning approach for parallel IR. Chapter 6 presents the

conclusion.

Inverted File Design

Topic 1: Inverted File Size Reduction Topic 2: Redundant Decoding Elimination

Topic 3: Inverted File Optimization
Topic 4:
Parallel IR

Interleaving partitioning scheme

Yes

No

YesNo

end

good scalability

Figure 1.3 Recommended inverted file design flowchart.

skipping mechanisms?

cluster computing?

 29

Chapter 2 Inverted File Size Reduction

An inverted file contains, for each distinct term t in the collection, a posting list of the form

PLt = < id1, id2, …, idft >,

where idi is the identifier of the document that contains t, and ft is the total number of documents in

which t appears. To process a query, the IRS retrieves the posting lists for the terms appearing in

the query, and then performs some set operations, such as intersection and union, on the posting

lists to obtain the answer list (Frankes & Baeza-Yates, 1992; Witten et al., 1999).

Compression of inverted files has significant advantages for large-scale IRSs. This is because

the total time of transferring a compressed posting list and subsequently decompressing it is

potentially much less than that of transferring an uncompressed posting list. A popular compression

technique (Witten et al., 1999) is to sort the document identifiers of each posting list in increasing

order, and then replace each document identifier (except the first one) with the distance between

itself and its predecessor to form a list of d-gaps. For example, the posting list <13, 18, 22, 35, 42>

can be transformed into the d-gap list as <13, 5, 4, 13, 7>. Although every document identifier is

distinct, their d-gaps show some probability distributions. Many coding methods, such as unary

coding (Elias, 1975), γ coding (Elias, 1975), Golomb coding (Golomb, 1966; Witten et al., 1999),

skewed Golomb coding (Teuhola, 1978), batched LLRUN coding (Fraenkel & Klein, 1985; Moffat

& Zobel, 1992), variable byte coding (Scholer et al., 2002), and word-aligned “Carryover-12”

mechanism (Anh & Moffat, 2005), have been proposed for compressing posting lists by estimates

for these d-gaps probability distributions. The more accurately the estimate, the greater the

compression can be achieved.

 30

The document identifiers for any given word are not uniformly distributed, since the documents

in the collection are inserted in chronological order and the word’s popularity changes over time

(Moffat and Stuiver, 2000). These document identifiers tend to be clustered, and inverted file

compression may benefit if this clustering can be taken into account. Based on the d-gap technique,

some coding methods, such as skewed Golomb coding and batched LLRUN coding, can capture

clustering of documents via accurate estimates to achieve satisfactory compression performance.

However, the estimates in these methods are relatively sophisticated, which require more

decompression time, so they are not yet applied in real IRSs.

Recently, Moffat and Stuiver (2000) have proposed interpolative coding. It is independent of the

estimates for the d-gaps probability distributions. By using clustering with a recursive process of

calculating ranges and codes in an interpolative order, superior compression performance can be

achieved. However, interpolative coding is computationally expensive due to a stack required in its

implementation, which prohibits it from being widely used in real-world IRSs.

In terms of query throughput rates, Trotman (2003) shows that for small posting lists Golomb

coding is recommended, whereas for large posting lists variable byte coding is recommended.

Furthermore, Anh and Moffat (2005) show that word-aligned “Carryover-12” mechanism allows a

query throughput rate that is higher than Golomb coding and variable byte coding, regardless of the

lengths of the posting lists. Although these compression methods provide high query throughput

rates, their compression efficiencies need to be improved.

In this chapter, we develop a new coding method based on interpolative coding combined with a

d-gap compression scheme. We call it the unique-order interpolative coding. The results of this

research showed that the unique-order interpolative coding can take advantage of document

identifier clustering in posting lists to achieve good compression performance. Nevertheless, the

 31

decoding speed of this new method is even faster than that of Golomb coding and word-aligned

“Carryover-12” mechanism.

This chapter is organized as follows. In Section 2.1, we present the interpolative coding that is

the most space efficient method known to compress inverted files. In Section 2.2, we present the

unique-order interpolative coding. Then we show the quantitative analysis and the performance

evaluation in Section 2.3 and Section 2.4. In Section 2.5, we present the possible application of the

unique-order interpolative coding. Finally, Section 2.6 presents our summary.

2.1 Well-known Interpolative Coding

2.1.1 Algorithm description

Moffat and Stuiver (2000) have proposed a compression technique called interpolative coding.

It makes full use of the clustering in a recursive process of calculating ranges and codes, and

demonstrates superior compression performance. In this method, the storing order as well as lower

bound lo and upper bound hi of every document identifier x are calculated, and then function

Binary_Code(x, lo, hi) is called to encode x in some appropriate manner. The simplest mechanism

uses only binary code to encode x in ⎡ ⎤)1(log2 +− lohi bits. The algorithm is described in Figure

2.1.

This interpolative coding is best illustrated with an example. Consider the posting list <1, 2, 5, 6,

8, 10, 13> of ft=7 document identifiers in a collection of N=20 documents. According to the

algorithm in Figure 2.1, the middle item in the list, the identifier 6, is encoded. This identifier must

take on a value ranged from 1 to 20. Additionally, since there are three other identifiers on each side

of this middle item, its possible value range is further limited to from 4 to 17. We represent this fact

with (x, lo, hi) = (6, 4, 17), indicating that the document identifier x is within the range lo…hi. Once

 32

the coding of document identifier 6 is accomplished, the three document identifiers on the left hand

side may take on values 1 to 5 and those three on the right hand side 7 to 20. According to the same

rule, the three document identifiers on the left can be processed first, followed by those three on the

right. Therefore, the complete sequence of (x, lo, hi) triples generated by algorithm

Interpolative_Code are (6, 4, 17), (2, 2, 4), (1, 1, 1), (5, 3, 5), (10, 8, 19), (8, 7, 9), and (13, 11, 20).

Using the simplest implementation of Binary_Code, the corresponding codewords are 4, 2, 0, 2, 4, 2,

and 4 bits long.

Using a centered minimal binary code, the compression efficiency of interpolative coding can

be further improved (Moffat and Stuiver, 2000). The centered minimal binary code works in the

following way. Support that a number in the range 1…r is to be coded. A simple binary code

assigns codewords ⎡ ⎤r2log bits long to all values 1 through r, and wastes ⎡ ⎤ rr −2log2 codewords.

That is, ⎡ ⎤ rr −2log2 of the codewords can be shortened by one bit without loss of unique

decodability. These minimal codewords are then centered on the encoding range. Numbers at the

extremes of the range requires one bit more for storage than those in the center.

Algorithm Interpolative_Code(PL, f, lo, hi);
Input: PL ([]fPL ...1 is a sorted list of f document identifiers, all in the range lo...hi)
Output: bitstring to represent []fPL ...1
begin
 if f = 0 then return;

if f = 1 then output bitstring by invoking Binary_Code(PL[1], lo, hi) and then return;
h:=(f +1) div 2;
f1:=h-1;
f2:=f-h;
L1:= [])1...(1 −hPL ;
L2:= []fhPL)...1(+ ;
Output bitstring by invoking Binary_Code(PL[h], lo+f1, hi-f2);
Call Interpolative_Code(L1, f1, lo, PL[h]-1);
Call Interpolative_Code(L2, f2, PL[h]+1, hi);

end
Figure 2.1 Interpolative coding.

 33

2.1.2 Observation and improvement

The major overhead of interpolative coding is that a recursive process is used to calculate the

order and range of every document identifier. Although a recursive process can be converted to a

non-recursive one (Tenenbaum et al., 1990), the converted code requires a stack, which makes the

coding and decoding very slow. This is why interpolative coding is not widely used in IRSs.

We observed that the calculation of the order and range for every document identifier can be

accelerated by storing partial results in memory. Consider a general posting list PLt = <id1, id2, …,

idft >, where ft is the number of documents containing term t, idk<idk+1, and all document identifiers

are within the range 1…N. Using the interpolative coding method in Figure 2.1, for every ft , we can

obtain the full sequence of triples for the list. Some examples are shown in Table 2.1. These triple

sequences are useful for interpolative coding to calculate the order and range for each document

identifier. For example, consider the posting list PLt = <id1=1, id2=2, id3=5, id4=7, id5=8> of ft =5

document identifiers in a collection of N=10 documents. The values of this list can be calculated

using ft = 5 triples in Table 2.1. The full sequence of triples are (id3, 3, N-2) = (5, 3, 8), (id1, 1, id3-2)

= (1, 1, 3), (id2, id1+1, id3-1) = (2, 2, 4), (id4, id3+1, N-1) = (7, 6, 9), and (id5, id4+1, N) = (8, 8, 10).

Storing such a table containing a full set of triple sequences in memory is helpful for the coding and

decoding processes of interpolative coding. Compared with the method in Figure 2.1, this improved

method eliminates need for a stack in the document identifier order and range calculation, saving a

large amount of time.

Table 2.1 Some examples of the full sequence of triples for the general posting list.
ft The full sequence of triples for the general posting list
1 (id1, 1, N)
2 (id1, 1, N-1), (id2, id1+1, N)
3 (id2, 2, N-1), (id1, 1, id2-1), (id3 , id2+1, N)
4 (id2, 2, N-2), (id1, 1, id2-1), (id3, id2+1, N-1), (id4, id3+1, N)
5 (id3, 3, N-2), (id1, 1, id3-2), (id2, id1+1, id3-1), (id4, id3+1, N-1), (id5, id4+1, N)

 34

The triples for each ft can easily be represented as a two-dimensional array I_Triple consisting

of ft rows and 5 columns. This representation for ft=5 is shown in Figure 2.2. The first row of the

array represents the first triple, and the second row represents the second triple, and so forth. The

first column is used to denote the index of the document identifier in the posting list for the first

element of the triple. For example, I_Triple[3][1] is 2, meaning the first value of No. 3 triple is id2.

The second and third columns denote the index of the document identifier in the posting list and the

offset for the second element of the triple. For example, I_Triple[3][2] and I_Triple[3][3] are two 1s,

meaning the second value of No. 3 triple is id1+1. Finally, the fourth and fifth columns denote the

index of the document identifier in the posting list and the offset for the third element of the triple.

For example, I_Triple[3][4] and I_Triple[3][5] are 3 and –1, meaning the third value of No. 3 triple

is id3-1. To make this representation more practical and convenient, two extra values are used for

each posting list: idft+1=0 and idft+2=N. Therefore, the first triple (id3, 3, N-2) in Figure 2.2 can be

represented as 3, 6, 3, 7, and -2.

 index index offset index offset

I_Triple[m][n] n=1 n=2 n=3 n=4 n=5
m=1 3 6 3 7 -2
m=2 1 6 1 3 -2
m=3 2 1 1 3 -1
m=4 4 3 1 7 -1
m=5 5 4 1 7 0

 1st element 2nd element 3rd element
 of the triple of the triple of the triple
Figure 2.2 Given a general posting list PLt: <id1, id2, id3, id4, id5 > of ft=5 document identifiers, and
set idft+1= id6=0 and idft+2= id7=N. The corresponding triples: (id3, 3, N-2), (id1, 1, id3-2), (id2, id1+1,
id3-1), (id4, id3+1, N-1), (id5, id4+1, N) can be represented with the I_Triple[ft][5].

The algorithm in Figure 2.3 can be used to generate the corresponding triples for each ft and

store them in I_Triple[ft][5]. For a sub-posting list PL[index …(index+k-1)] among idlo_index+lo and

1st triple
2nd triple
3rd triple
4th triple
5th triple

 35

idhi_index+hi, Compute_I_Triple(index, k, lo_index, lo, hi_index, hi) can be called to generate the

corresponding triples and store them in a two-dimensional array I_Triple.

Algorithm Generate_I_Triple(PL, f, N);
Input: PL ([]fPL ...1 is a sorted list of f document identifiers, all in the range 1...N, and to simplify

the algorithm we set [])1(+fPL to 0, and [])2(+fPL to N)
Output: I_Triple[f][5] to represent the triples
begin
 n:=1; /* n is a global variable*/
 Compute_I_Triple(1, f, f+1, 1, f+2, 0); /* generate I_Triple[f][5] */
 return I_Triple;
end

procedure Compute_I_Triple(index, k, lo_index, lo, hi_index, hi)
begin
 if k=0 then return;
 if k=1 then
 I_Triple[n][1]:=index;
 I_Triple[n][2]:=lo_index;
 I_Triple[n][3]:=lo;
 I_Triple[n][4]:=hi_index;
 I_Triple[n][5]:=hi;
 n++;
 return;
 h:=(k-1)/2;
 f1:=h;
 f2:=k-h-1;
 I_Triple[n][1]:=h+index;
 I_Triple[n][2]:=lo_index;
 I_Triple[n][3]:=lo+f1;
 I_Triple[n][4]:=hi_index;
 I_Triple[n][5]:=hi-f2;
 n++;
 Compute_I_Triple (index, f1, lo_index, lo, index+h, -1);
 Compute_I_Triple (index+h+1, f2, index+h, 1, hi_index, hi);
end

Figure 2.3 The algorithm for generating I_Triple.

 36

2.1.3 Remarks

Although the procedure Compute_I_Triple in Figure 2.3 also uses recursive process, it can be

processed off-line and one can store the I_Triples of different fts in memory. This can reduce the

on-line decoding time dramatically. With the I_Triple, one can easily find minimal binary code in

encoding a posting list, as shown in the following:

for m:=1 to ft do
output bitstring by invoking Binary_Code(PL[I_Triple[m][1]],

PL[I_Triple[m][2]]+I_Triple[m][3],
PL[I_Triple[m][4]]+I_Triple[m][5]);

However, this improved method still requires large memory space. For example, each triple

contains five integers. If an integer takes 4-byte storage space, the memory requirement for a triple

is 20 bytes. Therefore, in a posting list with ft document identifiers, 20×ft bytes are required. The

maximum ft in present IRSs can reach up to thousands or millions, which means the memory space

required for I_Triple storage is ten thousands or even ten millions of bytes. This makes it

impossible using memory to accelerate coding and decoding with interpolative code. Furthermore,

using I_Triple to encode and decode requires extra memory access time, which makes the decoding

speed slow.

2.2 Proposed Method: Unique-Order Interpolative Coding

The recursive process makes the decoding of interpolative coding slow. Although using

memory to store partial results of the recursive process can accelerate the coding and decoding of

interpolative coding, a large amount of memory is required to store the I_Triple for each ft. We

develop a new method called unique-order interpolative coding in which only one I_Triple is

required for the entire coding and decoding process of all posting lists no matter how many

different values of ft are present. Then we introduce loop unwinding to replace I_Triple with

 37

constant values. The number of memory accesses to I_Triple can therefore be reduced, which

accelerates the whole process.

2.2.1 The coding method

This subsection presents the details of our proposed coding method. Two key decisions are to be

made in the coding method.

A. Decomposition of a posting list into blocks to take advantage of interpolative coding

In a posting list PLt=<id1, id2, …, idft > of ft document identifiers, where idk<idk+1 and all

document identifiers are within the range 1…N. A group size g is first determined. Then PLt is

divided into ⎥
⎥

⎤
⎢
⎢

⎡
=

g
fm t blocks, each having g document identifiers except possibly the last block.

We define the first document identifier in each block to be a boundary pointer, the document

identifiers between boundary pointers to be inner pointers, and those in the last block except the

boundary pointer to be residual pointers. The PLt can then be compressed as follows. The boundary

pointers and their subsequent residual pointers together can be regarded as a sub-posting list, and a

suitable d-gap compression scheme with high decoding speed can be used for compression. The

inner pointers in each block are compressed via interpolative coding. With this new method (see

Figure 2.4), each inner block contains a constant number (g-1) of inner pointers, enabling the use of

only one I_Triple in coding and decoding. Compared with interpolative coding, this new method

allows document identifiers to be stored in a fixed order, hence the name unique-order interpolative

coding. When gft ≤ or m=1 or g=1, no inner pointers are present, and we apply only a d-gap

compression scheme.

 38

PLt = < id1, id2, …, idft > : boundary pointer

 Group size g, and m= ⎥
⎥

⎤
⎢
⎢

⎡
g
ft blocks : block

id1 id2 …… idg idg+1 idg+2 …… id2g id2g+1 …… id(m-1)g+1 ……idft

Figure 2.4 The illustration of unique-order interpolative coding.

B. Choice of a suitable coding method for boundary and residual pointers

Compared with the d-gaps of a traditional d-gap compression scheme, the d-gaps of unique-

order interpolative coding extracted from every group of document identifiers are potentially much

larger and may cause a decrease in compression efficiency. Therefore, a suitable coding method is

required to encode the boundary pointers to improve compression efficiency. To simplify

implementation, the boundary and residual pointers are encoded with the same method.

In this chapter, we recommend Golomb coding and r coding for encoding the d-gaps of unique-

order interpolative coding. Golomb coding is very suitable for encoding the d-gaps of unique-order

interpolative coding, since the d-gaps extracted from every group of document identifiers are

roughly of the same length. Using γ coding is also a relatively economical choice when the

document identifiers in a posting list are also close together, and the d-gaps are small. Other coding

methods are not disregarded. We are still looking for a faster and more compact coding method to

encode the d-gaps of unique-order interpolative coding.

The inner pointers
encoded using
interpolative coding

The inner pointers
encoded using
interpolative coding

The residual pointers
encoded with d-gap
technique

d-gap d-gap d-gap d-gap d-gap d-gap

 39

To improve the compression efficiency of the d-gaps of unique-order interpolative coding, the

value g is subtracted from the d-gap of all boundary pointers (except the first one) without loss of

unique decodability. This approach works the best when the original d-gaps are small.

2.2.2 Illustration

This unique-order interpolative coding is best illustrated with an example. Given a posting list

<5, 8, 12, 13, 15, 18, 23, 28, 29, 32, 33> of 11 document identifiers, let the group size g be 4, the

document identifiers 5, 15, and 29 are therefore the boundary pointers, the document identifiers 32

and 33 are the residual pointers, and the others are the inner pointers. Let [idi, idi+1, …, idj]

represent idi, idi+1, …, idj encoded in interpolative code. Since the two successive boundary pointers

must be known before interpolative coding of the inner pointers, the boundary pointer of each block

is stored before coding of the inner pointers. Therefore, the posting list is to be stored as

<5, 15, [8, 12, 13], 29, [18, 23, 28], 32, 33>,

where [8, 12, 13]and [18, 23, 28] are in interpolative codes, and 5, 15, 29, 32, 33 in d-gaps. The

resulted list is

<5, 10(=15-5), [8, 12, 13], 14(=29-15), [18, 23, 28], 3(=32-29), 1(=33-32)>.

Next, since there are three document numbers between each pair of boundary pointers, the list can

be simplified as

<5, 7(=10-3), [8, 12, 13], 11(=14-3), [18, 23, 28], 3, 1>.

In decoding, the first two d-gaps, 5 and 7, are retrieved to obtain the first two boundary pointers,

which are 5 and 15(=5+7+3). Interpolative coding is then used to obtain [8, 12, 13]. Then, the d-gap,

11, is retrieved to obtain the next boundary point, 29(=15+11+3), and interpolative coding is used to

obtain [18, 23, 28]. Finally, the residual pointers 32(=3+29) and 33(=1+32) are obtained by the

remaining d-gaps.

 40

Now, consider a general posting list PLt = <id1, id2, …, idft> encoded using unique-order

interpolative coding with group size g=4, the PLt can be represented as

<id1, id5, [id2, id3, id4],
id9, [id6, id7, id8],
id13, [id10, id11, id12], … >,

where id1, id5, id9, id13 are encoded using a d-gap coding method and [id2, id3, id4], [id6, id7, id8],

[id10, id11, id12] are encoded using interpolative coding. The example list can be further represented

(using triple representation in Section 2) as

<id1, id5 - id1 - 3, (id3, id1+2, id5-2), (id2, id1+1, id3-1), (id4, id3+1, id5-1),
id9 - id5 - 3, (id7, id5+2, id9-2), (id6, id5+1, id7-1), (id8, id7+1, id9-1),
id13- id9 - 3, (id11, id9+2, id13-2), (id10, id9+1, id11-1), (id12, id11+1, id13-1), … >.

We observed that the I_Triple for [idi, idi+1, idi+2] can be converted to the I_Triple for [idi+4, idi+5,

idi+6] by adding 4 (which is the value of g) to the indices of document identifiers in the I_Triple for

[idi, idi+1, idi+2]. Therefore, only one I_Triple is required in coding and decoding, which accelerates

the whole process. If we use Golomb coding to encode boundary pointers and residual pointers, this

new coding method can be shown as the following program in Figure 2.5.

 41

Algorithm Unique_Order_Interpolative_Code(PL, f, N, g);

Input: PL (PL[1...f] is a sorted list of document numbers, all in the range 1...N), and
group size g(an integer);

Output: Bitstring (the compressed posting list PL)
begin
 if gf ≤ then // compressed by Golomb coding

 ⎡ ⎤fNb /69.0: ×= ;
prev_document_identifier:=0;
for i:=1 to f

append Golomb_Code(PL[i]-prev_document_identifier, b) to Bitstring;
prev_document_identifier:= PL[i];

 else // compressed by unique-order interpolative coding
 ⎡ ⎤gfm /= ;

 ⎡ ⎤))1()1(/(69.0: −×−−×= gmfNb ;

// encode the first boundary pointer
append Golomb_Code(PL[1], b) to Bitstring;

// generate I_Triple
n:=0;
I_Triple:=Compute_I_Triple(2, g-1, 1, 1, g+1, -1);

for i:=0 to (m-2) do

 index:=i×g;

// encode boundary pointer
 append Golomb_Code(PL[index+g+1]-PL[index+1]-g+1, b) to Bitstring;

 // encode inner pointers

for j:=1 to g-1 do
 append Binary_Code(PL[index+I_Triple[j][1]],
 PL[index+I_Triple[j][2]]+I_Triple[j][3],
 PL[index+I_Triple[j][4]]+I_Triple[j][5]) to Bitstring;

 // encode residual pointers

for i:=(m-1)×g+2 to f
 append Golomb_Code(PL[i]-PL[i-1], b) to Bitstring;

 return BitString;
end
Figure 2.5 Unique-order interpolative coding (using Golomb coding to encode boundary and
residual pointers).

 42

2.2.3 Implementation optimization

This subsection presents how to use loop unwinding to accelerate the encoding and decoding of

unique-order interpolative coding. Note that once the group size g is determined, the program in

Figure 2.5 can be further accelerated. For example, for g=4, the following program segment in

Figure 2.5

for i:=0 to (m-1) do

 index:=i×g;

// encode boundary pointer
 append Golomb_Code(PL[index+g+1]-PL[index+1]-g+1, b) to Bitstring;

// encode inner pointers, 8 memory accesses are required for encoding each inner
// pointer: 5 for I_Triple accesses and 3 for PL accesses
for j:=1 to g-1 do

 append Binary_Code(PL[index+I_Triple[j][1]],
 PL[index+I_Triple[j][2]]+I_Triple[j][3],
 PL[index+I_Triple[j][4]]+I_Triple[j][5]) to Bitstring;

can be converted to

for i:=0 to (m-1) do
 index:=i×4;

// encode boundary pointer
 append Golomb_Code(PL[index+5]-PL[index+1]-3, b) to Bitstring;

// loop unwinding, only 3 memory accesses of PL are required for encoding each
// inner pointer

 append Binary_Code(PL[index+3], PL[index+1]+2, PL[index+5]-2) to Bitstring;
 append Binary_Code(PL[index+2], PL[index+1]+1, PL[index+3]-1) to Bitstring;
 append Binary_Code(PL[index+4], PL[index+3]+1, PL[index+5]-1) to Bitstring;

In other words, once the group size g has been determined, the I_Triple accesses in loop can be

eliminated in unique-order interpolative coding. So the 8-3=5 times memory accesses for each

document identifier can be avoided, which in turn accelerates the encoding process. By using the

same approach, the decoding of unique-order interpolative coding can also be accelerated.

 43

2.3 Quantitative Analysis

Give a posting list ><= fididdPL ,...,, 21 of f document identifiers, where 1+< kk idid , and all

document identifiers are within the range 1...N. As stated in Section 2.2, the first step in unique-

order interpolative coding is to determine the group size g. Once g is determined, the PL will be

divided into ⎥
⎥

⎤
⎢
⎢

⎡
=

g
fm blocks, with the first (m-1) blocks containing g document identifiers and the

last block containing gmf)1(−− document identifiers. The boundary pointers and the residual

pointers will be coded by efficient prefix-free coding methods such as Golomb coding and γ coding,

in d-gap manner, and the inner document identifiers will be coded by the interpolative coding.

Let the function),(fNF represent bits needed for compressing the f document identifiers

ranging from 1 to N. Theoretically, the following approximate formulas can then be achieved

(Golomb, 1966; Gallager & Van Voorhis, 1975; Mcllroy, 1982; Elias, 1975; Moffat & Stuiver,

2000).

Golomb coding:)log2(),(2 f
NffNG +×≤ (2.1)

γ coding:)log21(),(γ 2 f
NffN ×+×≤ (2.2)

Interpolative coding:)log5783.2(),(2 f
NffNI +×≤ (2.3)

If Golomb coding is used to encode the boundary pointers and residual pointers, then the

maximum number of bits required to store these f-(m-1)(g-1) boundary and residual pointers is

)
)1)(1(

log2())1)(1((2 −−−
+×−−−

gmf
Ngmf (2.4)

If we use γ coding to encode these pointers, then the maximum number of bits required is

 44

)
)1)(1(

log21())1)(1((2 −−−
×+×−−−

gmf
Ngmf (2.5)

Based on Eq.(2.3), the number of bits required to code the inner pointers ((m-1) groups, (g-1)

document identifiers in each group) is

∑
−

=
⎥
⎦

⎤
⎢
⎣

⎡
−

+×−
1

1
2)

1
log5783.2()1(

m

i

i

g
Ng , where 11)1(1 −−= +−×+× igigi ididN (2.6)

Since

∑
−

=

≤
1

1

m

i
i NN (2.7)

and the sum of the logarithms of the (m-1) individual ranges is maximized when all
1−g

Ni are equal,

one obtains

)
)1)(1(

log5783.2()1)(1()
1

log5783.2()1(2

1

1
2 −−

+×−−≤⎥
⎦

⎤
⎢
⎣

⎡
−

+×−∑
−

= gm
N

gm
g
Ng

m

i

i (2.8)

Therefore, if Golomb coding is used to encode the boundary and residual pointers, then the

maximum number of bits required by the unique-order interpolative coding is at most

)
)1)(1(

log2())1)(1((2 −−−
+×−−−

gmf
Ngmf +)

)1)(1(
log5783.2()1)(1(2 −−

+×−−
gm

N
gm (2.9)

Or if we use γ coding, it is

)
)1)(1(

log21())1)(1((2 −−−
×+×−−−

gmf
Ngmf +)

)1)(1(
log5783.2()1)(1(2 −−

+×−−
gm

N
gm (2.10)

Eqs. (2.9) and (2.10) can be simplified under the condition that no residual pointers exist. For

example, when f=(m-1)g+1, Eq. (2.9) can be rewritten as:

]log
)

1
(log)1()1(5783.2log2

[2

22

f
N

g
g

gggg
f +−

×−+−×++
× (2.11)

 45

and some examples of the maximum number of bits required for unique-order interpolative coding

are derived in Table 2.2.

Table 2.2 Some examples of the maximum number of bits required for unique-order interpolative
coding if Golomb coding is used to encode boundary pointers under the condition that no residual
pointers exist.

g maximum number of bits required

2]log29.3[2 f
Nf +×

4]log25.3[2 f

Nf +×

8]log05.3[2 f

Nf +×

16]log88.2[2 f

Nf +×

32]log76.2[2 f

Nf +×

The results in Table 2.2 showed that when Golomb coding is used to encode boundary pointers,

the maximum number of bits required in unique-order interpolative coding has inverse relationship

with group size g: the maximum number of bits decreases with increase in group size g and

increases with decrease in g. On the other hand, if the number of document identifiers is less than

(g+1), unique-order interpolative coding cannot be used. We design an experiment in Section 2.4 to

find a suitable group size g.

The results in Eqs. (2.9) and (2.10), and Table 2.2 can be improved if Eq.(2.3) can be improved.

For example, the maximum number of bits required for interpolative coding to encode a posting list

with 3 document identifiers ranging from 1 to N is

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ loglog)2(log 222 baN ++− (2.12)

since the middle item requires ⎡ ⎤)2(log2 −N bits, and the left and right items require

⎡ ⎤ ⎡ ⎤ba 22 loglog + bits where a, b are two positive integers and a+b=(N-1). Since

 46

⎡ ⎤ NN 22 log1)2(log +<− (2.13)

and

⎡ ⎤ ⎡ ⎤ 2
log

2
log2)log1()log1(loglog 222222

NNbaba ++<+++<+ (2.14)

hence

⎡ ⎤ ⎡ ⎤ ⎡ ⎤)
3

log92.1(3loglog)2(log 2222
NbaN +×<++− (2.15)

We replace Eq.(2.3) with Eq.(2.15) when group size g=4, and the maximum number of bits required

for the unique-order interpolative coding under the condition that no residual pointers exist is

therefore

]log76.2[2 f
Nf +× (2.16)

Compared with the figure in Table 2.2, a much tighter upper bound is obtained.

To further understand the characteristics of unique-order interpolative coding, we conducted

following experiments. We used encoding methods such as Golomb coding, skewed Golomb

coding, batched LLRUN coding, interpolative coding, variable byte coding, Carryover-12

mechanism, unique-order interpolative coding 1 (group size g=4; boundary pointers and residual

pointers by Golomb coding), unique-order interpolative coding 2 (group size g=4; boundary

pointers and residual pointers by γ coding) in compression. In the first experiment (Table 2.3(a)), f

= 1,000,000 gaps were drawn from a geometric distribution and compressed using the eight

methods. The Golomb coding performs the best, since it is a minimum-redundancy code for

geometric gap distribution (Gallager and Van Voorhis 1975). Compared with other methods,

unique-order interpolative coding is not suitable for a geometric distribution when 2562 <<
f
N .

 47

But when
f
N increases, the performance of unique-order interpolative coding 1 improves

proportionally. When 2≤
f
N , the results of unique-order interpolative coding 2 are satisfying. For

most cases in the first experiment, both variable byte coding and Carryover-12 mechanism are

inefficient in compression.

Table 2.3 Compression results for geometric and skew geometric distributions of f = 1,000,000 gaps:
average bits per gap

Average gap（N/f）, Geometric Distribution Coding Methods
1 2 4 8 16 32 64 128 256 512 1024 2048

Golomb coding 1.00 2.33 3.30 4.39 5.43 6.45 7.46 8.47 9.47 10.47 11.47 12.47
Skewed Golomb coding 1.00 2.53 3.51 4.60 5.64 6.66 7.67 8.68 9.68 10.68 11.68 12.68
Batched LLRUN coding 1.00 2.27 3.46 4.50 5.53 6.52 7.52 8.52 9.52 10.52 11.52 12.53
Interpolative coding 0.00 2.15 3.45 4.59 5.66 6.69 7.70 8.71 9.71 10.71 11.71 12.72
Variable byte coding 8.00 8.00 8.00 8.00 8.00 8.14 9.08 10.93 12.87 14.24 15.07 15.52
Carryover-12 mechanism 1.07 2.88 4.11 5.17 6.18 7.38 8.75 9.90 10.58 12.30 14.41 15.56
Unique-order interpolative coding 1 3.00 4.19 5.13 5.97 6.76 7.53 8.29 9.06 9.89 10.77 11.68 12.77
Unique-order interpolative coding 2 0.25 2.33 3.91 5.31 6.64 7.92 9.19 10.45 11.70 12.96 14.21 15.46
Self-entropy 0.00 2.00 3.24 4.35 5.40 6.42 7.43 8.44 9.44 10.44 11.43 12.43
(a) Geometric distribution

Average gap（N/f）, Skewed Distribution Coding Methods
1 2 4 8 16 32 64 128 256 512 1024 2048

Golomb coding 1.40 2.60 3.30 4.29 5.33 6.37 7.39 8.40 9.40 10.40 11.40 12.41
Skewed Golomb coding 1.80 2.31 2.92 3.76 4.80 5.79 6.80 7.82 8.82 9.83 10.83 11.83
Batched LLRUN coding 1.40 2.31 2.86 3.60 4.61 5.66 6.70 7.71 8.71 9.71 10.70 11.71
Interpolative coding 0.84 1.53 2.07 2.90 3.97 5.07 6.15 7.19 8.21 9.23 10.23 11.24
Variable byte coding 8.00 8.00 8.00 8.00 8.10 8.58 9.38 10.11 10.63 11.28 12.43 13.80
Carryover-12 mechanism 1.07 2.36 2.90 3.72 4.84 6.02 6.98 7.9 9.35 10.90 12.08 12.57
Unique-order interpolative coding 1 3.60 3.96 4.30 4.80 5.51 6.30 7.11 7.94 8.76 9.60 10.51 11.62
Unique-order interpolative coding 2 1.25 1.90 2.47 3.33 4.53 5.88 7.21 8.53 9.81 11.07 12.33 13.60
Self-entropy 0.97 1.77 2.30 3.05 4.06 5.10 6.15 7.18 8.19 9.19 10.19 11.20
(b) Skewed geometric distribution

In the second experiment, for each value of
f
N the sequence of f = 1,000,000 geometrically

distributed gaps was broken into chunks of 200 contiguous values. The chunks were then placed in

groups of five. In the first three chunks of each group, all gaps were multiplied by a factor of 0.1;

whereas in the other two chunks all gaps were multiplied by a factor of 2.35. This process created

 48

artificial clusters of gaps much similar than the average, and about 60% of the values were coded

into these clusters, while the overall average gap remained the same. This better resembles the

distribution of real document collections. The results are shown in Table 2.3(b). Compared with

skewed Golomb coding, batched LLRUN coding, and interpolative coding, the compression

efficiency of Golomb coding is not as good as others, meaning it is unable to exploit clustering well.

The compression results of unique-order interpolative coding for a skewed geometric distribution

are better than that for a geometric distribution. This means that unique-order interpolative coding

does take a good advantage of the clustering property. For 32≤
f
N , we prefer to use the unique-

order interpolative coding 2; while for
f
N >32, we suggest unique-order interpolative coding 1.

Similar to that for a geometric distribution, the unique-order interpolative coding 1 performs better

as
f
N becomes larger. Again, both variable byte coding and Carryover-12 mechanism are inefficient

in compression for most cases in the second experiment. From Table 2.3(b), interpolative coding

can even outperform self-entropy. This is due to the fact that interpolative coding does not use the

gap value in encoding directly, but instead uses a minimal binary code to encode every gap after it

is converted to a triple.

2.4 Performance Evaluation

An experimental information retrieval system was implemented to evaluate the various coding

methods. Experiments were conducted on some real-life document collections, and query

processing time and storage requirements for each coding method were measured.

 49

2.4.1 Document collections and queries

Five document collections were used in the experiments. Their statistics are listed in Table 2.4.

In this table, N denotes the number of documents; n is the number of distinct terms; F is the total

number of terms in the collection; and f indicates the number of document identifiers that appear in

an inverted file.

Table 2.4 Statistics of document collections
 Collection

 Bible DBbib FBIS LAT TREC
Documents N 31,101 32,472 130,471 131,896 262,367
of terms F 884,746 2,320,610 72,922,893 72,087,460 145,010,353
Distinct terms n 8,965 58,536 214,310 168,251 317,393
of document identifier count f 701,304 1,694,491 28,628,698 32,483,656 61,112,354
Average gap size fnN /× 398 1122 977 683 1363
Total size (Mbytes) 4.69 21.30 470 475 945

Collection Bible is the King James version of the Bible, in which each verse is considered as a

document. The second collection, DBbib, is a set of citations to chapters appearing in the database

literature. The third and forth collections, FBIS (Foreign Broadcast Information Service) and LAT

(LA Times), are disk 5 of the TREC-6 collection that is used internationally as a test bed for

research in information retrieval techniques (Voorhees and Harman, 1997). The final collection

TREC includes the FBIS and LAT collections.

Since effectiveness of coding methods relies heavily on clustering of documents, inverted files

for these collections were built with a Greedy-NN algorithm (Shieh et al., 2003). These inverted

files were then used to test the advantages and shortcomings of various coding methods.

We followed the method (Moffat and Zobel, 1996) to evaluate performance with random

queries. For each document collection, 1000 documents were randomly selected to generate a query

set. A query was generated by selecting words from a word list of a specific document, combined

by some randomly generated Boolean operators ANDs and ORs. To form the document word list,

 50

words in the document were case folded, and stop words such as “the” and “this” were eliminated.

For example, a query word list may be “inverted file document collection built”, a query may be

“(inverted <AND> file <AND> document <AND> collection) <OR> built”. For each query, there

existed at least one document in the document collection that satisfied the query. The generated

queries followed a Zipf-like distribution P ~ 1/ρ0.55, where P is the probability of accessing each

query, and ρ is the popularity rank for the test query stream. This is widely believed to closely

resemble the distribution of real queries (Breslau et al., 1999).

2.4.2 Performance results

In this subsection, we first present the compression performance of unique-order interpolative

coding versus different group size g. We then present the compression performance of different

coding methods. Finally, we present the search performance of different coding methods.

Compression performance of unique-order interpolative coding

In this subsection, Golomb coding was used to code both boundary pointers and residual

pointers. This is due to the fact that the average gap sizes in Table 2.4 are relatively big, Golomb

coding was recommended according to Table 2.3(b). The compression result is shown in Table 2.5,

and the metric used is the average number of bits per document identifier BPI, defined as follows:

f
BPI

 identfiersdocument ofnumber
file inverted compressed theof size The

= .

For each term t, the cost of using r coding to encode the frequency ft is calculated and included in

the presented results.

Note that for group size g=4 and g=8, unique-order interpolative coding achieved good

compression. For a simple implementation, we suggest using g=4. In the following experiments,

Golomb coding was used to code both boundary pointers and residual pointers for unique-order

interpolative coding, and group size g was set to 4 unless otherwise stated.

 51

Table 2.5 Compression performance of unique-order interpolative coding versus different group size g

Group Size Collection
g Bible DBbib FBIS LAT TREC
1 6.11 6.20 5.27 5.31 5.49
2 5.64 5.47 4.84 4.91 4.99
3 5.61 5.31 4.80 4.89 4.94
4 5.46 5.11 4.66 4.74 4.78
5 5.52 5.13 4.71 4.80 4.82
6 5.52 5.10 4.71 4.79 4.81
7 5.47 5.04 4.65 4.74 4.75
8 5.42 4.98 4.59 4.68 4.69
9 5.47 5.01 4.64 4.72 4.73

10 5.51 5.03 4.67 4.75 4.76

Compression performance of different coding methods

We now compare the effectiveness of the eight coding methods: γ coding, Golomb coding,

batched LLRUN coding, skewed Golomb coding, interpolative coding, variable byte coding,

Carryover-12 mechanism, and unique-order interpolative coding. For each term t, the cost of using r

coding to encode the frequency ft is calculated and included in the presented results. Moreover, any

necessary overheads, such as the complete set of models and model selectors for the batched

LLRUN coding, are also calculated and included. However, the cost of storing the parameter b for

each posting list in Golomb coding (Witten et al., 1999) is not calculated nor included. This is

because the parameter b for each posting list in Golomb coding can be calculated via stored

frequency ft using Witten’s approximation. The results are shown in Table 2.6. Notice that:

1. Both variable byte coding and Carryover-12 mechanism are inefficient in compression of

inverted files.

2. For the other coding methods, the compression efficiencies of both γ coding and Golomb coding

are relatively low because of the simple models they use.

 52

3. The compression efficiencies of batched LLRUN, skewed Golomb, interpolative, and unique

order interpolative coding methods are relatively good. This shows that clustering is a good

compression aid.

4. The compression efficiency of unique-order interpolative coding is only inferior to that of

interpolative coding, meaning that it does take a good advantage of the clustering property.

Table 2.6 Compression Performance of different coding methods.

 Collection Coding Methods
Bible DBbib FBIS LAT TREC

γ coding 6.58 5.96 5.38 5.63 5.63
Golomb coding 6.11 6.20 5.27 5.31 5.49
Batched LLRUN coding 5.52 4.88 4.63 4.78 4.84
Skewed Golomb coding 5.92 5.75 5.04 5.07 5.10
Interpolative coding 5.37 4.89 4.58 4.65 4.62
Variable byte coding 9.10 9.54 8.88 8.89 8.84
Carryover-12 mechanism 7.14 7.99 6.23 6.13 5.95
Unique-order interpolative coding 5.46 5.11 4.66 4.74 4.78

Search performance of different coding methods

The query processing time includes (1) disk access time, (2) decompression time, and (3)

document identifiers comparison time. Experiments showed that disk access time and

decompression time occupy more than 90% of query processing time. And document identifier

comparison time is not a function of the coding method used. Therefore the search performance

metric is defined as

 Search Time (ST) = Disk Access Time (AT) + Decompression Time (DT).

And the speedups of all coding methods relative to Golomb coding, for all test collections, were

calculated.

All experiments described in this subsection were run on an Intel P4 2.4GHz PC with 256MB

DDR memory running Linux operating system 2.4.12. The hard disk was 40GB, and the data

transfer rate was 25MB/sec. Intervening processes and disk activities were minimized during

 53

experimentation. All decoding mechanisms were written in C, compiled with gcc, and optimized as

follows:

1. Replaced subroutines with macros.

2. Careful choice for compiler optimization flags.

3. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

4. Implemented the integer logarithm function ⎡ ⎤)i(log2 with a lookup table.

Let z be a 256-entry array, and z[k] be ⎡ ⎤)1(log2 +k where 2550 ≤≤ k . The function ⎡ ⎤)i(log2

can be implemented in C as follows (v is the returned value of ⎡ ⎤)i(log2):

do {
 register int __i = (i) - 1;

(v) = _B_i>>16 ? (_B_i>>24 ? 24 + z[_B_i>>24] : 16 + z[_B_i>>16]) :
(_B_i>> 8 ? 8 + z[_B_i>>8] : z[_B_i]) ;

} while (0);

5. Implemented the integer logarithm function ⎣ ⎦)i(log2 also with a lookup table.

The array z is the same as that used in the function ⎡ ⎤)i(log2 . The function ⎣ ⎦)i(log2 can be

implemented in C as follows (v is the returned value of ⎣ ⎦)i(log2):

do {
 register int __i = (i) ;
 (v) = _B_i>>16 ? (_B_i>>24 ? 23 + z[_B_i>>24] : 15 + z[_B_i>>16]) :

(_B_i>> 8 ? 7 + z[_B_i>>8] : z[_B_i] - 1) ;
} while (0);

6. A 256-entry lookup table is used to locate the exact bit location of the first “1” bit in a byte.

For example, in the byte 00101000 the first “1” bit is in location 3. This can accelerate the

decoding process of unary codes because no bit-by-bit decoding is required.

7. Access to binary codes with masking and shifting operations, and no bit-by-bit decoding is

required.

 54

With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-

bit decoding is required.

Other optimizations included: The Huffman code of batched LLRUN coding was implemented

with canonical prefix codes (Turpin, 1998). The canonical prefix codes can be decoded via fast

table look-up. And for the interpolative coding method, recursive process was transformed to non-

recursive process, at the cost of an explicit stack (Tenenbaum et al., 1990).

The search performance measurements are shown in Table 2.7. Key findings are:

1. Although variable byte coding and Carryover-12 mechanism gave fast decoding, r coding and

unique-order interpolative coding achieved higher query throughput rates. This is because the

disk access time (AT) of variable byte coding and Carryover-12 mechanism is much higher than

that of r coding and unique-order interpolative coding.

2. For collection DBbib, the decoding times (DT) of r coding and unique-order interpolative

coding are less than that of Carryover-12. This is because a large portion of the d-gaps of

frequently used query terms for DBbib is of value 1. Both r coding and unique-order

interpolative coding can encode these d-gaps very economically. This also makes the decoding

times of r coding and unique-order interpolative coding for these d-gaps very low.

3. Batched LLRUN coding, skewed Golomb coding, and interpolative coding gave better

compression rates than Golomb coding. However, their complex decoding mechanisms

prohibited them from being used in real-world IRSs.

4. Experimental results showed that r coding, Carryover-12 mechanism, and unique-order

interpolative coding were recommended for real-world IRSs. Their query throughput rates were

all much higher than that of Golomb coding.

 55

Table 2.7 Search performance of different coding methods (AT is the disk access time, DT is the
decoding time, ST=AT+DT is the search time, and SP is the performance relative to the Golomb
coding)

Coding Method Collection
 Bible DBbib FBIS LAT TREC
γ coding AT(us) 125 202 1125 1168 2149
 DT(us) 70 188 952 980 1696
 ST(us) 195 390 2077 2148 3845
 SP 1.14 1.50 1.20 1.23 1.20
Golomb coding AT(us) 131 306 1282 1321 2422
 DT(us) 92 280 1200 1314 2179
 ST(us) 223 586 2482 2635 4601
 SP 1.00 1.00 1.00 1.00 1.00
Batched LLRUN coding AT(us) 116 381 1101 1134 2086
 DT(us) 130 192 1688 1771 3013
 ST(us) 246 573 2789 2905 5099
 SP 0.91 1.02 0.89 0.91 0.90
Skewed Golomb coding AT(us) 117 331 1120 1150 2097
 DT(us) 122 201 1492 1577 2696
 ST(us) 239 532 2612 2727 4793
 SP 0.93 1.10 0.95 0.97 0.96
Interpolative coding AT(us) 111 137 1024 995 1916
 DT(us) 243 688 3094 3266 5598
 ST(us) 354 825 4118 4261 7514
 SP 0.63 0.71 0.60 0.62 0.61
Variable byte coding AT(us) 214 918 3134 3489 5506
 DT(us) 22 90 336 388 633
 ST(us) 236 1008 3470 3877 6139
 SP 0.95 0.58 0.72 0.68 0.75
Carryover-12 mechanism AT(us) 145 311 1498 1491 2566
 DT(us) 52 190 765 825 1368
 ST(us) 197 501 2263 2316 3934
 SP 1.13 1.17 1.10 1.14 1.17
Unique-order interpolative coding AT(us) 113 182 1066 1076 2011
 DT(us) 82 169 1041 1041 1909
 ST(us) 195 351 2107 2117 3920
 SP 1.14 1.67 1.18 1.24 1.17

5. To obtain better compression rates, Golomb coding and unique-order interpolative coding use a

minimal binary code in their codewords. To decode a minimal binary code, “toggle point”

calculations are required and slow down query evaluation. Rice coding is a variant of Golomb

 56

coding where the value b is restricted to be a power of 2. The advantage of this restriction is that

there is no “toggle point” calculation required. The disadvantage of this restriction is the slightly

worse compression than that of Golomb coding. If we use Rice coding to encode the boundary

and residual pointers in unique-order interpolative coding and use a simple binary code to

encode the (x, lo, hi) triples for the inner pointers, there is no “toggle point” calculation required

for unique-order interpolative coding. Table 2.8 showed that Rice coding allowed query

throughput rates of approximately 8% higher than Golomb coding, and unique-order

interpolative coding without “toggle point” calculation allowed query throughput rates of

approximately 30% higher than Golomb coding. Experimental results further showed that the

decoding time of unique-order interpolative coding without “toggle point” calculation is even

less than that of Carryover-12 mechanism.

6. Experimental results showed that a good coding method must be characterized by both high

compression ratio and high decompression rate. The unique-order interpolative coding is such a

good method.

Table 2.8 Search performance of Rice coding and unique-order interpolative coding (AT is the disk
access time, DT is the decoding time, ST=AT+DT is the search time, and SP is the performance
relative to the Golomb coding).

Coding Method Collection
 Bible DBbib FBIS LAT TREC
Rice coding AT(us) 133 286 1305 1345 2462
 DT(us) 74 267 1004 1069 1808
 ST(us) 207 553 2309 2414 4270
 SP 1.08 1.06 1.07 1.09 1.08
Unique-order interpolative codinga AT(us) 119 193 1128 1137 2127
 DT(us) 55 141 747 772 1363
 ST(us) 174 334 1875 1909 3490
 SP 1.28 1.75 1.32 1.38 1.32
a The boundary and residual pointers are encoded in Rice codes, the (x, lo, hi) triples for the inner
pointers are encoded in simple binary codes, and group size g is 4.

 57

2.5 Other Application

Unique-order interpolative coding, like interpolative coding, can be directly applied to encode

strictly ascending integer sequences. One such example is encoding of within-document frequencies

of posting lists. If ranked queries are to be supported, it is also necessary to store with each

document identifier the frequency of the term appearing within that document, giving the posting

list the form:

<(id1, ft,1), (id2, ft,2), …, (idft, ft,ft) >,

where ft is the number of documents containing term t, idk<idk+1, and ft,i is the frequency of term t in

document i, tfi ≤≤1 . The within-document frequencies can be compressed in exactly the same

manner of compressing document pointers: if there are ft entries in a posting list and a total of Ft

occurrences of that term in the collection, the sequence of cumulative sums of the ft,i values also

forms a strictly increasing integer sequence, and all of the existing compression methods are

applicable. Because the within-document frequencies are typically small, according to Table 2.3(b),

unique-order interpolative coding should use γ coding to encode within-document frequencies.

Table 2.9 shows the cost, in bits per pointer, of storing the within-document frequencies for the five

test collections. Test results showed that unique-order interpolative coding achieved very good

compression, second to only the interpolative coding. Considering also the performance results in

Tables 2.7, we conclude that the unique-order interpolative coding is very suitable for encoding

within-document frequencies of posting lists.

 58

Table 2.9 Within-document frequency index compression of all posting lists, in average bits per pointer.
Coding Methods Collection
 Bible DBbib FBIS LAT TREC

1.26 1.37 2.55 2.22 2.37
1.38 1.44 2.14 2.00 2.07
1.30 1.50 2.29 2.09 2.20
1.38 1.44 2.14 2.00 2.05
1.45 1.60 2.39 2.26 2.35
0.86 0.92 1.78 1.77 1.75
8.11 8.19 8.04 8.02 8.03
2.04 2.75 3.22 2.99 3.07

Unary coding
γ coding
Golomb coding
Batched LLRUN coding
Skewed Golomb coding
Interpolative coding
Variable byte coding
Carryover-12 mechanism
Unique-order interpolative codinga 0.96 1.02 1.92 1.76 1.84
a The boundary and residual pointers are encoded in γ codes and group size g is 4.

2.6 Summary

This chapter proposes a novel coding method, the unique-order interpolative coding, to

compress inverted files in IRSs. This method is much easier to implement than interpolative coding.

Furthermore, it is custom designed to suit the clustering property of document identifiers, a property

that has been observed in real-world document collections. Experiments with the inverted files of

five test databases show that this method yields superior performance in both fast querying and

space-efficient indexing. This work shows a feasible way in building a responsive and storage-

economical IRS.

 59

Chapter 3 Redundant Decoding Elimination

To provide fast query processing, inverted indexes are widely used in information retrieval

systems (IRSs) (Witten et al., 1999; Zobel et al., 1998). An inverted index consists of an index file

and an inverted file. An index file is a set of records, each containing a keyword term t and a pointer

to the posting list for term t. An inverted file contains, for each distinct term t in the collection, a

posting list of the form

() () () >=<
tt fft fqidfqidfqidPL ,,...,,,, 2211 ,

where a posting (id,fq) indicates that term t appears in the document whose identifier is id a total of

fq times (fq is referred to as the within-document frequency), and ft (referred to as the document

frequency of term t) is the number of documents in which term t appears. In a large-scale IRS,

posting lists are usually compressed, and decompression of posting lists is hence required during

query processing (Zobel & Moffat, 1995; Witten et al., 1999). A query consists of keyword terms.

To process a query, the query evaluation engine searches the index file for the query terms to

retrieve and decompress the corresponding posting lists. Set operations, such as intersection, union,

and difference, are then performed on the posting lists to obtain the query output. The results in the

query output are possibly ranked by calculating and examining the score of each document, where

the score is usually a function of the within-document frequency and the document frequency of

term t (Salton, 1989; Salton & McGill, 1983).

In a typical IRS, a few frequently used query terms constitute a large portion of all term

occurrences in queries (Jansen et al., 1997). This suggests that it is advisable to store the index

records for frequently used query terms in RAM to greatly reduce index search time. Hence, the

query processing time of a large-scale IRS is dominated by the time needed to read and decompress

 60

the compressed posting list for each query term (Moffat & Zobel, 1996). Moreover, adding a

document into the collection is to add one document identifier into the posting list for each term

appearing in the document, hence the length of a posting list increases with the size of document

collection. This implies that the time to process posting lists increase as the size of document

collection grows. Therefore, further improvement in retrieving and decompressing posting lists

becomes necessary.

Compression of an inverted file is the most popular technique used to increase query throughput

(Zobel & Moffat, 1995; Williams & Zobel, 1999; Trotman, 2003). This is because the total time of

transferring a compressed posting list and subsequently decompressing it is potentially much less

than that of transferring an uncompressed posting list. To achieve good compression, the postings in

a posting list should be sorted in order of increasing document identifier. Two popular approaches

for compressing the document identifiers in the identifier-ordered postings are d-gap compression

approach (Moffat & Zobel, 1992; Witten et al., 1999) and interpolative coding approach (Moffat &

Stuiver, 2000). The d-gap compression approach consists of two steps. It first replaces each

document identifier (except the first one) with the distance between itself and its predecessor. For

example, the document identifiers in the identifier-ordered postings <13, 18, 22, 35, 42> can be

transformed into the d-gaps as <13, 5, 4, 13, 7>. And the second step is to encode these d-gaps

using an appropriate coding method, such as unary coding (Elias, 1975), γ coding (Elias, 1975), or

Golomb coding (Golomb, 1966; Witten et al., 1999). The common nature of these coding methods

is their variable-length representations in which small d-gaps can be coded more economically than

large ones. Interpolative coding approach, on the other hand, directly compresses the original

document identifiers with a recursive process calculating the lower and upper bounds of every

document identifier. Then every document identifier is encoded in a binary code. Moffat & Stuiver

 61

(2000) showed that the compression result of interpolative coding is better than that of d-gap

compression approach. The drawback of interpolative coding is its slow decompression due to a

stack required in its decoding loops. The within-document frequencies in the identifier-ordered

postings can also be encoded efficiently by using γ coding or interpolative coding (Bell et al., 1993;

Moffat & Zobel, 1992; Moffat & Stuiver, 2000).

The query performance on a compressed inverted file can be further improved by using

skipping mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996; Anh & Moffat, 1998). Although

compression can greatly reduce disk access time, the compressed posting list for each query term

must be completely decompressed in order to be randomly accessed to any posting in it. Where as

in processing queries, usually only a subset of the postings in a posting list needs to be examined.

To save redundant decoding, skipping mechanisms (Moffat et al., 1995; Moffat & Zobel, 1996;

Anh & Moffat, 1998) that allow queries to be processed with only partial decoding of the list have

been proposed. A common skipping mechanism is to divide the posting list into blocks and add

auxiliary information into each block, so that the postings within a block can be quickly skipped

without decoding them if they are useless in set operations during query processing. There are two

important types of queries: conjunctive Boolean queries and ranked queries. For conjunctive

Boolean queries large blocks provide faster searching for candidates, whereas for ranked queries

small blocks are favored (Moffat & Zobel, 1996; Anh & Moffat, 1998). We observed that all well-

known skipping mechanisms can incur high storage overheads if the posting lists are divided into

small blocks. The increase in disk I/O time outweighs the reduction in decompression time.

Therefore, a novel skipping mechanism that can support small blocks with very little storage

overhead should be developed.

 62

In this chapter, we deal with posting list skipping problem for both the conjunctive Boolean

queries and ranked queries in one design. We propose a two-level skipped inverted file, in which a

two-level skipped index is created on each compressed posting list, to remove redundant decoding

and allow fast query evaluation. We first employ well-known skipping mechanisms to create the

first-level index on each posting list by dividing the list into blocks. The first-level index is

constructed with large blocks and designed for optimizing the query performance of conjunctive

Boolean queries. A novel skipping mechanism is then proposed to create the second-level index on

each block for optimizing the query performance of ranked queries. It first divides each block into

sub-blocks, each containing a fixed number of postings. Then it employs functions to accurately

calculate the maximum required bits that will be allocated and reserved to store the postings within

a sub-block, and that can be easily skipped. The novel skipping mechanism works the best for small

sub-blocks and has significant advantages for ranked queries. Experimental results show that the

proposed two-level skipped inverted file provides excellent query speed on both conjunctive

Boolean queries and ranked queries with very little or no storage overhead.

The remainder of this chapter is organized as follows. Section 3.1 describes two well-known

skipping mechanisms and their posting list structures for inverted files. Our test document

collection is described in Section 3.2. In Section 3.3, we present the proposed two-level skipped

inverted file. The performance evaluation is presented in Section 3.4. Finally, Section 3.5 presents

our summary.

3.1 Two Well-known Skipping Mechanisms and Their Posting List Structures

Moffat & Zobel (1996) and Moffat et al. (1995) proposed two well-known skipping

mechanisms to eliminate redundant decoding and allow fast candidate searching. Two posting list

 63

structures are employed in their proposed skipping mechanisms. This section presents these two

posting list structures, and comments on them.

3.1.1 Skipped inverted file

Moffat & Zobel (1996) proposed the skipped inverted file to avoid redundant decoding and

allow fast processing of conjunctive search queries. The idea is to divide the compressed posting

list into blocks each containing a fixed number, k, of postings. The first document identifier of each

block is referred to as the critical document identifier, and it is associated with some extra bits that

specify the location of the next critical document identifier. For example, consider the set of (id,fq)

postings in a given posting list

(4,2), (6,1), (11,1), (13,2), (14,1), (19,2), (24,1), (27,2), (30,2), (42,1)…

For the number of postings per block k=3, the posting list can be represented as

((4,a1),2), (6,1), (11,1), ((13,a2),2), (14,1), (19,2), ((24,a3),1), (27,2), (30,2), ((42,a4),1)…,

where ai is the address of the first bit of the (i+1)th critical document identifier. The document

identifiers (except the critical document identifier) within a block can be stored as d-gaps:

((4,a1),2), (2,1), (5,1), ((13,a2),2), (1,1), (5,2), ((24,a3),1), (3,2), (3,2), ((42,a4),1)…,

Finally, the critical document identifiers and the addresses can also be stored as d-gaps:

((4,a1),2), (2,1), (5,1), ((9, a2-a1),2), (1,1), (5,2), ((11,a3-a2),1), (3,2), (3,2), ((18,a4-a3),1)…,

To search the compressed posting list for a document identifier id, the first step is searching in

the critical document identifier list and the second step is searching in one targeted block. Note that

within each block each (id,fq) posting is still code-dependent upon its predecessor. If the candidate

answers do not exist in that block, the postings (except the critical document identifier) within a

block can be quickly skipped without decoding, resulting in reduced decompression time. When

implementing a skipped inverted file, Golomb coding is used to code the d-gaps of document

 64

identifiers and the addresses, whereas γ coding is used to code the within-document frequencies

(Moffat & Zobel, 1996).

3.1.2 Blocked inverted file

The skipped inverted file uses k-posting blocks, so the blocks themselves are of differing length.

On alternative, called blocked inverted file in which the posting list can be modified to provide

faster checking of individual candidates, is to break the posting lists into blocks of the same size in

bits (Moffat et al., 1995). The first document identifier of each block is also called critical document

identifier. Let b be the number of bits for each block, then the ith block starts at bit location

1+(i−1)×b. Therefore, the address that specify the location of next critical document identifier can

be omitted in a blocked posting list. Counterbalancing this gain, on average half a (id,fq) posting per

block will be lost. Each compressed (id,fq) posting in a posting list occupies about 8 bits (Witten et

al., 1999), so 4 bits per block will be unused.

In a blocked posting list, the critical document identifier can be stored completely

uncompressed, and a binary search for critical document identifier can be carried out. This clearly

offers much faster accesses to candidates than the skipped inverted file since there is no decoding of

the critical document identifier required, and only logarithmically many of them have to be

examined (Moffat et al., 1995). However, this leads to additional space wastage. For a collection of

N=1,000,000 documents to be indexed and the number of bits per block b=128, the use of an

uncompressed critical document identifier adds about 10% to the size of the compressed inverted

file (Moffat et al., 1995). The space overhead ratio will increase if the size of document collection N

grows or the number of bits per block b decreases. In implementing a blocked inverted file, Golomb

coding is used to code the d-gaps of document identifiers (except critical document identifiers),

whereas γ coding is used to code the within-document frequencies (Moffat et al., 1995).

 65

Moffat et al. (1995) indicated that a binary search for the compressed critical document

identifiers can be carried out if the blocks are stored in interpolative manner, and reduced space

overheads can be achieved. This, however, leads to slow decompression for critical document

identifiers due to a stack required in its decoding loops. Therefore, the blocked inverted file to be

implemented in this chapter uses uncompressed critical document identifiers.

3.1.3 Remarks

For both skipped inverted files and blocked inverted files, we cannot find a fixed value of k or b

to simultaneously optimize the query evaluation of conjunctive Boolean queries and ranked queries.

This is because conjunctive Boolean queries favor large blocks, whereas for ranked queries favor

small blocks. Two different indexes might be constructed if speed on both types of query is at a

premium (Moffat & Zobel, 1996). A trivial solution to this problem is to employ a two-level

skipping mechanism, where the first level of skipping divides the compressed posting list into large

blocks for optimizing the query performance of conjunctive Boolean queries, and the second level

divides each large block into small sub-blocks for optimizing the query performance of ranked

queries. However, both skipped inverted file and blocked inverted file are inappropriately used for

smaller sub-blocks due to their high storage overheads. To create a space-efficient two-level

skipped index for providing excellent speed on both types of query, we propose a novel skipping

mechanism to support smaller sub-blocks with very little or no storage overhead in Section 3.3.

 66

3.2 Test Data

The document collection used for the experiments in this research is the disk 5 of the TREC-6

collection (Voorhees & Harman, 1997). We have broken the longer documents into pages of around

1000 bytes to ensure that retrieved text is always of a size that can be digested by the user (Zobel et

al., 1995). In the paged form of the test document collection, there are 1,025,469 pages totaling

945MB, an average of 141.4 terms per page, and 317,393 distinct terms, after folding all letters to

lowercase and removing variant endings using Lovin’s stemming algorithm (Lovins, 1968). Each

page is mapped to a unique document identifier. The inverted file comprises 93,226,576 stored

(id,fq) postings.

3.2.1 Conjunctive Boolean queries

We followed the method (Moffat & Zobel, 1996) to generate random conjunctive Boolean

queries. For the test document collection, 300 pages were randomly selected to generate a query set.

A query was generated by selecting words from the word list of a specific page. The number of

terms per query ranged from 1 to 8. For example, a query containing 5 terms may be “inverted file

document collection built”. For each query, there existed at least one page that was relevant to the

query. We also made the generated query set have the following characteristics: (1) Query

repetition frequencies followed a Zipf distribution (Xie & O’Hallaron, 2002); (2) The terms per

query distribution followed a shifted negative binomial distribution (Wolfram, 1992). This made the

distribution of generated queries closely resemble the distribution of real queries. Table 3.1 shows

the average number of candidate pages and the average number of (id,fq) postings considered when

processing the generated queries, for each query size.

 67

Table 3.1 Processing of generated conjunctive Boolean queries.

Number of terms Average number of candidate pages Average number of (id,fq) postings
1 42,763 42,763
2 4,814 85,223
3 1,096 127,491
4 459 169,343
5 211 210,665
6 113 251,728
7 43 292,476
8 22 333,082

3.2.2 Ranked queries

50 pages were randomly selected to generate the test ranked query set. For each of the selected

pages, we eliminated stopwords and removed all nonalphabetic characters, and case-folded and

stemmed the resulting words. This gave a set of 50 queries containing, on average 50.2 distinct

terms, and on average 2,050,000 of the (id,fq) postings processed per query, and 41,000 postings

per term per query. We allowed multiple appearances of terms to influence the weighting given to

that term. When using the continue algorithm (Moffat & Zobel, 1996) to evaluate ranked queries,

the average number of (id,fq) postings needed to be checked against the posting list for each query

term may range from 0.2 to 2.0 percent of N, where N is the number of pages in the collection.

3.3 Proposed Two-level Skipped Inverted Files

In this section, we first describe the framework of the proposed two-level skipped inverted file.

Then we propose a novel skipping mechanism to optimize the query performance of ranked queries

with very little or no storage overhead.

3.3.1 Framework of proposed approach

For skipped inverted files, Moffat & Zobel (1996) showed that the total decoding time required

to search a posting list containing p postings for c candidates can be minimized if the posting list is

 68

divided into blocks each containing ccp2 postings. According to Table 3.1, this indicates that

the number of postings per block, k, should be set at a value ranged from 6 to 88 for optimizing the

query performance of conjunctive Boolean queries; while according to Section 3.2.2, this indicates

that the number of postings per block, k, should be set at a value ranged from 3 to 9 for optimizing

the query performance of ranked queries. However, we observed that a skipped inverted file is

inappropriately used for ranked queries. When k ≤ 8 the size of the skipped inverted file is much

larger than that of an un-skipped compressed inverted file, this incurs more read time and

dramatically absorbs the CPU gains. A novel skipping mechanism that can support smaller blocks

with little space overhead should be developed. We also observed that blocked inverted files are

faced with the same problem.

In this chapter, we propose a two-level inverted file, in which a two-level index is created on

each compressed posting list, to simultaneously optimize the query performance of conjunctive

Boolean queries and ranked queries. The idea is that the first-level index is designed for optimizing

the query performance of conjunctive Boolean queries, whereas the second-level index is designed

for ranked queries. We observed that well-known skipping mechanisms can work well for the first-

level indexing; hence the key to the proposed two-level skipped inverted file is to develop a novel

skipping mechanism that can efficiently support the second-level indexing. The framework of the

proposed two-level skipped index on each compressed posting list is as follows:

The first-level index: One of the skipping mechanisms proposed by Moffat et al. (1995) and

Moffat & Zobel (1996) is first used to create the first-level index on each compressed posting list by

dividing the posting list into large blocks and adding auxiliary information into each block to skip

over unnecessary portions of the list.

 69

The second-level index: A novel skipping mechanism is then proposed to create the second-level

index on each large block by dividing the block into sub-blocks and adding auxiliary information

into each sub-block to skip over unnecessary portions of the block.

To ensure that skipped inverted files do not become too large, we require that every block

contains at least 17 postings. This adds about 10% to the size of the un-skipped compressed

inverted file and can reduce considerable decompression time with acceptable space overhead. For

blocked inverted files, we also require that every block contains at least 128 bits. This is because

that each compressed (id,fq) posting occupies about 8 bits (Witten et al., 1999); a skipped inverted

file with k=17 corresponds to a blocked inverted file with b of about 128.

The next section describes the proposed skipping mechanism for the second-level index.

3.3.2 Proposed skipping mechanism

In this section, we first describe the proposed skipping mechanism based on maximum required

bits (MRB) calculation. Then we present the recommended coding method and its MRB function for

the document identifiers and the within-document frequencies within a sub-block. Finally, we

present the implementation optimization technique.

The design

In this sub-section, we propose a novel skipping mechanism based on maximum required bits

(MRB) calculation (cf. Fig. 3.1) to efficiently create a second-level index on each block for the first

level of skipping. Consider a given block containing n postings

(id1,fq1), (id2,fq2), (id3,fq3), …, (idn,fqn)

where idi<idi+1. We first replace the within-document frequency fqi with the Fi, where ∑
=

=
i

j
ji fqF

1

 is

referred to as the cumulative within-document frequency. Next a sub-block size g is determined.

The block is then divided into ⎡ ⎤gnm = sub-blocks, each having g postings except possibly the

 70

last block. We define the first posting in each sub-block to be a critical pair consisting of a

document identifier and a cumulative within-document frequency, the postings between critical

pairs to be inner postings, and those in the last sub-block except the critical pair to be the residual

postings. The critical pairs and their subsequent residual postings together can be regarded as a sub-

posting list, on which the document identifiers can be encoded in Golomb coding with the d-gap

technique and the cumulative within-document frequencies can be encoded in γ coding also with

the d-gap technique. For the inner postings within a sub-block, the document identifiers and the

cumulative within-document frequencies are stored separately (cf. Fig. 3.1). Assume that the

document identifiers in the inner postings are to be compressed with compression method C1,

(id1,fq1), (id2,fq2), (id3,fq3), …, (idn,fqn)

(id1,F1), (id2,F2), (id3,F3), …, (idn,Fn)

∑
=

=
i

j
ji fqF

1

sub-block size was set to g, and ⎥
⎥

⎤
⎢
⎢

⎡
=

g
nm sub-blocks

id1,F1 id2,…,idg F2,…,Fg idg+1,Fg+1 idg+2,…,id2g Fg+2,…,F2g id(m-1)g+1,F(m-1)g+1 ……(idn,Fn)

d-gaps d-gaps d-gaps
d-gaps d-gaps

: sub-block

: critical pair

: Wastage

The residual
postings

),1(112 gFFMRB gC −−+),1(111 gididMRB gC −−+),1(1122 gFFMRB ggC −− ++

inner postings inner postings

bits bits bits bits

Figure 3.1 Illustration of the proposed skipping mechanism. Assume that the document identifiers
in the inner postings are to be compressed with compression method C1, and the cumulative
within-document frequencies are with compression method C2. The function MRBC(xj+g−xj−1,g)
can calculate the maximum required bits that need to be allocated to store the strictly ascending
integer sequences xj+1,xj+2,…xj+g-1 compressed with method C, where x can be either id or F and C
can be either C1 or C2.

),1(1121 gididMRB ggC −− ++

 71

and the cumulative within-document frequencies are with compression method C2. We want to find

two functions MRBC1(DIi,g) and MRBC2(DFi,g) to precisely calculate the maximum required bits

that need to be allocated to store the document identifiers compressed with method C1 and the

cumulative within-document frequencies compressed with method C2, respectively, in the inner

postings within the ith sub-block, where DIi=ICi−ICi+1−1 and ICi is the document identifier for the ith

critical pair, and DFi=FCi−FCi+1−1 and FCi is the cumulative within-document frequency for the ith

critical pair. Since the maximum number of bits for the document identifiers and the cumulative

within-document frequencies in the inner postings within a sub-block is known, those identifiers

and frequencies that are useless in set operations during query processing can be skipped easily. In

this mechanism, the critical pair for the (i+1)th sub-block should be stored before the inner postings

for the ith sub-block. Compared with the skipping mechanism proposed by Moffat & Zobel (1996),

this mechanism does not require extra bits to specify the location of critical document identifiers.

However, the space overhead of this mechanism is still possibly high if the estimation function is

not accurate. The key to the success of this skipping mechanism is to find efficient coding methods

with accurate functions for compressing the document identifiers and the cumulative within-

document frequencies in the inner postings within a sub-block.

 Recommended coding method and its MRB function for inner postings

For the proposed skipping mechanism, interpolative coding is recommended for compressing

both the document identifiers and the cumulative within-document frequencies. The reasons are:

(1) Interpolative coding can yield superior compression performance for both document identifiers

and cumulative within-document frequencies (Moffat & Stuiver, 2000).

 72

(2) When the group size g is known, Chapter 2 showed that the decoding process for interpolative

coding can be greatly facilitated using recursion elimination and loop unwinding, this provides

high query throughput rate.

(3) Consider a sequence of (g−1) numbers xj+1 to xj+g-1 constrained by xj<xj+1<xj+2<…<xj+g-1< xj+g.

When the group size g=4, we can show that the maximum required bits for the interpolative

coding can be derived as

 323 213
3234 113

 4 2
 3 0

)4,(

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤+×++
+×<<++

=
=

==

Dif)(h
Dif)(h

Dif
Dif

gDMRB

h

hinterp (3.1)

where)1(−−= + jgj xxD and ⎡ ⎤ 2)2(log2 −−= Dh . This function is the closed form of

Eq.(2.12) and can calculate the maximum required bits for the document identifiers and the

cumulative within-document frequencies in the inner postings within a sub-block with very little

space overhead.

With interpolative coding, to allow different values of g, one can easily show that

⎡ ⎤)4,()4,()6(log)8,(2 qMRBpMRBDgDMRB interpinterpinterp ++−==

and this can be converted to

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

<+×++
+×≤<+×++
+×≤<+×++

+×≤<++
=
=
=
=

==

 727 817
727726 717
726725 517
 72510 417

 10 8
 9 6
 8 3
 7 0

)8,(

Dif)(h
Dif)(h
Dif)(h

D if)(h
 if D
 if D
 if D
if D

gDMRB

h

hh

hh

hinterp (3.2)

where)1(−−= + jgj xxD , 2
2

)6(log2 −⎥⎥
⎤

⎢⎢
⎡ −

=
Dh , and p, q are two positive integers and p+q=D-1.

 73

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

<+×++
+×≤<+×++
+×≤<+×++
+×≤<+×++
+×≤<+×++
+×≤<+×++
+×≤<+×++

+×≤<++
=
=
=
=
=
=
=
=

==

 15215 22115
1521515214 21115
1521415213 19115
1521315212 18115
1521215211 15115
1521115210 14115

 152101529 12115
 152922 11115

 22 22
 21 20
 20 17
 19 15
 18 11
 17 8
 16 4
 15 0

)16,(

D if)(h
D if)(h
D if)(h
D if)(h
D if)(h
D if)(h

D if)(h
D if)(h

Dif
Dif
Dif
Dif
Dif
 D if

 D if
D if

gDMRB

h

hh

hh

hh

hh

hh

hh

hinterp

Applying the same approach, we have

⎡ ⎤)8,()8,()14(log)16,(2 qMRBpMRBDgDMRB interpinterpinterp ++−==

and this can be converted to

(3.3)

where)1(−−= + jgj xxD , 2
4

)14(log2 −⎥⎥
⎤

⎢⎢
⎡ −

=
Dh , and p, q are two positive integers and p+q=D-1.

The proposed skipping mechanism can be directly employed to create the first-level index by

dividing the compressed posting list into blocks each containing g postings. Table 2 shows the size

of the inverted files constructed using the proposed skipping mechanism with different g values.

The results show that this skipping mechanism can efficiently support smaller sub-blocks. The size

of inverted files constructed using this mechanism can be even smaller than that of a compressed

inverted file in which the document identifiers are compressed in Golomb codes with the d-gap

technique and the within-document frequencies are in γ codes. Note that the file size increases as

the value of g increases, so this skipping mechanism works the best for smaller blocks.

 74

When this skipping mechanism is employed to create the second-level index, to optimize the

query performance of ranked queries requires that the sub-block size be set at smaller values of g.

For a simple implementation and which requires space efficiency, we suggest g=4. Note that when

applying this skipping mechanism to a blocked inverted file to create the second-level index on

each block, a unary code should be added in each block to indicate the number of sub-blocks in the

block. Other coding methods are not disregarded. We are still looking for a faster and more

effective coding method to encode the document identifiers or the cumulative within-document

frequencies.

Table 3.2 Sizes of inverted files constructed using the proposed skipping mechanism with different
g values.

Size Inverted file organization
MB %

compressed inverted file 93.28 100.0

the inverted file by the proposed skipping mechanism
g=4 89.33 95.8
g=8 93.06 99.8
g=16 96.21 103.1

Implementation optimization

To skip over unnecessary inner postings, this skipping mechanism requires calculating the

maximum required bits for both document identifiers and cumulative within-document frequencies.

We observed that in most cases the gap value D in Eq. (3.1) is less than 256. Therefore, a 256-entry

array z is used to facilitate the calculation of the maximum required bits, and z[i]=MRBinterp(i, g=4),

i= xj+g− xj−1, for 2553 ≤≤ i . Whenever the gap value in Eq. (3.1) is less than 256, we can obtain

the corresponding maximum required bits with only one array access. This greatly reduces the CPU

time and improves query performance.

 75

3.4 Performance Evaluation

This section presents our experiments to evaluate the efficiency of various inverted file

organizations. We used the standard (un-skipped) compressed inverted file as the baseline, in which

d-gaps are encoded in Golomb codes with the parameter b chosen appropriately for each posting list

(Witten et al., 1999), and within-document frequencies are encoded in γ codes (Bell et al., 1993;

Moffat & Zobel, 1992). This baseline is then used to evaluate other fine-tuned skipped inverted file

organizations.

Four skipped inverted file organizations are evaluated in our experiments: the skipped inverted

file (described in Section 3.1.1), the blocked inverted file (described in Section 3.1.2), the skipped

inverted file with the 2nd-level index, and the blocked inverted file with the 2nd-level index. The 2nd-

level index is created using the skipping mechanism (g=4) described in Section 3.3.2.

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running

Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec.

Intervening processes and disk activities were minimized with best effort during experimentation.

In Section 3.4.1, we present the sizes for various inverted file organizations. In Section 3.4.2,

we present the time taken to process the generated queries described in Section 3.2 to measure the

query performance of various inverted file organizations.

3.4.1 Sizes for various inverted file organizations

The actual size for each inverted file organization is shown in Table 3.3. As expected, the sizes

of the skipped inverted files and the blocked inverted files are larger than that of standard

compressed inverted file. The space overheads associated with both the skipped inverted files and

the blocked inverted files increase as the block length decreases. This confirms that smaller blocks

are inappropriate for both the skipped inverted file and the blocked inverted file. The skipping

 76

mechanism proposed in Section 3.3.2 is used to create the 2nd-level index on each block for both the

skipped inverted files and the blocked inverted files. Experimental results show that the skipping

mechanism can incur no space overhead in creating the 2nd-level index. Furthermore, we observed

that the size of the skipped inverted file with the 2nd-level index can even be less than that of

standard compressed inverted file for larger k values. This provides a space-economical way to

implementing a two-level skipped inverted file.

Table 3.3 Sizes of various inverted file organizations. The sizes are presented in both megabytes

and ratio to the standard compressed inverted file size. For skipped inverted files, k is the number of

postings per block. For blocked inverted files, b is the length of each block in bits.
Size Inverted file organization
MB %

compressed inverted file 93.28 100.0

skipped inverted file
k=17 102.74 110.1
k=33 98.63 105.7
k=65 96.24 103.2

blocked inverted file
b=128 107.89 115.7
b=256 101.11 108.4
b=512 98.10 105.2

skipped inverted file with 2nd-level indexa
k=17 98.34 105.4
k=33 94.50 101.3
k=65 92.27 98.9

blocked inverted file with 2nd-level indexa
b=128 107.61 115.4
b=256 100.40 107.6
b=512 97.20 104.2
a the 2nd-level index is created by using the novel skipping mechanism (g=4) described in Section 3.3.2

 77

3.4.2 Elapsed time required to process queries

In this subsection, we present the time taken to process the conjunctive Boolean queries and

the ranked queries, with various inverted file organizations. The query processing time (QPT)

presented includes: (1) the disk read time of compressed posting list for each query term, and (2)

the CPU time measured from the query being issued until the list of answer document identifiers

being finalized. The QPT does not include the time taken to retrieve and display answers. All

programs were optimized as follows:

1. Replaced subroutines with macros.

2. Careful choice for compiler optimization flags.

3. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

4. Implemented the integer logarithm functions ⎡ ⎤)i(log2 and ⎣ ⎦)i(log2 with a 256-entry lookup

table.

5. Another 256-entry lookup table was used to locate the exact bit location of the first “1” bit in a

byte.

6. Accessed to binary codes with masking and shifting operations, and no bit-by-bit decoding were

required.

With these optimizations, decoding of a document identifier only required tens of ns, and no bit-by-

bit decoding is required.

Conjunctive Boolean queries

When processing a conjunctive Boolean query, the posting lists for the query terms are

processed in order of increasing document frequency ft. The time taken to process the conjunctive

Boolean queries with various inverted file organizations is shown in Table 3.4. Except for single-

term query, both the skipped inverted files and the blocked inverted files can improve query

 78

performance by skipping over unnecessary portions of the compressed posting lists. Experimental

results show that the skipped inverted file can achieve an average speedup of 2.80 to 3.04, and the

blocked inverted file 3.08 to 3.33, compared with the standard compressed inverted file. When the

number of terms ≥ 4, the blocked inverted files far outperform the skipped inverted files. This is

because the number of candidate answers is much less when the number of terms ≥ 4 (cf. Table 3.1)

and the binary search supported by blocked inverted file works well.

Experimental results also show that the 2nd-level index created by the skipping mechanism has

substantial and consistent potential to improve the query performance. For the skipped inverted file,

the 2nd-level index can improve the average query speed by up to 11%; while for the blocked

inverted file, it can be up to 16%.

Ranked queries

Ranked queries are disjunctive rather than conjunctive, in that any document containing any of

the queried terms is considered a candidate. Skipping mechanisms do not necessarily yield

significant benefits in the evaluation of ranked queries. To improve ranked query evaluation with

skipping mechanisms, Moffat & Zobel (1996) proposed a pruning algorithm, called continue

algorithm, to reduce the number of candidates during the evaluation of ranked queries. They

showed that the continue algorithm for ranked queries can exploit fast search made possible by

skipping mechanisms, and results in improved ranked query evaluation without any substantial

degradation in retrieval effectiveness. We adopt the continue algorithm to evaluate ranked queries

in this experiment. The similarity of a query and a document was calculated by the cosine measure

(Salton, 1989; Salton & McGill, 1983). The maximum number of accumulators was set at 0.2, 0.5,

1.0 and 2.0 percent of N (the number of pages in the test collection).

 79

Table 3.4 Conjunctive Boolean query performance of various inverted file organizations (QPT is
the average query processing time of conjunctive Boolean queries, in ms; SP is the speedup relative
to the standard compressed inverted file). For skipped inverted files, k is the number of postings per
block. For blocked inverted files, b is the length of each block in bits.

Inverted file organization
skipped inverted file

blocked inverted file

skipped inverted file
with 2nd-level indexa

blocked inverted file
with 2nd-level indexa

Number of
terms compressed

inverted file
k=17 k=33 k=65 b=128 b=256 b=512 k=17 k=33 k=65 b=128 b=256 b=512

QPT 3.60 3.68 3.65 3.63 3.84 3.82 3.81 3.92 3.83 3.75 3.92 3.94 3.90 1
SP 1.00 0.98 0.99 0.99 0.94 0.94 0.94 0.92 0.94 0.96 0.92 0.91 0.92

QPT 6.82 5.16 5.43 5.79 6.10 6.16 6.37 5.10 5.05 5.04 5.83 5.50 5.31 2
SP 1.00 1.32 1.26 1.18 1.12 1.11 1.07 1.34 1.35 1.35 1.17 1.24 1.28

QPT 9.42 4.25 4.27 4.61 4.30 4.53 4.98 4.22 3.88 3.83 4.09 3.93 3.92 3
SP 1.00 2.22 2.21 2.04 2.19 2.08 1.89 2.23 2.43 2.46 2.30 2.40 2.40

QPT 11.23 3.72 3.45 3.53 3.08 3.23 3.51 3.69 3.20 3.01 2.97 2.87 2.86 4
SP 1.00 3.02 3.26 3.18 3.65 3.48 3.20 3.04 3.51 3.73 3.78 3.91 3.93

QPT 11.98 3.37 2.95 2.89 2.39 2.46 2.66 3.35 2.80 2.53 2.35 2.26 2.25 5
SP 1.00 3.55 4.06 4.15 5.01 4.87 4.50 3.58 4.28 4.74 5.10 5.30 5.32

QPT 12.40 3.15 2.63 2.48 1.96 2.01 2.15 3.10 2.45 2.21 1.95 1.87 1.87 6
SP 1.00 3.94 4.71 5.00 6.33 6.17 5.77 4.00 5.06 5.61 6.36 6.63 6.63

QPT 13.04 3.05 2.45 2.24 1.67 1.68 1.80 3.01 2.35 2.03 1.70 1.64 1.62 7
SP 1.00 4.28 5.32 5.82 7.81 7.76 7.24 4.33 5.55 6.42 7.67 7.95 8.05

QPT 13.99 3.04 2.33 2.01 1.43 1.43 1.50 3.02 2.15 1.89 1.48 1.42 1.42 8
SP 1.00 4.60 6.00 6.96 9.78 9.78 9.33 4.63 6.51 7.40 9.45 9.85 9.85

QPT 10.31 3.68 3.40 3.39 3.10 3.17 3.35 3.68 3.21 3.04 3.04 2.93 2.89 Avg
SP 1.00 2.80 3.03 3.04 3.33 3.25 3.08 2.80 3.21 3.39 3.39 3.52 3.57

a the 2nd-level index is created by the skipping mechanism (g=4) described in Section 3.3.2

The time taken to process the ranked queries with various inverted file organizations is shown

in Table 3.5. Experimental results show that the skipped inverted file can achieve an average

speedup of 1.23 to 1.59, and the blocked inverted file can achieve an average speedup of 1.09 to

1.36, compared with the standard compressed inverted file. In most cases, the skipped inverted files

outperform the blocked inverted files. This is because that the number of candidate answers is

larger and the binary search supported by blocked inverted files cannot be used to produce good

performance. For both the skipped inverted files and the blocked inverted files, smaller blocks

provide better query performance. This confirms our assessment that small blocks have significant

 80

advantages for ranked queries. As the maximum number of accumulators increases, the query

speedup of both the skipped inverted files and the blocked inverted files decreases. When the

maximum number of accumulators was set at 2.0 percent of N, the query performance of the

skipped inverted file (k=65) and all the blocked inverted files were even worse than that of the

standard compressed inverted file. To improve the ranked query performance, the 2nd-level index

created by the skipping mechanism is applied to the skipped inverted files and the blocked inverted

files. For the skipped inverted file, the 2nd-level index can improve the average query speed by up to

38%; while for the blocked inverted file, it can improve the average query speed by up to 44%. This

fact shows that a space-efficient 2nd-level index can provide fast candidate search for ranked queries.

Table 3.5 Ranked query performance of various inverted file organizations (QPT is the average
query processing time of ranked queries, in mini-seconds; SP is the speedup relative to the standard
compressed inverted file). For skipped inverted files, k is the number of postings per block. For
blocked inverted files, b is the length in bits of each block.

Inverted file organization
skipped inverted file

blocked inverted file

skipped inverted file
with 2nd-level indexa

blocked inverted file
with 2nd-level indexa

% of N
compressed
inverted file

k=17 k=33 k=65 b=128 b=256 b=512 k=17 k=33 k=65 b=128 b=256 b=512

QPT 100.4 38.2 41.2 50.3 36.0 43.7 55.8 36.1 33.0 33.9 33.1 34.2 36.6 0.2
SP 1.00 2.63 2.44 2.00 2.79 2.30 1.80 2.78 3.04 2.96 3.03 2.94 2.74

QPT 109.0 57.6 65.2 78.1 64.5 74.3 99.4 53.7 51.9 53.7 59.1 58.2 59.2 0.5
SP 1.00 1.89 1.67 1.40 1.69 1.47 1.10 2.03 2.10 2.03 1.84 1.87 1.84

QPT 116.1 79.8 90.7 105.2 96.5 105.0 116.8 74.5 73.4 75.4 88.7 84.3 82.6 1.0
SP 1.00 1.45 1.28 1.10 1.20 1.11 0.99 1.56 1.58 1.54 1.31 1.38 1.41

QPT 124.1 107.7 119.7 132.7 133.4 136.2 142.1 102.0 100.9 101.6 124.3 114.3 108.82.0
SP 1.00 1.15 1.03 0.94 0.93 0.91 0.87 1.22 1.23 1.22 1.00 1.09 1.14

QPT 112.4 70.8 79.2 91.6 82.6 89.8 103.5 66.6 64.8 66.2 76.3 72.8 71.8 Avg
SP 1.00 1.59 1.42 1.23 1.36 1.25 1.09 1.69 1.73 1.70 1.47 1.54 1.57

a the 2nd-level index is created by using the novel skipping mechanism (g=4) described in Section 3.3.2

 81

3.5 Summary

This chapter proposes a two-level skipped inverted file to facilitate fast conjunctive Boolean

queries and ranked queries. For this purpose, well-known skipping mechanisms are first used to

create the first-level index on each compressed posting list by dividing the posting list into large

blocks for optimizing conjunctive Boolean queries. Then a skipping mechanism is proposed to

create the second-level index on each block by dividing the large block into small sub-blocks for

optimizing ranked queries. Compared with well-known skipping mechanisms, this novel skipping

mechanism can support second level of skipping with no storage overhead. Experiments clearly

indicate that the proposed two-level skipped inverted file can improve the query speed for

conjunctive Boolean queries by up to 16%, and for ranked queries by up to 44%, compared with the

conventional one-level skipped index. This provides a very simple and attractive way to building a

fast and space-economical IRS.

 82

Chapter 4 Inverted File Optimization

Inverted files are widely used in modern large-scale IRSs for fast query evaluation.

Compressing an inverted file can greatly increase query throughput (Zobel & Moffat, 1995;

Williams & Zobel, 1999). This is because the total time of transferring a compressed posting list

and subsequently decompressing it is potentially much less than that of transferring an

uncompressed posting list. The query processing time in a large-scale IRS is dominated by the time

needed to read and decompress the posting lists for the terms involved in the query (Moffat & Zobel

1996), and we observe that the query processing time grows with the total encoded size of the

corresponding posting lists. This is because the disk transfer rate is near constant, and the decoding

processes of most encoding methods used in the d-gap compression approach are on a bit-by-bit

basis. If we can reduce the total encoded size of the corresponding posting lists without increasing

decompression times, a shorter query processing time can be obtained.

A document identifier assignment (DIA) can make the document identifiers in the posting lists

evenly distributed, or clustered. Clustered document identifiers generally result in better

compression efficiency of the coding methods used for compressing inverted files without

increasing the complexity of decoding process, hence reduce the query processing time. In this

chapter, we consider the problem of finding an optimal DIA for the inverted file to minimize the

average query processing time when the probability distribution of query terms is given. The DIA

problem, that is known to be NP-complete via a reduction to the rectilinear traveling salesman

problem (TSP), is a generalization of the problems solved by Olken & Rotem (1986), Shieh et al.

(2003), and Gelbukh et al. (2003). Their research results showed that this kind of optimization

problem can be effectively solved by the well-known TSP heuristic algorithms. The greedy nearest

 83

neighbor (Greedy-NN) algorithm performs the best on average, but its high complexity discourages

its use in modern large-scale IRSs.

In this chapter, we propose a fast heuristic, called partition-based document identifier

assignment (PBDIA) algorithm, to find a good DIA that can make the document identifiers in the

posting lists for frequently used query terms more clustered. This can greatly improve the

compression efficiency of the posting lists for frequently used query terms. Where the probability

distribution of query terms is skewed, as is the typical case in a real-world IRS, the experimental

results show that the PBDIA algorithm can yield a competitive performance versus the Greedy-NN

for the DIA problem. The experimental results also show that the DIA problem has significant

advantages for both long queries.

The remainder of this chapter is organized as follows. Section 4.1 describes the inverted index

and explains why a DIA can affect the storage space required and change query performance.

Section 4.2 derives a cost model for the DIA problem, and presents how to use the well-known TSP

heuristic algorithms to solve this optimization problem. In Section 4.3, we propose a fast PBDIA

algorithm. We show the performance evaluation in Section 4.4. Finally, Section 4.5 presents our

summary.

4.1 General Framework

The data structures of an inverted index are depicted in Figure 4.1. An inverted index consists

of an index file and an inverted file. An index file is a set of records, each containing a keyword

term t and a pointer to the posting list for term t. An inverted file contains, for each distinct term t in

the collection, a posting list of the form

PLt =<id1, id2, …, idft>,

 84

 where idi is the identifier of the document that contains t, and frequency ft is the number of

documents in which t appears. The document identifiers are within the range 1...N, where N is the

number of documents in the indexed collection. In a large document collection, posting lists are

usually compressed, and decompression of posting lists is hence required during query processing.

Zipf (1949) observed that the set of frequently used terms is small. According to Zipf’s law,

95% of words in all documents fall in a vocabulary with no more than 8000 distinct terms. This

suggests that it is advisable to store the index records of frequently used terms in RAM to greatly

reduce index search time. Hence, the significant portion of query processing time is to read and

decompress the compressed posting list for each query term. This chapter restricts attention to

inverted file side only and investigates the DIA problem to improve the efficiency of an inverted

file and the overall information retrieval (IR) performance.

Figure 4.1 Inverted index and document collection

Compression of an inverted file is the most popular technique used to increase query

throughput (Zobel & Moffat, 1995; Williams & Zobel, 1999; Trotman, 2003). This is because the

………

architecture

computer

index file

1, 2, 5, 10, 12 …

1, 3, 7, 10, 12 …

terms pointer

252

355

ft posting lists

inverted file

…computer…
…architecture…

…architecture…
… … … … …

… … … … …
… computer …

… … … … …
… … … … …

doc. identifier=1

doc. identifier=2

doc. identifier=3

doc. identifier=4

document collection

answer list of "computer" <and> "architecture": 1,10,12,…
answer list of "computer" <or> "architecture": 1,2,3,5,7,…

………………

……… ……………… …

……… ……………… …

……………

…

 85

total time of transferring a compressed posting list and subsequently decompressing it is potentially

much less than that of transferring an uncompressed posting list. To achieve good compression, the

document identifiers in a posting list should be sorted in increasing order and compressed using the

d-gap compression approach (Moffat & Zobel, 1992; Witten et al., 1999) or the interpolative coding

approach (Moffat & Stuiver, 2000). Both approaches can yield superior compression if the

document identifiers in the posting lists are clustered.

Consider a document collection of 6 documents shown in Figure 4.2(a). Each document

contains one or more terms. The document d1 contains term 1 and term 2, document d2 contains

term 2, etc. In Figures 2.2(b) and 2.2(c), the notation di j in DIAs I and II denotes that the

document identifier j is assigned to the document di. According to the documents in Figure 4.2(a)

and the DIAs I and II, the obtained posting lists and d-gap lists are shown in Figures 4.2(b) and

4.2(c). For DIA I, the d-gap values have nine 1s, two 2s, two 3s and one 4; whereas for DIA II, the

d-gap values have eleven 1s, one 2 and two 3s. With γ coding in Table 4.1, the compressed inverted

file requires 26 bits for DIA I, whereas it requires 20 bits for DIA II. If every term is queried with

equal probability, the query processing costs for DIA II will be much lower than that of DIA I. This

is because DIA II can result in better compression for the given coding method without increasing

the complexity of decoding process, hence improve query throughput by reducing both the retrieval

and decompression times of posting lists. This example shows that different DIAs can result in

different compression results and different query throughputs for a given coding method. In next

section, we will introduce a query cost function for the DIA problem, and then derive a method to

find a good DIA to shorten average query processing time when the probability distribution of

query terms is given.

 86

 document d1 document d2 document d3 document d4 document d5 document d6

(a) Example documents

DIA I: { d1 1, d2 2, d3 3, d4 4, d5 5, d6 6}

Posting list of term 1: <1, 4, 5, 6> d-gap list of term 1: <1, 3, 1, 1>
Posting list of term 2: <1, 2, 3, 4, 6> d-gap list of term 2: <1, 1, 1, 1, 2>

 Posting list of term 3: <4, 6> d-gap list of term 3: <4, 2>
 Posting list of term 4: <3, 4, 5> d-gap list of term 4: <3, 1, 1>

 Total bits required to encode d-gaps with γ code = 26 bits

(b) DIA I result

DIA II: { d1 3, d2 5, d3 4, d4 1, d5 6, d6 2}

 Posting list of term 1: <1, 2, 3, 6> d-gap list of term 1: <1, 1, 1, 3>
 Posting list of term 2: <1, 2, 3, 4, 5> d-gap list of term 2: <1, 1, 1, 1, 1>
 Posting list of term 3: <1, 2> d-gap list of term 3: <1, 1>
 Posting list of term 4: <1, 4, 6> d-gap list of term 4: <1, 3, 2>

 Total bits required to encode d-gaps with γ code = 20 bits

(c) DIA II result

Figure 4.2 An example to show different DIAs result in different compression results

d-gap value

x
γ code

1 0
2 10 0
3 10 1
4 110 00

Table 4.1 Some example codes for γ coding

term 1
term 2 term 2

term 2
term 4

term 1
term 2
term 3
term 4

term 1
term 4

term 1
term 2
term 3

 87

4.2 Document Identifier Assignment Problem and Its Algorithm

The DIA problem is the problem of assigning document identifiers to a set of documents in an

inverted file-based IRS in order to minimize the average query processing time when the

probability distribution of query terms is given. In this section, we first formalize the problem, and

then show how to use the well-known greedy nearest neighbor (Greedy-NN) algorithm to solve this

problem.

4.2.1 Problem mathematical formulation

Let D={d1, d2, …,dN} be a collection of N documents to be indexed, and π :{ d1, d2, …,

dN } {1, 2, …, N} be a DIA that assigns a unique identifier within the range 1…N to each

document in D. Let ft be the total number of documents in which term t appears and dt(1), dt(2), …,

dt(ft) be documents containing term t, then the posting list of the term t can be represented as

PLt=<π(dt(1)), π(dt(2)),…, π(dt(ft))>. Without loss of generality, we assume that π(dt(1))<π(dt(2))<…<

π(dt(ft)). Assume a coding method C which requires C(x) bits to encode a d-gap x. The size of a

posting list PLt for term t can then be expressed as

))()(()1()(
1

−
=

−∑ itit

ft

i

ddC ππ (4.1)

where we let dt(0)=0 and π(dt(0))=0 to simplify the expression of Eq.(4.1). Assume that the

probability of a term t appearing in a query is pt. Let Xt be a random Boolean variable representing

whether term t appears in a query: Xt=1 if term t appears in a query and Xt=0 otherwise. The query

processing time TimeQP of posting list processing includes (1) retrieval time TimeR of posting list

PLt for each query term t, (2) decompression time TimeD of posting list PLt for each query term t,

and (3) document identifier comparison time TimeComp. Since the document identifier comparison

 88

time is relatively small (about 10% of query processing time) and does not change with different

DIAs, the query processing time in this chapter is defined only as

))()((tDtR
t

tQP PLTimePLTimeXTime +×= ∑ (4.2)

The average query processing time AvgTimeQP is the expected value of TimeQP. That is,

∑ +×=
t

tDtRtQP PLTimePLTimepAvgTime))()(((4.3)

Since the disk transfer rate is near constant and the decoding processes of most coding methods

used in d-gap compression approach are on a bit-by-bit basis, the retrieval and decompression times

of a posting list PLt for the term t appearing in a query grows with the size of the posting list PLt. So

∑
=

−−×=+
tf

i
itittDtR ddCPLTimePLTime

1
)1()())()((constant)()(ππ (4.4)

Substituting Eq.(4.4) into Eq.(4.3), we obtain

∑ ∑
=

−−××=
t

f

i
itittQP

t

ddCpAvgTime
1

)1()())()((constant ππ (4.5)

We thus define the objective function Cost(π) to reflect the average query processing time

AvgTimeQP :

∑ ∑
=

−−×=
t

f

i
ititt

t

ddCpCost
1

)1()())()(()(πππ (4.6)

The objective of this research is to find a DIA π : D {1,2,3…,N} such that)(πCost is

minimal. This optimization problem is called the DIA problem, and it is reduced to the simple DIA

(SDIA) problem if the value of pt for each term t is set to 1. The SDIA problem is the problem of

finding a DIA to minimize the size of inverted file, and it is known to be NP-complete via a

reduction to the rectilinear traveling salesman problem (Olken & Rotem 1986). Since the DIA

problem is a generalization of the SDIA problem, the DIA problem is also a NP-complete problem.

 89

4.2.2 Solving DIA problem via the well-known Greedy-NN algorithm

The research works of Shieh et al. (2003) and Gelbukh et al. (2003) indicated that finding the

near-optimal solution for the SDIA problem can be recast as the traveling salesman problem (TSP),

and also showed that heuristic algorithms for the TSP can be applied to the SDIA problem to find a

near-optimal DIA. Compared with those well-known TSP heuristic algorithms, such as insertion

heuristic algorithm and spanning tree based algorithm, Shieh et al. (2003) showed that the Greedy-

NN algorithm performs better for the SDIA problem on average. In this section, we first show how

to solve the SDIA problem using the Greedy-NN algorithm. Then, we show how to transform the

DIA problem into the SDIA problem, and explain why the Greedy-NN algorithm can provide better

performance than the other TSP heuristic algorithms for the DIA problem.

Solving SDIA problem via Greedy-NN algorithm

Shieh et al. (2003) showed that the SDIA problem can be solved by using TSP heuristic

algorithms. Given a collection of N documents, a document similarity graph (DSG) can be

constructed. In a DSG, each vertex represents a document, and the weight on an edge between two

vertices represents the similarity of these two corresponding documents. The similarity Sim(di, dj)

between two documents di and dj is defined as:

()
∑
∩∈

=
)()(

1),(
ji dTdTt

ji ddSim (4.7)

where T(di) and T(dj) denote the set of terms appearing in di and dj, respectively, and ∩ denotes the

intersection operator. Hence, the similarity between two documents is the number of common terms

appearing in both documents. The DSG for the example documents in Figure 4.2(a) is shown in

Figure 4.3. A TSP heuristic algorithm can then be used to find a path of the DSG visiting each

vertex exactly once with maximal sum of similarities. If we follow the visiting order of vertices on

the path to assign document identifiers, the sum of d-gap values for an inverted file can be

 90

decreased, and the size of inverted file compressed via the d-gap compression approach can be

reduced. Shieh et al. (2003) showed that the Greedy-NN algorithm (Figure 4.4) can provide

excellent performance for the SDIA problem.

We now show how to obtain a DIA for the example documents in Figure 4.2. In Step 1, we

construct the DSG (Figure 4.3) for the given documents, where V={d1, d2, d3, d4, d5, d6}. In Step 2,

we pick d4 as v1 since the sum of similarity values associated with its adjacent edges is maximal

(=10). In Step 3, we have V'={d1, d2, d3, d5, d6}. In Step 4, we pick d6 as v2 since d6 is the vertex v in

V' such that the edge (v,v1) has the maximal similarity value. In Step 5, we have V'={d1, d2, d3, d5}.

Repeat Steps 4 and 5 as needed, we can then sequentially pick d1 as v3, d3 as v4, d2 as v5, and d5 as v6.

Hence, we have a TSP path: {d4, d6, d1, d3, d2, d5}, and a DIA π = {d1 3, d2 5, d3 4, d4 1,

d5 6, d6 2}.

Figure 4.3 The DSG for the example documents in Figure 4.2(a).

1

d1 d2

d3 d4

d6d5

1

1

1

1

1

1

1

3

2

2
2

1
2 0

 91

Algorithm Greedy_nearest_neighbor
Input:

D={d1, d2, …, dN}: a collection of N documents to be indexed.
Output:

A TSP path: the visiting order of vertices is { }Nvvv ,...,, 21
Method:

1. Construct the DSG(V, E), where V is a set of vertices (in which each vertex represents a
document) and E is a set of edges (in which each edge has a similarity value associated with it);

2. Pick a vertex v∈V as v1 such that the sum of similarity values associated with the adjacent
edges of v is maximal;

3. ;1: };{: 1 =−=′ ivVV
4. Find v in V ′ such that the similarity value of the edge (v,vi) is maximal: if more than one such

vertex exist, select one randomly;
5. };{: ;: ;1: ii vVVvvii −′=′=+=
6. If i<N then goto 3;
7. Output a TSP path with its visiting order of vertices being { }Nvvv ,...,, 21

Figure 4.4 The Greedy-NN algorithm for the SDIA problem.

Transforming DIA problem into SDIA problem

We use a matrix A to represent the input document collection, in which a row corresponds to a

term and a column corresponds to a document. The entry Ai,j is a 1 if term i appears in document dj,

and 0 otherwise. The SDIA problem is to determine whether there exists a permutation of the

columns of A that results in a matrix B such that

() () kizCjizjizC
n

i

f

j

i

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−∑ ∑

= =1 2

)1,()1,(),((4.8)

where C is a coding method which requires C(x) bits to encode a d-gap x, n is the number of terms,

fi is the total number of documents in which term i appears, z(i,j) is a function that returns the

column index of the jth nonzero entry at row i, and k is a given integer used to determine whether

there exists a permutation of columns of A such that the total encoded size of an inverted file is less

than k. The DIA problem is to determine whether there exists a permutation of the columns of A

that results in a matrix B such that

 92

() () kizCjizjizCp
n

i

f

j
i

i

′≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−×∑ ∑

= =1 2

)1,()1,(),((4.9)

where pi is the probability of a term i appearing in a query and k' is a given integer used to

determine whether there exists a permutation of columns of A such that the mean encoded size

needed to read and decompress a posting list during query processing is less than k'.

To show how to transform the DIA problem into the SDIA problem, we use the document

collection in Figure 4.2(a) as an example instance of the DIA problem, and assume that the

probabilities of terms being queried are p1=0.2, p2=0.3, p3=0.1, and p4=0.4. Figure 4.5(a) shows the

matrix A of Figure 4.2(a). Then we construct a new matrix A′ for the SDIA problem by duplicating

each row of matrix A in a certain number of times based on the given probabilities of terms

appearing in a query, as shown in Figure 4.5(b). In matrix A′, the row of matrix A corresponding to

term i is duplicated mi times, where mi=rows(A′)×pi and rows(A′) denotes the number of rows of

matrix A′. The rows(A′) can be any positive integer such that mi=rows(A′) ×pi is an integer for every

i. In this example, we let rows(A′) be 10. One can easily show that the optimal solution of matrix A′

for the SDIA problem is also the optimal solution of matrix A for the DIA problem when the

probabilities p1=0.2, p2=0.3, p3=0.1, and p4=0.4 are given.

Using the same approach, it is obvious that one can transform any instance A of the DIA

problem into an instance A′ of the SDIA problem such that the optimal solution of matrix A′ for the

SDIA problem is also the optimal solution of matrix A for the DIA problem when the probabilities

pi for 1 ≤ i ≤ n are given, where n denotes the number of distinct terms. Since the research work of

Shieh et al. (2003) showed that the Greedy-NN algorithm performs the best for the SDIA problem

on average, one can show that the Greedy-NN algorithm can provide better performance than the

other TSP heuristic algorithms for the DIA problem. Therefore, the DIA problem can be solved

 93

using the Greedy-NN algorithm described in Figure 4.4, if the similarity Sim(di, dj) between two

documents di and dj in a DSG is redefined as:

()
∑
∩∈

=
)()(

),(
ji dTdTt

tji pddSim (4.10)

where the probability of a term t appearing in a query is known to be pt.

probability d1 d2 d3 d4 d5 d6
p1=0.2 term 1 1 0 0 1 1 1
p2=0.3 term 2 1 1 1 1 0 1
p3=0.1 term 3 0 0 0 1 0 1
p4=0.4 term 4 0 0 1 1 1 0

(a) An example instance for the DIA problem: Matrix A corresponds to the
document collection in Figure 4.2(a), and the probabilities of terms appearing in
a query are p1=0.2, p2=0.3, p3=0.1, and p4=0.4.

d1 d2 d3 d4 d5 d6
1 0 0 1 1 1
1 0 0 1 1 1
1 1 1 1 0 1
1 1 1 1 0 1
1 1 1 1 0 1
0 0 0 1 0 1
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0

(b) Matrix A′ is the corresponding instance of Figure 4.5(a) for the SDIA problem. In
matrix A′, Rowtermi of matrix A is duplicated mi times, where mi=rows(A′) ×pi and
rows(A′) denotes the number of rows of matrix A′.

Figure 4.5 An example to illustrate how to transform an instance of the DIA problem into an
instance of the SDIA problem

Although the Greedy-NN algorithm is very simple to implement, it is not very applicable to

large-scale IRSs due to its high complexity. Given a collection of N documents and n distinct terms,

the number of comparisons for calculating Sim(di,dj) given fixed i and j is O(n), hence the total

Rowterm1 of matrix A is duplicated
m1=rows(A′) ×p1=2 times
Rowterm2 of matrix A is duplicated
m2=rows(A′) ×p2=3 times

Rowterm3 the matrix A is duplicated
m3=rows(A′) ×p3=1 time

Rowterm4 of matrix A is duplicated
m4=rows(A′) ×p4=4 times

Matrix A′:

Matrix A:

 94

number of comparisons to construct a DSG for the Greedy-NN algorithm is O(N2×n). An algorithm

with lower complexity yet still generates satisfactory results should be developed.

4.3 Partition-based Document Identifier Assignment Algorithm

Since the DIA problem is an NP-complete problem, the effort in search for an effective low-

complexity method is needed. Although the Greedy-NN algorithm can be used to solve the DIA

problem, its complexity is too high. In this section, we first present an optimal DIA algorithm for a

single query term, and then propose an efficient partition-based document identifier assignment

(PBDIA) algorithm for the DIA problem.

4.3.1 Generating an optimal DIA for a single query term

Consider a posting list PLt for term t with ft document identifiers in a collection of N

documents. Using the d-gap technique, we can obtain ft d-gap values: d-gap1, d-gap2,…, d-gapft.

Assume a coding method C which requires C(x) bits to encode a d-gap x. We want to know which

d-gap probability distribution can minimize the size of posting list PLt after compression using

method C. That is, we want to know which d-gap probability distribution can minimize

∑
=

tf

i
id-gapC

1

)((4.11)

subject to

kd-gapf
tf

i
it ≤≤ ∑

=1

 and (4.12)

kd-gapi ≤≤1 for all i, ki ≤≤1 (4.13)

where k is the largest document identifier in the posting list PLt. It is known that C(x) is

approximately proportional to log2(x) for many popular coding methods, such as γ coding, skewed

 95

Golomb coding, and batched LLRUN coding. For these coding methods, we can use dynamic

programming technique (Bellman and Dreyfus, 1962) and find that minimizing Eq.(4.11) should

meet two requirements: (1) maximize the number of d-gap values of 1; and (2) minimize the largest

document identifier, i.e., k, in the posting list PLt. If a DIA for term t can satisfy the above two

requirements, the best compression and the fastest query speed for the posting list PLt can be

achieved.

According to the above observation, we propose the simple partition-based document

identifier assignment (SPBDIA) algorithm to generate optimal DIAs for a given query term t. The

SPBDIA algorithm consists of a partitioning procedure, an ordering procedure, and a document

identifier assignment procedure. The partitioning procedure divides the given documents into two

partitions in terms of query term t: one partition P(t) consists of documents containing query term t ;

the other partition P(t') is made up of the documents without t. Then, the ordering procedure sets the

order of partitions as P(t) followed by P(t'). Finally, the document identifier assignment procedure

generates an appropriate DIA for the ordered partitions according to query term t: the documents in

partition P(t) are assigned smaller consecutive document identifiers, while the documents in

partition P(t') assigned larger consecutive document identifiers. The SPBDIA algorithm is

illustrated in the following Example.

Example. There is a collection of 500 documents, among which 300 documents contain query term

t. After partitioning, P(t) has 300 documents and P(t') has 200 documents. Then, the ordering

procedure sets the order of partitions P(t) followed by P(t'). Finally, the document identifier

assignment procedure assigns the document identifiers 1~300 to the 300 documents in partition P(t)

and assigns the document identifiers 301~500 to the 200 documents in partition P(t'). ■

Documents in a partition can be arbitrarily assigned identifiers within the given range, hence the

 96

number of possible DIAs for the above Example is 300!×200!. Each of the 300!×200! DIAs

satisfies the two requirements for minimizing Eq.(4.11), and hence gives both the best posting list

compression and fastest query speed for query term t. The SPBDIA algorithm is simple, and its

complexity is O(N).

4.3.2 Efficient PBDIA algorithm for DIA problem

In a real-world IRS, a few frequently used query terms constitute a large portion of all term

occurrences in queries (Jansen et al. 1998). This fact indicates that a DIA algorithm that allows

those frequently used query terms to have better posting list compression can result in reduced

average query processing time. Based on the SPBDIA algorithm, an efficient partition-based

document identifier assignment (PBDIA) algorithm for the DIA problem can be developed.

Like the SPBDIA algorithm, the PBDIA algorithm also partitions the document set, orders these

partitions, and then assigns document identifiers. The flowchart of the PBDIA algorithm is shown

in Figure 4.6. The partitioning and ordering procedures of the PBDIA algorithm iterate n times

given that there are n query terms. Then, the document identifier assignment procedure is

performed as the last step of the PBDIA algorithm. Terms that are queried more frequently should

take higher priority in document partitioning and partition ordering. Let the most frequently queried

term be assigned rank 1, the second most frequently queried term rank 2, and so on. We use trank i to

represent the ith ranked query term. The partitioning and ordering procedures of the PBDIA

algorithm should proceed by considering trank 1 first, then trank 2, and so on.

Both the PBDIA partitioning and ordering procedures are invoked once per iteration. The

PBDIA partitioning procedure first divides each partition generated in the previous iteration into

two partitions using the SPBDIA partitioning procedure. The PBDIA ordering procedure then

assigns each newly generated partition a partition order. Each partition P in the PBDIA

 97

Figure 4.6 The flowchart for the PBDIA algorithm

1,0P

partitioning procedure

{ })'(,)(1rank 1,01rank 1,0 tPtP

ordering procedure

2,11rank 1,01,11rank 1,0)'(,)(PtPPtP →→

partitioning procedure

{ } { })'(,)(,)'(,)(2rank 2,12rank 2,12rank 1,12rank 1,1 tPtPtPtP

ordering procedure

4,22rank 2,13,22rank 2,12,22rank 1,11,22rank 1,1)'(,)(,)(,)'(PtPPtPPtPPtP →→→→

partitioning procedure

ordering procedure

knnnn PPPP ,3,2,1, , , , , L

document identifier assignment procedure

trank 2

trank 1

trank 3

A document identifier assignment π for the DIA problem

Requires
a total of
n iterations,
where n is
the number
of query
terms

2nd iteration

1st iteration

3rd iteration

nth iteration

 98

algorithm hence can be uniquely identified by an iteration number i and a partition order j, and we

use the notation Pi,j to represent the jth ordered partition of the ith iteration. For example, the notation

P2,3 represents the 3rd ordered partition of the 2nd iteration. Initially, we use the notation P0,1 to

represent the partition that contains all documents in an input document collection. In the following,

we describe in detail the partitioning, ordering, and document identifier assignment procedures of

the PBDIA algorithm.

PBDIA partition procedure

Let Pi-1,1, Pi-1,2, …, and Pi-1,k be nonempty partitions generated in iteration i-1. The PBDIA

partitioning procedure invoked in the ith iteration divides each partition Pi-1,j into a partition pair {Pi-

1,j(trank i), Pi-1,j(t'rank i)} for j=1,2,…,k, where the partition Pi-1,j(trank i) consists of the documents in Pi-

1,j containing the query term trank i, and Pi-1,j(t′rank i) consists of the documents in Pi-1,j without the

query term trank i. Since Pi-1,j is nonempty, at least one of the two partitions Pi-1,j(trank i) and Pi-1,j(t'rank i)

is nonempty for j=1,2,…,k.

PBDIA ordering procedure

Let {Pi-1,1(trank i), Pi-1,1(t'rank i)}, {Pi-1,2(trank i), Pi-1,2(t'rank i)}, …, and {Pi-1,k(trank i), Pi-1,k(t'rank i)} be

the partition pairs generated by PBDIA partitioning procedure in iteration i. Let |Pi| denote the

number of nonempty partitions of the above partitions. The PBDIA ordering procedure invoked in

the ith iteration assigns a unique partition order, from |Pi| to 1 and in descending order, to each

nonempty partition, starting from {Pi-1,k(trank i), Pi-1,k(t'rank i)}, then {Pi-1,k-1(trank i), Pi-1,k-1(t'rank i)}, and

so on.

Now let us consider the ordering of partition pair {Pi-1,k(trank i), Pi-1,k(t'rank i)}. Three cases exist.

Case 1: Both Pi-1,k(trank i) and Pi-1,k(t'rank i) are nonempty

The ordering procedure assigns |Pi| to Pi-1,k(t'rank i), and |Pi|-1 to Pi-1,k(trank i). Pi-1,k(t'rank i) is

 99

hereafter denoted as
iPiP , , and Pi-1,k(trank i) as 1, −iPiP .

Case 2: Pi-1,k(trank i) is empty, and Pi-1,k(t'rank i) is nonempty

The ordering procedure assigns |Pi| to Pi-1,k(t'rank i), and ignores Pi-1,k(trank i). Pi-1,k(t'rank i) is hereafter

denoted as
iPiP , .

Case 3: Pi-1,k(trank i) is nonempty, and Pi-1,k(t'rank i) is empty

The ordering procedure assigns |Pi| to Pi-1,k(trank i), and ignores Pi-1,k(t'rank i). Pi-1,k(trank i) is hereafter

denoted as
iPiP , .

Next we consider the ordering of partition pairs {Pi-1,j(trank i), Pi-1,j(t'rank i)}, where j=1,2,…,k-1.

Let the next largest partition order to be assigned be s. Since PBDIA ordering procedure orders {Pi-

1,j+1(trank i), Pi-1,j+1(t'rank i)} before {Pi-1,j(trank i), Pi-1,j(t'rank i)}, Pi,s+1 is hence used to denote either Pi-

1,j+1(trank i) or Pi-1,j+1(t'rank i). Again, three cases exist for {Pi-1,j(trank i), Pi-1,j(t'rank i)}:

Case 1: Both Pi-1,j(trank i) and Pi-1,j(t'rank i) are nonempty

There exist two subcases.

SubCase1.a: Pi,s+1 is used to denote Pi-1,j+1(trank i)

The ordering procedure assigns s to Pi-1,j(trank i), and s-1 to Pi-1,j(t'rank i). Pi-1,j(trank i) is hereafter

denoted as Pi,s, and Pi-1,j(t'rank i) as Pi,s-1.

SubCase1.b: Pi,s+1 is used to denote Pi-1,j+1(t'rank i)

The ordering procedure assigns s to Pi-1,j(t'rank i), and s-1 to Pi-1,j(trank i). Pi-1,j(t'rank i) is hereafter

denoted as Pi,s, and Pi-1,j(trank i) as Pi,s-1.

Case 2: Pi-1,j(trank i) is empty, and Pi-1,j(t'rank i) is nonempty

The ordering procedure assigns s to Pi-1,j(t'rank i), and ignores Pi-1,j(trank i). Pi-1,j(t'rank i) is hereafter

denoted as Pi,s.

Case 3: Pi-1,j(trank i) is nonempty, and Pi-1,j(t'rank i) is empty

 100

The ordering procedure assigns s to Pi-1,j(trank i), and ignores Pi-1,j(t'rank i). Pi-1,j(trank i) is hereafter

denoted as Pi,s.

PBDIA document identifier assignment procedure

The document identifier assignment procedure, the last step of PBDIA algorithm, is

straightforward. Let Pn,1, Pn,2, …, and Pn,k be the generated ordered partitions of the iteration n. This

procedure assigns consecutive document identifiers to documents in the same partition, and

consecutive identifier groups to consecutive ordered partitions. The first (smallest) document

identifier is assigned to a document in the first ordered partition (Pn,1). And the ordering of

documents in a partition is irrelevant and can be arbitrary.

To obtain a good DIA, the partitions must be properly ordered. We explain why the PBDIA

ordering procedure is proper: Note that the PBDIA ordering procedure always assigns consecutive

partition orders to two nonempty partitions of a partition pair. This makes documents in the same

partition in iteration i remain in the same or neighboring partitions in iteration i+1. According to the

PBDIA document identifier assignment procedure, documents in the same partition in iteration i

will eventually be assigned consecutive or at least adjacent document identifiers. That is, once the

order of partitions is generated at the end of iteration i, the compression performance for the posting

list of trank i is determined. Hence, the posting list of trank 1 has the best compression, then that of trank2,

and so on. This is because the PBDIA algorithm considers the trank 1 first, then trank 2, and so on, in its

iterations.

 101

Algorithm Partition_based_document_identifier_assignment

Input:
D={d1, d2, …, dN}: a collection of N documents to be indexed.
T={t1, t2, …, tn}: a set of n distinct terms appearing in D.
Prob={p1, p2, …, pn}: pi denotes the probability of the term ti ∈T appearing in a query.

Output:
A document identifier assignment π :{ d1, d2, …, dN } {1, 2, …, N} for the DIA.

Method:
1. Create an empty doubly linked list PartList; // to store partition
2. Create an empty doubly linked list TempList; //to store partition pairs
3. Assign all documents in D to a new partition P, and add P to the PartList;
4. Sort the terms in T in descending order according to their probabilities. Let trank 1, trank 2, …, trank n

represent the sorted list.
5. for i:=1 to n do

5.1 while PartList is not empty do /*partitioning procedure*/
5.1.1 Get a partition P from the head of PartList, and then remove P from PartList;
5.1.2 // At least one of the partitions P(trank i) and P(t'rank i) should be nonempty

Let P(trank i) be the partition containing the documents that are included in P and do
contain the term trank i ; let P(t'rank i) be the partition containing the documents that are
included in P and do not contain the term trank i ;

5.1.3 Add the partition pair {P(trank i),P(t'rank i)} to the tail of TempList;
5.2 while TempList is not empty do /*ordering procedure*/

5.2.1 Get a partition pair {P(trank i),P(t'rank i)} from the tail of TempList, and then remove
{P(trank i),P(t'rank i)} from TempList;

5.2.2 if P(trank i) is empty then add P(t'rank i) to the front of PartList and go to step 5.2;
5.2.3 if P(t'rank i) is empty then add P(trank i) to the front of PartList and go to step 5.2;
5.2.4 if PartList is empty then

Add P(t'rank i) to the PartList; add P(trank i) to the front of PartList;
else //PartList is not empty

Get a partition P from the head of PartList, and get a document d∈P ;
if the document d contain the term trank i then

Add P(trank i) to the front of PartList; add P(t'rank i) to the front of PartList;
else // the document d does not contain the term trank i

Add P(t'rank i) to the front of PartList; add P(trank i) to the front of PartList;
6. i:=1;
7. while PartList is not empty do /*document identifier assignment procedure*/

7.1 Get a partition P from the head of PartList, and then remove P from PartList;
7.2 while P is not empty do

7.2.1 Get a document d∈P, and remove d from P;
7.2.2 Assign document identifier i to the document d, and then i:=i+1;

Figure 4.7 The PBDIA algorithm for the DIA problem

 102

The PBDIA algorithm is given in Figure 4.7. A doubly linked list is used to store the partitions,

and the two links of a partition maintain the ordering among these partitions. Given a collection of

N documents and n distinct query terms, the number of comparisons for assigning documents to

partitions in each iteration is O(N). Since the PBDIA algorithm iterates for n times, the total number

of comparisons for the PBDIA algorithm is O(N×n). Compared with the Greedy-NN algorithm, this

complexity of PBDIA algorithm is distinctively low. This advantage brings the PBDIA algorithm a

dark side, of course. Although the PBDIA algorithm targets on improving the compression

efficiency for the frequently used query terms, it unavoidably decreases that for the other query

terms. In reality, it is often the case that the popularities of the assorted query terms are very

unbalanced. And this imbalance nature makes the PBDIA algorithm achieve very good query

performance. In Section 4.4, we compare the search performance of the Greedy-NN and PBDIA

algorithms for real-life document collections.

4.4 Performance Evaluation

This section describes our experiments for evaluating the different DIA algorithms.

Experiments were conducted on real-life document collections, and the average query processing

time and the storage requirement for each DIA algorithm were measured.

4.4.1 Document collections and queries

Three document collections were used in the experiments. Their statistics are listed in Table

4.2. In this table, N denotes the number of documents; n is the number of distinct terms; F is the

total number of terms in the collection; and f indicates the number of document identifiers that

appear in an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT

(LA Times) are disk 5 of the TREC-6 collection that is used internationally as a test bed for research

 103

in IR techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS and LAT.

Table 4.2 Statistics of document collections
 Collection

 FBIS LAT TREC
of documents N 130,471 131,896 262,367
of terms F 72,922,893 72,087,460 145,010,353
of distinct terms n 214,310 168,251 317,393
of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes) 470 475 945

We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries.

For each document collection, 300 documents were randomly selected to generate a query set. A

query was generated by selecting words from the word list of a specific document. To form the

word list of a document, words in the document were folded to lower case, and stop words such as

“the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For example,

a query containing 5 terms may be “inverted file document collection built”. For each query, there

existed at least one document in the document collection that is relevant to the query. We also made

the generated query set for each document collection have the following characteristics: (1) Query

repetition frequencies followed a Zipf distribution 6.0
1~)(
ρ

qPr , where Pr(q) is the probability of

query q appearing in generated query set, and ρ is the popularity rank of query q; (2) The terms per

query distribution followed the shifted negative binomial distribution

12.1)15.0()85.0(
2
8.0

)(−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= x

x
x

xf , where f(x) is the probability of a query containing x words. This

made the distribution of generated queries closely resemble the distribution of real queries (Xie &

O’Hallaron, 2002; Wolfram, 1992).

 104

4.4.2 Performance results

In this sub-section, we first present the actual times taken by the Greedy-NN and the PBDIA

algorithms. Then we present the query performance of different DIA algorithms. Finally, we

present the compression performance of different DIA algorithms.

The inverted files of the three test collections were constructed according to the DIAs

generated by different DIA algorithms. We tested four different DIA algorithms: “Random”,

“Default”, “Greedy-NN”, and “PBDIA”. The Random algorithm means that the document in a

collection is randomly assigned document identifier. The Default algorithm means that the

document in a collection is assigned document identifier in chronological order. The Greedy-NN

and PBDIA algorithms were described in Section 3.2 and Section 4.2, respectively. For each DIA

algorithm, we also tested five coding methods: γ coding (Elias 1975), Golomb coding (Golomb

1966; Witten et al. 1999), skewed Golomb coding (Teuhola 1978), batched LLRUN coding

(Fraenkel & Klein 1985), and unique-order interpolative coding method (Cheng et al. 2004). For the

following experiments, the parameter b for each posting list in Golomb coding was calculated using

Witten’s approximation (Witten et al. 1999), and the parameter g for unique-order interpolative

coding was set to 4 (Cheng et al. 2004).

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running

Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec.

Intervening processes and disk activities were minimized during experimentation.

Time taken by Greedy-NN and PBDIA algorithms

 In Table 4.3, the performance in terms of completion time is shown. The times reported are

the actual times taken by the algorithms to generate a DIA for the given document collection that

has been inverted. Please note that the times presented in Table 4.3 consider neither the time spent

 105

in preliminary inversion of the document collection, nor the time needed to rebuild an inverted file

with a new DIA.

Table 4.3 shows that the PBDIA algorithm is much faster than the Greedy-NN algorithm.

This fact makes the PBDIA algorithm viable for use in large-scale IRSs. Such a fast DIA algorithm

can be very useful for situations such as:

1. Dynamically changing probability distribution of query terms, and

2. Dynamically changing document collection.

Table 4.3 Time consumed by the Greedy-NN and the PBDIA algorithms
Collection DIA algorithm
FBIS LAT TREC

Greedy-NN 23 hrs 59 mins 24 hrs 37 mins 198 hrs 2 mins
PBDIA 9 secs 10 secs 18 secs

Query performance of different DIA algorithms

In Table 4.4, the average query processing time (AvgTimeQP) and the speedup relative to the

Default algorithm (SP) were measured according to Eq.(4.3). In Table 4.5, the average number of

bits required to retrieve and decode an identifier during query processing (AvgBPIQP) and the

improvement over the Default algorithm (Imp) were measured according to Eq.(4.6). For each

document collection, the generated query set was divided into three subsets: the short query set, the

medium-length query set, and the long query set. The number of terms per query for the short,

medium-length, and long query sets range from 1 to 8, 9 to 20, and 21 to 65, respectively.

All decoding mechanisms were optimized, including:

1. Replaced subroutines with macros.

2. Replaced calls to the log function with fast bit shifts.

3. Careful choice for compiler optimization flags.

4. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.

 106

Furthermore, the Huffman code of batched LLRUN coding was implemented with canonical prefix

codes that can be decoded via a fast table look-up (Turpin 1998). With these optimizations,

decoding of a document identifier only required tens of ns.

The experimental results are shown in Tables 4.4 and 4.5. Key findings are:

1. Table 4.4 shows that the query performance of the Default algorithm can be 10% faster than the

Random algorithm. This indicates that the Default algorithm already captures some clustering

nature, thus can serve as a rigid baseline in comparison with other fine-tuned algorithms.

2. Comparing Tables 4.4 and 4.5, one should observe that AvgTimeQP is proportional to AvgBPIQP.

This verifies Eq. (4.4) in Section 3.1, and explains why a good DIA can result in better

compression and reduced query processing time.

3. From Table 4.5, one should observe that both the Greedy-NN and PBDIA algorithms can result

in better compression of posting lists for all tested coding methods except Golomb coding. This

indicates that the Greedy-NN and PBDIA algorithms can improve the cache efficiency if a

posting list cache is implemented.

4. Table 4.4 shows that both the Greedy-NN and PBDIA algorithms can reduce average query

processing time for all tested coding methods except Golomb coding. And the query speedup

differences between the Greedy-NN and PBDIA algorithms were only 3% on average.

Considering the algorithm complexity, the PBDIA algorithm is a good choice for the DIA

problem.

5. From Table 4.4, one should observe that Golomb coding cannot benefit much from the Greedy-

NN and PBDIA algorithms in terms of query performance. This is because Golomb coding

assumes that the d-gap values in a posting list following a Bernoulli model (Witten et al. 1999),

 107

hence both the compression result and the query processing time of Golomb coding are

independent of d-gap distribution.

6. From Table 4.4, one should observe that the query speedup obtained by the PBDIA algorithm

becomes higher as the query length increases. This is because that, as the number of query terms

increases, more frequently used query terms are likely to be included, resulting in more

advantage due to the PBDIA algorithm.

7. Table 4.4 shows that both γ coding and unique-order interpolative coding are recommended for

real-world IRSs due to their fast query throughputs. In addition, compared with the other tested

coding methods, these two coding methods benefit more from the PBDIA algorithm. We

conclude that the PBDIA algorithm is viable for use in real-world IRSs.

8. Table 4.4 shows that the PBDIA algorithm can reduce average query processing time by up to

20% for an inverted file in which the document identifiers in a posting list are sorted in

ascending order. To allow extremely fast processing of conjunctive queries and ranked queries

using the same index, most IRSs in use today adopt the skipped inverted files (Moffat & Zobel,

1996) or the blocked inverted files (Moffat et al., 1995). Both the skipped and blocked inverted

files are identifier-ordered arrangement. Therefore, the PBDIA algorithm can also be applied to

those inverted files, and reduce the time needed to process a query against those inverted files.

Since skipped inverted files and blocked inverted files are widely used in modern large-scale

IRSs, we believe that the PBDIA algorithm can contribute in real-world IRSs.

 108

Table 4.4 Query performance of different DIA algorithms (AvgTimeQP is the average query
processing time, and SP is the speedup relative to the Default algorithm)
(a) short queries

Coding Methods

γ coding

Golomb coding
Skewed

Golomb coding
Batched

LLRUN coding
Unique-order

Interpolative coding

Collection

DIA
algorithm

AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP

Random 2989 0.93 2858 0.98 3894 0.96 3748 0.97 2746 0.95
Default 2789 1.00 2802 1.00 3754 1.00 3636 1.00 2614 1.00

Greedy-NN 2431 1.15 2790 1.00 3348 1.12 3275 1.11 2315 1.13

FBIS

PBDIA 2529 1.10 2808 1.00 3427 1.10 3320 1.10 2333 1.12
Random 2829 0.96 2704 0.99 3737 0.98 3654 0.97 2564 0.97
Default 2724 1.00 2688 1.00 3645 1.00 3542 1.00 2476 1.00

Greedy-NN 2268 1.20 2653 1.01 3137 1.16 3143 1.13 2085 1.19

LAT

PBDIA 2379 1.15 2644 1.02 3234 1.13 3231 1.10 2150 1.15
Random 5822 0.90 5573 0.97 7556 0.93 7217 0.94 5448 0.91
Default 5244 1.00 5380 1.00 7026 1.00 6781 1.00 4942 1.00

Greedy-NN 4431 1.18 5353 1.01 6139 1.14 6032 1.12 4256 1.16

TREC

PBDIA 4606 1.14 5292 1.02 6254 1.12 6171 1.10 4313 1.15

(b) medium-length queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection DIA

algorithm

AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP

Random 9388 0.93 8972 0.98 12222 0.97 11749 0.97 8613 0.95
Default 8758 1.00 8795 1.00 11795 1.00 11402 1.00 8201 1.00

Greedy-NN 7563 1.16 8746 1.01 10426 1.13 10225 1.12 7205 1.14

FBIS

PBDIA 7838 1.12 8798 1.00 10650 1.11 10387 1.10 7223 1.14
Random 8997 0.97 8605 1.00 11842 0.98 11562 0.97 8192 0.97
Default 8684 1.00 8564 1.00 11580 1.00 11229 1.00 7932 1.00

Greedy-NN 7126 1.22 8407 1.02 9851 1.18 9852 1.14 6607 1.20

LAT

PBDIA 7434 1.17 8359 1.02 10098 1.15 9982 1.12 6755 1.17
Random 18475 0.92 17689 0.97 23936 0.94 22724 0.95 17273 0.93
Default 16935 1.00 17153 1.00 22594 1.00 21666 1.00 16004 1.00

Greedy-NN 14069 1.20 16942 1.01 19493 1.16 19058 1.14 13598 1.18

TREC

PBDIA 14611 1.16 16713 1.03 19809 1.14 19280 1.12 13722 1.17

(c) long queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection

DIA
algorithm

AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP

Random 20210 0.92 19399 0.98 26526 0.95 26049 0.96 18423 0.94
Default 18594 1.00 18939 1.00 25316 1.00 24984 1.00 17269 1.00

Greedy-NN 15882 1.17 18971 1.00 22131 1.14 21957 1.14 14979 1.15

FBIS

PBDIA 15871 1.17 18953 1.00 21972 1.15 22143 1.13 14377 1.20
Random 18029 0.96 17116 1.00 23591 0.98 22646 0.97 16477 0.97
Default 17392 1.00 17035 1.00 23011 1.00 22033 1.00 15964 1.00

Greedy-NN 13875 1.25 16624 1.02 19173 1.20 18984 1.16 13046 1.22

LAT

PBDIA 13996 1.24 16298 1.05 19023 1.21 19212 1.15 12817 1.25
Random 37881 0.93 36023 0.98 49012 0.95 46584 0.96 35266 0.94
Default 35096 1.00 35231 1.00 46547 1.00 44588 1.00 33008 1.00

Greedy-NN 28372 1.24 34469 1.02 39489 1.18 38592 1.16 27523 1.20

TREC

PBDIA 29152 1.20 33809 1.04 39766 1.17 39089 1.14 27401 1.20

 109

Table 4.5 AvgBPIQP of different DIA algorithms (AvgBPIQP is the average number of bits required
to retrieve and decode an identifier during query processing, and Imp is the improvement over the
Default algorithm)
(a) short queries

Coding Methods

γ coding

Golomb coding
Skewed

Golomb coding
Batched

LLRUN coding
Unique-order

Interpolative coding

Collection

DIA
algorithm

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

Random 3.56 -10.6 3.21 0.3 3.31 -7.1 3.25 -5.5 3.15 -7.9
Default 3.22 --- 3.22 --- 3.09 --- 3.08 --- 2.92 ---

Greedy-NN 2.78 13.7 3.24 -0.6 2.73 11.7 2.69 12.7 2.63 9.9

FBIS

PBDIA 2.95 8.4 3.23 -0.3 2.84 8.1 2.76 10.4 2.69 7.9
Random 3.32 -6.8 2.98 0.0 3.05 -4.8 3.00 -3.8 2.87 -4.7
Default 3.11 --- 2.98 --- 2.91 --- 2.89 --- 2.74 ---

Greedy-NN 2.56 17.7 3.00 -0.7 2.48 14.8 2.47 14.5 2.35 14.2

LAT

PBDIA 2.73 12.2 2.97 0.3 2.59 11.0 2.59 10.4 2.42 11.7
Random 3.75 -13.3 3.38 0.3 3.46 -9.5 3.40 -8.2 3.34 -10.6
Default 3.31 --- 3.39 --- 3.16 --- 3.14 --- 3.02 ---

Greedy-NN 2.78 16.0 3.41 -0.6 2.72 13.9 2.69 14.3 2.65 12.3

TREC

PBDIA 2.94 11.2 3.37 0.6 2.81 11.1 2.81 10.5 2.70 10.6

(b) medium-length queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection DIA

algorithm

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

Random 3.57 -10.9 3.21 0.3 3.31 -6.8 3.25 -5.5 3.15 -7.9
Default 3.22 --- 3.22 --- 3.10 --- 3.08 --- 2.92 ---

Greedy-NN 2.75 14.6 3.24 -0.6 2.70 12.9 2.66 13.6 2.61 10.6

FBIS

PBDIA 2.92 9.3 3.24 -0.6 2.81 9.4 2.75 10.7 2.66 8.9
Random 3.37 -6.3 3.03 0.3 3.11 -4.4 3.06 -3.7 2.94 -4.6
Default 3.17 --- 3.04 --- 2.98 --- 2.95 --- 2.81 ---

Greedy-NN 2.58 18.6 3.06 -0.7 2.50 16.1 2.48 15.9 2.39 14.9

LAT

PBDIA 2.73 13.9 3.02 0.7 2.59 13.1 2.60 11.9 2.44 13.1
Random 3.83 -12.0 3.42 0.3 3.53 -8.3 3.47 -7.1 3.40 -9.0
Default 3.42 --- 3.43 --- 3.26 --- 3.24 --- 3.12 ---

Greedy-NN 2.82 17.5 3.45 -0.6 2.76 15.3 2.74 15.4 2.71 13.1

TREC

PBDIA 2.99 12.6 3.41 0.6 2.85 12.6 2.86 11.7 2.75 11.9

(c) long queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection

DIA
algorithm

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

AvgBPIQP Imp
(%)

Random 3.31 -12.2 3.02 0.3 3.09 -8.4 3.03 -6.7 2.90 -9.0
Default 2.95 --- 3.03 --- 2.85 --- 2.84 --- 2.66 ---

Greedy-NN 2.50 15.3 3.06 -1.0 2.47 13.3 2.43 14.4 2.37 10.9

FBIS

PBDIA 2.57 12.9 3.05 -0.7 2.47 13.3 2.48 12.7 2.34 12.0
Random 3.58 -6.2 3.21 0.3 3.28 -4.1 3.23 -3.5 3.13 -4.3
Default 3.37 --- 3.22 --- 3.15 --- 3.12 --- 3.00 ---

Greedy-NN 2.66 21.1 3.24 -0.6 2.58 18.1 2.55 18.2 2.50 16.7

LAT

PBDIA 2.73 19.0 3.19 0.9 2.58 18.1 2.63 15.7 2.48 17.3
Random 3.85 -10.6 3.43 0.3 3.54 -7.3 3.47 -6.1 3.41 -7.9
Default 3.48 --- 3.44 --- 3.30 --- 3.27 --- 3.16 ---

Greedy-NN 2.78 20.1 3.46 -0.6 2.73 17.3 2.70 17.4 2.69 14.9

TREC

PBDIA 2.92 16.1 3.41 0.9 2.79 15.5 2.81 14.1 2.71 14.2

 110

Compression performance of different DIA algorithms

The compression results are shown in Table 4.6, and the metric used is the average number of

bits per identifier BPI, defined as follows:

f
BPI

 identfiersdocument ofnumber
file inverted compressed theof size The

= .

To reduce average query processing time, both the Greedy-NN and PBDIA algorithms target

on improving the compression efficiency for the frequently used query terms. However, this is at

the cost of sacrificing the compression efficiency for the less frequently used query terms. We need

to know how much space overhead is needed to trade for this speed advantage. Results in Table 4.6

show that the Greedy-NN and PBDIA algorithms can speed up query processing with very little or

no storage overhead.

Table 4.6 Compression performance of different DIA algorithms (BPI is the average bits per
identifier of the inverted file for the test collection, and Imp is the improvement over the Default
algorithm)

Coding Methods

γ coding

Golomb
coding

Skewed
Golomb
coding

Batched
LLRUN
coding

Unique-order
Interpolative

coding

Collection

DIA
algorithm

BPI Imp
(%)

BPI Imp
(%)

BPI Imp
 (%)

BPI Imp
(%)

BPI Imp
(%)

Random 7.06 -19.7 5.28 0.0 5.75 -10.6 5.38 -8.5 5.36 -10.3
Default 5.90 --- 5.28 --- 5.20 --- 4.96 --- 4.86 ---

Greedy-NN 5.86 0.7 5.28 0.0 5.33 -2.5 4.88 1.6 4.85 0.2

FBIS

PBDIA 6.17 -4.6 5.28 0.0 5.42 -4.2 5.06 -2.0 4.95 -1.9
Random 7.12 -6.6 5.33 0.0 5.73 -3.2 5.43 -2.8 5.42 -3.8
Default 6.68 --- 5.33 --- 5.55 --- 5.28 --- 5.22 ---

Greedy-NN 6.06 9.3 5.32 0.2 5.26 5.2 5.00 5.3 4.91 5.9

LAT

PBDIA 6.35 4.9 5.32 0.2 5.33 4.0 5.12 3.0 5.01 4.0
Random 7.39 -16.7 5.50 -0.4 5.92 -9.2 5.59 -7.5 5.59 -9.6
Default 6.33 --- 5.48 --- 5.42 --- 5.20 --- 5.10 ---

Greedy-NN 6.08 3.95 5.49 -0.2 5.39 0.6 5.03 3.3 4.99 2.2

TREC

PBDIA 6.36 -0.5 5.49 -0.2 5.45 -0.6 5.18 0.4 5.08 0.4

 111

4.5 Summary

In this chapter, we study the DIA-based inverted file optimization techniques for an IRS. With

an inverted file, we first define a cost model for query evaluation. Based on this model, we propose

an efficient heuristic, called partition-based document identifier assignment (PBDIA) algorithm, to

generate a good DIA for the inverted file to reduce average query processing time. The PBDIA

algorithm can efficiently assign consecutive document identifiers to the documents containing

frequently used query terms. This makes the d-gaps of posting lists for frequently used query terms

very small, and results in better compression for popular coding methods without increasing the

complexity of decoding processes. This can result in reduced query processing time. For the fastest

unique-order interpolative coding, experimental results show that the PBDIA algorithm can reduce

the average query processing time by up to 20%. We also point out that the DIA problem has vital

effects on the performance of long queries. Compared with the well-known Greedy-NN algorithm,

the PBDIA algorithm is much faster and yields very competitive performance for the DIA problem.

This fact should make the PBDIA algorithm viable for use in modern large-scale inverted file-based

IRSs.

 112

Chapter 5 Parallel IR

The rapid growth in Internet usage brings wide variety of applications as well as new system

design challenges on information retrieval systems (IRSs). The problem of information explosion

overwhelms the load of CPU and disk on an information retrieval (IR) server. In this chapter, we

intend to reduce query processing time of an IRS by using a cluster as the server architecture.

Queries are processed on a cluster of workstations − each has its own CPU, memory, and disk −

interconnected by a local area network. For example, Google search engine is a cluster of more than

6000 PCs and each PC contains Gigabytes of random access memory. The key research issue here

is to partition the inverted file into sub-files each for one workstation such that, during query

processing, all workstations have to consult their own sub-files in parallel and query processing

time can be reduced.

Two main approaches for partitioning inverted files are in general use: the TermID partitioning

approach (Reddaway, 1991; Stanfill et al., 1989; Ribeiro-Neto et al., 1999) and the DocID

partitioning approach (Hawking, 1996; Aalbersberg & Sijstermans, 1990; Stanfill & Thau, 1991;

Hollaar, 1991). The TermID partitioning approach takes a posting list as an object to be allocated,

whereas the DocID partitioning approach takes the set of all postings referring to a document

identifier as an object. MacFarlane (2000) and Ma et al. (2002) showed that the DocID partitioning

approach is a better inverted file distribution method. This is because that the DocID partitioning

approach can parallelize both CPU computation and disk accesses without inducing communication

overhead of transferring posting lists between workstations.

With the DocID partitioning approach, Ma et al. (2002) proposed some partitioning algorithms

to partition and distribute the inverted file onto disks of workstations such that the average query

 113

processing time of parallel query processing can be minimized. They have shown that the

interleaving partitioning scheme can partition an inverted file with good load balance and produce a

near-ideal speedup. We observe that the document identifier clustering plays an important role for

this interleaving partitioning scheme in load balance and query speedup. Hence, we propose using

the PBDIA algorithm (described in Section 4.3) to enhance the clustering property of document

identifiers in posting lists by assigning consecutive identifiers to those documents containing

frequently used query terms. Experimental results show that the PBDIA algorithm can aid the

interleaving partitioning scheme to achieve a better load balance and improve the parallel query

performance by a factor of 1.13 to 1.18 no matter how many workstations are in the cluster. The

PBDIA algorithm has substantial and consistent potential to improve the performance of an IRS run

on a cluster of workstations. This shows that the clustering property should deserve much attention

in parallel IR.

The remainder of this chapter is organized as follows. Section 5.1 describes the concerned

inverted file partitioning problem. The interleaving partitioning scheme is described in Section 5.2.

In Section 5.3, we present the framework of the proposed approach to partition an inverted file.

Performance evaluation is presented in Section 5.4. Finally, Section 5.5 presents our summary.

5.1 Inverted File Partitioning Problem

The inverted file partitioning problem considered in this chapter is as follows. The inputs to an

inverted file partitioning algorithm are

 a compressed inverted file for sequential processing,

 popularities of terms appearing in queries, and

 number of workstations.

 114

The output is a partitioned compressed inverted file to be distributed on the set of workstations.

The objective is to minimize the average query processing time of parallel query processing. Issues

to the objective are

 eliminating the communication overhead of transferring postings between workstations

during query processing,

 balancing amount of postings to be processed during parallel query processing, and

 keeping compression efficiency in the partitioned compressed inverted file.

Ma et al. (2002) have proven that this problem is known to be NP-complete since it is identical

to the multiprocessor scheduling problem defined in Garey & Johnson (1979). Hence, a heuristic

algorithm for this optimization problem should be developed.

5.2 Fundamental: Interleaving Partitioning Scheme

In Section 5.2.1, we describe the well-known interleaving partitioning scheme that apply

interleaved mapping rule to generate a partitioned inverted file and produce a near-ideal speedup. In

Section 5.2.2, we describe how to improve the average processing time through document identifier

assignment on the partitioned inverted file generated with the interleaving partitioning scheme.

5.2.1 Algorithm description

Figure 5.1 shows the idea of the interleaving mapping rule. Each workstation is mapped with a

set of interleaved document identifiers. Let M be the number of workstations and N be the number

of documents. The rule for mapping document identifiers to workstations is as follows.

Rule 1 The interleaved mapping rule maps a document identifier i to a workstation WSk with a

function Aintlv:

M
M

iiiAk intlv ×⎥⎦
⎥

⎢⎣
⎢ −

−==
)1()((5.1)

 115

With the interleaved mapped rule, postings in a posting list are supposed to be evenly distributed

regardless of the document identifier clustering.

To keep compression efficiency, each workstation represents documents using local document

identifiers. The mapping rule Aintlv increases the gap between document identifiers after partitioning.

The gap between document identifiers in a local posting list is at least M. And compression methods

can not work well on the local inverted file if documents are presented with the original document

identifiers. We notice that, for a workstation WSk, the local document identifier for a document

identifier i mapped to WSk can be obtained as following rule.

Rule 2 In the partitioned inverted file generated by interleaved mapping rule, a document i is

represented as local document identifier LIDintlv(i):

⎣ ⎦ 1/)1()(+−= MiiLIDintlv (5.2)

document identifiers: 1 2 3 4 5 6 7 8 9

 WS1 WS2 WS3

(a) Mapping document identifiers to workstation IDs

posting list: 2, 3, 5, 7, 8, 11, 12, 13, 15, 16

represented using
original document identifier: 7, 13, 16 2, 5, 8, 11 3, 12, 15

represented using
local document identifier: 3, 5, 6 1, 2, 3, 4 1, 4, 5

 WS1 WS2 WS3

 (b) Partitioning a posting list

Figure 5.1 Partitioning with interleaved mapping rule

 116

Note that the original document identifier i mapped to WSk then can be obtained using the following

equation

kiLIDMi intlv +−×=)1)(((5.3)

Figure 5.2 presents the algorithm to generate a partitioned inverted file with interleaved

mapping rule. The time complexity is O(f) where f is the number of postings in the input inverted

file.

Algorithm Interleaving_partitioning_scheme

Input:

IF: the inverted file for sequential query processing. IF consists of a set of posting lists PLt for

each term t.

Output:

LIF={LIF1,LIF2,…,LIFM}: the set of local inverted files LIFk for each workstation WSk. Each

LIFk consists of a set of local posting lists PLt(WSk) for each term t.

Method:

1. for each term t do

1.1 for each document identifier i ∈ PLt do

1.1.1 ⎣ ⎦ MMiik ×−−← /)1(

1.1.2 ⎣ ⎦ 1/)1(+−←′ Mii

1.1.3 append i′ to PLt(WSk)

Figure 5.2 Interleaving partitioning scheme

5.2.2 How to improve parallel query processing through document identifier assignment

In this subsection, we use an example to show how to improve parallel query processing

through document identifier assignment. Consider term t appears in documents d1, d3, d4, d6, d8, d10,

d18, d22, d23, d26, d34, d35, d45, d46, d47. There are two workstations in the cluster. We have two

document identifier assignments DIA I and DIA II (cf. Figure 5.3). The notation di j in DIAs I and

II denotes that the document identifier j is assigned to the document di. For each DIA, we can obtain

 117

Term t appears in documents d1, d3, d4, d6, d8, d10, d18, d22, d23, d26, d34, d35, d45, d46, d47.
(a) DIA I: { d1→1, d3→3, d4→4, d6→6, d8→8, d10→10, d18→18, d22→22,

d23→23, d26→26, d34→34, d35→35, d45→45, d46→46, d47→47}.
(1) The posting list PLt for DIA I

PLt: <1, 3, 4, 6, 8, 10, 18, 22, 23, 26, 34, 35, 45, 46, 47>
(2) The posting list PLt for DIA I is partitioned into two sub-posting lists PLt(WS1) and PLt(WS2)

using the interleaving partitioning scheme (α is a constant)
(i) original document identifier representation

sub-posting lists bits after compression QPT PQPT
PLt(WS1): <1, 3, 23, 35, 45, 47> 30 bits 30α
PLt(WS2): <4, 6, 8, 10, 18, 22, 26, 34, 46> 45 bits 45α

(ii) local document identifier representation
sub-posting lists bits after compression QPT PQPT
PLt(WS1): <1, 2, 12, 18, 23, 24> 20 bits 20α
PLt(WS2): <2, 3, 4, 5, 9, 11, 13, 17, 23> 27 bits 27α

(b) DIA II: { d1→1, d3→2, d4→3, d6→4, d8→5, d10→6, d18→7, d22→8,
d23→9, d26→10, d34→11, d35→12, d45→13, d46→14, d47→15}

(1) The posting list PLt for DIA II
PLt: <1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15>

(2) The posting list PLt for DIA II is partitioned into two sub-posting lists PLt(WS1) and
PLt(WS2) using the interleaving partitioning scheme (α is a constant)
(i) original document identifier representation

sub-posting lists bits after compression QPT PQPT
PLt(WS1): <1, 3, 5, 7, 9, 11, 13, 15> 22 bits 22α
PLt(WS2): <2, 4, 6, 8, 10, 12, 14> 21 bits 21α

(ii) local document identifier representation
sub-posting lists bits after compression QPT PQPT
PLt(WS1): <1, 2, 3, 4, 5, 6, 7, 8> 8 bits 8α
PLt(WS2): <1, 2, 3, 4, 5, 6, 7> 7 bits 7α

Figure 5.3 An example to show how to improve parallel query processing through document
identifier assignment. There are two workstations in the cluster. The interleaving partitioning
scheme is employed to partition the posting list PLt. All sub-posting lists are encoded in γ codes
with the d-gap technique. QPT is the query processing time and PQPT is the parallel query
processing time.

a posting list PLt for term t and the PLt can be partitioned into two sub-posting lists PLt(WS1) and

PLt(WS2) using the interleaving partitioning scheme. Assume that all sub-posting lists are encoded

45α

27α

22α

8α

 118

in γ codes with the d-gap technique, where the γ code represents an integer x in ⎣ ⎦x2log21+ bits.

Based on Eq.(4.4), we can derive the query processing time (QPT) of WS1 for term t and that of WS2

for term t. Then the parallel query processing time can be calculated using the time the last

workstation finishes its job. This example confirms that local document identifier representation can

improve the compression efficiency. We then observe that the compression efficiency of DIA II is

better than that of DIA I. This implies that the query processing time of DIA II is shorter than that

of DIA I since the query processing time is proportional to the total size of encoded posting list. The

parallel query processing time of DIA II is also shorter than that of DIA I. Hence, this example

shows that the clustering property in the posting list plays an important role in interleaving partition

scheme.

5.3 Framework of Proposed Approach

Inverted file

Query Log

PBDIA
algorithm

interleaving
partitioning

scheme

WS1

Part of the
inverted file

WS2

Part of the
inverted file

WSk

Part of the
inverted file

k (workstations)

ft posting list PLt
22 3, 5, 6, 7, 105, 200,…
8 500, 502, 600, 762, …
73 102, 103, 105, 111, …

100 4, 5, 6, 7, 8, 10, 33…

Figure 5.4 The proposed approach to partition an inverted file for an IRS that runs on a
cluster of workstations.

 119

In Section 5.2.2, we have observed that the clustering property plays an important role for

interleaving partitioning scheme in both the load balance and the compression efficiency. Since the

distribution of query terms is skewed, we recognize that the PBDIA can be employed to aid

interleaving partitioning scheme to produce superior performance. The Figure 5.4 shows our

proposed approach to partition an inverted file for an IRS that runs on a cluster of workstations. The

performance evaluation is shown in next section.

5.4 Performance Evaluation

This section investigates the document identifier assignment (DIA) problem in an IRS that

runs on a cluster of workstations. Experiments were conducted on real-life document collections.

We measured the sequential query processing time for each workstation and calculated the parallel

query processing time. The storage requirement of the partitioned inverted files was also presented.

5.4.1 Test collection and query set

Three document collections were used in the experiments. Their statistics are listed in Table 2.

In this table, N denotes the number of documents; n is the number of distinct terms; F is the total

number of terms in the collection; and f indicates the number of document identifiers that appear in

an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT (LA Times)

are disk 5 of the TREC-6 collection that is used internationally as a test bed for research in IR

techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS and LAT.

Table 5.1 Statistics of document collections
 Collection

 FBIS LAT TREC
of documents N 130,471 131,896 262,367
of terms F 72,922,893 72,087,460 145,010,353
of distinct terms n 214,310 168,251 317,393
of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes) 470 475 945

 120

We followed the method (Moffat & Zobel, 1996) to evaluate performance with random queries.

For each document collection, 300 documents were randomly selected to generate a query set. A

query was generated by selecting words from the word list of a specific document. To form the

word list of a document, words in the document were folded to lower case, and stop words such as

“the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For example,

a query containing 5 terms may be “inverted file document collection built”. For each query, there

existed at least one document in the document collection that is relevant to the query. We also made

the generated query set for each document collection have the following characteristics: (1) Query

repetition frequencies followed a Zipf distribution 6.0
1~)(
ρ

qPr , where Pr(q) is the probability of

query q appearing in generated query set, and ρ is the popularity rank of query q; (2) The terms per

query distribution followed the shifted negative binomial distribution

12.1)15.0()85.0(
2
8.0

)(−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= x

x
x

xf , where f(x) is the probability of a query containing x words. This

made the distribution of generated queries closely resemble the distribution of real queries (Xie &

O’Hallaron, 2002; Wolfram, 1992).

5.4.2 Performance results

This subsection shows the experimental results. These results include: (1) speedup of parallel

query processing, and (2) compression efficiency.

Speedup of parallel query processing

This subsection investigates the DIA problem in an IRS that runs on a cluster of workstations.

Assuming k workstations, the inverted file is generally partitioned into k disjoint sub-files, each for

one workstation. Table 5.2 shows the performance of parallel query processing using interleaving

partitioning scheme with either the Default algorithm or the PBDIA algorithm, where the Default

 121

algorithm means that the documents in a collection are assigned document identifiers in

chronological order. The Default algorithm is widely used in modern IRSs, and it already captures

some clustering nature. Hence, the Default algorithm can serve a rigid baseline in comparison with

the PBDIA algorithm. The metric is the speedup relative to sequential query processing with

Default algorithm. Experiments were conducted on the TREC collection. The sub-file on each

workstation was compressed using the unique-order interpolative coding method (g=4). The parallel

query processing time was defined as max[T1,T2,…,Tk], where Ti (ki ≤≤1) was the time needed to

retrieve and decompress the (partial) posting lists for the query terms on the ith workstation. The

experimental results show that the interleaving partitioning scheme can yield near-ideal speedups,

as reported in Ma et al. (2002). In addition, using the PBDIA algorithm to enhance the clustering

property of posting lists for frequently used query terms, the interleaving partitioning scheme yields

super-linear speedups. Hence the DIA problem should deserve much attention in parallel IR.

Table 5.2 Speedup of parallel query processing

The number of workstations Collection Approach
1a 2 4 6 8 10

FBIS Default + Interleaving partitioning 1.00 1.89 3.73 5.58 7.41 9.30
 PBDIA + Interleaving partitioning 1.14 2.16 4.26 6.37 8.45 10.60

LAT Default + Interleaving partitioning 1.00 1.90 3.76 5.63 7.46 9.37
 PBDIA + Interleaving partitioning 1.18 2.25 4.44 6.65 8.80 11.04

TREC Default + Interleaving partitioning 1.00 1.90 3.75 5.61 7.44 9.35
 PBDIA + Interleaving partitioning 1.17 2.23 4.41 6.57 8.70 10.93

a Without interleaving partitioning

Compression Efficiency

To reduce average query processing time of parallel query processing, the PBDIA algorithm

improves the compression efficiency for the frequently used query terms. However, this is at the

 122

cost of sacrificing the compression efficiency for the less frequently used query terms. We need to

know how much space overhead is needed to trade for this speed advantage. Average bits per

document identifier of the different partitioning approaches are shown in Table 5.3. The sub-file on

each workstation was compressed using the unique-order interpolative coding method (g=4).

Results in Table 5.3 show that the PBDIA algorithms can speed up query processing with very little

or no storage overhead.

Table 5.3 Compression performance of different partitioning approaches

The number of workstations Collection Approach
1a 2 4 6 8 10

FBIS Default + Interleaving partitioning 4.86 4.88 4.86 4.85 4.83 4.82
 PBDIA + Interleaving partitioning 4.95 4.98 4.96 4.95 4.95 4.94

LAT Default + Interleaving partitioning 5.22 5.23 5.23 5.21 5.19 5.17
 PBDIA + Interleaving partitioning 5.01 5.02 5.01 5.01 4.99 4.97

TREC Default + Interleaving partitioning 5.10 5.13 5.12 5.10 5.07 5.05
 PBDIA + Interleaving partitioning 5.08 5.11 5.08 5.07 5.05 5.04

a Without interleaving partitioning

5.5 Summary

This chapter is to propose an inverted file partitioning algorithm for parallel information

retrieval. The inverted file is generally partitioned into disjoint sub-files, each for one workstation,

in an IRS that runs on a cluster of workstations. When processing a query, all workstations have to

consult only their own sub-files in parallel. The objective of this chapter is to develop an inverted

file partitioning algorithm that minimizes the average query processing time of parallel query

processing. Our approach is as follows. The foundation is interleaving partitioning scheme, which

generates a partitioned inverted file with interleaved mapping rule and produces near-ideal speedup.

 123

The key idea of our proposed algorithm is to use the document identifier assignment algorithm to

enhance the clustering property of posting lists for frequently used query terms. This can aid the

interleaving partitioning scheme to produce superior query performance.

 124

Chapter 6 Conclusions

This dissertation studies methodologies to improve the efficiency of an IRS that runs on a

cluster of workstations. The key idea is developing efficient algorithms to reduce space and time

needed to store and operate on the most-widely-used indexing structure, called the inverted file. The

objective is to increase the efficiency of an IRS without increasing the hardware cost of the cluster.

Research issues are

(1) Inverted file size reduction,

(2) Redundant decoding elimination,

(3) Inverted file optimization, and

(4) Parallel IR

The contributions of this dissertation are involved in the two important research directions:

(1) Efficient indexing and fast searching for large scale IRSs, and

(2) Parallel IR.

Based on the results of this dissertation, various new research topics in these two directions can be

studied.

6.1 Dissertation Summary

The research topics in the dissertation are

(1) Efficient coding method for inverted file size reduction,

(2) Two-level skipped inverted file for redundant decoding elimination,

(3) Document identifier assignment algorithm design for inverted file optimization, and

(4) Inverted file partitioning for parallel IR.

 125

The primary results of these research topics are:

(1) For inverted file size reduction, we propose a novel coding method, called unique-order

interpolative coding, to compress inverted files. This method facilitates the decoding process for

interpolative coding using recursive elimination and loop unwinding. This method has both the

advantages of compression ratio and fast decompression. Experimental results show that this

method allows query throughput rate of approximately 30% higher than well-known Golomb

coding and still provides superior compression.

(2) For redundant decoding elimination, we propose a two-level skipped inverted file to

simultaneously provide excellent query speed on both conjunctive Boolean queries and ranked

queries with very little or no space overhead. We first employ well-known skipping

mechanisms to create the first-level index on each compressed posting list by dividing the list

into large blocks. Then we propose a novel skipping mechanism to create the second-level index

on each large block by dividing the block into small sub-blocks. The first-level index is

constructed to optimize the query performance of conjunctive Boolean quires, whereas the

second-level index is to optimize the query performance of ranked queries. Experimental results

show that the proposed two-level skipped inverted file improves the query speed for conjunctive

Boolean queries by up to 16%, and for ranked queries up to 44%, compared with the

conventional one-level skipped inverted file.

(3) For inverted file optimization, we propose a fast document identifier assignment (DIA)

algorithm, called partition-based DIA (PBDIA) algorithm, to generate a good DIA for the

inverted file to optimize average query processing time when the distribution of query terms is

known. In a typical IRS, a few frequently used query terms constitute a large portion of all term

occurrences in queries. Based on this fact, the PBDIA algorithm assigns consecutive document

 126

identifiers to those documents containing frequently used query terms. Experimental results

show that the PBDIA algorithm only takes a few seconds to generate a DIA for a collection of

1GB, and improves query speed by up to 25%.

(4) For parallel IR, we propose a novel approach that partitions an inverted file to minimize parallel

query processing time. The interleaving partitioning scheme has been proven that it can

partition an inverted file with good load balance and produce near-ideal speedup. We observe

that the cluster property plays an important role for interleaving partitioning scheme in the load

balance and the query speed. We propose using the PBDIA algorithm to enhance the cluster

property of document identifiers in posting lists. Experimental results show that the PBDIA

algorithm can further improve the parallel query speed for interleaving partitioning scheme by

14% to 17% no matter how many workstations are in the cluster.

To verify scalability of our research works, we concatenated the FBIS and LAT to form a bigger

collection TREC. Except for the topic 2 (2-level skipped inverted file), FBIS, LAT, and TREC were

used to evaluate our proposed methods in the other three research topics. In these topics, the

performance of our proposed methods for TREC is not worse than that for FBIS and LAT. This

indicates that our proposed methods provide good scalability. We believe that this is also true for

topic 2 since the topic 2 adopts the same idea of topic 1 to accelerate the decoding process of

interpolative coding.

There are several issues that need to be discussed:

(1) Inverted file updating

 127

Although our research works focus only on static document collections, they can still work well

for dynamically changing collections with very few modifications.

For dealing with changes due to inserted documents, sparing free space for each posting list can

be allocated to allow future expansion (Brown et al., 1994), and the postings in the posting lists

should be stored in descending order by document identifier since it is typically more efficient

to insert at the head of the list than in any other location. This does not affect the performance of

our research works.

For dealing with changes due to deleted documents, a searchable update log can be used to store

the postings of deleted documents between periodic rebuilds. When (partially) rebuilding

inverted file, query processing is used to search both the inverted file and the update log, and

merge the results of both. This can be accelerated by using our research works.

(2) Disk design considerations

We use an IDE hard disk per workstation in our experiments. However, low disk throughput is

one of the main impediments to improving the performance of our research works (see Table

2.8). How to increase disk throughput with different disk organizations/architectures is a very

interesting research topic. For example, SCSI disk drives and disk arrays can be employed to

improve disk throughput. For SCSI disk drives, to amortize the cost of a disk access, the

controller read a fixed number of consecutive blocks ahead and stores them in its cache. How to

adjust the block size and the number of read-ahead blocks is an important issue. For disk arrays,

the simplest and best-known technique for balancing load is striping. Striping groups several

sequential disk blocks in units of fixed size and lays those units out across the physical disks in

round-robin fashion. How to adjust the size of striping unit is an important issue.

(3) Fast document retrieval

 128

There are two techniques used to evaluate queries in modern large-scale IRSs: eager (or term-at-

a-time) query evaluation and lazy (or document-at- a-time) query evaluation (Turtle & Flood,

1995). In the first case, the posting list of one of query terms is computed first (usually,

choosing the rarest term), and then, it is merged or filtered with the other lists. When evaluating

is lazy, instead, posting lists are scanned in parallel, retrieving in sequence each document

satisfying the query. The latter approach is essential in very large document collections, where

the actual number of documents that could be retrieved is guessed, and the scan for documents

satisfying the query is stopped as soon as enough documents have been retrieved. In this

dissertation, we use eager query evaluation to verify our research works. However, we believe

our research can still work well for lazy query evaluation. This is because lazy evaluation

requires keeping constantly in sync several posting lists. To perform this operation efficiently, it

is essential that a skip method is available that allows the caller to quickly reach the first

document identifier larger than or equal to a given one. Our proposed two-level skipped

inverted file can work well for this problem.

6.2 Contribution and Suggested Work

The contributions of this dissertation are involved in the two important research directions:

(1) Efficient indexing and fast searching for large scale IRSs

With the Internet explosive growth, the index structuring for large scale IRSs become more and

more important. The barriers to make the efficient index structuring feasible were the changes

of IRS scale and user query behavior. This dissertation presents the keys to eliminate the

barriers: inverted file compression, skipped inverted file, and inverted file optimization. Based

 129

on the results in this dissertation, various new topics can be investigated, including multimedia

IR indexing, various search techniques, and inverted file caching.

(2) Parallel IR

The importance of parallel IR comes from the high performance requirement brought by

Internet growth. The barrier to make parallel IR feasible was the lack of inverted file

partitioning method to achieve ideal speedup. This dissertation presents the key to eliminate the

barrier: the interleaving partitioning scheme with the PBDIA algorithm. Based on results in this

dissertation, various research topics on parallel IR can be studies. These research topics include

parallel DIA algorithm, parallel index rebuilding, parallel ranking, and incremental update of

partitioned inverted file.

 130

References

Aalbersberg, I.J. & Sijstermans, F. (1990). InfoGuide: A full-text document retrieval system. In

A.M. Tjoa & R. Wagner (Eds.), Proceedings of the international conference of database

and expert systems applications (DEXA'90), (pp.12-21). Berlin: Springer-Verlag.

Anh, V.N. & Moffat, A. (1998). Compressed inverted files with reduced decoding overheads. In R.

Wilkinson, B. Croft, and C.V. Rijsbergen (Eds.), Proceedings of the 21st annual

international ACM SIGIR conference on Research and Development in Information

Retrieval, (pp. 290-297), Melbourne. New York: ACM Press.

Anh, V.N. & Moffat, A. (2005). Inverted index compression using word-aligned binary codes.

Information Retrieval, 8(1), 151-166.

Bell, T.C., Moffat, A., Nevill-Manning, C.G., Witten, I.H., and Zobel, J. (1993). Data compression

in full-text retrieval systems. Journal of the American Society for Information Science,

44(9), 508-531.

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and zipf-like

distributions: evidence and implications. In Proceedings of Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM '99),

(pp. 126-134), New York, Mar. Los Alamitos, CA: IEEE Computer Society Press.

Brown, E.W., Callan, J.P., and Croft, W.B. (1994). Fast incremental indexing for full-text

information retrieval. In Proceedings of the 20th Very Large Data Base Conference

(VLDB'94) , (pp. 192-202).

Cheng, C.S., Shann, J.J.J., and Chung, C.P. (2005). Unique-order interpolative coding for fast

querying and space-efficient indexing in information retrieval systems. To appear in

Information Processing and Management.

 131

Cheng, C.S., Shann, J.J.J., and Chung, C.P. (2004). A Unique-Order Interpolative Code for Fast

Querying and Space-Efficient Indexing in Information Retrieval Systems. In P.K. Srimani

et al. (Eds.), Proceedings of ITCC 2004 International Conference on Information

Technology: Coding and Communications Volume 2, (pp. 229-235), Las Vegas, Nevada,

Apr. Los Alamitos, CA: IEEE Computer Society Press.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on

Information Theory, IT-21(2), 194-203.

Faloutsos, C. (1985). Access methods for text. ACM Computing Surveys, 17(1), 49-74.

Fraenkel, A.S. & Klein, S.T. (1985). Novel Compression of sparse bit-string－Preliminary report.

In A. Apostolico & Z. Galil (Eds.) Combinatorial Algorithms on Words: Vol. 12, NATO

ASI Serials F. (pp. 169-183). Berlin: Springer-Verlag.

Frakes, W.B. & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms.

Upper Saddle River, NJ: Prentice Hall.

Gallager, R.G. & Van Voorhis, D.C. (1975). Optimal source codes for geometrically distributed

alphabets. IEEE Transactions on Information Theory, IT-21(2), 228-230.

Gelbukh, A., Han, S.Y., and Sidorov, G. (2003). Compression of boolean inverted files by

document ordering. In Proceedings of 2003 IEEE International Conference on Natural

Language Processing and Knowledge Engineering (IEEE NLPKE-2003), (pp. 244-249),

Beijing, China, Oct. Los Alamitos, CA: IEEE Computer Society Press.

Golomb, S.W. (1966). Run Length Encoding. IEEE Transactions on Information Theory, IT-12(3),

399-401.

Hawking, D. (1996). Document retrieval performance on parallel systems. In H.R. Arabnial, ed,

Proceedings of the 1996 International Conference on Parallel and Distributed Processing

 132

Techniques and Applications, Sunnyvale, (pp. 1354-1365), California, August. Athens:

CSREA Press.

Hollaar, L.A. (1991). Special-purpose hardware for text searching: past experience, future potential.

Information Processing & Management, 27 (4): 371-378.

Janson, B.J., Spink, A., Bateman, J., and Saracevic, T. (1998). Real life information retrieval: a

study of user queries on the Web. SIGIR Forum, 32(1), 5-17.

Kobayashi, M. & Takeda, K. (2000). Information retrieval on the web. ACM Computing Surveys,

32(2), 144-173.

Lawrence, S. & Giles, C. (1999). Accessibility of information on the web. Nature, 400, 107-109.

Lovins, J.B. (1968). Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics, 11, 22-31.

Ma, Y.C., Chen, T.F., and Chung, C.P. (2002). Posting file partitioning and parallel information

retrieval. Journal of Systems and Software, 63(2), 113-127.

MacFarlane, A. (2000). Distributed inverted files and performance: a study of parallelism and data

distribution methods in IR (Ph.D. thesis). London: City University.

Mcllroy, M.D. (1982). Development of a spelling list. IEEE Transactions on Communications,

COM-30(1), 91-99.

Moffat, A. & Stuiver, L. (2000). Binary interpolative coding for effective index compression.

Information Retrieval, 3(1), 25-47.

Moffat, A. & Zobel, J. (1992). Parameterised compression for sparse bitmaps. In N. Belkin, P.

Ingwersen, and A.M. Pejtersen (Eds.), Proceedings of 15th annual international ACM-

SIGIR Conference on Research and Development in Information Retrieval, (pp. 274-285),

Copenhagen, Jun. New York: ACM Press.

 133

Moffat, A. & Zobel J. (1996). Self-indexing inverted files for fast text retrieval. ACM Transactions

on Information Systems, 14(4), 349-379.

Moffat, A., Zobel, J., and Klein, S.T. (1995). Improved inverted file processing for large text

databases. In R. Sacks-Davis & J. Zobel (Eds.), Proceedings of 6th Australasian Database

Conference, (pp. 162-171), Adelaide, Australia, Jan.

Olken, F. & Rotem, D. (1986). Rearranging data to maximize the efficiency of compression. In

Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database

systems, (pp. 78-90), Cambridge, Massachusetts, United States, Mar. New York: ACM

Press.

Reddaway, S.F. (1991). High speed text retrieval from large databases on a massively parallel

processor. Information Processing & Management, 27 (4): 311-316.

Ribeiro-Neto, B., Moura, E.S., Neubert, M.S., and Ziviani, N. (1999). Efficient distributed

algorithms to build inverted files. In M. Hearst, F. Gey, and R. Tong (Eds.), Proceedings

for the 22nd International Conference on the Research and Development in Information

Retrieval (SIGIR'99), (pp. 105-112). New York: ACM Press.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval of

Information by Computer. Reading, Mass: Addison-Wesley.

Salton, G. & McGill, M.J. (1983). Introduction to Modern Information Retrieval. New York:

McGraw-Hill.

Scholer, F., Williams, H.E., Yiannis, J., and Zobel, J. (2002). Compression of inverted indexes for

fast query evaluation. In M. Beaulieu, R. Baeza-Yates, S.H. Myaeng, and K. Järvelin

(Eds.), Proceedings of the 25th annual international ACM SIGIR conference on Research

 134

and Development in Information Retrieval, (pp. 222-229), Tampere, Finland. New York:

ACM Press.

Shieh, W.Y., Chen, T.F., Shann, J.J., and Chung, C.P. (2003). Inverted file compression through

document identifier reassignment. Information Processing and Management, 39(1), 117-

131.

Stanfill, C., Thau, R., and Waltz, D. (1989). A parallel Indexed algorithm for Information Retrieval.

In N.J. Belkin & C.J. Van Rijsbergen (Eds.), Proceedings of the 12th annual conference on

research and development in Information Retrieval (SIGIR'89), (pp. 88-97). New

York:ACM Press.

Stanfill, C. & Thau, R. (1991). Information retrieval on the connection machine: 1 to 8192

Gigabytes. Information Processing & Management, 27 (4): 285-310.

Tenenbaum, A.M., Langsam, Y., and Augenstein, M.J. (1990). Data structures using C. Englewood

CLiffs, N.J. 07632: Prentice-Hall.

Teuhola, J. (1978). A Compression method for clustered bit-vectors. Information Processing Letters,

7(6), 308-311.

Trotman, A. (2003). Compressing inverted files. Information Retrieval, 6(1), 5-19.

Turpin, A. (1998). Efficient prefix coding (Ph.D. thesis). Melbourne: University of Melbourne.

Turtle, H. & Flood, J. (1995). Query evaluation: strategies and optimizations. Information

Processing & Management, 31(6): 831-850.

Voorhees, E. & Harman, D. (1997). Overview of the sixth text retrieval conference (TREC-6). In

E.M. Voorhees & D.K. Harman (Eds.), Proceedings of the Sixth Text REtrieval Conference

(TREC-6), (pp. 1-24). Gaithersburg, MD: NIST.

 135

Williams, H.E. & Zobel, J. (2002). Indexing and retrieval for genomic databases. IEEE

Transactions on Knowledge and Data Engineering, 14(1), 63-78.

Williams, H.E. & Zobel, J. (1999). Compressing integers for fast file access. The Computer Journal,

42(3), 193-201.

Witten, I.H., Moffat, A., and Bell, T.C. (1999). Managing Gigabytes: Compressing and Indexing on

Documents and Images, Second Edition. San Francisco, CA: Morgan Kaufmann Publishers.

Wolfram, D. (1992). Applying informetric characteristics of databases to ir system file design, part i:

informetric models. Information Processing and Management, 28(1), 121-133.

Xie, Y. & O’Hallaron, D. (2002). Locality in search engine queries and its implications for caching.

In P. Kermani, F. Bauer, and P. Morreale (Eds.), Proceedings of the 21th Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM'02), (pp.

1238-1247), New York, Jun.

Zipf G. (1949). Human Behavior and the Principle of Least Effort. New York: Addison-Wesley.

Zobel, J. & Moffat, A. (1995). Adding compression to a full-text retrieval system. Software

Practice and Experience, 25(8), 891-903.

Zobel, J., Moffat, A., and Ramamohanarao, K. (1998). Inverted files versus signature files for text

indexing. ACM Transactions on Database Systems, 23(4), 453-490.

