ACKNOWLEDGEMENT

所有的花事、紅塵 雜亂和纏綿都收處書中

由線裝加上糊封 端整的擺在鋁製書架上

杜十三。花落

所有的實驗與資料尋找將會在這一本論文結束以後寫下休止符,耐心加上耐 力是這幾年研究的主要支柱,除此之外若是沒有受到許多人的指導、鼓勵與照 料,論文的豐富度將會太打折扣甚至無法完成。

最感謝的是我的指導教授 張豐志老師,無論是 張教授的身教或是言教, 讓我在實驗室的這幾年裡受益良多。無時不刻地影響我對研究的態度及事業上待 人接物的方式,令我永銘於心。吳厚德博士在論文方向、實驗技術的指導,一起 體會研究學術的樂趣;特別感謝台灣大學 謝國煌教授、交通大學 吳建興教授 中興大學 吳震裕教授、高雄應用科技大學 陳樹仁教授以及高雄大學 王瑞琪 教授等口試委員,有委員們的意見讓這本論文更臻完美。

實驗初期中許多儀器並不熟悉,幸好有陳憲偉學弟與邱俊毅學弟從旁協助讓 實驗得以順利進行;特別感謝實驗室的夥伴洪辰睿博士、郭紹偉博士、黃志峰博 士以及曾經在實驗室幫助過我的同學,使我在半工半讀的狀況下給我適時的支 援,使研究的工作得以順利進行。另外也感謝地調所林燕初、TVBS記者張嘉男、 台大地質溫大任博士、高雄大學陳怡凱教授、吳政峰學長以及我兩位姊姊吳佳 珍、吳佩芬,這些人在這一段不算短的歲月適時的給我鼓勵。 最後感謝茹苦含辛的父母,我想告別學生身份以後他們會很高興的。

~這是一個過程,生命還有很多重要的標的等著實現~

吳奕德 2007/02/12

CONTENTS

Description

Page

TITLE	III
中文摘要	IV
ABSTRACT	VII
ACKNOWLEDGEMENT	Х
CONTENTS	XI
TABLE CONTENTS	XIII
FIGURE CONTENTS.	XIV
Chapter I Introduction. 1 Background of Infrared Spectroscopy. 1-1 Basic Theory. 1-2. Interpreting the Spectrum 1-3. Qualitative Analysis. 1-4. Quantitative Analysis. 1-5. Sample Preparation. 1-6. Experimental Procedure. 1-7. Example Spectrum.	1 1 3 4 5 5 6 6
Chapter IIDetermination of the Crystallinity of Syndiotactic Polystyrene using FTIRSpectrum.2-1 Introduction.2-2 Material and Experimental Section.2-3 Results and Discussion.2-3 Results and Discussion.2-3-1 Infrared Spectra of the Bulk s-PS Ranging from 940 to 820 cm ⁻¹ .2-3-2 Quantitative Measurement of Crystallinity on α - and β -crystals.2-3 Crystallization Processes of α - and β -crystals.2-4 Conclusions.2-5 Reference.	11 11 13 15 15 17 19 21 22
Chapter III Characterization of Crystallization in Syndiotactic Polystyrene (s-PS) Thin Film Samples	34 34 35 37 41 42
Chapter IV The Interaction Behavior of Polymer Electrolytes Composed of Poly(vinyl pyrrolidone) and Lithium Perchlorate (LiClO ₄) 4-1 Introduction 4-2 Experimental Section	48 48 50

4-2-1 Sample Preparation	50
4-2-2 NMR Experiments	50
4-2-3 Infrared Spectra.	51
4-3 Results and Discussions.	52
4-3-1 The Interaction Behavior of PVP Observed from Solid State	
NMR	52
4-3-2 The Interaction Behavior of Li ⁺ Cation within PVP-LiClO ₄	
Complex	55
4-3-3 The Dissolved Behavior of the ClO ₄ ⁻ Anion	56
4-3-4 The Formation of PVP-LiClO ₄ Salt Complex	58
4-4 Conclusions.	60
4-5 References and Notes	61

Chapter V

Determination of the Interaction within Polyester-Based Solid Polymer Electrolyte	
Using FTIR Spectroscopy	74
5-1 Introduction	74
5-2 Experimental Section	76
5-2-1 Material	76
5-2-2 Beer-Lambert's Law	77
5-2-3 Sample Preparation and Infrared Spectroscopy	77
5-3 Results and Discussions	79
5-3-1 Infrared Spectra of the C=O Absorption Ranging from 1800 to 1650	
cm ⁻¹	79
5-3-2 Quantitative Measurement of Interaction Behavior on Polymer	
Electrolyte	80
5-3-3 The Interaction between Li ⁺ Ion and C=O of Polymer	
Electrolytes	83
5-4 Conclusions	86
5-5 Reference	87
Chapter VI General Conclusions.	100
Author	103
Publications	104
A STATISTICS.	

TABLE CONTENTS

D	•	. •
1)00	orin	tion
1705	cm	шон
2.00	•••P	

Description	Pag
Table 2-1 the specific characterized absorbance of s-PS in IR spectrum ranging from	
940~820 cm ⁻¹	24
Table 2-2 Curve-fitting results of the ranging 865~820 cm ⁻¹ of s-PS IR spectra.	25
Table 2-3 The results of curve-fitting ranging between 865 and 820 cm ⁻¹ ,	
crystallinity of melt-crystallized s-PS with various isothermal duration at	
240 $^{\circ}$ C obtained from Figure 2-4	26
Table 2-4 The results of curve-fitting ranging between 865 and 820 cm ⁻¹ ,	
crystallinity of cold-crystallized s-PS with various isothermal duration at	
240 °℃ obtained from Figure 2-5	27
Table 3-1 the specific characterized absorbances of s-PS in IR spectra ranging from	
940~820 cm ⁻¹	43
Table 3-2The results of curve-fitting ranging between 865 and 820 cm ⁻¹ , absolute	
crystallinity of melt-crystallized and cold-crystallized s-PS at 264 $^\circ\!C$ for	
240 min, results form Figure 3-2j and Figure 3-3h.	44
Table 4-1 Observed Frequencies and Assignments of Infrared Bands of PVP-LiClO ₄	
Complex, the [Li : O] = 0.056, in a Cast Film at 140 $^{\circ}$ C	64
Table 4-2 Curve-Fitting Data of Infrared Spectra of C=O Stretching Region of	
PVP/LiClO ₄ Complexes with Various Compositions at 140 °C	65
Table 5-1 Curve fitting and calculation results of FTIR spectra of PEA, PBA, PHA,	
and PCL in low Li^+ concentration of 1, 2 and 3 wt%	89
Table 5-2 Curve fitting of FTIR spectra of PEA, PBA, PHA, and PCL blended with	
LiClO ₄ from 5 wt% to 45 wt%	90
Table 5-3 summarizes that LiClO ₄ weight fraction vs. the equivalent fraction of "Li ⁺	
bonded" C=O group results from Table 5-2 and Table 5-3 and Eq 5-2	91
Table 5-4 summarizes the Li^+ equivalent fraction (M ₂) Li^+ vs. " Li^+ bonded" C=O	
group equivalent fraction	92

FIGURE CONTENTS

Description:

Page

Figure 2-1 The characteristic infrared band of neat s-PS ranging from 940 to 820	
cm ⁻¹ (a) quenched s-PS; (b) melt-crystallized s-PS at 240 $^{\circ}$ C for 240	
min; (c) sample in figure 2-1b heating scan up to 264 \degree C from 30 \degree C	
with 10 $^{\circ}C/min$, then quenched by liquid nitrogen	28
Figure 2-2 FTIR spectra of s-PS <i>bulk</i> samples ranging from 940 to 820 cm ⁻¹ having	
cooled at various rates from -1 $^{\circ}C/min$ to -100 $^{\circ}C/min$. (a) -1; (b) -5;	
(c) -10 ; (d) -40 ; (e) -100 °C/min, the dashed lines represent the result of	•
curve-fitting of figure 2-2e ranging between 865 and 820 cm ⁻¹	29
Figure 2-3 FTIR spectra of (a) quenched; (b) cold-crystallized; (c) melt-crystallized	
s-PS thin film sample at 240 $^\circ\!\mathrm{C}$ for arbitrary duration using the same	
s-PS sample	30
Figure 2-4 FTIR spectra of melt-crystallized isothermally s-PS thin film sample at	
240 °C for (a)2; (b) 6; (c) 10; (d) 60; and (e) 240 min	31
Figure 2-5 FTIR spectra of cold-crystallized isothermally s-PS <i>thin</i> film at 240 $^\circ\!\mathrm{C}$	
for (a)2; (b) 4; (c) 6; (d) 10; (e) 60; and (f) 240 min	32
Figure 2-6 Relationship of crystallinity and crystallization duration for exclusive (a)	
α -; and (b) β -crystal which isothermally crystallized at 240 °C	33
Figure 3-1 IR spectra of s-PS (a) bulk sample, cooling from 320 °C to 30 °C with	
rate of -10°C/min; (b) <i>bulk</i> sample, heated up the quenched sample to	
264°C from 30 °C with scanning rate of 10 °C/min; and (c) thin film	
sample, heated up the quenched sample to 264 \degree C from 30 \degree C with	
scanning rate of 10 °C/min	45
Figure 3-2 IR spectra of melt-crystallized s-PS thin film at 264 $^{\circ}$ C for (a) 0 min; (b)	
3 min; (c) 6 min; (d) 10 min; (e) 20 min; (f) 30 min; (g) 40 min; (h) 50	
min; (i) 60 min; (j) 240 min durations ranging from $940 \sim 820$ cm ⁻¹ .	
(Upper-right corner exhibits the curve-fitting ranging between 865 and	
820 cm ⁻¹ for Figure 3-2j.)	46
Figure 3-3 IR spectra of the cold-crystallized s-PS thin film at 264 $^{\circ}$ C for (a) 3 min;	
(b) 6 min; (c) 10 min; (d) 20 min; (e) 30 min; (f) 40 min; (g) 60 min; (h)	
240 min durations ranging from 940~820 cm ⁻¹ . (Upper-right corner	
exhibits the curve-fitting ranging between 865 and 820 cm ⁻¹ for Figure	
3-3h.)	47

Figure 4-1 (a) Scaled ¹³ C CP/MAS NMR spectra region of LiClO ₄ -PVP complex	
ranging from 185 to 170 ppm, the [Li : O] equivalent ratio (a) = 0; (b) =	
0.056; (c) = 0.337	66
Figure 4-1 (b) Scaled ¹³ C CP/MAS NMR spectra region of LiClO ₄ -PVP complex	
ranging from 50 to 16 ppm, the [Li : O] equivalent ratio (a) = 0; (b) =	
0.056; (c) = 0.337	67
Figure 4-2 Infrared spectrum of PVP/LiClO ₄ ([Li : O] equivalent ratio = 0.056)	
complex in the spectral region between 3500 and 1000 cm^{-1} at 140	
°C	68
Figure 4-3 Mid-Infrared spectra region from 1350 to 1225 cm ⁻¹ with various LiClO ₄	
salt concentration at 140 °C, the [Li : O] equivalent ratio (a) = 0; (b) =	
0.056: (c) = 0.337	69
Figure 4-4 Infrared spectra of C=O stretching region of PVP/LiClO ₄ complex at 140	
°C, the [Li : O] equivalent ratio (a) = 0; (b) = 0.056; (c) = 0.112; (d) =	
0.169: (e) = 0.225: (f) = 0.281: (g) = 0.337	70
Figure 4-5 The dependence of "free" and " complexed" C=O band on LiClO ₄ salt	, .
concentration. (a) "free": (b) the "primary complexed": and (c) the	
"secondary complexed" C=O band	71
Figure 4-6 Mid-Infrared spectra region from 1200 to 950 cm ⁻¹ PVP/LiClO ₄ complex	, -
with various LiClO ₄ salt concentration at 140 $^{\circ}$ C, the [Li : O] equivalent	
ratio (a) = 0; (b) = 0.056; (c) = 0.112; (d) = 0.169; (e) = 0.225; (f) = 0.281;	
(g) = 0.337	72
Figure 4-7 Schematic drawing of three types of the ionic association of polymer	
electrolytes—PVP/LiClO ₄ complex	73
Figure 5-1 The characteristic infrared band of (a) pure PEA: and LiClO ₄ 5wt% blend	, 0
with (b) PEA: (c) PBA: (d) PHA: (e) PCL ranging from 1800~1650 cm ⁻¹ at	
80 °C	93
Figure 5-2 FTIR spectra of PEA/LiClO ₄ blend ranging from 1800 to 1650 cm ⁻¹ with	10
various LiClO ₄ content (a) 1 wt% (b) 2 wt% (c) 3 wt% at 80 °C (Dash	
line: result of Figure 2c curve fitting ranging from 1800 to 1650	
cm ⁻¹	94
Figure 5-3 FTIR of spectra of (a) $PEA/LiClO_4$ (b) $PBA/LiClO_4$ (c) $PHA/LiClO_4$ (d)	<i>,</i>
PCL/L iClQ ₄ ranging from 1800 to 1650 cm ⁻¹ with increasing L iClQ ₄	
content up to 5 wt%(1% 3% and 5%) at 80 $^{\circ}$ C	95
Figure 5-4 FTIR spectra of (a) PEA/LiClO ₄ (b) PBA/LiClO ₄ (c) PHA/LiClO ₄ and	,,
(d) PCL/LiClO ₄ blends ranging from 1800 to 1650 cm ⁻¹ with the increase	
of LiClO ₄ content ranging from 10 wt% to 45 wt% at 80 $^{\circ}$ C	96
	20

Figure 5-5 the relation of "Li ⁺ bonded" C=O equivalent fraction and LiClO ₄ weight	
content (wt%) for four series polymer electrolyte blends. (E: PEA; 😑:	
PBA; ▲: PHA; ▼: PCL)	97
Figure 5-6 the relation of "Li ⁺ bonded" C=O equivalent fraction and Li ⁺ equivalent	
fraction for four series polymer electrolyte blends. (E: PEA; 😑: PBA;	
▲: PHA; ▼: PCL)	98
Figure 5-7 The semi-log relation of "Li ⁺ bonded" C=O equivalent fraction and Li ⁺	
equivalent fraction for four series polymer electrolyte blends. (E: PEA;	
●: PBA; ▲: PHA; ▼: PCL)	99

