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Dynamics of the flux lattice in the mixed state of strongly type-II superconductor near the upper critical
field subjected to AC field and interacting with a periodic array of short range pinning centers is consid-
ered. The superconductor in a magnetic field in the absence of thermal fluctuations on is described by the
time-dependent Ginzburg–Landau equations. For a special case of the d-function shaped pinning centers
and for pinning array commensurate with the Abrikosov lattice (so that vortices outnumber pinning cen-
ters) an analytic expression or the AC conductivity is obtained. It is found that below a certain critical pin-
ning strength and for sufficiently low frequencies there exists a sliding Abrikosov lattice, which vibrates
nearly uniformly despite interactions with the pinning centers. At very small frequencies the conductivity
diverges at the critical pinning strength.

� 2010 Elsevier B.V. All rights reserved.
The great interest in the problem of magnetic flux pinning in
type-II superconductors stems from its relevance to technological
applications as well as with its implications to the general problem
of complex nonlinear dynamics with tunable parameters. An
important challenge in applications of type-II superconductors is
in achieving optimal critical currents under given magnetic fields.
This requires preventing depinning of Abrikosov vortices during
formation of the resistive state under the applied current. Recently
there have been advances in the study of vortex pinning by fabri-
cating periodic arrays of pinning sites where each pinning site
may be either magnetic or normal inclusion effectively trapping
vortices. Pinning arrays with triangular, square, and rectangular
geometries have been fabricated using either microholes or blind
holes arrays of magnetic dots and periodic array of columnar de-
fects [1]. The resulting critical current is enhanced when vortex lat-
tice is commensurate with the periodic array of pinning sites. In
addition this system is a convenient experimental tool to study
the general problem of interacting periodic system moving in peri-
odical potential like dislocations in crystals or charge density
waves. Theory of dynamics of the pinned vortex matter by a ran-
dom distribution of pins is very complicated. However in the ab-
sence of significant thermal fluctuations, the problem simplifies
considerably. It was studied theoretically, mostly in 2D systems,
using either numerical methods within a model of interacting
points-like particles representing vortices subject to pinning
ll rights reserved.
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potential and driving force [2] or within the framework of elasticity
theory, in which the vortex matter is treated as an elastic manifold
subject to both the pinning stress and a driving force [3].

Theory of the Abrikosov lattice subjected to an AC field and
periodic pinning is simpler, but so far has been treated either
numerically using molecular dynamics approach or by means of
the elastic manifold approach in London approximation. On the
other hand this approach completely ignores the contribution of
the vortex cores essentially important when the distances be-
tween vortices and artificial pinning sites are not much larger
than the size of the coherence length. In fact there is still no an
analytical theory describing AC properties of a type-II supercon-
ductor with periodic pinning array subjected to a strong magnetic
field. Here we present a theory of AC conductivity in the time-
dependent Ginzburg–Landau (TDGL) approximation describing
superconductor in a strong magnetic field. In the absence of ther-
mal fluctuations, an exact solution for the linear response in the
case of a d-function model for the periodical array of the pinning
centers in which it is commensurate with the Abrikosov lattice
(vortices outnumber pinning centers) is obtained for the first
time.

Let us consider a type-II superconductor under a constant exter-
nal magnetic field H parallel to a system of pinning centers direc-
ted along z axis and carrying electric current along the y axis, see
Fig. 1.

The simplest relaxation dynamics of a superconductor in the
presence of electric field is described by TDGL [4] and Maxwell
equations (in the dimensionless variables)
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Fig. 1. The hexagonal Abrikosov vortex lattice (distribution of the superconducting
density |w(r)|2) and pinning centers. Zeroes of order parameter fall on the locations
of the columnar defects (red squares), so that vortices outnumber the pins. Vectors
d1 and d2 are lattice vectors of pinning array. Distance between nearest neighbors of
the Abrikosov lattice is aD. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

T. Maniv et al. / Physica C 470 (2010) 744–746 745
fGL ¼ w� H
_

w� ahw
�wþ 1

2
ðw�wÞ2;

� @tw ¼ H
_

w� ahwþ w�w2 � iUw; ð1Þ

H
_

p ¼ �
D2

2
� h

2
þ U0

X
a

dðr� raÞ;

ah ¼
1� th � h

2
� u0; th ¼

T
Tc

; ð2Þ

H
_

¼ H
_

p � u0; U0 ¼
pw2e

Tc
;

j ¼ �rUþ i
2
½w�Dw� c:c:�; rj ¼ 0 ð3Þ

Here D are the covariant derivatives, w is the order parameter and
U the electric potential, h the magnetic field in units of Hc2, fGL is GL
energy density, w the radius of the single pinning potential and
u0 = 2pU0nph is dimensionless pinning strength. In our units
rn = qn = 1.

This set of the equations can be simplified near the coexistence
line where ah� 1 and for small electric fields. Expanding the order
parameter in first order in the form w(r, t) = u(r) + h(r, t) one
obtains
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level order parameter. Defining the retarded Green function by
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one obtains the following relation between the current density and
the electric field
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where E = j + O(ah).
For a uniform AC density j(t) = j0 cos xt one obtains after aver-

age over volume of the sample for complex conductivity
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Eq. (1) allows to relate the dynamic conductivity in the supercon-
ductor with the Green function (GF) of the quantum mechanical
Hamiltonian bHp of a charged particle in magnetic field in the pres-
ence of periodic potential. Representing Green function in the inte-
gral form, one obtains the Dyson equation
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where Gclðr; r0;xÞ is the Green function of the clean superconductor

Gclðr; r0; tÞ ¼ e
ih
2ðxy0�yx0 Þgclðr; r0; tÞ

gclðr; r0; tÞ ¼ CðtÞe�
r2

2gðtÞ

CðtÞ ¼ h
4p e

ht
2 sinh�1 ht

2

� �
gðtÞ ¼ 2

h tanh ht
2

� �
ð10Þ

In particular at pinning points r = rb, assuming commensurability
with the vortex lattice, one obtains
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Substituting it into the expression for full GF with arbitrary posi-
tions one obtains
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To determine the operator GF for operator bH one has to subtract the
constant u0 from bHp. In the x space such transformation is equiva-
lent to a shift of frequency by the imaginary number ix in the GF.
Substituting the full GF into expression for conductivity one obtains
two contributions in terms of ‘‘clean” GF:
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Integrations result in:
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Here W(X) is digamma function and Kmax is maximal vector of the
reciprocal pinning centers’ lattice.

Let us consider some limiting cases important for experiment.



Fig. 2. Real part of conductivity at x ? 0 as function of the pinning strength u for
magnetic field in the h = 0.85–0.99 range. When the pinning strength approaches
the critical value the conductivity diverges.

Fig. 3. Real and imaginary parts of conductivity at x ? 0 as function of the pinning
strength u for magnetic field h = 0.95. When the pinning strength approaches the
critical u the conductivity diverges at small frequencies.
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(i) No pinning U0 ¼ 0
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If x = 0 when Eq. (18) gives a well known Bardeen–Stephen re-
sult for flux flow conductivity.

(ii) Criticality near the critical pinning strength h = u0 for small
frequency. This means that the vortex lattice is pinned and
electric field cannot penetrate the superconductor despite
persistent current flow in it at least when the current is
not large. In this case the real part of the conductivity
diverges. Near this line the conductivity reads (see Figs. 2
and 3):
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where Uc
0 ¼ ð2pnpÞ�1. Therefore the pinning strength is only factor

determining the transition into the pinned state. The critical value
is independent of the magnetic induction.

(iii) AC conductivity at the critical line (u = uc)

In this case the conductivity at small frequencies x� h has
only the imaginary part
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(iv) AC for subcritical pinning strength

In this case u� 1 and AC conductivity reads
rs

rFF
¼ 1þ 0:6uh

ðixþ hÞ ix
ix�hþ uH 1þ ix

h

� �� �
where the second term in this expression describes pinning correc-
tion to usual Bardeen–Stephen conductivity.

In summary, we developed the theory of AC conductivity for a
superconductor with periodic pinning array in the Ginzburg–Lan-
dau approximation and predicted that above some pinning
strength, the AC conductivity in the limit of small frequency shows
typical for ideal superconductor behavior.
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