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Unsupervised Query-Based Learning of Neural
Networks Using Selective-Attention
and Self-Regulation

Ray-I Chang and Pei-Yung Hsiao

Abstract—Query-based learning (QBL) has been introduced for adaptive resonance theory (ART) [45], there is no external
training supervised network model with additional queried sam-  supervisor to say what the output should be or whether the

ples. Experiments demonstrated that the classification accuracy : ; ; ; ; ;
is further increased. Although QBL has been successfully applied output is correct. Since the external supervisor is not valid, this

to supervised neural networks, it is not suitable for unsupervised SQBL algorithm cannot directly be applied to unsupervised
learning models without external supervisors. In this paper, an neural networks. Thus, the development of an unsupervised
unsupervised QBL (UQBL) algorithm using selective-attention QBL (UQBL) algorithm for the neural networks would be
and self-regulation is proposed. Applying the selective-attention, very interesting. In this paper, an UQBL algorithm based

we can ask the network to respond to its goal-directed behavior n the behavior control theorwvith selective-attentiorand
with self-focus. Since there is no supervisor to verify the self- 0 € behavior control theorywith selective-attentiora

focus, a compromise is then made to environment-focus with Self-regulationis proposed [9], [10].
self-regulation. In this paper, we introduce UQBL1 and UQBL2 Behavior control theory proposed by Powers in 1973 has
as two versions of UQBL; both of them can provide fast con- g|ready been shown to be of considerable value in designing

vergence. Our experiments indicate that the proposed methods _ s . . : :
are more insensitive to network initialization. They have better artificial systems and constructing biological systems [10]. It

generalization performance and can be a significant reduction in Provides the underlying basis for the elaborate computing
their training size. machines that we all take for granted in human behavior.
“To teach students in accordance with their aptitude” Confucius  This theory suggests that our brain can realize our want and
Index Terms—Force-directed method, query-based method, desire, so the nervous system will try to control external
selective attention, self-organizing maps, self regulation, unquper- stimulus with selective-attention and direct to our internal
vised learning. desires under some self-regulation behaviors [11]. In which,

selectively attending to information originating from within

I. INTRODUCTION and concerning the internal self is referred tosadf-focus
Selectively attending to information that originates from the

QUERY'BASED learning (QBL) algorithms have beenexternal environment is termed asvironment-focusTo sum

applied to many machine-learning applications for P'9his theory, human behavior is less static and stable than the

viding correct classification output when presented wi ehavior of lower animals. Thus, it is not only under the

an input query [1], [2]. In the past, this algorithm has beenontroI of physiological factors, but also under the control

presented for supervised learning with an additional orac(I:? some psychological factors. In this paper, perception of

: . 0,

supervisor [3}-{5]. The'superVI_sor could be the humgn eXp?fEltmbiguous stimulus will rest on humans’ expectations with

the data base of experimentation, or the computer SImUIatlon]ectedself-d'rect' o attentiofil0]. The selective or directive

In a supervised neural network, the correct classification out e i ! fﬂ']V I kl U ]'éh Itv fthl ttlv "

can easily be obtained after asking the external supervisla?. ure 1s one ot tne wetl-known three aspects of fhe attention
rocess presented in cognitive psychology [12]. The degree of

Then, the queried data with proper input and output informBY

tion can be applied to further refine the classification bounda?ﬂ},g'lance' another aspect of the attention process, has already

thereby increasing the classification accuracy [3]. Applicatidifen successfully implemented in Carpenter and Grossberg's
of this supervised QBL (SQBL) algorithm has been present@d@Ptive resonance theory (ART) model [46]. Besides, the
to resolve various power system problems with great succélstribution of observance, dlffu_sed or concentrated, is also
[3], [7], [8]. Note that the query oracle presented in th@"€ pf the a;pects_ pf the attention process. Notg that when a
SQBL model is a prespecified supervisor. Unfortunately, in &fiNing goal is positive for the system, the distinction between
unsupervised neural network, i.e., Kohonen's self-organizifgnt (self-focus from internal desire) ameed(environment-
feature maps (SOM's) [15], and Carpenter and Grossberd@sus from external stimulus) is collapsed. However, when a
negative or threatening objective is involved, the distinction
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behavior that tries to make a compromise between need amdere the algorithm can produce additional inputs and be
want would be followed. In this paper, we apply the selfinstructed by an external supervisor to what classification
regulation property to construct the UQBL model. outputs they correspond. Thus, the classification system can
With the behavior control theory, the proposed UQBIbe further refined by the queried samples. Expansion of the
algorithm can be applied to generate tteal-used-samples QBL paradigm to include membership query was proposed
from the external-input samplegnvironment-focus) and the by Valiant [1], and has been subsequently studied by Angluin
internal-desired-samplegself-focus). Considering a nervoug2]. In this paper, the problem of using queries to learn an
system with thegoal-directed behavioas shown in [10], we unknown concept was considered.
can ask the system to respond to its internal-desired-sampleRecently, the neural network community has focused on
with goal-directed selective-attention. As Confucius saiy “ learning from input samples and queries [3]-[5], [7]. Consid-
teach students in accordance with their aptitidBecause ering multilayer propagation (MLP) with the backpropagation
there is no external human expert to verify the correctne@P) algorithm proposed by Rumelhaittal.[13], in which the
of the queried data, these internal-desired-samples cannotobgout of neuron is binary trained to be either zero or one. Pre-
used directly. They should be taken to make a compromisenting a set of training samples with prespecified labels, the
with self-regulation to the external-input-sample. Note thalassification boundary of the neural system is defined as the
UQBL is not an anthropomorphic model that disregards tht of points which produces an output(6f-1)/2(= 0.5). Us-
effect from the external stimulus. On the contrary, it tries ting the points on the classification boundary, caledindary
combine the effect from the external stimulus and the interngdints,a set of conjugate input pairs with significant boundary
desires, and has shown that both the external stimulus anfbrmation can easily be generated to refine the classification
the internal desires are important and decisive for networssult. In [4], the boundary point that has maximum ambiguity
training. By considering the internal-desired-sample, what {s- 0.5) was simply produced by the interpolation process be-
selected for attention may change from moment to momemieen positive and negative examples. Besides, the inversion
and only depends on the system’s current configuration [1@jethod which allows a user to find one or more input vectors
The produced real-used-sample has a queried (or competitiy@lds a specific output vector and can also be utilized to
output label for selective-attention. Since the output label is ngénerate these boundary points [3], [7], [8]. Since the inversion
determined by an external supervisor but the network itself, thgjorithm is a time-consuming iterative procedure, a genetic-
proposed algorithm is an unsupervised approach. based approach used as a means of achieving neural network
In this paper, two versions of UQBL are introduced, UQBLInversion was presented [5]. A simple example with two differ-
and UQBL2. An application example of the proposed UQBEnt input samples is shown in Fig. 1 to illustrate the operations
algorithm to SOM is also demonstrated. Comparisons hage SQBL. As shown in Fig. 1(a), it can be found that the
been made with SOM. Experiments indicate that the proposgésented input sample$ and B are linear-separable as the
method can obtain faster convergence to a self-organized sigdgi dash-line, but the real classification boundary is not (see
and has a final result similar to that of the conventionghe dot-line). Thus, although the training time is unlimited and
approach. The obtained results are insensitive to differafk training error for these input samples is down to zero, the
network initialization and can be a significant reduction iglassification error for test data is still very large. As shown in
the training set. The organization of this paper is structurggy. 1(c), it can be found that the linear-separated classification
as follows. In Section II, the previous works of QBL areyoundary is refined as afttype boundary when the boundary
reviewed. The UQBL algorithm with selective-attention angloint and the two additional queried samptésind D shown
self-regulation is described in Section Ill. An applicatiofin Fig. 1(b) are presented. Comparing the original classifier
example to design the query-based self-organizing featyigh a linear-separated boundary, the obtained classification
map is demonstrated in Section IV. Experimental results aﬁ@curacy is further increased.
comparisons are shown in Section V with some discussionsyn conventional QBL algorithms, the query oracle is defined
Finally, Section VI gives our conclusion and future works. as a prespecified supervisor. Although they have shown to be
very efficient in SQBL, the prespecified external supervisor
is not existent in unsupervised network models. Note that
Define the training samples as paits ¢(x)], wherex is the unsupervised learning method has the advantage that
an input vector and(z) is the target output vector of inputit can automatically classify input vectors without specify-
x. Assume that the source of training samples can be simpty their output labels. The design of a UQBL algorithm
modeled as a query oracle. It can give the correct output whehich can learn from examples and queries without specifying
queried with an input. Thus, whengeis suppliedo(y) would their output labels would be a very attractive and significant
be told by the query oracle. This additional training samplesearch topic. In this paper, the behavior control theory
[y,0(y)] is called thequeried sampleln 1991, Baum [4] had that introduces the properties of selective-attention and self-
shown that the QBL paradigm corresponded more closely riggulation is presented to design a UQBL algorithm.
the way humans learn. This method does not only look at
the original training examples, but also utilizes queries to
provide additional training samples and is then told which
output the input vector is assigned. The presented superfluoubleural-network models can be divided into two principal
qguery power is practical in many classification problemsategories, supervised and unsupervised, according to training

Il. REVIEW OF QUERY-BASED LEARNING METHODS

lll. UNSUPERVISEDQUERY-BASED LEARNING WITH
SELECTIVE-ATTENTION AND SELF-REGULATION
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Fig. 1. A simple example with two different input samples is presented to demonstrate the operation flow of this SQBL method. (a) The original input
samples 4 in class 0 andB in class 1) are linear-separable, but the real classification boundary is not. Although the training error is already zero, the
classification accuracy for the test set is still very low. (b) Two additional queried sandpliesdlass 1 andD in class 0) are produced. (c) The classification
boundary is refined as afi-type boundary. The classification accuracy is further increased.

with or without an external supervisor. Unsupervised neural Note that in the unsupervised learning model, the learning
networks can automatically group input patterns into severalte «;(¢) is usually set as a smaller value if neurbis not
clusters, such that without prespecifying the target output, eatle best-matched winner (or set as zero for the winner-take-
input pattern can be assigned to a unique cluster label wiah model), in which the winner neuroa is defined as the
the presented adjustment rule. Assume that a set of vectoesiron that is the nearest to the input vedtpr Considering
V which is drawn from some probability distributigrf}’) is  the unsupervised competitive learning model, we have
defined as follows:

dis(W.(t), Vk) = min{dis(W;(t), V&), for j = 1,2,--- ,m}
where_n is the nl,!mber pf training samples. The data PO'%heredis(:c, y) is a general distance measure between vector
selectively attending to information of the external environ-

- — 2. Sj :
ment is callecenvironment-focuL0]. In this paper, this input > and vectory, such as||lz — y|| or (x —y)=. Since W;(t)
. . just represents theurrent stateof neuroni at time ¢, this
vector V; = (v;1,vie, -+, u) IS called the external-input-

. . . processing step is also callet‘tompete with neurons’ current
sample which comes from the-dimensional sample space.

Assume that the architecture of the neural-network model cgtr?tes'

be simply presented by a set of weight patterns as follows: i ) ) ) _
A. Presenting Internal Desires with Selective-Attention
W =Wy, Wy, -, Wi} (2) In past years, many phenomena have been presented by
where m is the number of neurons. The weight pa,[terﬁsychologists concerning the regulation of internal states and
Wi = (wii,wis, - wsy) that comes 'from the Connectionperceptual experiences. This approach has been tried to model

weights between neuranand its input neurons is called thehuman behavior for the preprocessing of input stimulus from

state of neuron. It changes from moment to moment durin Te ,eXteTaAWO”d by NeweII! anfd Simon [i}9]. ﬁ computer S|m-d
neural-network training. ation of the way personality functions has been constructe

In unsupervised learning, as there is no supervisor to Loehlin [20.]' In 1973, Berelson and _Steiner [21] showed
what the output should be, the output vector must be cojgﬁ’t_ people will tend to see or r_\ear thmgs as they want or
by weight patterng¥ and the input datd’. Note that there esire to see or hear them.lln their st_usjles, hungry.persons can
are close connections between neural networks and stan gl%ort more food patterns in recognizing vague pictures than
statistical techniques of pattern classification and analy §S hungry persons. In the same year, Powers [9] suggested

[14]-[16]. Thus, each unsupervised learning system can tour brgin can realize what_ we want a’Fd what we desire.
simply modeled by a well-defined qualitg = E(V, W) to The behavior control theory might be realized in the human

be minimized. As the training sdt is prespecified, we can nervous system as shown in [10], in which the nervous system

rewrite E as E(W). Assume that is differentiable regarding is not only learned from environment-focus (external-input

W, using the iterative gradient descent method, the Iearniﬁam_ples)’ but also self-focu_s (querle_s of mtgrnal desires).
equation can be defined as follows: Since the system could improve itself with selectasif-

directive attentiongcalled thegoal-directed behaviof10], we
Wit +1) = Wi(t) + ai(t) x (—OE/OW;) (3) can ask the nervous system to respond to the question: “What
) _ _ do you want to learn?” (or “What do you want to be?”).

wherea;(¢) is the learning rate for neuran The well-defined The response of this question, which selectively attends to
quality E' is sometimes called the cost function, the objectivge information of the internal self, is calleglf-focus It can
function, or the energy function in previous studies [13he defined as a set of labeled data poiiits
[17], [18]. This optimization approach is closer to that of the
statisticians. U={U,1),Usz2), -, (Un,m)} (5)
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The data poinl/; = (w1, w2, -, u:r) is called theinternal-  wherelU; is the internal-desired-sample of neurprCognitive
desired-samplef neuron:. At each time step, we can simply research on this phenomenon has been presented by Duval
view that W = W (¢) as a constant matrix before networkand Wicklund [22]. It provided the demonstration that persons
learning. Thus, the energy functidi can be written a€’(V'). matched their internal behavior to specified external reference
Assume that is differentiable regardindy; (or U;). By taking samples. As shown in previous sectioi$; is also called
advantage of the duality between weights and the input vectéiise desired statef neuronj.” Thus, the competitive equation

in minimizing £, the internal-desired-samplé can be simply described above can be viewed &8 tompete with neurons’
defined as follows: desired state8.It is different from the traditional algorithms

Uit +1) = Us(t) + Bi(#) x (—OB/OU;) (©) to compete with neurons’ current states [see (4)].

where g3;(t) is the gain term for neuron. In SQBL [3], C. Two Versions of Unsupervised Query-Based Learning

this equation is applied to achiegwodtraining samples. In  The pehavior control theory with selective-attention and
this paper, we applied this idea to obtain the internal—desiregg”_regmation can be successfully applied for UQBL. The
samples. The achieved vectf which represents “what the yoBL method with an iterative gradient descent method to
neuron: wants to learn” is the same as the answer of “Whafoquce the internal-desired-sample has been shown in (6).
the neuron; wants to be.” It can be also called “thtesired However, this iterative method will take more computation

stateof neuron:” as the target desire dft;. time and more memory space to store temporary results. In
o . . order to avoid these disadvantages, a small modification of the
B. Compromising Need and Want with Self-Regulation  jnternal-desired-sample was made. Since the internal-desired-

In SQBL, the correctness of the queried samples can samplelU; is just the target desire of¥;, we can simply
checked and guaranteed by an external supervisor [3]. Wssume that/;(t) = W;(t) without loss of generality. Thus,
fortunately, as there is no external supervisor in UQBIthe definition of the internal-desired-sample can be simply
the correctness of the queried internal-desired-samples carfiggtritten as follows:
be guaranteed. The distinction between want and need is ‘ ot ‘ _ ‘
collapsed if the goal is positive. However, when a negative or Uit +1) = Wil#) + Ai(t) x (-0E/9U5). ©
threatening objective is involved, calledgative feedback loop This version of the presented procedure, which produces the
[21], the distinction between want and need would be raisedternal-desired-sample without using time-consuming itera-
Since these queried samples may have a negative objectivéiie computations, is called UQBL1. Note thatt i large and
the original input samples, they cannot be directly applied fgk(¢) = 0 (said “the system is tired”), the proposed UQBL1
neural network training. The regulation procedure that finadsethod is the same as the original unsupervised learning
a middle ground between want (internal-desired-sample) amethod ad/;(t+1) = W;(¢) in (8). Thus, the characteristics of
need (external-input-sample) should be applied [10]. the original unsupervised learning method can be guaranteed.

Although various paradigms can be designed for the self-Note that the “optimization” described in UQBL1 only
regulation property of the UQBL, in this paper, tteal-used- means local gradient steps. When we apply the deepest descent
samplesare simply defined as the prespecified external-inpit the continuousE landscape, the internal-desired-sample of
samples with their self-regulated labels. Note that in theeuron: can be defined as a vectdt to fulfill the following
unsupervised neural networks, the reliable information we caonditions:
achieve is the external-input samples and the weight patterns
only. These real-used-samples can be defined as follows:

V' = {(Vi,01),(Va,09), -+, (Vin,00)} ) _UQBL with_the deepes_t descent method_ to obtaining the
internal-desired-sample is the second version of the proposed
where input vectoV; corresponds to output labe). In other UQBL method, called UQBL2. Descriptions about the opti-
words, neurorp; is active whenV; is input. In (6), we have mization methods which can be applied for the generation of
applied the weight patterns to produce the internal-desirettie internal-desired-samples are shown in [23]. Fig. 2 shows
samples. SincdJ; is defined as the internal-desired-samplghe system architectures of the conventional unsupervised
of neuroni, neuron: must be the winner whet/; is input. learning model and the proposed UQBL model. Note that the
Now, presenting an external-input-samglg, we want to internal-desired-samples are generated with selective-attention.
find the nearest internal-desired-samjplg, to provide the Then, these internal desires are trying to make a compromise
real-used-sampléV;,, o;) for network training. to the external-input-sample with self-regulation. In this paper,
Since the input samples are unlabeled in an unsupervisedimple example is presented to design a QBL algorithm for
learning model, neurons should be trained withdbmpetitive Kohonen’s SOM.
rule. Competitive learning is the main tool for training without
supervision. In this paper, we follow this competitive rule to IV. AN APPLICATION EXAMPLE TO
query the output labels. Assume that an external-input-sample K OHONEN'S SELF-ORGANIZING MAPS
Vi is presented, then the corresponding active newjooan
be defined as

9E/oU; =0 and JE/dU;dU; > 0. (10)

SOM proposed by Kohonen [15] is an ordered mapping
of a high-dimensional input space which maps onto a low-
dis(Us,, , Vi) = min{dis(U;, V&), for j =1,2,---,m} (8) dimensional discrete neuron topology. This dimensional re-
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Output Label defined as follows:
E(t) =) nej(t) f(dis(Va, Wy (2)))- (12)
Unsupervised j=1
Neural . . . .
Network Environment- For example, iidis(Vi, W;(t)) denotes the Euclidean distance
Focus betweenV;, and W;(¢), and functionf(z) = z2. Using the
G iterative gradient descent method described in (3), the learning
Input Vector———— equation can be obtained as
@ Wilt+1) = Wi(t) + aa(t) x 2004(8) (Ve = Wi(t)  (13)

Output Label . . . .
wherec; () is the time-decreasing learning rate. For example,

we can simply definey;(t) as the variablga;(0) — t x )
Query Oracle where;(0) is a constant value between zero and one.

The above technique has already been studied with mathe-
Selective-Attention-Self-Focus —Self-Regulation | matjcal rigor, and, in particular, the convergence properties

Unsupervised
Neural
Network

are known [18], [32]. In this paper, we apply the same
G method to generate the internal-desired-sanifléor neuron
Input Vector—————— Environment-Focus —————— 1. Considering (9) and (12), the two versions of the internal-
() desired-samplé/; of SOM can be defined as follows.

For UQBL1

Fig. 2. (a) The system architecture of conventional unsupervised learn-
ing models. (b) The system architecture of the proposed UQBL model. m
The internal-desired-samples (neurons’ self-focus) are first generated with . _ A . .. . W,
selective-attention. Then, the winner neuron is obtained by compromising]z(t +1) =Wilt) + Bi(t) x 2277” OW;(t) = Wi?))-
self-focus and environment-focus (external-input sample) with self-regulation. J=1

It is different from the conventional self-organization algorithm, which learns (14)
with only environment-focus.

For UQBL2
duction allows us to easily visualize important relationships m m
among the data. It is considered one of the most powerful Uilt+1) =Y nii(OW;(8) /> mis(t) (15)
methods that creates topographic maps. In the past, many j=1 j=1

different applications have been presented with great aChieVﬂiere B
ment [24]-[30]. In this paper, an application example of thﬁ“ne Iearz
proposed UQBL algorithm to SOM is presented. In additio i

some particular applications of the proposed learning mo%i
to self-organize with only internal-desired-samples have alag
been illustrated.

(t) is a gain term. Since the gain temm(t) is called
ning rate for the learning equation (13), we can call the
n termg; (t) as thequerying ratefor the querying equation.
ing the self-regulation technique described in (8), the real-
ed-sampld/;, with output labelo;, can be easily obtained.
The step-by-step description of the proposed UQBL algorithm
for the self-organizing feature map is shown as follows.

A. Query-Based Self-Organizing Feature Maps 1) Initialize weights.

The objective of SOM is to competitively find the best 2) Generate internal-desired-samples.
matching winner and adapt the weights between input and3) Present a new external-input-sample.
output neurons, so that the output neurons become sensitive t8) Calculate distance from external-input-sample to all
different inputs in an organized manner. kebe the data point internal-desired-samples.
in a set of training samples. The “winner” neureis defined ) Select winner neuron with minimum distance.
as (4), in which the input vectas is presented. In [18], the 6) Update weights of winner neuron and its neighbors.
global objective function of SOM has been defined as follows: 7) If system is not convergent, then go to Step 2).
The proposed network model is called query-based SOM
m (QBSOM). Examples demonstrating the produced internal-
E= /Zﬁcj(t)f(dis(% W;))p(v) dv (11) desired-samples for these two versions of QBSOM are shown
j=1 in Fig. 3. Note that it is large and?;(¢) = 0, QBSOML1 is the
same as SOM. Thus, the beautiful system properties of SOM
where functionf(-) of quantization erroiis(v, W;) is first can be kept. However, the deepest descent QBSOM2 method
weighted by the neighborhood functiep;(t) and then aver- cannot do this. The geometric meaning of the presented
aged. As the training samples are presented in a stocha§QBSOM is demonstrated in Fig. 4 with the example presented
manner, we can rewrite the objective functidii as the in Fig. 3. It can be found that the perception of input stimulus
sample functiorE(¢) following the Robbins—Monro stochasticwill rest on neurons’ expectations as the way humans learn. In
approximation method [31]. Assume that the input veef@) other words, the network is organized with neurons’ desired
presented at time is V3. The sample functiorE(¢) can be states.
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QBSOM1:
gradient descent

QBSOM2:
ONeuron’s Current State deepest descent

#3 Neuron’s Desired State
(internal-desired-sample)

(@) (b)

Fig. 3. (a) A simple example is presented to demonstrate the produced internal-desired-saofpleeuron w with QBSOML1. (b) The produced
internal-desired-sample of neuronw with QBSOM2 is shown. Note that QBSOML1 is the same as SOM ig large. Thus, the beautiful properties of
SOM can be kept. However, the deepest descent QBSOM2 method cannot.

™. desired learning
*\ self-regulated learning
external-input-sample

& internal-desired-sample

w @) winner neuron
the conventional SOM method the proposed UQBL method
(compete with current states (compete with desired states)

Fig. 4. The geometric meaning of the presented self-regulation property is demonstrated with the simple example presented in Fig. 3(b). It dan be foun

that the perception of input stimulus will rest on neurons’ expectations as the way humans learn.

B. Self-Organizing with Only Internal-Desired-Samples It represents the force between two spring-connected elements
yyjth positionsW; and W; [36].

Note that the proposed method self-organizes not only wi _ )
external samples, but also with internal desire. Thus, theS the force-directed method has already been applied for

neural system could self-organize with its internal desire if t{8NY optimization problems, i.e., cell placement, scheduling,
external samples are not valid. This self-organization powerdgd robotics control [33]-{37], we can easily extend this force-
really useful in many application problems where the externdrected QBSOM1 method to resolve these problems. For
samples are not exist or are hard to obtain. When SOM §%@mple, in cell placemeny,; can be defined as a function of
being trained without external samples, we can simply u§8%; (the number of wire connections between ceélind ;)

the internal-desired-sample to correspond to the input trainiffyrePresent the topology connectivity between neuroasd
vector without loss of the generalization of behavior contrdt N Such case, the objective function of the cell placement
theory. The original self-organizing algorithm cannot do thi©roblem can be written as follows:

Assume that the parametsy; (t) = 3;(t) x 2n;,(¢) is viewed m m

as the string connected betwee_n elem'en_td ele_menji. I'F can Z Z nij(emiz, t) f(dis(Wi, Wy)). (17)

be found that the query equation described in (14) is similar i=1 j=1

to the force functiondescribed in [33]-[35] for resolving the

optimization problem Since the network query function shown in (14) is similar to

m the force-directed optimization function described in (16), this
Zsiﬂ'(t) x (W;(t) — Wi(h)). (16) Kkind of query-based network model is called “force-directed
=1 self-organizing maps” [38]. The method presented can be
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TABLE |
THE OBTAINED MSE AND TPG FOR SOM, QBSOM1,AND QBSOM2 WBING INPUT
SampLES. U-SET AND G-SET. BotH MESH AND HCUBE NeTwORKS ARE TESTED

MSE SOM QBSOM1 QBSOM2
MESH |U-SET | 8.7643x10? 8.5935x10 9.0647x1073
1.5159x102 1.4728x1072 3.0464x10?

G-SET | 8.4693x10° 8.3245%10° 8.9242x1073
1.0508x1072 1.0501x10 2.8260%102

TPG SOM QBSOM1 QBSOM2
HCUBE | U-SET | 3.3498x10" 3.3635x10! 3.2918x10"
1.5618x10? 1.5482x10° 1.3694x107°

G-SET | 2.6291x107! 2.6316x107 2.5684x10!
1.3537x107 1.3432x10° 0.8505x10?°

easily applied to the optimization problem which has the samnerey;; = 1if < = j or W; is the adjacent neuron of neuron
type of objective function. W;, otherwisey;; = 0; it is applied to measure the quality of
For example, consider a pattern taxonomy problem in whictetwork map’s self-organization.
the similarity between patterns are given and the objectiveThe first training set that contains 5000 input vectors with
was to sequence the individuals on a line into a homogeneaugpseudo) uniform rectangular distribution is called U-SET.
group. Let e¢m;; denote the similarity between patteras To make it easier to understand, we suppose that inputs
and j. This pattern taxonomy problem with the objective;;; and v;; for each two-dimensional (2-D) input sample
function described in (17) can be resolved. Assume that the = (v;1,v;2) has uniform distributions from-1.0 to 1.0.
weight patterns of neuron networks are applied to represent fitee second training set that contains 5000 input vectors with
position of work centers in a job shop, amth;; is defined a (pseudo) Gaussian distribution is called G-SET. In this data
as the quantity of the job flow between work centeend ;. set, the inputsy;; and v;; of each samplé/; are mutually
This job shop problem can also be resolved by the proposedependent and have Gaussian density with zero mean and
QBSOM method. The application of the proposed method tteviations of 0.3. Comparisons have been made with the
different cell placement problems has been shown in [39] andnventional self-organizing algorithm using a simple 2-D
[40]. Experiments show that the obtained results are better theh x 10 mesh-connected network model, called MESH, and
those of the conventional self-organizing algorithms presentadcomplicated six-dimensional 8 2 x 2 x 2 x 2 x 2

in [30], [41], and [42]. hyper-cube network model called HCUBE. Dendt&l” as the
maximum iteration number applied. The learning rafét) is

V. EXPERIMENTAL RESULTS defined as follows:
Our comparison below is based on training neural network a;(t) = 0;(0) x (1 —t/MT). (20)

models (including SOM, QBSOM1, and QBSOM2) with input ] ) . .

samples until termination occurs; and then considering diffef'® Simulation programs [44] are written in C language on a
ent factors to give a quantitative evaluation of the effectivenes§n Sparc-10 workstation.

of the proposed approach. These factors include generalization

for training size requirement, robustness with initializatioA. Solution Quality of Proposed UQBL Algorithms
independence, and solution quality of the experimental resultsin this paper, we first evaluate performance of the pro-

In this paper, both the mean square error (MSE) and the degfe@ed UQBL algorithms through the MESH network and the
of topographicity (TPG) [43] are computed. The function 0HCUBE network with two different input distributions, U-

MSE is defined as follows: SET and G-SET. The obtained MSE and TPG measurements
n o m for SOM, QBSOM1, and QBSOM2 are shown in Table I.

MSE = sz)iﬂ' x dis(V;, W;)?/n (18) Note that these tests all use the same initial weight pattern
i=1j=1 (between—1.0 and 1.0), and all execute with 5000 iterations.

It can be found that QBSOML1 is better than SOM for both

. N the simple MESH network and the complicated HCUBE
with the nearest prototype rule, otherwisg = 0. The degree network. Considering the test results for U-SET with the

of topographicity, TPG, is defined as the mean of aveTagtr S network, the obtained MSE is smaller than that of
distances from a neuron to its adjacent neurons as follows; '

SOM. Moreover, the organized network map obtained by

QBSOML1 is closer to the optimal organized network map

TPG= > ¢i; x dis(W;, W;)/m (19) (TPG = 0.36). In this optimal case, neurons are evenly
i=1j=1 distributed on the sample space and the network map is

where ¢;; = 1 if input sampleV; is assigned to clustelV;

m m
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Fig. 5. The illustration of the obtained MSE and TPG versus the iteration numbers for the proposed QBSOML1. At the first learning stage, the network
map will organize the network map as the self-focus is raised. In such case, the obtained MSE is increasing, but the presented TPG is decreasing.
However, since the querying rate is a decreasing gain term, the environment-focus of the network map will be raised. In this stage, the obtained MSE
is decreasing, but the presented TPG is increasing.

organized. The conventional SOM method also cannot obtaate is a decreasing gain term in QBSOM1, the environment-
this optimal organized network map. Considering the tekicus of the network map will be raised. Then, the neurons will
results for U-SET with the HCUBE network, the obtainedry to represent the input samples with output nodes. In this
MSE is also smaller than that of SOM with 3% decreasestage, the obtained MSE is decreasing, but the presented TPG
When testing with QBSOM2, since neurons with the deepdstincreasing. Fig. 6(b) shows the obtained results of QBSOM1
descent learning method will shrink too much to the mean wfith and without network connections. It has smaller MSE
input distribution, the network map needs more computatidhan that of SOM. The obtained result with minimum TPG
time to expand out. Thus, the obtained MSE for QBSOMgsing the deepest descent QBSOM2 method is shown in
and MESH network is larger than SOM (with 3% increase$)9- 6(c). Fig. 7 shows the obtained MSE and TPG of the
and the obtained TPG is smaller than QBSOM1 (with 2%@eepest descent QBSOM2 method versus iteration number.
decreases). It also demonstrates that the external-input sdme obtained MSE and TPG of SOM are also illustrated with
ples are important and decisive for network training. Theot lines for the comparisons. Note that the obtained TPG for
overconfidence for the effect of internal-desired-samples, suf¥§ deepest descent QBSOM2 method is decreasing very fast
as QBSOM2, usually misleads the pattern clustering procé¥sthe early learning stage, and needs more computation time
and introduces more classification error. Consider the obtairf@d€xpand out the network map. Thus, the obtained MSE is
results for nonuniform distributed G-SET. The increasing rafg"ger than that of SOM.

of MSE obtained by SOM and QBSOM?2 is larger than that

obtained for the uniform distributed U-SET. It is due to th®. Robustness for Different Network Initialization

fact that the neurons at the boundary learn more than thesiapility of competitive learning algorithms largely depends
center neurons do, called the boundary effect. It is the majgy the initial weight pattern of the network model. In this pa-
disadvantage of QBSOM2. , _ per, we have tested SOM, QBSOM1, and QBSOM2 with 100
The illustration of MSE and TPG obtained versus iteratiopgyndomly generated weight patterns to examine the robustness
numbers for QBSOML1 is shown in Fig. 5. Comparisons ag the proposed UQBL approaches. Throughout these investi-
made with SOM with the MESH network. Our experimentgations, the training set U1000 and the network model MESH
indicate that QBSOML1 is better than SOM for system coryre presented with various initialization states for investigating
vergence. In some of the learning process, the variationstpé effect of different initializations in which U1000 is a
MSE are high at the early learning stage as the neighboriggbset of U-SET with 1000 input samples. For each of the
range is large, and gradually converge to a small value as {hgialization states, 5000 iterations are executed. The obtained
neighboring range is small. The initial weights of the presentegsults are shown in Fig. 8, in which the measurements of
MESH network map are set as random values betwedn(d; MSE and TPG are represented by the 2-D points (TPG, MSE).
—1.0) and (1.0, 1.0) as shown in Fig. 6(a). The unorganizedlir experiments indicate that both QBSOM1 and QBSOM?2
network maps with and without connections are shown. Ake insensitive for different initialization of weight patterns.
the first learning stage, the network map will try to organizi can be found that all the obtained results of QBSOM1 are
the network map as the self-focus is raised. In such casesminated at a small range of (TPG, MSE) points, whereas
the obtained MSE is increasing, but the presented TPGS©M obtains different TPG and MSE for different network
decreasing as illustrated in Fig. 5. However, since the queryiimitializations. Note that the obtained (TPG, MSE) results for
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@) (b) ©

Fig. 6. (a) The initial weights of the presented MESH network map are set as random values betde®n—(1.0) and (1.0, 1.0). (b) The obtained
learning results with minimum MSE (by QBSOM1). (c) The obtained learning results with minimum TPG (by QBSOM2). The network maps, with
and without network connections, are shown.

MSE TPG
(x10) MSE (x10) TPG
-------- SOM 3.20 = SOM
— QBSOM2 — QBSOM2
1.0
2.25
0.5
0.0 T e, 220>
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
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Fig. 7. The obtained MSE and TPG of the deepest descent QBSOM2 method versus iteration number is illustrated. Comparisons are also made with the
MSE and TPG obtained for SOM. Note that the obtained TPG for the deepest descent QBSOM2 method is decreasing very fast at the early learning
stage, and needs more computation time to expand out the network map.

QBSOM2 are all eliminated at nearly the same learning resuttased methods are nearly the same. Since the proposed UQBL
However, since the effect of self-focus is too large to makeadgorithm adapts the network map not only with the external-
compromise with the original environment-focus learning (likinput samples but also with the internal-desired-samples, the
a spoiled child), the obtained MSE is larger than that obtainetitained results will not depend only on the external-input
with SOM. Table Il shows the mean and the variance of tt&@mples as those of SOM. It is robust for different network
obtained MSE and TPG for three various learning modéRitialization.

using the MESH network in which G1000, a subset of G-SET

with 1000 input samples, is also tested. It can be found that the Generalization Performance for Various Training Size
variance of the obtained results is smaller than those obtainegh\mong the many competitive learning algorithms, SOM is
by SOM. We have also initialized the network weights at eacibnsidered to be powerful in the sense that it not only clusters
one of the corners of the sample space K1), (1, 1), &1, the input patterns adaptively, but also organizes the output
—1), and &1 ,1)]. They are far away from the center of theneuron topographically. It is different from the classical pattern
input distribution and outside the convex hull of the inputecognition problem which has no topological relations to be
samples. However, the obtained results of the proposed quessganized. In SOM, long computational time is necessary for
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TABLE 1

THE MEAN AND THE VARIANCE OF THE OBTAINED MSE AND TPG FOR SOM, QBSOM1,
AND QBSOM2 WkING THE MESH NETWORK AND THE INPUT SampLES: U1000 AND G1000

SOM QBSOMI1 QBSOM2
U1000 | MSE |mean 8.9094x107 8.7737x10? 9.3293x107
variance 1.8423x107 7.8576x10°16 7.7684x10°7"7
TPG |{mean 3.2941x10 3.3054x10! 3.2531x107
variance 2.5275%10° 4.5685x107* 2.2206x10°1
G1000 | MSE |{mean 7.5431x10° 7.0769x107 7.8259x10?
variance 3.2164x107 2.4376x107"? 1.2673x107"°
TPG |mean 2.5955%107! 2.6139x10" 2.5488x10"
variance 4.3541x10™ 3.5564x101 3.5593x10713

TABLE Il

THE GENERALIZATION PERFORMANCE OF THEAVERAGE DMSE OBTAINED FOR SOM, QBSOM1,
AND QBSOM2 WsING U-SET AND G-SET. BotH MEsH anD HCUBE ARE TESTED

DMSE SOM QBSOM1 QBSOM2
MESH U-SET 0.9252x103 0.9158x107 0.8943x103
G-SET 1.1095%x107 1.0692x103 1.0267x107
HCUBE U-SET 1.2980x103 1.0814x103 1.0406x1073
G-SET 1.3654x107 1.2634x1073 1.2212x107
large sizes of a training set to organize the network map. If the
training size is too small or the training time is too short, the_ 0385 0=SOM
obtained result might be a twist network map. Moreover, th& 2 1 =QBSOMI
generalization performance of the network map that trains witlg  0.83 2=QBSOM2
a smaller data set to test by a larger data set is not acceptab%.
In this paper, we assume DMSE athé difference of MSE g 0.81
between the training results and the testing results g _______
. £ 079 e g
DMSE = (MSE for the testing sét et A 0
72) S e
— (MSE for the training set (21) = o7 : b‘""""ﬁ 3
0.326 0327 0.328 0.329 0.330

It is defined as a kind of measurement for the generalization

performance of the network map. The illustrations of DMSE

for d'ﬁerent tral_nl_ng sizes (from 300 to 5_00(_) Input Sampleﬁ-')ig. 8. The obtained results with 100 randomly generated weight patterns

and different training methods are shown in Fig. 9. Throughoate presented to examine the robustness of the proposed UQBL approaches.

these experiments the Sample set U-SET with 5000 Samg: measurements of MSE and TPG are represented by the 2-D points
! T

TPG (degree of topographicity)

points is tested. It can be found that the obtained DMSE of tofsowr and QBSOMZ. are nsensiive fo diferent iniialization of weight
proposed query-based methods is inversely proportional to ta@erns.

size of training set. However, it is smaller than that obtained
by SOM. Furthermore, the obtained DMSE for the deepest
descent QBSOM2 method is smaller than that of the gradigyt
descent QBSOM1 method. Table Ill shows the generalization _ ) ) ) _
performance for the average DMSE obtained for three variougn this paper, the maximum iteration numbT is pre-
learning models. In this paper, both the MESH network and tg@ecified as 5000. As shown in Fig. 5, the MSE obtained
HCUBE network are tested. It can be found that the proposed QBSOML1 is smaller than 0.25 with only 2000 iteration
UQBL algorithm has good generalization properties for neuréimes. However, it will take over 3000 iteration times using
network training. However, note that small DMSE does n&OM. In this section, a small hyper-cube network with four-
mean that the obtained MSE is also small. For examplimensional 2x 2 x 2 x 2 neurons has been tested with
QBSOM2 has the largest MSE although its obtained DMSdfferent definitions ofda/ 7. Fig. 10(a) shows the experimental
is the smallest one. results for definingM7 = 50000. It can be found that

Self-Organizing with Different Iteration Numbers
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Fig. 9. The illustrations of DMSE for different training sizes (from 300 input samples to 5000 input samples) and different training methods (SOM,
QBSOM1, and QBSOM?2) are demonstrated to show the generalization performance of the proposed UQBL methods. The measurement DMSE is defined
as the difference of MSE between the training results and the testing results.

SOM QBSOM1 QBSOM2

@)

SOM OQBSOM| QBSOM?2

(b)

Fig. 10. The network maps obtained with (a) 5000 iteration times, and (b) with 2500 iteration times. It can be found that although QBSOM2 has better
topographicity features, it has shrunk the network map too much and provided large MSE.

the obtained results for SOM and QBSOML1 are nearly theetwork map shown in Fig. 10(a). However, this shrunken
same if the applied maximum iteration number is really larggetwork provides large MSE and needs more computation
In order to demonstrate the effect for the small maximufimes to expand out to the input sample space.

iteration number, we have tested the same network map with

MT = 2500. The obtained results are shown in Fig. 10(b). VI. CONCLUSION

It can be found that QBSOML1 has obtained better results|n this paper, a novel UQBL algorithm based on the

than that of SOM. Note that the obtained network map fdyehavior control theory is proposed. The network model
the deepest descent QBSOM2 method is really similar to tige queried to respond to its internal-desired samples. It is
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difficult to learn by both the internal-desired sample anps] V. V. Tolat, “An analysis of Kohonen’s self-organizing maps using a

the external-input sample. In this paper, a compromise

made with an intuitive and sound conjecture from huma%sg]
behavior called self-regulation. Although the queried internal0]

desire is aimless and meaningless to minimize MSE, it h

#

a tendency to improve network topographicity. As many

researchers presented, good initial weights for network t&2]
pography will be favorable to the system convergence. Tl[wg]
proposed approach can improve the learning performance by
using the internal-desire to obtain better network topograpHy?!
We have introduced UQBL1 and UQBL2 as two versions gfs;
UQBL methods. Experiments have been applied to Kohonen’s
SOM. The obtained results show that QBSOM has better MmSEel
and TPG, is more insensitive to network initialization, and can

be a significant reduction in the training set. Our future work7]
is to extend this learning procedure to other neural-network

models.
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