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Unsupervised Query-Based Learning of Neural
Networks Using Selective-Attention

and Self-Regulation
Ray-I Chang and Pei-Yung Hsiao

Abstract—Query-based learning (QBL) has been introduced for
training supervised network model with additional queried sam-
ples. Experiments demonstrated that the classification accuracy
is further increased. Although QBL has been successfully applied
to supervised neural networks, it is not suitable for unsupervised
learning models without external supervisors. In this paper, an
unsupervised QBL (UQBL) algorithm using selective-attention
and self-regulation is proposed. Applying the selective-attention,
we can ask the network to respond to its goal-directed behavior
with self-focus. Since there is no supervisor to verify the self-
focus, a compromise is then made to environment-focus with
self-regulation. In this paper, we introduce UQBL1 and UQBL2
as two versions of UQBL; both of them can provide fast con-
vergence. Our experiments indicate that the proposed methods
are more insensitive to network initialization. They have better
generalization performance and can be a significant reduction in
their training size.
“To teach students in accordance with their aptitude” Confucius

Index Terms—Force-directed method, query-based method,
selective attention, self-organizing maps, self regulation, unquper-
vised learning.

I. INTRODUCTION

QUERY-BASED learning (QBL) algorithms have been
applied to many machine-learning applications for pro-
viding correct classification output when presented with

an input query [1], [2]. In the past, this algorithm has been
presented for supervised learning with an additional oracle
supervisor [3]–[5]. The supervisor could be the human expert,
the data base of experimentation, or the computer simulation.
In a supervised neural network, the correct classification output
can easily be obtained after asking the external supervisor.
Then, the queried data with proper input and output informa-
tion can be applied to further refine the classification boundary,
thereby increasing the classification accuracy [3]. Application
of this supervised QBL (SQBL) algorithm has been presented
to resolve various power system problems with great success
[3], [7], [8]. Note that the query oracle presented in the
SQBL model is a prespecified supervisor. Unfortunately, in an
unsupervised neural network, i.e., Kohonen’s self-organizing
feature maps (SOM’s) [15], and Carpenter and Grossberg’s
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adaptive resonance theory (ART) [45], there is no external
supervisor to say what the output should be or whether the
output is correct. Since the external supervisor is not valid, this
SQBL algorithm cannot directly be applied to unsupervised
neural networks. Thus, the development of an unsupervised
QBL (UQBL) algorithm for the neural networks would be
very interesting. In this paper, an UQBL algorithm based
on the behavior control theorywith selective-attentionand
self-regulationis proposed [9], [10].

Behavior control theory proposed by Powers in 1973 has
already been shown to be of considerable value in designing
artificial systems and constructing biological systems [10]. It
provides the underlying basis for the elaborate computing
machines that we all take for granted in human behavior.
This theory suggests that our brain can realize our want and
desire, so the nervous system will try to control external
stimulus with selective-attention and direct to our internal
desires under some self-regulation behaviors [11]. In which,
selectively attending to information originating from within
and concerning the internal self is referred to asself-focus.
Selectively attending to information that originates from the
external environment is termed asenvironment-focus. To sum
this theory, human behavior is less static and stable than the
behavior of lower animals. Thus, it is not only under the
control of physiological factors, but also under the control
of some psychological factors. In this paper, perception of
ambiguous stimulus will rest on humans’ expectations with
selectedself-directive attention[10]. The selective or directive
nature is one of the well-known three aspects of the attention
process presented in cognitive psychology [12]. The degree of
vigilance, another aspect of the attention process, has already
been successfully implemented in Carpenter and Grossberg’s
adaptive resonance theory (ART) model [46]. Besides, the
distribution of observance, diffused or concentrated, is also
one of the aspects of the attention process. Note that when a
training goal is positive for the system, the distinction between
want (self-focus from internal desire) andneed(environment-
focus from external stimulus) is collapsed. However, when a
negative or threatening objective is involved, the distinction
between want and need would be raised. In this, the self-
focus and the environment-focus have different experiential or
behavioral consequences. Thus, the internal-desired-samples
with only self-focus cannot directly be used for neural-network
training. In such cases, the self-regulation property of human
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behavior that tries to make a compromise between need and
want would be followed. In this paper, we apply the self-
regulation property to construct the UQBL model.

With the behavior control theory, the proposed UQBL
algorithm can be applied to generate thereal-used-samples
from the external-input samples(environment-focus) and the
internal-desired-samples(self-focus). Considering a nervous
system with thegoal-directed behavioras shown in [10], we
can ask the system to respond to its internal-desired-samples
with goal-directed selective-attention. As Confucius said, “To
teach students in accordance with their aptitude.” Because
there is no external human expert to verify the correctness
of the queried data, these internal-desired-samples cannot be
used directly. They should be taken to make a compromise
with self-regulation to the external-input-sample. Note that
UQBL is not an anthropomorphic model that disregards the
effect from the external stimulus. On the contrary, it tries to
combine the effect from the external stimulus and the internal
desires, and has shown that both the external stimulus and
the internal desires are important and decisive for network
training. By considering the internal-desired-sample, what is
selected for attention may change from moment to moment
and only depends on the system’s current configuration [10].
The produced real-used-sample has a queried (or competitive)
output label for selective-attention. Since the output label is not
determined by an external supervisor but the network itself, the
proposed algorithm is an unsupervised approach.

In this paper, two versions of UQBL are introduced, UQBL1
and UQBL2. An application example of the proposed UQBL
algorithm to SOM is also demonstrated. Comparisons have
been made with SOM. Experiments indicate that the proposed
method can obtain faster convergence to a self-organized state
and has a final result similar to that of the conventional
approach. The obtained results are insensitive to different
network initialization and can be a significant reduction in
the training set. The organization of this paper is structured
as follows. In Section II, the previous works of QBL are
reviewed. The UQBL algorithm with selective-attention and
self-regulation is described in Section III. An application
example to design the query-based self-organizing feature
map is demonstrated in Section IV. Experimental results and
comparisons are shown in Section V with some discussions.
Finally, Section VI gives our conclusion and future works.

II. REVIEW OF QUERY-BASED LEARNING METHODS

Define the training samples as pairs [ ], where is
an input vector and is the target output vector of input

. Assume that the source of training samples can be simply
modeled as a query oracle. It can give the correct output when
queried with an input. Thus, when ais supplied, would
be told by the query oracle. This additional training sample
[ ] is called thequeried sample.In 1991, Baum [4] had
shown that the QBL paradigm corresponded more closely to
the way humans learn. This method does not only look at
the original training examples, but also utilizes queries to
provide additional training samples and is then told which
output the input vector is assigned. The presented superfluous
query power is practical in many classification problems

where the algorithm can produce additional inputs and be
instructed by an external supervisor to what classification
outputs they correspond. Thus, the classification system can
be further refined by the queried samples. Expansion of the
QBL paradigm to include membership query was proposed
by Valiant [1], and has been subsequently studied by Angluin
[2]. In this paper, the problem of using queries to learn an
unknown concept was considered.

Recently, the neural network community has focused on
learning from input samples and queries [3]–[5], [7]. Consid-
ering multilayer propagation (MLP) with the backpropagation
(BP) algorithm proposed by Rumelhartet al. [13], in which the
output of neuron is binary trained to be either zero or one. Pre-
senting a set of training samples with prespecified labels, the
classification boundary of the neural system is defined as the
set of points which produces an output of Us-
ing the points on the classification boundary, calledboundary
points,a set of conjugate input pairs with significant boundary
information can easily be generated to refine the classification
result. In [4], the boundary point that has maximum ambiguity

was simply produced by the interpolation process be-
tween positive and negative examples. Besides, the inversion
method which allows a user to find one or more input vectors
yields a specific output vector and can also be utilized to
generate these boundary points [3], [7], [8]. Since the inversion
algorithm is a time-consuming iterative procedure, a genetic-
based approach used as a means of achieving neural network
inversion was presented [5]. A simple example with two differ-
ent input samples is shown in Fig. 1 to illustrate the operations
of SQBL. As shown in Fig. 1(a), it can be found that the
presented input samples and are linear-separable as the
bold dash-line, but the real classification boundary is not (see
the dot-line). Thus, although the training time is unlimited and
the training error for these input samples is down to zero, the
classification error for test data is still very large. As shown in
Fig. 1(c), it can be found that the linear-separated classification
boundary is refined as an-type boundary when the boundary
point and the two additional queried samplesand shown
in Fig. 1(b) are presented. Comparing the original classifier
with a linear-separated boundary, the obtained classification
accuracy is further increased.

In conventional QBL algorithms, the query oracle is defined
as a prespecified supervisor. Although they have shown to be
very efficient in SQBL, the prespecified external supervisor
is not existent in unsupervised network models. Note that
the unsupervised learning method has the advantage that
it can automatically classify input vectors without specify-
ing their output labels. The design of a UQBL algorithm
which can learn from examples and queries without specifying
their output labels would be a very attractive and significant
research topic. In this paper, the behavior control theory
that introduces the properties of selective-attention and self-
regulation is presented to design a UQBL algorithm.

III. U NSUPERVISEDQUERY-BASED LEARNING WITH

SELECTIVE-ATTENTION AND SELF-REGULATION

Neural-network models can be divided into two principal
categories, supervised and unsupervised, according to training
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(a) (b) (c)

Fig. 1. A simple example with two different input samples is presented to demonstrate the operation flow of this SQBL method. (a) The original input
samples (A in class 0 andB in class 1) are linear-separable, but the real classification boundary is not. Although the training error is already zero, the
classification accuracy for the test set is still very low. (b) Two additional queried samples (C in class 1 andD in class 0) are produced. (c) The classification
boundary is refined as anS-type boundary. The classification accuracy is further increased.

with or without an external supervisor. Unsupervised neural
networks can automatically group input patterns into several
clusters, such that without prespecifying the target output, each
input pattern can be assigned to a unique cluster label with
the presented adjustment rule. Assume that a set of vectors

which is drawn from some probability distribution is
defined as follows:

(1)

where is the number of training samples. The data point
selectively attending to information of the external environ-
ment is calledenvironment-focus[10]. In this paper, this input
vector is called the external-input-
sample which comes from the-dimensional sample space.
Assume that the architecture of the neural-network model can
be simply presented by a set of weight patterns as follows:

(2)

where is the number of neurons. The weight pattern
that comes from the connection

weights between neuronand its input neurons is called the
state of neuron It changes from moment to moment during
neural-network training.

In unsupervised learning, as there is no supervisor to say
what the output should be, the output vector must be coded
by weight patterns and the input data Note that there
are close connections between neural networks and standard
statistical techniques of pattern classification and analysis
[14]–[16]. Thus, each unsupervised learning system can be
simply modeled by a well-defined quality to
be minimized. As the training set is prespecified, we can
rewrite as Assume that is differentiable regarding

using the iterative gradient descent method, the learning
equation can be defined as follows:

(3)

where is the learning rate for neuronThe well-defined
quality is sometimes called the cost function, the objective
function, or the energy function in previous studies [13],
[17], [18]. This optimization approach is closer to that of the
statisticians.

Note that in the unsupervised learning model, the learning
rate is usually set as a smaller value if neuronis not
the best-matched winner (or set as zero for the winner-take-
all model), in which the winner neuron is defined as the
neuron that is the nearest to the input vector Considering
the unsupervised competitive learning model, we have

for

(4)

where is a general distance measure between vector
and vector such as or Since

just represents thecurrent stateof neuron at time this
processing step is also called “to compete with neurons’ current
states.”

A. Presenting Internal Desires with Selective-Attention

In past years, many phenomena have been presented by
psychologists concerning the regulation of internal states and
perceptual experiences. This approach has been tried to model
human behavior for the preprocessing of input stimulus from
the external world by Newell and Simon [19]. A computer sim-
ulation of the way personality functions has been constructed
by Loehlin [20]. In 1973, Berelson and Steiner [21] showed
that people will tend to see or hear things as they want or
desire to see or hear them. In their studies, hungry persons can
report more food patterns in recognizing vague pictures than
less hungry persons. In the same year, Powers [9] suggested
that our brain can realize what we want and what we desire.
The behavior control theory might be realized in the human
nervous system as shown in [10], in which the nervous system
is not only learned from environment-focus (external-input
samples), but also self-focus (queries of internal desires).

Since the system could improve itself with selectedself-
directive attention,called thegoal-directed behavior[10], we
can ask the nervous system to respond to the question: “What
do you want to learn?” (or “What do you want to be?”).
The response of this question, which selectively attends to
the information of the internal self, is calledself-focus. It can
be defined as a set of labeled data points

(5)
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The data point is called theinternal-
desired-sampleof neuron At each time step we can simply
view that as a constant matrix before network
learning. Thus, the energy functioncan be written as
Assume that is differentiable regarding (or ). By taking
advantage of the duality between weights and the input vectors
in minimizing the internal-desired-sample can be simply
defined as follows:

(6)

where is the gain term for neuron In SQBL [3],
this equation is applied to achievegood training samples. In
this paper, we applied this idea to obtain the internal-desired-
samples. The achieved vector which represents “what the
neuron wants to learn” is the same as the answer of “what
the neuron wants to be.” It can be also called “thedesired
stateof neuron ” as the target desire of

B. Compromising Need and Want with Self-Regulation

In SQBL, the correctness of the queried samples can be
checked and guaranteed by an external supervisor [3]. Un-
fortunately, as there is no external supervisor in UQBL,
the correctness of the queried internal-desired-samples cannot
be guaranteed. The distinction between want and need is
collapsed if the goal is positive. However, when a negative or
threatening objective is involved, callednegative feedback loop
[21], the distinction between want and need would be raised.
Since these queried samples may have a negative objective to
the original input samples, they cannot be directly applied for
neural network training. The regulation procedure that finds
a middle ground between want (internal-desired-sample) and
need (external-input-sample) should be applied [10].

Although various paradigms can be designed for the self-
regulation property of the UQBL, in this paper, thereal-used-
samplesare simply defined as the prespecified external-input
samples with their self-regulated labels. Note that in the
unsupervised neural networks, the reliable information we can
achieve is the external-input samples and the weight patterns
only. These real-used-samples can be defined as follows:

(7)

where input vector corresponds to output label In other
words, neuron is active when is input. In (6), we have
applied the weight patterns to produce the internal-desired-
samples. Since is defined as the internal-desired-sample
of neuron neuron must be the winner when is input.
Now, presenting an external-input-sample we want to
find the nearest internal-desired-sample to provide the
real-used-sample for network training.

Since the input samples are unlabeled in an unsupervised
learning model, neurons should be trained with thecompetitive
rule. Competitive learning is the main tool for training without
supervision. In this paper, we follow this competitive rule to
query the output labels. Assume that an external-input-sample

is presented, then the corresponding active neuroncan
be defined as

for (8)

where is the internal-desired-sample of neuronCognitive
research on this phenomenon has been presented by Duval
and Wicklund [22]. It provided the demonstration that persons
matched their internal behavior to specified external reference
samples. As shown in previous sections, is also called
“the desired stateof neuron ” Thus, the competitive equation
described above can be viewed as “to compete with neurons’
desired states.” It is different from the traditional algorithms
to compete with neurons’ current states [see (4)].

C. Two Versions of Unsupervised Query-Based Learning

The behavior control theory with selective-attention and
self-regulation can be successfully applied for UQBL. The
UQBL method with an iterative gradient descent method to
produce the internal-desired-sample has been shown in (6).
However, this iterative method will take more computation
time and more memory space to store temporary results. In
order to avoid these disadvantages, a small modification of the
internal-desired-sample was made. Since the internal-desired-
sample is just the target desire of we can simply
assume that without loss of generality. Thus,
the definition of the internal-desired-sample can be simply
rewritten as follows:

(9)

This version of the presented procedure, which produces the
internal-desired-sample without using time-consuming itera-
tive computations, is called UQBL1. Note that, ifis large and

(said “the system is tired”), the proposed UQBL1
method is the same as the original unsupervised learning
method as in (8). Thus, the characteristics of
the original unsupervised learning method can be guaranteed.

Note that the “optimization” described in UQBL1 only
means local gradient steps. When we apply the deepest descent
in the continuous landscape, the internal-desired-sample of
neuron can be defined as a vector to fulfill the following
conditions:

and (10)

UQBL with the deepest descent method to obtaining the
internal-desired-sample is the second version of the proposed
UQBL method, called UQBL2. Descriptions about the opti-
mization methods which can be applied for the generation of
the internal-desired-samples are shown in [23]. Fig. 2 shows
the system architectures of the conventional unsupervised
learning model and the proposed UQBL model. Note that the
internal-desired-samples are generated with selective-attention.
Then, these internal desires are trying to make a compromise
to the external-input-sample with self-regulation. In this paper,
a simple example is presented to design a QBL algorithm for
Kohonen’s SOM.

IV. A N APPLICATION EXAMPLE TO

KOHONEN’S SELF-ORGANIZING MAPS

SOM proposed by Kohonen [15] is an ordered mapping
of a high-dimensional input space which maps onto a low-
dimensional discrete neuron topology. This dimensional re-
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(a)

(b)

Fig. 2. (a) The system architecture of conventional unsupervised learn-
ing models. (b) The system architecture of the proposed UQBL model.
The internal-desired-samples (neurons’ self-focus) are first generated with
selective-attention. Then, the winner neuron is obtained by compromising
self-focus and environment-focus (external-input sample) with self-regulation.
It is different from the conventional self-organization algorithm, which learns
with only environment-focus.

duction allows us to easily visualize important relationships
among the data. It is considered one of the most powerful
methods that creates topographic maps. In the past, many
different applications have been presented with great achieve-
ment [24]–[30]. In this paper, an application example of the
proposed UQBL algorithm to SOM is presented. In addition,
some particular applications of the proposed learning model
to self-organize with only internal-desired-samples have also
been illustrated.

A. Query-Based Self-Organizing Feature Maps

The objective of SOM is to competitively find the best
matching winner and adapt the weights between input and
output neurons, so that the output neurons become sensitive to
different inputs in an organized manner. Letbe the data point
in a set of training samples. The “winner” neuronis defined
as (4), in which the input vector is presented. In [18], the
global objective function of SOM has been defined as follows:

(11)

where function of quantization error is first
weighted by the neighborhood function and then aver-
aged. As the training samples are presented in a stochastic
manner, we can rewrite the objective function as the
sample function following the Robbins–Monro stochastic
approximation method [31]. Assume that the input vector
presented at time is The sample function can be

defined as follows:

(12)

For example, if denotes the Euclidean distance
between and and function Using the
iterative gradient descent method described in (3), the learning
equation can be obtained as

(13)

where is the time-decreasing learning rate. For example,
we can simply define as the variable
where is a constant value between zero and one.

The above technique has already been studied with mathe-
matical rigor, and, in particular, the convergence properties
are known [18], [32]. In this paper, we apply the same
method to generate the internal-desired-samplefor neuron

Considering (9) and (12), the two versions of the internal-
desired-sample of SOM can be defined as follows.

For UQBL1

(14)

For UQBL2

(15)

where is a gain term. Since the gain term is called
the learning rate for the learning equation (13), we can call the
gain term as thequerying ratefor the querying equation.
Using the self-regulation technique described in (8), the real-
used-sample with output label can be easily obtained.
The step-by-step description of the proposed UQBL algorithm
for the self-organizing feature map is shown as follows.

1) Initialize weights.
2) Generate internal-desired-samples.
3) Present a new external-input-sample.
4) Calculate distance from external-input-sample to all

internal-desired-samples.
5) Select winner neuron with minimum distance.
6) Update weights of winner neuron and its neighbors.
7) If system is not convergent, then go to Step 2).

The proposed network model is called query-based SOM
(QBSOM). Examples demonstrating the produced internal-
desired-samples for these two versions of QBSOM are shown
in Fig. 3. Note that if is large and QBSOM1 is the
same as SOM. Thus, the beautiful system properties of SOM
can be kept. However, the deepest descent QBSOM2 method
cannot do this. The geometric meaning of the presented
QBSOM is demonstrated in Fig. 4 with the example presented
in Fig. 3. It can be found that the perception of input stimulus
will rest on neurons’ expectations as the way humans learn. In
other words, the network is organized with neurons’ desired
states.
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(a) (b)

Fig. 3. (a) A simple example is presented to demonstrate the produced internal-desired-sampleu of neuron w with QBSOM1. (b) The produced
internal-desired-sampleu of neuronw with QBSOM2 is shown. Note that QBSOM1 is the same as SOM ift is large. Thus, the beautiful properties of
SOM can be kept. However, the deepest descent QBSOM2 method cannot.

Fig. 4. The geometric meaning of the presented self-regulation property is demonstrated with the simple example presented in Fig. 3(b). It can be found
that the perception of input stimulusv will rest on neurons’ expectationsu as the way humans learn.

B. Self-Organizing with Only Internal-Desired-Samples

Note that the proposed method self-organizes not only with
external samples, but also with internal desire. Thus, the
neural system could self-organize with its internal desire if the
external samples are not valid. This self-organization power is
really useful in many application problems where the external
samples are not exist or are hard to obtain. When SOM is
being trained without external samples, we can simply use
the internal-desired-sample to correspond to the input training
vector without loss of the generalization of behavior control
theory. The original self-organizing algorithm cannot do this.
Assume that the parameter is viewed
as the string connected between elementand element It can
be found that the query equation described in (14) is similar
to the force functiondescribed in [33]–[35] for resolving the
optimization problem

(16)

It represents the force between two spring-connected elements
with positions and [36].

As the force-directed method has already been applied for
many optimization problems, i.e., cell placement, scheduling,
and robotics control [33]–[37], we can easily extend this force-
directed QBSOM1 method to resolve these problems. For
example, in cell placement, can be defined as a function of

(the number of wire connections between cellsand )
to represent the topology connectivity between neuronsand

In such case, the objective function of the cell placement
problem can be written as follows:

(17)

Since the network query function shown in (14) is similar to
the force-directed optimization function described in (16), this
kind of query-based network model is called “force-directed
self-organizing maps” [38]. The method presented can be
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TABLE I
THE OBTAINED MSE AND TPG FOR SOM, QBSOM1,AND QBSOM2 USING INPUT

SAMPLES: U-SET AND G-SET. BOTH MESH AND HCUBE NETWORKS ARE TESTED

easily applied to the optimization problem which has the same
type of objective function.

For example, consider a pattern taxonomy problem in which
the similarity between patterns are given and the objective
was to sequence the individuals on a line into a homogeneous
group. Let denote the similarity between patterns
and This pattern taxonomy problem with the objective
function described in (17) can be resolved. Assume that the
weight patterns of neuron networks are applied to represent the
position of work centers in a job shop, and is defined
as the quantity of the job flow between work centersand
This job shop problem can also be resolved by the proposed
QBSOM method. The application of the proposed method to
different cell placement problems has been shown in [39] and
[40]. Experiments show that the obtained results are better than
those of the conventional self-organizing algorithms presented
in [30], [41], and [42].

V. EXPERIMENTAL RESULTS

Our comparison below is based on training neural network
models (including SOM, QBSOM1, and QBSOM2) with input
samples until termination occurs; and then considering differ-
ent factors to give a quantitative evaluation of the effectiveness
of the proposed approach. These factors include generalization
for training size requirement, robustness with initialization
independence, and solution quality of the experimental results.
In this paper, both the mean square error (MSE) and the degree
of topographicity (TPG) [43] are computed. The function of
MSE is defined as follows:

MSE (18)

where if input sample is assigned to cluster
with the nearest prototype rule, otherwise The degree
of topographicity, TPG, is defined as the mean of average
distances from a neuron to its adjacent neurons as follows:

TPG (19)

where if or is the adjacent neuron of neuron
otherwise ; it is applied to measure the quality of

network map’s self-organization.
The first training set that contains 5000 input vectors with

a (pseudo) uniform rectangular distribution is called U-SET.
To make it easier to understand, we suppose that inputs

and for each two-dimensional (2-D) input sample
has uniform distributions from 1.0 to 1.0.

The second training set that contains 5000 input vectors with
a (pseudo) Gaussian distribution is called G-SET. In this data
set, the inputs and of each sample are mutually
independent and have Gaussian density with zero mean and
deviations of 0.3. Comparisons have been made with the
conventional self-organizing algorithm using a simple 2-D
10 10 mesh-connected network model, called MESH, and
a complicated six-dimensional 2 2 2 2 2 2
hyper-cube network model called HCUBE. Denote as the
maximum iteration number applied. The learning rate is
defined as follows:

(20)

The simulation programs [44] are written in C language on a
Sun Sparc-10 workstation.

A. Solution Quality of Proposed UQBL Algorithms

In this paper, we first evaluate performance of the pro-
posed UQBL algorithms through the MESH network and the
HCUBE network with two different input distributions, U-
SET and G-SET. The obtained MSE and TPG measurements
for SOM, QBSOM1, and QBSOM2 are shown in Table I.
Note that these tests all use the same initial weight pattern
(between 1.0 and 1.0), and all execute with 5000 iterations.
It can be found that QBSOM1 is better than SOM for both
the simple MESH network and the complicated HCUBE
network. Considering the test results for U-SET with the
MESH network, the obtained MSE is smaller than that of
SOM. Moreover, the organized network map obtained by
QBSOM1 is closer to the optimal organized network map
(TPG ). In this optimal case, neurons are evenly
distributed on the sample space and the network map is
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Fig. 5. The illustration of the obtained MSE and TPG versus the iteration numbers for the proposed QBSOM1. At the first learning stage, the network
map will organize the network map as the self-focus is raised. In such case, the obtained MSE is increasing, but the presented TPG is decreasing.
However, since the querying rate is a decreasing gain term, the environment-focus of the network map will be raised. In this stage, the obtained MSE
is decreasing, but the presented TPG is increasing.

organized. The conventional SOM method also cannot obtain
this optimal organized network map. Considering the test
results for U-SET with the HCUBE network, the obtained
MSE is also smaller than that of SOM with 3% decreases.
When testing with QBSOM2, since neurons with the deepest
descent learning method will shrink too much to the mean of
input distribution, the network map needs more computation
time to expand out. Thus, the obtained MSE for QBSOM2
and MESH network is larger than SOM (with 3% increases)
and the obtained TPG is smaller than QBSOM1 (with 2%
decreases). It also demonstrates that the external-input sam-
ples are important and decisive for network training. The
overconfidence for the effect of internal-desired-samples, such
as QBSOM2, usually misleads the pattern clustering process
and introduces more classification error. Consider the obtained
results for nonuniform distributed G-SET. The increasing rate
of MSE obtained by SOM and QBSOM2 is larger than that
obtained for the uniform distributed U-SET. It is due to the
fact that the neurons at the boundary learn more than the
center neurons do, called the boundary effect. It is the major
disadvantage of QBSOM2.

The illustration of MSE and TPG obtained versus iteration
numbers for QBSOM1 is shown in Fig. 5. Comparisons are
made with SOM with the MESH network. Our experiments
indicate that QBSOM1 is better than SOM for system con-
vergence. In some of the learning process, the variations of
MSE are high at the early learning stage as the neighboring
range is large, and gradually converge to a small value as the
neighboring range is small. The initial weights of the presented
MESH network map are set as random values between (1.0,

1.0) and (1.0, 1.0) as shown in Fig. 6(a). The unorganized
network maps with and without connections are shown. At
the first learning stage, the network map will try to organize
the network map as the self-focus is raised. In such case,
the obtained MSE is increasing, but the presented TPG is
decreasing as illustrated in Fig. 5. However, since the querying

rate is a decreasing gain term in QBSOM1, the environment-
focus of the network map will be raised. Then, the neurons will
try to represent the input samples with output nodes. In this
stage, the obtained MSE is decreasing, but the presented TPG
is increasing. Fig. 6(b) shows the obtained results of QBSOM1
with and without network connections. It has smaller MSE
than that of SOM. The obtained result with minimum TPG
using the deepest descent QBSOM2 method is shown in
Fig. 6(c). Fig. 7 shows the obtained MSE and TPG of the
deepest descent QBSOM2 method versus iteration number.
The obtained MSE and TPG of SOM are also illustrated with
dot lines for the comparisons. Note that the obtained TPG for
the deepest descent QBSOM2 method is decreasing very fast
at the early learning stage, and needs more computation time
to expand out the network map. Thus, the obtained MSE is
larger than that of SOM.

B. Robustness for Different Network Initialization

Stability of competitive learning algorithms largely depends
on the initial weight pattern of the network model. In this pa-
per, we have tested SOM, QBSOM1, and QBSOM2 with 100
randomly generated weight patterns to examine the robustness
of the proposed UQBL approaches. Throughout these investi-
gations, the training set U1000 and the network model MESH
are presented with various initialization states for investigating
the effect of different initializations in which U1000 is a
subset of U-SET with 1000 input samples. For each of the
initialization states, 5000 iterations are executed. The obtained
results are shown in Fig. 8, in which the measurements of
MSE and TPG are represented by the 2-D points (TPG, MSE).
Our experiments indicate that both QBSOM1 and QBSOM2
are insensitive for different initialization of weight patterns.
It can be found that all the obtained results of QBSOM1 are
terminated at a small range of (TPG, MSE) points, whereas
SOM obtains different TPG and MSE for different network
initializations. Note that the obtained (TPG, MSE) results for
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(a) (b) (c)

Fig. 6. (a) The initial weights of the presented MESH network map are set as random values between (�1.0, �1.0) and (1.0, 1.0). (b) The obtained
learning results with minimum MSE (by QBSOM1). (c) The obtained learning results with minimum TPG (by QBSOM2). The network maps, with
and without network connections, are shown.

Fig. 7. The obtained MSE and TPG of the deepest descent QBSOM2 method versus iteration number is illustrated. Comparisons are also made with the
MSE and TPG obtained for SOM. Note that the obtained TPG for the deepest descent QBSOM2 method is decreasing very fast at the early learning
stage, and needs more computation time to expand out the network map.

QBSOM2 are all eliminated at nearly the same learning result.
However, since the effect of self-focus is too large to make a
compromise with the original environment-focus learning (like
a spoiled child), the obtained MSE is larger than that obtained
with SOM. Table II shows the mean and the variance of the
obtained MSE and TPG for three various learning models
using the MESH network in which G1000, a subset of G-SET
with 1000 input samples, is also tested. It can be found that the
variance of the obtained results is smaller than those obtained
by SOM. We have also initialized the network weights at each
one of the corners of the sample space [(1,1), (1, 1), ( 1,

1), and ( 1 ,1)]. They are far away from the center of the
input distribution and outside the convex hull of the input
samples. However, the obtained results of the proposed query-

based methods are nearly the same. Since the proposed UQBL
algorithm adapts the network map not only with the external-
input samples but also with the internal-desired-samples, the
obtained results will not depend only on the external-input
samples as those of SOM. It is robust for different network
initialization.

C. Generalization Performance for Various Training Size

Among the many competitive learning algorithms, SOM is
considered to be powerful in the sense that it not only clusters
the input patterns adaptively, but also organizes the output
neuron topographically. It is different from the classical pattern
recognition problem which has no topological relations to be
organized. In SOM, long computational time is necessary for
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TABLE II
THE MEAN AND THE VARIANCE OF THE OBTAINED MSE AND TPG FOR SOM, QBSOM1,

AND QBSOM2 USING THE MESH NETWORK AND THE INPUT SAMPLES: U1000 AND G1000

TABLE III
THE GENERALIZATION PERFORMANCE OF THEAVERAGE DMSE OBTAINED FOR SOM, QBSOM1,

AND QBSOM2 USING U-SET AND G-SET. BOTH MESH AND HCUBE ARE TESTED

large sizes of a training set to organize the network map. If the
training size is too small or the training time is too short, the
obtained result might be a twist network map. Moreover, the
generalization performance of the network map that trains with
a smaller data set to test by a larger data set is not acceptable.
In this paper, we assume DMSE as “the difference of MSE”
between the training results and the testing results

DMSE MSE for the testing set

MSE for the training set (21)

It is defined as a kind of measurement for the generalization
performance of the network map. The illustrations of DMSE
for different training sizes (from 300 to 5000 input samples)
and different training methods are shown in Fig. 9. Throughout
these experiments, the sample set U-SET with 5000 sample
points is tested. It can be found that the obtained DMSE of the
proposed query-based methods is inversely proportional to the
size of training set. However, it is smaller than that obtained
by SOM. Furthermore, the obtained DMSE for the deepest
descent QBSOM2 method is smaller than that of the gradient
descent QBSOM1 method. Table III shows the generalization
performance for the average DMSE obtained for three various
learning models. In this paper, both the MESH network and the
HCUBE network are tested. It can be found that the proposed
UQBL algorithm has good generalization properties for neural
network training. However, note that small DMSE does not
mean that the obtained MSE is also small. For example,
QBSOM2 has the largest MSE although its obtained DMSE
is the smallest one.

Fig. 8. The obtained results with 100 randomly generated weight patterns
are presented to examine the robustness of the proposed UQBL approaches.
The measurements of MSE and TPG are represented by the 2-D points
(TPG, MSE). Our experiments indicate that the proposed UQBL approaches,
QBSOM1 and QBSOM2, are insensitive for different initialization of weight
patterns.

D. Self-Organizing with Different Iteration Numbers

In this paper, the maximum iteration numberMT is pre-
specified as 5000. As shown in Fig. 5, the MSE obtained
by QBSOM1 is smaller than 0.25 with only 2000 iteration
times. However, it will take over 3000 iteration times using
SOM. In this section, a small hyper-cube network with four-
dimensional 2 2 2 2 neurons has been tested with
different definitions of Fig. 10(a) shows the experimental
results for defining . It can be found that
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Fig. 9. The illustrations of DMSE for different training sizes (from 300 input samples to 5000 input samples) and different training methods (SOM,
QBSOM1, and QBSOM2) are demonstrated to show the generalization performance of the proposed UQBL methods. The measurement DMSE is defined
as the difference of MSE between the training results and the testing results.

(a)

(b)

Fig. 10. The network maps obtained with (a) 5000 iteration times, and (b) with 2500 iteration times. It can be found that although QBSOM2 has better
topographicity features, it has shrunk the network map too much and provided large MSE.

the obtained results for SOM and QBSOM1 are nearly the
same if the applied maximum iteration number is really large.
In order to demonstrate the effect for the small maximum
iteration number, we have tested the same network map with

. The obtained results are shown in Fig. 10(b).
It can be found that QBSOM1 has obtained better results
than that of SOM. Note that the obtained network map for
the deepest descent QBSOM2 method is really similar to the

network map shown in Fig. 10(a). However, this shrunken
network provides large MSE and needs more computation
times to expand out to the input sample space.

VI. CONCLUSION

In this paper, a novel UQBL algorithm based on the
behavior control theory is proposed. The network model
is queried to respond to its internal-desired samples. It is
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difficult to learn by both the internal-desired sample and
the external-input sample. In this paper, a compromise is
made with an intuitive and sound conjecture from human
behavior called self-regulation. Although the queried internal-
desire is aimless and meaningless to minimize MSE, it has
a tendency to improve network topographicity. As many
researchers presented, good initial weights for network to-
pography will be favorable to the system convergence. The
proposed approach can improve the learning performance by
using the internal-desire to obtain better network topography.
We have introduced UQBL1 and UQBL2 as two versions of
UQBL methods. Experiments have been applied to Kohonen’s
SOM. The obtained results show that QBSOM has better MSE
and TPG, is more insensitive to network initialization, and can
be a significant reduction in the training set. Our future work
is to extend this learning procedure to other neural-network
models.
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