

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

適用於雙重視訊標準的可調式動作補償記憶體架構

A Flexible Motion Compensation Memory Organization

for Dual-standard Video Decoder

學生 ： 王勝仁

指導教授 ： 李鎮宜 教授

中華民國九十四年六月

適用於雙重視訊標準的可調式動作補償記憶體架構

A Flexible Motion Compensation Memory Organization

for Dual-standard Video Decoder

研 究 生：王勝仁 Student：Sheng-Zen Wang

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學
電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

適用於雙重視訊標準的可調式動作補償記憶體架構

學生：王勝仁 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

近年來，對於已被先進的數位電視廣播系統採用的 MPEG-2 和 H.264/AVC 視訊

標準，其需求是很必要的，動作補償的計算量通常占了整個視訊解碼系統的大多數，這

是由於它需要對儲存畫面的記憶體有相當大量的資料傳輸。特別在目前最先進的 H.264/

AVC 視訊標準支援了更高的移動解析度，因而使得所需的記憶體頻寬大量增加。我們

提出的擴充性 2x2 光柵式掃描(extended 2x2 raster scanning order)除了可有效地減少所

需的記憶體頻寬之外，同時維持和殘餘係數解碼器相同的解碼順序。和傳統的架構相較

之下，針對 MPEG-2/ H.264 提出可重新架構的小數點內插器，可省下 20 % 的邏輯閘

數量。此外，針對視訊解碼器而提出的 SDRAM 畫面記憶體存取控制器可將頻寬使用

率提升至 85 ~90 % 且減少資料存取的延遲達 50 ~90%。在這同時，整個視訊解碼器的

資料量處理能力也會提升。我們的視訊解碼器合併了 H.264 Baseline Profile @ 3.2 Level

和 MPEG-2 Simple Profile @ Main Level，而高畫質視訊的即時解碼能力對 H.264 而言

可達到 720 HD @ 56 MHz，對 MPEG-2 而言可達到 1080 HD @ 79.4 MHz，而總邏輯

閘數量為 491 K，其中包含 23.5 KB 的 on-chip SRAM。

A Flexible Motion Compensation Memory Organization

for Dual-standard Video Decoder

Student : Sheng-Zen Wang Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

In recent year, MPEG-2 and H.264/AVC video decoding system, which has been adopted
by the advanced digital video broadcasting terrestrial/handheld (DVB-T/H) system, is in great
demand. The computation time of motion compensation always dominates the entire video
decoding system due to the tremendous data transfer with frame memories. Especially in the
state-of-the-art video standard, H.264/ AVC, the requisite memory bandwidth is greatly
increased because the higher motion resolution requires larger interpolation. The proposed
data-reuse technique, extended 2 x 2 raster scanning order, can efficiently reduce the required
memory bandwidth when maintaining the same decoding order as that of residual decoding.
The proposed reconfigurable interpolator providing fractional interpolation for
MPEG-2/H.264 can reduce 20 % gate count compared to traditional design. In addition, the
proposed SDRAM frame memory access controller for video decoder increases the bandwidth
utilization up to 85~95%, and reduces access latency by 50 ~90% compared to the
un-scheduling memory access. In the meanwhile, the throughput of our video decoder is also
improved. Our video decoder combined H.264 Baseline Profile @ 3.2 Level and MPEG-2
Simple Profile @ Main Level and the decoding capability of high definition television can
reach 720HD at 56 MHz for H.264, 1080HD at 79.4 MHz for MPEG-2 real-time video
decoding with total 491K gate count included 23.5 KB on-chip SRAM.

Acknowledgements

I would like to express my deepest gratitude to my advisor Dr. Chen-Yi Lee for his

sophomore enthusiastic guidance and encouragement throughout the research, and

wholeheartedly give him and his family my best wishes.

Moreover, I would like to thank NSC for their financial support, my senior Si2

multimedia group mates Tsu-Ming Liu for his great help during my research, and Ting-An

Lin for his powerful integration on the entire video decoder platform. Especially, I want to

thank sincerely VLSI SP Lab mates Yen-Chung Chang (Nelson) for his selfless suggestion

and guidance about memory controller and organization. In addition, I would like to thank all

members of Si2 group of NCTU for plenty of fruitful assistance and all engineers of CIC for

their CAD supporting.

Finally, I give the greatest respect and love to my family and all my friends for their

support and encouragement, and I want to express my highest appreciation. I hope them

happy and happy forever.

 i

Contents

CHAPTER 1 INTRODUCTION...1

1.1 MOTIVATION..1

1.2 THESIS ORGANIZATION..3

CHAPTER 2 ALGORITHM DESCRIPTION AND ANALYSIS ..4

2.1 PROFILING ...6

2.2 INTER PREDICTION ALGORITHM FOR H.264/AVC STANDARD7

2.3 COMPARISON AMONG DIFFERENT VIDEO STANDARDS ...10

2.4 SUMMARY ...13

CHAPTER 3 MOTION COMPENSATION DESIGN FOR MPEG-2/H.264 VIDEO

DECODER ..14

3.1 MOTION COMPENSATION ENGINE FOR H.264/AVC DECODER15

3.1.1 Motion Vector Generator..16

3.1.2 Data Reuse Technique for Interpolator ..20

3.1.3 Analysis for Data Reuse Technique ..23

3.1.4 Luma Interpolator Design ..26

3.1.5 Chroma Interpolator Design ..30

3.2 COMBINED MOTION COMPENSATION ENGINE FOR MPEG-2/H.264 DUAL VIDEO

DECODER...32

 ii

3.2.1 Reconfigurable dual-standard interpolator design ..33

3.2.2 Cost Analysis ..39

3.3 SUMMARY ...40

CHAPTER 4 FRAME MEMORY ORGANIZATION ...41

4.1 SDRAM CHARACTERISTIC..46

4.1.1 Basics..46

4.1.2 Access Latency..48

4.2 DUAL CHANNEL FRAME MEMORY ACCESS CONTROLLER ...51

4.2.1 Memory Access Scheduling ..52

4.2.2 Data Arrangement ..59

4.2.3 Dual-channel Frame Memory access controller Design..................................62

4.2.4 Experiment Result...66

4.3 MERGING STRUCTURED FRAME MEMORY ORGANIZATION..73

4.3.1 Analysis...74

4.4 SUMMARY ...76

CHAPTER 5 CHIP IMPLEMENTATION ..77

5.1 CHIP SPECIFICATION ..77

5.2 COMPARISON WITH RELATED WORKS..80

CHAPTER 6 CONCLUSION AND FUTURE WORK...82

6.1 CONCLUSION ...82

6.2 FUTURE WORK ..83

BIBLIOGRAPHY...85

 iii

List of Figures

FIG. 1.1 TYPICAL COMMUNICATION MODEL BASED ON DVB SYSTEM ..2

FIG. 2.1 GENERAL STRUCTURE OF H.264 ENCODER ...4

FIG. 2.2 GENERAL STRUCTURE OF H.264 DECODER ...4

FIG. 2.3 GENERAL STRUCTURE OF MPEG-2 ENCODER ..5

FIG. 2.4 GENERAL STRUCTURE OF MPEG-2 DECODER ..5

FIG. 2.1 H.264/AVC VIDEO DECODER SOFTWARE PROFILE ON ARM PROCESSOR (JM 8.2)..........6

FIG. 2.2 MACROBLOCK PARTITIONS AND SUB-MACROBLOCK PARTITIONS7

FIG. 2.3 (A) LUMA HALF SAMPLE WITH 6-TAP FIR, (B) LUMA HORIZONTAL/VERTICAL QUARTER

SAMPLE WITH BILINEAR FILTER, (C) LUMA DIAGONAL QUARTER SAMPLE WITH BILINEAR

FILTER, (D) CHROMA SAMPLE WITH BILINEAR FILTER. UPPER-CASE LETTERS INDICATE THE

FULL SAMPLES AND LOWER-CASE LETTER INDICATES THE INTERPOLATED FRACTIONAL

SAMPLES..8

FIG. 2.4 (A) DIRECTIONAL PREDICTION FOR 8 X 16 BLOCK SIZE, (B) DIRECTIONAL PREDICTION

FOR 16 X 8 BLOCK SIZE, (C) MEDIAN PREDICTION..9

FIG. 2.5 LUMA INTEGER/FRACTIONAL MOTION VECTOR PROPORTION FOR H.264/AVC..............12

FIG. 2.6 CHROMA INTEGER/FRACTIONAL MOTION VECTOR PROPORTION FOR H.264/AVC12

FIG 3.3 NEIGHBORING MOTION VECTORS NEEDED WHEN DECODING ALL MOTION VECTORS IN

CURRENT MACROBLOCK ..17

FIG 3.4 (A) MOTION VECTOR GENERATOR ARCHITECTURE FOR QCIF-FORMAT, (B) MV BUFFER

UNIT...18

 iv

FIG. 3.5 TWO-LEVEL MEMORY HIERARCHICAL STRUCTURE FOR MVP18

FIG 3.6 (A) BLOCK SIZE_POSITION INDEX, (B) DIRECTIONAL PREDICTION TABLE (16X8, 8X16), (C)

MEDIAN PREDICTION TABLE (16X16, 8X8), (D) MEDIAN PREDICTION TABLE (4X4).............19

FIG 3.7 (A) 4X4 BLOCK WINDOW AND THE CORRESPONDING 9X9 INTERPOLATION WINDOW, (B)

OVERLAPPED REGION FOR NEIGHBORING INTERPOLATION WINDOW...................................20

FIG 3.8 (A) 2X2 RASTER SCANNING ORDER, (B) ROW-MAJOR 2X2 RASTER SCANNING ORDER, (C)

COLUMN-MAJOR 2X2 RASTER SCANNING ORDER ...20

FIG 3.9 (A) 2X2 RASTER SCANNING ORDER, (B) 4X4 RASTER SCANNING ORDER, (C) EXTENDED

2X2 RASTER SCANNING ORDER ..21

FIG 3.10 SYNCHRONIZATION BUFFER SCHEME FOR TWO DIFFERENT SCANNING ORDER IN INTER

PREDICTION (A) 2X2 RASTER SCANNING ORDER, (B) 4X4 RASTER SCANNING ORDER.........21

FIG. 3.11 CONTENT-SWAP OPERATION (INTERPOLATOR WITH ATTACHED CONTENT BUFFER).......22

FIG. 3.12 AN EXAMPLE OF MACROBLOCK PARTITION (1, 3) INDICATES (MV_X, MV_Y)............22

FIG. 3.13 BLOCK PROPORTION UNDER DIFFERENT BIT-RATE ENVIRONMENTS25

FIG. 3.14 REQUIRED MEMORY BANDWIDTH FOR DIFFERENT METHODS25

FIG 3.15 (A) ADDER-CHAIN BASED [10], (B) ADDER-TREE BASED [11] 1-D LINEAR

INTERPOLATOR DESIGN ..26

FIG. 3.16 SEPARATE 1-D INTERPOLATOR DESIGN (NO PARALLEL)...26

FIG. 3.17 4-PARALLEL SEPARATE 1-D LUMA INTERPOLATOR WITH CONTENT BUFFER29

FIG 3.18 INTERPOLATION WINDOW FOR EACH 2 X 2 CHROMA BLOCK...30

FIG. 3.19 (A) CHROMA INTERPOLATOR, (B) VERTICAL/HORIZONTAL FILTER30

FIG. 3.20 2-PARALLEL CHROMA INTERPOLATOR ...31

FIG. 3.21 MOTION COMPENSATION ENGINE FOR H.264/MPEG-2 DECODER...............................32

FIG. 3.22 MPEG-2 MOTION COMPENSATION ENGINE PART..33

FIG. 3.23 SHARED LOCAL REGISTERS AND BILINEAR FILTERS FOR MPEG-2...............................34

FIG. 3.24 DATA FLOW OF (A) VERTICAL BILINEAR FILTER, (B) HORIZONTAL BILINEAR FILTER, (C)

 v

BOTH VERTICAL AND HORIZONTAL BILINEAR FILTER ..35

FIG. 3.25 (A) DECODING SCANNING ORDER BASED ON 8 X 8 BLOCK FOR EACH MACROBLOCK,

(B) 4-PIXEL PARALLEL OUTPUT ORDER FOR EACH 8 X 8 BLOCK..36

FIG. 3.26 (A) LUMA FIR DESIGN IN CHEN’S [9], (B) BILINEAR FILTER..36

FIG. 3.26 COMBINED LUMA/CHROMA INTERPOLATOR DESIGN FOR H.26437

FIG. 3.27 (A) PATH OF LUMA FIR INTERPOLATOR, (B) PATH OF CHROMA 1/8 BILINEAR...............37

FIG. 3.27 SHARED LOCAL REGISTER AND RECONFIGURABLE INTERPOLATOR FOR H.264

CHROMA INTERPOLATION...38

FIG. 4.1 FRAME RECOMPRESSION METHOD ..45

FIG. 4.2 SIMPLIFIED ARCHITECTURE OF A 4-BANK SDRAM...46

FIG 4.3 SIMPLIFIED BANK STATE DIAGRAM ..46

FIG. 4.4 BURST READ OPERATION WITH CL=3 AND BL=4..47

FIG. 4.5 BURST WRITE OPERATION WITH CL=3 AND BL=4. ...48

FIG. 4.6 ACCESS LATENCY FOR CL=2 (A) READ ACCESS LATENCY, (B) WRITE ACCESS LATENCY 49

FIG. 4.7 READ COMMAND WITH AUTO PRECHARGE IN THE PRECHARGE PERIOD (TRP), SDRAM

CANNOT ISSUE ANOTHER COMMAND IN THE SAME BANK (BANK 0)..................................50

FIG. 4.8 READ/WRITE OPERATION IN (A) I FRAME, (B) P FRAME, (C) B FRAME.51

FIG. 4.9 TWO ROW-MISS UNSCHEDULED AND SCHEDULED READ MEMORY ACCESSES (CL=2,

BL=4) ...53

FIG. 4.10 SCHEDULED CONSECUTIVE READ ACCESS FOR (BL=1, CL=2) WHEN PREVIOUS

COMMAND IS (A) LONG COMMAND (PRE+ACT+CAS), (B) SHORT COMMAND (CAS).......54

FIG. 4.11 SCHEDULED CONSECUTIVE READ ACCESS FOR (BL=2, CL=2) WHEN PREVIOUS

COMMAND IS (A) LONG COMMAND (PRE+ACT+CAS), (B) SHORT COMMAND (CAS).......55

FIG. 4.12 SCHEDULED CONSECUTIVE READ ACCESS FOR (BL=4, CL=2) WHEN PREVIOUS

COMMAND IS (A) LONG COMMAND (PRE+ACT+CAS), (B) SHORT COMMAND (CAS).......56

FIG. 4.13 SCHEDULED CONSECUTIVE READ ACCESS FOR FULL-PAGE MODE................................58

 vi

FIG. 4.14 (A) ROW-MAJOR ARRANGEMENT, (B) THE FIRST LUMA MACROBLOCK LOCATION IN

SDRAM..59

FIG. 4.15 THE LOCATION OF SDRAM FOR CHROMA CB AND CR..60

FIG. 4.16 QCIF VIDEO FORMAT ARRANGEMENT IN SDRAM..60

FIG. 4.17 DIFFERENT CASES OF THE INTERPOLATION WINDOW LOCATION WHEN WINDOW SIZE IS

9 X 9 PIXELS (A, B) TRUNCATION BY BANKS AT THE SAME ROW, (C) TRUNCATION BY

BANKS AT DIFFERENT ROW, (D) TRUNCATION BY ROW AND BANKS, OR WINDOW SIZE IS 4 X

4 PIXELS (E) BEST CASE, NO TRUNCATION, (F) TRUNCATION BY BANKS AT THE SAME ROW

..61

FIG 4.18 DUAL-CHANNEL SDRAM MEMORY ACCESS CONTROLLER DESIGN64

FIG. 4.19 INCOMING ADDRESS COMMAND QUEUE ..65

FIG. 4.20 MEMORY BANK CONTROLLERS AND SCHEDULERS ..65

FIG. 4.21 MOTION COMPENSATION PROCESSING FLOW FOR (A) H.264/AVC, (B) MPEG-2........66

FIG. 4.22 SYSTEM LEVEL ANALYSIS ...67

FIG. 4.23 FETCHING WINDOW OF H.264 4 X 4 BLOCK FOR DIFFERENT BURST LENGTH (UNIT:

PIXEL): (A) BL=1 OR FULL-PAGE, (B) BL=2, (C) BL=4..68

FIG. 4.24 UNSCHEDULED BUS UTILIZATION, DATA USAGE, AND DATA UTILIZATION FOR

DIFFERENT BURST MODE ..69

FIG. 4.25 SCHEDULED BUS UTILIZATION, DATA USAGE, AND DATA UTILIZATION FOR DIFFERENT

BURST MODE..69

FIG. 4.26 AVERAGE ACCESS LATENCY PER P MB FOR UNSCHEDULED/SCHEDULED MEMORY

ACCESS ..71

FIG. 4.27 AVERAGE EXECUTION CYCLES OF P MB FOR FOREMAN-QCIF @ 32 KBPS.................71

FIG. 4.28 AVERAGE EXECUTION CYCLES OF P MB FOR FOREMAN-QCIF @ 128KBPS................72

FIG. 4.29 MERGING STRUCTURED FRAME MEMORY ORGANIZATION...73

FIG. 5.1 THE CHIP PHOTO OF MPEG-2/H.264 DUAL-VIDEO DECODER79

 vii

FIG. 5.1 MEMORY HIERARCHY FOR THE ENTIRE VIDEO DECODER...81

 viii

List of Tables

TABLE 2.1 COMPARISON OF FRACTIONAL MOTION COMPENSATION AMONG DIFFERENT

STANDARDS ... 11

TABLE 3.1 NEIGHBORING MV CHECKING TABLE FOR CONTENT-SWAP OPERATION.....................23

TABLE 3.2 STATIC ANALYSES FOR DIFFERENT METHOD IN H.264/AVC. ASSUMPTION: EACH

MOTION VECTORS CONTAINS FRACTIONAL PART. ..24

TABLE 3.3 COMPARISON OF EXECUTION CYCLES FOR DIFFERENT ARCHITECTURES27

TABLE 3.4 # OF ADDERS FOR EACH FILTER DESIGN...39

TABLE 3.5 COMPARISON OF REQUISITE MODULES BASED ON 4-PARALLEL SEPARATE 1-D

ARCHITECTURE TRADITIONAL DESIGN: SEPARATED H.264 LUMA, H.264 CHROMA AND

MPEG-2 BILINEAR INTERPOLATOR..40

TABLE 4.1 RELATED WORKS OF SDRAM MEMORY CONTROLLER..43

TABLE 4.2 CAS LATENCY..48

TABLE 4.3 CHARACTERISTICS OF READ/WRITE-ACCESS...52

TABLE 4.4 LATENCY FOR SCHEDULED CONSECUTIVE READ ACCESS WHEN CL=257

TABLE 4.5 THE PROPORTION OF ACCESS STATUS (FOREMAN-QCIF @ 64KBPS IN H.264 DECODER)

..61

TABLE 4.6 RELATED WORKS OF MERGING STRUCTURED FRAME MEMORY..................................74

TABLE 4.7 PERFECT MATCH ANALYSIS JM8.2: QCIF, 30 FPS, SEARCH RANGE [-16, +15.75], QP

= 30...75

TABLE 5.1 VIDEO DECODER SPECIFICATION IN OUR DESIGN ...77

TABLE 5.2 SYNTHESIS RESULT OF THE MPEG-2/H.264 DUAL-VIDEO DECODER (INCLUDING

ON-CHIP SRAM)..78

 ix

TABLE 5.3 ON-CHIP/OFF-CHIP MEMORY IN OUR DESIGN ...78

TABLE 5.4 CHIP SPECIFICATION OF MPEG-2/H.264 DUAL VIDEO DECODER79

TABLE 5.5 H.264 DECODER COMPARISON WITH RELATED WORK..80

 x

 1

Chapter 1
Introduction

1.1 Motivation

With the development of technology, the progress of video coding standard reflects the

adaptation of video coding to different applications and networks. The early video technology,

MPEG-1, mainly targets on CD-ROM based video storage. Subsequently, MPEG-2, which

can be backward compatible with MPEG-1, serves a wider range of application including

video-on-demand (VOD), DVD and high definition TV. Network communication includes

switched networks such as PSTN (H.263, MPEG-4) or ISDN (H.261), and packet networks

like ATM (MPEG-2, MPEG-4), the Internet (H.263, MPEG-4), .mobile networks (H.263,

MPEG-4). Up to now, the newest video coding standard published jointly as Part 10 of

MPEG-4 and ITU-T Recommendation H.264 provides dramatic video compression

performance. The new H.264/AVC standard provides a technical solution for a broad range of

applications, including broadcast over cable, satellite, cable modem, DSL or terrestrial,

interactive or serial storage like DVD, conversational services over ISDN, Ethernet, LAN,

wireless, or mobile network, multimedia messaging services over DSL, ISDN, etc. In order to

provide different application and backward compatible with previous standard, video

technology faces the challenge of combining different standard into the single system and

providing powerful compatibility.

 2

DVB-T / DVB-H
transmitter

Channel coder

DVB-T / DVB-H
receiver

Channel decoder

H.264/AVC decoder

MPEG-2 decoder

DEMUX

MPEG-2/H.264
dual-video decoder

MPEG-2 or H.264/AVC bitstream

…...010100111101011

Fig. 1.1 Typical communication model based on DVB system

In recent years, Digital TV is widely adopted by the next-generation video broadcasting

transmission (DVB) technology. Digital video broadcasting terrestrial, DVB-T, permits the

transmission of MPEG-2 video bitstream. Moreover, in Nov. 2004, Digital video broadcasting

handheld, DVB-H, has mandated support of Main Profile for H.264/AVC SDTV receivers,

with an option for the use of High Profile. The support of High Profile is mandated for

H.264/AVC HDTV decoder. Especially, DVB-H features backward compatibility with

DVB-T but transmit different video format. However, H.264/AVC does not directly backward

compatible with previous standards. Therefore, the challenge of merging H.264/AVC and

MPEG-2 to single video decoding system is in great demand. Fig 1.1 shows the typical

communication model based on DVB system. In addition, high definition TV requires

enormous data transmission particular in frame memory, a memory access controller that

efficiently communicates with frame memory is the most significant over the entire video

decoding system. Within the video decoding system, motion compensation always dominates

the total amount of data transmission especially when SDRAM or DDR-SDRAM is adopted

 3

as external frame memories. Video decoder should also provide efficient memory access

controller to manage data transfer and access conflict.

1.2 Thesis Organization

The thesis is organized as follows. The algorithm description and analysis is discussed in

Chapter 2. In Chapter 3, the motion compensation engine for H.264/AVC video decoder is

described firstly. Then, the motion compensation engine for MPEG-2/H.264 dual-video

decoder is illustrated. We also propose the data reuse technique to reduce the required

bandwidth particularly in H.264/AVC fractional motion compensation. Chapter 4 presents

frame memory organization including frame memory access controller for external SDRAM

and merging structured frame organization that is one of the frame compression method. Chip

implementation is given in Chapter 5. Finally, conclusion and future work is shown in

Chapter 6.

 4

Chapter 2
Algorithm Description and Analysis

Current
frame

ME

MC
Reference

frame

Reference
frame

Choose
intra

prediction

Intra
prediction

Filter

_

+

+

+

T

dT

Q

dQ

Reorder
Entropy
encoder

bitstream

Inter

Intra

Fig. 2.1 General structure of H.264 encoder

MC
Reference

frame

Intra
prediction

Filter

+

+ dT dQ

Inter

Intra

Reorder Entropy
decoder

bitstream
Reconstructed

frame

Fig. 2.2 General structure of H.264 decoder

Fig. 2.1 and Fig. 2.2 show the general structure of H.264/AVC video encoder and

decoder respectively. The H.264/AVC design covers a Video Coding Layer (VCL) and

 5

Network Abstraction Layer (NAL). We only concentrate on VCL that efficient represents the

video content. The spirit of H.264/AVC follows the so-called block-based hybrid video coding.

It consists of hybrid of temporal and spatial prediction, in conjunction with transform coding.

The main additional blocks compared with prior standards are intra prediction and in-loop

de-blocking filter. Fig. 2.3 and Fig. 2.4 illustrate general structure of MPEG-2 encoder and

decoder respectively. Compared to H.264/AVC, the decoding flow becomes simplified

without intra prediction and in-loop de-blocking filter except that only DCT/IDCT is more

complicated than integer transform for H.264/AVC codec.

VLD

MCReference
frame

bitstream

+

+

ME
Current
frame

_

+
DCT Q

dQ

IDCT

Reconstructed
frame

Fig. 2.3 General structure of MPEG-2 encoder

VLDdQIDCT

MC Reference
frame

Reconstructed
frame

bitstream
+

+

Fig. 2.4 General structure of MPEG-2 decoder

 6

This chapter is structured as follows. The software profiling is illustrated in section 2.1.

Then, the algorithm of H.264/AVC motion compensation would be described in section 2.2.

Finally, the comparison with those of previous video standards would be discussed in section

2.3.

2.1 Profiling

7%

8%

9%

7%

9%

9%

8%

11%

32%

Others (Intra Prediction, etc.)
Write File
PSNR Computation
De-blocking Filter
CAVLC
IQ/IDCT
Ref. Frame Copy
Reconstruction
Motion Compensation

Fig. 2.1 H.264/AVC video decoder software profile on ARM processor (JM 8.2)

Fig. 2.1 shows the H.264/AVC profile on ARM processor. The reference software is JM

8.2. We can find inter prediction related modules, including motion compensation,

reconstruction, and reference frame copy, occupy 50 % proportion of the entire video decoder.

This dominated part can be greatly reduced by parallel processing, data reuse, or pipeline

processing on ASIC design.

 7

2.2 Inter Prediction Algorithm for H.264/AVC Standard

H.264/AVC standard supports more flexible block size selection in inter prediction

compared with any previous standard [1][2]. The smallest block size selection could reach as

small as 4x4 for luma and 2x2 for chroma. Fig. 2.2 illustrates all types of partitions.

0 0 1
0

1

0

2

1

3

0 0 1
0

1

0

2

1

3

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4

Macroblock
partitions

Sub-macroblock
partitions

Fig. 2.2 Macroblock partitions and sub-macroblock partitions

H.264/AVC standard also supports high motion resolution that reaches quarter motion

accuracy for luma sample and eighth one for chroma sample. This can be found firstly in

advances profile of MPEG-4 Visual standard; however, H.264/AVC reduces the complexity of

interpolation processing. Luma half sample interpolation with a 6-tap (1, -5, 20, 20, -5, 1)

symmetrical FIR filter and quarter sample interpolation with bilinear filter are drawn in Fig

2.3 (a)-(c). The prediction value of chroma component is generated using bilinear interpolator

illustrated in Fig. 2.3 (d), and the displacement can achieve one-eighth accuracy. From

mathematical equations, they are both 2-D interpolation. However, based on hardware

implementation, these equations can be separated into two 1-D to reduce hardware cost,

namely, horizontal filter first and than vertical one, or vice verse.

 8

G a c H

d

n

M

e

i

f g

k m

N

p q r

I

P

J

Q

R S

T U

B

DC

A

F

L

E

K s

h j

b

bb

aa

gg

hh

xFrac

yFrac

8-xFrac

8-yFrac

A B

DC

b=((E-5xF+20xG+20xH-5xI+J)+16)>>5
h=((A-5xC+20xG+20xM-5xR+T)+16)>>5

j=((aa-5xbb+20xh+20xs-5xgg+hh)+16)>>5

G H

M

e g

m

N

p r

s

h j

b

e=(G+j+1)>>1
g=(b+m+1)>>1

G a c H

d

n

M

i

f

k m

N

q

s

h j

b

d=(G+h+1)>>1
a=(G+b+1)>>1

(b) (c)

i

i=((8-xFrac)*(8-yFrac)*A+xFrac*(8-yFrac)*B+(8-
xFrac)*yFrac*C+xFrac*yFrac*D+32)>>6

(a)

(d)

Fig. 2.3 (a) luma half sample with 6-tap FIR, (b) luma horizontal/vertical quarter sample

with bilinear filter, (c) luma diagonal quarter sample with bilinear filter, (d) chroma

sample with bilinear filter. Upper-case letters indicate the full samples and lower-case

letter indicates the interpolated fractional samples

 Motion vector is generated from motion vector difference (MVD) and motion vector

prediction (MVP) which equation is expressed by (2. 1).

MVPyMVDyMVy
MVPxMVDxMVx

+=
+=

 (2. 1)

MVD is decoded from universal variable length decoder (UVLD) and MVP is predicted

according to neighboring motion vectors. MVP algorithm, of which concept is similar to that

for MPEG-4, contains directional prediction for 16 x 8 or 8 x 16 block size and median

 9

prediction for other block sizes. The detail of MVP decision is shown in Fig. 2.4. Equation of

median prediction is expressed by (2. 2). In addition, some boundary conditions or exceptions

have to be handled accurately. For instance, when MVC is not available, its value is replaced

by MVD. We do not go into detail of those trivial boundary conditions over here.

),,(MVCMVBMVAmedianMVP = (2. 2)

8 x 16

16 x 8A

C

A

B

8 x 16

16 x 8

Current
macroblock/

block/
partition

A

D B C

(a) (b) (c)

Fig. 2.4 (a) directional prediction for 8 x 16 block size, (b) directional prediction for 16 x

8 block size, (c) median prediction

In addition to the motion-compensated block size described in Fig. 2.2, a P macroblock

can also be coded to P_SKIP mode. For this coding mode, neither residual signal nor motion

information is transmitted. That is, motion vectors are only decided according to MVP. The

reconstructed data is obtained similar to that of macroblock type P_16x16. Macroblock coded

in P_SKIP are often located in large area with no change or low motion. Besides the above

techniques, H.264/AVC also supports multiple reference frame, weighted prediction and

direct mode for B slice. These tools can also improve coding efficiency efficiently.

Application of de-blocking filter is a well-known method to improve image quality by

alleviating blocking artifacts. The de-blocking design in H.264/AVC is brought within

motion-compensated prediction loop and the improvement in quality becomes more

conspicuous.

 10

2.3 Comparison among Different Video Standards

Considering frame coding, Table 2.1 lists all fractional motion compensation features for

different standards. Up to now, we can find fractional interpolation issue becomes more and

more important in state-of-the-art video coding. The interpolation window becomes larger for

the same block size; namely, it requires much more cycles to interpolate each macroblock. For

example, it requires 9 x 9 pixels window to interpolate luma 4 x 4 block for H.264/AVC;

however, the identical size of interpolation window can be used to filter 8 x 8 block for

MPEG-2 video decoder. Fig. 2.5 and Fig. 2.6 show the luma and chroma integer/fractional

motion vector proportion for H.264/AVC. Especially note that luma and chroma interpolation

for H.264/AVC are different compared with previous standards. That is, no matter what on

algorithm level or hardware level, the computation sources cannot be shared. Therefore, the

combination of luma and chroma parts is the space of improvement and we will give the

discussion and implantation in Chapter 3. In high bit rate application (128 kbps), fractional

motion vector occupies about 80 % and even in low bit rate (32 kbps) fractional part has a

certain proportion (40 %). Higher fractional MV proportion, more execution time is needed to

read pixels data from frame memory. This gap may become more obvious especially when

SDRAM is used as frame memory. To reduce requisite fetching pixels from frame memory, a

data reuse technique for fractional motion compensation will be proposed in Chapter 3.

 11

Table 2.1 Comparison of fractional motion compensation among different standards

Standard MPEG-1/2 MPEG-4 H.264/AVC

MVP
Update from

previous PMV

value

Median prediction
Median prediction

Directional prediction

Luma block unit 16 x 16 8 x 8 4 x 4
Luma motion accuracy Half Half, quarter Half, quarter

Half sample mode

Half: bilinear

Quarter sample modeLuma filter Bilinear
Half: 8-tap FIR

Quarter: 8-tap FIR

and bilinear

Half: 6-tap FIR

Quarter: 6-tap FIR and

bilinear

Luma Interpolation window 17 x 17 15 x 15 9 x 9
Chroma block unit 8 x 8 4 x 4 2 x 2

Chroma motion accuracy Half Half, quarter Eighth

Half sample mode

Half: bilinear

Quarter sample mode
Chroma filter Bilinear

Half: 8-tap FIR

Quarter: 8-tap FIR

and bilinear

Bilinear

Chroma interpolation window 9 x 9 5 x 5 3 x 3

 12

32 48 64 80 96 112 128
0

10

20

30

40

50

60

70

80

90

100
Luma integer/fractional motion vector proportion (foreman-QCIF)

bit rate(kbps)

pr
op

or
tio

n
integer
fraction

Fig. 2.5 Luma integer/fractional motion vector proportion for H.264/AVC

32 48 64 80 96 112 128
0

10

20

30

40

50

60

70

80

90

100
Chroma integer/fractional motion vector proportion (foreman-QCIF)

bit rate(kbps)

pr
op

or
tio

n

integer
fraction

Fig. 2.6 Chroma integer/fractional motion vector proportion for H.264/AVC

 13

2.4 Summary

From the H.264 profiling on ARM processor, an efficient hardware accelerator or ASIC

design for motion compensation is crucial. The inter prediction for H.264/AVC and the

comparison among different standards are also illustrated in this Chapter.

 14

Chapter 3
Motion Compensation Design for
MPEG-2/H.264 video decoder

The state-of-the-art video coding standard H.264/AVC provides amazing compression

ratio that significantly outperforms all previous video compression standards. However,

unlike traditional MPEG-x standards, H.264/AVC lacks backward compatibility to the

former MPEG-x and H.26x video coding standards. Therefore, a development of combining

multi-video coding standards is essential to support modern multimedia systems. For

example, DVD forum adopted MPEG-2, H.264/AVC, and VC-1 (also named well-known

WMV-9) as mandatory for the next generation HD-DVD and Blu-ray format. As for digital

video broadcasting (DVB) application, DVB-T system, which is designed for digital

terrestrial television services, is directly compatible with MPEG-2 coded TV signal.

Furthermore, mobile DVB, presently called DVB-H, allows the transmission with video

content of H.264/AVC due to high coding efficiency. Especially, DVB-H features backward

compatibility with DVB-T but transmit different video format. Therefore, it is the demand

and challenge of designing efficient video decoder for multi-standard video application.

This chapter will discuss that designing motion compensation, which dominates the

amount of data transfer on the video decoder, for MPEG-2/H.264 dual video decoder. The

rest part is structured as follows. Section 3.1 illustrates motion compensation engine for

H.264/AVC decoder. The combined motion compensation engine for MPEG-2/H.264 and

analysis is discussed in section 3.2. Finally, summary is given in section 3.3.

 15

3.1 Motion Compensation Engine for H.264/AVC decoder

Motion Vector
Predictor

4 x 4
MV BufferLine MV FIFO Address

Generator

Intra Decoder

Residual Adder

Memory Access Controller

Syntax
Parser

Interpolator Read
Data Buffer

Residual Decoder

Synchronization
Buffer

De-blocking
Filter

Frame
memory

Bitstream
buffer

Display bufferMemory
manager

Fig 3.1 Motion compensation engine for H.264 video decoder

Fig. 3.1 illustrates the whole motion compensation engine for H.264/AVC video decoder.

Firstly, line MV FIFO stores decoded motion vectors for motion vector prediction and 4 x 4

MV buffer stores the decoded motion vector for current MB decoding. Then, the address

generator sends reference address to memory access controller. The tasking of motion

controller is scheduling consecutive access command and sending to frame memories. The

burst read data is kept in read data buffer and then filtered through interpolator. Finally, the

interpolated reference data add up to the residual data and then pass through de-blocking filter.

In our proposed decoder, ping-pong structured external frame memory [28], double memories

stored reference and current frame reciprocally, is adopted.

 16

The following subsection will discuss the detail of other modules except memory access

controller. The detailed discussion of frame memory access controller is shown in Chapter 4.

Subsection 3.1.1 illustrates motion vector generator including motion vector predictor (MVP)

and the related storages. Subsection 3.1.2 gives data reuse technique for interpolator.

Subsection 3.1.3 analyzes the proposed data reuse technique. Finally, luma and chroma

interpolator designs are reported in subsection 3.1.4 and 3.1.5 respectively.

3.1.1 Motion Vector Generator

Current
MB

Frame
boundary

Next
MB 0

Frame
boundary

 Next
MB 1

 Next
MB 2

 Next
MB 3

 Next
MB 4 ……

0 1 2 3 4

5 6 7 8 9 10 11

Fig 3.2 Motion vectors information storage or motion vector predictor

for QCIF frame format.

Motion vector generator mainly contains motion vector predictor, line MV FIFO and 4 x

4 MV buffers. Motion vector is generated by the summation of motion vector prediction

(MVP) and motion vector difference (MVD). The MVP value is calculated according to the

neighboring MVs, thus the decoded motion vectors are required to be stored for the following

decoding. Line MV FIFO stores the decoded motion vector pair (MVX, MVY). The depth

and width of MV FIFO are dependent on the frame width and search range respectively. Once

the content of MV FIFO will not be used in the future, the motion vector pair can be discarded.

The 4 x 4 size of MV buffers is required since the maximum number of motion vectors per

 17

MB is sixteen. The motion vectors for current MB decoding stores in this 4 x 4 MV buffers.

As for the requisite total storage for motion vector generator, Fig. 3.2 shows an example.

Total amount of 4 x 11 motion vector pairs have to be stored for QCIF frame format. The

detail of required neighboring motion vectors is shown in Fig. 3.3. To cover all kinds of

conditions, storages element is based on 4 x 4-block size that is the smallest element for

H.264/AVC video decoder. Each square indicates one motion vector pair. To decode

MV0-MV15 in current MB, it needs neighboring motion vectors in left-upper corner (MVLU),

right-upper corner (MVRU), upper (MVU0-3) and left (MVL0-MVL3) positions.

MV7MV6

MV5MV4

MV15MV14

MV13MV12

MV3MV2

MV1MV0

MV11MV10

MV9MV8

MVL0

MVL1

MVL2

MVL3

MVLU MVU3MVU2MVU0 MVU1 MVRU

Fig 3.3 Neighboring motion vectors needed when decoding all motion vectors

in current macroblock

The detailed architecture of motion vector generator is shown in Fig 3.4. Motion vector

generation involves two-phase operations. The first one is loading MVD into 4 x 4 MV

buffers and another is calculating MV = MVP + MVD then restoring into 4 x 4 MV buffers.

The proposed memory storage can be treated as two-level memory hierarchy painted in Fig

3.5. Four line MV FIFOs are implemented using SRAM and local registers store the

neighboring motion vectors for current MB. Local register that stores neighboring motion

vectors includes left MV line buffer, upper-left, upper, upper-right and left MV registers. The

4 x 4 MV buffers, which contents can be accessed by other modules, store decoded motion

 18

vectors required in current MB decoding. After accomplishing current MB decoding, FIFOs

need one push and one pop operation, which occupies two cycles, to update all contents of

local registers for the next MB decoding.

4x4 MV buffers

Left MV line buffer

MVP

MVD (load from MV buffer)

MV (write back to MV buffer)

MVD (load from
UVLC decoder)

Line MV FIFO

0 1 2 3 4 5 6 7 8 9 10 11

upper leftupper
right

MVA, MVB, MVC, MVD

MV from Upper MB

MV from Left MB
MV from Current MB

MV from Upper-right MB

MV from Upper-left MB

Neighboring MVs

motion vector
predictor

MVL0MVL1MVL2

MVD
MV

MV buffer unit

MV12MV14

MV5MV7F I F OMVU3MVLU MV13MVL3

MV1MV3MV9F I F OMVU1 MV11

MV4MV6F I F OMVU2

MV0MV2MV8F I F OMVU0 MVRU MV10

MV15

MV14 MV12

(a) (b)

upper
left

Fig 3.4 (a) motion vector generator architecture for QCIF-format, (b) mv buffer unit

Line MV FIFO 4x4 MV
buffer

Neighboring
MV

Single port SRAM
Local

register Local
register

Push/pop once
each MB
decoding

Random access
for MC decoding

Fig. 3.5 Two-level memory hierarchical structure for MVP

 19

16x16

8x8_0 8x8_1

8x8_2 8x8_3

4x4_10 4x4_11 4x4_14 4x4_15

4x4_12 4x4_134x4_8 4x4_9

4x4_1

4x4_3 4x4_6 4x4_7

4x4_4 4x4_54x4_0

4x4_2

16x8_0

16x8_1

8x16_0 8x16_1

16x16

16x8_0

16x8_1

8x16_0

8x16_1

8x8_0

8x8_1

8x8_2

8x8_3

size MVA

MVL0

size MV

MVU0

MVL2

direction

MVB

MVA

MVA

MVC

MVL0

MVRU

MVB MVC MVD

MVU0 MVRU MVLU

MVL0 MVU0 MVU2 MVLU

MVRUMV1 MVU2 MVU1

MVL2 MV2 MV6 MVL1

MV9 MV6 MV3 MV3

4x4_0

4x4_1

4x4_2

4x4_3

4x4_4

size MVA

MVL0

MVB MVC MVD

MVU0 MVU1 MVLU

MV0 MVU1 MVU2 MVU0

MV1MVL1 MV0 MVL0

MV2 MV1 MV0 MV0

MV1 MVU2 MVU3 MVU1

4x4_5

4x4_6

4x4_7

4x4_8

4x4_9

4x4_10

4x4_11

4x4_12

4x4_13

4x4_14

4x4_15

MV4 MVU3 MVRU MVU2

MV3 MV4 MV5 MV1

MV5 MV4 MV4MV6

MV3MV2MVL2 MVL1

MV3 MV6MV8 MV2

MVL2MV8 MV9MVL3

MV9 MV8 MV8MV10

MV9 MV3MV6 MV7

MV7MV12 MV6 MV6

MV11 MV12 MV13 MV9

MV13 MV12 MV12MV14
(a)

(b)

(c)

(d)

Fig 3.6 (a) block size_position index, (b) directional prediction table (16x8, 8x16), (c)

median prediction table (16x16, 8x8), (d) median prediction table (4x4)

MVP is calculated according to MVA, MVB, MVC and MVD whose values are derived

from neighboring motion vectors according to block size_position index illustrated in Fig. 3.6

(a). MVA, MVB, MVC and MVD indicate the motion vectors located at left, upper,

right-upper, left-upper neighboring macroblock/partition/block respectively as shown in Fig.

2.3 (c). Fig. 3.6 (b)-(d) lists all MVA, MVB, MVC and MVD for different block size_position

index. Besides the above loop-up table (LUT) is required for motion vector prediction, many

trivial boundary conditions and exceptions have to be handled. Here, we do not describe them

for clarity.

 20

3.1.2 Data Reuse Technique for Interpolator

4
9

4 9

(a) (b)

5

Fig 3.7 (a) 4x4 block window and the corresponding 9x9 interpolation window, (b)

overlapped region for neighboring interpolation window

(a) (b) (c)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Fig 3.8 (a) 2x2 raster scanning order, (b) row-major 2x2 raster scanning order, (c)

column-major 2x2 raster scanning order

From Fig 3.7 (a), to interpolate each fractional sample value for each 4x4 block, it needs

9 x 9 interpolation window. If two motion vectors of neighboring 4 x 4 blocks are the same, 5

x 9 overlap region between two interpolation windows can be data reused. The scanning order

of residual decoding for each macroblock is 2x2 raster scanning order as shown in Fig 3.8 (a).

Then, considering two different scanning orders illustrated in Fig 3.8 (b) and (c), row-major

one needs 13 times of transitions but column-major one only needs 5 times of transitions.

Each transition causes that the overlap region could not be data reused. Therefore,

column-major one is the better selection because of less number of transitions.

 21

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

(a) (b)

(c)

Fig 3.9 (a) 2x2 raster scanning order, (b) 4x4 raster scanning order, (c) extended 2x2

raster scanning order

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15 Residual
adder

Residual decoder

Inter prediction

Sync.
buffer

Sync.
buffer

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15 Residual
adder

Residual decoder

Inter prediction

Sync.
buffer

Sync.
buffer

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

(b)(a)

OVERHEAD !!

Fig 3.10 Synchronization buffer scheme for two different scanning order in inter

prediction (a) 2x2 raster scanning order, (b) 4x4 raster scanning order

For video decoding system, inter prediction often processes based on macroblock level.

Thus, the decoding order based on 4 x 4-block size, which is the smallest block element in

H.264/AVC video decoder, is freedom for each macroblock. In view of this concept, 2 x 2 and

4 x 4 raster scanning orders are depicted in Fig 3.9 (a) and (b), and we can find column-major

4 x 4 raster scanning order only needs four transitions less than that of 2 x 2 raster scan.

However, from Fig 3.10 (b), it induces extra synchronization buffers which size is (4 x 4) x 4

 22

pixels in residual adder because of different scanning order with residual decoder which must

follow 2x2 raster scanning order defined in standard [1].

Fig. 3.11 Content-swap operation (interpolator with attached content buffer)

(1, 3)
(1, 3)

(2, 0)
(2, 0)

(-2, 1)

(2, 0)

Fig. 3.12 An example of macroblock partition

(1, 3) indicates (mv_x, mv_y).

In order to resolve this problem, we can attach content register to interpolator which

concept is illustrated in Fig 3.11, and adopt extended 2x2 raster scanning order as shown in

Fig 3.9 (c). The size of content register depends on the local register in interpolators. Each

gray block in Fig. 3.9 (c) indicates content-swap operation that swaps all content in local

register in interpolation and that in content buffer. By doing that, we can find that if motion

vectors of block 1 and block 4 are the same, the overlapped region in Fig. 3.7(b) need not to

be re-fetched when decoding block 4. Therefore, extended 2x2 raster scanning order follows 2

x 2 raster scanning which is the same as that of residual decoder, and achieves data reuse

Local register for
interpolator

Content buffer

 23

status of 4 x 4 raster scanning order. The content-swap operation brings effect only when

larger block size partition or motion vectors of the neighboring blocks are the same. The

condition that executes this operation follows the expression (3. 1)

)816_(||)1616_(__ xtypembxtypembconditionswapcontent ===== (3. 1)

However, considering an example shown in Fig. 3.12, the condition (3.1) checking is false.

Furthermore, if checking equality of neighboring motion vectors instead of block size, the

example in Fig. 3.11 can be data reused. The checking table of motion vectors between

neighboring blocks is listed in Table 3.1.

Table 3.1 Neighboring MV checking table for content-swap operation

Block number Checking condition
1 MV1 = = MV4
3 (MV1 = = MV4) || (MV3 = = MV6)
5 MV3 = = MV6
9 MV9 = = MV12
11 (MV9 = = MV12) || (MV11 = = MV14)
13 MV11 = = MV14

Other Don’t care

3.1.3 Analysis for Data Reuse Technique

To give more generic and platform independent analysis, we analyze requisite pixels per

MB and cost overhead for each method. Taking account of fractional motion compensation

for each macroblock, the required pixels for each MB and cost overhead for different methods

are summarized in Table 3.2. Assuming that each motion vector contains fractional part, the

best case has one motion vector and worst case has 16 motion vectors for one luma

macroblock. Although requisite pixels per method are the same in worst case, requisite pixels

of column major methods are smaller than that of row-major method. Concerning

 24

column-major methods, 4 x 4 raster scanning order (RSO) takes the best effect; however, it

requires additional synchronization buffer and degrades throughput due to different RSO with

that of residual decoder. As for extended methods, condition (3. 1) only takes effect in larger

block partition (SKIP, 16x16, 16x8). That is, it cannot data-reuse in some case such as Fig.

3.11 even if the neighbor motion vectors are the same. To erase this disadvantage, method 5

checks the neighboring motion vectors rather than block size, and then the required bandwidth

can reduce to be the same as that of 4 x 4 RSO in Fig. 3.12 case. The advantage of extended

method is that it only requires content buffer which size is smaller than that of method 3 and

takes a little extra cycle for content-swap operation. Although method 4 behaves better for

larger block size (SKIP, 16x16, 16x8) than method 1/2/3, larger block size still occupies up to

50 ~90 % proportion from the Fig. 3.13. Furthermore, method 5 not only involves all case in

method 4 but also takes effect in smaller block size such as Fig. 3.1. As shown in Fig. 3.14,

after applying extended method in our design, the required memory bandwidth can be reduced

about 30 % compared to column-major 2x2 RSO method.

Table 3.2 Static analyses for different method in H.264/AVC.
Assumption: each motion vectors contains fractional part.

Required pixels per luma MB
Method

Worst case Best case Fig 3.11
Cost overhead

1 R 2 x 2 RSO 1296 1296 1296 0

2 2 x 2 RSO 1296 936 936 0

3 4 x 4 RSO 1296 756 846
Checking table

Sync. buffer

4
Extended 2 x 2 RSO

(condition (3.1))
1296 756 + 6 CS 936

Extra control signal,

Content buffer

5

C

Extended 2 x 2 RSO

(Table 3.1)
1296 756 + 6 CS 846 + 4 CS

Checking table,

Content buffer

＊ R: row-major, C: column major, RSO: raster scanning order, CS: content-swap operation (one cycle)

＊ Best case: one MB contains one motion vector

＊ Worst case: one MB contains 16 motion vectors

 25

32 48 64 80 96 112 128
0

20

40

60

80

100

120

Block size proportion (foreman-QCIF)

bit rate(kbps)

pr
op

or
tio

n
SKIP, 16x16, 16x8
Other

Fig. 3.13 Block proportion under different bit-rate environments

32 48 64 80 96 112 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Required bandwidth (MByte/s) for different methods (foreman-QCIF)

bit rate(kbps)

R
eq

ui
re

d
ba

nd
w

id
th

 (M
B

yt
e/

s)

Row-major 2x2 RSO
Column-major 2x2 RSO
Extented Column-major 2x2 RSO

Fig. 3.14 Required memory bandwidth for different methods

 26

3.1.4 Luma Interpolator Design

Adder network

Adder network

Adder tree

(a) (b)

Fig 3.15 (a) adder-chain based [10], (b) adder-tree based [11]

1-D linear interpolator design

FI
R

FIR

FIR

FIR

Fig. 3.16 Separate 1-D interpolator design (no parallel)

In this subsection, several different interpolator designs will be reported. Reviewing the

fractional interpolation for H.264/AVC in Fig. 2.2, 6-tap FIR with (1, -5, 20, 20, -5, 1)

coefficient and bilinear filter are needed for half and quarter pixel interpolation in H.264/AVC

 27

video decoder. For cost and PSNR loss acceptable consideration, Lie’s 4-tap diagonal FIR

filter and three-stage recursive algorithm is proposed in [8], and Chen’s HVBi, bilinear filter

in both horizontal and vertical direction, and VBi, vertical bilinear horizontal FIR, schemes

are also reported in [9]. However, when P frame sequence is very long, such as I + 29 P, the

propagation of PSNR loss may cause the heavy degradation of video quality, especially in

high definition frame format. Oppositely, considering PSNR losses and standard-compatible

design, Chien’s [10] and He’s [11] presented adder-chain and adder-tree based design

respectively. These two types depicted in Fig. 3.15 are categorized into 1-D linear filter design.

For cost consideration, multipliers can be simplified to adders and shifters. 1-D linear

interpolator is suitable for Q-CIF video sequence in mobile application; however, as for

HDTV video sequence, throughput is a very important issue and long execution cycles in 1-D

linear design may lead to poor throughput. As for another choice, Chien’s [10] also proposed

separate 1-D design that separates horizontal and vertical interpolation and processes in

parallel based on 4 x 4 block size. This design induces better throughput, although it may

need more storages. Fig. 3.16 shows separate 1-D interpolator design without processing in

parallel.

Table 3.3 Comparison of execution cycles for different architectures

Architecture Ideal execution cycles
Adder-chain based 1-D 57
Adder-tree based 1-D 52

Separate 1-D (no parallel) 36
Separate 1-D (2 parallel) 18
Separate 1-D (4 parallel) 9

Assuming that all 9 x 9 interpolated data for each 4 x 4 block are ready and they can be

accessed randomly, Table 3.3 lists the execution cycles for different architecture. For

adder-chain based 1-D design, the first result outputs after the 6th clock cycle. Two

 28

adder-networks are used to overlap each row inputs and eliminate the latency overhead except

the first one. The total number of cycles required is 57 (5 + 4 x 9 + 4 x 4) which detailed

operation is described in Chien’s [10]. For adder-tree based 1-D design, the row data can be

loaded in parallel without shift one-by-one, hence the latency overhead does not exist and

total number of cycles is 52 (4 x 9 + 4 x 4). As for separate 1-D design, the first data outputs

at the 6th clock cycle and the following 3 data generates after 3 clock cycles. Therefore, the

separate 1-D design without parallel needs 36 ((6 + 3) x 4) cycles to complete interpolation of

one 4 x 4 block. Similarly, separate 1-D design with 2 and 4 parallel requires 18 ((6 + 3) x 2)

and 9 (6 + 3) cycles respectively. The required content buffers are 6 x 9 pixels for 4-parallel

design shown in Fig. 3.17 and it can be implemented in local registers or SRAM. However,

SRAM requires several cycles to accomplish content-swap operation, so we choose local

registers in order to execute content-swap in one cycle. In addition, 4-parallel separate 1-D

architecture is our selection due to smaller required execution cycles that can be hidden below

data-read cycles from frame memory. For another reason, it is easier to combine with

interpolation for MPEG-2 video decoding and we will show it in subsection 3.2.1.

 29

FI
R

FIR

FIR

FIR

FIR

FIR

FI
R

FIR

FI
R

FIR

FIR

FI
R

FIR

bilinear

bilinear

bilinear

bilinear

Content
buffer

Fig. 3.17 4-parallel separate 1-D luma interpolator with content buffer

 30

3.1.5 Chroma Interpolator Design

A B

C D
e

h

f

g

Fig 3.18 Interpolation window for each 2 x 2 chroma block

8
fracVe

rt
ic

al
 f
ilt

er

yFrac

Horizontal filter

reg reg

xFrac

round

(b)(a)
Fig. 3.19 (a) chroma interpolator, (b) vertical/horizontal filter

Because of 4:2:0 chroma format and quarter precision of luma inter prediction, chroma

inter prediction can achieve eighth motion resolution. Chroma inter prediction must process

based on 2 x 2 block and chroma interpolation requires 3 x 3 pixels for each 2 x 2 block as

shown in Fig. 3.18. For chroma 2 x 2 block including A, B, C and D, the corresponding

fractional sample is e, f, g and h whose precision is eighth point. Compared with direct

mapping design with 8 multipliers which equation is listed in Fig. 2.2 (d), we rewire the

equation listed in equation (3. 2) and the number of multiplier number can reduce to 4.

]**)8[(*]**)8[(*)8(*
***)8(*)8(**)8(*)8(
DyFracByFracxFracCyFracAyFracxFracDyFrac

xFracCyFracxFracByFracxFracAyFracxFraci
+−++−−=
+−+−+−−=

(3. 2)

 31

Similar to luma interpolator, chroma interpolator can separate into horizontal and vertical

filter. The corresponding separate 1-D design is depicted in Fig. 3.19 (a) and the vertical /

horizontal filter is illustrated in Fig. 3.19 (b). Double chroma interpolators are required to

generate interpolated value in 2-pixel parallel, and it takes 3 cycles to filter 2 x 2 pixels if all

required interpolated pixels are ready. Based on 2-parallel chroma interpolator design painted

in Fig. 3.20, only one cycle latency is induced.

V

er
tic

al
 f

ilt
er

yFrac

Horizontal filter

reg reg

xFrac

round

V
er

tic
al

 f
ilt

er

yFrac

Horizontal filter

reg reg

xFrac

round

AB

CD
e

h

f

g

Fig. 3.20 2-parallel chroma interpolator

 32

3.2 Combined Motion Compensation Engine for

MPEG-2/H.264 Dual Video Decoder

 Our H.264/MPEG-2 dual-standard video decoder is illustrated in Fig. 3.21 and the

component of MPEG-2 decoder is depicted in Fig. 3.22. Compared with H.264/AVC standard,

MPEG-2 does not provide intra prediction and in-loop de-blocking filter, and only supports

half motion precision for both luma and chroma macroblock. Unlike median/directional

prediction of MVP algorithm supported in H.264/AVC, motion vectors are only decided by

updated PMV and bitstream side information like f_code, motion_residual and motion_code.

The detailed algorithm of motion vector generation can refer to [2]. Besides motion vector

generator, a reconfigurable interpolator design for dual-standard is proposed in section 3.2.1

and section 3.2.2 gives the cost analysis.

Motion Vector
Predictor
for H.264

4 x 4
MV BufferLine MV FIFO

Address
Generator

Intra Decoder

Residual Adder

Memory Access Controller

Syntax
Parser

Reconfigurable
interpolator

Read
Data Buffer

Residual Decoder

Synchronization
Buffer

De-blocking
Filter

Frame
memory

Motion Vector
Generator
for MPEG-2

Bitstream
buffer

Display bufferMemory
manager

Fig. 3.21 Motion compensation engine for H.264/MPEG-2 decoder

 33

Motion Vector
Predictor
for H.264

4 x 4
MV BufferLine MV FIFO

Address
Generator

Intra Decoder

Residual Adder

Memory Access Controller

Syntax
Parser

Reconfigurable
interpolator

Read
Data Buffer

Residual Decoder

Synchronization
Buffer

De-blocking
Filter

Frame
memory

Motion Vector
Generator
for MPEG-2

Bitstream
buffer

Display bufferMemory
manager

Fig. 3.22 MPEG-2 Motion compensation engine part

3.2.1 Reconfigurable dual-standard interpolator design

The main additional penalty of motion compensation engine is interpolator when

combing with MPEG-2 video decoder. In this subsection, we will focus on storage and

arithmetic module sharing on dual-standard to minimize area cost overhead. For macroblock

based fractional motion compensation in MPEG-2, each 16 x 16 macroblock needs 17 x 17

interpolation windows to interpolate fractional samples. Each macroblock can be partitioned

into four 8 x 8 blocks with 9 x 9 interpolation window of which size is identical to that of

H.264/AVC luma interpolation window for each 4 x 4 block. In addition, the bilinear filter for

H.264/AVC luma quarter interpolation can share with bilinear filter for MPEG-2 half

interpolation. Considering 4-parallel luma interpolator as shown in Fig. 3.17, part of registers

and bilinear filters, which are shaded in Fig. 3.23, can be shared with MPEG-2 interpolator.

 34

bilinear

bilinear

bilinear

bilinear

0

1

2

3

4

5

6

7

8

Fig. 3.23 Shared local registers and bilinear filters for MPEG-2

 35

bilinear bilinear

bilinear bilinear bilinear

Stage 0 Stage 1 Stage 2

(c)

(a) (b)

Fig. 3.24 Data flow of (a) vertical bilinear filter, (b) horizontal bilinear filter,

(c) both vertical and horizontal bilinear filter

Beside the shared modules described above, only extra control circuits for data flow are

required for MPEG-2 interpolation. Fig. 3.24 shows the data flow of vertical or horizontal

bilinear filter and half sample flag is decided by the LSB of motion vectors. Firstly, we have

to concern IDCT/IIT that is the last stage of MPEG-2/H.264 residual decoder. Inverse discrete

cosine transform (IDCT) for MPEG-2 is 8 x 8-block based module, whereas inverse integer

transform (IIT) for H.264/AVC is 4 x 4-block based decoding process. To achieve module

combining and storage sharing, these two modules can merge to single multi-mode IDCT and

the output data are 4-pixel in parallel for both standards. Besides, only four bilinear filters are

available for MPEG-2/H.264, hence each column 8-pixel filtering has to separate into two

stages involving upper 4-pixel filtering (0-4) and lower 4-pixel filtering (4-8). For each MB

decoding, the decoding scanning order based on 8 x 8 block is shown in Fig. 3.25 (a) and the

output order in 4-pixel parallel follows Fig. 3.25 (b).

 36

0 1

2 3

(a) (b)

Fig. 3.25 (a) decoding scanning order based on 8 x 8 block for each macroblock,

(b) 4-pixel parallel output order for each 8 x 8 block

<< 2

<< 2

Luma
Output

Luma Output = A - 5B + 20C + 20D - 5E +F

A F B E C D

round

(a) (b)

Fig. 3.26 (a) luma FIR design in Chen’s [9], (b) bilinear filter

As for luma and chroma interpolator for H.264/AVC described in subsection 3.1.4 and

3.1.5, the adder also can be shared when the architecture of chroma horizontal/vertical filter in

Fig. 3.19 (b) restructure to shifter and adder. The combined interpolator design is shown in

Fig. 3.26 and the cost penalty is MUX x 2, shifter x 3 and bitwise AND x 6 when compared

with the FIR design proposed in Chen’s [9] and shown in Fig. 3.26 (a) . The decoding path of

luma FIR filter and chroma horizontal/vertical filter are illustrated in Fig. 3.27. Because

chroma interpolation for H.264/AVC is 2 x 2 block based process, only four luma FIR filters

are required to replace with combined luma/chroma interpolators. Fig 3.27 indicates the

shared storage and decoding module for chroma interpolator for H.264/AVC.

 37

<< 2

<< 1

<< 2

<< 3

Chroma
Output

Luma
Output

Bitwise AND

Fig. 3.26 Combined luma/chroma interpolator design for H.264

<< 2

<< 1

<< 3

Chroma
Output

X X XY Y Y

Frac[0] Frac[1] Frac[2]iFrac[1] iFrac[2]iFrac[0]

Frac

Chroma Output = Frac*X + (8-Frac)*Y

Y

<< 2

<< 2

Luma
Output

A 1 F 1 B 1 E 1 C 1 D 1

Luma Output = A - 5B + 20C + 20D - 5E +F

(a) (b)

Fig. 3.27 (a) path of luma FIR interpolator, (b) path of chroma 1/8 bilinear

 38

R_
FI

R

FIR

FIR

FIR

FIR

R
_F

IR

R_FIR

FI
R

FIR

FIR

FI
R

FIR

R_FIR

R_FIR Reconfigurable interpolator design as shown in Fig 3.24

Fig. 3.27 Shared local register and reconfigurable interpolator

for H.264 chroma interpolation

 39

3.2.2 Cost Analysis

Table 3.4 # of adders for each filter design

Module Function # of adders
Horizontal/vertical FIR 1/2 luma for H.264 6

Bilinear (average)
1/4 luma for H.264

1/2 luma and chroma for
MPEG-2

1

1/8 horizontal/vertical FIR Chroma for H.264 5

Combined horizontal/vertical filter
1/2 luma for H.264
Chroma for H.264

6

Adder occupies the main area cost in the filter design. Firstly, Table 3.4 lists the number

of adders used in each kind of filter design described in previous subsections. The

horizontal/vertical FIR design presented in Chen’s [9] and bilinear design are illustrated in Fig

3.25. Chroma 1/8 horizontal/vertical filter, which modifies the multiplier-based design

depicted in Fig. 3.19 (b) to adder-based design painted in Fig. 3.26 (b), requires 5 adders.

Table 3.5 lists the comparisons between our reconfigurable interpolator design and traditional

design. It reveals that the amount of adder and register efficiently reduced although it requires

paying some control circuits to support multi-mode operations. After synthesizing based on

technology of UMC 0.18 um, the total area gate count can be reduced about 20 %.

 40

Table 3.5 Comparison of requisite modules based on 4-parallel separate 1-D architecture
Traditional design: separated H.264 luma, H.264 chroma

and MPEG-2 bilinear interpolator

Module Traditional design Our Reconfigurable design

Horizontal FIR 9 7
Vertical FIR 4 2

Bilinear (average) 8 4
1/8 horizontal bilinear 2 0

1/8 vertical bilinear 2 0
Combined horizontal filter 0 2

Combined vertical filter 0 2
Content buffer 54 x 8 bits 54 x 8 bits

Shift register array (54 + 18 + 4) x 8 bits 54 x 8 bits
Adder 106 Adder 82

Total Register

(# of bits)
1040

Register

(# of bits)
864

Gate count 16376 13013

3.3 Summary

In this chapter, a motion compensation engine for MPEG-2/H.264 dual-video decoder is

presented. To overcome the tremendous data access to frame memories, especially in the high

motion precision for the advanced video standard, H.264/AVC, the proposed data reuse

technique for fractional motion compensation can efficiently reduce the requisite reference

data. As for sharing design issue for multi-standard, our reconfigurable interpolator saves 20

% gate count compared with traditional design and it fully supports standard-compatible

fractional interpolation for MPEG-2 /H.264 video decoder. Besides, the 4-parallel separate

1-D architecture is also suitable for high throughput SDTV/HDTV video decoder.

 41

Chapter 4
Frame Memory Organization

To deal with tremendous data transfer and storage in multimedia system, software or

hardware technologies must provide high data bandwidth and efficient real-time memory

scheduling. As for video decoding system, irregular data access property and large storage of

multidimensional organization always dominate the system performance including throughput

and power consumption [12]. To flexibly support from mobile device up to high-definition TV,

frame memories, which are the largest memory storage over the entire video decoder, are

located on off-chip. Nevertheless, the data transfer to off-chip memory is always bound to the

limited bandwidth. To improve memory bandwidth, new modern DRAM families such as

synchronous DRAM (SDRAM), reduced latency DRAM (RLRAM) and double-data-rate

SDRAM (DDR SDRAM) are now widely applied in video system [13]. In this chapter, we

choose SDRAM as external frame memory.

Many SDRAM controllers have been proposed to improve memory bandwidth

utilization and achieve efficient memory access. According to the environment, they can be

categorized into two classes: single channel and multiple channel environments. For single

channel environment, Rixner’s memory access scheduler [14] reorders the access addresses

from each bank controller and sends command to DRAM through address arbiter. However,

because the output command may be out-of-order, many command FIFOs and extra circuits

are required to reorder commands and addresses. Miura‘s dynamic-SDRAM-mode-control

scheme [15] eliminate the above disadvantage and it can both reduce operating current and

the latency of an SDRAM. Nevertheless, it only supports scheduling of single-channel

 42

sequence. For multi-channel environment, Lee’s quality-aware memory controller [15]

supports different scheduling policies according to the current channel situation. These

memory controllers mainly focus on general-purposed environment. On the other way,

concerning particular-purpose orientation especially in video codec application, several

papers have been proposed on improvement of power consumption or memory bandwidth

utilization. Kim’s memory–interface architecture [17] reorganizes data arrangement in

SDRAM to reduce energy consumption and increase memory bandwidth. Park’s history-based

memory mode control [18] reduces page miss to achieve 23.3 % reduced energy consumption

and 18.8 % reduced memory latency. Zhu’s SDRAM controller in H.264 HDTV Decoder [20]

focuses on memory mapping and data arrangement in SDRAM to reduce page active cycles;

meanwhile, it also improves throughput and provides less power consumption. However, it

does not provide memory scheduling and the adoption of auto precharge rather than manual

precharge also leads to some loss of bus bandwidth. We will show the advantage of manual

precharge in subsection 4.1.2. The above memory control techniques individually concentrate

on memory scheduler or data arrangement in SDRAM. Both issues should be taken into

account carefully in memory controller, especially for multi-dimensional oriented system,

such as video codec and graphic processor unit (GPU). To achieve all-round integration, we

consider both memory access scheduling and data arrangement to design our SDRAM

controller. In addition, not only communication between SDRAM controller and data bus has

to be analyzed, but also interface between motion compensation and SDRAM controller has

to be taken into account carefully. The above discussion of related works is summarized in

Table 4.1, and the application of our dual-channel SDRAM controller focuses on build-in

video decoder. Section 4.1 will give detailed design for our dual-channel SDRAM controller.

 43

Table 4.1 Related works of SDRAM memory controller

Related work Application Improvement Techniques

Rixner’s [14]
General-purpose

Single-channel

Bandwidth,

latency
Memory scheduling

Miura’s [15]

32-bit RISC CPU

Single-channel

STB

Latency,

Power Memory mode control

Lee’s [15]

CSVT’05

Multimedia SoC

Multiple-channel

STB

Bandwidth utilization,

Latency Memory scheduling

Kim’s [17]

CSVT’01

Video

Single-Channel

build-in device

Memory Power

Bandwidth Data arrangement

Park’s [18]

CE’03

HDTV decoder

Multi-channel

STB

Memory Power,

Bandwidth

Latency

Memory mode control

Zhu’s [20]
H.264 HDTV decoder

Multi-channel

Bandwidth utilization,

Decoding throughput
Data arrangement

Our work

Video decoder

dual-channel

build-in device

Bandwidth utilization,

Latency

Decoding throughput

Memory scheduling,

Data arrangement

 44

Frame memories always dominate the storage size on the video decoder. Generally

speaking, at least two frame memories, which are used to store current and reference frames,

are required for H.264@Baseline video decoder. Several methods have been proposed to

reduce the required memory and they can be mainly classified to two solutions that one is

frame recompression and another is frame memory reorganization. Concerning the first

solution, which concept is depicted in Fig. 4.1, is recompressing video frame data before

storing to frame memory, and equivalently decompression is required when reading reference

frame data from frame memory. This recompression method must support random access

capability demanded for motion compensation and low complexity property due to limited

memory bandwidth. In this respect, many algorithms, such as Tajime’s [22] 2-D adaptive

DPCM in pixel domain, and Lee’s [23] modified Hadamard transform and Golomb-Rice (GR)

coding., etc have been proposed. However, frame recompression method leads to extra area

cost and even requires additional execution cycles to compress data such that the throughput

of video decoder degrades. As for second solution, frame memory reorganization, this idea,

which combines the current frame and reference frame, can be initially found in De Greef’s

[24]. Besides, Interuniversity MicroElectronics Center (IMEC) widely exploited this idea to

H.264 video decoder system [25], MPEG-4 motion estimation [26] and video encoder [27].

Particularly in Brockmeyer’s [26] and Denolf’s [27], the concept of memory hierarchy [28]

combined with merging structured frame memory can achieve data reuse and reduce the

redundancy of data access. However, they only focus on C level simulation and target on DSP

or FPGA platform. If we want to implement on ASIC design, many issues still have to be

overcame. For example, the data copy and update between background memory and

intermediate memory are required being considered in ASIC design. Concerning another issue,

we also need extra hardware cost to record the update status in in-place FIFO [25], the

intermediate region between the new frame and old frame. For advanced development,

Chang’s combined frame memory architecture [29] can reduce frame memory size up to 57 %

 45

and reduce up to 83 % average latency and 39 % average power consumption. We will discuss

the methodology proposed by Chang’s [29] and exploit it on H.264/AVC video decoder.

Video
Decoder

Frame
Memory

recompress

decompress

Fig. 4.1 Frame recompression method

The reset of this chapter is organized as follows. Firstly, SDRAM characteristic is

described in section 4.1. Then, section 4.2 discusses our dual-channel frame memory access

controller design. In addition, merging structured frame memory organization, a novel

memory structure that can reduce required frame memory size, is presented in section 4.3.

Finally, summary is given in section 4.4.

 46

4.1 SDRAM characteristic

4.1.1 Basics

Column decoderColumn decoderColumn decoder

Sense Amplifiers
with Row BufferSense Amplifiers

with Row Buffer
Sense Amplifiers
with Row Buffer

BANK 0

ro
w

 d
ec

od
er

BANK 0

ro
w

 d
ec

od
er

BANK 0

ro
w

 d
ec

od
er

BANK 0

Sense Amplifiers
with Row Buffer

R
ow

 D
ec

od
er

Column decoder

Control Logic

Mode
Register

CMD

ADDR Addr
Reg

D
at

a
Bu

ff
er

DATA

Fig. 4.2 Simplified architecture of a 4-bank SDRAM

IDLE ACTIVE

precharge

row active

column
access

Fig 4.3 Simplified bank state diagram

A simplified architecture of a 4-bank SDRAM is shown in Fig. 4.2. Four banks share the

address bus and command bus, while each bank has individual row decoder, sense amplifier,

and column decoder. The mode register stores several SDRAM operation modes, including

burst length (BL), column address strobe (CAS) latency (abbreviated as CL), or burst type

(sequential / interleave). The content of mode register updates according to command issued

from address bus. SDRAM can be treated as 3-D structure with the dimensions of bank, row,

and column. A memory access operation, which simplified bank state diagram is depicted in

 47

Fig 4.3, contains three steps including row activation, column access, and precharge. Firstly, a

row activation command with bank address is sent to open (or active) one row in a particular

bank and the designated row address is issued from address bus. The operation of this

command is copying the row data into the row buffer of the selected bank and row activation

needs a active latency called tRCD (ACTIVE to READ or WRITE delay) to accomplish this

operation. Then, column access command is used to sequential access data or single data

according to the burst length and burst type in the mode register. The read/write data are

access/send thorough the same data bus. For read operation, the valid data-out element from

the starting column address will be available following the CAS latency after the READ

command, as shown in Fig. 4.4. For write operation, the first valid data-in element is

coincident with the WRITE command, as shown in Fig. 4.5. Finally, a precharge command

must be issued before opening a different row in the same bank, whereas a precharge and

active command need not to be issued if the following access still in the same row and bank.

After precharge command is issued, the selected bank cannot be accessed during the

precharge latency named tRP (PRECHARGE command period.)

address

bank address

ACTcommand

bank0

row0

CL=3, BL=4

NOP

DQ

READ

D_000 D_001

col0

bank0

NOP

tRCD

D_002 D_003

CL=3

NOP NOP NOP NOP NOP NOP

0

clock
1 2 3 4 5 6 7 8 9

Fig. 4.4 Burst read operation with CL=3 and BL=4.

 48

address

bank address

ACTcommand

bank0

row0

CL=3, BL=4

NOP

DQ

WRITE

D_000 D_001

col0

bank0

NOP

tRCD

D_002 D_003

NOP NOP NOP

0

clock
1 2 3 4 5 6

Fig. 4.5 Burst write operation with CL=3 and BL=4.

Table 4.2 CAS latency

CL 1 2 3
Allowable operating

frequency (MHZ)
≦50 ≦100 ≦166

4.1.2 Access Latency

Lee discussed different access latencies of different access statuses in [15]; however,

detailed classification is required for exquisite access command scheduling. The memory

behavior model used in our design is Micron’s MT48LC2M32B2P-5 64Mb SDRAM [21].

Table 4.1 lists three different allowable maximum operation frequencies provided in this

SDRAM according to the CAS latency stored in mode register. Obviously, when setting CAS

latency to 3, the SDRAM can provide higher operating frequency. However, higher operating

frequency induces more stall cycles is demanded for each read column access. Therefore, the

CAS latency should be set carefully for different applications. For example, 50 MHZ with

CL=1 is enough for Q-CIF format in mobile device while 166 MHZ with CL=3 is required for

 49

large frame size format such as SDTV or HDTV format.

PRERow-miss

Bank-miss
with row-miss

Bank-miss
with row-hit

Row-hit

ACT

PRE ACT

READ

READ

READ

DATA

READ

tRP tRCD Cas Latency

DATA

DATA

DATA

PRERow-miss

Bank-miss
with row-miss

Bank-miss
with row-hit

Row-hit

ACT

PRE ACT

tRP tRCD

DATA

DATA

WRITE

WRITE

DATA

DATA

WRITE

WRITE

(b)

(a)

Fig. 4.6 Access latency for CL=2 (a) read access latency, (b) write access latency

 Fig. 4.6 illustrates read/write access latency under different statuses when CL =2. Row

miss status means that the activated row in selected bank is not identical to the incoming

access command and it induces (PRECHARGE + ACTIVE + CAS) latency for read access

and (PRECHARGE + ACTIVE) latency for write access. Bank-miss with row-miss status

means that incoming bank address is different from previous command and the selected row

for the incoming bank address is not activated. For this status, required latency is the same as

that of row-miss status. Bank-miss with row-hit status indicates that the incoming row has

been activated in the previous command although the incoming bank is not equal to the

previous one. For this status and row-hit status, the column access can be directly issued and

 50

only read access leads to CAS latency. Based on the above discussion, memory scheduling

can overlap the sequential access commands and hide full or partial latencies.

address

bank address

ACTcommand

bank0

row0

CL=3, BL=4

NOP

DQ

READ

D_000 D_001

col0

bank0

NOP

tRCD

D_002 D_003

CL=3

NOP NOP NOP NOP NOP NOP

0

clock
1 2 3 4 5 6 7 8 9

tRAS

10 11

tRP

Cannot issue another command to the same bank (bank0)

Fig. 4.7 READ command with auto precharge

In the precharge period (tRP), SDRAM cannot issue

another command in the same bank (bank 0).

 SDRAM also supports another precharge method called auto precharge without requiring

an explicit precharge command. A PRECHARGE of bank/row together with READ/WRITE

command is automatically performed upon completion of READ/WRITE burst, except in the

full-page burst mode, where auto precharge does not apply. Auto precharge ensures that the

precharge is initiated at the earliest valid stage within a burst. As shown in Fig. 4.7, in the

precharge period, it cannot issue another command to the same bank until the precharge time

(tRP) is completed. If the following command must active to the same bank, the overlap

scheduling is limited to this situation such that the following command can be issued only

until the completion of tRP period or reorder with the other command. For another

disadvantage induced by auto precharge, READ/WRITE with auto precharge means that

 51

SDRAM always de-active the selected bank at the end of a burst command. If the following

command still issues the same bank, it must waste time to re-active the same bank and lead to

longer latency at the same time. Therefore, we select manual precharge rather than auto

precharge in our memory access controller design.

4.2 Dual Channel Frame Memory Access Controller

Frame 0 Frame 1

 memory controller

WRITE

Frame 0 Frame 1

 memory controller

READ WRITE

current reference current

Frame 0 Frame 1

 memory controller

READ READ

reference reference

(a) (b) (c)

Fig. 4.8 READ/WRITE operation in (a) I frame, (b) P frame, (c) B frame.

For frame memory access in video decoding system, we only need to concentrate on

consecutive read or write access instead of read-to-write or write-to-read access because

read/write operation changes at frame level. Based on conventional ping-pong structured

frame memories [28], which one stores reference frame and another stores current frame, Fig.

4.8 shows read/write operation in three different frame types. For I frame, memory access

controller write reconstructed data to current frame. For P frame, memory access controller

reads referenced data while writing reconstructed data to current frame. For B frame in

MPEG-2, memory access controller reads data from previous and following reference frame

because B frame is never referenced. Nevertheless, B frame has a chance that referenced by

other P/B frame for H.264/AVC video decoder, so the frame memories issue becomes more

complicated. We can set nal_ref_idc flag in H.264/AVC such that B frame is never used to be

 52

reference frame. In this section, we only focus on I/P frame for H.264 and I/P frame for

MPEG-2 video decoder.

Table 4.3 Characteristics of read/write-access

Access Required density Influence factors

Read High
Bitstream, memory scheduling,

data arrangement in memory

Write Low or medium
Bitstream, capability of residual decoder,

(de-blocking filter only for H.264)

4.2.1 Memory Access Scheduling

The target of memory access scheduling is overlapping or reordering consecutive DRAM

commands (PRECHARGE, ACTIVE, CAS) to improve bandwidth utilization and reduce

access latency. Because the external access of video decoder is bandwidth-sensitive channel

[15], memory access scheduler must compress and even reorder DRAM commands to achieve

high bandwidth utilization. Furthermore, considering read-access and write-access

respectively, the required density of write-access has high correlated with the ability of

residual decoder and the property of decoding bitstream, while the required density of read

density is as tight as possible. For high bit-rate video sequence, the decoded bitstream

contains more coefficients and higher precision of decoding token that may induce more

requisite decoding cycles. In this situation, the write-access becomes less bandwidth-sensitive

and the density of write access is not necessarily very tight. The poor design of residual

decoder, de-blocking filter also affects the bandwidth utilization of write access. Unlike the

limitation of write access described above, read access needs high density of access

scheduling because of its high bandwidth-sensitive channel. Read requests are only sent by

motion compensation, hence the bandwidth utilization of read access is influenced by the

 53

memory scheduler design, data arrangement in SDRAM and the handshake command scheme

of motion compensation. The characteristics of write/read-access discussed above are

summarized in Table 4.3.

PRE ACT READ DATA

PRE ACT READ DATA

PRE ACT READ DATA

PRE ACT READ DATA

clock
0 1 2 3 4 5 6 7 8 9 10 11 12

unscheduled

scheduled

13 14 15 16 17 18 19 20

Fig. 4.9 Two row-miss unscheduled and scheduled read memory accesses (CL=2, BL=4)

Considering read/write access from/to frame memories, the requirement of write-access

is low or mediate density depend on the capability of residual decoder, whereas motion

compensation requires high density of read-access. Therefore, we only concentrate on read

access and design a high-density scheduler for read-access and it must be also suitable for

write-access. Fig. 4.9 shows an example of two unscheduled and scheduled read memory

accesses when occurring row miss at different bank. For unscheduled read, We choose (CL=2,

BL=4) as an example, and then the unscheduled accesses takes 20 cycles to read eight burst

data, whereas the scheduled accesses only requires 14 cycles and eight burst data can be

sequential read. From the access latency discussion in section 4.1.2, the access command

without auto precharge can be classified to two types, one is long command (PRE + ACT +

CAS) and another is short command (CAS), painted in Fig. 4.5. Moreover, we consider the

latency after access scheduling under BL=1, 2, 4 situations illustrated in Fig. 4.10-12 and

summaries the induced latency under each situation in Table 4.4. Obviously, we can find that

the worst latency is always located in row-miss situation. To reduce the access latency, the

command request ordering and data arrangement should follow the orientation of minimizing

 54

the row-miss occurrence.

READ: BL=1, CL=2

PRE ACT READ DATA

PRE ACT READ DATA

Row-miss

tRAS

Bank-miss with
row-miss

PRE ACT READ DATA

PRE ACT READ DATA

READ DATA

READ DATA

PRE ACT READ DATA

READ DATA

PRE ACT READ DATA

READ DATA

READ DATA

PRE ACT READ DATA
Row-hit

or
Bank-miss with

row-hit

Row-miss

Bank-miss with
row-miss

Row-hit
or

Bank-miss with
row-hit

(a)

(b)

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7

CL-1

Fig. 4.10 Scheduled consecutive read access for (BL=1, CL=2) when previous

command is (a) long command (PRE+ACT+CAS), (b) short command (CAS)

 55

PRE ACT READ DATA

PRE ACT READ DATA

tRAS

PRE ACT READ DATA

PRE ACT READ DATA

READ DATA

READ DATA

PRE ACT READ DATA

READ DATA

PRE ACT READ DATA

READ DATA

READ DATA

PRE ACT READ DATA

0 1 2 3 4 5 6 7

Row-miss

Bank-miss with
row-miss

Row-hit
or

Bank-miss with
row-hit

8 9 10 11 12 13

Row-miss

Bank-miss with
row-miss

Row-hit
or

Bank-miss with
row-hit

0 1 2 3 4 5 6 7 8 9

(a)

(b)

READ: BL=2, CL=2

CL-1

CL-1

Fig. 4.11 Scheduled consecutive read access for (BL=2, CL=2) when previous

command is (a) long command (PRE+ACT+CAS), (b) short command (CAS)

 56

PRE ACT READ DATA

PRE ACT READ

tRAS

PRE ACT READ DATA

PRE ACT READ DATA

READ DATA

READ DATA

PRE ACT READ

READ DATA

PRE ACT READ

READ DATA

READ

PRE ACT READ DATA

0 1 2 3 4 5 6 7

Row-miss

Bank-miss with
row-miss

Row-hit
or

Bank-miss with
row-hit

8 9 10 11 12 13 14

Row-miss

Bank-miss with
row-miss

Row-hit
or

Bank-miss with
row-hit

0 1 2 3 4 5 6 7 8 9

(a)

(b)

READ: BL=4, CL=2

DATA

15 16
CL-1

17

DATA

DATA

DATA

CL-1

Fig. 4.12 Scheduled consecutive read access for (BL=4, CL=2) when previous

command is (a) long command (PRE+ACT+CAS), (b) short command (CAS)

 57

Table 4.4 Latency for scheduled consecutive read access when CL=2

BL Previous command Incoming command Latency

Row-miss 4

Bank-miss with row-miss 2 (PRE + ACT +CAS)
Row-hit or

Bank-miss with row-hit
0

Row-miss 4

Bank-miss with row-miss 4

1

CAS
Row-hit or

Bank-miss with row-hit
0

Row-miss 4

Bank-miss with row-miss 1 (PRE + ACT +CAS)
Row-hit or

Bank-miss with row-hit
0

Row-miss 4

Bank-miss with row-miss 3

2

CAS
Row-hit or

Bank-miss with row-hit
0

Row-miss 4

Bank-miss with row-miss 0 (PRE + ACT +CAS)
Row-hit or

Bank-miss with row-hit
0

Row-miss 4

Bank-miss with row-miss 1

4

CAS
Row-hit or

Bank-miss with row-hit
0

 58

 Out-of-order scheduling may cause two problems for video decoding system. The first

one is that the additional FIFOs is required storing incoming access commands, and the

second one is that additional read data buffer and control circuits are needed to re-order data,

otherwise the disordered data leads to operation error occurred in motion compensation. To

eliminate the above problems, in-order, also named first-in-first-out, policy is adopted in our

priority scheduling. We just focus on command overlapping and data arrangement such that

our design can meet real-time SDTV/HDTV decoding at 100 HMZ that is the allowable

maximum operating frequency when CL = 2.

PRE ACT READ DATA TRE

PRE ACT READ

PRE ACT READ DATA TRE

READ

PRE ACT READ DATA TRE

PRE ACT READ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Row-miss

Bank-miss with
row-miss

Row-hit
or

Bank-miss with
row-hit

CL-1

Fig. 4.13 Scheduled consecutive read access for full-page mode

 Besides the fixed length burst mode, SDRAM also supports full-page mode that allows

the access of arbitrary length successive data on the particular row/bank. The full-page access

must be truncated by BURST TERMINATE command. Fig. 4.13 shows an example of

scheduled consecutive read access for full-page mode. The BURST TERMINATE command

should send before (CL-1) cycles apart from the last burst data. When a READ or WRITE

command is issued, a block of columns equal to the burst length is effectively selected. All

accesses for that burst take place within this block, meaning that the burst will wrap within

the block if a boundary is reached.

 59

4.2.2 Data Arrangement

From the above discussion, the data arrangement in SDRAM should tend to

minimization of row miss at the same bank because row miss status has to pay the longest

latency. Based on this concept, row-major arrangement is adopted in our design. Fig. 4.14 (a)

illustrates that the luma MB partitioning is dispersed to four banks. The first MB addressed in

SDRAM is painted in Fig. 4.14 (b). Similar to luma MB, the chroma block is partitioned to

two banks. As shown in Fig. 4.15, the Cb block is placed in bank 0 and 1, while Cr block is

located in bank 2 and 3. Fig. 4.16 illustrates the QCIF data arrangement in SDRAM. Each

Frame can be partitioned into several MB based row. The length is frame width and the width

is MB width. When frame size is small, each row (page) of SDRAM can stores multiple MB

based rows of frame. Otherwise, for large frame size like SDTV or HDTV, each MB based

row may occupy several rows (pages) of SDRAM. The advantage of this arrangement is that

address generator needs not be modified according to different frame size format. For another

reason, the probability of row-miss occurrence is very low. Obviously, it only occurs when

data is located in row (page) boundary. As for physical analysis, we will show it later.

BA3

BA2

BA1

Row 0
Row 0

Row 0

……
……

……
Row 0

BA0

BA1

BA2

BA3

(a) (b)

BA0

16

16

32
bits

Fig. 4.14 (a) row-major arrangement,

(b) the first luma macroblock location in SDRAM

 60

BA2

BA3

BA0

BA1

8

8

Chroma Cb Chroma Cr

Fig. 4.15 The location of SDRAM for chroma Cb and Cr

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

32 33 34 35 36 37 38

28 29 30 31

39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Macroblock number

……
……

Fig. 4.16 QCIF video format arrangement in SDRAM

 Because the fetching window width/length is always larger than data length of SDRAM,

the fetching window is truncated by row boundary or different banks. For example,

considering luma MB, it required to fetch 9 x 9 interpolation window no matter what 4 x 4

block for H.264/AVC or 8 x 8 block for MPEG-2. Several cases are illustrated in Fig. 4.17.

Window A and B are only truncated by different banks at the different row. That is, only bank-

miss with row-hit or row-hit occurs in this window and the penalty of latency is small or zero

from Table 4.4. With regard to window C, bank-miss with row-miss would take place and the

required latency is greater than that of window A and B. Row-hit, which requires maximum

latency, only occurs in row boundary such as window D. As for integer MV for H.264/AVC, it

 61

only need to read 4 x 4 block like window E and F. Window E is the best case since all block

is addressed in the same bank/row. Window F is truncated by different bank at the same row.

BA2

BA3

BA0

BA1

D Row 10

Row 9

E F

BA0

BA1

BA2

BA3

A
D

B

B9

9

4

4

C
C

Fig. 4.17 Different cases of the interpolation window location when

window size is 9 x 9 pixels (A, B) truncation by banks at the same row,

(C) truncation by banks at different row, (D) truncation by row and banks,

or window size is 4 x 4 pixels (E) best case, no truncation,

(F) truncation by banks at the same row

Table 4.5 The proportion of access status (foreman-QCIF @ 64kbps in H.264 decoder)

BL Row-hit (%)
Bank-miss with

row-hit (%)
Bank-miss with
row-miss (%)

Row-miss (%)

1 37.9152 60.2273 1.51639 0.34104
2 38.2509 58.5636 2.60708 0.578438
4 39.2019 55.9049 4.01952 0.873668

Full-page 43.3516 47.9131 7.07336 1.66188

As listed in Table 4.5, after simulation on foreman-QCIF format @ 64kbps, we can find

the proportion of row-miss status only occupies less than 2 % at any burst length access. The

 62

row-major arrangement for frame memory can efficiently reduce the probability of bank-miss

with row-miss or row-miss that contributes the maximum latency. More detailed experiment

result will illustrate in subsection 4.2.4.

4.2.3 Dual-channel Frame Memory access controller Design

The entire dual channel SDRAM memory access controller and the connection with

motion compensation are painted in Fig. 4.18. Regarding write memory access controller,

write data buffer is used to hold the length of burst data, while write address queue is used to

hold incoming addresses. Write address is calculated according to the output ordering of

de-blocking-filter (H.264) or IDCT (MPEG-2). Master write scheduler assigns the incoming

address command to suitable write controller according to the access status. Timing unit

records all kinds of command latency such as burst length, tRP (precharge period), tRCD

(ACTIVE to READ or WRITE), and so on. Write controllers generate sequential access

commands according to the burst length and latency defined in timing unit. These access

commands are collected by master write scheduler, which can issue the proper command to

SDRAM. Read memory access controller has the similar operation to the write memory

access controller. Read data buffer is used to hold sequential received read data for motion

compensation decoding. The arbiter allocates write / read data and command flow to / from

external SDRAM memories according to the frame type illustrated in Fig. 4.8.

As for motion compensation engine, besides interpolator and motion vector generator

described in Chapter 3, the major FSM controller consists of three parts: request FSM, receive

FSM and output stage FSM. Request FSM send request and address to memory access

controller when the status of read addr queue is not full. The detailed design of wirte/read

addr queue is painted in Fig. 4.19. The “full” signals reflect the status of this queue. The

 63

proposed address queue must also compare the incoming and the previous address command

to check row-hit and bank-hit situations. Receive FSM controls the mask to filter the read data

and then spits to interpolator. Output stage FSM handles the interpolator and output data flow.

When the fractional part of motion vector is zero, read reference data directly output;

otherwise, the reference data pass through interpolator and generates interpolated sample data.

Unlike traditional SDRAM access controller design containing various “WAIT” states,

Lee’s [15] proposed a configurable shared-state FSM Design. This design merges all

numerous “WAIT” state into single NOP stage. After applying NOP_count and NOP_code

status registers, the FSM becomes flexible to parameterize the command latency without

redesign FSM. We design our access FSM based on this concept. The interface connection

between memory scheduler and bank controller is depicted in Fig. 4.20. Each bank requires

two access FSMs to overlap two successive row-miss (at the same bank) accesses; otherwise

the incoming row-miss command has to wait until the previous access command returns to

IDLE state. As for bank-miss (at the same row or not) situations, access scheduler collects the

access commands for the corresponding bank controllers and then sends to arbiter at the

suitable time. Besides the access FSM, each bank controller needs a row address (RA) register

to record the activated row for each bank. Compared incoming commands with RA registers

for each bank controller, the bank-miss with row-hit or bank-miss with row-miss status can be

detected. The access scheduler allocates and overlaps successive commands according to

these status flags. In brief, double access FSMs for individual bank controller can handle

access conflict at the same bank, while master access scheduler is responsible for access

overlapping between different banks. After scheduling SDRAM access commands, the bus

utilization can raise efficiently; meanwhile the throughput of the entire video decoder can be

improved.

 64

Bank 0
write

controller

Bank 1
write

controller

Master write scheduler

Bank 2
write

controller

Bank 3
write

controller

Timing
unit

Bank 0
read

controller

Bank 1
read

controller

Bank 2
read

controller

Bank 3
read

controller

Master read scheduler

ar
b

it
er

Read
addr

queue

write
data buffer

SDRAM 0

SDRAM 1

Read
data

buffer

External
frame

memories

Write
address

Write
data

Read
address Read data

write
addr queue

Request FSM MASKReceive FSM

InterpolatorMotion vector
generator

Address
generator

Output stage
FSM

Motion
information

Inter-predicted
data

Motion compensation

Dual channel SDRAM memory access controller

Fig 4.18 Dual-channel SDRAM memory access controller design

 65

Address

Incoming cmd address

BA RA CAvalid

Full

BA RA

Previous cmd address

BA RA

= = Row-hit

bank-hit
Fig. 4.19 Incoming address command queue

Access
FSM

Access
FSM

RA

Access
FSM

Access
FSM

RA

Access
FSM

Access
FSM

RA

Access
FSM

Access
FSM

Bank-hit

Row-hit

Incoming cmd address
= =

RA

== == ==

Access Scheduler

Command ROM

command

address

(BA, RA, CA)

(BA, RA, CA)

Memory Scheduler

Bank controller 0 Bank controller 1 Bank controller 2 Bank controller 3

Fig. 4.20 Memory bank controllers and schedulers

 66

4.2.4 Experiment Result

Load
MVD

MV
calculation

Read ref. luma data Read ref.
Chroma_cb data

Read ref.
Chroma_cr data

Motion vector
generator

Memory controller
& interpolator

Tasking

time

Motion compensation processing flow for H.264/AVC

Update MV
FIFO

(2 cycles)

MV calulation
and PMV
update

Read ref. luma data Read ref.
Chroma_cb data

Read ref.
Chroma_cr data

Motion vector
generator

Memory controller
& interpolator

Tasking

time

Motion compensation processing flow for MPEG-2

(a)

(b)

Fig. 4.21 Motion compensation processing flow for (a) H.264/AVC, (b) MPEG-2

Firstly, review the motion compensation processing flow depicted Fig. 4.21 for MPEG-2

and H.264/AVC video decoder. For H.264/AVC video decoding, motion vector generator

needs two-phase operations including loading MVD and calculation of MV. After reading

reference luma/chroma data and interpolation processing, motion vector generator takes two

cycles to update MV FIFO for the next MB decoding. As for MPEG-2 tasking, motion vector

generator can immediately calculate MV when receiving required information like

motion_code, f_code, and motion_residual and then read reference data to reconstruct current

frame. Then, considering system level analysis including motion compensation, SDRAM

controller, depicted in Fig. 4.22, because motion compensation and SDRAM controller are

both in operation and data transmission only during the period of reading reference data,

hence we only have to analysis the data transfer in this period.

 67

Motion
compensation

SDRAM
controller

Frame
memory

Data Utilization = Bus Utilization x Data Usage

Bus UtilizationData Usage

Fig. 4.22 System level analysis

Before going into detail of the following analysis, we define the following criteria to

measure the performance of data transfer on the bus.

sec
frame of #

frame
block sub 4x4 of #

block sub 4x4
available cycles bus of #

sec
frame of #

frame
block sub 4x4 of #

block sub 4x4
controller SDRAMby required cycles bus of #

 ion UtilizatBus
××

××
=

(4. 1)

sec
frame of #

frame
block sub 4x4 of #

block sub 4x4
controllerSDRAM from available data of #

sec
frame of #

frame
block sub 4x4 of #

block sub 4x4
 MCby required data of #

 UsageData
××

××
=

(4. 2)

 UsageData on UtilizatiBus on UtilizatiData ×= (4. 3)

 Based on the assumption of that the data bus is only provided for double frame memories,

generally speaking, higher bus utilization induces better throughput for our video decoder.

The data usage is correlated to the burst length and required window size. Thus, data usage

can be treated as the proportion of required data over the available data from SDRAM

 68

controller. To explain data usage clearly, considering 9 x 9 interpolation window of 4 x 4

block in H.264 fractional motion compensation, Fig. 4.23 illustrates an example of the

fetching window for four different burst lengths. Fetching window is the total pixels that

needed to be read for SDRAM controller. Since the data bus width is 4-pixel (32 bits), the

height of fetching window must be 12-pixel that is a multiple of 4-pixel. Similarly, the width

of fetching window must be the multiple number of the burst length except that the length can

be arbitrary length for full-page mode. Accordingly, among these burst mode, the data usage

is poorest when the selected burst length is 4. Data utilization is the multiplication of bus

utilization and data usage. Therefore, the data utilization can be seemed as the required data

proportion over the allowable data transmission on the bus. Higher data utilization means that

we have chance to get better throughput and less latency on the entire video decoder.

12

4x4

10

4x4

9 x 9

4x4

9 x 9 9 x 9

12 1212

9

BL=1
or

Full-page

BL=2 BL=4

(a) (b) (c)

Fetching window

Interpolation window

4 x 4 block

Fig. 4.23 Fetching window of H.264 4 x 4 block for different burst length (unit: pixel):

(a) BL=1 or full-page, (b) BL=2, (c) BL=4

 69

BL=1 BL=2 BL=4 full-page
0

10

20

30

40

50

60

70

80

90

100
Unscheduled bus/data utilization (foreman-QCIF @ 128kbps)

burst mode

pe
rc

en
ta

ge
 (%

)

bus utilization
data usage
data utilization

Fig. 4.24 Unscheduled bus utilization, data usage, and data utilization

for different burst mode

BL=1 BL=2 BL=4 full-page
0

10

20

30

40

50

60

70

80

90

100
Scheduled bus/data utilization (foreman-QCIF @ 128kbps)

burst mode

pe
rc

en
ta

ge
 (%

)

bus utilization
data usage
data utilization

Fig. 4.25 Scheduled bus utilization, data usage, and data utilization

for different burst mode

 70

Fig. 4.24 and 4.25 shows the unscheduled and scheduled system level analysis of the

above criteria. Before scheduling, the longer burst length provides higher bus utilization

instinctively because the short access latency is required for the same amount of fetching data.

After scheduling, since longer read burst cycles can provides long overlapping period for the

successive commands, burst length = 4 has the highest bus utilization. Nevertheless, the

improvement of full-page is smaller than the other case because the BURST TERMINATE

command at the end of burst read impedes the possibility of command overlapping. Although

bust length = 4 reflects the highest bus utilization, the lowest data usage makes the data

utilization become lowest among these burst modes. Therefore, BL = 1 or full-page mode is

the better choices on the high-throughput video decoding system. The disadvantage of

full-page mode is that it needs longest read data buffers to hold the arbitrary length read data

and BURST TERMINATE command also makes the access FSM design more complicated.

The average access latency per P MB for unscheduled and scheduled memory accesses is

depicted in Fig. 4.24. For the same reason, the reduction of access latency for full-page mode

is also bounded by BURST TERMINATE command. For H.264/AVC decoder, Fig. 4.27 and

Fig. 4.28 give the requisite execution cycles of P MB at low-bit-rate (32 kbps) and

high-bit-rate (128kbps) environments. After inducing data reuse technique, extended RSO

method, mentioned in Chapter 3, the execution cycles can reduce about 50 ~100 cycles.

Because the amount of fractional motion vectors at high-bit-rate environment is greater than

that at low-bit-rate environment, the improvement is more obvious in Fig. 4.28. Furthermore,

after applying memory scheduler, the execution cycles per P MB can tremendously reduce up

to 15 ~55 % especially when burst length is equal to one. Based on our decoding system, the

raise of bus utilization and reduction of access latency reduce the required execution cycles

per P MB. Accordingly, it can improve throughput of the entire video decoder because the

computation time of motion compensation dominates the video decoder especially in

H.264/AVC decoder.

 71

unscheduled scheduled
0

100

200

300

400

500

600

700

800

900

1000
Average access latency per P MB (foreman-QCIF @ 128kbps)

scheduled/unscheduled memory access

cy
cl

es

BL=1
BL=2
BL=4
full-page

Fig. 4.26 Average access latency per P MB for unscheduled/scheduled memory access

BL=1 BL=2 BL=4 full-page
0

500

1000

1500
Execution cycles per P MB (foreman-QCIF @ 32kbps)

burst mode

ex
ec

ut
io

n
cy

cl
es

unscheduled
extended RSO
extend RSO + scheduled

Fig. 4.27 Average execution cycles of P MB for foreman-QCIF @ 32 kbps

 72

BL=1 BL=2 BL=4 full-page
0

500

1000

1500
Execution cycles per P MB (foreman-QCIF @ 128kbps)

burst mode

ex
ec

ut
io

n
cy

cl
es

unscheduled
extended RSO
extended RSO + scheduled

Fig. 4.28 Average execution cycles of P MB for foreman-QCIF @ 128kbps

 73

4.3 Merging Structured Frame Memory Organization

Current Frame Reference Frame

Merged Frame

Not yet use, current frame

No longer needed, reference frame

Search Range

Fig. 4.29 Merging structured frame memory organization

The related works of merging structure discussed, of which concept is shown in Fig. 4.29,

in the beginning of this chapter is summarized in Table 4.6. We only focus on Chang’s [29]

because it presents the possibility of implementation on ASIC design rather than other works

just target on DSP or FPGA platform. Chang’s combined frame memory architecture [29] can

reduce frame memory size up to 57 % and reduce up to 83 % average latency and 39 %

average power consumption. To reducing the memory access of MBs with zero-valued MVs

and no residual (perfect match), this architecture introduces search range strip buffer (SRSB)

and dirty table (DT) to record the status of each MB in in-place region. After simulation in

MPEG-4 video decoder system, this architecture can achieve certain effect especially in slow

motion or large background video sequence. Now, considering applying this scheme in

H.264/AVC system, Chen’s [29] only concentrates on MB level. We will expand this idea on

4 x 4-block level for H.264/AVC video decoder in 4.3.1 and illustrates the simulation result

and performance.

 74

Table 4.6 Related works of merging structured frame memory

Related work Platform Discussion
De Greef’s [24] Video codec on DSP Idea, initial concept: reduce frame size

Nachtergaele’s [25]
H.263 video decoder on

DSP

combined frame memory with in-place

FIFO: reduce frame size

Brockmeyer’s [26] MPEG-4 ME on DSP
Hierarchy combined frame memory with

in-place FIFO: reduce frame size

Denolf ‘s [27]
MPEG-4 video encoder

on DSP or FPGA

3-level hierarchy combined frame

memory: reduce frame size

Chang’s [29]
MPEG-4 video decoder

on Software or ASIC

Perfect match MB skip method:

reduce latency, power, and frame size

4.3.1 Analysis

A MB with perfect match is one that has zero-valued MV and no residual. The definitions of

prefect match follow different conditions for different video standards. For example,

not-coded in MB in MPEG-4 is a MB with zero-valued MV and no residual; thus not-coded

MB is MB with perfect match. However, there is no particular mode that defines zero-valued

MV and no residual for H.264/AVC standard. In H.264/AVC, P_SKIP mb_type means that

one MB without motion information and residual data in bitstream. That is, motion vector is

derived only according to MVP and there has no any guarantee that MVP is zero. If based on

MB level statistic foe H.264/AVC@Baseline, the zero valued MB without residual only

occurs in P_SKIP mb_type. Hence, we only have to check P_SKIP MB with zero MV.

Furthermore, based on 4 x 4 block level analysis, we not only have to check zero MV, but also

have to check coded_block_pattern for residual information. The coded_block_pattern

specifies which of the six 8 x 8 blocks – luma and chroma – contain non-zero transform

coefficient levels. Accordingly, the definition of luma 4 x 4 with perfect match for H.264/

AVC is that motion vector is zero and CBP_luma , LSB 4 bits of coded_block_pattern, is zero.

 75

Similarly, chroma 2 x 2 with perfect match contains zero-valued MV and CBP_chroma, MSB

2 bits of coded_block_pattern.

Table 4.7 Perfect match analysis
JM8.2: QCIF, 30 fps, search range [-16, +15.75], QP = 30

Level MB based 4 x 4 block based

Sequence MB (%)
4 x 4 luma block

(%)
2 x 2 chroma

block (%)

Salesman 80.4118 85.6572 86.3453

News 75.6982 80.3539 80.6434

Paris 66.969 76.9667 78.177

Table 55.1456 58.9625 59.7103

Suzie 37.1582 39.7623 39.8924

Carphone 21.3745 25.1419 25.5195

Foreman 10.6055 13.5096 13.746

Stefan 7.26982 9.33182 9.56115

Coastguard 2.3439 5.53886 7.13318

Mobile 0.834331 3.42174 4.29115

From the analysis of perfect match in Table 4.7, we can find the ratio of 4 x 4 block

based perfect match is greater than that of MB based perfect match. That is to say, 4 x 4 block

based perfect match has much chance to save more power and reduce more latency. However,

if merging structured frame memory is adopted in H.264/AVC decoder, we have to modify

some block. Unlike MPEG-4 decoder, H.264/AVC provides in-loop de-blocking filter that

filters the data from adding of residual data and inter-predicted data. In the methodology of

skip block with perfect match, the output data of residual adder must directly store to

reference frame. Accordingly, we have doing the following assumption: after turning off

de-blocking filter, the PSNR degradation is very small for small frame size format such as

QCIF or CIF. If we want to exploit methodology mentioned in Chang’s [29] on H.264/AVC

decoder, the reduction of power consumption is emergent such that users can ignore the

degradation of video quality. For that reason, the application must target on small frame size

 76

for mobile device based on the above assumption. Here, we only give a little analysis for

H.264/AVC decoder. Many problems still have to be resolved such as large search range and

we will leave it in future work.

4.4 Summary

In this chapter, we proposed a dual-channel SDRAM frame memory access controller

that is build-in device on video decoder. We not only focus on the memory scheduler design,

but also adopt the row-major data arrangement to reduce the row-miss ratio dramatically.

After system level analysis, the proposed memory access controller design can increase bus

utilization and reduce access latency efficiently; in the meanwhile, it also improves the

throughput on the entire video decoder. In addition, we also analyze the skip ratio of 4x4

perfect match block based on the merging structured frame memory in H.264/AVC video

decoder. The analysis result shows that it has a chance to save more power and latency

compared with MB level skip proposed in [29].

 77

Chapter 5
Chip Implementation

5.1 Chip Specification

Table 5.1 Video decoder specification in our design

H.264/AVC Baseline Profile @ 3.2 Level
I, P slice
Variable block size: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
Single reference frame
Search range: [-128, +127.75]
Fractional motion resolution: quarter for luma, 1/8 for chroma
Frame coding
All intra prediction mode
Context Adaptive Variable Length Coding (CAVLC)
Decoding capability: 1280 x 720 HDTV, 30fps at 56 MHz

MPEG-2 Simple Profile @ Main Level
I, P picture
Search range: [-256, +255.5]
Fractional motion resolution: half luma and chroma
Frame coding
Decoding capability: 1920 x 1080 HDTV, 30fps at 80.92 MHz

Table 5.1 lists the specification of our dual-standard video decoder. After synthesis on

Cadence RTL compiler using UMC 0.18 um COMS technology, total gate count is 491260

(including SRAM) and the gate count of each component is listed in Table 5.2. Table 5.3 lists

on/off chip SRAM used on each module. The total size of on-chip SRAM is 23.5 KBytes. The

chip specification and chip layout are shown in Table 5.4 and Fig. 5.1 respectively.

 78

Table 5.2 Synthesis result of the MPEG-2/H.264 dual-video decoder
(including on-chip SRAM)

Component Standard Gate count
De-blocking Filter MPEG-2/H.264 187825

Motion Compensation MPEG-2/H.264 84266
Syntax Parser

& System control
MPEG-2/H.264 38715

Residual Adder
& VL-FIFO

MPEG-2/H.264 13214

SDRAM Memory access controller MPEG-2/H.264 7933
Combined VLC/CAVLC MPEG-2/H.264 6688

Intra Prediction H.264 56936
Content Memory H.264 24263

4 x 4 IQ H.264 14184
Integer / Hardmard Transform H.264 5170

IDCT MPEG-2 39727
8 x 8 IQ MPEG-2 12339

Total 491260

Table 5.3 On-chip/off-chip memory in our design

 Module Depth x Width Port Number
Motion compensation 120 x 10 Single-port x 8

2048 x 32 Single-port x 1
1024 x 32 Single-port x 2 De-blocking filter
128 x 11 Single-port x 1

Intra prediction 1024 x 32 Single-port x 1
Combined

CAVLC/VLC
1024 x 5 Single-port x 1

Syntax parser 128 x 16 Single-port x 1
64 x 32 Single-port x 2

On-chip

Content buffer
32 x 32 Single-port x 2

Total 23520 Bytes
Off-chip Frame memory 512K x 32 x 4 banks x 2

 79

Table 5.4 Chip specification of MPEG-2/H.264 dual video decoder

Technology UMC 0.18um CMOS 1P6M
Package 208 CQFP
Die Size 3900 um × 3900 um
Core Size 3500 um × 3500 um

Max Clock Rate 100 MHz

Power Consumption (Core Power)

44.35 mW @ 720 HD for H.264
19.96 mW @ 625 SD for H.264

68.34 mW @ 1080 HD for MPEG-2
13.57 mW @ 625 SD for MPEG-2

Total Gate Count 491260

On-chip Memory 23.5 KB SRAM
Off-chip Memory 3.2 MB SDRAM x 2

Pad number 115
Input Pad 12

Output Pad 41
IO Pad 62

Fig. 5.1 The chip photo of MPEG-2/H.264 dual-video decoder

 80

5.2 Comparison with Related Works

Table 5.5 H.264 decoder comparison with related work

C & S [6]
ISCAS’04

Conexant [30]
ISCE’04

Chen’s [5]
ISCAS’05

Our work[31][32]
ISCAS’05

VLSI-DAT’05
Process 0.13 um 0.13 um 0.18 um 0.18 um

Decoder Spec.
H.264 @ Baseline

(multi-standard)
H.264 @ Main H.264 @ Baseline

H.264 @ Baseline

(MPEG-2 @ SP)

Pipeline 4-stage N/A Hybrid Hybrid

Design ARM based ARM based ASIC ASIC

Frame

memory
External SDRAM External DDR RAM External SRAM External SDRAM

Memory

hierarchy
External memory

Local RSB +

External frame

memory

External memory
Local RSB +

External frame memory

Gate count 910K (Logic), 300 K (Logic)

217 K (Logic)

10 KB on-chip

SRAM

491K (with 23.5
KB on-chip

SRAM)

Frame

resolution
1920 x 1080 HD, 30fps 2048 x 1024, 30fps 2048 x 1080, 30fps 1280 x 720 HD, 30fps

Operating

frequency

CPU, Local Bus: 170

MHz

System Bus: 130 MHz

200 MHz 120 MHz 56 MHz

Power
554 mW for 1080HD

159mW for CIF

160 mW for

2048 x 1024 HD
N/A

44.35 mW for 720HD

4.51 mW for CIF

Table 5.5 lists the comparison with related works about H.264 video decoder. We only

focus on memory related comparison. The proposed ASIC decoder design is hybrid pipeline

processing. The frame memories adopt external SDRAM. The memory hierarchy of the entire

video decoder can be treated as two-level memory hierarchy including internal local row store

buffer (RSB) and external frame memory buffer. The concept of memory hierarchy is

 81

illustrated in Fig. 5.1. Row store buffer is the particular feature that is different from the

previous video standards for H.264 video decoder. Many modules such as inter prediction,

intra prediction, in-loop de-blocking filter and CAVLC requires RSB, of which size is equal to

the frame width, to store the decoding information like pixels, motion vector and coefficient

token. The benefit of partitioning these row data from external memory is reduction of

required bandwidth to external memory and global bus power. It also eliminates some data

access conflict on global bus. The overhead is requiring more internal memory to store the

row information.

H.264 Video
Decoder

Row Store
Buffer

Frame
Memory

Internal local memory

External background
memory

Global bus

Fig. 5.1 Memory hierarchy for the entire video decoder

 82

Chapter 6
Conclusion and Future Work

6.1 Conclusion

Based on the prevalent application of Digital TV adopted in digital video broadcasting

(DVB) transmission system, combined motion compensation engine for MPEG-2/H.264

dual-standard video decoder is proposed in this dissertation. Motion compensation engine

consists of three parts: motion vector generator, interpolator, and external frame memory

access controller. After mapping MVP algorithm to ASIC design on the concept of two-level

memory hierarchy. The design target of interpolator and frame memory access controller is to

reduce external memory access and improve throughput of the entire video decoder.

Concerning the design of interpolator, 4-parallel separate 1-D architecture gives the most

space on high throughput video decoder compared with other architectures proposed. The

proposed data reuse technique for fraction motion compensation introduces content buffer and

content-swap operation attached on our interpolators design. After applying this concept, the

extended 2x2 RSO for H.264/AVC can reduce the required bandwidth about 30 % compared

with 2x2 column-major one.

Beside, the dual-channel SDRAM memory access controller appended to video decoder

is presented to overcome the tremendous transfer of pixel data to/from external frame

memories. To achieve efficient memory access scheduling, we discuss not only memory

scheduling but also data arrangement within SDRAM. Row-major arrangement in our

scheduling scheme can minimize the row-miss (at the same bank) ratio that contributes the

 83

maximum latency among all scheduling cases. We build system level hardware-like C++

model and analyze the system performance. Compared to unscheduled situation, the

experiment result shows that the access latency can be reduced by 50 % ~ 90 % and

bandwidth utilization can be increased by 20 % ~ 2.8 times. In the meanwhile, the throughput

of the overall video decoder can improve about 10 % ~ 60 % after combining extended RSO

method and memory scheduling.

6.2 Future Work

The proposed motion compensation for dual-video standard only supports P frame

decoding. If we want to H.264@Main Profile, the subjects such as B-frame, weighted

prediction, and direct mode should be taken into account. Because B-frame may contains

double motion vectors, it requires read reference data from forward and backward frames and

then write reconstructed data to display buffer. These operations are more complicated than P

frame; thus, the scheduling of the read/write accesses efficiently to meet our decoder

specification is a challenge.

Considering memory organization topic on this dissertation, a dual-channel SDRAM

controller for ping-pong structured frame memories has been presented in this thesis.

However, there are still some important issues should be considered in order to provide more

complete system integration. For example, if display buffer shares the data bus with frame

memories, a smarter bus arbitration and memory controller should be designed. As for

merging structured frame memory organization based on H.264/AVC decoder, we give the

analysis for 4 x 4 block based perfect match. However, there are still many issues have to be

analyzed if we want to exploit this idea on ASIC design. The related work only targets on

search range [-16, +15] since this size is identical to one MB size. Based on this search range,

 84

the design of in-place FIFO and dirty table becomes easier. If we want to target on large

search range, the size of in-place FIFO becomes very large and design of the address

generator becomes more complicated. Another problem is that the proportion of perfect match

block must be larger than the backup of the content of in-place FIFO; otherwise, the update

and backup between background memory and in-place FIFO will degrades the throughput of

the entire video decoder. In brief, the feasibility of the merging structured memory

organization on ASIC design still has to be evaluated.

 85

Bibliography

[1] “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video

Specification,” Joint Video Team (JVT), Int. Telecommun. Union-Telecommun. (ITU-T)
and Int. Standards Org./Int. Electrotech. Comm. (ISO/IEC), ITU-T Recommendation
H.264 and ISO/IEC 14496-10 AVC, May 2003.

[2] “Information technology-generic coding of moving pictures and associated audio
information: Video,” ITU-T H.262, ISO/IEC 13818-2, 1994.

[3] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the H.264/AVC
video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol 13, no 7, pp. 560-
576, July, 2003.

[4] P. C. Tseng, Y. C. Chang, Y. W. Huang, H. C. Fang, C. T. Huang, and L. G. Chen,
“Advances in hardware architectures for image and video coding - a survey,” in Proc.
IEEE, vol. 93, no. 1, pp. 184-197, Jan. 2005.

[5] T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai, and L. G. Chen,
“Architecture design of H.264/AVC decoder with hybrid task pipelining for high
definition videos,” in Proc. IEEE Int.Symp. Circuits and Systems, 2005, pp. 2931-2934.

[6] H. Y. Kang, K. A. Jeong, J. Y. Bae, Y. S. Lee, and S. H. Lee, “MPEG4 AVC/H.264
decoder with scalable bus architecture and dual memory controller”, in Proc. IEEE
Int.Symp. Circuits and Systems, vol. 2, 2004, pp. II - 145-148.

[7] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, “Complexity of optimized H.26L
video decoder implementation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.
7, pp. 717-725, July, 2003.

[8] W. N. Lie, H. C. Yeh, Tom C. I. Lin, and C. F. Chen, “Hardware-efficient computing
architecture for motion compensation interpolation in H.264 Video Coding,” ” in Proc.
IEEE Int. Symp.Circuits and Systems, 2005, pp. 2136-2139.

 86

[9] T. C. Chen, Y. W. Huang, and L. G. Chen, “Fully utilized and reusable architecture for
fractional motion estimation of H.264/AVC,” in Proc. IEEE Int.Conf. Acoustics, Speech,
and Signal Processing, vol. 5, 2004, pp. V - 9-12.

[10] C. D. Chien, H. C. Chen, L. C. Huang, and J. I. Guo, “A Low-power motion
compensation IP core design for MPEG-1/2/4 video decoding,” in Proc. IEEE Int.
Symp.Circuits and Systems, 2005, pp. 4542-4545.

[11] W. F. He, Z. G. Mao, J. X. Wang, and D. F. Wang, “Design and implementation of
motion compensation for MPEG-4 AS profile streaming video decoding”, in Proc. IEEE
Int.Conf. ASIC, vol. 2, 2003, pp. 942-945.

[12] P. R. Panda, N. Dutt, and A. Nicolau, Memory Issues in Embedded Systems-on-Chip:
Optimization and Exploration. Boston, MA: Kluwer Academic Publishers, 1999.

[13] Micron Technology, Inc. product documents. [Online]. Available: http://www.micron.
com/products/

[14] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” in Proc. IEEE Int. Symp. Computer Architecture, Vancouver, BC, Canada,
Jun. 2000, pp. 128-138.

[15] S. Miura, and T. Watanabe, “A dynamic-SDRAM-mode-control scheme for low-power
systems with a 32-bit RISC CPU,” in Proc. IEEE Int. Symp. Low Power Electron. and
Design, Aug. 2001, pp. 358-363.

[16] K. B. Lee, T. C. Lin, and C. W. Jen, “An efficient quality-aware memory controller for
multimedia platform SoC,” IEEE Trans. Circuits Syst. Video Techno.,vol. 15, no. 5, pp.
620-633, May 2005.

[17] H. Kim, and I. C. Park, “High-performance and low-power memory-interface
architecture for video processing applications,” IEEE Trans. Circuits Syst. Video Techno.,
vol. 11, no. 11, pp. 1160-1170, Nov. 2001.

[18] S. I. Park, Y. Yongseok, and I. C. Park, “High performance memory mode control for
HDTV decoders,” IEEE Trans. Consumer Electron., vol. 49, no. 4, pp. 1348-1353, Nov.
2003.

 87

[19] J. H. Li, and N. Ling, “Architecture and bus-arbitration schemes for MPEG-2 video
decoder,” IEEE Trans. Circuit Syst. Video Techno., vol. 9, no. 5, pp. 727-736, Aug.
1999.

[20] J. Zhu, L. Hou, R. Wang, C. Huang, and J. Li, “High performance synchronous DRAMs
controller in H.264 HDTV decoder,” in Proc. IEEE Int. Conf. Solid-State and Integrated
Circuits Technol., vol. 3, 2004, pp.1621-1624.

[21] Micron Technology, Inc. MT48LC2M32B2P-5 64Mb SDRAM (Jan. 2005). [Online].
Available: http://www.micron.com/products/dram/sdram/partlist.aspx?density=64Mb

[22] J. Tajime, T. Takizawa, S. Nogaki, and H. Harasaki, “Memory compression method
considering memory bandwidth for HDTV decoder LSIs,” in Proc. IEEE Int. Conf.
Image Processing, vol. 2, 1999, pp. 779-782.

[23] T. Y. Lee, “A new frame-recompression algorithm and its hardware design for MPEG-2
video decoders” IEEE Trans. Circuit Syst. Video Techno., vol. 13, no. 6, pp. 529-534,
Jun. 2003.

[24] E. De Greef, F. Catthoor, and H. De Man, “Memory organization for video algorithms
on programmable signal processors,” in Proc. IEEE Computer Design: VLSI in
Computers & Processors, Oct. 1995, pp. 552-557.

[25] L. Nachtergaele, F. Catthoor, B. Kapoor, S. Janssens, and D. Moolenaar, “Low-power
data transfer and storage exploration for H.263 video decoder system,” IEEE J. Select.
Areas Commun., vol. 16, no. 1, pp. 120-129, Jan. 1998.

[26] E. Brockmeyer, L. Nachtergaele, F. V. M. Catthoor, J. Bormans, H. J. De Man, “Low
power memory storage and transfer organization for the MPEG-4 full pel motion
estimation on a multimedia processor,” IEEE Trans. Multimedia, vol. 1, no. 2, pp.
202-216, June 1999.

[27] K. Denolf, C. De Vleeschouwer, R. Turney, G. Lafruit, and J. Bormans, “Memory
centric design of an MPEG-4 video encoder,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, no. 5, pp. 609-619, May 2005.

[28] S. Wuytack, J. –P. Diguet, and F. V. M. Catthoor, “Formalized methodology for data
reuse exploration for low-power hierarchical memory mappings,” IEEE Trans VLSI Syst.,
vol. 6, no. 4, pp. 529-537, Dec. 1998.

 88

[29] Y. C. Chang Nelson, and T. S. Chang, “Combined frame memory architecture for
motion compensation in video decoding,” in Proc. IEEE Int. Symp.Circuits and Systems,
2005, pp. 1806-1809.

[30] Y, Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition H.264/AVC hardware
video decoder core for multimedia SoC's,” in Proc. IEEE Int. Symp. Consumer Electron.,
Sept., 2004, pp. 385-389.

[31] T. A. Lin, S. Z. Wang, T. M. Liu, and C. Y. Lee, “An H.264/AVC decoder with 4x4 level
pipeline,” in Proc. IEEE Int. Symp.Circuits and Systems, 2005, pp. 1806-1809.

[32] T. A. Lin, T. M. Liu, and C. Y. Lee, “A low-power H.264/AVC decoder,” in Proc. IEEE
Int. Symp. VLSI-TSA, Apr. 2005, pp. 278-281.

 89

作 者 簡 歷

 姓名 ：王勝仁

 出生地 ：台灣省台南市

 出生日期：1980. 12. 11

 學歷： 1987. 9 ~ 1993. 6 台南市立大橋國民小學

 1993. 9 ~ 1996. 6 台南私立瀛海中學

 1996. 9 ~ 1999. 6 台南市立第一高級中學

 1999. 9 ~ 2003. 6 國立交通大學 電子工程系 學士

 2003. 9 ~ 2005. 6 國立交通大學 電子研究所 系統組 碩士

得 獎 事 績

 2002 春 第二學期電子研究所書卷獎

 2002 秋 殷之同專題計畫獎學金

 2003 春 殷之同專題成果獎學金

 90

發 表 論 文

z S. Z. Wang, T. A. Lin, T. M. Liu, and C. Y. Lee, “A new motion compensation design for

H.264/AVC decoder,” in Proc. IEEE Int. Symp.Circuits and Systems, 2005, pp.

4558-4561.

z T. A. Lin, S. Z. Wang, T. M. Liu, and C. Y. Lee, “An H.264/AVC decoder with 4x4 level

pipeline,” in Proc. IEEE Int. Symp.Circuits and Systems, vol. ?,2005 , pp. 1806-1809.

z T. M. Liu, S. Z. Wang, W. H. Peng, and C. Y. Lee, “Memory efficient and low

complexity scalable soft VLC decoding for the video transmission,” in Proc. IEEE

Asia-Pacific Conf. Circuits and Systems, 2004. Proceedings, vol. 2, 2004, pp. 673-676.

