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摘要 

 

近年來，對於已被先進的數位電視廣播系統採用的 MPEG-2 和 H.264/AVC 視訊

標準，其需求是很必要的，動作補償的計算量通常占了整個視訊解碼系統的大多數，這

是由於它需要對儲存畫面的記憶體有相當大量的資料傳輸。特別在目前最先進的 H.264/ 

AVC 視訊標準支援了更高的移動解析度，因而使得所需的記憶體頻寬大量增加。我們

提出的擴充性 2x2 光柵式掃描(extended 2x2 raster scanning order)除了可有效地減少所

需的記憶體頻寬之外，同時維持和殘餘係數解碼器相同的解碼順序。和傳統的架構相較

之下，針對 MPEG-2/ H.264 提出可重新架構的小數點內插器，可省下 20 % 的邏輯閘

數量。此外，針對視訊解碼器而提出的 SDRAM 畫面記憶體存取控制器可將頻寬使用

率提升至 85 ~90 % 且減少資料存取的延遲達 50 ~90%。在這同時，整個視訊解碼器的

資料量處理能力也會提升。我們的視訊解碼器合併了 H.264 Baseline Profile @ 3.2 Level 

和 MPEG-2 Simple Profile @ Main Level，而高畫質視訊的即時解碼能力對 H.264 而言

可達到 720 HD @ 56 MHz，對 MPEG-2 而言可達到 1080 HD @ 79.4 MHz，而總邏輯

閘數量為 491 K，其中包含 23.5 KB 的 on-chip SRAM。 
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ABSTRACT 
 

In recent year, MPEG-2 and H.264/AVC video decoding system, which has been adopted 
by the advanced digital video broadcasting terrestrial/handheld (DVB-T/H) system, is in great 
demand. The computation time of motion compensation always dominates the entire video 
decoding system due to the tremendous data transfer with frame memories. Especially in the 
state-of-the-art video standard, H.264/ AVC, the requisite memory bandwidth is greatly 
increased because the higher motion resolution requires larger interpolation. The proposed 
data-reuse technique, extended 2 x 2 raster scanning order, can efficiently reduce the required 
memory bandwidth when maintaining the same decoding order as that of residual decoding. 
The proposed reconfigurable interpolator providing fractional interpolation for 
MPEG-2/H.264 can reduce 20 % gate count compared to traditional design. In addition, the 
proposed SDRAM frame memory access controller for video decoder increases the bandwidth 
utilization up to 85~95%, and reduces access latency by 50 ~90% compared to the 
un-scheduling memory access. In the meanwhile, the throughput of our video decoder is also 
improved. Our video decoder combined H.264 Baseline Profile @ 3.2 Level and MPEG-2 
Simple Profile @ Main Level and the decoding capability of high definition television can 
reach 720HD at 56 MHz for H.264, 1080HD at 79.4 MHz for MPEG-2 real-time video 
decoding with total 491K gate count included 23.5 KB on-chip SRAM. 
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Chapter 1  
Introduction 
 

1.1 Motivation 
 

With the development of technology, the progress of video coding standard reflects the 

adaptation of video coding to different applications and networks. The early video technology, 

MPEG-1, mainly targets on CD-ROM based video storage. Subsequently, MPEG-2, which 

can be backward compatible with MPEG-1, serves a wider range of application including 

video-on-demand (VOD), DVD and high definition TV. Network communication includes 

switched networks such as PSTN (H.263, MPEG-4) or ISDN (H.261), and packet networks 

like ATM (MPEG-2, MPEG-4), the Internet (H.263, MPEG-4), .mobile networks (H.263, 

MPEG-4). Up to now, the newest video coding standard published jointly as Part 10 of 

MPEG-4 and ITU-T Recommendation H.264 provides dramatic video compression 

performance. The new H.264/AVC standard provides a technical solution for a broad range of 

applications, including broadcast over cable, satellite, cable modem, DSL or terrestrial, 

interactive or serial storage like DVD, conversational services over ISDN, Ethernet, LAN, 

wireless, or mobile network, multimedia messaging services over DSL, ISDN, etc. In order to 

provide different application and backward compatible with previous standard, video 

technology faces the challenge of combining different standard into the single system and 

providing powerful compatibility. 
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Fig. 1.1 Typical communication model based on DVB system 

 

In recent years, Digital TV is widely adopted by the next-generation video broadcasting 

transmission (DVB) technology. Digital video broadcasting terrestrial, DVB-T, permits the 

transmission of MPEG-2 video bitstream. Moreover, in Nov. 2004, Digital video broadcasting 

handheld, DVB-H, has mandated support of Main Profile for H.264/AVC SDTV receivers, 

with an option for the use of High Profile. The support of High Profile is mandated for 

H.264/AVC HDTV decoder. Especially, DVB-H features backward compatibility with 

DVB-T but transmit different video format. However, H.264/AVC does not directly backward 

compatible with previous standards. Therefore, the challenge of merging H.264/AVC and 

MPEG-2 to single video decoding system is in great demand. Fig 1.1 shows the typical 

communication model based on DVB system. In addition, high definition TV requires 

enormous data transmission particular in frame memory, a memory access controller that 

efficiently communicates with frame memory is the most significant over the entire video 

decoding system. Within the video decoding system, motion compensation always dominates 

the total amount of data transmission especially when SDRAM or DDR-SDRAM is adopted 
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as external frame memories. Video decoder should also provide efficient memory access 

controller to manage data transfer and access conflict. 

 

1.2 Thesis Organization 
 

The thesis is organized as follows. The algorithm description and analysis is discussed in 

Chapter 2. In Chapter 3, the motion compensation engine for H.264/AVC video decoder is 

described firstly. Then, the motion compensation engine for MPEG-2/H.264 dual-video 

decoder is illustrated. We also propose the data reuse technique to reduce the required 

bandwidth particularly in H.264/AVC fractional motion compensation. Chapter 4 presents 

frame memory organization including frame memory access controller for external SDRAM 

and merging structured frame organization that is one of the frame compression method. Chip 

implementation is given in Chapter 5. Finally, conclusion and future work is shown in 

Chapter 6. 
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Chapter 2  
Algorithm Description and Analysis 
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Fig. 2.1 General structure of H.264 encoder 
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Fig. 2.2 General structure of H.264 decoder 

 

Fig. 2.1 and Fig. 2.2 show the general structure of H.264/AVC video encoder and 

decoder respectively. The H.264/AVC design covers a Video Coding Layer (VCL) and 
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Network Abstraction Layer (NAL). We only concentrate on VCL that efficient represents the 

video content. The spirit of H.264/AVC follows the so-called block-based hybrid video coding. 

It consists of hybrid of temporal and spatial prediction, in conjunction with transform coding. 

The main additional blocks compared with prior standards are intra prediction and in-loop 

de-blocking filter. Fig. 2.3 and Fig. 2.4 illustrate general structure of MPEG-2 encoder and 

decoder respectively. Compared to H.264/AVC, the decoding flow becomes simplified 

without intra prediction and in-loop de-blocking filter except that only DCT/IDCT is more 

complicated than integer transform for H.264/AVC codec.  
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Fig. 2.3 General structure of MPEG-2 encoder 
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Fig. 2.4 General structure of MPEG-2 decoder 
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This chapter is structured as follows. The software profiling is illustrated in section 2.1. 

Then, the algorithm of H.264/AVC motion compensation would be described in section 2.2. 

Finally, the comparison with those of previous video standards would be discussed in section 

2.3.  

 

2.1 Profiling 
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Fig. 2.1 H.264/AVC video decoder software profile on ARM processor (JM 8.2) 

 

Fig. 2.1 shows the H.264/AVC profile on ARM processor. The reference software is JM 

8.2. We can find inter prediction related modules, including motion compensation, 

reconstruction, and reference frame copy, occupy 50 % proportion of the entire video decoder. 

This dominated part can be greatly reduced by parallel processing, data reuse, or pipeline 

processing on ASIC design.  



 7

2.2 Inter Prediction Algorithm for H.264/AVC Standard 
 

H.264/AVC standard supports more flexible block size selection in inter prediction 

compared with any previous standard [1][2]. The smallest block size selection could reach as 

small as 4x4 for luma and 2x2 for chroma. Fig. 2.2 illustrates all types of partitions. 
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Fig. 2.2 Macroblock partitions and sub-macroblock partitions 

 

H.264/AVC standard also supports high motion resolution that reaches quarter motion 

accuracy for luma sample and eighth one for chroma sample. This can be found firstly in 

advances profile of MPEG-4 Visual standard; however, H.264/AVC reduces the complexity of 

interpolation processing. Luma half sample interpolation with a 6-tap (1, -5, 20, 20, -5, 1) 

symmetrical FIR filter and quarter sample interpolation with bilinear filter are drawn in Fig 

2.3 (a)-(c). The prediction value of chroma component is generated using bilinear interpolator 

illustrated in Fig. 2.3 (d), and the displacement can achieve one-eighth accuracy. From 

mathematical equations, they are both 2-D interpolation. However, based on hardware 

implementation, these equations can be separated into two 1-D to reduce hardware cost, 

namely, horizontal filter first and than vertical one, or vice verse. 
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Fig. 2.3 (a) luma half sample with 6-tap FIR, (b) luma horizontal/vertical quarter sample 

with bilinear filter, (c) luma diagonal quarter sample with bilinear filter, (d) chroma 

sample with bilinear filter. Upper-case letters indicate the full samples and lower-case 

letter indicates the interpolated fractional samples 

 

 Motion vector is generated from motion vector difference (MVD) and motion vector 

prediction (MVP) which equation is expressed by (2. 1).  

 

MVPyMVDyMVy
MVPxMVDxMVx

+=
+=

                           (2. 1) 

MVD is decoded from universal variable length decoder (UVLD) and MVP is predicted 

according to neighboring motion vectors. MVP algorithm, of which concept is similar to that 

for MPEG-4, contains directional prediction for 16 x 8 or 8 x 16 block size and median 
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prediction for other block sizes. The detail of MVP decision is shown in Fig. 2.4. Equation of 

median prediction is expressed by (2. 2). In addition, some boundary conditions or exceptions 

have to be handled accurately. For instance, when MVC is not available, its value is replaced 

by MVD. We do not go into detail of those trivial boundary conditions over here. 

 

),,( MVCMVBMVAmedianMVP =                     (2. 2) 

8 x 16

16 x 8A

C

A

B

8 x 16

16 x 8

Current
macroblock/

block/
partition

A

D B C

(a) (b) (c)
 

Fig. 2.4 (a) directional prediction for 8 x 16 block size, (b) directional prediction for 16 x 

8 block size, (c) median prediction 

 

In addition to the motion-compensated block size described in Fig. 2.2, a P macroblock 

can also be coded to P_SKIP mode. For this coding mode, neither residual signal nor motion 

information is transmitted. That is, motion vectors are only decided according to MVP. The 

reconstructed data is obtained similar to that of macroblock type P_16x16. Macroblock coded 

in P_SKIP are often located in large area with no change or low motion. Besides the above 

techniques, H.264/AVC also supports multiple reference frame, weighted prediction and 

direct mode for B slice. These tools can also improve coding efficiency efficiently. 

Application of de-blocking filter is a well-known method to improve image quality by 

alleviating blocking artifacts. The de-blocking design in H.264/AVC is brought within 

motion-compensated prediction loop and the improvement in quality becomes more 

conspicuous. 
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2.3 Comparison among Different Video Standards 
 

Considering frame coding, Table 2.1 lists all fractional motion compensation features for 

different standards. Up to now, we can find fractional interpolation issue becomes more and 

more important in state-of-the-art video coding. The interpolation window becomes larger for 

the same block size; namely, it requires much more cycles to interpolate each macroblock. For 

example, it requires 9 x 9 pixels window to interpolate luma 4 x 4 block for H.264/AVC; 

however, the identical size of interpolation window can be used to filter 8 x 8 block for 

MPEG-2 video decoder. Fig. 2.5 and Fig. 2.6 show the luma and chroma integer/fractional 

motion vector proportion for H.264/AVC. Especially note that luma and chroma interpolation 

for H.264/AVC are different compared with previous standards. That is, no matter what on 

algorithm level or hardware level, the computation sources cannot be shared. Therefore, the 

combination of luma and chroma parts is the space of improvement and we will give the 

discussion and implantation in Chapter 3. In high bit rate application (128 kbps), fractional 

motion vector occupies about 80 % and even in low bit rate (32 kbps) fractional part has a 

certain proportion (40 %). Higher fractional MV proportion, more execution time is needed to 

read pixels data from frame memory. This gap may become more obvious especially when 

SDRAM is used as frame memory. To reduce requisite fetching pixels from frame memory, a 

data reuse technique for fractional motion compensation will be proposed in Chapter 3. 
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Table 2.1 Comparison of fractional motion compensation among different standards 

 

Standard MPEG-1/2 MPEG-4 H.264/AVC 

MVP 
Update from 

previous PMV 

value 

Median prediction 
Median prediction 

Directional prediction 

Luma block unit 16 x 16 8 x 8 4 x 4 
Luma motion accuracy Half Half, quarter Half, quarter 

Half sample mode 

Half: bilinear 

Quarter sample modeLuma filter Bilinear 
Half: 8-tap FIR 

Quarter: 8-tap FIR 

and bilinear 

Half: 6-tap FIR 

Quarter: 6-tap FIR and 

bilinear 

Luma Interpolation window 17 x 17 15 x 15 9 x 9 
Chroma block unit 8 x 8 4 x 4 2 x 2 

Chroma motion accuracy Half Half, quarter Eighth 

Half sample mode 

Half: bilinear 

Quarter sample mode
Chroma filter Bilinear 

Half: 8-tap FIR 

Quarter: 8-tap FIR 

and bilinear 

Bilinear 

Chroma interpolation window 9 x 9 5 x 5 3 x 3 
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Fig. 2.5 Luma integer/fractional motion vector proportion for H.264/AVC 
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Fig. 2.6 Chroma integer/fractional motion vector proportion for H.264/AVC 
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2.4 Summary 
 

From the H.264 profiling on ARM processor, an efficient hardware accelerator or ASIC 

design for motion compensation is crucial. The inter prediction for H.264/AVC and the 

comparison among different standards are also illustrated in this Chapter. 
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Chapter 3  
Motion Compensation Design for 
MPEG-2/H.264 video decoder 
 

The state-of-the-art video coding standard H.264/AVC provides amazing compression 

ratio that significantly outperforms all previous video compression standards. However, 

unlike traditional MPEG-x standards, H.264/AVC lacks backward compatibility to the 

former MPEG-x and H.26x video coding standards. Therefore, a development of combining 

multi-video coding standards is essential to support modern multimedia systems. For 

example, DVD forum adopted MPEG-2, H.264/AVC, and VC-1 (also named well-known 

WMV-9) as mandatory for the next generation HD-DVD and Blu-ray format. As for digital 

video broadcasting (DVB) application, DVB-T system, which is designed for digital 

terrestrial television services, is directly compatible with MPEG-2 coded TV signal. 

Furthermore, mobile DVB, presently called DVB-H, allows the transmission with video 

content of H.264/AVC due to high coding efficiency. Especially, DVB-H features backward 

compatibility with DVB-T but transmit different video format. Therefore, it is the demand 

and challenge of designing efficient video decoder for multi-standard video application.  

This chapter will discuss that designing motion compensation, which dominates the 

amount of data transfer on the video decoder, for MPEG-2/H.264 dual video decoder. The 

rest part is structured as follows. Section 3.1 illustrates motion compensation engine for 

H.264/AVC decoder. The combined motion compensation engine for MPEG-2/H.264 and 

analysis is discussed in section 3.2. Finally, summary is given in section 3.3. 
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3.1 Motion Compensation Engine for H.264/AVC decoder 
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Fig 3.1 Motion compensation engine for H.264 video decoder 

 

Fig. 3.1 illustrates the whole motion compensation engine for H.264/AVC video decoder. 

Firstly, line MV FIFO stores decoded motion vectors for motion vector prediction and 4 x 4 

MV buffer stores the decoded motion vector for current MB decoding. Then, the address 

generator sends reference address to memory access controller. The tasking of motion 

controller is scheduling consecutive access command and sending to frame memories. The 

burst read data is kept in read data buffer and then filtered through interpolator. Finally, the 

interpolated reference data add up to the residual data and then pass through de-blocking filter. 

In our proposed decoder, ping-pong structured external frame memory [28], double memories 

stored reference and current frame reciprocally, is adopted.  
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The following subsection will discuss the detail of other modules except memory access 

controller. The detailed discussion of frame memory access controller is shown in Chapter 4. 

Subsection 3.1.1 illustrates motion vector generator including motion vector predictor (MVP) 

and the related storages. Subsection 3.1.2 gives data reuse technique for interpolator. 

Subsection 3.1.3 analyzes the proposed data reuse technique. Finally, luma and chroma 

interpolator designs are reported in subsection 3.1.4 and 3.1.5 respectively. 

 

3.1.1 Motion Vector Generator 

Current
MB

Frame
boundary

Next
MB 0

Frame
boundary

 Next
MB 1

 Next
MB 2

 Next
MB 3

 Next
MB 4 ……

0 1 2 3 4

5 6 7 8 9 10 11

Fig 3.2 Motion vectors information storage or motion vector predictor  

for QCIF frame format. 

 

Motion vector generator mainly contains motion vector predictor, line MV FIFO and 4 x 

4 MV buffers. Motion vector is generated by the summation of motion vector prediction 

(MVP) and motion vector difference (MVD). The MVP value is calculated according to the 

neighboring MVs, thus the decoded motion vectors are required to be stored for the following 

decoding. Line MV FIFO stores the decoded motion vector pair (MVX, MVY). The depth 

and width of MV FIFO are dependent on the frame width and search range respectively. Once 

the content of MV FIFO will not be used in the future, the motion vector pair can be discarded. 

The 4 x 4 size of MV buffers is required since the maximum number of motion vectors per 
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MB is sixteen. The motion vectors for current MB decoding stores in this 4 x 4 MV buffers.  

As for the requisite total storage for motion vector generator, Fig. 3.2 shows an example. 

Total amount of 4 x 11 motion vector pairs have to be stored for QCIF frame format. The 

detail of required neighboring motion vectors is shown in Fig. 3.3. To cover all kinds of 

conditions, storages element is based on 4 x 4-block size that is the smallest element for 

H.264/AVC video decoder. Each square indicates one motion vector pair. To decode 

MV0-MV15 in current MB, it needs neighboring motion vectors in left-upper corner (MVLU), 

right-upper corner (MVRU), upper (MVU0-3) and left (MVL0-MVL3) positions. 

 

MV7MV6

MV5MV4

MV15MV14

MV13MV12

MV3MV2

MV1MV0

MV11MV10

MV9MV8

MVL0

MVL1

MVL2

MVL3

MVLU MVU3MVU2MVU0 MVU1 MVRU

 

Fig 3.3 Neighboring motion vectors needed when decoding all motion vectors  

in current macroblock 

 

The detailed architecture of motion vector generator is shown in Fig 3.4. Motion vector 

generation involves two-phase operations. The first one is loading MVD into 4 x 4 MV 

buffers and another is calculating MV = MVP + MVD then restoring into 4 x 4 MV buffers. 

The proposed memory storage can be treated as two-level memory hierarchy painted in Fig 

3.5. Four line MV FIFOs are implemented using SRAM and local registers store the 

neighboring motion vectors for current MB. Local register that stores neighboring motion 

vectors includes left MV line buffer, upper-left, upper, upper-right and left MV registers. The 

4 x 4 MV buffers, which contents can be accessed by other modules, store decoded motion 
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vectors required in current MB decoding. After accomplishing current MB decoding, FIFOs 

need one push and one pop operation, which occupies two cycles, to update all contents of 

local registers for the next MB decoding. 

 

 

4x4 MV buffers

Left MV line buffer

MVP

MVD (load from MV buffer)

MV (write back to MV buffer)

MVD (load from
UVLC decoder)
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Fig 3.4 (a) motion vector generator architecture for QCIF-format, (b) mv buffer unit 
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Fig. 3.5 Two-level memory hierarchical structure for MVP 
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Fig 3.6 (a) block size_position index, (b) directional prediction table (16x8, 8x16), (c) 

median prediction table (16x16, 8x8), (d) median prediction table (4x4) 

 

 

MVP is calculated according to MVA, MVB, MVC and MVD whose values are derived 

from neighboring motion vectors according to block size_position index illustrated in Fig. 3.6 

(a). MVA, MVB, MVC and MVD indicate the motion vectors located at left, upper, 

right-upper, left-upper neighboring macroblock/partition/block respectively as shown in Fig. 

2.3 (c). Fig. 3.6 (b)-(d) lists all MVA, MVB, MVC and MVD for different block size_position 

index. Besides the above loop-up table (LUT) is required for motion vector prediction, many 

trivial boundary conditions and exceptions have to be handled. Here, we do not describe them 

for clarity.  
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3.1.2 Data Reuse Technique for Interpolator 

4
9

4 9

(a) (b)

5

 

Fig 3.7 (a) 4x4 block window and the corresponding 9x9 interpolation window, (b) 

overlapped region for neighboring interpolation window 
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Fig 3.8 (a) 2x2 raster scanning order, (b) row-major 2x2 raster scanning order, (c) 

column-major 2x2 raster scanning order 

From Fig 3.7 (a), to interpolate each fractional sample value for each 4x4 block, it needs 

9 x 9 interpolation window. If two motion vectors of neighboring 4 x 4 blocks are the same, 5 

x 9 overlap region between two interpolation windows can be data reused. The scanning order 

of residual decoding for each macroblock is 2x2 raster scanning order as shown in Fig 3.8 (a). 

Then, considering two different scanning orders illustrated in Fig 3.8 (b) and (c), row-major 

one needs 13 times of transitions but column-major one only needs 5 times of transitions. 

Each transition causes that the overlap region could not be data reused. Therefore, 

column-major one is the better selection because of less number of transitions.  
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Fig 3.9 (a) 2x2 raster scanning order, (b) 4x4 raster scanning order, (c) extended 2x2 

raster scanning order 
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Fig 3.10 Synchronization buffer scheme for two different scanning order in inter 

prediction (a) 2x2 raster scanning order, (b) 4x4 raster scanning order 

 

For video decoding system, inter prediction often processes based on macroblock level. 

Thus, the decoding order based on 4 x 4-block size, which is the smallest block element in 

H.264/AVC video decoder, is freedom for each macroblock. In view of this concept, 2 x 2 and 

4 x 4 raster scanning orders are depicted in Fig 3.9 (a) and (b), and we can find column-major 

4 x 4 raster scanning order only needs four transitions less than that of 2 x 2 raster scan. 

However, from Fig 3.10 (b), it induces extra synchronization buffers which size is (4 x 4) x 4 
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pixels in residual adder because of different scanning order with residual decoder which must 

follow 2x2 raster scanning order defined in standard [1]. 

 
Fig. 3.11 Content-swap operation (interpolator with attached content buffer) 
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Fig. 3.12 An example of macroblock partition  

(1, 3) indicates (mv_x, mv_y). 

 

In order to resolve this problem, we can attach content register to interpolator which 

concept is illustrated in Fig 3.11, and adopt extended 2x2 raster scanning order as shown in 

Fig 3.9 (c). The size of content register depends on the local register in interpolators. Each 

gray block in Fig. 3.9 (c) indicates content-swap operation that swaps all content in local 

register in interpolation and that in content buffer. By doing that, we can find that if motion 

vectors of block 1 and block 4 are the same, the overlapped region in Fig. 3.7(b) need not to 

be re-fetched when decoding block 4. Therefore, extended 2x2 raster scanning order follows 2 

x 2 raster scanning which is the same as that of residual decoder, and achieves data reuse 

Local register for 
interpolator 

Content buffer 
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status of 4 x 4 raster scanning order. The content-swap operation brings effect only when 

larger block size partition or motion vectors of the neighboring blocks are the same. The 

condition that executes this operation follows the expression (3. 1) 

)816_(||)1616_(__ xtypembxtypembconditionswapcontent =====     (3. 1) 

However, considering an example shown in Fig. 3.12, the condition (3.1) checking is false. 

Furthermore, if checking equality of neighboring motion vectors instead of block size, the 

example in Fig. 3.11 can be data reused. The checking table of motion vectors between 

neighboring blocks is listed in Table 3.1. 

 

Table 3.1 Neighboring MV checking table for content-swap operation 

Block number Checking condition 
1 MV1 = = MV4 
3 (MV1 = = MV4) || (MV3 = = MV6) 
5 MV3 = = MV6 
9 MV9 = = MV12 
11 (MV9 = = MV12) || (MV11 = = MV14) 
13 MV11 = = MV14 

Other Don’t care 

 

3.1.3 Analysis for Data Reuse Technique 

 

To give more generic and platform independent analysis, we analyze requisite pixels per 

MB and cost overhead for each method. Taking account of fractional motion compensation 

for each macroblock, the required pixels for each MB and cost overhead for different methods 

are summarized in Table 3.2. Assuming that each motion vector contains fractional part, the 

best case has one motion vector and worst case has 16 motion vectors for one luma 

macroblock. Although requisite pixels per method are the same in worst case, requisite pixels 

of column major methods are smaller than that of row-major method. Concerning 
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column-major methods, 4 x 4 raster scanning order (RSO) takes the best effect; however, it 

requires additional synchronization buffer and degrades throughput due to different RSO with 

that of residual decoder. As for extended methods, condition (3. 1) only takes effect in larger 

block partition (SKIP, 16x16, 16x8). That is, it cannot data-reuse in some case such as Fig. 

3.11 even if the neighbor motion vectors are the same. To erase this disadvantage, method 5 

checks the neighboring motion vectors rather than block size, and then the required bandwidth 

can reduce to be the same as that of 4 x 4 RSO in Fig. 3.12 case. The advantage of extended 

method is that it only requires content buffer which size is smaller than that of method 3 and 

takes a little extra cycle for content-swap operation. Although method 4 behaves better for 

larger block size (SKIP, 16x16, 16x8) than method 1/2/3, larger block size still occupies up to 

50 ~90 % proportion from the Fig. 3.13. Furthermore, method 5 not only involves all case in 

method 4 but also takes effect in smaller block size such as Fig. 3.1. As shown in Fig. 3.14, 

after applying extended method in our design, the required memory bandwidth can be reduced 

about 30 % compared to column-major 2x2 RSO method. 

 

Table 3.2 Static analyses for different method in H.264/AVC.  
Assumption: each motion vectors contains fractional part. 

Required pixels per luma MB 
Method 

Worst case Best case Fig 3.11 
Cost overhead 

1 R 2 x 2 RSO 1296 1296 1296 0 

2 2 x 2 RSO 1296 936 936 0 

3 4 x 4 RSO 1296 756 846 
Checking table 

Sync. buffer 

4 
Extended 2 x 2 RSO 

(condition (3.1)) 
1296 756 + 6 CS 936 

Extra control signal, 

Content buffer 

5 

C 

Extended 2 x 2 RSO  

(Table 3.1) 
1296 756 + 6 CS 846 + 4 CS 

Checking table, 

Content buffer 

＊ R: row-major, C: column major, RSO: raster scanning order, CS: content-swap operation (one cycle) 

＊ Best case: one MB contains one motion vector 

＊ Worst case: one MB contains 16 motion vectors 
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Fig. 3.13 Block proportion under different bit-rate environments 
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Fig. 3.14 Required memory bandwidth for different methods 
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3.1.4 Luma Interpolator Design 

 

Adder network

Adder network

Adder tree

(a) (b)  

Fig 3.15 (a) adder-chain based [10], (b) adder-tree based [11]  

1-D linear interpolator design 
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Fig. 3.16 Separate 1-D interpolator design (no parallel) 

 

In this subsection, several different interpolator designs will be reported. Reviewing the 

fractional interpolation for H.264/AVC in Fig. 2.2, 6-tap FIR with (1, -5, 20, 20, -5, 1) 

coefficient and bilinear filter are needed for half and quarter pixel interpolation in H.264/AVC 
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video decoder. For cost and PSNR loss acceptable consideration, Lie’s 4-tap diagonal FIR 

filter and three-stage recursive algorithm is proposed in [8], and Chen’s HVBi, bilinear filter 

in both horizontal and vertical direction, and VBi, vertical bilinear horizontal FIR, schemes 

are also reported in [9]. However, when P frame sequence is very long, such as I + 29 P, the 

propagation of PSNR loss may cause the heavy degradation of video quality, especially in 

high definition frame format. Oppositely, considering PSNR losses and standard-compatible 

design, Chien’s [10] and He’s [11] presented adder-chain and adder-tree based design 

respectively. These two types depicted in Fig. 3.15 are categorized into 1-D linear filter design. 

For cost consideration, multipliers can be simplified to adders and shifters. 1-D linear 

interpolator is suitable for Q-CIF video sequence in mobile application; however, as for 

HDTV video sequence, throughput is a very important issue and long execution cycles in 1-D 

linear design may lead to poor throughput. As for another choice, Chien’s [10] also proposed 

separate 1-D design that separates horizontal and vertical interpolation and processes in 

parallel based on 4 x 4 block size. This design induces better throughput, although it may 

need more storages. Fig. 3.16 shows separate 1-D interpolator design without processing in 

parallel. 

 

Table 3.3 Comparison of execution cycles for different architectures 

Architecture Ideal execution cycles 
Adder-chain based 1-D 57 
Adder-tree based 1-D 52 

Separate 1-D (no parallel) 36 
Separate 1-D (2 parallel) 18 
Separate 1-D (4 parallel) 9 

 

Assuming that all 9 x 9 interpolated data for each 4 x 4 block are ready and they can be 

accessed randomly, Table 3.3 lists the execution cycles for different architecture. For 

adder-chain based 1-D design, the first result outputs after the 6th clock cycle. Two 



 28

adder-networks are used to overlap each row inputs and eliminate the latency overhead except 

the first one. The total number of cycles required is 57 (5 + 4 x 9 + 4 x 4) which detailed 

operation is described in Chien’s [10]. For adder-tree based 1-D design, the row data can be 

loaded in parallel without shift one-by-one, hence the latency overhead does not exist and 

total number of cycles is 52 (4 x 9 + 4 x 4). As for separate 1-D design, the first data outputs 

at the 6th clock cycle and the following 3 data generates after 3 clock cycles. Therefore, the 

separate 1-D design without parallel needs 36 ((6 + 3) x 4) cycles to complete interpolation of 

one 4 x 4 block. Similarly, separate 1-D design with 2 and 4 parallel requires 18 ((6 + 3) x 2) 

and 9 (6 + 3) cycles respectively. The required content buffers are 6 x 9 pixels for 4-parallel 

design shown in Fig. 3.17 and it can be implemented in local registers or SRAM. However, 

SRAM requires several cycles to accomplish content-swap operation, so we choose local 

registers in order to execute content-swap in one cycle. In addition, 4-parallel separate 1-D 

architecture is our selection due to smaller required execution cycles that can be hidden below 

data-read cycles from frame memory. For another reason, it is easier to combine with 

interpolation for MPEG-2 video decoding and we will show it in subsection 3.2.1. 
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Fig. 3.17 4-parallel separate 1-D luma interpolator with content buffer 
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3.1.5 Chroma Interpolator Design 
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Fig 3.18 Interpolation window for each 2 x 2 chroma block 
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Fig. 3.19 (a) chroma interpolator, (b) vertical/horizontal filter 

 

Because of 4:2:0 chroma format and quarter precision of luma inter prediction, chroma 

inter prediction can achieve eighth motion resolution. Chroma inter prediction must process 

based on 2 x 2 block and chroma interpolation requires 3 x 3 pixels for each 2 x 2 block as 

shown in Fig. 3.18. For chroma 2 x 2 block including A, B, C and D, the corresponding 

fractional sample is e, f, g and h whose precision is eighth point. Compared with direct 

mapping design with 8 multipliers which equation is listed in Fig. 2.2 (d), we rewire the 

equation listed in equation (3. 2) and the number of multiplier number can reduce to 4. 

 

]**)8[(*]**)8[(*)8(*
***)8(*)8(**)8(*)8(
DyFracByFracxFracCyFracAyFracxFracDyFrac

xFracCyFracxFracByFracxFracAyFracxFraci
+−++−−=
+−+−+−−=

   

(3. 2) 
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Similar to luma interpolator, chroma interpolator can separate into horizontal and vertical 

filter. The corresponding separate 1-D design is depicted in Fig. 3.19 (a) and the vertical / 

horizontal filter is illustrated in Fig. 3.19 (b). Double chroma interpolators are required to 

generate interpolated value in 2-pixel parallel, and it takes 3 cycles to filter 2 x 2 pixels if all 

required interpolated pixels are ready. Based on 2-parallel chroma interpolator design painted 

in Fig. 3.20, only one cycle latency is induced. 
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Fig. 3.20 2-parallel chroma interpolator 

 

 

 



 32

3.2 Combined Motion Compensation Engine for 

MPEG-2/H.264 Dual Video Decoder 
 

 Our H.264/MPEG-2 dual-standard video decoder is illustrated in Fig. 3.21 and the 

component of MPEG-2 decoder is depicted in Fig. 3.22. Compared with H.264/AVC standard, 

MPEG-2 does not provide intra prediction and in-loop de-blocking filter, and only supports 

half motion precision for both luma and chroma macroblock. Unlike median/directional 

prediction of MVP algorithm supported in H.264/AVC, motion vectors are only decided by 

updated PMV and bitstream side information like f_code, motion_residual and motion_code. 

The detailed algorithm of motion vector generation can refer to [2]. Besides motion vector 

generator, a reconfigurable interpolator design for dual-standard is proposed in section 3.2.1 

and section 3.2.2 gives the cost analysis. 
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Fig. 3.21 Motion compensation engine for H.264/MPEG-2 decoder 
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Fig. 3.22 MPEG-2 Motion compensation engine part 

 

3.2.1 Reconfigurable dual-standard interpolator design 

 

The main additional penalty of motion compensation engine is interpolator when 

combing with MPEG-2 video decoder. In this subsection, we will focus on storage and 

arithmetic module sharing on dual-standard to minimize area cost overhead. For macroblock 

based fractional motion compensation in MPEG-2, each 16 x 16 macroblock needs 17 x 17 

interpolation windows to interpolate fractional samples. Each macroblock can be partitioned 

into four 8 x 8 blocks with 9 x 9 interpolation window of which size is identical to that of 

H.264/AVC luma interpolation window for each 4 x 4 block. In addition, the bilinear filter for 

H.264/AVC luma quarter interpolation can share with bilinear filter for MPEG-2 half 

interpolation. Considering 4-parallel luma interpolator as shown in Fig. 3.17, part of registers 

and bilinear filters, which are shaded in Fig. 3.23, can be shared with MPEG-2 interpolator. 
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Fig. 3.23 Shared local registers and bilinear filters for MPEG-2 
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Fig. 3.24 Data flow of (a) vertical bilinear filter, (b) horizontal bilinear filter,  

(c) both vertical and horizontal bilinear filter 

 

Beside the shared modules described above, only extra control circuits for data flow are 

required for MPEG-2 interpolation. Fig. 3.24 shows the data flow of vertical or horizontal 

bilinear filter and half sample flag is decided by the LSB of motion vectors. Firstly, we have 

to concern IDCT/IIT that is the last stage of MPEG-2/H.264 residual decoder. Inverse discrete 

cosine transform (IDCT) for MPEG-2 is 8 x 8-block based module, whereas inverse integer 

transform (IIT) for H.264/AVC is 4 x 4-block based decoding process. To achieve module 

combining and storage sharing, these two modules can merge to single multi-mode IDCT and 

the output data are 4-pixel in parallel for both standards. Besides, only four bilinear filters are 

available for MPEG-2/H.264, hence each column 8-pixel filtering has to separate into two 

stages involving upper 4-pixel filtering (0-4) and lower 4-pixel filtering (4-8). For each MB 

decoding, the decoding scanning order based on 8 x 8 block is shown in Fig. 3.25 (a) and the 

output order in 4-pixel parallel follows Fig. 3.25 (b).  
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Fig. 3.25 (a) decoding scanning order based on 8 x 8 block for each macroblock,  

(b) 4-pixel parallel output order for each 8 x 8 block 
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Fig. 3.26 (a) luma FIR design in Chen’s [9], (b) bilinear filter 

 

As for luma and chroma interpolator for H.264/AVC described in subsection 3.1.4 and 

3.1.5, the adder also can be shared when the architecture of chroma horizontal/vertical filter in 

Fig. 3.19 (b) restructure to shifter and adder. The combined interpolator design is shown in 

Fig. 3.26 and the cost penalty is MUX x 2, shifter x 3 and bitwise AND x 6 when compared 

with the FIR design proposed in Chen’s [9] and shown in Fig. 3.26 (a) . The decoding path of 

luma FIR filter and chroma horizontal/vertical filter are illustrated in Fig. 3.27. Because 

chroma interpolation for H.264/AVC is 2 x 2 block based process, only four luma FIR filters 

are required to replace with combined luma/chroma interpolators. Fig 3.27 indicates the 

shared storage and decoding module for chroma interpolator for H.264/AVC. 
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Fig. 3.26 Combined luma/chroma interpolator design for H.264 
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Fig. 3.27 (a) path of luma FIR interpolator, (b) path of chroma 1/8 bilinear 
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Fig. 3.27 Shared local register and reconfigurable interpolator  

for H.264 chroma interpolation 
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3.2.2 Cost Analysis 

 

Table 3.4 # of adders for each filter design 

Module Function # of adders
Horizontal/vertical FIR 1/2 luma for H.264 6 

Bilinear (average) 
1/4 luma for H.264 

1/2 luma and chroma for 
MPEG-2 

1 

1/8 horizontal/vertical FIR Chroma for H.264 5 

Combined horizontal/vertical filter 
1/2 luma for H.264 
Chroma for H.264 

6 

 

 

Adder occupies the main area cost in the filter design. Firstly, Table 3.4 lists the number 

of adders used in each kind of filter design described in previous subsections. The 

horizontal/vertical FIR design presented in Chen’s [9] and bilinear design are illustrated in Fig 

3.25. Chroma 1/8 horizontal/vertical filter, which modifies the multiplier-based design 

depicted in Fig. 3.19 (b) to adder-based design painted in Fig. 3.26 (b), requires 5 adders. 

Table 3.5 lists the comparisons between our reconfigurable interpolator design and traditional 

design. It reveals that the amount of adder and register efficiently reduced although it requires 

paying some control circuits to support multi-mode operations. After synthesizing based on 

technology of UMC 0.18 um, the total area gate count can be reduced about 20 %. 
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Table 3.5 Comparison of requisite modules based on 4-parallel separate 1-D architecture 
Traditional design: separated H.264 luma, H.264 chroma 

and MPEG-2 bilinear interpolator 

 

Module Traditional design Our Reconfigurable design 

Horizontal FIR 9 7 
Vertical FIR 4 2 

Bilinear (average) 8 4 
1/8 horizontal bilinear 2 0 

1/8 vertical bilinear 2 0 
Combined horizontal filter 0 2 

Combined vertical filter 0 2 
Content buffer 54 x 8 bits 54 x 8 bits 

Shift register array (54 + 18 + 4) x 8 bits 54 x 8 bits 
Adder 106 Adder 82 

Total Register 

(# of bits) 
1040 

Register 

(# of bits) 
864 

Gate count 16376 13013 

 

3.3 Summary 
 

In this chapter, a motion compensation engine for MPEG-2/H.264 dual-video decoder is 

presented. To overcome the tremendous data access to frame memories, especially in the high 

motion precision for the advanced video standard, H.264/AVC, the proposed data reuse 

technique for fractional motion compensation can efficiently reduce the requisite reference 

data. As for sharing design issue for multi-standard, our reconfigurable interpolator saves 20 

% gate count compared with traditional design and it fully supports standard-compatible 

fractional interpolation for MPEG-2 /H.264 video decoder. Besides, the 4-parallel separate 

1-D architecture is also suitable for high throughput SDTV/HDTV video decoder. 
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Chapter 4  
Frame Memory Organization 

 
To deal with tremendous data transfer and storage in multimedia system, software or 

hardware technologies must provide high data bandwidth and efficient real-time memory 

scheduling. As for video decoding system, irregular data access property and large storage of 

multidimensional organization always dominate the system performance including throughput 

and power consumption [12]. To flexibly support from mobile device up to high-definition TV, 

frame memories, which are the largest memory storage over the entire video decoder, are 

located on off-chip. Nevertheless, the data transfer to off-chip memory is always bound to the 

limited bandwidth. To improve memory bandwidth, new modern DRAM families such as 

synchronous DRAM (SDRAM), reduced latency DRAM (RLRAM) and double-data-rate 

SDRAM (DDR SDRAM) are now widely applied in video system [13]. In this chapter, we 

choose SDRAM as external frame memory. 

Many SDRAM controllers have been proposed to improve memory bandwidth 

utilization and achieve efficient memory access. According to the environment, they can be 

categorized into two classes: single channel and multiple channel environments. For single 

channel environment, Rixner’s memory access scheduler [14] reorders the access addresses 

from each bank controller and sends command to DRAM through address arbiter. However, 

because the output command may be out-of-order, many command FIFOs and extra circuits 

are required to reorder commands and addresses. Miura‘s dynamic-SDRAM-mode-control 

scheme [15] eliminate the above disadvantage and it can both reduce operating current and 

the latency of an SDRAM. Nevertheless, it only supports scheduling of single-channel 
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sequence. For multi-channel environment, Lee’s quality-aware memory controller [15] 

supports different scheduling policies according to the current channel situation. These 

memory controllers mainly focus on general-purposed environment. On the other way, 

concerning particular-purpose orientation especially in video codec application, several 

papers have been proposed on improvement of power consumption or memory bandwidth 

utilization. Kim’s memory–interface architecture [17] reorganizes data arrangement in 

SDRAM to reduce energy consumption and increase memory bandwidth. Park’s history-based 

memory mode control [18] reduces page miss to achieve 23.3 % reduced energy consumption 

and 18.8 % reduced memory latency. Zhu’s SDRAM controller in H.264 HDTV Decoder [20] 

focuses on memory mapping and data arrangement in SDRAM to reduce page active cycles; 

meanwhile, it also improves throughput and provides less power consumption. However, it 

does not provide memory scheduling and the adoption of auto precharge rather than manual 

precharge also leads to some loss of bus bandwidth. We will show the advantage of manual 

precharge in subsection 4.1.2. The above memory control techniques individually concentrate 

on memory scheduler or data arrangement in SDRAM. Both issues should be taken into 

account carefully in memory controller, especially for multi-dimensional oriented system, 

such as video codec and graphic processor unit (GPU). To achieve all-round integration, we 

consider both memory access scheduling and data arrangement to design our SDRAM 

controller. In addition, not only communication between SDRAM controller and data bus has 

to be analyzed, but also interface between motion compensation and SDRAM controller has 

to be taken into account carefully. The above discussion of related works is summarized in 

Table 4.1, and the application of our dual-channel SDRAM controller focuses on build-in 

video decoder. Section 4.1 will give detailed design for our dual-channel SDRAM controller. 
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Table 4.1 Related works of SDRAM memory controller 

 

Related work Application Improvement Techniques 

Rixner’s [14] 
General-purpose 

Single-channel 

Bandwidth, 

latency 
Memory scheduling 

Miura’s [15] 

32-bit RISC CPU 

Single-channel 

STB 

Latency,  

Power Memory mode control

Lee’s [15] 

CSVT’05 

Multimedia SoC 

Multiple-channel 

STB 

Bandwidth utilization, 

Latency Memory scheduling 

Kim’s [17] 

CSVT’01 

Video 

Single-Channel 

build-in device 

Memory Power 

Bandwidth Data arrangement 

Park’s [18] 

CE’03 

HDTV decoder 

Multi-channel 

STB 

Memory Power, 

Bandwidth 

Latency 

Memory mode control

Zhu’s [20] 
H.264 HDTV decoder 

Multi-channel 

Bandwidth utilization, 

Decoding throughput 
Data arrangement 

Our work 

Video decoder 

dual-channel 

build-in device 

Bandwidth utilization, 

Latency 

Decoding throughput 

Memory scheduling, 

Data arrangement 
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Frame memories always dominate the storage size on the video decoder. Generally 

speaking, at least two frame memories, which are used to store current and reference frames, 

are required for H.264@Baseline video decoder. Several methods have been proposed to 

reduce the required memory and they can be mainly classified to two solutions that one is 

frame recompression and another is frame memory reorganization. Concerning the first 

solution, which concept is depicted in Fig. 4.1, is recompressing video frame data before 

storing to frame memory, and equivalently decompression is required when reading reference 

frame data from frame memory. This recompression method must support random access 

capability demanded for motion compensation and low complexity property due to limited 

memory bandwidth. In this respect, many algorithms, such as Tajime’s [22] 2-D adaptive 

DPCM in pixel domain, and Lee’s [23] modified Hadamard transform and Golomb-Rice (GR) 

coding., etc have been proposed. However, frame recompression method leads to extra area 

cost and even requires additional execution cycles to compress data such that the throughput 

of video decoder degrades. As for second solution, frame memory reorganization, this idea, 

which combines the current frame and reference frame, can be initially found in De Greef’s 

[24]. Besides, Interuniversity MicroElectronics Center (IMEC) widely exploited this idea to 

H.264 video decoder system [25], MPEG-4 motion estimation [26] and video encoder [27]. 

Particularly in Brockmeyer’s [26] and Denolf’s [27], the concept of memory hierarchy [28] 

combined with merging structured frame memory can achieve data reuse and reduce the 

redundancy of data access. However, they only focus on C level simulation and target on DSP 

or FPGA platform. If we want to implement on ASIC design, many issues still have to be 

overcame. For example, the data copy and update between background memory and 

intermediate memory are required being considered in ASIC design. Concerning another issue, 

we also need extra hardware cost to record the update status in in-place FIFO [25], the 

intermediate region between the new frame and old frame. For advanced development, 

Chang’s combined frame memory architecture [29] can reduce frame memory size up to 57 % 
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and reduce up to 83 % average latency and 39 % average power consumption. We will discuss 

the methodology proposed by Chang’s [29] and exploit it on H.264/AVC video decoder. 

                                                                                 

Video
Decoder

Frame
Memory

recompress

decompress

 

Fig. 4.1 Frame recompression method 

The reset of this chapter is organized as follows. Firstly, SDRAM characteristic is 

described in section 4.1. Then, section 4.2 discusses our dual-channel frame memory access 

controller design. In addition, merging structured frame memory organization, a novel 

memory structure that can reduce required frame memory size, is presented in section 4.3. 

Finally, summary is given in section 4.4. 
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4.1 SDRAM characteristic 

4.1.1 Basics 
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Fig. 4.2 Simplified architecture of a 4-bank SDRAM 
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Fig 4.3 Simplified bank state diagram 

 

A simplified architecture of a 4-bank SDRAM is shown in Fig. 4.2. Four banks share the 

address bus and command bus, while each bank has individual row decoder, sense amplifier, 

and column decoder. The mode register stores several SDRAM operation modes, including 

burst length (BL), column address strobe (CAS) latency (abbreviated as CL), or burst type 

(sequential / interleave). The content of mode register updates according to command issued 

from address bus. SDRAM can be treated as 3-D structure with the dimensions of bank, row, 

and column. A memory access operation, which simplified bank state diagram is depicted in 
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Fig 4.3, contains three steps including row activation, column access, and precharge. Firstly, a 

row activation command with bank address is sent to open (or active) one row in a particular 

bank and the designated row address is issued from address bus. The operation of this 

command is copying the row data into the row buffer of the selected bank and row activation 

needs a active latency called tRCD (ACTIVE to READ or WRITE delay) to accomplish this 

operation. Then, column access command is used to sequential access data or single data 

according to the burst length and burst type in the mode register. The read/write data are 

access/send thorough the same data bus. For read operation, the valid data-out element from 

the starting column address will be available following the CAS latency after the READ 

command, as shown in Fig. 4.4. For write operation, the first valid data-in element is 

coincident with the WRITE command, as shown in Fig. 4.5. Finally, a precharge command 

must be issued before opening a different row in the same bank, whereas a precharge and 

active command need not to be issued if the following access still in the same row and bank. 

After precharge command is issued, the selected bank cannot be accessed during the 

precharge latency named tRP (PRECHARGE command period.) 
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Fig. 4.4 Burst read operation with CL=3 and BL=4. 
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Fig. 4.5 Burst write operation with CL=3 and BL=4. 

 

Table 4.2 CAS latency 

CL 1 2 3 
Allowable operating 

frequency (MHZ) 
≦50 ≦100 ≦166 

 

4.1.2 Access Latency 

 

Lee discussed different access latencies of different access statuses in [15]; however, 

detailed classification is required for exquisite access command scheduling. The memory 

behavior model used in our design is Micron’s MT48LC2M32B2P-5 64Mb SDRAM [21]. 

Table 4.1 lists three different allowable maximum operation frequencies provided in this 

SDRAM according to the CAS latency stored in mode register. Obviously, when setting CAS 

latency to 3, the SDRAM can provide higher operating frequency. However, higher operating 

frequency induces more stall cycles is demanded for each read column access. Therefore, the 

CAS latency should be set carefully for different applications. For example, 50 MHZ with 

CL=1 is enough for Q-CIF format in mobile device while 166 MHZ with CL=3 is required for 
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large frame size format such as SDTV or HDTV format. 
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Fig. 4.6 Access latency for CL=2 (a) read access latency, (b) write access latency 

 

 Fig. 4.6 illustrates read/write access latency under different statuses when CL =2. Row 

miss status means that the activated row in selected bank is not identical to the incoming 

access command and it induces (PRECHARGE + ACTIVE + CAS) latency for read access 

and (PRECHARGE + ACTIVE) latency for write access. Bank-miss with row-miss status 

means that incoming bank address is different from previous command and the selected row 

for the incoming bank address is not activated. For this status, required latency is the same as 

that of row-miss status. Bank-miss with row-hit status indicates that the incoming row has 

been activated in the previous command although the incoming bank is not equal to the 

previous one. For this status and row-hit status, the column access can be directly issued and 
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only read access leads to CAS latency. Based on the above discussion, memory scheduling 

can overlap the sequential access commands and hide full or partial latencies. 
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Fig. 4.7 READ command with auto precharge 

In the precharge period (tRP), SDRAM cannot issue  

another command in the same bank (bank 0). 

 

 SDRAM also supports another precharge method called auto precharge without requiring 

an explicit precharge command. A PRECHARGE of bank/row together with READ/WRITE 

command is automatically performed upon completion of READ/WRITE burst, except in the 

full-page burst mode, where auto precharge does not apply. Auto precharge ensures that the 

precharge is initiated at the earliest valid stage within a burst. As shown in Fig. 4.7, in the 

precharge period, it cannot issue another command to the same bank until the precharge time 

(tRP) is completed. If the following command must active to the same bank, the overlap 

scheduling is limited to this situation such that the following command can be issued only 

until the completion of tRP period or reorder with the other command. For another 

disadvantage induced by auto precharge, READ/WRITE with auto precharge means that 
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SDRAM always de-active the selected bank at the end of a burst command. If the following 

command still issues the same bank, it must waste time to re-active the same bank and lead to 

longer latency at the same time. Therefore, we select manual precharge rather than auto 

precharge in our memory access controller design. 

 

4.2 Dual Channel Frame Memory Access Controller 
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Fig. 4.8 READ/WRITE operation in (a) I frame, (b) P frame, (c) B frame. 

 

For frame memory access in video decoding system, we only need to concentrate on 

consecutive read or write access instead of read-to-write or write-to-read access because 

read/write operation changes at frame level. Based on conventional ping-pong structured 

frame memories [28], which one stores reference frame and another stores current frame, Fig. 

4.8 shows read/write operation in three different frame types. For I frame, memory access 

controller write reconstructed data to current frame. For P frame, memory access controller 

reads referenced data while writing reconstructed data to current frame. For B frame in 

MPEG-2, memory access controller reads data from previous and following reference frame 

because B frame is never referenced. Nevertheless, B frame has a chance that referenced by 

other P/B frame for H.264/AVC video decoder, so the frame memories issue becomes more 

complicated. We can set nal_ref_idc flag in H.264/AVC such that B frame is never used to be 
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reference frame. In this section, we only focus on I/P frame for H.264 and I/P frame for 

MPEG-2 video decoder. 

 

Table 4.3 Characteristics of read/write-access 

Access Required density Influence factors 

Read High 
Bitstream, memory scheduling,  

data arrangement in memory 

Write Low or medium 
Bitstream, capability of residual decoder, 

(de-blocking filter only for H.264) 

 

4.2.1 Memory Access Scheduling 

 

The target of memory access scheduling is overlapping or reordering consecutive DRAM 

commands (PRECHARGE, ACTIVE, CAS) to improve bandwidth utilization and reduce 

access latency. Because the external access of video decoder is bandwidth-sensitive channel 

[15], memory access scheduler must compress and even reorder DRAM commands to achieve 

high bandwidth utilization. Furthermore, considering read-access and write-access 

respectively, the required density of write-access has high correlated with the ability of 

residual decoder and the property of decoding bitstream, while the required density of read 

density is as tight as possible. For high bit-rate video sequence, the decoded bitstream 

contains more coefficients and higher precision of decoding token that may induce more 

requisite decoding cycles. In this situation, the write-access becomes less bandwidth-sensitive 

and the density of write access is not necessarily very tight. The poor design of residual 

decoder, de-blocking filter also affects the bandwidth utilization of write access. Unlike the 

limitation of write access described above, read access needs high density of access 

scheduling because of its high bandwidth-sensitive channel. Read requests are only sent by 

motion compensation, hence the bandwidth utilization of read access is influenced by the 
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memory scheduler design, data arrangement in SDRAM and the handshake command scheme 

of motion compensation. The characteristics of write/read-access discussed above are 

summarized in Table 4.3. 
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Fig. 4.9 Two row-miss unscheduled and scheduled read memory accesses (CL=2, BL=4) 

 

Considering read/write access from/to frame memories, the requirement of write-access 

is low or mediate density depend on the capability of residual decoder, whereas motion 

compensation requires high density of read-access. Therefore, we only concentrate on read 

access and design a high-density scheduler for read-access and it must be also suitable for 

write-access. Fig. 4.9 shows an example of two unscheduled and scheduled read memory 

accesses when occurring row miss at different bank. For unscheduled read, We choose (CL=2, 

BL=4) as an example, and then the unscheduled accesses takes 20 cycles to read eight burst 

data, whereas the scheduled accesses only requires 14 cycles and eight burst data can be 

sequential read. From the access latency discussion in section 4.1.2, the access command 

without auto precharge can be classified to two types, one is long command (PRE + ACT + 

CAS) and another is short command (CAS), painted in Fig. 4.5. Moreover, we consider the 

latency after access scheduling under BL=1, 2, 4 situations illustrated in Fig. 4.10-12 and 

summaries the induced latency under each situation in Table 4.4. Obviously, we can find that 

the worst latency is always located in row-miss situation. To reduce the access latency, the 

command request ordering and data arrangement should follow the orientation of minimizing 
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the row-miss occurrence. 
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Fig. 4.10 Scheduled consecutive read access for (BL=1, CL=2) when previous  

command is (a) long command (PRE+ACT+CAS), (b) short command (CAS) 
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Fig. 4.11 Scheduled consecutive read access for (BL=2, CL=2) when previous  

command is (a) long command (PRE+ACT+CAS), (b) short command (CAS) 
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Fig. 4.12 Scheduled consecutive read access for (BL=4, CL=2) when previous  

command is (a) long command (PRE+ACT+CAS), (b) short command (CAS) 
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Table 4.4 Latency for scheduled consecutive read access when CL=2 

 

BL Previous command Incoming command Latency  

Row-miss 4 

Bank-miss with row-miss 2 (PRE + ACT +CAS) 
Row-hit or  

Bank-miss with row-hit 
0 

Row-miss 4 

Bank-miss with row-miss 4 

1 

CAS 
Row-hit or  

Bank-miss with row-hit 
0 

Row-miss 4 

Bank-miss with row-miss 1 (PRE + ACT +CAS) 
Row-hit or  

Bank-miss with row-hit 
0 

Row-miss 4 

Bank-miss with row-miss 3 

2 

CAS 
Row-hit or  

Bank-miss with row-hit 
0 

Row-miss 4 

Bank-miss with row-miss 0 (PRE + ACT +CAS) 
Row-hit or  

Bank-miss with row-hit 
0 

Row-miss 4 

Bank-miss with row-miss 1 

4 

CAS 
Row-hit or  

Bank-miss with row-hit 
0 
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 Out-of-order scheduling may cause two problems for video decoding system. The first 

one is that the additional FIFOs is required storing incoming access commands, and the 

second one is that additional read data buffer and control circuits are needed to re-order data, 

otherwise the disordered data leads to operation error occurred in motion compensation. To 

eliminate the above problems, in-order, also named first-in-first-out, policy is adopted in our 

priority scheduling. We just focus on command overlapping and data arrangement such that 

our design can meet real-time SDTV/HDTV decoding at 100 HMZ that is the allowable 

maximum operating frequency when CL = 2.  
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Fig. 4.13 Scheduled consecutive read access for full-page mode 

 

 Besides the fixed length burst mode, SDRAM also supports full-page mode that allows 

the access of arbitrary length successive data on the particular row/bank. The full-page access 

must be truncated by BURST TERMINATE command. Fig. 4.13 shows an example of 

scheduled consecutive read access for full-page mode. The BURST TERMINATE command 

should send before (CL-1) cycles apart from the last burst data. When a READ or WRITE 

command is issued, a block of columns equal to the burst length is effectively selected. All 

accesses for that burst take place within this block, meaning that the burst will wrap within 

the block if a boundary is reached. 
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4.2.2 Data Arrangement 

 

From the above discussion, the data arrangement in SDRAM should tend to 

minimization of row miss at the same bank because row miss status has to pay the longest 

latency. Based on this concept, row-major arrangement is adopted in our design. Fig. 4.14 (a) 

illustrates that the luma MB partitioning is dispersed to four banks. The first MB addressed in 

SDRAM is painted in Fig. 4.14 (b). Similar to luma MB, the chroma block is partitioned to 

two banks. As shown in Fig. 4.15, the Cb block is placed in bank 0 and 1, while Cr block is 

located in bank 2 and 3. Fig. 4.16 illustrates the QCIF data arrangement in SDRAM. Each 

Frame can be partitioned into several MB based row. The length is frame width and the width 

is MB width. When frame size is small, each row (page) of SDRAM can stores multiple MB 

based rows of frame. Otherwise, for large frame size like SDTV or HDTV, each MB based 

row may occupy several rows (pages) of SDRAM. The advantage of this arrangement is that 

address generator needs not be modified according to different frame size format. For another 

reason, the probability of row-miss occurrence is very low. Obviously, it only occurs when 

data is located in row (page) boundary. As for physical analysis, we will show it later. 
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Fig. 4.14 (a) row-major arrangement,  

(b) the first luma macroblock location in SDRAM 
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Fig. 4.15 The location of SDRAM for chroma Cb and Cr 
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Fig. 4.16 QCIF video format arrangement in SDRAM 

 

 Because the fetching window width/length is always larger than data length of SDRAM, 

the fetching window is truncated by row boundary or different banks. For example, 

considering luma MB, it required to fetch 9 x 9 interpolation window no matter what 4 x 4 

block for H.264/AVC or 8 x 8 block for MPEG-2. Several cases are illustrated in Fig. 4.17. 

Window A and B are only truncated by different banks at the different row. That is, only bank- 

miss with row-hit or row-hit occurs in this window and the penalty of latency is small or zero 

from Table 4.4. With regard to window C, bank-miss with row-miss would take place and the 

required latency is greater than that of window A and B. Row-hit, which requires maximum 

latency, only occurs in row boundary such as window D. As for integer MV for H.264/AVC, it 
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only need to read 4 x 4 block like window E and F. Window E is the best case since all block 

is addressed in the same bank/row. Window F is truncated by different bank at the same row. 
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Fig. 4.17 Different cases of the interpolation window location when  

window size is 9 x 9 pixels (A, B) truncation by banks at the same row,  

(C) truncation by banks at different row, (D) truncation by row and banks,  

or window size is 4 x 4 pixels (E) best case, no truncation,  

(F) truncation by banks at the same row 

 

Table 4.5 The proportion of access status (foreman-QCIF @ 64kbps in H.264 decoder) 

BL Row-hit (%) 
Bank-miss with 

row-hit (%) 
Bank-miss with 
row-miss (%) 

Row-miss (%)

1 37.9152 60.2273 1.51639 0.34104 
2 38.2509 58.5636 2.60708 0.578438 
4 39.2019 55.9049 4.01952 0.873668 

Full-page 43.3516 47.9131 7.07336 1.66188 

 

As listed in Table 4.5, after simulation on foreman-QCIF format @ 64kbps, we can find 

the proportion of row-miss status only occupies less than 2 % at any burst length access. The 
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row-major arrangement for frame memory can efficiently reduce the probability of bank-miss 

with row-miss or row-miss that contributes the maximum latency. More detailed experiment 

result will illustrate in subsection 4.2.4. 

 

4.2.3 Dual-channel Frame Memory access controller Design 

 

The entire dual channel SDRAM memory access controller and the connection with 

motion compensation are painted in Fig. 4.18. Regarding write memory access controller, 

write data buffer is used to hold the length of burst data, while write address queue is used to 

hold incoming addresses. Write address is calculated according to the output ordering of 

de-blocking-filter (H.264) or IDCT (MPEG-2). Master write scheduler assigns the incoming 

address command to suitable write controller according to the access status. Timing unit 

records all kinds of command latency such as burst length, tRP (precharge period), tRCD 

(ACTIVE to READ or WRITE), and so on. Write controllers generate sequential access 

commands according to the burst length and latency defined in timing unit. These access 

commands are collected by master write scheduler, which can issue the proper command to 

SDRAM. Read memory access controller has the similar operation to the write memory 

access controller. Read data buffer is used to hold sequential received read data for motion 

compensation decoding. The arbiter allocates write / read data and command flow to / from 

external SDRAM memories according to the frame type illustrated in Fig. 4.8. 

As for motion compensation engine, besides interpolator and motion vector generator 

described in Chapter 3, the major FSM controller consists of three parts: request FSM, receive 

FSM and output stage FSM. Request FSM send request and address to memory access 

controller when the status of read addr queue is not full. The detailed design of wirte/read 

addr queue is painted in Fig. 4.19. The “full” signals reflect the status of this queue. The 
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proposed address queue must also compare the incoming and the previous address command 

to check row-hit and bank-hit situations. Receive FSM controls the mask to filter the read data 

and then spits to interpolator. Output stage FSM handles the interpolator and output data flow. 

When the fractional part of motion vector is zero, read reference data directly output; 

otherwise, the reference data pass through interpolator and generates interpolated sample data.  

Unlike traditional SDRAM access controller design containing various “WAIT” states, 

Lee’s [15] proposed a configurable shared-state FSM Design. This design merges all 

numerous “WAIT” state into single NOP stage. After applying NOP_count and NOP_code 

status registers, the FSM becomes flexible to parameterize the command latency without 

redesign FSM. We design our access FSM based on this concept. The interface connection 

between memory scheduler and bank controller is depicted in Fig. 4.20. Each bank requires 

two access FSMs to overlap two successive row-miss (at the same bank) accesses; otherwise 

the incoming row-miss command has to wait until the previous access command returns to 

IDLE state. As for bank-miss (at the same row or not) situations, access scheduler collects the 

access commands for the corresponding bank controllers and then sends to arbiter at the 

suitable time. Besides the access FSM, each bank controller needs a row address (RA) register 

to record the activated row for each bank. Compared incoming commands with RA registers 

for each bank controller, the bank-miss with row-hit or bank-miss with row-miss status can be 

detected. The access scheduler allocates and overlaps successive commands according to 

these status flags. In brief, double access FSMs for individual bank controller can handle 

access conflict at the same bank, while master access scheduler is responsible for access 

overlapping between different banks. After scheduling SDRAM access commands, the bus 

utilization can raise efficiently; meanwhile the throughput of the entire video decoder can be 

improved. 

 

 



 64

 

 

 

Bank 0
write

controller

Bank 1
write

controller

Master write scheduler

Bank 2
write

controller

Bank 3
write

controller

Timing
unit

Bank 0
read

controller

Bank 1
read

controller

Bank 2
read

controller

Bank 3
read

controller

Master read scheduler

ar
b

it
er

Read
addr

queue

write
data buffer

SDRAM 0

SDRAM 1

Read
data

buffer

External
frame

memories

Write
address

Write
data

Read
address Read data

write
addr queue

Request FSM MASKReceive FSM

InterpolatorMotion vector
generator

Address
generator

Output stage
FSM

Motion
information

Inter-predicted
data

Motion compensation

Dual channel SDRAM memory access controller

 

Fig 4.18 Dual-channel SDRAM memory access controller design 
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4.2.4 Experiment Result 
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Fig. 4.21 Motion compensation processing flow for (a) H.264/AVC, (b) MPEG-2 

 

Firstly, review the motion compensation processing flow depicted Fig. 4.21 for MPEG-2 

and H.264/AVC video decoder. For H.264/AVC video decoding, motion vector generator 

needs two-phase operations including loading MVD and calculation of MV. After reading 

reference luma/chroma data and interpolation processing, motion vector generator takes two 

cycles to update MV FIFO for the next MB decoding. As for MPEG-2 tasking, motion vector 

generator can immediately calculate MV when receiving required information like 

motion_code, f_code, and motion_residual and then read reference data to reconstruct current 

frame. Then, considering system level analysis including motion compensation, SDRAM 

controller, depicted in Fig. 4.22, because motion compensation and SDRAM controller are 

both in operation and data transmission only during the period of reading reference data, 

hence we only have to analysis the data transfer in this period. 
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Fig. 4.22 System level analysis 

 

Before going into detail of the following analysis, we define the following criteria to 

measure the performance of data transfer on the bus.  
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 Based on the assumption of that the data bus is only provided for double frame memories, 

generally speaking, higher bus utilization induces better throughput for our video decoder. 

The data usage is correlated to the burst length and required window size. Thus, data usage 

can be treated as the proportion of required data over the available data from SDRAM 
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controller. To explain data usage clearly, considering 9 x 9 interpolation window of 4 x 4 

block in H.264 fractional motion compensation, Fig. 4.23 illustrates an example of the 

fetching window for four different burst lengths. Fetching window is the total pixels that 

needed to be read for SDRAM controller. Since the data bus width is 4-pixel (32 bits), the 

height of fetching window must be 12-pixel that is a multiple of 4-pixel. Similarly, the width 

of fetching window must be the multiple number of the burst length except that the length can 

be arbitrary length for full-page mode. Accordingly, among these burst mode, the data usage 

is poorest when the selected burst length is 4. Data utilization is the multiplication of bus 

utilization and data usage. Therefore, the data utilization can be seemed as the required data 

proportion over the allowable data transmission on the bus. Higher data utilization means that 

we have chance to get better throughput and less latency on the entire video decoder.  
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Fig. 4.23 Fetching window of H.264 4 x 4 block for different burst length (unit: pixel):  

(a) BL=1 or full-page, (b) BL=2, (c) BL=4 
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Fig. 4.24 Unscheduled bus utilization, data usage, and data utilization  

for different burst mode 
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Fig. 4.25 Scheduled bus utilization, data usage, and data utilization  

for different burst mode 



 70

Fig. 4.24 and 4.25 shows the unscheduled and scheduled system level analysis of the 

above criteria. Before scheduling, the longer burst length provides higher bus utilization 

instinctively because the short access latency is required for the same amount of fetching data. 

After scheduling, since longer read burst cycles can provides long overlapping period for the 

successive commands, burst length = 4 has the highest bus utilization. Nevertheless, the 

improvement of full-page is smaller than the other case because the BURST TERMINATE 

command at the end of burst read impedes the possibility of command overlapping. Although 

bust length = 4 reflects the highest bus utilization, the lowest data usage makes the data 

utilization become lowest among these burst modes. Therefore, BL = 1 or full-page mode is 

the better choices on the high-throughput video decoding system. The disadvantage of 

full-page mode is that it needs longest read data buffers to hold the arbitrary length read data 

and BURST TERMINATE command also makes the access FSM design more complicated. 

The average access latency per P MB for unscheduled and scheduled memory accesses is 

depicted in Fig. 4.24. For the same reason, the reduction of access latency for full-page mode 

is also bounded by BURST TERMINATE command. For H.264/AVC decoder, Fig. 4.27 and 

Fig. 4.28 give the requisite execution cycles of P MB at low-bit-rate (32 kbps) and 

high-bit-rate (128kbps) environments. After inducing data reuse technique, extended RSO 

method, mentioned in Chapter 3, the execution cycles can reduce about 50 ~100 cycles. 

Because the amount of fractional motion vectors at high-bit-rate environment is greater than 

that at low-bit-rate environment, the improvement is more obvious in Fig. 4.28. Furthermore, 

after applying memory scheduler, the execution cycles per P MB can tremendously reduce up 

to 15 ~55 % especially when burst length is equal to one. Based on our decoding system, the 

raise of bus utilization and reduction of access latency reduce the required execution cycles 

per P MB. Accordingly, it can improve throughput of the entire video decoder because the 

computation time of motion compensation dominates the video decoder especially in 

H.264/AVC decoder. 
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Fig. 4.26 Average access latency per P MB for unscheduled/scheduled memory access 
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Fig. 4.27 Average execution cycles of P MB for foreman-QCIF @ 32 kbps 
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Fig. 4.28 Average execution cycles of P MB for foreman-QCIF @ 128kbps 
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4.3 Merging Structured Frame Memory Organization 
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Fig. 4.29 Merging structured frame memory organization 

 

The related works of merging structure discussed, of which concept is shown in Fig. 4.29, 

in the beginning of this chapter is summarized in Table 4.6. We only focus on Chang’s [29] 

because it presents the possibility of implementation on ASIC design rather than other works 

just target on DSP or FPGA platform. Chang’s combined frame memory architecture [29] can 

reduce frame memory size up to 57 % and reduce up to 83 % average latency and 39 % 

average power consumption. To reducing the memory access of MBs with zero-valued MVs 

and no residual (perfect match), this architecture introduces search range strip buffer (SRSB) 

and dirty table (DT) to record the status of each MB in in-place region. After simulation in 

MPEG-4 video decoder system, this architecture can achieve certain effect especially in slow 

motion or large background video sequence. Now, considering applying this scheme in 

H.264/AVC system, Chen’s [29] only concentrates on MB level. We will expand this idea on 

4 x 4-block level for H.264/AVC video decoder in 4.3.1 and illustrates the simulation result 

and performance. 
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Table 4.6 Related works of merging structured frame memory 

Related work Platform Discussion 
De Greef’s [24] Video codec on DSP Idea, initial concept: reduce frame size 

Nachtergaele’s [25] 
H.263 video decoder on 

DSP 

combined frame memory with in-place 

FIFO: reduce frame size 

Brockmeyer’s [26] MPEG-4 ME on DSP 
Hierarchy combined frame memory with 

in-place FIFO: reduce frame size 

Denolf ‘s [27] 
MPEG-4 video encoder 

on DSP or FPGA 

3-level hierarchy combined frame 

memory: reduce frame size 

Chang’s [29] 
MPEG-4 video decoder 

on Software or ASIC 

Perfect match MB skip method: 

reduce latency, power, and frame size 

 

4.3.1 Analysis 

 

A MB with perfect match is one that has zero-valued MV and no residual. The definitions of 

prefect match follow different conditions for different video standards. For example, 

not-coded in MB in MPEG-4 is a MB with zero-valued MV and no residual; thus not-coded 

MB is MB with perfect match. However, there is no particular mode that defines zero-valued 

MV and no residual for H.264/AVC standard. In H.264/AVC, P_SKIP mb_type means that 

one MB without motion information and residual data in bitstream. That is, motion vector is 

derived only according to MVP and there has no any guarantee that MVP is zero. If based on 

MB level statistic foe H.264/AVC@Baseline, the zero valued MB without residual only 

occurs in P_SKIP mb_type. Hence, we only have to check P_SKIP MB with zero MV. 

Furthermore, based on 4 x 4 block level analysis, we not only have to check zero MV, but also 

have to check coded_block_pattern for residual information. The coded_block_pattern 

specifies which of the six 8 x 8 blocks – luma and chroma – contain non-zero transform 

coefficient levels. Accordingly, the definition of luma 4 x 4 with perfect match for H.264/ 

AVC is that motion vector is zero and CBP_luma , LSB 4 bits of coded_block_pattern, is zero. 
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Similarly, chroma 2 x 2 with perfect match contains zero-valued MV and CBP_chroma, MSB 

2 bits of coded_block_pattern. 

 

Table 4.7 Perfect match analysis  
JM8.2: QCIF, 30 fps, search range [-16, +15.75], QP = 30 

Level MB based 4 x 4 block based 

Sequence MB (%) 
4 x 4 luma block 

(%) 
2 x 2 chroma 

block (%) 

Salesman 80.4118 85.6572 86.3453 

News 75.6982 80.3539 80.6434 

Paris 66.969 76.9667 78.177 

Table 55.1456 58.9625 59.7103 

Suzie 37.1582 39.7623 39.8924 

Carphone 21.3745 25.1419 25.5195 

Foreman 10.6055 13.5096 13.746 

Stefan 7.26982 9.33182 9.56115 

Coastguard 2.3439 5.53886 7.13318 

Mobile 0.834331 3.42174 4.29115 

 

From the analysis of perfect match in Table 4.7, we can find the ratio of 4 x 4 block 

based perfect match is greater than that of MB based perfect match. That is to say, 4 x 4 block 

based perfect match has much chance to save more power and reduce more latency. However, 

if merging structured frame memory is adopted in H.264/AVC decoder, we have to modify 

some block. Unlike MPEG-4 decoder, H.264/AVC provides in-loop de-blocking filter that 

filters the data from adding of residual data and inter-predicted data. In the methodology of 

skip block with perfect match, the output data of residual adder must directly store to 

reference frame. Accordingly, we have doing the following assumption: after turning off 

de-blocking filter, the PSNR degradation is very small for small frame size format such as 

QCIF or CIF. If we want to exploit methodology mentioned in Chang’s [29] on H.264/AVC 

decoder, the reduction of power consumption is emergent such that users can ignore the 

degradation of video quality. For that reason, the application must target on small frame size 
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for mobile device based on the above assumption. Here, we only give a little analysis for 

H.264/AVC decoder. Many problems still have to be resolved such as large search range and 

we will leave it in future work. 

 

4.4 Summary 
 

In this chapter, we proposed a dual-channel SDRAM frame memory access controller 

that is build-in device on video decoder. We not only focus on the memory scheduler design, 

but also adopt the row-major data arrangement to reduce the row-miss ratio dramatically. 

After system level analysis, the proposed memory access controller design can increase bus 

utilization and reduce access latency efficiently; in the meanwhile, it also improves the 

throughput on the entire video decoder. In addition, we also analyze the skip ratio of 4x4 

perfect match block based on the merging structured frame memory in H.264/AVC video 

decoder. The analysis result shows that it has a chance to save more power and latency 

compared with MB level skip proposed in [29]. 
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Chapter 5  
Chip Implementation 

 

5.1 Chip Specification 
 

Table 5.1 Video decoder specification in our design 

H.264/AVC Baseline Profile @ 3.2 Level 
I, P slice 
Variable block size: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4 
Single reference frame 
Search range: [-128, +127.75] 
Fractional motion resolution: quarter for luma, 1/8 for chroma 
Frame coding 
All intra prediction mode 
Context Adaptive Variable Length Coding (CAVLC) 
Decoding capability: 1280 x 720 HDTV, 30fps at 56 MHz 

MPEG-2 Simple Profile @ Main Level 
I, P picture 
Search range: [-256, +255.5] 
Fractional motion resolution: half luma and chroma 
Frame coding 
Decoding capability: 1920 x 1080 HDTV, 30fps at 80.92 MHz 

 

Table 5.1 lists the specification of our dual-standard video decoder. After synthesis on 

Cadence RTL compiler using UMC 0.18 um COMS technology, total gate count is 491260 

(including SRAM) and the gate count of each component is listed in Table 5.2. Table 5.3 lists 

on/off chip SRAM used on each module. The total size of on-chip SRAM is 23.5 KBytes. The 

chip specification and chip layout are shown in Table 5.4 and Fig. 5.1 respectively. 
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Table 5.2 Synthesis result of the MPEG-2/H.264 dual-video decoder  
(including on-chip SRAM) 

Component Standard Gate count 
De-blocking Filter MPEG-2/H.264 187825 

Motion Compensation MPEG-2/H.264 84266 
Syntax Parser  

& System control 
MPEG-2/H.264 38715 

Residual Adder 
& VL-FIFO 

MPEG-2/H.264 13214 

SDRAM Memory access controller MPEG-2/H.264 7933 
Combined VLC/CAVLC MPEG-2/H.264 6688 

Intra Prediction H.264 56936 
Content Memory H.264 24263 

4 x 4 IQ H.264 14184 
Integer / Hardmard Transform H.264 5170 

IDCT MPEG-2 39727 
8 x 8 IQ MPEG-2 12339 

Total 491260 

 

Table 5.3 On-chip/off-chip memory in our design 

 Module Depth x Width Port Number
Motion compensation 120 x 10 Single-port x 8 

2048 x 32 Single-port x 1 
1024 x 32 Single-port x 2 De-blocking filter 
128 x 11 Single-port x 1 

Intra prediction 1024 x 32 Single-port x 1 
Combined 

CAVLC/VLC 
1024 x 5 Single-port x 1 

Syntax parser 128 x 16 Single-port x 1 
64 x 32 Single-port x 2 

On-chip 

Content buffer 
32 x 32 Single-port x 2 

Total 23520 Bytes 
Off-chip Frame memory 512K x 32 x 4 banks x 2 
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Table 5.4 Chip specification of MPEG-2/H.264 dual video decoder 

Technology UMC 0.18um CMOS 1P6M 
Package 208 CQFP 
Die Size 3900 um × 3900 um 
Core Size 3500 um × 3500 um 

Max Clock Rate 100 MHz 

Power Consumption (Core Power) 

44.35 mW @ 720 HD for H.264 
19.96 mW @ 625 SD for H.264 

68.34 mW @ 1080 HD for MPEG-2 
13.57 mW @ 625 SD for MPEG-2 

Total Gate Count 491260 

On-chip Memory 23.5 KB SRAM 
Off-chip Memory 3.2 MB SDRAM x 2 

Pad number 115 
Input Pad 12 

Output Pad 41 
IO Pad 62 

 

 

Fig. 5.1 The chip photo of MPEG-2/H.264 dual-video decoder 
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5.2 Comparison with Related Works 
 

Table 5.5 H.264 decoder comparison with related work 

 

 
C & S [6] 
ISCAS’04 

Conexant [30] 
ISCE’04 

Chen’s [5] 
ISCAS’05 

Our work[31][32]
ISCAS’05 

VLSI-DAT’05 
Process 0.13 um 0.13 um 0.18 um 0.18 um 

Decoder Spec. 
H.264 @ Baseline 

(multi-standard) 
H.264 @ Main H.264 @ Baseline 

H.264 @ Baseline 

(MPEG-2 @ SP) 

Pipeline  4-stage N/A Hybrid Hybrid 

Design ARM based ARM based ASIC ASIC 

Frame 

memory 
External SDRAM External DDR RAM External SRAM External SDRAM 

Memory 

hierarchy 
External memory 

Local RSB + 

External frame 

memory 

External memory 
Local RSB + 

External frame memory

Gate count 910K (Logic), 300 K (Logic) 

217 K (Logic) 

10 KB on-chip 

SRAM 

491K (with 23.5 
KB on-chip 

SRAM) 

Frame 

resolution 
1920 x 1080 HD, 30fps 2048 x 1024, 30fps 2048 x 1080, 30fps 1280 x 720 HD, 30fps 

Operating 

frequency 

CPU, Local Bus: 170 

MHz 

System Bus: 130 MHz 

200 MHz 120 MHz 56 MHz 

Power 
554 mW for 1080HD 

159mW for CIF 

160 mW for  

2048 x 1024 HD 
N/A 

44.35 mW for 720HD 

4.51 mW for CIF 

 

Table 5.5 lists the comparison with related works about H.264 video decoder. We only 

focus on memory related comparison. The proposed ASIC decoder design is hybrid pipeline 

processing. The frame memories adopt external SDRAM. The memory hierarchy of the entire 

video decoder can be treated as two-level memory hierarchy including internal local row store 

buffer (RSB) and external frame memory buffer. The concept of memory hierarchy is 
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illustrated in Fig. 5.1. Row store buffer is the particular feature that is different from the 

previous video standards for H.264 video decoder. Many modules such as inter prediction, 

intra prediction, in-loop de-blocking filter and CAVLC requires RSB, of which size is equal to 

the frame width, to store the decoding information like pixels, motion vector and coefficient 

token. The benefit of partitioning these row data from external memory is reduction of 

required bandwidth to external memory and global bus power. It also eliminates some data 

access conflict on global bus. The overhead is requiring more internal memory to store the 

row information. 

 

 

H.264 Video
Decoder

Row Store
Buffer

Frame
Memory

Internal local memory

External background
memory

Global bus
 

Fig. 5.1 Memory hierarchy for the entire video decoder 
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Chapter 6  
Conclusion and Future Work 
 
6.1 Conclusion 
 

Based on the prevalent application of Digital TV adopted in digital video broadcasting 

(DVB) transmission system, combined motion compensation engine for MPEG-2/H.264 

dual-standard video decoder is proposed in this dissertation. Motion compensation engine 

consists of three parts: motion vector generator, interpolator, and external frame memory 

access controller. After mapping MVP algorithm to ASIC design on the concept of two-level 

memory hierarchy. The design target of interpolator and frame memory access controller is to 

reduce external memory access and improve throughput of the entire video decoder.  

Concerning the design of interpolator, 4-parallel separate 1-D architecture gives the most 

space on high throughput video decoder compared with other architectures proposed. The 

proposed data reuse technique for fraction motion compensation introduces content buffer and 

content-swap operation attached on our interpolators design. After applying this concept, the 

extended 2x2 RSO for H.264/AVC can reduce the required bandwidth about 30 % compared 

with 2x2 column-major one. 

Beside, the dual-channel SDRAM memory access controller appended to video decoder 

is presented to overcome the tremendous transfer of pixel data to/from external frame 

memories. To achieve efficient memory access scheduling, we discuss not only memory 

scheduling but also data arrangement within SDRAM. Row-major arrangement in our 

scheduling scheme can minimize the row-miss (at the same bank) ratio that contributes the 



 83

maximum latency among all scheduling cases. We build system level hardware-like C++ 

model and analyze the system performance. Compared to unscheduled situation, the 

experiment result shows that the access latency can be reduced by 50 % ~ 90 % and 

bandwidth utilization can be increased by 20 % ~ 2.8 times. In the meanwhile, the throughput 

of the overall video decoder can improve about 10 % ~ 60 % after combining extended RSO 

method and memory scheduling. 

 

6.2 Future Work 
 

The proposed motion compensation for dual-video standard only supports P frame 

decoding. If we want to H.264@Main Profile, the subjects such as B-frame, weighted 

prediction, and direct mode should be taken into account. Because B-frame may contains 

double motion vectors, it requires read reference data from forward and backward frames and 

then write reconstructed data to display buffer. These operations are more complicated than P 

frame; thus, the scheduling of the read/write accesses efficiently to meet our decoder 

specification is a challenge. 

Considering memory organization topic on this dissertation, a dual-channel SDRAM 

controller for ping-pong structured frame memories has been presented in this thesis. 

However, there are still some important issues should be considered in order to provide more 

complete system integration. For example, if display buffer shares the data bus with frame 

memories, a smarter bus arbitration and memory controller should be designed. As for 

merging structured frame memory organization based on H.264/AVC decoder, we give the 

analysis for 4 x 4 block based perfect match. However, there are still many issues have to be 

analyzed if we want to exploit this idea on ASIC design. The related work only targets on 

search range [-16, +15] since this size is identical to one MB size. Based on this search range, 
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the design of in-place FIFO and dirty table becomes easier. If we want to target on large 

search range, the size of in-place FIFO becomes very large and design of the address 

generator becomes more complicated. Another problem is that the proportion of perfect match 

block must be larger than the backup of the content of in-place FIFO; otherwise, the update 

and backup between background memory and in-place FIFO will degrades the throughput of 

the entire video decoder. In brief, the feasibility of the merging structured memory 

organization on ASIC design still has to be evaluated. 
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