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摘    要 

H.264/AVC是最新壓縮標準。與其他標準比較，H264/AVC提供了較高的壓縮效

率，但是H.264的複雜度也相對較高。在H.264/AVC有兩種熵編碼法，CAVLC和CABAC。 

在二熵編碼法之中，CABAC 能比CABLC節省10-15%位元率。基本上，熵編碼是一種

二位元的操作，且一般多功能處理器不能有效率的處裡。在高解析度及時的系統

中,給熵編碼用的一個高處裡能力的算術編碼器和解碼器是非常需要的。 

    在這篇論文裡，我們提出給H.264/AVC用的算術編碼器和算術解碼器之硬體架

構。為了增加算術編碼器的處裡能力，架構設計上能擴充到把每個週期可以編碼

多個位元。為降低架構上的長路徑，我們在算術編碼器和算數解碼器架構中裡重

新安排迴圈中的處裡順序。而且，我們的算數編碼器設計能容易修改去支援

JPEG2000。全部設計被用硬體描述語言實現並且在FPGA環境中作過驗證。算術編

碼器的最大處裡能力是每秒545百萬個位元，算數解碼器的最大處裡能力是每秒

330百萬個位元。他們分別花費9300和3500個邏輯單元。 
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Abstract 

The most recently developed compression standard H.264/AVC provides 

outstanding performance than other standards, but the complexity of H.264/AVC is 

also higher than others. There are two entropy coding methods, Context Adaptive 

Variable Length Code (CAVLC) and Context Adaptive Binary Arithmetic Code 

(CABAC) in H.264/AVC. Between the two entropy coding methods, CABAC can 

provide bit-rate saving of 10-15% than CAVLC. The serial and bit-level operation of 

the entropy coding is a kind of bit-level operation and can not be effectively handled 

by general purpose processor. A high throughput arithmetic coder for entropy coding 

and decoding is strongly required for high resolution real-time applications. 

In this thesis, we propose architecture for the arithmetic encoder and decoder in 

H.264/AVC. To meet the high performance requirement, the encoder design can be 

extended to encode multiple symbols per cycle. To reduce the critical path, we 

rearrange the sequence of range operation in the encoder and the decoder 

architectures. All designs are implemented in Verilog and verified on FPGS. The 

maximum throughput of the 3-sybmol arithmetic coder is 545M symbols per second 

and the maximum throughput of decoder is 330M symbols per second costing 9.3k 

and 3.5k gates respectively.  
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Chapter 1  

Introduction 
 

1.1  Overview of Dissertation 
In recent years, the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC 

Moving Picture Experts Group (MPEG) jointly develop a video coding standard 

H.264/AVC for a wide range of applications such as storage, video conferencing, 

broadcasting, Internet streaming etc. As compared to other video coding standards, 

H.264/AVC can provide the same quality with a significantly reduced bit rate. 

Specifically, as compared to MPEG-4, H.263, MPEG-2, the ratio of saving on bit rate is 

39%, 49%, and 64% respectively.  

Although the coding efficiency of H.264/AVC is better, the complexity of 

 

Figure 1.1 Basic Coding Structure of H.264/AVC for a macroblock [?]  
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H.264/AVC is relatively high. Figure 1.1 shows the basic coding structure. Among the 

modules, there are many new tools such as long-term prediction, motion estimation of 

variable blocks size are designed for increasing coding efficiency. However, the tools 

need more computation and the complexity is increased significantly. For the decoding, 

H.264/AVC is 2-3 times more complex than MPEG-2, H.263, and MPEG-4. For the 

encoding, the complexity of H.264/AVC is 4-5 times than that of MPEG-4.  

Among these modules, CABAC is one tool that needs intensive computation. 

Basically, the operations of CABAC include the following steps: 

1. Binarization: The binarization of syntax element is to maximize the 

efficiency of binary arithmetic coding. In H.264/AVC, all the syntax 

elements are binarized into multiple bits. There are four basic binarization 

methods in CABAC of H.264/AVC. For instance, fixed-length code is used 

for syntax element with a nearly uniform distribution. The code word of x 

in fixed-length code is simply given by the binarization representation of x 

with a fixed (minimum) number lFL=ceil(log2S) of bits, where 0≦x≦S. 

2. Context Modeling: The context model is to fully utilize the existing 

correlations. After the binarization, the coding bits of a syntax element may 

refer to different context models. The outcome of a context model is 

assigned with a context index and each index is associated with a binary 

probability model. Specifically, the context probability model is 

represented by a most probable symbol (MPS) and the probability of least 

probable symbol (LPS). 

3. Binary arithmetic coding: The binary arithmetic coding is to reduce the bit 

rate. During the coding, the interval state of the arithmetic coding engine is 

as usual characterized by two quantities: the current interval range (range) 

and the base of the current code interval (low). We make the encoding 
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decision by comparing the encoding symbol and the MPS in the context 

probability model. Depending on the encoding decision, the range and low 

change their values. 

Different from the other modules, the CABAC operates at bit level. It cannot be 

efficiently handled by general purpose processors. Moreover, the encoding/decoding in 

CABAC refers to many coding context. A strong data dependency exists in the 

successive operations of CABAC. For instance, the encoding/decoding of a specific 

syntax may refer to the state of previously encoded/decoded syntax. Such data 

dependency makes the operations of CABAC not easy for parallel processing. 

Furthermore, CABAC requires many branching instructions that also pose a big 

challenge for hardware design. 

In recent years, a few hardware architectures [4][5][6][7][8] about CABAC codec 

have been proposed for different coding standards. In common, these architectures can 

encode one symbol per cycle. However, some of them [7] can have more than 1 

symbols coded in a cycle. In [4], an architecture with 4 pipeline stages is proposed for 

JPEG-2000. They divide the computations of range and low into two stages. Also, the 

adder for updating the low value is pipelined so as to reduce the path delay. Their 

architecture can encode one symbol per cycle. Based on [4], in [7] the architecture is 

further extended so that it can encode multiple symbols per cycle. To achieve this, the 

functional units for the computations of range and low are duplicated. However, simple 

duplication of these functional units will lead to a longer critical path. Therefore, in [7] 

the sequence of some elementary operations is inverted and six branches to map all the 

allowable scenarios are used. Such a method is named as inverse multiple branch 

selection (IMBS). In [5] and [6], architecture with 3 pipeline stages is proposed for 

supporting the CABAC operations in multiple standards. They integrate the context 

information of JPEG, JPEG-2000, JBIG and JBIG2 into the FSM and employ a parallel 
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leading zeros detection and bit-stuffing handling for encoding one symbol per cycle. In 

[8], they propose an architecture with 2 pipeline stages for H.264/AVC. In their 

architecture, the first stage handles the computations of range and low and the second 

stage uses a technique known as byte-stuffing to handle output bits. 

To improve the performance of H.264/AVC system, in this thesis, we propose a 

scalable architecture for the CABAC encoding. In addition, based on the architecture 

for CABAC encoding, we further develop an architecture for CABAC decoding. 

Different from the conventional designs [4], [5], [6], and [8], our scalable encoding 

architecture can simultaneously encode multiple symbols per cycle and support both 

JPEG-2000 and H.264/AVC. 

Particularly, in our scheme, we rearrange the operations for CABAC encoding to 

remove the data dependency in CABAC operations. For instance, the computations of 

range in the encoding iteration include the following three steps: 

(1) Table look-up for the range of LPS (rLPS). 

(2) The range of MPS computation and new range selection. 

(3) Renormalization of new range. 

In the step 1, we partition the table for the range of LPS (rLPS) into four parts. 

Therefore the table look-up is independent of range. Therefore, the step 1 can compute 

without waiting the step 3 of pervious iteration. The step 1 of this iteration and the step 

3 of pervious iteration can be done in parallel. Then, we rearrange the operation of 

range iteration. In the iteration, we put step1 and step 3 in parallel. Then the step 2 is the 

final operation in the new iteration. With such rearrangement, the critical path can be 

reduced. 

In addition, for the decoding of CABAC, we reuse the design employed by the 

encoding. Particularly, the data dependency for decoding is stronger than that for 

encoding. The operations of range in decoder iteration are composed of following steps: 
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(1) Table look up for rLPS. 

(2) Computation of rMPS. 

(3) Comparison of rMPS and offset to make decision. 

(4) Renormalization of range. 

(5) Renormalization of offset. 

We remove the dependency of rang and the table rLPS as we do in encoder. Therefore 

Step1 and Step2 can be put in parallel with setp 4 and step 5. We do step 3 in the final 

iteration. Therefore, we can reduce the delay of the path. 

To validate the proposed architecture design, we implement our CABAC codec 

using the cell-based synthesis approach. Specifically, we use 0.18um CMOS technology 

to synthesize our designs. Moreover, for the verification at system level, we wrap our 

designs in AHB interface. Our designs with AHB interface are slave modules on AHB. 

The CPU can use the slave modules to through AHB. Our all designs can correctly 

encode and decode a sequence with the codec of H.264/AVC 

In our designs, the CABAC encoding can support the throughput of 545Mbits/s and 

the throughput of decoding is up to 330Mbits/s. In other words, our design can meet the 

requirements of real-time encoding/decoding in HDTV resolution. Respectively, the 

gate counts used are 9.3k and 3.5k. 

1.2  Organization and Contribution 
In this thesis, we propose a scalable encoding architecture for CABAC in 

H.264/AVC and JPEG2000. Also, the encoding architecture is modified to support the 

decoding of CABAC. For the verification, we use an ARM-based platform for the 

co-simulation of hardware and software at system level. The proposed solution can 

meet the real-time requirements for HDTV applications. As compared to the 

state-of-the-art designs, our architecture has higher throughput and lower cost. For more 
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detail, the rest of this thesis is organized as follows: 

 Chapter 2 details the algorithm of CABAC and the prior works for the hardware 

designs. 

 Chapter 3 introduces the proposed architectures for the CABAC encoding and 

decoding. Specifically, our contributions include the following: 

 Encoder 

- We rearrange the operations of CABAC for parallel processing so as 

to improve the performance. 

- We propose a 3 pipeline stages architecture which can encode more 

than 1 symbol per cycle.  

- Furthermore, our architecture can be easily modified to support both 

JPEG2000 and H.264/AVC. 

 Decoder 

- There is stronger data dependency in decoder than in encoder. For 

reducing the critical path, we rearrange the range operation sequence 

as we do in encoder architecture.  

 Chapter 4 shows the implementation results and comparison with other designs. 

In brief, the performance of our design is summarized as below: 

 As compared to [8], our maximum throughput is 2.7 times faster. 

 As compared to [4], [5], [6], and [7], we have less gate counts, i.e., lower 

cost.  

 Chapter 5 summaries our works and shows the conclusions of this thesis.  
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Chapter 2  

Algorithm of CABAC 
 

In this chapter, we introduce the algorithm of CABAC. Figure 2.1 shows the generic 

block diagram for encoding a signal syntax element in CABAC. In the CABAC 

framework, the encoding processing include threes steps which are (1) binarization, (2) 

context modeling and (3) binary arithmetic coding. If the input is binary syntax element, 

the first step is skipped. There are two encoding processes, regular and bypass encoding, 

in CABAC. In the regular coding process, it need to a context model for encoding. Each 

type of bin has its own context model. When getting the context model, the regular 

coding engine encodes the bin value with the context information. The design purpose 

of bypass coding is a speedup of the whole encoding/decoding process. The mean of 

speedup is to simplify coding engine without the usage of an explicitly assigned model. 

In this chapter, we describe the three steps of CABAC frame work respectively. The 

detail algorithm of the steps will be showed in the followed section. In the previous 

 

Figure 2.1 Block diagram of CABAC [2]. 
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work, there are many kinds of arithmetic coder and decoder designs for the different 

standard. We show the previous work in the final section of this chapter. 

2.1  Binarization 
The design goal of binarization is for getting minimum redundancy code. The 

minimum redundancy code can reduce the workload of binary arithmetic coding stage. 

There are four basic types: the unary code, the truncated unary code, the kth order 

Exp-Golomb code, and the fixed-length code. In addition there are binarization schemes 

based on a concatenation of these elementary types. 

Here, we show the algorithm of four basic binarization types. 

1. Unary code:  

For each unsigned integer valued symbol x≧0, the unary code work in CABAC 

consists if x ”1” bits plus a terminating “0” bits. 

Example: 5 => 111110 

2. Truncated unary code: 

The truncated unary code is only designed for 0≦x≦S. If x < S, the code word is 

given by unary code. Else if x equal S, the code word is consisted of x “1” bits. 

Example: Truncated unary code with S = 5: 

        3 => 1110, 5 => 11111 

3. Kth order Exp-Golomb code: 

The code words of Kth order Exp-Golomb code are constructed by prefix and 

suffix parts. The prefix part is unary code corresponding to the value l(x)= 

floor(log2(x/2k+1)) and the suffix part is the binary representation of x+2k(1-2l(x)) 

using k+l(x) significant bits. 

4. Fixed-length code: 

The code word of x in fixed-length code is simply given by the binarization 
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representation of x with a fixed (minimum) number lFL=ceil(log2S) of bits, where 0

≦x≦S. This kind of type is used for syntax element with a nearly uniform 

distribution. 

     Example: S = 7 

              1=> 001, 2=> 010… 7=> 111. 

There are three more binarization schemes derived in binarization of CABAC. The 

first one is a concatenation of a 4-bit fixed-length prefix and a truncated unary suffix 

with S=2. Both the second and third concatenated schemes are derived from the 

truncated unary and the kth Exp-Golomb binarization. These schemes, which are 

referred to as Unary/kth order Exp-Golomb (UEGk) binarizations, are applied to motion 

vector difference and absolute value of transform coefficient levels. 

2.2  Context Model 
For increasing coding efficiency, each type of bin has its own context model to 

estimate the probability model. One context model includes the probability of least 

probable symbol (LPS) and the most probable symbol (MPS). In this section, we show 

the basic types of context models. Then we show the probability estimation of context 

model. 

For encoding each symbol, a conditional probability is estimated by switching 

between different models of probability according to the already coded neighboring 

symbols. There are four basic types of context models in CABAC of H.264/AVC. The 

first type of context models involves a context template with up to two neighboring 

syntax elements in the past. Usually, the relating element is to the left and on the top of 

current element. As figure 2.2 shows, when encoding syntax C, it based on the two 

syntax element, A and B, to choose the suitable context model. The second type of 

context models is only designed for the syntax elements of mb_type and syb_mb_sype. 
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The values of prior coded bins are used for the choice of a model. Thus when we 

encode ith bin (bi) of a syntax element, the values of b1, b2... bi-1 are used for choosing 

the context model of bi. Both the third and fourth type of context models is applied to 

residual data only. The third type relies on the scanning path of the syntax element. For 

the fourth type, modeling function is involving the evaluation of the accumulated 

number of the encoded levels with a specific value prior to the current level bin to 

encode. In another word, we use the level information to choose the context model in 

the fourth type of context models. 

In the CABAC of H.264/AVC, each syntax element has its own context model. 

Each context model is given an index number. The index number is called context index. 

The total number of context models in H.264/AVC is 399. The range of context index is 

from 0 to 398. Thus the context model can be efficiently represented by 7-bit unsigned 

integer values. Table2.1 [2] shows the association of syntax elements and the range of 

context indices in H.264/AVC. The context indices in the range from 0 to 72 are related 

to syntax element of macroblock type, submacroblock type, and prediction modes of 

spatial and temporal type. Context indices in the range from 73 to 398 are related to the 

coding of residual data. 

 

Figure 2.2 Illustration of an example in the first type context model 
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In CABAC, 64 values represent the probability of the LPS. The range of the 64 

values is [0.01875, 0.5]. It is derived form the following recursive equation: 

Pσ=α* Pσ-1 for all σ=1,..., 63 

With α=(0.01875 / 0.5) (1/63) ≒ 0.95 and p0=0.5 

Hence, a context model can be completely represented in 7-bit. The 7 bits includes 6 

bits of LPS probability index and 1 bit of MPS value.  

After encoding a symbol, the used probability context model is updated. As figure 

2.3 illustrates, when the encoding symbol equal MPS, the state index is simply 

incremented by 1. When a MPS occurs at state index 62, the state index does not 

Table 2.1 syntax element and associated range of context indices [3] 

Slice type 
Syntax element 

SI/I P/SP B 

mb_type 0/3-10 14-20 27-35 

mb_skip_flag   11-13 24-26 

sub_mb_type   21-23 36-39 

mvd(horizontal)   40-46 40-46 

mvd(vertical)   47-53 47-53 

ref_idx   54-59 54-49 

mb_qp_delta 60-63 60-63 60-63 

intra_chroma_pred_mode 64-67 64-67 64-67 

prev_intra4x4_pred_mode_flag 68 68 68 

rem_intra4x4_pred_mode 69 69 69 

mb_field_decoding_flag 70-72 70-72 70-72 

coded_block_pattern 73-84 73-84 73-84 

coded_block_flag 84-104 84-104 84-104 

significant_coeff_flag 
105-165,

277-337 

105-165,

277-337 

105-165, 

277-337 

last_significant_coeff_flag 
166-226,

338-398 

166-226,

338-398 

166-226, 

338-398 

coeff_abs_level_minus1 227-275 227-275 227-275 

end_of_silce_flag 276 276 276 
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change. The probability of LPS is already at its minimum. If encoding symbol equal 

LPS at state index 0, the value of MPS will change. It means that the original value of 

LPS becomes the new value of MPS. 

2.3  Binary Arithmetic Coding 
In the CABAC of H.264/AVC, the binary arithmetic coding includes two coding 

engine. One is for regular coding mode. The regular mode includes the utilization of 

adaptive probability mode. Another coding engine is for a fast coding of symbols. The 

second coding engine is so-called “bypass” coding engine. In the bypass coding process, 

an approximately uniform probability is assumed to be given. In this section, we show 

the more detail information about the regular coding engine and the bypass coding 

engine. First we show the encoding engine. Then we describe the algorithm of decoding 

engine. 

2.3.1    Regular Encoding Engine 

The algorithm of arithmetic coding in H.264/AVC is composed of two parts. One is 

Figure 2.3 Transition rules for updating the probability of LPS [2] 
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encoding process and the other part is renormalization and output generator. The 

encoding process decides the new range. The output generator generates bits for output. 

The total number of output bits is variable. It might be from 0 to 7 bits. 

The basic operations of encoding process are recursive interval division and 

selection. Figure 2.4 shows the encoding process. The encoding equations are: 

 

The Low and the Range of the equations indicate the bottom of the interval and the 

length of current interval. All operations in the encoding process are multiplication-free. 

The Range of LPS gets from table instead of multiplication. The value of rMPS get 

from the subtraction of Range and rLPS. Figure 2.5 illustrates flowchart of encoding 

process. When encoding one symbol, the value of range is smaller and the value of low 

is equal or bigger. For using the integer arithmetic coding, the value of is renormalized 

Initial

Range

New 
Range

IF MPS

New 
Range

IF LPS

New Low

rMPS

rLPS

rLPS

rMPS

Low New Low

rLPS

rMPS

Figure 2.4 Encoding process 
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after each encoding one symbol. The value of low is renormalized with the value of 

range. 

The context information is updated after encoding a symbol. There are two tables 

for probability transition of LPS. The transition rules are defined in previous Figure 2.3. 

When the value of MPS equals the value of symbol, we use the table of the transition 

index MPS. Otherwise, we use the table of the transition index LPS. If the state index 

equals 0 and the value of symbol equal the value of LPS, the value of MPS will change. 

In the state index “0”, the probability of LPS is 0.5. If we get that the encoding symbol 

equal LPS in state index “0”, the probability of original LPS will exceed 0.5. For 

EncodeDecision(ctxIdx,binVal)

qRangeIdx = (codIRange >> 6) & 3
RangeLPS = rangeTabLPS[pStateIdx][qRangeIdx]

Range = Range - RangeLPS

binVal != 
valMPS

Low =Low + Range
Range = RangeLPS

pStateIdx != 0

valMPS = 1 - valMPS

pStateIdx = transIdxLPS[pStateIdx] pStateIdx = transIdxMPS[pStateIdx]

Renorm

Done

Yes

No

Yes

No

 

Figure 2.5 Flowchart of encoding process 



 

 15

limiting the value of probability from 0 to 0.5, we change the value of LPS. It means the 

values of MPS and LPS exchange. 

For maintaining the precision, the range and the low are renormalized after every 

encoding process. In CABAC of H.264, it needs 9 and 10 bits to present the values of 

ranges and the low respectively. The value of range gets smaller after every encoding 

process. Therefore the value of range is limited from 256 to 511. If range is smaller than 

256 (0x100), the range needs renormalization. The renormalization of low follows the 

renormalization of range. Figure 2.6 shows the flowchart of the renormalization. In 

Figure 2.6, each recursive process handles one shift. The process continues until range 

is bigger than 0x100. 

RenormE

Done

Range < 0x100

Low < 0x100

PutBit(0)

codILow >= 0x200

PutBit(1)

Low = Low - 0x200

codIRange = codIRange << 1
codILow = codILow << 1

Yes

Yes

No

Yes

No

Low = Low - 0x100
bitsOutstanding = bitsOutstanding + 1

No

Figure 2.6 shows the renormalization and output process. 
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The output is completed in the renormalization. As Figure 2.6 shows, there are two 

kinds of situation in the output process. The first situation is that the first two bits of 

low are 00 or 10 or 11. We can determine the bit for output immediately. Then the first 

bit of low is useless. Before low shifts, we desert the first bit of low. The second 

situation is that the first two bits of low are 01. We can’t determine the bit for output 

immediately. We use a register, called bitOutstanding, to count the continuous times of 

this condition. The flowchart of PutBit(B) function is shown in Figure 2.7. As we 

determine the bit for output, we put a sequence of bits after the bit. The values of the 

each bit in the sequence are the inverse value of the determined output bit and the 

length of the sequence is the value of bitOutstanding. 

2.3.2   Bypass Encoding Engine 

Bypass encoding is a simplified edition of regular encoding. In the bypass encoding, 

the probability of LPS is assumed 0.5. Hence there are no state indices used in the 

process. For determining the decision of encoding, its uses double of low instead of half 

of range. Therefore it needs 11 bits for presentation of low in bypass encoding. Figure 

 

Figure 2.7 Flowchart of PutBit(B) 
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2.8 shows the bypass encoding process. The under part in Figure 2.8 is the 

renormalization. There are no iterations in bypass encoding. As the renormalization of 

the regular encoding, the renormalization in the bypass encoding is almost the same. 

The output decision also depends on the first two bits of low. 

2.3.3   Decoding Engine 

The decoding engine has two kinds of coding engine as the encoding engine. The 

regular decoding engine handles normal situation. The bypass decoding engine decodes 

 

Figure 2.8 Flowchart of bypass encoding 
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the symbol that we assume the probability of LPS is 0.5. The bypass decoding engine 

can accelerate the total decoding rate.  

The flowchart of the decoding engine is shown in Figure 2.10. In the decoding 

process, the range of LPS is also from the table. The table indices are composed of the 

7th and the 8th bits of range and the probability state of LPS. The decision of decoding is 

according to the relationship of the offset and the rMPS. The offset means the 

probability of the symbol sequences. In Figure 2.10(A), if the value of offset is bigger 

than range of MPS, the decoding symbol is MPS and the new values of range is rMPS. 

Otherwise the decoding symbol is LPS and the new range is rLPS. In Figure 2.10(B), if 

the value of the offset is smaller than the range of MPS, we subtract the original offset 

 
Figure 2.9 Flowchart of decoding engine 
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and rMPS to get the new offset. The context probability model is updated in 

every decoding. The transition rule is the same as the rule in encoding engine.  

The final operation is renormalization. Figure 2.11 shows the flowchart of 

renormalization. The range and the offset are getting smaller after encoding. For integer 

implementation, when the value of range is smaller than 256, we shift the value of range. 

The range is limited from 256 to 511. As the range shift one bit to left, the low also shift 

rMPS

Offset 

New Range 

New Offset

Offset >= rMPS

rLPS

rMPS

Offset 

rLPS

Offset < rMPS

New Range

New Offset 

(A) (B)  

Figure 2.10 Decoding decision

 

Figure 2.11 Renormalization of decoding engine 
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one bit to left. Then we insert a new bit from the sequence of encoding results in the 

least significant bit of low. 

The bypass decoding engine is simplified from the regular decoding engine. Figure 

2.12 shows the flowchart of the bypass decoding engine. There is no state index used in 

the bypass decoding engine. In the beginning of the bypass decoding engine, we first 

shift the offset and read a new bit from the sequence of ending result. Than we decide 

the bin value according to the comparison result of offset and range. If the value of the 

offset is bigger than the value of range, the decoding decision is 1 and the new value of 

the offset is the difference of original offset and range. Otherwise, the decoding decision 

is 0 and the value of the offset is the same as the original.  

 

Figure2.12 Flowchart of bypass decoding
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2.4  Previous work 
In the previous papers, many architecture designs for arithmetic coder and decoder 

are proposed for different standard. In this section, we introduce the ideas in their 

architecture. 

In [4], they proposed a 4 pipeline stage design for JPEG2000 MQ-coder. Figure 

2.13 shows the block diagram of the architecture in [4]. The works of stage 0 and stage 

1 are context update and range computation. The context index update in the next cycle. 

Because the precision of range register are 16 bits and the precision of register is 28 bits 

in JPEG2000, they pipeline the adder of low into two stages to reduce the path delay. 

The stage 2 computes the least significant 16 bits of low register. The stage 3 computes 

the most significant 12 bits of low register and generates the output bits. In [7], they 

proposed the extension architecture based on [4]. Their architecture can handle more 

 

Figure 2.13 4-stage pipeline design of encoder in [4] 
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than one symbol in a cycle. For reducing delay of critical path, they invert the sequence 

of some elementary operations. As a consequence, their have to use six branches to map 

the allowable cases. Their method is called the inverse multiple branch selection (IMBS) 

method. 

In [5] and [6], an architecture of CABAC is proposed for multiple standard and 

JPEG2000. Their architecture is a 3 pipeline stages design. Figure 2.14 shows pipelined 

context-based AC encoding flow in [5] and [6]. In the stage 0, the interval computation 

and context information update is completed. In the stage 1, the bit-stuffing handler is 

in charge of bit-stuffing problem. The bit-stuffing handler uses buffer to detect the 

sequence “0xFF” in the result bits. If the bit-stuffing handler detects the sequence 

“0xFF”, it will insert a bit after the sequence “0xFF”. The inserted bit is the carry bit 

generated from previous stage. Because the output length of the bit-stuffing handler is 0, 

1 or 2 bytes, they add a 4-byte FIFO register to limit the output length in one byte.  

In [8], their architecture is based on H.264/AVC. Figure 2.15 shows the block 

diagram of arithmetic coder in [8]. Their arithmetic coder architecture is a 2 pipeline 

stage design. The first stage handles encoding iteration. In their design, they divide the 

original LPS table into four LPS tables which are independent of range. In the encoding 

iteration, they use a carry-save adder and prefix-adder to reduce the computation time 

of low and the range. In the renormalization, they use Leading-Zero detection in parallel 

 

Figure2.14 Pipelined context-based AC encoding flow in [5] & [6] 
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with the prefix adder to reduce the time for the renormalization. Stage 1 packs the 

output bits from stage 0 into a byte. The bit-packing stage also detect the sequence 

“0xFF” in the result to prevent the result is emitted by a carry propagation. If the 

bit-packing stage detects the sequence “0xFF”, they suspend the output process. Then 

count the total length of “0xFF” until further operations discard carry propagation. 

In [10], they propose co-processor architecture on SoC platform. In the coder design, 

Figure 2.15 Block diagram of arithmetic coder in [8] 
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they use the MZ-coder instead of the M-coder in H.264/AVC. The MZ-coder provides 

equivalent bit rate comparison with M-coder. Furthermore, the MZ-coder eliminate the 

multiple renormalization cycles in M-coder. The coprocessor achieves a constant 

throughput for both encoding and decoding processes of 1 symbol per cycle. 

In [11], they improve the bypass coding of CABAC in H.264/AVC. They use 

different hardware to handle the regular and the bypass mode coding. If a regular mode 

follows a bypass mode, their architecture can encode two symbols in the cycle. The 

probability of this situation is about 10%. Therefore their can increase 10% 

performance in average. 

In the next chapter, we propose a novel architecture of arithmetic encoder and 

decoder for H.264/AVC. The architecture of encoder is a 3 pipeline stages design and 

the architecture of decoder is non-pipeline design. For reducing the path delay in the 

architecture, we rearrange the operations of range operations in the encoder and the 

decoder. Furthermore, in encoder we extend the architecture to encode more than one 

symbol per cycle.  
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Chapter 3  

Architecture of Arithmetic 

Encoder and Decoder 
 

In this chapter, we present hardware architectures for arithmetic encoder and 

decoder. First, we show a basic encoder architecture, which can encode one symbol per 

cycle. Then, based on the basic architecture, we further extend the design to support the 

encoding of multiple symbols per cycle. In the second section, we show the architecture 

of arithmetic decoder. 

3.1 Encoding Architecture 
Figure 3.1 shows the block diagram of the basic architecture, which includes 3 

pipeline stages. In our architecture, we separate the operations of range and low into 

stage 0 and stage 1. In stage 2, the byte packing unit can pack the results into the format 

of byte. Furthermore, the architecture can support two encoding modes. Specifically, as 

illustrated in Figure 3.1, the stage 0 computes the value of range and update context 

 

Figure 3.1 Pipeline stage of one-symbol encoding architecture 
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probability model. The stage 1 computes the value of low and generates output bits. The 

stage 2 groups the bits from the output of the stage 2 and packs them in a byte-by-byte 

manner. In addition, the bit-stuffing is also done in the stage 2. 

To improve encoding throughput, we propose an extended architecture, which can 

encode multiple symbols per cycle. To achieve this, the operation of range is first 

reordered to reduce critical path. Then we duplicate the one-symbol encoding 

architecture and add additional hardware in each pipeline stage. The detail information 

will be shown in section 3.2. 

3.1.1   One-symbol Encoding Architecture 

In this section, we detail the design of each pipeline stage. For the stage 0, the 

operation includes two parts, which are the computation of range and the update of 

context probability model. Particularly, the critical path of the stage 0 is the 

computation of range, as shown in Figure 3.2 (a). We summarize the operations in the 

critical path as follows: 

1. The table look-up of rLPS (range of LPS). 

2. The subtraction for getting rMPS (range of MPS). 

3. The renormalization.  

For reducing the delay in the critical path, we rearrange the order of these operations. 

Originally, to produce the rLPS, the look-up table takes both the range and the 

probability of LPS, i.e., Qe., as input. For eliminating the data dependency between the 

rLPS and the range, we produce 4 sub-tables by unrolling the cases of range. After the 

unrolling, each sub-table simply takes Qe as input, as shown in Figure 3.2 (b). Then, the 

renormalization of previous iteration and the table-lookup of rLPS can be done in 

parallel, as shown in Figure 3.2 (c). Lastly, we can reorganize the operations in the 

iteration, as shown in Figure 3.2 (d). 
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The detailed block diagram of the stage 0 is shown in Figure 3.3. As shown, the 

stage 0 has three input signals, one output signal, and three intermediate signals for the 

next stage. The meaning of each symbol is elaborated as follows: 

 The signal “Symbol” means the encode symbol.  
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 The signal “Context” means the context probability model that includes the Qe 

and the MPS.  

 The signal “Encode mode” specifies whether the coding is in the regular mode 

or the bypass mode.  

 The other two signal passing to the next stage means the value that will add with 

low and the numbers of output bits in this encode process.  

 The output signal “Context update” is used to update the context information. 

For supporting the bypass mode in the stage 0, the register of range and the signal 

“Addtolow” is controlled by the signal “Encode mode”. When the encoding is in bypass 

mode, the range will remain un-changed and the signal “Addtolow” will take the value 

 

Figure 3.3 Detailed block diagram of stage 0.
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of range. Then, the signal “encode mode” will be passed to the next stage. 

In the stage 1, the main operations include the computation and the renormalization 

of low. Figure 3.4 shows the detailed block diagram of the stage 1. As shown, the stage 

1 takes the intermediate signals produced by the stage 0 as input and produces “Output 

bits” and “N_bits”. Respectively, the signals “Output bits” and “N_bits” stand for the 

encoding result of one symbol and the associated number of coded bits. Particularly, 

when the coding is in the bypassing mode, the value of low will be firstly shifted to the 

left by one bit and the total shift value will be set to 1.  

In the stage 2, the encoding results, i.e., the compressed bits, from the stage 1 are 

packed in a byte-by-byte manner. In [7], the byte-stuffing technology is used for 

packing. To detect the occurrence of 0xFF sequence, a 16-bit buffer is used to buffer the 

compressed bits. When the value of 0xFF is detected and identified, there are 

possibilities that the carry propagation will affect the byte that has been outputted. 

Therefore, we need to hold the output byte and use a register to store the length of 

stuffed bytes. The operation in packing buffer is shown in Figure 3.5. In the beginning, 

the second byte in Pbuffer is 0xFF. Then we store the length of the byte 0xFF in the 

register “N_bytestuff” and the bit value of the byte 0xFF in the register “Stuff”. After 

storing the information of stuff situation, we continue the process of byte packing. If the 

Low

1

Shifter
+ Shifter

R_Shift
1

Encode 
mode

7(MSBs)

10(LSBs)

17 Output 
bits

N_bits

New Low

Low

 

Figure 3.4 Block diagram of the stage1 in basic architecture. 
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next byte is not 0xff, stage 2 will output the first byte in the packing buffer, the value in 

the register “Stuff” and the value in the register “N_bytestuff”. On the other hand, if the 

next byte is 0xff, the register “N_bytestuff” will be increased by 1. If the following 

operations produce a carry signal, the register “Stuff” will be turned to 0 and the first 

byte of packing buffer will be increased by 1. 

Figure 3.6 shows the block diagram of the stage 2. The register “Pbuffer” stores the 

encoding results. The register “N_Pbuffer” records the number bit of results in the 

“Pbuffer”. The combination of the registers “Stuff” and “N_bytestuff” specifies the 

information of byte stuff. Upon the detection of a “0xFF” byte, the register “stuff” 

records the content of stuffing bits and the “N_bytestuff” specifies the number of the 

bytes that have the value of “0xFF”. Until the next byte is not “0xFF”, the stuffing 

information is output with the signal “Outputbyte”. 

Output byte 0xFF

First byte Second byte

Output byte

Stuff 
happen

Continuing to 
Collect next byte

Pbuffer
0

Stuff

0

N_bytestuff

1 1

Output byte Not 0xFFIf next byte 
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Figure 3.5 Operation in packing buffer. 
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3.1.2   Multiple Symbols Encoding Architecture 

For improving the performance of AC encoding, we propose an encoding 

architecture that is capable of coding multiple symbols per cycle. While maintaining 

similar or higher coding performance, our scalable architecture provides the flexibility 

to adjust clock rate by changing the number of coding symbols per cycle.  

Figure 3.7 shows the block diagram of scalable architecture. To encode more than 

one symbol per cycle, we duplicate the one-symbol encoding architecture and add 

additional hardware in each pipeline stage. For encoding n symbols per cycle, we 

duplicate the one-symbol encoding architecture by n times in the stages 0 and 1. As 

shown in Figure 3.7, the one-symbol encoding unit in the stages 0 and 1 includes the 

range operation, the context update, and the low operation. For multi-symbol encoding, 

+

 
 Figure 3.6 Block diagram of the stage2 in the basic architecture. 
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these functional units are duplicated. After encoding the symbol, the values of range and 

low are passed to the next functional unit. In the stage 0, if more than two encoding 

symbols use the same context probability model, the later encoding symbols will use 

the context probability model after the update. Therefore the context information needs 

a multiplexer to choose the correct one. In the stage 1, the number of result produced by 

low operation is variable. For reducing the workload and complexity of the stage 2, we 

combine all the results before passing the data to the stage2. 

In the stage 2, we insert a small input buffer to support the multi-symbol encoding. 

The basic byte packing unit can process 8 bits in one cycle. For coding one symbol, the 

average number of results from the stage 1 is less than 1. As we extend the design for 

multiple-symbol encoding, the probability for the total input number being greater than 

8 is very small. Such an exception only occurs a few times for each video frame. Thus, 

we insert a small buffer in front of the stage 2. The input buffer limits the number of 

input bits to 8 bits. As a result, using an input buffer can maintain the same structure of 

byte packing unit in the stage 2. 
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Figure 3.7 Block diagram of the multiple symbols encoding architecture 
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Figure 3.8 details the unit for result combination. The result combination unit 

consists of shifters and adders. There are two kinds of input signals in Figure 3.8. The 

signal “Output bits_i” ( i=0,1,…,n) means the encoding result of one symbol and the 

signal “R_shift_i” ( i=0,1,…,n) denotes the length of encoding result. For combining 

the results produced by different low operations, we first shift the previous encoding 

result to the correct position. Then we use adders to combine all the result bits. By this 

way, the result combination unit can output the total number of result bits and a 

sequence of result bits. 

Figure 3.9 shows the block diagram of the input limit buffer. There are two input 

signals, two output signals, and two local registers. The register “Buffer” temporarily 

 

   Figure 3.8 Block diagram of result combination unit 
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stores the residual bits if the length of previous packing bits is greater than 8. The 

register “N_buffer” records the number of bits that are stored in the register “buffer”. If 

the buffer is not empty, we combine the bits in the buffer and the input bits. Then we 

check if the total number of bits is greater than 8. As the total number of bits is greater 

than 8, we will select the first 8 MSB bits of the combined result as the output and keep 

the residual bits in the buffer. In the opposite case, we will pass the bits directly to the 

byte packing unit. 

3.1.3  Multiple Standard Support 

In addition to supporting multi-symbol encoding, our structure can also be easily 

tailored to support the arithmetic encoding in JPEG2000. Table3.1 summarizes the 

difference of the arithmetic coder in H.264/AVC and JPEG2000. There are three major 

differences, which are (1) the method for getting rLPS, (2) the operations of low and 

range, and (3) the precision for representing range and low. In JPEG2000, rLPS simply 

depends on Qe. However, in H264/AVC, rLPS is from both Qe and range. For the 

operations of low and range, JPEG2000 updates the low by adding the value of rLPS, as 

Table 3.1 Differences of arithmetic coder in H.264/AVC and JPEG2000 

  H.264/AVC JPEG2000 

rLPS table[Qe][range[7:6]] Qe 

rMPS range - rLPS range - rLPS 

operations 

when symbol == MPS 

lownew = low 

rangenew = rMPS 

lownew = low + rLPS 

rangenew = rMPS 

operations  

when symbol == LPS 

lownew = low + rMPS 

rangenew = rLPS 

lownew = low  

rangenew = rLPS 

range register  

precision(bits) 
9 16 

low register  

precision(bits) 
10 28 
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the input symbol is MPS. On the other hand, in H.264/AVC, the low is updated by 

adding the value of rMPS, as the input symbol is LPS. Lastly, the precision for 

representing the range and low is different. Specifically, JPEG 2000 requires higher 

precision for the range and low. 

To support JPEG2000, our design is modified to adopt these differences. More 

specifically, when the coding is for JPEG2000, we remove the 4 sub-tables of LPS and 

directly connect the Qe to the range compute unit. In the encoding operation, we change 

the value, which we prepare to add to low, from rMPS to rLPS. Then the timing of 

adding will be change from that symbol equals LPS to that symbol equals MPS. Lastly, 

we use high-precision registers and adders to fulfill the need of JPEG2000. Without 

changing the architecture significantly, our design can be slightly extended to support 

JPEG2000.  

3.2 Decoder Architecture 
In this section, we illustrate the architecture of binary arithmetic decoder. For the 

decoding, our architecture can decode only one symbol per cycle. Different from the 

case of encoder, at the decoder, the context index for a symbol can only be certain when 

the previous symbol is decoded. Because of strong data dependency and insufficient 

context information, it is more difficult to decode multiple symbols per cycle. Thus, our 

proposed decoder architecture is not pipelined.  

To reduce the delay of computation, we apply the same reordering technique in the 

encoder. Figure 3.10 (a) shows the critical path in the straightforward implementation. 

As shown, the longest delay is for the computation of new offset value. The offset value 

is determined after the range. For completing the computation of range, it needs four 

steps. The first two steps in the decoding process are similar to those in the encoding 
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process. The rMPS and rLPS are known in the first two steps. When rMPS is known, 

we can compare the value of rMPS with the offset to make the decision. After the 

comparison, new range and offset are determined. Thus, we renormalize the range and 

the offset. For reducing the critical path, we employ the same reordering technique used 

for the encoder. As shown in Figure 3.10 (b), the registers of range and the offset store 

the value without renormalization. Also, we use 4 sub-tables to eliminate the data 

dependency between rLPS and range. After the reordering, Figure 3.10 (b) illustrates 

the proposed decoder architecture.  

Figure 3.11 shows the detail architecture of decoder. Basically, the decoder has four 

input signals and three output signals. The signal “Bits_in” replenishes the least 

significant bits of the offset value during the renormalization. The encode mode 

indicates whether the decoding process is in regular or bypass mode. The state index 

and MPS form the context information. The signal “Output bit” is the decoding result 

and the signal “Qe update” and the signal “MPS update” update the context probability 

Figure 3.10 Data path of range in decoder 
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model. To support the bypass decoding, two additional multiplexers are deployed in this 

design, as shown with the dash blocks in Figure 3.11. In the bypass mode, we make the 

decision according to the range and double offset. The first multiplexer choose rMPS or 

range according to encoding model. The second multiplexer chooses the double values 

of offset or the value of offset to decode. But, in our design, the renormalization is done 

in the beginning. Therefore, we can combine the shift of renormalization and the shift 

of double low. When bypass decoding, the shift value of offset will be increased by 1. 

 

 Figure 3.11 Architecture of the AC decoder 
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Chapter 4  

Implementation 
 

4.1 Design flow and verification 
In this section, we detail the design flow and the verification environment. In the 

beginning of the design, we build the C model for the proposed architecture. The C 

model is used not only for analysis but also for debugging in RTL-level design. After 

the C model design and verification, the design and the simulation of the register 

transfer level (RTL) level start. The hardware design in RTL is represented by verilog 

hardware description language (HDL). After the RTL simulation, the RTL verilog code 

of the design will be synthesized and optimized into gate level. Then the gate level 

simulation starts. After the gate level simulation, the verification move to the FPGA 

environment. 

Figure 4.1 shows our environment of FPGA. The multi ICE connects the FPGA 

board with the PC. On the board, there are logic and core modules. The ARM 966 CPU, 

the SDRAM controller and embedded SRAM is covered by the core module. The 

proposed design is downloaded to logic module which is made of FPGA. We download 

our designs through the multi ICE to the FPGA. During the simulation, the compiled 

code is put in the embedded SDRAM and the image data is put in the external SDRAM. 

Our designs act as slaves on the bus. The ARM 966 CPU, which is a master on AHB, 

can access the slaves via AHB. The ARM966 CPU can use the accelerator of CABAC 

through the AHB. 
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In the FPGA environment, we run the codec of H.264 to verify our CABAC 

encoder/decoder design. The architecture of CABAC encoder and decoder has passed 

the verification.  

4.2   Implementation Results 
Table 4.1 shows the synthesis results of the encoder and decoder. The data of the 

results is from Design Analyzer. The one-symbol encoding architecture can achieve 

370M symbols per second. As the architecture extends to encode two and three symbols 

per cycle, the performance achieves 526M and 546M symbols per second. Furthermore, 

the performance of decoder can achieve 333M symbols per second. Although the gate 

Figure 4.1 FPGA environment 
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counts of two-symbol encoding architecture is 2.1 times than that of one-symbol 

encoding architecture, the performance of two-symbol encoding architecture is 1.4 

times faster than one-symbol encoding architecture. When the one-symbol encoding 

architecture extends to encode three symbols per cycle, the performance achieves the 

maximum and the gate counts of three-symbol encoding architecture is only 2.5 times 

faster than one-symbol encoding architecture. 

The maximum throughput saturates when the encoding symbols per cycle increase. 

As figure 4.2 shows, we can find that the maximum throughput is limited in 550M 
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Figure 4.2 Encoding Symbols per Cycles VS Throughput 

Table 4.1 Results of encoder and decoder design 

Designs Encoder Decoder 

Number of 
Encoding/Decoding 

 bits per Cycle 
1 2 3 1 

Maximum Frequency 370 263 182 333 

Gate Count (0.18um) 3.7k 7.8k 9.3k 3.5k 

Maximum Throughput
(Mega-symbols/s) 

370 526 546 333 
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symbols per cycle. The critical path increases with the encoding number per cycle. The 

increase of critical path causes the saturation of maximum throughput. 

4.3 Comparison 
Table 4.2 lists the results previous arithmetic encoder design for H.264/AVC with 

ours. The designs of [4], [5], [6], and [7] are designed for different standard and 

implemented in old technology. For fair comparison we do not list the results of their 

designs in the table 4.2. As the table 4.2 shows, our maximum throughput is 1.65 to 

2.87 times than the designs of [8], [9]. [10]. 

Table 4.3 lists the results of our decoder designs and prevous arithmetic deocder 

designs for H.264/AVC. In [2] and [3], they have decoder designs, but the designs are 

used for different standard and implement in old technology. In table 4.3, although the 

maximum throughput of our design is the same as the design of [10], our technology is 

behind theirs. Therefore the result in our design is better than the result in [10]. 

 

 

Table 4.2: AC encoder performance comparison 

Design Standard 

Number of 
Encoding 

 Symbol per 
Cycle 

Gate Count 
Throughput 

(Mega-symbols/s)

My design H.264/AVC 1,2,3 
3.7k,7.8k,9.3k 

(0.18um) 
370,526,546 

[8] H.264/AVC 1 
N/A 

Estimation(0.18um)
200 

[10] H.264/AVC 1 
N/A 

 (0.13um) 
330 

[11] H.264/AVC 1 
N/A 

 (0.18um) 
190 
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Table 4.3: AC decoder performance comparison 

Design Standard Gate Count 
Throughput 

(Mega-symbols/s) 

My design H.264/AVC 3.5k(0.18um) 330 

[10] H.264/AVC 
N/A 

(0.13um) 
330 
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Chapter 5 

Conclusion 
 

In this thesis, we propose a scalable architecture for the encoding and decoding of 

the context-adaptive binary arithmetic coder (CABAC) in H.264/AVC. 

There is strong data dependency in the algorithm of CABAC. In the encoding and 

decoding process, the value of range cannot be used until the process of previous 

symbol complete. Therefore, the critical path will determine the performance of the 

designs. For reducing the delay of critical path, we reorganize the range operations in 

encoding and decoding iteration. The new order of range operations can parallel the 

process. 

For high performance requirement, the architecture can be extended to encode more 

than one symbol per cycle. For extension, we duplicate the basic functions in the stages 

0 and 1. Then we respectively add result combination unit and an input limit buffer in 

the stages 1 and 2. The result combination unit can combine the result of different 

encoding symbols. The input limit buffer can increase the capacity of byte packing unit. 

Then the byte packing unit will not be changed. Moreover the basic operations of 

Arithmetic coder in JPEG2000 and H.264/AVC are similar. The design can be modified 

to support JPEP2000 easily. 

We use 0.18 CMOS technology to synthesize our designs. The maximum 

throughput of the three-symbol arithmetic coder is 545M symbols per second and the 

maximum throughput of decoder is 330M symbols per second. Besides, we verify our 
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designs on the environment of FPGA. All the designs work with H.264 encoder or 

decoder correctly. 

The context memory design is future work. As the proposed architecture encodes 

multiple symbols per cycle, it will need a multi-port memory to support. A context 

memory with low cost and high performance will be an important problem. 
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