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Arithmetic Coder and Decoder Architecture
Designs for H.264/AVC

Student: ChengYi Lin Advisor: Dr. Tihao Chiang

Institute of Electronics
National Chiao Tung University

Abstract

The most recently developed compression standard H.264/AVC provides
outstanding performance than other standards, but the complexity of H.264/AVC is
also higher than others. There are two entropy:coding methods, Context Adaptive
Variable Length Code (CAVLC) and Context Adaptive Binary Arithmetic Code
(CABAC) in H.264/AVC. Between the two entropy: coding methods, CABAC can
provide bit-rate saving of 10-15% than CAVLC. The serial and bit-level operation of
the entropy coding is a kind of bit-level operation and can not be effectively handled
by general purpose processor. A high throughput arithmetic coder for entropy coding
and decoding is strongly required for high resolution real-time applications.

In this thesis, we propose architecture for the arithmetic encoder and decoder in
H.264/AVC. To meet the high performance requirement, the encoder design can be
extended to encode multiple symbols per cycle. To reduce the critical path, we
rearrange the sequence of range operation in the encoder and the decoder
architectures. All designs are implemented in Verilog and verified on FPGS. The
maximum throughput of the 3-sybmol arithmetic coder is 545M symbols per second
and the maximum throughput of decoder is 330M symbols per second costing 9.3k

and 3.5k gates respectively.
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Chapter 1

Introduction

1.1 Overview of Dissertation

In recent years, the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG) jointly develop a video coding standard
H.264/AVC for a wide range of applications such as storage, video conferencing,
broadcasting, Internet streaming etc..-/AS compared to other video coding standards,
H.264/AVC can provide the same quality., with ‘@ significantly reduced bit rate.
Specifically, as compared to MPEG-4, H.263, MPEG-2; the ratio of saving on bit rate is
39%, 49%, and 64% respectively.

Although the coding efficiency of H.264/AVC is better, the complexity of
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Figure 1.1 Basic Coding Structure of H.264/AVC for a macroblock [?]



H.264/AVC is relatively high. Figure 1.1 shows the basic coding structure. Among the

modules, there are many new tools such as long-term prediction, motion estimation of

variable blocks size are designed for increasing coding efficiency. However, the tools

need more computation and the complexity is increased significantly. For the decoding,

H.264/AVC is 2-3 times more complex than MPEG-2, H.263, and MPEG-4. For the

encoding, the complexity of H.264/AVC is 4-5 times than that of MPEG-4.

Among these modules, CABAC is one tool that needs intensive computation.

Basically, the operations of CABAC include the following steps:

1.

Binarization: The binarization of syntax element is to maximize the
efficiency of binary arithmetic coding. In H.264/AVC, all the syntax
elements are binarized into multiple bits. There are four basic binarization
methods in CABAC of H.264/AVC. For. instance, fixed-length code is used
for syntax element with.a nearly uniform distribution. The code word of x
in fixed-length code is'simply-given-by the binarization representation of x
with a fixed (minimum) number Ig.=ceil(log2S) of bits, where 0 =x=S.
Context Modeling: The context model is to fully utilize the existing
correlations. After the binarization, the coding bits of a syntax element may
refer to different context models. The outcome of a context model is
assigned with a context index and each index is associated with a binary
probability model. Specifically, the context probability model is
represented by a most probable symbol (MPS) and the probability of least
probable symbol (LPS).

Binary arithmetic coding: The binary arithmetic coding is to reduce the bit
rate. During the coding, the interval state of the arithmetic coding engine is
as usual characterized by two quantities: the current interval range (range)

and the base of the current code interval (low). We make the encoding
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decision by comparing the encoding symbol and the MPS in the context
probability model. Depending on the encoding decision, the range and low
change their values.

Different from the other modules, the CABAC operates at bit level. It cannot be
efficiently handled by general purpose processors. Moreover, the encoding/decoding in
CABAC refers to many coding context. A strong data dependency exists in the
successive operations of CABAC. For instance, the encoding/decoding of a specific
syntax may refer to the state of previously encoded/decoded syntax. Such data
dependency makes the operations of CABAC not easy for parallel processing.
Furthermore, CABAC requires many branching instructions that also pose a big
challenge for hardware design.

In recent years, a few hardware architectures [4][5][6][7][8] about CABAC codec
have been proposed for different-coding standards. In ecommon, these architectures can
encode one symbol per cycle. However,-some-of ;them [7] can have more than 1
symbols coded in a cycle. In [4], an‘architecture with 4 pipeline stages is proposed for
JPEG-2000. They divide the computations of range and low into two stages. Also, the
adder for updating the low value is pipelined so as to reduce the path delay. Their
architecture can encode one symbol per cycle. Based on [4], in [7] the architecture is
further extended so that it can encode multiple symbols per cycle. To achieve this, the
functional units for the computations of range and low are duplicated. However, simple
duplication of these functional units will lead to a longer critical path. Therefore, in [7]
the sequence of some elementary operations is inverted and six branches to map all the
allowable scenarios are used. Such a method is named as inverse multiple branch
selection (IMBS). In [5] and [6], architecture with 3 pipeline stages is proposed for
supporting the CABAC operations in multiple standards. They integrate the context

information of JPEG, JPEG-2000, JBIG and JBIG2 into the FSM and employ a parallel
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leading zeros detection and bit-stuffing handling for encoding one symbol per cycle. In
[8], they propose an architecture with 2 pipeline stages for H.264/AVC. In their
architecture, the first stage handles the computations of range and low and the second
stage uses a technique known as byte-stuffing to handle output bits.

To improve the performance of H.264/AVC system, in this thesis, we propose a
scalable architecture for the CABAC encoding. In addition, based on the architecture
for CABAC encoding, we further develop an architecture for CABAC decoding.
Different from the conventional designs [4], [5], [6], and [8], our scalable encoding
architecture can simultaneously encode multiple symbols per cycle and support both
JPEG-2000 and H.264/AVC.

Particularly, in our scheme, we rearrange the operations for CABAC encoding to
remove the data dependency in CABAC operations. For instance, the computations of
range in the encoding iteration include the following. three steps:

(1) Table look-up for the range-of LRS{(rLPS).

(2) The range of MPS computation-and.new.range selection.

(3) Renormalization of new range.
In the step 1, we partition the table for the range of LPS (rLPS) into four parts.
Therefore the table look-up is independent of range. Therefore, the step 1 can compute
without waiting the step 3 of pervious iteration. The step 1 of this iteration and the step
3 of pervious iteration can be done in parallel. Then, we rearrange the operation of
range iteration. In the iteration, we put stepl and step 3 in parallel. Then the step 2 is the
final operation in the new iteration. With such rearrangement, the critical path can be
reduced.

In addition, for the decoding of CABAC, we reuse the design employed by the
encoding. Particularly, the data dependency for decoding is stronger than that for

encoding. The operations of range in decoder iteration are composed of following steps:
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(1) Table look up for rLPS.

(2) Computation of rMPS.

(3) Comparison of rMPS and offset to make decision.

(4) Renormalization of range.

(5) Renormalization of offset.
We remove the dependency of rang and the table rLPS as we do in encoder. Therefore
Stepl and Step2 can be put in parallel with setp 4 and step 5. We do step 3 in the final
iteration. Therefore, we can reduce the delay of the path.

To validate the proposed architecture design, we implement our CABAC codec
using the cell-based synthesis approach. Specifically, we use 0.18um CMOS technology
to synthesize our designs. Moreover, for the verification at system level, we wrap our
designs in AHB interface. Our designs with AHB interface are slave modules on AHB.
The CPU can use the slave modules 'to through AHB. Our all designs can correctly
encode and decode a sequence with the.codec-0fH.264/AVC

In our designs, the CABAC encoding.can.support the throughput of 545Mbits/s and
the throughput of decoding is up to 330Mbits/s. In other words, our design can meet the
requirements of real-time encoding/decoding in HDTV resolution. Respectively, the

gate counts used are 9.3k and 3.5k.

1.2 Organization and Contribution

In this thesis, we propose a scalable encoding architecture for CABAC in
H.264/AVC and JPEG2000. Also, the encoding architecture is modified to support the
decoding of CABAC. For the verification, we use an ARM-based platform for the
co-simulation of hardware and software at system level. The proposed solution can
meet the real-time requirements for HDTV applications. As compared to the

state-of-the-art designs, our architecture has higher throughput and lower cost. For more
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detail, the rest of this thesis is organized as follows:
® Chapter 2 details the algorithm of CABAC and the prior works for the hardware
designs.
® Chapter 3 introduces the proposed architectures for the CABAC encoding and
decoding. Specifically, our contributions include the following:
B Encoder
- We rearrange the operations of CABAC for parallel processing so as
to improve the performance.
- We propose a 3 pipeline stages architecture which can encode more
than 1 symbol per cycle.
- Furthermore, our architecture can be easily modified to support both
JPEG2000 and H.264/AVC.
B Decoder
- There is stronger data dependency in decoder than in encoder. For
reducing the critical path, we rearrange the range operation sequence
as we do in encoder architecture.
® Chapter 4 shows the implementation results and comparison with other designs.
In brief, the performance of our design is summarized as below:
B Ascompared to [8], our maximum throughput is 2.7 times faster.
B As compared to [4], [5], [6], and [7], we have less gate counts, i.e., lower
cost.

® Chapter 5 summaries our works and shows the conclusions of this thesis.



Chapter 2

Algorithm of CABAC

In this chapter, we introduce the algorithm of CABAC. Figure 2.1 shows the generic
block diagram for encoding a signal syntax element in CABAC. In the CABAC
framework, the encoding processing include threes steps which are (1) binarization, (2)
context modeling and (3) binary arithmetic coding. If the input is binary syntax element,
the first step is skipped. There are two encoding processes, regular and bypass encoding,
in CABAC. In the regular coding process, it need to a context model for encoding. Each
type of bin has its own context model. \When'getting the context model, the regular
coding engine encodes the bin value with.the context information. The design purpose
of bypass coding is a speedup of the whole encoding/decoding process. The mean of
speedup is to simplify coding engine without the usage of an explicitly assigned model.

In this chapter, we describe the three steps of CABAC frame work respectively. The

detail algorithm of the steps will be showed in the followed section. In the previous
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Figure 2.1 Block diagram of CABAC [2].



work, there are many kinds of arithmetic coder and decoder designs for the different

standard. We show the previous work in the final section of this chapter.

2.1 Binarization

The design goal of binarization is for getting minimum redundancy code. The
minimum redundancy code can reduce the workload of binary arithmetic coding stage.
There are four basic types: the unary code, the truncated unary code, the kth order
Exp-Golomb code, and the fixed-length code. In addition there are binarization schemes
based on a concatenation of these elementary types.

Here, we show the algorithm of four basic binarization types.

1. Unary code:

For each unsigned integer valued symbol x=0, the unary code work in CABAC
consists if x 71" bits plus a terminating “0” bits.

Example: 5 => 111110

2. Truncated unary code:

The truncated unary code is only designed for 0=x=S. If x < S, the code word is
given by unary code. Else if x equal S, the code word is consisted of x “1” bits.

Example: Truncated unary code with S = 5:

3=>1110,5=> 11111
3. Kth order Exp-Golomb code:

The code words of Kth order Exp-Golomb code are constructed by prefix and
suffix parts. The prefix part is unary code corresponding to the value I(x)=
floor(log2(x/2k+1)) and the suffix part is the binary representation of x+2k(1-21(x))
using k+I(x) significant bits.

4. Fixed-length code:

The code word of x in fixed-length code is simply given by the binarization
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representation of x with a fixed (minimum) number Iz =ceil(log2S) of bits, where 0
=x=S. This kind of type is used for syntax element with a nearly uniform
distribution.
Example: S=7
1=> 001, 2=> 010... 7=> 111.

There are three more binarization schemes derived in binarization of CABAC. The
first one is a concatenation of a 4-bit fixed-length prefix and a truncated unary suffix
with S=2. Both the second and third concatenated schemes are derived from the
truncated unary and the kth Exp-Golomb binarization. These schemes, which are
referred to as Unary/kth order Exp-Golomb (UEGK) binarizations, are applied to motion

vector difference and absolute value of transform coefficient levels.

2.2 Context Model

For increasing coding efficiency, each-type-of bin has its own context model to
estimate the probability model. Oneé‘ context.model includes the probability of least
probable symbol (LPS) and the most probable symbol (MPS). In this section, we show
the basic types of context models. Then we show the probability estimation of context
model.

For encoding each symbol, a conditional probability is estimated by switching
between different models of probability according to the already coded neighboring
symbols. There are four basic types of context models in CABAC of H.264/AVC. The
first type of context models involves a context template with up to two neighboring
syntax elements in the past. Usually, the relating element is to the left and on the top of
current element. As figure 2.2 shows, when encoding syntax C, it based on the two
syntax element, A and B, to choose the suitable context model. The second type of

context models is only designed for the syntax elements of mb_type and syb_mb_sype.
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Figure 2.2 llustration of an example in the first type context model

The values of prior coded bins are used for the choice of a model. Thus when we
encode ith bin (b;) of a syntax element, the values of by, b,... bi.; are used for choosing
the context model of b;. Both the third and fourth type of context models is applied to
residual data only. The third type relies on the scanning path of the syntax element. For
the fourth type, modeling function .is*involving,the evaluation of the accumulated
number of the encoded levels with a specific value ‘prior to the current level bin to
encode. In another word, we use:the level-information' to choose the context model in
the fourth type of context models.

In the CABAC of H.264/AVC, each syntax element has its own context model.
Each context model is given an index number. The index number is called context index.
The total number of context models in H.264/AVC is 399. The range of context index is
from 0 to 398. Thus the context model can be efficiently represented by 7-bit unsigned
integer values. Table2.1 [2] shows the association of syntax elements and the range of
context indices in H.264/AVC. The context indices in the range from 0 to 72 are related
to syntax element of macroblock type, submacroblock type, and prediction modes of
spatial and temporal type. Context indices in the range from 73 to 398 are related to the

coding of residual data.
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Table 2.1 syntax element and associated range of context indices [3]

Syntax element Slice type
SIN P/SP B
mb_type 0/3-10 14-20 27-35
mb_skip_flag 11-13 24-26
sub_mb_type 21-23 36-39
mvd(horizontal) 40-46 40-46
mvd(vertical) 47-53 47-53
ref_idx 54-59 54-49
mb_qgp_delta 60-63 60-63 60-63
intra_chroma_pred_mode 64-67 64-67 64-67
prev_intradx4 pred_mode_flag 68 68 68
rem_intra4x4_pred_mode 69 69 69
mb_field_decoding_flag 70-72 70-72 70-72
coded_block_pattern 73-84 73-84 73-84
coded_block_flag 84-104 84-104 84-104
sienificant_coeff. flag 105-165, | 105-165, | 105-165,
B - 277-337 | 277-337 | 277-337
last_significant_coeff flag 166-226, 1 166-226, | 166-226,
338-398 | 338-398 | 338-398
coeff_abs_level minusl 227-275 | 227-275 | 227-275
end_of_silce_flag 276 276 276

In CABAC, 64 values represent the probability of the LPS. The range of the 64
values is [0.01875, 0.5]. It is derived form the following recursive equation:
Po=a*Pg-1forall o=1,..,63
With «#=(0.01875/0.5) (1/63) = 0.95 and p0=0.5
Hence, a context model can be completely represented in 7-bit. The 7 bits includes 6
bits of LPS probability index and 1 bit of MPS value.
After encoding a symbol, the used probability context model is updated. As figure
2.3 illustrates, when the encoding symbol equal MPS, the state index is simply

incremented by 1. When a MPS occurs at state index 62, the state index does not
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change. The probability of LPS is already at its minimum. If encoding symbol equal
LPS at state index 0, the value of MPS will.change. It means that the original value of

LPS becomes the new value of MPS.

2.3 Binary Arithmetic Coding

In the CABAC of H.264/AVC, the binary arithmetic coding includes two coding
engine. One is for regular coding mode. The regular mode includes the utilization of
adaptive probability mode. Another coding engine is for a fast coding of symbols. The
second coding engine is so-called “bypass” coding engine. In the bypass coding process,
an approximately uniform probability is assumed to be given. In this section, we show
the more detail information about the regular coding engine and the bypass coding
engine. First we show the encoding engine. Then we describe the algorithm of decoding

engine.

2.3.1 Regular Encoding Engine

The algorithm of arithmetic coding in H.264/AVC is composed of two parts. One is
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Figure 2.4 Encoding process
encoding process and the other part is renormalization and output generator. The
encoding process decides the new range. The output generator generates bits for output.

The total number of output bits is variable. It might be from 0 to 7 bits.

The basic operations of encoding process are recursive interval division and

selection. Figure 2.4 shows the eneoding process. The encoding equations are:

MPS(Most probable symbol) happen

Lownew = Low
Rangenew = Range - LPS = rMPS

LPS(Least Probable Symbol) happen

Lownew = Low + rMPS
Rangenew = rLLPS

The Low and the Range of the equations indicate the bottom of the interval and the
length of current interval. All operations in the encoding process are multiplication-free.
The Range of LPS gets from table instead of multiplication. The value of rMPS get
from the subtraction of Range and rLPS. Figure 2.5 illustrates flowchart of encoding
process. When encoding one symbol, the value of range is smaller and the value of low

is equal or bigger. For using the integer arithmetic coding, the value of is renormalized
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Figure 2.5 Flowchart of encoding process

after each encoding one symbol. The value of low is renormalized with the value of

range.

The context information is updated after encoding a symbol. There are two tables
for probability transition of LPS. The transition rules are defined in previous Figure 2.3.
When the value of MPS equals the value of symbol, we use the table of the transition
index MPS. Otherwise, we use the table of the transition index LPS. If the state index
equals 0 and the value of symbol equal the value of LPS, the value of MPS will change.
In the state index “0”, the probability of LPS is 0.5. If we get that the encoding symbol
equal LPS in state index “0”, the probability of original LPS will exceed 0.5. For
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‘ RenormE ’

Range < 0x100 Yes
Low < 0x100 No

codlLow >= 0x200

Low = Low - 0x100
bitsOutstanding = bitsOutstanding + 1

Low = Low - 0x200

PutBit(0) PutBit(1)

codIRange = codIRange << 1

codlLow = codlLow << 1

Figure 2.6 shows the renormalization and output process.

limiting the value of probability from 0 to 0.5, we change the value of LPS. It means the

values of MPS and LPS exchange.

For maintaining the precision, the range and the low are renormalized after every
encoding process. In CABAC of H.264, it needs 9 and 10 bits to present the values of
ranges and the low respectively. The value of range gets smaller after every encoding
process. Therefore the value of range is limited from 256 to 511. If range is smaller than
256 (0x100), the range needs renormalization. The renormalization of low follows the
renormalization of range. Figure 2.6 shows the flowchart of the renormalization. In
Figure 2.6, each recursive process handles one shift. The process continues until range

is bigger than 0x100.
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Figure 2.7 Flowchart of PutBit(B)

The output is completed in the renormalization. As Figure 2.6 shows, there are two
kinds of situation in the output process: The first situation is that the first two bits of
low are 00 or 10 or 11. We can determine the bit for output immediately. Then the first
bit of low is useless. Before low shifts, we desert the first bit of low. The second
situation is that the first two bits of low are 01. \We-can’t determine the bit for output
immediately. We use a register, called bitOutstanding, to count the continuous times of
this condition. The flowchart of PutBit(B) function is shown in Figure 2.7. As we
determine the bit for output, we put a sequence of bits after the bit. The values of the
each bit in the sequence are the inverse value of the determined output bit and the

length of the sequence is the value of bitOutstanding.

2.3.2 Bypass Encoding Engine

Bypass encoding is a simplified edition of regular encoding. In the bypass encoding,
the probability of LPS is assumed 0.5. Hence there are no state indices used in the
process. For determining the decision of encoding, its uses double of low instead of half

of range. Therefore it needs 11 bits for presentation of low in bypass encoding. Figure
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( EncodeBypass(binVal) )

Low = Low << 1

e >

Low = Low + Range

| No

No Low >= 0x400 Yes
Yes Low < 0x200
PutBit(1)

PutBit(0) codILow = codILow - 0x400

Low = Low - 0x200
bitsOutstanding = bitsOutstanding + 1

( Done }

Figure 2.8 Flowchart of bypass encoding
2.8 shows the bypass encoding process. The under part in Figure 2.8 is the
renormalization. There are no iterations in bypass encoding. As the renormalization of
the regular encoding, the renormalization in the bypass encoding is almost the same.

The output decision also depends on the first two bits of low.

2.3.3 Decoding Engine

The decoding engine has two kinds of coding engine as the encoding engine. The

regular decoding engine handles normal situation. The bypass decoding engine decodes
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gRangeldx = (Range>>6) & 3
RangeLPS = rangeTabLPS[pStateldx][qRangeldx]
Range = Range - RangeLPS

]es Offset >= Range Nol

binVal = IvalMPS
Offset = Offset - Range
Range = RangeLLPS

pStateldx == 0? Ye51

| valMPS = 1 - valMPS
No I

binVal = valMPS
pStateldx = transIdxMPS[pStateldx]

pStateldx = transIdxLPS[pStateIdx]

.

RenormD

Figure 2.9 Flowchart of decoding engine

the symbol that we assume the probability of LPS is 0.5. The bypass decoding engine
can accelerate the total decoding rate.

The flowchart of the decoding engine is shown in Figure 2.10. In the decoding
process, the range of LPS is also from the table. The table indices are composed of the
7™ and the 8" bits of range and the probability state of LPS. The decision of decoding is
according to the relationship of the offset and the rMPS. The offset means the
probability of the symbol sequences. In Figure 2.10(A), if the value of offset is bigger
than range of MPS, the decoding symbol is MPS and the new values of range is rMPS.
Otherwise the decoding symbol is LPS and the new range is rLPS. In Figure 2.10(B), if

the value of the offset is smaller than the range of MPS, we subtract the original offset
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"MPS rMPS I New Range
(A (B)

Figure 2.10 Decoding decision

codIRange< 0x0100

Yes
1

codIRange = codIRange << 1
codIOffset = codIOffset << 1
codIOffset = codIOffset | read_bits(1)

Figure 2.11 Renormalization of decoding engine

and rMPS to get the new offset. The context probability model is updated in
every decoding. The transition rule is the same as the rule in encoding engine.

The final operation is renormalization. Figure 2.11 shows the flowchart of
renormalization. The range and the offset are getting smaller after encoding. For integer
implementation, when the value of range is smaller than 256, we shift the value of range.

The range is limited from 256 to 511. As the range shift one bit to left, the low also shift
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Offset = Offset << 1
Offset = Offset | read_bits(1)

Offset >= Range

Figure2.12 Flowchart of bypass decoding

N

binVal =0

ers

binVal =1
Offset = Offset - Range

one bit to left. Then we insert a new bit from the sequence of encoding results in the
least significant bit of low.

The bypass decoding engine is simplified fromthe regular decoding engine. Figure
2.12 shows the flowchart of the bypass decoding engine. There is no state index used in
the bypass decoding engine. In the beginning-of-the bypass decoding engine, we first
shift the offset and read a new bit from:the sequence of ending result. Than we decide
the bin value according to the comparison result of offset and range. If the value of the
offset is bigger than the value of range, the decoding decision is 1 and the new value of
the offset is the difference of original offset and range. Otherwise, the decoding decision

is 0 and the value of the offset is the same as the original.
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2.4 Previous work

In the previous papers, many architecture designs for arithmetic coder and decoder
are proposed for different standard. In this section, we introduce the ideas in their

architecture.

In [4], they proposed a 4 pipeline stage design for JPEG2000 MQ-coder. Figure
2.13 shows the block diagram of the architecture in [4]. The works of stage 0 and stage
1 are context update and range computation. The context index update in the next cycle.
Because the precision of range register are 16 bits and the precision of register is 28 bits
in JPEG2000, they pipeline the adder of low into two stages to reduce the path delay.
The stage 2 computes the least significant 16 bits of low register. The stage 3 computes
the most significant 12 bits of low: register,and-generates the output bits. In [7], they

proposed the extension architecture'based on‘[4]. Their architecture can handle more

CX,D

CX _states

Table MPS sence lclogk delay gpdate
lookup update of index register

A Cl6 CI2CT.B

Stage C P Stage I | Stage2 ™ Stage 3

'

bitstream

Figure 2.13 4-stage pipeline design of encoder in [4]
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Figure2.14 Pipelined context-based AC encoding flow in [5] & [6]
than one symbol in a cycle. For reducing delay of critical path, they invert the sequence
of some elementary operations. As a consequence, their have to use six branches to map
the allowable cases. Their method is called the inverse multiple branch selection (IMBS)

method.

In [5] and [6], an architecture of CABAC is proposed for multiple standard and
JPEG2000. Their architecture is a 3:pipeline stages design. Figure 2.14 shows pipelined
context-based AC encoding flow:in [5] and [6]. In the stage 0, the interval computation
and context information update is-completed. In the'stage 1, the bit-stuffing handler is
in charge of bit-stuffing problem. The bit=stuffing handler uses buffer to detect the
sequence “OxFF” in the result bits. If the bit-stuffing handler detects the sequence
“OxFF”, it will insert a bit after the sequence “OxFF”. The inserted bit is the carry bit
generated from previous stage. Because the output length of the bit-stuffing handler is 0,

1 or 2 bytes, they add a 4-byte FIFO register to limit the output length in one byte.

In [8], their architecture is based on H.264/AVC. Figure 2.15 shows the block
diagram of arithmetic coder in [8]. Their arithmetic coder architecture is a 2 pipeline
stage design. The first stage handles encoding iteration. In their design, they divide the
original LPS table into four LPS tables which are independent of range. In the encoding
iteration, they use a carry-save adder and prefix-adder to reduce the computation time

of low and the range. In the renormalization, they use Leading-Zero detection in parallel
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Figure 2.15 Block diagram of arithmetic coder in [8]

with the prefix adder to reduce the time for the renormalization. Stage 1 packs the
output bits from stage O into a byte. The bit-packing stage also detect the sequence
“OxFF” in the result to prevent the result is emitted by a carry propagation. If the
bit-packing stage detects the sequence “OXFF”, they suspend the output process. Then

count the total length of “OxFF” until further operations discard carry propagation.
In [10], they propose co-processor architecture on SoC platform. In the coder design,
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they use the MZ-coder instead of the M-coder in H.264/AVC. The MZ-coder provides
equivalent bit rate comparison with M-coder. Furthermore, the MZ-coder eliminate the
multiple renormalization cycles in M-coder. The coprocessor achieves a constant

throughput for both encoding and decoding processes of 1 symbol per cycle.

In [11], they improve the bypass coding of CABAC in H.264/AVC. They use
different hardware to handle the regular and the bypass mode coding. If a regular mode
follows a bypass mode, their architecture can encode two symbols in the cycle. The
probability of this situation is about 10%. Therefore their can increase 10%

performance in average.

In the next chapter, we propose a novel architecture of arithmetic encoder and
decoder for H.264/AVC. The architecture: of :encoder is a 3 pipeline stages design and
the architecture of decoder is non=pipeline design. For reducing the path delay in the
architecture, we rearrange the operations of range operations in the encoder and the
decoder. Furthermore, in encoder we éxtend the architecture to encode more than one

symbol per cycle.
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Chapter 3

Architecture of Arithmetic

Encoder and Decoder

In this chapter, we present hardware architectures for arithmetic encoder and
decoder. First, we show a basic encoder architecture, which can encode one symbol per
cycle. Then, based on the basic architecture, we further extend the design to support the
encoding of multiple symbols per cycle. In the:second section, we show the architecture

of arithmetic decoder.

3.1 Encoding-Architecture

Figure 3.1 shows the block diagram®of ‘the basic architecture, which includes 3
pipeline stages. In our architecture, we separate the operations of range and low into
stage 0 and stage 1. In stage 2, the byte packing unit can pack the results into the format
of byte. Furthermore, the architecture can support two encoding modes. Specifically, as

illustrated in Figure 3.1, the stage 0 computes the value of range and update context

stage0 stagel Output stage2

Context — Range Addtolog ﬂ» ~ | Outbyte
operation & . Low Byte packing
R Shlf‘ . . - Stuff

Symbol == context operation g unit L N bytestuff

update N_bits =0y

Encode Encode

mode Context mode

update

Figure 3.1 Pipeline stage of one-symbol encoding architecture
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probability model. The stage 1 computes the value of low and generates output bits. The
stage 2 groups the bits from the output of the stage 2 and packs them in a byte-by-byte
manner. In addition, the bit-stuffing is also done in the stage 2.

To improve encoding throughput, we propose an extended architecture, which can
encode multiple symbols per cycle. To achieve this, the operation of range is first
reordered to reduce critical path. Then we duplicate the one-symbol encoding
architecture and add additional hardware in each pipeline stage. The detail information

will be shown in section 3.2.

3.1.1 One-symbol Encoding Architecture

In this section, we detail the design of each pipeline stage. For the stage 0, the
operation includes two parts, which-are the computation of range and the update of
context probability model. Particularly, the.-critical path of the stage 0 is the
computation of range, as shown in Figure-3.2-(a). WWe-summarize the operations in the
critical path as follows:

1. The table look-up of rLPS (range of LPS).
2. The subtraction for getting rMPS (range of MPS).
3. The renormalization.

For reducing the delay in the critical path, we rearrange the order of these operations.
Originally, to produce the rLPS, the look-up table takes both the range and the
probability of LPS, i.e., Qe., as input. For eliminating the data dependency between the
rLPS and the range, we produce 4 sub-tables by unrolling the cases of range. After the
unrolling, each sub-table simply takes Qe as input, as shown in Figure 3.2 (b). Then, the
renormalization of previous iteration and the table-lookup of rLPS can be done in
parallel, as shown in Figure 3.2 (c). Lastly, we can reorganize the operations in the

iteration, as shown in Figure 3.2 (d).
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Figure 3.2 Path of range in encoding iteration.

The detailed block diagram of the stage O is shown in Figure 3.3. As shown, the
stage O has three input signals, one output signal, and three intermediate signals for the
next stage. The meaning of each symbol is elaborated as follows:

® The signal “Symbol” means the encode symbol.
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Figure 3.3 Detailed block diagram of stage 0.

® The signal “Context” means the context probability model that includes the Qe
and the MPS.
® The signal “Encode mode” specifies whether the coding is in the regular mode
or the bypass mode.
® The other two signal passing to the next stage means the value that will add with
low and the numbers of output bits in this encode process.
® The output signal “Context update” is used to update the context information.
For supporting the bypass mode in the stage 0, the register of range and the signal
“Addtolow” is controlled by the signal “Encode mode”. When the encoding is in bypass

mode, the range will remain un-changed and the signal “Addtolow” will take the value
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Figure 3.4 Block diagram of the stagel in basic architecture.

of range. Then, the signal “encode mode” will be passed to the next stage.

In the stage 1, the main operations include the computation and the renormalization
of low. Figure 3.4 shows the detailed block diagram of the stage 1. As shown, the stage
1 takes the intermediate signals producéd by the'stage 0 as input and produces “Output
bits” and “N_bits”. Respectively,the signals-*Qutput bits” and “N_bits” stand for the
encoding result of one symbol and the associated number of coded bits. Particularly,
when the coding is in the bypassing‘mode, the value*of low will be firstly shifted to the

left by one bit and the total shift value will be set to 1.

In the stage 2, the encoding results, i.e., the compressed bits, from the stage 1 are
packed in a byte-by-byte manner. In [7], the byte-stuffing technology is used for
packing. To detect the occurrence of OxFF sequence, a 16-bit buffer is used to buffer the
compressed bits. When the value of OxFF is detected and identified, there are
possibilities that the carry propagation will affect the byte that has been outputted.
Therefore, we need to hold the output byte and use a register to store the length of
stuffed bytes. The operation in packing buffer is shown in Figure 3.5. In the beginning,
the second byte in Pbuffer is OxFF. Then we store the length of the byte OXFF in the
register “N_bytestuff” and the bit value of the byte OXFF in the register “Stuff”. After
storing the information of stuff situation, we continue the process of byte packing. If the
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Figure 3.5 Operation in packing buffer.
next byte is not Oxff, stage 2 will output the first bytein the packing buffer, the value in
the register “Stuff” and the value:in the register “N _bytestuff”. On the other hand, if the
next byte is Oxff, the register “N=bytestuff” will be increased by 1. If the following
operations produce a carry signal, the register “Stuff” will be turned to 0 and the first

byte of packing buffer will be increased by 1.

Figure 3.6 shows the block diagram of the stage 2. The register “Pbuffer” stores the
encoding results. The register “N_Pbuffer” records the number bit of results in the
“Pbuffer”. The combination of the registers “Stuff” and “N_bytestuff” specifies the
information of byte stuff. Upon the detection of a “OxFF” byte, the register “stuff”
records the content of stuffing bits and the “N_bytestuff” specifies the number of the
bytes that have the value of “OxFF”. Until the next byte is not “OxFF”, the stuffing

information is output with the signal “Outputbyte”.
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Figure 3.6 Block diagram of the stage2 in the basic architecture.

3.1.2 Multiple Symbols Encoding Architecture

For improving the performance of AC encoding, we propose an encoding
architecture that is capable of coding multiple symbols per cycle. While maintaining
similar or higher coding performance, our scalable architecture provides the flexibility

to adjust clock rate by changing the number of coding symbols per cycle.

Figure 3.7 shows the block diagram of scalable architecture. To encode more than
one symbol per cycle, we duplicate the one-symbol encoding architecture and add
additional hardware in each pipeline stage. For encoding n symbols per cycle, we
duplicate the one-symbol encoding architecture by n times in the stages 0 and 1. As
shown in Figure 3.7, the one-symbol encoding unit in the stages 0 and 1 includes the

range operation, the context update, and the low operation. For multi-symbol encoding,
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these functional units are duplicated. After encoding the symbol, the values of range and
low are passed to the next functional unit. In the stage 0, if more than two encoding
symbols use the same context probability model, the later encoding symbols will use
the context probability model after the update. Therefore the context information needs
a multiplexer to choose the correct one. In the stage 1, the number of result produced by
low operation is variable. For reducing the workload and complexity of the stage 2, we

combine all the results before passing the data to the stage2.

In the stage 2, we insert a small input buffer to support the multi-symbol encoding.
The basic byte packing unit can process 8 bits in one cycle. For coding one symbol, the
average number of results from the stage 1 is less than 1. As we extend the design for
multiple-symbol encoding, the probability for the total input number being greater than
8 is very small. Such an exception only oceurs a.few-times for each video frame. Thus,
we insert a small buffer in front-of ‘the stage 2. The input buffer limits the number of
input bits to 8 bits. As a result, using an mput’buffer/.can maintain the same structure of

byte packing unit in the stage 2.
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Figure 3.8 details the unit for result combination. The result combination unit

consists of shifters and adders. There are two kinds of input signals in Figure 3.8. The

signal “Output bits_i” ( 1=0,1,...,n) means the encoding result of one symbol and the

signal “R_shift_i” ( i=0,1,...,n) denotes the length of encoding result. For combining

the results produced by different low operations, we first shift the previous encoding

result to the correct position. Then we use adders to combine all the result bits. By this

way, the result combination unit can output the total number of result bits and a

sequence of result bits.

Figure 3.9 shows the block diagram of the input limit buffer. There are two input

signals, two output signals, and two local registers. The register “Buffer” temporarily

34



stores the residual bits if the length of previous packing bits is greater than 8. The
register “N_buffer” records the number of bits that are stored in the register “buffer”. If
the buffer is not empty, we combine the bits in the buffer and the input bits. Then we
check if the total number of bits is greater than 8. As the total number of bits is greater
than 8, we will select the first 8 MSB bits of the combined result as the output and keep
the residual bits in the buffer. In the opposite case, we will pass the bits directly to the

byte packing unit.

3.1.3 Multiple Standard Support

In addition to supporting multi-symbol encoding, our structure can also be easily
tailored to support the arithmetic encoding in JPEG2000. Table3.1 summarizes the
difference of the arithmetic coder in'H.264/AVC.and- JPEG2000. There are three major
differences, which are (1) the methad for getting rLPS, (2) the operations of low and
range, and (3) the precision for representing’range and low. In JPEG2000, rLPS simply
depends on Qe. However, in H264/AVC, rLPS is from both Qe and range. For the

operations of low and range, JPEG2000 updates the low by adding the value of rLPS, as

Table 3.1 Differences of arithmetic coder in H.264/AVC and JPEG2000

H.264/AVC JPEG2000
rLPS table[Qe][range[7:6]] Qe
rMPS range - rLLPS range - rLPS
operations 10oWnew = low loWnew = low + rLLPS
when symbol == MPS rangenew = rMPS rangenes = rMPS
operations lowsew = low + TMPS lOWrew = low
when symbol == LPS rangenv = rLPS rangenw = rLPS
1St
rang.e.regls. er 9 6
precision(bits)
low register
.. . 10 28
precision(bits)
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the input symbol is MPS. On the other hand, in H.264/AVC, the low is updated by
adding the value of rMPS, as the input symbol is LPS. Lastly, the precision for
representing the range and low is different. Specifically, JPEG 2000 requires higher

precision for the range and low.

To support JPEG2000, our design is modified to adopt these differences. More
specifically, when the coding is for JPEG2000, we remove the 4 sub-tables of LPS and
directly connect the Qe to the range compute unit. In the encoding operation, we change
the value, which we prepare to add to low, from rMPS to rLPS. Then the timing of
adding will be change from that symbol equals LPS to that symbol equals MPS. Lastly,
we use high-precision registers and adders to fulfill the need of JPEG2000. Without
changing the architecture significantly, our design can be slightly extended to support

JPEG2000.

3.2 Decoder Architecture

In this section, we illustrate the architecture of binary arithmetic decoder. For the
decoding, our architecture can decode only one symbol per cycle. Different from the
case of encoder, at the decoder, the context index for a symbol can only be certain when
the previous symbol is decoded. Because of strong data dependency and insufficient
context information, it is more difficult to decode multiple symbols per cycle. Thus, our
proposed decoder architecture is not pipelined.

To reduce the delay of computation, we apply the same reordering technique in the
encoder. Figure 3.10 (a) shows the critical path in the straightforward implementation.
As shown, the longest delay is for the computation of new offset value. The offset value
is determined after the range. For completing the computation of range, it needs four

steps. The first two steps in the decoding process are similar to those in the encoding
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Figure 3.10 Data path of range in decoder

process. The rMPS and rLPS are-known in the.first two steps. When rMPS is known,
we can compare the value of rMPS with the offset to make the decision. After the
comparison, new range and offset are determined. Thus, we renormalize the range and
the offset. For reducing the critical path, we employ the same reordering technique used
for the encoder. As shown in Figure 3.10 (b), the registers of range and the offset store
the value without renormalization. Also, we use 4 sub-tables to eliminate the data
dependency between rLPS and range. After the reordering, Figure 3.10 (b) illustrates
the proposed decoder architecture.

Figure 3.11 shows the detail architecture of decoder. Basically, the decoder has four
input signals and three output signals. The signal “Bits_in" replenishes the least
significant bits of the offset value during the renormalization. The encode mode
indicates whether the decoding process is in regular or bypass mode. The state index
and MPS form the context information. The signal “Output bit” is the decoding result
and the signal “Qe update” and the signal “MPS update” update the context probability
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Figure 3.11 Architecture of the AC decoder

model. To support the bypass decoding, two additional multiplexers are deployed in this

design, as shown with the dash blocks in Figure 3.11. In the bypass mode, we make the

decision according to the range and double offset. The first multiplexer choose rMPS or

range according to encoding model. The second multiplexer chooses the double values

of offset or the value of offset to decode. But, in our design, the renormalization is done

in the beginning. Therefore, we can combine the shift of renormalization and the shift

of double low. When bypass decoding, the shift value of offset will be increased by 1.
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Chapter 4

Implementation

4.1 Design flow and verification

In this section, we detail the design flow and the verification environment. In the
beginning of the design, we build the C model for the proposed architecture. The C
model is used not only for analysis but also for debugging in RTL-level design. After
the C model design and verification; the design. and the simulation of the register
transfer level (RTL) level start. The hardware designin RTL is represented by verilog
hardware description language (HDL). After the RTL simulation, the RTL verilog code
of the design will be synthesized "and optimized. into gate level. Then the gate level
simulation starts. After the gate level simulation, the verification move to the FPGA
environment.

Figure 4.1 shows our environment of FPGA. The multi ICE connects the FPGA
board with the PC. On the board, there are logic and core modules. The ARM 966 CPU,
the SDRAM controller and embedded SRAM is covered by the core module. The
proposed design is downloaded to logic module which is made of FPGA. We download
our designs through the multi ICE to the FPGA. During the simulation, the compiled
code is put in the embedded SDRAM and the image data is put in the external SDRAM.
Our designs act as slaves on the bus. The ARM 966 CPU, which is a master on AHB,
can access the slaves via AHB. The ARM966 CPU can use the accelerator of CABAC

through the AHB.
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Figure 4.1 FPGA environment

In the FPGA environment, we run the codec of H.264 to verify our CABAC
encoder/decoder design. The architecture of CABAC encoder and decoder has passed

the verification.

4.2 Implementation Results

Table 4.1 shows the synthesis results of the encoder and decoder. The data of the
results is from Design Analyzer. The one-symbol encoding architecture can achieve
370M symbols per second. As the architecture extends to encode two and three symbols
per cycle, the performance achieves 526M and 546M symbols per second. Furthermore,
the performance of decoder can achieve 333M symbols per second. Although the gate
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Table 4.1 Results of encoder and decoder design

Designs Encoder Decoder
Number of
Encoding/Decoding 1 2 3 1
bits per Cycle

Maximum Frequency 370 263 182 333
Gate Count (0.18um) 3.7k 7.8k 9.3k 3.5k
Maximum Throughput

(Mega-symbols/s) 370 526 546 333

600

550

500

450 |

Throughput

400 |

350

300

2

Encoding Symbols per Cycle

Figure 4.2 Encoding Symbols per Cycles VS Throughput

counts of two-symbol encoding architecture is 2.1 times than that of one-symbol
encoding architecture, the performance of two-symbol encoding architecture is 1.4
times faster than one-symbol encoding architecture. When the one-symbol encoding
architecture extends to encode three symbols per cycle, the performance achieves the

maximum and the gate counts of three-symbol encoding architecture is only 2.5 times

faster than one-symbol encoding architecture.

The maximum throughput saturates when the encoding symbols per cycle increase.

As figure 4.2 shows, we can find that the maximum throughput is limited in 550M

41




symbols per cycle. The critical path increases with the encoding number per cycle. The

increase of critical path causes the saturation of maximum throughput.

4.3 Comparison

Table 4.2 lists the results previous arithmetic encoder design for H.264/AVC with
ours. The designs of [4], [5], [6], and [7] are designed for different standard and
implemented in old technology. For fair comparison we do not list the results of their
designs in the table 4.2. As the table 4.2 shows, our maximum throughput is 1.65 to
2.87 times than the designs of [8], [9]. [10].

Table 4.3 lists the results of our decoder designs and prevous arithmetic deocder
designs for H.264/AVC. In [2] and [3], they have decoder designs, but the designs are
used for different standard and implement in old technology. In table 4.3, although the
maximum throughput of our design is the same-as the design of [10], our technology is

behind theirs. Therefore the result-in our-design-is-better than the result in [10].

Table 4.2: AC encoder performance comparison

Number of
. Encoding Throughput
Design Standard Gate Count
Symbol per (Mega-symbols/s)
Cycle
i 3.7k,7.8k,9.3k
My design H.264/AVC 1,2,3 370,526,546
(0.128um)
N/A
[8] H.264/AVC 1 . 200
Estimation(0.18um)
N/A
[10] H.264/AVC 1 330
(0.23um)
N/A
[11] H.264/AVC 1 190
(0.28um)
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Table 4.3: AC decoder performance comparison

Throughput
Design Standard Gate Count
(Mega-symbols/s)
My design H.264/AVC 3.5k(0.18um) 330
N/A
[10] H.264/AVC 330
(0.13um)
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Chapter 5
Conclusion

In this thesis, we propose a scalable architecture for the encoding and decoding of

the context-adaptive binary arithmetic coder (CABAC) in H.264/AVC.

There is strong data dependency in the algorithm of CABAC. In the encoding and
decoding process, the value of range cannot be used until the process of previous
symbol complete. Therefore, the critical path will determine the performance of the
designs. For reducing the delay of critical path, we reorganize the range operations in
encoding and decoding iteration..The new order of range operations can parallel the

process.

For high performance requirement, the-architecture can be extended to encode more
than one symbol per cycle. For extension, we duplicate the basic functions in the stages
0 and 1. Then we respectively add result combination unit and an input limit buffer in
the stages 1 and 2. The result combination unit can combine the result of different
encoding symbols. The input limit buffer can increase the capacity of byte packing unit.
Then the byte packing unit will not be changed. Moreover the basic operations of
Arithmetic coder in JPEG2000 and H.264/AVC are similar. The design can be modified

to support JPEP2000 easily.

We use 0.18 CMOS technology to synthesize our designs. The maximum
throughput of the three-symbol arithmetic coder is 545M symbols per second and the

maximum throughput of decoder is 330M symbols per second. Besides, we verify our
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designs on the environment of FPGA. All the designs work with H.264 encoder or

decoder correctly.

The context memory design is future work. As the proposed architecture encodes
multiple symbols per cycle, it will need a multi-port memory to support. A context

memory with low cost and high performance will be an important problem.
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