
國 立 交 通 大 學

電子工程學系

碩 士 論 文

H.264/AVC 算數編碼器和算數解碼器之硬體架構設計

Arithmetic Coder and Decoder Architecture Designs

for H.264/AVC

指導教授：蔣迪豪 博士

研 究 生：林承毅

中 華 民 國 九 十 四 年 七 月

 ii

 iii

研 究 生: 林承毅 S t u d e n t: Cheng-Yi Lin

指導教授: 蔣迪豪 A d v i so r: Tihao Chiang

國 立 交 通 大 學

電子工程學系電子研究所碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in
Electronics Engineering

July 2005

HsinChu, Taiwan, Republic of China

中華民國九十四年七月

H.264/AVC 算數編碼器和算數解碼器之硬體架構設計

研究生: 林承毅 指導教授: 蔣迪豪 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

H.264/AVC是最新壓縮標準。與其他標準比較，H264/AVC提供了較高的壓縮效

率，但是H.264的複雜度也相對較高。在H.264/AVC有兩種熵編碼法，CAVLC和CABAC。

在二熵編碼法之中，CABAC 能比CABLC節省10-15%位元率。基本上，熵編碼是一種

二位元的操作，且一般多功能處理器不能有效率的處裡。在高解析度及時的系統

中,給熵編碼用的一個高處裡能力的算術編碼器和解碼器是非常需要的。

 在這篇論文裡，我們提出給H.264/AVC用的算術編碼器和算術解碼器之硬體架

構。為了增加算術編碼器的處裡能力，架構設計上能擴充到把每個週期可以編碼

多個位元。為降低架構上的長路徑，我們在算術編碼器和算數解碼器架構中裡重

新安排迴圈中的處裡順序。而且，我們的算數編碼器設計能容易修改去支援

JPEG2000。全部設計被用硬體描述語言實現並且在FPGA環境中作過驗證。算術編

碼器的最大處裡能力是每秒545百萬個位元，算數解碼器的最大處裡能力是每秒

330百萬個位元。他們分別花費9300和3500個邏輯單元。

 v

Arithmetic Coder and Decoder Architecture

Designs for H.264/AVC

Student: ChengYi Lin Advisor: Dr. Tihao Chiang

Institute of Electronics
National Chiao Tung University

Abstract

The most recently developed compression standard H.264/AVC provides

outstanding performance than other standards, but the complexity of H.264/AVC is

also higher than others. There are two entropy coding methods, Context Adaptive

Variable Length Code (CAVLC) and Context Adaptive Binary Arithmetic Code

(CABAC) in H.264/AVC. Between the two entropy coding methods, CABAC can

provide bit-rate saving of 10-15% than CAVLC. The serial and bit-level operation of

the entropy coding is a kind of bit-level operation and can not be effectively handled

by general purpose processor. A high throughput arithmetic coder for entropy coding

and decoding is strongly required for high resolution real-time applications.

In this thesis, we propose architecture for the arithmetic encoder and decoder in

H.264/AVC. To meet the high performance requirement, the encoder design can be

extended to encode multiple symbols per cycle. To reduce the critical path, we

rearrange the sequence of range operation in the encoder and the decoder

architectures. All designs are implemented in Verilog and verified on FPGS. The

maximum throughput of the 3-sybmol arithmetic coder is 545M symbols per second

and the maximum throughput of decoder is 330M symbols per second costing 9.3k

and 3.5k gates respectively.

 vi

誌謝
 研究生的生活過到現在已經兩年了，隨著這篇論文的出現，研究生的生崖就

要結束了。在這兩年的生活，過得很充實，也學到了很多。在整個研究生的兩年

中，最主要學到的實作研究和解決問題的方法。兩年來老師和學長不斷的教導還

有同學跟學長學弟們間的互相學習，讓我成長了不少。要感謝的人，真的不少。

首先要感謝的是實驗室的長輩們，老師跟學長。指導教授蔣迪豪老在研究之

路上給了一個方向和提供了不少想法。而彭文孝學長，平常在 我研究內容的細節

跟方向上，提供了我很多意見，並且在這篇論文的寫作中，給了不少幫助。在研

究的工作環境中，非常感謝王士豪學長在工作站的維護，提供良好的工作環境讓

我們做研究，使研究可以順利進行，沒有後顧之憂。

還要感謝的是實驗室的同學，思浩跟世騫在有功課或研究上有問題的時候互

相討論，並在 group meeting 的時候互相討論跟聊天，提供了不少歡樂的氣氛。

在平常的實驗室生活中，還要感謝漢光，阿志，機車竹…等，平常打屁聊天，一

起買飯吃，一起討論鄭教授的助理，這些都使在實驗室生活過的很歡樂。

最後，要感謝的是我的家人，求學生崖中對我默默的支持，讓我走過沒有後

顧之後的求學之路。

 vii

Index

CHAPTER 1 INTRODUCTION...1

1.1 OVERVIEW OF DISSERTATION ...1
1.2 ORGANIZATION AND CONTRIBUTION..5

CHAPTER 2 ALGORITHM OF CABAC..7

2.1 BINARIZATION..8
2.2 CONTEXT MODEL ..9
2.3 BINARY ARITHMETIC CODING..12

2.3.1 Regular Encoding Engine ...12
2.3.2 Bypass Encoding Engine...16
2.3.3 Decoding Engine...17

2.4 PREVIOUS WORK ..21

CHAPTER 3 ARCHITECTURE OF ARITHMETIC ENCODER AND DECODER
...25

3.1 ENCODING ARCHITECTURE ..25
3.1.1 One-symbol Encoding Architecture ..26
3.1.2 Multiple Symbols Encoding Architecture..31
3.1.3 Multiple Standard Support ..35

3.2 DECODER ARCHITECTURE..36

CHAPTER 4 IMPLEMENTATION ...39

4.1 DESIGN FLOW AND VERIFICATION...39
4.2 IMPLEMENTATION RESULTS..40
4.3 COMPARISON ...42

CHAPTER 5 CONCLUSION..44

BIBLIOGRAPHY...46

LIST OF FIGURES
Figure 1.1 Basic Coding Structure of H.264/AVC for a macroblock…………………...1

Figure 2.1 Block diagram of CABAC………………………………………………...…7

Figure 2.2 Illustration of an example in the first type context model………………….10

Figure 2.3 Transition rules for updating the probability of LPS……………………….12

Figure 2.4 Encoding process…………………………………………………………...13

Figure 2.5 Flowchart of encoding process……………………………………………..14

Figure 2.6 Flowchart of renormalization in encoding………………………………….15

Figure 2.7 Flowchart of PutBit(B)……………………………………………………..16

Figure 2.8 Flowchart of bypass encoding…....………………………………………...17

Figure 2.9 Flowchart of decoding engine………………………………………………18

Figure 2.10 Decoding decision………………..………………………………………..19

Figure 2.11 Renormalization of decoding engine……………………………………...19

Figure 2.12 Flowchart of bypass decoding……...……………………………………..20

Figure 2.13 4-stage pipeline design of encoder in [4]………………………………….21

Figure 2.14 Pipelined context-based AC encoding flow in [5] & [6]………………….22

Figure 2.15 Block diagram of arithmetic coder in [8]………………………………….23

Figure 3.1 Pipeline stage of single symbol encoding architecture……………………..25

Figure 3.2 Path of range in encoding iteration…………………………………………27

Figure 3.3 Block diagram of stage0 in the basic architecture………………………….28

Figure 3.4 Block diagram of stage1 in basic architecture……………………………...29

Figure 3.5 Operation in packing buffer………………………………………………...30

Figure 3.6 Block diagram of stage2 in the basic architecture………………………….31

Figure 3.7 Block diagram of the multiple symbols encoding architecture…………….33

Figure 3.8 Block diagram of result combination unit………………………………….34

Figure 3.9 Block diagram of input limit buffer………………………………………...34

 ix

Figure 3.10 Data path of range in decoder……………………………………….……37

Figure 3.11 Architecture of the AC decoder...38

Figure 4.1 FPGA environment…..40

Figure 4.2 Encoding symbols per cycle VS throughput……………………………….41

 x

List of Tables
Table 2.1 syntax element and associated range of context indices…………………..11

Table 3.1 Differences of arithmetic coder in H.264/AVC and JPEG2000…………...35

Table 4.1 Result of encoder and decoder design……………………………………..41

Table 4.2: AC encoder performance comparison…………………………………….42

Table 4.3: AC decoder performance comparison…………………………………….43

 1

Chapter 1

Introduction

1.1 Overview of Dissertation
In recent years, the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC

Moving Picture Experts Group (MPEG) jointly develop a video coding standard

H.264/AVC for a wide range of applications such as storage, video conferencing,

broadcasting, Internet streaming etc. As compared to other video coding standards,

H.264/AVC can provide the same quality with a significantly reduced bit rate.

Specifically, as compared to MPEG-4, H.263, MPEG-2, the ratio of saving on bit rate is

39%, 49%, and 64% respectively.

Although the coding efficiency of H.264/AVC is better, the complexity of

Figure 1.1 Basic Coding Structure of H.264/AVC for a macroblock [?]

 2

H.264/AVC is relatively high. Figure 1.1 shows the basic coding structure. Among the

modules, there are many new tools such as long-term prediction, motion estimation of

variable blocks size are designed for increasing coding efficiency. However, the tools

need more computation and the complexity is increased significantly. For the decoding,

H.264/AVC is 2-3 times more complex than MPEG-2, H.263, and MPEG-4. For the

encoding, the complexity of H.264/AVC is 4-5 times than that of MPEG-4.

Among these modules, CABAC is one tool that needs intensive computation.

Basically, the operations of CABAC include the following steps:

1. Binarization: The binarization of syntax element is to maximize the

efficiency of binary arithmetic coding. In H.264/AVC, all the syntax

elements are binarized into multiple bits. There are four basic binarization

methods in CABAC of H.264/AVC. For instance, fixed-length code is used

for syntax element with a nearly uniform distribution. The code word of x

in fixed-length code is simply given by the binarization representation of x

with a fixed (minimum) number lFL=ceil(log2S) of bits, where 0≦x≦S.

2. Context Modeling: The context model is to fully utilize the existing

correlations. After the binarization, the coding bits of a syntax element may

refer to different context models. The outcome of a context model is

assigned with a context index and each index is associated with a binary

probability model. Specifically, the context probability model is

represented by a most probable symbol (MPS) and the probability of least

probable symbol (LPS).

3. Binary arithmetic coding: The binary arithmetic coding is to reduce the bit

rate. During the coding, the interval state of the arithmetic coding engine is

as usual characterized by two quantities: the current interval range (range)

and the base of the current code interval (low). We make the encoding

 3

decision by comparing the encoding symbol and the MPS in the context

probability model. Depending on the encoding decision, the range and low

change their values.

Different from the other modules, the CABAC operates at bit level. It cannot be

efficiently handled by general purpose processors. Moreover, the encoding/decoding in

CABAC refers to many coding context. A strong data dependency exists in the

successive operations of CABAC. For instance, the encoding/decoding of a specific

syntax may refer to the state of previously encoded/decoded syntax. Such data

dependency makes the operations of CABAC not easy for parallel processing.

Furthermore, CABAC requires many branching instructions that also pose a big

challenge for hardware design.

In recent years, a few hardware architectures [4][5][6][7][8] about CABAC codec

have been proposed for different coding standards. In common, these architectures can

encode one symbol per cycle. However, some of them [7] can have more than 1

symbols coded in a cycle. In [4], an architecture with 4 pipeline stages is proposed for

JPEG-2000. They divide the computations of range and low into two stages. Also, the

adder for updating the low value is pipelined so as to reduce the path delay. Their

architecture can encode one symbol per cycle. Based on [4], in [7] the architecture is

further extended so that it can encode multiple symbols per cycle. To achieve this, the

functional units for the computations of range and low are duplicated. However, simple

duplication of these functional units will lead to a longer critical path. Therefore, in [7]

the sequence of some elementary operations is inverted and six branches to map all the

allowable scenarios are used. Such a method is named as inverse multiple branch

selection (IMBS). In [5] and [6], architecture with 3 pipeline stages is proposed for

supporting the CABAC operations in multiple standards. They integrate the context

information of JPEG, JPEG-2000, JBIG and JBIG2 into the FSM and employ a parallel

 4

leading zeros detection and bit-stuffing handling for encoding one symbol per cycle. In

[8], they propose an architecture with 2 pipeline stages for H.264/AVC. In their

architecture, the first stage handles the computations of range and low and the second

stage uses a technique known as byte-stuffing to handle output bits.

To improve the performance of H.264/AVC system, in this thesis, we propose a

scalable architecture for the CABAC encoding. In addition, based on the architecture

for CABAC encoding, we further develop an architecture for CABAC decoding.

Different from the conventional designs [4], [5], [6], and [8], our scalable encoding

architecture can simultaneously encode multiple symbols per cycle and support both

JPEG-2000 and H.264/AVC.

Particularly, in our scheme, we rearrange the operations for CABAC encoding to

remove the data dependency in CABAC operations. For instance, the computations of

range in the encoding iteration include the following three steps:

(1) Table look-up for the range of LPS (rLPS).

(2) The range of MPS computation and new range selection.

(3) Renormalization of new range.

In the step 1, we partition the table for the range of LPS (rLPS) into four parts.

Therefore the table look-up is independent of range. Therefore, the step 1 can compute

without waiting the step 3 of pervious iteration. The step 1 of this iteration and the step

3 of pervious iteration can be done in parallel. Then, we rearrange the operation of

range iteration. In the iteration, we put step1 and step 3 in parallel. Then the step 2 is the

final operation in the new iteration. With such rearrangement, the critical path can be

reduced.

In addition, for the decoding of CABAC, we reuse the design employed by the

encoding. Particularly, the data dependency for decoding is stronger than that for

encoding. The operations of range in decoder iteration are composed of following steps:

 5

(1) Table look up for rLPS.

(2) Computation of rMPS.

(3) Comparison of rMPS and offset to make decision.

(4) Renormalization of range.

(5) Renormalization of offset.

We remove the dependency of rang and the table rLPS as we do in encoder. Therefore

Step1 and Step2 can be put in parallel with setp 4 and step 5. We do step 3 in the final

iteration. Therefore, we can reduce the delay of the path.

To validate the proposed architecture design, we implement our CABAC codec

using the cell-based synthesis approach. Specifically, we use 0.18um CMOS technology

to synthesize our designs. Moreover, for the verification at system level, we wrap our

designs in AHB interface. Our designs with AHB interface are slave modules on AHB.

The CPU can use the slave modules to through AHB. Our all designs can correctly

encode and decode a sequence with the codec of H.264/AVC

In our designs, the CABAC encoding can support the throughput of 545Mbits/s and

the throughput of decoding is up to 330Mbits/s. In other words, our design can meet the

requirements of real-time encoding/decoding in HDTV resolution. Respectively, the

gate counts used are 9.3k and 3.5k.

1.2 Organization and Contribution
In this thesis, we propose a scalable encoding architecture for CABAC in

H.264/AVC and JPEG2000. Also, the encoding architecture is modified to support the

decoding of CABAC. For the verification, we use an ARM-based platform for the

co-simulation of hardware and software at system level. The proposed solution can

meet the real-time requirements for HDTV applications. As compared to the

state-of-the-art designs, our architecture has higher throughput and lower cost. For more

 6

detail, the rest of this thesis is organized as follows:

 Chapter 2 details the algorithm of CABAC and the prior works for the hardware

designs.

 Chapter 3 introduces the proposed architectures for the CABAC encoding and

decoding. Specifically, our contributions include the following:

 Encoder

- We rearrange the operations of CABAC for parallel processing so as

to improve the performance.

- We propose a 3 pipeline stages architecture which can encode more

than 1 symbol per cycle.

- Furthermore, our architecture can be easily modified to support both

JPEG2000 and H.264/AVC.

 Decoder

- There is stronger data dependency in decoder than in encoder. For

reducing the critical path, we rearrange the range operation sequence

as we do in encoder architecture.

 Chapter 4 shows the implementation results and comparison with other designs.

In brief, the performance of our design is summarized as below:

 As compared to [8], our maximum throughput is 2.7 times faster.

 As compared to [4], [5], [6], and [7], we have less gate counts, i.e., lower

cost.

 Chapter 5 summaries our works and shows the conclusions of this thesis.

 7

Chapter 2

Algorithm of CABAC

In this chapter, we introduce the algorithm of CABAC. Figure 2.1 shows the generic

block diagram for encoding a signal syntax element in CABAC. In the CABAC

framework, the encoding processing include threes steps which are (1) binarization, (2)

context modeling and (3) binary arithmetic coding. If the input is binary syntax element,

the first step is skipped. There are two encoding processes, regular and bypass encoding,

in CABAC. In the regular coding process, it need to a context model for encoding. Each

type of bin has its own context model. When getting the context model, the regular

coding engine encodes the bin value with the context information. The design purpose

of bypass coding is a speedup of the whole encoding/decoding process. The mean of

speedup is to simplify coding engine without the usage of an explicitly assigned model.

In this chapter, we describe the three steps of CABAC frame work respectively. The

detail algorithm of the steps will be showed in the followed section. In the previous

Figure 2.1 Block diagram of CABAC [2].

 8

work, there are many kinds of arithmetic coder and decoder designs for the different

standard. We show the previous work in the final section of this chapter.

2.1 Binarization
The design goal of binarization is for getting minimum redundancy code. The

minimum redundancy code can reduce the workload of binary arithmetic coding stage.

There are four basic types: the unary code, the truncated unary code, the kth order

Exp-Golomb code, and the fixed-length code. In addition there are binarization schemes

based on a concatenation of these elementary types.

Here, we show the algorithm of four basic binarization types.

1. Unary code:

For each unsigned integer valued symbol x≧0, the unary code work in CABAC

consists if x ”1” bits plus a terminating “0” bits.

Example: 5 => 111110

2. Truncated unary code:

The truncated unary code is only designed for 0≦x≦S. If x < S, the code word is

given by unary code. Else if x equal S, the code word is consisted of x “1” bits.

Example: Truncated unary code with S = 5:

 3 => 1110, 5 => 11111

3. Kth order Exp-Golomb code:

The code words of Kth order Exp-Golomb code are constructed by prefix and

suffix parts. The prefix part is unary code corresponding to the value l(x)=

floor(log2(x/2k+1)) and the suffix part is the binary representation of x+2k(1-2l(x))

using k+l(x) significant bits.

4. Fixed-length code:

The code word of x in fixed-length code is simply given by the binarization

 9

representation of x with a fixed (minimum) number lFL=ceil(log2S) of bits, where 0

≦x≦S. This kind of type is used for syntax element with a nearly uniform

distribution.

 Example: S = 7

 1=> 001, 2=> 010… 7=> 111.

There are three more binarization schemes derived in binarization of CABAC. The

first one is a concatenation of a 4-bit fixed-length prefix and a truncated unary suffix

with S=2. Both the second and third concatenated schemes are derived from the

truncated unary and the kth Exp-Golomb binarization. These schemes, which are

referred to as Unary/kth order Exp-Golomb (UEGk) binarizations, are applied to motion

vector difference and absolute value of transform coefficient levels.

2.2 Context Model
For increasing coding efficiency, each type of bin has its own context model to

estimate the probability model. One context model includes the probability of least

probable symbol (LPS) and the most probable symbol (MPS). In this section, we show

the basic types of context models. Then we show the probability estimation of context

model.

For encoding each symbol, a conditional probability is estimated by switching

between different models of probability according to the already coded neighboring

symbols. There are four basic types of context models in CABAC of H.264/AVC. The

first type of context models involves a context template with up to two neighboring

syntax elements in the past. Usually, the relating element is to the left and on the top of

current element. As figure 2.2 shows, when encoding syntax C, it based on the two

syntax element, A and B, to choose the suitable context model. The second type of

context models is only designed for the syntax elements of mb_type and syb_mb_sype.

 10

The values of prior coded bins are used for the choice of a model. Thus when we

encode ith bin (bi) of a syntax element, the values of b1, b2... bi-1 are used for choosing

the context model of bi. Both the third and fourth type of context models is applied to

residual data only. The third type relies on the scanning path of the syntax element. For

the fourth type, modeling function is involving the evaluation of the accumulated

number of the encoded levels with a specific value prior to the current level bin to

encode. In another word, we use the level information to choose the context model in

the fourth type of context models.

In the CABAC of H.264/AVC, each syntax element has its own context model.

Each context model is given an index number. The index number is called context index.

The total number of context models in H.264/AVC is 399. The range of context index is

from 0 to 398. Thus the context model can be efficiently represented by 7-bit unsigned

integer values. Table2.1 [2] shows the association of syntax elements and the range of

context indices in H.264/AVC. The context indices in the range from 0 to 72 are related

to syntax element of macroblock type, submacroblock type, and prediction modes of

spatial and temporal type. Context indices in the range from 73 to 398 are related to the

coding of residual data.

Figure 2.2 Illustration of an example in the first type context model

 11

In CABAC, 64 values represent the probability of the LPS. The range of the 64

values is [0.01875, 0.5]. It is derived form the following recursive equation:

Pσ=α* Pσ-1 for all σ=1,..., 63

With α=(0.01875 / 0.5) (1/63) ≒ 0.95 and p0=0.5

Hence, a context model can be completely represented in 7-bit. The 7 bits includes 6

bits of LPS probability index and 1 bit of MPS value.

After encoding a symbol, the used probability context model is updated. As figure

2.3 illustrates, when the encoding symbol equal MPS, the state index is simply

incremented by 1. When a MPS occurs at state index 62, the state index does not

Table 2.1 syntax element and associated range of context indices [3]

Slice type
Syntax element

SI/I P/SP B

mb_type 0/3-10 14-20 27-35

mb_skip_flag 11-13 24-26

sub_mb_type 21-23 36-39

mvd(horizontal) 40-46 40-46

mvd(vertical) 47-53 47-53

ref_idx 54-59 54-49

mb_qp_delta 60-63 60-63 60-63

intra_chroma_pred_mode 64-67 64-67 64-67

prev_intra4x4_pred_mode_flag 68 68 68

rem_intra4x4_pred_mode 69 69 69

mb_field_decoding_flag 70-72 70-72 70-72

coded_block_pattern 73-84 73-84 73-84

coded_block_flag 84-104 84-104 84-104

significant_coeff_flag
105-165,

277-337

105-165,

277-337

105-165,

277-337

last_significant_coeff_flag
166-226,

338-398

166-226,

338-398

166-226,

338-398

coeff_abs_level_minus1 227-275 227-275 227-275

end_of_silce_flag 276 276 276

 12

change. The probability of LPS is already at its minimum. If encoding symbol equal

LPS at state index 0, the value of MPS will change. It means that the original value of

LPS becomes the new value of MPS.

2.3 Binary Arithmetic Coding
In the CABAC of H.264/AVC, the binary arithmetic coding includes two coding

engine. One is for regular coding mode. The regular mode includes the utilization of

adaptive probability mode. Another coding engine is for a fast coding of symbols. The

second coding engine is so-called “bypass” coding engine. In the bypass coding process,

an approximately uniform probability is assumed to be given. In this section, we show

the more detail information about the regular coding engine and the bypass coding

engine. First we show the encoding engine. Then we describe the algorithm of decoding

engine.

2.3.1 Regular Encoding Engine

The algorithm of arithmetic coding in H.264/AVC is composed of two parts. One is

Figure 2.3 Transition rules for updating the probability of LPS [2]

 13

encoding process and the other part is renormalization and output generator. The

encoding process decides the new range. The output generator generates bits for output.

The total number of output bits is variable. It might be from 0 to 7 bits.

The basic operations of encoding process are recursive interval division and

selection. Figure 2.4 shows the encoding process. The encoding equations are:

The Low and the Range of the equations indicate the bottom of the interval and the

length of current interval. All operations in the encoding process are multiplication-free.

The Range of LPS gets from table instead of multiplication. The value of rMPS get

from the subtraction of Range and rLPS. Figure 2.5 illustrates flowchart of encoding

process. When encoding one symbol, the value of range is smaller and the value of low

is equal or bigger. For using the integer arithmetic coding, the value of is renormalized

Initial

Range

New
Range

IF MPS

New
Range

IF LPS

New Low

rMPS

rLPS

rLPS

rMPS

Low New Low

rLPS

rMPS

Figure 2.4 Encoding process

 14

after each encoding one symbol. The value of low is renormalized with the value of

range.

The context information is updated after encoding a symbol. There are two tables

for probability transition of LPS. The transition rules are defined in previous Figure 2.3.

When the value of MPS equals the value of symbol, we use the table of the transition

index MPS. Otherwise, we use the table of the transition index LPS. If the state index

equals 0 and the value of symbol equal the value of LPS, the value of MPS will change.

In the state index “0”, the probability of LPS is 0.5. If we get that the encoding symbol

equal LPS in state index “0”, the probability of original LPS will exceed 0.5. For

EncodeDecision(ctxIdx,binVal)

qRangeIdx = (codIRange >> 6) & 3
RangeLPS = rangeTabLPS[pStateIdx][qRangeIdx]

Range = Range - RangeLPS

binVal !=
valMPS

Low =Low + Range
Range = RangeLPS

pStateIdx != 0

valMPS = 1 - valMPS

pStateIdx = transIdxLPS[pStateIdx] pStateIdx = transIdxMPS[pStateIdx]

Renorm

Done

Yes

No

Yes

No

Figure 2.5 Flowchart of encoding process

 15

limiting the value of probability from 0 to 0.5, we change the value of LPS. It means the

values of MPS and LPS exchange.

For maintaining the precision, the range and the low are renormalized after every

encoding process. In CABAC of H.264, it needs 9 and 10 bits to present the values of

ranges and the low respectively. The value of range gets smaller after every encoding

process. Therefore the value of range is limited from 256 to 511. If range is smaller than

256 (0x100), the range needs renormalization. The renormalization of low follows the

renormalization of range. Figure 2.6 shows the flowchart of the renormalization. In

Figure 2.6, each recursive process handles one shift. The process continues until range

is bigger than 0x100.

RenormE

Done

Range < 0x100

Low < 0x100

PutBit(0)

codILow >= 0x200

PutBit(1)

Low = Low - 0x200

codIRange = codIRange << 1
codILow = codILow << 1

Yes

Yes

No

Yes

No

Low = Low - 0x100
bitsOutstanding = bitsOutstanding + 1

No

Figure 2.6 shows the renormalization and output process.

 16

The output is completed in the renormalization. As Figure 2.6 shows, there are two

kinds of situation in the output process. The first situation is that the first two bits of

low are 00 or 10 or 11. We can determine the bit for output immediately. Then the first

bit of low is useless. Before low shifts, we desert the first bit of low. The second

situation is that the first two bits of low are 01. We can’t determine the bit for output

immediately. We use a register, called bitOutstanding, to count the continuous times of

this condition. The flowchart of PutBit(B) function is shown in Figure 2.7. As we

determine the bit for output, we put a sequence of bits after the bit. The values of the

each bit in the sequence are the inverse value of the determined output bit and the

length of the sequence is the value of bitOutstanding.

2.3.2 Bypass Encoding Engine

Bypass encoding is a simplified edition of regular encoding. In the bypass encoding,

the probability of LPS is assumed 0.5. Hence there are no state indices used in the

process. For determining the decision of encoding, its uses double of low instead of half

of range. Therefore it needs 11 bits for presentation of low in bypass encoding. Figure

Figure 2.7 Flowchart of PutBit(B)

 17

2.8 shows the bypass encoding process. The under part in Figure 2.8 is the

renormalization. There are no iterations in bypass encoding. As the renormalization of

the regular encoding, the renormalization in the bypass encoding is almost the same.

The output decision also depends on the first two bits of low.

2.3.3 Decoding Engine

The decoding engine has two kinds of coding engine as the encoding engine. The

regular decoding engine handles normal situation. The bypass decoding engine decodes

Figure 2.8 Flowchart of bypass encoding

 18

the symbol that we assume the probability of LPS is 0.5. The bypass decoding engine

can accelerate the total decoding rate.

The flowchart of the decoding engine is shown in Figure 2.10. In the decoding

process, the range of LPS is also from the table. The table indices are composed of the

7th and the 8th bits of range and the probability state of LPS. The decision of decoding is

according to the relationship of the offset and the rMPS. The offset means the

probability of the symbol sequences. In Figure 2.10(A), if the value of offset is bigger

than range of MPS, the decoding symbol is MPS and the new values of range is rMPS.

Otherwise the decoding symbol is LPS and the new range is rLPS. In Figure 2.10(B), if

the value of the offset is smaller than the range of MPS, we subtract the original offset

Figure 2.9 Flowchart of decoding engine

 19

and rMPS to get the new offset. The context probability model is updated in

every decoding. The transition rule is the same as the rule in encoding engine.

The final operation is renormalization. Figure 2.11 shows the flowchart of

renormalization. The range and the offset are getting smaller after encoding. For integer

implementation, when the value of range is smaller than 256, we shift the value of range.

The range is limited from 256 to 511. As the range shift one bit to left, the low also shift

rMPS

Offset

New Range

New Offset

Offset >= rMPS

rLPS

rMPS

Offset

rLPS

Offset < rMPS

New Range

New Offset

(A) (B)

Figure 2.10 Decoding decision

Figure 2.11 Renormalization of decoding engine

 20

one bit to left. Then we insert a new bit from the sequence of encoding results in the

least significant bit of low.

The bypass decoding engine is simplified from the regular decoding engine. Figure

2.12 shows the flowchart of the bypass decoding engine. There is no state index used in

the bypass decoding engine. In the beginning of the bypass decoding engine, we first

shift the offset and read a new bit from the sequence of ending result. Than we decide

the bin value according to the comparison result of offset and range. If the value of the

offset is bigger than the value of range, the decoding decision is 1 and the new value of

the offset is the difference of original offset and range. Otherwise, the decoding decision

is 0 and the value of the offset is the same as the original.

Figure2.12 Flowchart of bypass decoding

 21

2.4 Previous work
In the previous papers, many architecture designs for arithmetic coder and decoder

are proposed for different standard. In this section, we introduce the ideas in their

architecture.

In [4], they proposed a 4 pipeline stage design for JPEG2000 MQ-coder. Figure

2.13 shows the block diagram of the architecture in [4]. The works of stage 0 and stage

1 are context update and range computation. The context index update in the next cycle.

Because the precision of range register are 16 bits and the precision of register is 28 bits

in JPEG2000, they pipeline the adder of low into two stages to reduce the path delay.

The stage 2 computes the least significant 16 bits of low register. The stage 3 computes

the most significant 12 bits of low register and generates the output bits. In [7], they

proposed the extension architecture based on [4]. Their architecture can handle more

Figure 2.13 4-stage pipeline design of encoder in [4]

 22

than one symbol in a cycle. For reducing delay of critical path, they invert the sequence

of some elementary operations. As a consequence, their have to use six branches to map

the allowable cases. Their method is called the inverse multiple branch selection (IMBS)

method.

In [5] and [6], an architecture of CABAC is proposed for multiple standard and

JPEG2000. Their architecture is a 3 pipeline stages design. Figure 2.14 shows pipelined

context-based AC encoding flow in [5] and [6]. In the stage 0, the interval computation

and context information update is completed. In the stage 1, the bit-stuffing handler is

in charge of bit-stuffing problem. The bit-stuffing handler uses buffer to detect the

sequence “0xFF” in the result bits. If the bit-stuffing handler detects the sequence

“0xFF”, it will insert a bit after the sequence “0xFF”. The inserted bit is the carry bit

generated from previous stage. Because the output length of the bit-stuffing handler is 0,

1 or 2 bytes, they add a 4-byte FIFO register to limit the output length in one byte.

In [8], their architecture is based on H.264/AVC. Figure 2.15 shows the block

diagram of arithmetic coder in [8]. Their arithmetic coder architecture is a 2 pipeline

stage design. The first stage handles encoding iteration. In their design, they divide the

original LPS table into four LPS tables which are independent of range. In the encoding

iteration, they use a carry-save adder and prefix-adder to reduce the computation time

of low and the range. In the renormalization, they use Leading-Zero detection in parallel

Figure2.14 Pipelined context-based AC encoding flow in [5] & [6]

 23

with the prefix adder to reduce the time for the renormalization. Stage 1 packs the

output bits from stage 0 into a byte. The bit-packing stage also detect the sequence

“0xFF” in the result to prevent the result is emitted by a carry propagation. If the

bit-packing stage detects the sequence “0xFF”, they suspend the output process. Then

count the total length of “0xFF” until further operations discard carry propagation.

In [10], they propose co-processor architecture on SoC platform. In the coder design,

Figure 2.15 Block diagram of arithmetic coder in [8]

 24

they use the MZ-coder instead of the M-coder in H.264/AVC. The MZ-coder provides

equivalent bit rate comparison with M-coder. Furthermore, the MZ-coder eliminate the

multiple renormalization cycles in M-coder. The coprocessor achieves a constant

throughput for both encoding and decoding processes of 1 symbol per cycle.

In [11], they improve the bypass coding of CABAC in H.264/AVC. They use

different hardware to handle the regular and the bypass mode coding. If a regular mode

follows a bypass mode, their architecture can encode two symbols in the cycle. The

probability of this situation is about 10%. Therefore their can increase 10%

performance in average.

In the next chapter, we propose a novel architecture of arithmetic encoder and

decoder for H.264/AVC. The architecture of encoder is a 3 pipeline stages design and

the architecture of decoder is non-pipeline design. For reducing the path delay in the

architecture, we rearrange the operations of range operations in the encoder and the

decoder. Furthermore, in encoder we extend the architecture to encode more than one

symbol per cycle.

 25

Chapter 3

Architecture of Arithmetic

Encoder and Decoder

In this chapter, we present hardware architectures for arithmetic encoder and

decoder. First, we show a basic encoder architecture, which can encode one symbol per

cycle. Then, based on the basic architecture, we further extend the design to support the

encoding of multiple symbols per cycle. In the second section, we show the architecture

of arithmetic decoder.

3.1 Encoding Architecture
Figure 3.1 shows the block diagram of the basic architecture, which includes 3

pipeline stages. In our architecture, we separate the operations of range and low into

stage 0 and stage 1. In stage 2, the byte packing unit can pack the results into the format

of byte. Furthermore, the architecture can support two encoding modes. Specifically, as

illustrated in Figure 3.1, the stage 0 computes the value of range and update context

Figure 3.1 Pipeline stage of one-symbol encoding architecture

 26

probability model. The stage 1 computes the value of low and generates output bits. The

stage 2 groups the bits from the output of the stage 2 and packs them in a byte-by-byte

manner. In addition, the bit-stuffing is also done in the stage 2.

To improve encoding throughput, we propose an extended architecture, which can

encode multiple symbols per cycle. To achieve this, the operation of range is first

reordered to reduce critical path. Then we duplicate the one-symbol encoding

architecture and add additional hardware in each pipeline stage. The detail information

will be shown in section 3.2.

3.1.1 One-symbol Encoding Architecture

In this section, we detail the design of each pipeline stage. For the stage 0, the

operation includes two parts, which are the computation of range and the update of

context probability model. Particularly, the critical path of the stage 0 is the

computation of range, as shown in Figure 3.2 (a). We summarize the operations in the

critical path as follows:

1. The table look-up of rLPS (range of LPS).

2. The subtraction for getting rMPS (range of MPS).

3. The renormalization.

For reducing the delay in the critical path, we rearrange the order of these operations.

Originally, to produce the rLPS, the look-up table takes both the range and the

probability of LPS, i.e., Qe., as input. For eliminating the data dependency between the

rLPS and the range, we produce 4 sub-tables by unrolling the cases of range. After the

unrolling, each sub-table simply takes Qe as input, as shown in Figure 3.2 (b). Then, the

renormalization of previous iteration and the table-lookup of rLPS can be done in

parallel, as shown in Figure 3.2 (c). Lastly, we can reorganize the operations in the

iteration, as shown in Figure 3.2 (d).

 27

The detailed block diagram of the stage 0 is shown in Figure 3.3. As shown, the

stage 0 has three input signals, one output signal, and three intermediate signals for the

next stage. The meaning of each symbol is elaborated as follows:

 The signal “Symbol” means the encode symbol.

Table
of rLPS Renorm

Range[7:6]

Qe0

Range
computation

rLPS

Non-norm
New
range Table

of rLPS
Qe1

Range
[7:6]

Iteration 1 Iteration 2

Renorm
range

Qe0
Range

computation

rLPS Non-norm
New
range

Qe1

range

Iteration 1 Iteration 2

4 Sub-
tables

of rLPS

4 Sub-
tables

of rLPS

Range
computation

rLPS

Range
computation

Non-norm
New
range

Non-norm
New
range

Renorm

Qe0

Range
computation

Non-norm
New
range

Qe1

range

Iteration 1 Iteration 2

4 Sub-
tables

of rLPS

Range
computation

4 Sub-
tables

of rLPS

Renorm
range

rLPSs rLPSs

Renorm

Qe0

Range
computation

Non-norm
New
range

Qe1

range

Iteration 1 Iteration 2

4 Sub-
tables

of rLPS

Range
computation

4 Sub-
tables

of rLPS

Renorm
range

rLPS rLPS

Non-norm
New
range

Non-norm
New
range

(a)

(b)

(c)

(d)

Range Range

Figure 3.2 Path of range in encoding iteration.

 28

 The signal “Context” means the context probability model that includes the Qe

and the MPS.

 The signal “Encode mode” specifies whether the coding is in the regular mode

or the bypass mode.

 The other two signal passing to the next stage means the value that will add with

low and the numbers of output bits in this encode process.

 The output signal “Context update” is used to update the context information.

For supporting the bypass mode in the stage 0, the register of range and the signal

“Addtolow” is controlled by the signal “Encode mode”. When the encoding is in bypass

mode, the range will remain un-changed and the signal “Addtolow” will take the value

Figure 3.3 Detailed block diagram of stage 0.

 29

of range. Then, the signal “encode mode” will be passed to the next stage.

In the stage 1, the main operations include the computation and the renormalization

of low. Figure 3.4 shows the detailed block diagram of the stage 1. As shown, the stage

1 takes the intermediate signals produced by the stage 0 as input and produces “Output

bits” and “N_bits”. Respectively, the signals “Output bits” and “N_bits” stand for the

encoding result of one symbol and the associated number of coded bits. Particularly,

when the coding is in the bypassing mode, the value of low will be firstly shifted to the

left by one bit and the total shift value will be set to 1.

In the stage 2, the encoding results, i.e., the compressed bits, from the stage 1 are

packed in a byte-by-byte manner. In [7], the byte-stuffing technology is used for

packing. To detect the occurrence of 0xFF sequence, a 16-bit buffer is used to buffer the

compressed bits. When the value of 0xFF is detected and identified, there are

possibilities that the carry propagation will affect the byte that has been outputted.

Therefore, we need to hold the output byte and use a register to store the length of

stuffed bytes. The operation in packing buffer is shown in Figure 3.5. In the beginning,

the second byte in Pbuffer is 0xFF. Then we store the length of the byte 0xFF in the

register “N_bytestuff” and the bit value of the byte 0xFF in the register “Stuff”. After

storing the information of stuff situation, we continue the process of byte packing. If the

Low

1

Shifter
+ Shifter

R_Shift
1

Encode
mode

7(MSBs)

10(LSBs)

17 Output
bits

N_bits

New Low

Low

Figure 3.4 Block diagram of the stage1 in basic architecture.

 30

next byte is not 0xff, stage 2 will output the first byte in the packing buffer, the value in

the register “Stuff” and the value in the register “N_bytestuff”. On the other hand, if the

next byte is 0xff, the register “N_bytestuff” will be increased by 1. If the following

operations produce a carry signal, the register “Stuff” will be turned to 0 and the first

byte of packing buffer will be increased by 1.

Figure 3.6 shows the block diagram of the stage 2. The register “Pbuffer” stores the

encoding results. The register “N_Pbuffer” records the number bit of results in the

“Pbuffer”. The combination of the registers “Stuff” and “N_bytestuff” specifies the

information of byte stuff. Upon the detection of a “0xFF” byte, the register “stuff”

records the content of stuffing bits and the “N_bytestuff” specifies the number of the

bytes that have the value of “0xFF”. Until the next byte is not “0xFF”, the stuffing

information is output with the signal “Outputbyte”.

Output byte 0xFF

First byte Second byte

Output byte

Stuff
happen

Continuing to
Collect next byte

Pbuffer
0

Stuff

0

N_bytestuff

1 1

Output byte Not 0xFFIf next byte
is not 0xFF

1 1

Output Output Output

Output byte +1 0 1
If carry happen

in collection

Output byte 0xFFIf next byte
is 0xFF

1 2

Figure 3.5 Operation in packing buffer.

 31

3.1.2 Multiple Symbols Encoding Architecture

For improving the performance of AC encoding, we propose an encoding

architecture that is capable of coding multiple symbols per cycle. While maintaining

similar or higher coding performance, our scalable architecture provides the flexibility

to adjust clock rate by changing the number of coding symbols per cycle.

Figure 3.7 shows the block diagram of scalable architecture. To encode more than

one symbol per cycle, we duplicate the one-symbol encoding architecture and add

additional hardware in each pipeline stage. For encoding n symbols per cycle, we

duplicate the one-symbol encoding architecture by n times in the stages 0 and 1. As

shown in Figure 3.7, the one-symbol encoding unit in the stages 0 and 1 includes the

range operation, the context update, and the low operation. For multi-symbol encoding,

+

 Figure 3.6 Block diagram of the stage2 in the basic architecture.

 32

these functional units are duplicated. After encoding the symbol, the values of range and

low are passed to the next functional unit. In the stage 0, if more than two encoding

symbols use the same context probability model, the later encoding symbols will use

the context probability model after the update. Therefore the context information needs

a multiplexer to choose the correct one. In the stage 1, the number of result produced by

low operation is variable. For reducing the workload and complexity of the stage 2, we

combine all the results before passing the data to the stage2.

In the stage 2, we insert a small input buffer to support the multi-symbol encoding.

The basic byte packing unit can process 8 bits in one cycle. For coding one symbol, the

average number of results from the stage 1 is less than 1. As we extend the design for

multiple-symbol encoding, the probability for the total input number being greater than

8 is very small. Such an exception only occurs a few times for each video frame. Thus,

we insert a small buffer in front of the stage 2. The input buffer limits the number of

input bits to 8 bits. As a result, using an input buffer can maintain the same structure of

byte packing unit in the stage 2.

 33

Figure 3.7 Block diagram of the multiple symbols encoding architecture

 34

Figure 3.8 details the unit for result combination. The result combination unit

consists of shifters and adders. There are two kinds of input signals in Figure 3.8. The

signal “Output bits_i” (i=0,1,…,n) means the encoding result of one symbol and the

signal “R_shift_i” (i=0,1,…,n) denotes the length of encoding result. For combining

the results produced by different low operations, we first shift the previous encoding

result to the correct position. Then we use adders to combine all the result bits. By this

way, the result combination unit can output the total number of result bits and a

sequence of result bits.

Figure 3.9 shows the block diagram of the input limit buffer. There are two input

signals, two output signals, and two local registers. The register “Buffer” temporarily

 Figure 3.8 Block diagram of result combination unit

Buffer Shifter

Total
Output

Bits

Total
R_shift

+

N_buffer + Total > 8
? 1'b1:1'b0

-
8

8

0

Most
Significant
Eight bits
Selector

Residual
 bits

To
packing

bit

N to
Packing bit

Figure 3.9 Block diagram of input limit buffer

 35

stores the residual bits if the length of previous packing bits is greater than 8. The

register “N_buffer” records the number of bits that are stored in the register “buffer”. If

the buffer is not empty, we combine the bits in the buffer and the input bits. Then we

check if the total number of bits is greater than 8. As the total number of bits is greater

than 8, we will select the first 8 MSB bits of the combined result as the output and keep

the residual bits in the buffer. In the opposite case, we will pass the bits directly to the

byte packing unit.

3.1.3 Multiple Standard Support

In addition to supporting multi-symbol encoding, our structure can also be easily

tailored to support the arithmetic encoding in JPEG2000. Table3.1 summarizes the

difference of the arithmetic coder in H.264/AVC and JPEG2000. There are three major

differences, which are (1) the method for getting rLPS, (2) the operations of low and

range, and (3) the precision for representing range and low. In JPEG2000, rLPS simply

depends on Qe. However, in H264/AVC, rLPS is from both Qe and range. For the

operations of low and range, JPEG2000 updates the low by adding the value of rLPS, as

Table 3.1 Differences of arithmetic coder in H.264/AVC and JPEG2000

 H.264/AVC JPEG2000

rLPS table[Qe][range[7:6]] Qe

rMPS range - rLPS range - rLPS

operations

when symbol == MPS

lownew = low

rangenew = rMPS

lownew = low + rLPS

rangenew = rMPS

operations

when symbol == LPS

lownew = low + rMPS

rangenew = rLPS

lownew = low

rangenew = rLPS

range register

precision(bits)
9 16

low register

precision(bits)
10 28

 36

the input symbol is MPS. On the other hand, in H.264/AVC, the low is updated by

adding the value of rMPS, as the input symbol is LPS. Lastly, the precision for

representing the range and low is different. Specifically, JPEG 2000 requires higher

precision for the range and low.

To support JPEG2000, our design is modified to adopt these differences. More

specifically, when the coding is for JPEG2000, we remove the 4 sub-tables of LPS and

directly connect the Qe to the range compute unit. In the encoding operation, we change

the value, which we prepare to add to low, from rMPS to rLPS. Then the timing of

adding will be change from that symbol equals LPS to that symbol equals MPS. Lastly,

we use high-precision registers and adders to fulfill the need of JPEG2000. Without

changing the architecture significantly, our design can be slightly extended to support

JPEG2000.

3.2 Decoder Architecture
In this section, we illustrate the architecture of binary arithmetic decoder. For the

decoding, our architecture can decode only one symbol per cycle. Different from the

case of encoder, at the decoder, the context index for a symbol can only be certain when

the previous symbol is decoded. Because of strong data dependency and insufficient

context information, it is more difficult to decode multiple symbols per cycle. Thus, our

proposed decoder architecture is not pipelined.

To reduce the delay of computation, we apply the same reordering technique in the

encoder. Figure 3.10 (a) shows the critical path in the straightforward implementation.

As shown, the longest delay is for the computation of new offset value. The offset value

is determined after the range. For completing the computation of range, it needs four

steps. The first two steps in the decoding process are similar to those in the encoding

 37

process. The rMPS and rLPS are known in the first two steps. When rMPS is known,

we can compare the value of rMPS with the offset to make the decision. After the

comparison, new range and offset are determined. Thus, we renormalize the range and

the offset. For reducing the critical path, we employ the same reordering technique used

for the encoder. As shown in Figure 3.10 (b), the registers of range and the offset store

the value without renormalization. Also, we use 4 sub-tables to eliminate the data

dependency between rLPS and range. After the reordering, Figure 3.10 (b) illustrates

the proposed decoder architecture.

Figure 3.11 shows the detail architecture of decoder. Basically, the decoder has four

input signals and three output signals. The signal “Bits_in” replenishes the least

significant bits of the offset value during the renormalization. The encode mode

indicates whether the decoding process is in regular or bypass mode. The state index

and MPS form the context information. The signal “Output bit” is the decoding result

and the signal “Qe update” and the signal “MPS update” update the context probability

Figure 3.10 Data path of range in decoder

 38

model. To support the bypass decoding, two additional multiplexers are deployed in this

design, as shown with the dash blocks in Figure 3.11. In the bypass mode, we make the

decision according to the range and double offset. The first multiplexer choose rMPS or

range according to encoding model. The second multiplexer chooses the double values

of offset or the value of offset to decode. But, in our design, the renormalization is done

in the beginning. Therefore, we can combine the shift of renormalization and the shift

of double low. When bypass decoding, the shift value of offset will be increased by 1.

 Figure 3.11 Architecture of the AC decoder

 39

Chapter 4

Implementation

4.1 Design flow and verification
In this section, we detail the design flow and the verification environment. In the

beginning of the design, we build the C model for the proposed architecture. The C

model is used not only for analysis but also for debugging in RTL-level design. After

the C model design and verification, the design and the simulation of the register

transfer level (RTL) level start. The hardware design in RTL is represented by verilog

hardware description language (HDL). After the RTL simulation, the RTL verilog code

of the design will be synthesized and optimized into gate level. Then the gate level

simulation starts. After the gate level simulation, the verification move to the FPGA

environment.

Figure 4.1 shows our environment of FPGA. The multi ICE connects the FPGA

board with the PC. On the board, there are logic and core modules. The ARM 966 CPU,

the SDRAM controller and embedded SRAM is covered by the core module. The

proposed design is downloaded to logic module which is made of FPGA. We download

our designs through the multi ICE to the FPGA. During the simulation, the compiled

code is put in the embedded SDRAM and the image data is put in the external SDRAM.

Our designs act as slaves on the bus. The ARM 966 CPU, which is a master on AHB,

can access the slaves via AHB. The ARM966 CPU can use the accelerator of CABAC

through the AHB.

 40

In the FPGA environment, we run the codec of H.264 to verify our CABAC

encoder/decoder design. The architecture of CABAC encoder and decoder has passed

the verification.

4.2 Implementation Results
Table 4.1 shows the synthesis results of the encoder and decoder. The data of the

results is from Design Analyzer. The one-symbol encoding architecture can achieve

370M symbols per second. As the architecture extends to encode two and three symbols

per cycle, the performance achieves 526M and 546M symbols per second. Furthermore,

the performance of decoder can achieve 333M symbols per second. Although the gate

Figure 4.1 FPGA environment

 41

counts of two-symbol encoding architecture is 2.1 times than that of one-symbol

encoding architecture, the performance of two-symbol encoding architecture is 1.4

times faster than one-symbol encoding architecture. When the one-symbol encoding

architecture extends to encode three symbols per cycle, the performance achieves the

maximum and the gate counts of three-symbol encoding architecture is only 2.5 times

faster than one-symbol encoding architecture.

The maximum throughput saturates when the encoding symbols per cycle increase.

As figure 4.2 shows, we can find that the maximum throughput is limited in 550M

300

350

400

450

500

550

600

1 2 3

Encoding Symbols per Cycle

T
hr

ou
gh

pu
t

Figure 4.2 Encoding Symbols per Cycles VS Throughput

Table 4.1 Results of encoder and decoder design

Designs Encoder Decoder

Number of
Encoding/Decoding

 bits per Cycle
1 2 3 1

Maximum Frequency 370 263 182 333

Gate Count (0.18um) 3.7k 7.8k 9.3k 3.5k

Maximum Throughput
(Mega-symbols/s)

370 526 546 333

 42

symbols per cycle. The critical path increases with the encoding number per cycle. The

increase of critical path causes the saturation of maximum throughput.

4.3 Comparison
Table 4.2 lists the results previous arithmetic encoder design for H.264/AVC with

ours. The designs of [4], [5], [6], and [7] are designed for different standard and

implemented in old technology. For fair comparison we do not list the results of their

designs in the table 4.2. As the table 4.2 shows, our maximum throughput is 1.65 to

2.87 times than the designs of [8], [9]. [10].

Table 4.3 lists the results of our decoder designs and prevous arithmetic deocder

designs for H.264/AVC. In [2] and [3], they have decoder designs, but the designs are

used for different standard and implement in old technology. In table 4.3, although the

maximum throughput of our design is the same as the design of [10], our technology is

behind theirs. Therefore the result in our design is better than the result in [10].

Table 4.2: AC encoder performance comparison

Design Standard

Number of
Encoding

 Symbol per
Cycle

Gate Count
Throughput

(Mega-symbols/s)

My design H.264/AVC 1,2,3
3.7k,7.8k,9.3k

(0.18um)
370,526,546

[8] H.264/AVC 1
N/A

Estimation(0.18um)
200

[10] H.264/AVC 1
N/A

 (0.13um)
330

[11] H.264/AVC 1
N/A

 (0.18um)
190

 43

Table 4.3: AC decoder performance comparison

Design Standard Gate Count
Throughput

(Mega-symbols/s)

My design H.264/AVC 3.5k(0.18um) 330

[10] H.264/AVC
N/A

(0.13um)
330

 44

Chapter 5

Conclusion

In this thesis, we propose a scalable architecture for the encoding and decoding of

the context-adaptive binary arithmetic coder (CABAC) in H.264/AVC.

There is strong data dependency in the algorithm of CABAC. In the encoding and

decoding process, the value of range cannot be used until the process of previous

symbol complete. Therefore, the critical path will determine the performance of the

designs. For reducing the delay of critical path, we reorganize the range operations in

encoding and decoding iteration. The new order of range operations can parallel the

process.

For high performance requirement, the architecture can be extended to encode more

than one symbol per cycle. For extension, we duplicate the basic functions in the stages

0 and 1. Then we respectively add result combination unit and an input limit buffer in

the stages 1 and 2. The result combination unit can combine the result of different

encoding symbols. The input limit buffer can increase the capacity of byte packing unit.

Then the byte packing unit will not be changed. Moreover the basic operations of

Arithmetic coder in JPEG2000 and H.264/AVC are similar. The design can be modified

to support JPEP2000 easily.

We use 0.18 CMOS technology to synthesize our designs. The maximum

throughput of the three-symbol arithmetic coder is 545M symbols per second and the

maximum throughput of decoder is 330M symbols per second. Besides, we verify our

 45

designs on the environment of FPGA. All the designs work with H.264 encoder or

decoder correctly.

The context memory design is future work. As the proposed architecture encodes

multiple symbols per cycle, it will need a multi-port memory to support. A context

memory with low cost and high performance will be an important problem.

 46

Bibliography
[1] http://www.packetizer.com/codecs/h264/trev_293-schaefer.pdf

[2] D. Marpe, H. Schwarz, T. Wiegand; “Context-Based Adaptive Binary Arithmetic

Coding in the H.264/ABC Video Compression Standard”, IEEE Trans on Circuits

and Systems for Video Technology, July 2003

[3] Text of ISO/IEC 14496-10:2004 Advanced Video Coding (second edition).

[4] H.-H Chen, C.-J Lian, K.-F Chen, L.-G Chen, “Context-based Adaptive Arithmetic

Encoder Design for JPEG 2000”, VLSI Design/CAD Symposium, 2001.

[5] K.-K Ong, W.-H Chang, Y.-C Tseng, Y.-S Lee, C.-Y Lee “A High Throughput Low

Cost Context-based Adaptive Arithmetic codec for Multiple Standards”, Image

Processing, 2002

[6] K.-K Ong, W.-H Chang, Y.-C Tseng, Y.-S Lee, C.-Y Lee,”A high throughput

context-based adaptive arithmetic coder for JPEG2000”, Circuits and Systems, 2002.

ISCAS 2002

[7] Grzegorz Pastuszak, ”A novel architecture of arithmetic coder in JPEG2000 based

on parallel symbol encoding”, Proceedings of the International Conference on

Parallel Computing in Electrical Engineering (PARELEC’04)

[8] Osorio, R.R.; Bruguera, J.D,”Arithmetic coding architecture for H.264/AVC

CABAC compression system”, Digital System Design, 2004. DSD 2004

[9] C,-J. Lian, K-F. Chen, H.-H. Chen, and L.-G Chen, “Analysis and architecture

design of block-coding engine for EBCOT in JPEG2000,” IEEE Trans. Circuits and

System for Video Technology, March 2003.

[10] J. L. Núñez, V. A. Chouliaras, ”High-performance Arithmetic coding VLSI Macro

for the H.264 Video Compression Standard”, Consumer Electronics, IEEE

 47

Transactions, Vol. 51, ISSUE 1,pp. 144-152Feb. 2005

[11] Hassan Shojania, Subramania Sudharasanan, “A VLSI Architecture for High

Performance CABAC Encoding”, Visual Communications and Image Processing,

pp. 1444-1454, 2005

