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摘要 

本篇論文主要介紹 IEEE 802.16a 分時雙工正交分頻多重進接上行傳輸系統

的軟體實現，我們整合前向誤差改正編碼器於傳送端，並於接收端加入同步裝

置、通道等化裝置、及前向誤差改正解碼器。 

我們先針對接收端的同步演算法做些修改，並在數位訊號處理 (DSP) 平台

上對程式做最佳化的處理。我們的數位訊號處理平台包括一台個人電腦、

Innovative Integration 公司的 Quixote 板子及其上裝置的 Texas Instrument 公司的

TMS320C6416 數位訊號處理晶片。 

我們在接收端的上行同步處理機制是利用上行傳輸資訊 (preamble) 的不變

性，直接對收到的信號作相關性 (correlation) 的運算。藉此找到第一個到達基地

台之使用者的時間，以減低符元間的干擾 (inter symbol interference)。 

為了能有效提升 DSP 運算效率，我們系統中所有的運算皆是以定點 

(fixed-point) 的格式來處理。而最佳化的目標是加速程式執行的速度，以期能達
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到即時運算的要求。我們提出數個針對程式所做的改善技巧，如軟體管線 

(software pipelining)，或是使用 C6416 內具有的指令 (intrinsic) 來做處理。並從

編譯器所提供的相關資訊做進一步的分析討論，以清楚了解程式的運作情形。  

最後，傳送端的插值濾波器 (interpolator filter) 及接收端同步器的速度分別

改善了 85.85 倍和 1.74 倍，且在 DSP 上執行的效率也各達到 90.94%和 85.87%。 
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Abstract 

 

This thesis introduces the software implementation of the IEEE 802.16a TDD 

uplink transceiver system. We integrate the FEC encoder in the transmitter, the 

synchronizer, the channel equalizer, and the FEC decoder in the receiver.  

We first do some modifications to the uplink synchronization algorithm, and then 

optimize our programs on the digital signal processing (DSP) platform, which 

includes a personal computer (PC), Innovative Integration’s Quixote DSP board, and 

the TI’s TMS320C6416 DSP chip.   

The uplink synchronization mechanism is using the invariance of the preamble 

which is also known to the base station. We correlate it to the received signals directly, 

and thus find the first coming subscriber station’s time to reduce the inter-symbol 

interference.  

The data formats on this system are all “fixed-point” for improving the 

computational efficiency in DSP. Our optimization goal is to accelerate the program’s 

execution speed so that it can satisfy the requirement of real-time processing. We 

present some optimization techniques, such as software pipelining, and using the 
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intrinsics of DSP, to deal with the most time-consuming parts of the program. We also 

discuss and analyze the compiler feedbacks to understand how the program works in 

the DSP.  

Finally, the speed of the interpolator filter in the transmitter and the uplink 

synchronizer in the receiver can be improved by 85.58 and 1.74 times, respectively. 

The computational efficiencies of them are 90.94% and 85.87%, respectively.           
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Chapter 1

Introduction

Orthogonal frequency division multiple access (OFDMA) is a variation scheme of or-

thogonal frequency division multiplexing (OFDM), which is a special case of multicarrier

transmission that transmits one data stream over a number of subchannels. What makes

OFDMA different from OFDM is that multiple users can share one OFDM symbol. It

is the combination of OFDM and frequency division multiple access (FDMA), but the

guard band of each user could be neglected. OFDMA provides a highly flexible and ef-

ficient structure for mutltiuser communication. At present, OFDMA has been proposed

for use in wireless broadband multimedia communications systems (WBMCS) in IEEE

802.16a [1] and in cable TV networks [2].

The IEEE 802.16a standard is an extension of the global IEEE 802.16 WirelessMAN

standard for 10 to 66 GHz published in April 2002. It provides for fixed broadband

wireless access (BWA) between 2 and 11 GHz for non-line-of-sight connections up to 31

miles at speeds up to 70 Mbps.

The IEEE 802.16a, “Air Interface for Fixed Broadband Wireless Access Systems —

Medium Access Control Modifications and Additional Physical Layer Specifications for

2–11 GHz,” sets the platform for the extensive deployment of 2 to 11 GHz wireless

metropolitan area networks (MANs) as an economical alternative to wireline “first-mile”

connections to public networks. “It closes the first-mile gap, giving users an easily in-

stallable, wire-free method to access core networks for multimedia applications,” states

1



Table 1.1: Comparison of OFDMA Uplink Carrier Allocations in IEEE 802.16-2004 and
IEEE 802.16a

Parameters IEEE802.16 2004 IEEE 802.16a

Number of dc subcarriers 1 1
Nsuchannels 70 32

Nused 1681 1696
Number of data carriers per subchannel 48 48

Guard subcarriers: Left, Right 184, 183 176,175

Roger Marks, Chair of the 802.16 Working Group on Broadband Wireless Access [3].

The new 802.16d upgrade to the 802.16a standard was recently approved in June 2004

(now named 802.16-2004), and primarily introduces some performance enhancement fea-

tures in the uplink [4]. It consolidates IEEE Std 802.16, IEEE Std 802.16a, and IEEE Std

802.16c, retaining all modes and major features without adding modes [5]. Table 1.1 gives

a comparison between IEEE 802.16-2004 and IEEE 802.16a in OFDMA uplink carrier

allocations. The number of subchannels is increased to 70, while in IEEE 802.16a it is 32.

The TDD frame structure has also been modified in IEEE 802.16-2004, which is shown

in Figure 1.1. We can see that in IEEE 802.16-2004, each frame begins with a preamble

followed by a downlink transmission period and an uplink transmission period. This is

quite different from the frame structure in IEEE 802.16a, where a preamble appears only

in the uplink subframe.

Since the project that this thesis is based was started in 2002, the algorithms imple-

mented in this work have been designed to meet the requirements of IEEE 802.16a. In

this thesis, we will discuss the DSP implementation and optimization of the IEEE 802.16a

uplink system, instead of IEEE 802.16-2004.

Generally speaking, the basic elements in a communication system can be divided

into two parts, a transmitter and a receiver. In our case, we will implement the uplink

transmitter-receiver pair that includes the transmitter in the subscriber station (SS) and

the receiver in the base station (BS). Our work is mainly based on the simulation program

2



in [14], adding the FEC (forward-error-correcting coding) encoder and decoder of [15].

We briefly introduce the references [14] and [15]. In [14], the intent is to intro-

duce the uplink synchronization scheme by using digital signal processor. The work

also includes the implementation of the framing/deframing structure, IFFT/FFT block

and TX/RX SRRC filter. In [15], it focuses on the implementation of FEC/FED (forward-

error-correcting decoding) scheme of the IEEE 802.16a on II Quixote DSP board.

The hardware environment of our system involves one host personal computer (PC)

and a digital signal processing (DSP) chip housed on Innovative Integration’s Quixote

PC plug-in card. The DSP core, Texas Instruments, TMS320C6416, “meets the need

for today’s high processing speed for digital data transmission” [18]. It uses an advanced

very long instruction word (VLIW) architecture, VelociTI, which can allow the functional

units to work in parallel so that the execution time can be greatly reduced.

In our system, we will make use of the busmastering interface [16] provided by

Quixote as a method for host-to-target communication. A major issue dealt with in this

work, besides system integration, is the efficiency in DSP software implementation em-

ploying various optimization techniques. Our optimization is aim to accelerate the execu-

tion speed of the programs.

This thesis is organized as follows. In chapter 2, we introduce the IEEE 802.16a TDD

OFDMA uplink transmission scheme. Chapter 3 introduces the DSP platform. Chapter 4

discusses the DSP optimization methods and presents the optimization results. Finally, in

chapter 5 we give a conclusion and point out some potential future work.
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Fig. 1.1: Frame structures of IEEE 802.16 2004 (top) [5] and IEEE 802.16a (bottom) [1].
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Chapter 2

The IEEE 802.16a TDD OFDMA
Uplink Transmission Scheme

In this chapter, we first introduce some basic concepts regarding OFDM and OFDMA.

Then, we give a brief overview of the relevant specification in IEEE 802.16a and describe

our transmission and reception schemes in detail.

2.1 Introduction to OFDM

Orthogonal frequency division multiplexing (OFDM) is a special case of multicarrier

transmission technique, where a single datastream is transmitted over a number of lower

rate subcarriers [6]. It has been successfully applied in many digital communication sys-

tems in recent years. The concept of OFDM is to use parallel data transmission and

frequency multiplexing. It divides the available spectrum into several narrow subcarrier

bands, and each subcarrier only transmits part of the information.

We would like to emphasize that the orthogonality of OFDM constitutes one major

difference from the classical parallel data system, making its use of the available spectrum

more efficient. Figure 2.1 shows the differences. As we can see, the subcarriers in an

OFDM symbol can be arranged so that the sideband of each subcarrier overlaps but the

received symbols still live without adjacent interference. This can be accomplished by

using the discrete Fourier transform (DFT) proposed by Weinstein and Ebert in 1971 [7].
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Fig. 2.1: Bandwidth efficiency comparison of traditional FDM and OFDM systems.

The complexity of DFT, however, is too expensive. Fortunately, modern advances in very-

large-scale integration (VLSI) make it possible to use the fast fourier transform (FFT) for

a more efficient implementation of the DFT. The complexity is reduced from N2 in DFT

to N log2 N in FFT.

One of the most important reasons to do OFDM is that it can deal with multipath

delay spread in a more efficient way. This is achieved by introducing a guard time for

every OFDM symbol such that intersymbol interference can be eliminated. The guard

time is chosen larger than the expected delay spread, such that multipath components

from one symbol cannot interfere with the next symbol. However, if the guard time is

filled with zeros, the othogonality among subcarriers will no longer exist, and this causes

serious intercarrier interference (ICI).

To preserve the orthogonality among subcarriers and eliminate ICI, the OFDM symbol

should be cyclically extended in the guard time rather than just extended with zero. Hence

the guard time is usually called cyclic prefix (CP). Figure 2.2 shows how to add cyclic

prefix in front of an OFDM symbol.

Hence if the maximum multipath delay is smaller than the guard time, we can ensure
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Fig. 2.2: The use of cyclic prefix.

Table 2.1: OFDM Advantages and Disadvantages

OFDM Advantages OFDM Disadvantages
Bandwidth efficiency Peak power problem
Resistant to multipath effect SNR loss
Efficient implementation Sensitive to frequency offset and phase noise

that the delayed replicas of the OFDM symbols will still have an integer number of cycles

within the FFT intervals. After all, any multipath signals that have delay spread smaller

than the guard time will not cause ICI or ISI.

The advantages and disadvantages of OFDM are summarized in Table 2.1. Band-

width efficiency is already shown in Figure 2.1. The bandwidth is saved by almost 50%.

Resistance to multipath effect is already discussed above. Efficiency of implementation

means that OFDM can be realized by using the FFT and IFFT instead of lots of sinusoidal

generators and coherent demodulators required in a parallel system.

The disadvantages of OFDM are high peak-to-average power ratio (PAPR), loss of

signal-to-noise ratio (SNR), and sensitivity to frequency offset and phase noise. The high

peak-to-average power ratio in OFDM signals can increase the complexity of the analog-

to-digital and digital-to-analog converters and reduce the efficiency of the RF power am-

plifier. SNR loss is due to the insertion of the guard time, reducing the efficiency in band-

width and power. Because of the overlapping of the subcarriers, OFDM is very sensitive
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to frequency offset and phase noise.

2.2 Overview of OFDMA

For network applications where a base station communicates with multiple subscribers,

the system resources must be partitioned among the subscribers to provide “multiple ac-

cess” services. The sharing of spectrum is required to achieve high capacity by simulta-

neously allocating the available bandwidth to multiple users. For high quality communi-

cation, this must be done without severe degradation in the performance of the system.

At present, it is often realized by using the techniques of time division multiple access

(TDMA), frequency division multiple access (FDMA), or spread spectrum multiple ac-

cess (SSMA) which is also referred to as code division multiple access (CDMA).

OFDMA, also referred to as multi-user OFDM, is now considered one of the most

promising multiple access methods for fourth generation wireless networks. OFDM or

OFDMA is currently the modulation of choice for high speed data access systems such as

IEEE 802.11a/g wireless LAN (WiFi) and IEEE 802.16a/d/e wireless broadband access

systems (perhaps more widely known as WiMAX).

In present OFDM systems, multiple access can be supported by employing time di-

vision or frequency division, and only one user is allowed to transmit data on all of the

subcarriers. This scheme does not realize the fact that different users see different wireless

channels. OFDMA, however, allows multiple users to transmit on different subcarriers of

an OFDM symbol concurrently. Figure 2.3 shows an example with four users in it. In this

figure, we illustrate that the subcarriers can carry information of different users. Because

of the very low probability that all users experience a deep fade in the same subcarriers, it

is possible to assure that subcarriers are assigned to the users who see good channel gains

on them.

Fig. 2.4 shows an example carrier allocation of an OFDMA symbol. The frequency

response of a typical broadband wireless channel is also depicted. In this example, the
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Fig. 2.3: Carrier allocation of an OFDMA symbol.

deep-fading condition and narrowband interference are also considered. In the top plot,

we see that when the channel is in deep fade, the subcarriers are not sufficiently en-

ergy efficient to carry information. These wasted subcarriers can be utilized in OFDMA,

thus achieving higher efficiency and capacity. Very few, if any, subcarriers are wasted in

OFDMA, since no particular subcarrier is likely to be bad for all users.

2.3 Overview of the IEEE 802.16a Standard

For years, there exists a continuing challenge for service providers to satisfy the growing

demand for broadband wireless access (BWA) in underserved business and residential

markets [8]. They are seeking a solution to build systems that support infrastructure build

outs comparable to cable, digital subscriber lines (DSL), and fiber. Recently, the IEEE

802.11x or WiFi wireless LAN technology has been used in BWA applications; however,

it was evident that they are not suitable for outdoor BWA use for their limited capacity in

terms of bandwidth and subscribers, range and other issues [8].

The IEEE conducted a multi-year effort to develop this standard, culminating in final

approval of the 802.16a air-interface specification in January 2003. The 802.16a standard

delivers carrier-class performance in terms of robustness and QoS and has been designed
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Fig. 2.4: Carrier allocation of an OFDMA symbol (modified from [9]).

from the ground up to deliver a suite of services over a scalable, long range, high ca-

pacity “last mile” wireless communications for carriers and service providers around the

world [8]. The 802.16a standard specifies a protocol that among other things supports

low latency applications such as voice and video, provides broadband connectivity with-

out requiring a direct line of sight between subscriber terminals and the base station and

will support hundreds if not thousands of subscribers from a single BS [8].

The IEEE 802.16a is an amendment of the 802.16 standard to cover frequency bands

in the range between 2 and 11 GHz, and it specifies a metropolitan area networking pro-

tocol that enables a wireless alternative for cable, DSL and T1 level services for last mile

broadband access [8]. The major reason for using 2–11 GHz bands is that they have the

ability to deal with non-line-of-sight (NLOS) operation. The longer wavelengths allow
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for non-directional NLOS operation with the ability to serve much broader geographic re-

gions, allowing underserved customers to take advantage of this technology. Compared to

the higher frequencies, such spectra offer the opportunity to reach many more customers

less expensively, although at generally lower data rates [10].

The 2–11 GHz spectrum does not require line-of-sight and directionality, and there-

fore requires multiplexing techniques supporting multi-path propagation. Because resi-

dential applications are expected, rooftops may be too low for a clear sight line to a BS

antenna. Therefore, significant multipath propagation is expected [10]. As a result, the

802.16a did some major changes to the PHY layer specification, which includes a sin-

gle carrier PHY, a 256-point FFT OFDM PHY, and a 2048-point FFT OFDMA PHY, to

address the needs of 2–11 GHz bands. In this thesis, we consider the 2048-point FFT

OFDMA.

The glossary we will often use in the following sections is introduced here. The

direction of transmission from the base station (BS) to the subscriber station (SS) is called

downlink (DL), and the opposite direction is uplink (UL). The SS is usually known as the

mobile station or the user. The BS is a generalized equipment set providing connectivity,

management, and control of the SS.

2.3.1 UL Carrier Allocation

The number of subcarriers in one OFDMA symbol is 2048. These carriers are divided into

as three types: data carriers for data transmission, pilot carriers for various estimation

purposes, and null carriers (guard bands and DC carrier) which transmit nothing at all.

The data and pilot carriers together are termed the used carriers for they transmit useful

information. The allocation is as shown in Fig. 2.5 for UL. Among the 2048 subcarriers,

there are 1696 used carriers, composed of 1536 data carriers and 160 pilot carriers. The

rest 352 subcarriers are unused subcarriers as the guard band distributed on the edges of

the symbol, and one DC carrier right in the middle of the band of the OFDMA symbol.
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Group 1 Group 2

Guard band Guard band

Group53

The 1696 used carriers = 1536 data carriers + 160 pilot carriers

DC carrier

pilot pilot

32 used carriers (including pilot carriers)

subchannel 2subchannel 1

Fig. 2.5: Illustration of carrier usage in OFDMA UL.

In 802.16a, the used subcarriers are divided into 32 subchannels, where each subchannel

contains 48 data carriers, 1 fixed pilot carrier, and 4 variable location pilot carriers. The

carrier allocation for UL is listed in Table 2.2.

The carrier index of the fixed-location pilots never change in different symbols. The

variable-location pilots, however, shift their locations every symbol periodically every 13

symbols, according to Lk = 0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, where k = 0 to 12. Lk

is the amount of carrier spacing which will be added to L0 to shift to the right of the

subcarrier position. For k = 0, the variable-location pilots are positioned at indexes 0, 13,

27, and 40. For other values of k, these locations change by adding Lk to each index.

2.3.2 OFDMA Data Mapping

A PHY burst in OFDMA is allocated a group of contiguous subchannels, in a group of

contiguous OFDMA symbols using an FEC block as a unit. Note that one FEC block

spans one OFDMA subchannel in the subchannel axis and three OFDM symbols in the

time axis. Fig. 2.6 illustrates the order in which FEC blocks are mapped to OFDMA

subchannels and OFDM symbols [1].
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Table 2.2: OFDMA UL Carrier Allocation

Parameter UL Value
Number of DC carriers 1

Number of guard carriers, left 176
Number of guard carriers, right 175
Nused, number of used carriers 1696

Total number of carriers 2048
NvarLocP ilots 128

Number of fixed-location pilots 32
Number of variable-location pilots which 0

coincide with fixed-location pilots
Total number of pilots 160

Number of data carriers 1536
Nsubchannels 32

Nsubcarriers per subchannel 53
Number of data carriers per subchannel 48

2.3.3 OFDMA Frame Structure for TDD

The 802.16a is designed to operate in the frequency band between 2 to 11 GHz. The

duplexing method of OFDMA system in this band shall be either frequency division du-

plexing (FDD) or time division duplexing (TDD) in licensed bands and TDD in license-

exempt bands. We consider the TDD mode in this thesis, since TDD is better suited to

data communications, which is often highly asymmetric. TDD flexibility permits efficient

allocation of the available traffic transport capacity, and thus the uplink and downlink traf-

fic transport ratio can vary with time.

Fig. 2.7 shows the frame structure of TDD OFDMA. A frame consists of one DL sub-

frame and one UL subframe, and they are transmitted by the BS and the SS, respectively.

The allowed duration of a frame is from 2 to 20 ms and is specified by the frame duration

code. A subframe contains several transmission bursts, which are composed of multiples

FEC blocks. In each frame, the Tx/Rx transition gap (TTG) and Rx/Tx transition gap

(RTG) shall be inserted between the downlink and uplink and at the end of each frame

respectively to allow the BS and the SS to turn around. TTG and RTG shall be at least
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Fig. 2.6: Mapping of FEC blocks to OFDMA subchannels and symbols (from [1]).

5 µsec and an integer multiple of four samples in duration [1].

From the UL-MAPs, the SSs know their usable subchannels and transmission time.

The first symbol is an all-pilot preamble where the SS should send on all its allocated

subchannels. The number of symbols of the UL subframe is 3N + 1, where N is a

positive integer, one for the preamble, and the others for data bursts.

2.4 Transmitter - Receiver System Architecture

The UL transmitter is shown in Fig. 2.8. For each SS, the transmitted data are first scram-

bled, FEC encoded, and then interleaved. After passing through the constellation mapper,

the data are mapped to Gray-mapped QPSK, 16-QAM, or 64-QAM up to the option of

the modulation types. The framing is used to arrange the coded data, MAPs, preamble
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Fig. 2.7: Time plan of one OFDMA frame (from [1]).

and pilots to the corresponding subchannels following the specification of used carrier al-

location. After framing, the used carriers and null carriers are allocated properly and fed

into the 2048-point IFFT block in parallel. The IFFT results are output sequentially and

shaped by the interpolator block, which is composed of a 4× upsampler and a low-pass

filter (LPF).

The receiver is shown in Fig. 2.9. It is in some sense a modified reverse of the trans-

mitter. Synchronizer and channel estimator are added. In the following subsections, we

introduce the modulation and the TX/RX SRRC filter.

2.4.1 Modulation

Data Modulation

Gray-mapped QPSK and 16-QAM must be supported by any compliant transceiver, whereas

the support of 64-QAM is optional. The constellations as shown in Fig. 2.10 shall be

normalized by multiplying the constellation points with the indicated factor c (shown in

Fig. 2.10) to achieve equal average power. The constellation-mapped data shall be subse-

quently modulated onto the allocated data carriers.
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Fig. 2.8: UL transmitter structure.

Fig. 2.9: UL receiver structure.

Fig. 2.10: QPSK, 16-QAM, and 64-QAM constellations [1].
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Fig. 2.11: PRBS for generation of data pilots and preamble pilots [1].

Pilot Modulation

There are two types of pilot to be modulated: data pilots and preamble pilots. These two

pilots are generated using the PRBS generator in Fig. 2.11 with initialization vector [1 0

1 0 1 0 1 0 1 0 1] for the UL.

1. Data Pilot Modulation

Each pilot shall be transmitted with a boosting of 2.5 dB over the average power

of each data tone. The pilot carriers shall be modulated according to the following

formulas:

�{ck} =
8

3
(
1

2
− wk), �{ck} = 0, (2.4.1)

where wk is the sequence produced by the PRBS generator, and k corresponds to

the carrier index.

2. Preamble Pilot Modulation

For the first UL OFDMA symbol, it shall be an all-pilot preamble. The pilots shall

not be boosted and shall be modulated according to the following formulas:

�{ck} = 2(
1

2
− wk), �{ck} = 0. (2.4.2)
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2.4.2 TX/RX SRRC filter

We briefly introduce the SRRC filter based on [11] here. To avoid the complexity of an

ideal lowpass filter and to simulate path delays at non-integer sample times, an interpola-

tor is added to the transmitter to yield 4-times oversampled transmitter output. The square

root raised cosine (SRRC) filter is used as the lowpass interpolation filter. The impulse

response of this filter is given by

SRRC(t) =
sin

(
π t

Tsample
(1 − α)

)
+ 4α t

Tsample
cos

(
π t

Tsample
(1 + α)

)

π t
Tsample

(
1 − (4α t

Tsample
)2

) ,

where α is the roll-off factor. One reason for adopting the SRRC filter is that for this filter

the transmitter and receiver filters are matched to each other and there is no inter-sample

interference introduced in the receiver when fully synchronized. Finally, the roll-off factor

of SRRC filter is 0.155 with 57 taps, which is chosen to satisfy the power mask specified

in 802.16a [11].

2.5 UL Synchronization Problems

Before the receiver can demodulate the subcarriers, it has to perform the synchronization

task, since the OFDM systems can be extremely sensitive and vulnerable to synchroniza-

tion errors. There are three major kinds of synchronization tasks:

1. Symbol synchronization [12]

The purpose of it is to find the correct position of the fast Fourier transform (FFT)

window. Any misalignment of the FFT window will result in an evolving phase shift

in the frequency domain symbols, leading to BER degradation. If the timing errors

are so high that the FFT window of the receiver includes samples outside the data

and guard intervals of the current OFDMA symbol, then the consecutive OFDMA

symbols interfere, severely affecting the system’s performance. Fig. 2.12(a) shows

the correct FFT window. Fig. 2.12(b) shows an early FFT window that includes
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Fig. 2.12: Positioning of the FFT window.

samples of the data segment and the guard interval. Fig. 2.12(c) depicts a delayed

FFT window that overlaps with the next OFDMA symbol. The second case will not

introduce any interference, but the third is detrimental to the performance.

2. Sampling clock synchronization

The purpose of it is to align the receiver sampling clock frequency to that of the

transmitter. The sampling clock errors can cause ICI. In addition, the sampling

clock frequency error can result in a drift in the symbol timing and can further

worsen the symbol synchronization problems. In this thesis, we will assume that

the sample clocks of the users and the base station are identical.

3. Carrier synchronization

Carrier frequency offset can give rise to a shift of all the subcarriers and results

in not only ICI but also multiple access interference (MAI). It is caused by the

difference in the local oscillators of the transmitter and the receiver, or the Doppler

spread introduced by motion. Carrier synchronization is a complex problem in the

UL system, since all users share the total number of subcarriers and each user has

its own carrier frequency offset.

In our system, the synchronization scheme is subject to the specifications of 802.16a.

Thus we assume that after a successful initial synchronization and ranging, the mobile

enters the time and frequency grid with a low offset in time and frequency [11]. Hence
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no frequency synchronization is done in normal UL transmission. While this assump-

tion may be suitable for fixed BS and SS, it is certainly debatable for multipath fading

channels. However, for simplicity we leave it further consideration to future work.

2.6 UL Synchronization

The above discussion of the UL synchronization motivates our doing timing synchroniza-

tion only. We now introduce the techniques used in our UL synchronization, the detection

of symbol start time.

Our synchronization task is to find the first coming symbol. Different users’ transmit-

ted signals may not arrive at the same time, but the correlation peak may occur between

them, as shown in Fig. 2.13 for an example of three users. If we use the detected peak

location as the symbol start time, the corresponding useful time will include a part of the

guard interval of the next symbol for the earlier arriving signals. Therefore, we have to

find the exact instant of the first arriving signal to avoid ISI.

Since the subchannels are comprised by the subcarriers which are orthogonal to one

another, we can assume that the orthogonality property still exists among subchannels un-

less the received signals from different users are subject to significantly different carrier

Fig. 2.13: Three UL signals arrive at different times, and the CP correlation peak may
occur between them [11].
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Fig. 2.14: Illustration of UL synchronization in time domain.

offsets. After passing through IFFT, the time domain signals which occupy different sub-

channels in the frequency domain are uncorrelated if the channel has zero delay spread.

Since the first coming symbol is an all-pilot preamble, the BS knows the exact values of

each user’s signals. Therefore, the signal transmitted by each SS in the UL preamble is

deterministic and the BS can generate the same time domain signals as all SSs by taking

IFFT. We show the block diagram depicting how the synchronization works in Fig. 2.14.

The received samples are correlated with the reference data string, which results from

passing the preamble into the IFFT block. When the next sample arrives, we recompute

the correlation. The start and stop times of the correlation are as illustrated in Fig. 2.15.

The start time is decided by when the BS turns to receive signals. Note that this time

shall be in the TTG interval. As the user arrival time may vary as much as 50% of the

guard interval, we stop the correlation up to 50% of the guard interval earlier than the

corresponding detected useful time.

Then, the peak locations of different SSs are compared as follows. We can find the

peak location of each correlator which uses a distinct preamble, then we can know the

peak locations of different SSs. Finally, we compare all these peaks and get the start

location of the first coming signal.
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Fig. 2.15: The received samples and the time plan of the UL synchronization.

2.7 UL Synchronization Result

2.7.1 Simulation Parameters and Environments

Table 2.3 specifies the transmission parameters for our simulation. The uplink and down-

link use the same frequency bands. The intercarrier spacing is thus 5.58 kHz and the

symbol length (without cyclic prefix) is 179.2 µsec. In this section, we select the channel

environment defined by ETSI for the evaluation of UMTS radio interface proposals. We

employ the multipath ETSI “Vehicular A” channel model given in Table 2.4. The SNR

is chosen to be 10 dB in the fading channels. Note that the receiver SNR specified in

802.16a is from 9.4 dB to 24.4 dB, so 10 dB, which is almost the worst condition, is a rea-

sonable value for simulation. The maximum Doppler shifts of our simulation are shown

in Table 2.5 for the speed from 0 to 100 km/hr.

Table 2.3: System Parameters Used in Our Study [14]

Number of carriers(N ) 2048
Center frequency 6 GHz

Uplink / Downlink bandwidth (BW ) 10 MHz
Carrier spacing ( ∆f ) 5.58 kHz

Sampling frequency (fs) 11.43 MHz
OFDM symbol time(Ts) 201.6 µsec (2304 samples)

Useful time (Tb) 179.2 µsec (2048 samples)
Cyclic prefix time (Tg) 22.4 µsec (256 samples)
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Fig. 2.16: Frame stucture used in UL synchronization.

Fig. 2.16 shows the frame structure used in UL synchronization simulation, where

SS1 transmits UL burst 1 using 8 subchannels and SS2 transmits UL burst 2 using 16

subchannels. The arriving times of burst 1 and burst 2 differ by 11.25% of the guard time,

which is 16 samples. No ranging subchannel is allocated. Note that the start time of the

preamble correlation is chosen to be 76 samples earlier than the UL subframe, and the

stop time is 128 samples after the starting instant of the UL subframe.

Recall that the TTG is used for BS to turn around (from TX to RX). It is reasonable

to assume that the transition instant is approximately at the midpoint of the TTG. Now

TTG is 136 samples, and thus we assume that it is 60 samples after the start time of TTG.

Figure 2.17 illustrates the transition instant for BS to turn around.

The reason for the stop time is as follows. According to IEEE 802.16a standard, all

SSs shall acquire and adjust their timings such that all uplink OFDM symbols arrive time

coincident at the base station to an accuracy of 50% of the minimum guard-interval or

better. Therefore, we assume that all SSs arrive before the stop time, 50% of the guard
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Fig. 2.17: The transition instant for BS to turn around.

Table 2.4: ETSI “Vehicular A” Channel Model in Different Units [23]

tap relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) (dB) (normal scale) (normalized)

1 0 0 0 0 1.0000 0.4850
2 310 14 3 or 4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 1090 50 12 or 13 -10.0 0.1000 0.0485
5 1730 79 20 -15.0 0.0316 0.0153
6 2510 115 29 -20.0 0.0100 0.0049

interval after the start time of the uplink subframe.

2.7.2 UL Synchronization

Fig. 2.18 shows the symbol time synchronization errors of the first coming signal under

different Doppler spreads. If the Doppler shift is zero (speed = 0 km/hr), it is shown that

we can always detect the correct symbol start time of the first coming signal.

Another interesting result is that when the speed increases, the distribution of the

time synchronization errors is closely related to the power-delay profile of the multipath

channel. Fig. 2.19 depicts the power-delay profile of the simulated channel with normal

sample numbers and with normalized average power (see Table 2.4). Fig. 2.20 shows the

resulting time synchronization error distribution. Comparing these two figures, we see

that the different time offsets obtained at the synchronizer output almost coincide with

the sample number of the multipath delays. Furthermore, the occurrence probabilities at
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Table 2.5: Relation Between Speed and Maximum Doppler Shift at Carrier Frequency 6
GHz. Subcarrier Spacing is 5.58 kHz

Speed (km/hr) Doppler shift (Hz) fdTs

0 0 0
20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896

Fig. 2.18: Error distribution under different maximum Doppler shifts.

the different time offsets are proportional to the relative average power of the paths. Note

that the Doppler shift has no obvious effects on this synchronization scheme expect when

it is very small.

As the correlation is done for each SS, we can detect the arriving time of each SS.

We find that the timing error distributions of the late arriving SS are almost the same as

the result of the first coming SS. No matter when the signal arrives, the synchronization

performance has no significant differences. In summary, we can detect the start time of

all signals from different SSs and this information could be helpful to channel estimation.
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Fig. 2.19: Power-delay profile of the multipath channel [14].

Fig. 2.20: Performance of UL symbol time synchronization: error distribution under dif-
ferent maximum Doppler shifts.
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Chapter 3

Introduction to the DSP
Implementation Platform

In this chapter, we introduce the DSP platform utilized in our implementation. The plat-

form includes a DSP board, DSP core, and the communication mechanism between the

host PC and the DSP target.

3.1 DSP Board [16]

The DSP board, Quixote-II, is a 64-bit cPCI 6U board for advanced signal capture, gen-

eration and co-processing. Figure 3.1 shows a picture of the board. Quixote-II associates

with one TI (Texas Instruments) TMS320C6416 DSP with a Xilinx’s Virtex-II FPGA,

providing processing flexibility, efficiency, and delivering performance. The block dia-

gram of Quixote-II is shown in Figure 3.2. On our board, the FPGA is a six-million-gate

one.

The board’s primary features are as follows:

1. 600 MHz 32-bit fixed-point TMS320C6416 DSP offers processing power of 4800

MIPS.

2. An onboard 32 MB SDRAM for DSP chip, with advanced cache controllers.

3. 64/32-bit 33 MHz PCI interface for busmastering data between the card and the

memory.
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4. 14-bit 105 MSPS I/Q input channels and output channels for A/D and D/A.

3.2 DSP Chip [18]

The DSP chip, TI’s TMS320C6416, employs the “VelociTI” architecture, a variant of

the traditional VLIW architecture, which consists of multiple execution units running in

parallel, performing multiple instructions during one cycle time. It is a 32-bit fixed-point

DSP, with processing speed at 600 MHz, delivering 4800 MIPS.

The C6416 core CPU, which is shown in Fig. 3.3, consists of 64 general-purpose

32-bit registers and eight functional units. These eight functional units contain two multi-

pliers and six arithmetic units. It allows users to develop highly effective RISC-like code

for fast development time.

The C6416 uses a two-level cache-based architecture with 16 kB of L1 data cache,

16 kB of L1 program cache, and 1 MB of L2 data/program cache. On-chip peripher-

als include two multichannel buffered serial ports (McBSPs), two timers, a 16-bit host

port interface (HPI), a 32-bit external memory interface (EMIF), a direct memory access

(DMA) controller and a enhanced direct memory access (EDMA) controller.

The following gives some sketch of the units just mentioned above:

• The EDMA controller transfers data between the memory without passing through

Fig. 3.1: Quixote-II board [24].
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Fig. 3.2: Block diagram of Quixote-II(from [16]).

the DSP core.

• McBSPs can buffer serial samples in memory automatically with the aid of the

DMA/ EDMA controller.

• HPI is a parallel port through which a host processor can directly access the CPU’s

memory space.

• EMIF provides the interface for the DSP core to connect with several external de-

vices, allowing additional data and program space.

The C6416 has two 64-bit internal ports to access internal data memory. It supports

double word loads and stores. There are four 32-bit paths for loading/storing data from

memory to the register file. C6416 has two register files (A and B), each containing 32

32-bit registers for a total of 64 general-purpose registers. The general-purpose registers

can be used for data, data address pointers, or condition registers. The C6416 register
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Fig. 3.3: Functional block and CPU (DSP core) diagram [17].

file supports packed 8-bit types and 64-bit fixed-point data types. Packed data types store

either four 8-bit values or two 16-bit values in a single 32-bit register, or four 16-bit values

in a 64-bit register pair. Note that the C6416 does not directly support floating-point data

types.

The eight functional units in the C6416 data paths can be divided into two groups of

four; each functional unit in one data path is almost identical to the corresponding unit

in the other data path. The two sets of functional units, along with two register files,

compose sides A and B of the DSP core. Figure 3.4 illustrates the C6416 DSP CPU.

From this figure, we see that the C6416 CPU contains:

• Program fetch unit
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Fig. 3.4: The C64x CPU block diagram [18].

• Instruction dispatch unit, with advanced instruction packing

• Instruction decode unit

• Control registers

• Control logic

• Test, emulation, and interrupt logic

The details of each functional units are given in Tables 3.1 and 3.2. Most data lines in

the CPU support 32-bit operands, and some support long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose

register file. All units ending in 1 (for example, .L1) write to register file A, and all units

ending in 2 write to register file B. Each functional unit has two 32-bit read ports for

source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-

wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because

each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.
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Table 3.1: Functional Units (.L, .S) and Operations Performed [18]
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Table 3.2: Functional Units (.M, .D) and and Operations Performed [18]
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3.3 Data Transmission Mechanism [16]

In this section, we introduce the data transmission mechanism that Quixote-II supports.

We will make use of one, CPU busmastering, to realize the transmission between the

host PC and the DSP target, Quixote-II. From [16], we know that there are three schemes

provided by the Quixote baseboard. They are DSP streaming interface, CPU busmastering

interface, and packetized message interface. We now introduce them in the following

subsections.

3.3.1 DSP Streaming Interface

The Quixote supports using PCI busmastering for the highest data rate streaming between

the host and the target. The busmaster streaming interface is fully handshook, so that no

data loss can occur in the process of streaming. For example, if the application cannot

process blocks fast enough, the buffers will fill, then the busmaster region will fill, then

busmastering will stop until the application resumes processing. When the busmaster

stops, the DSP will no longer be able to add data to the PCI interface FIFO. The target DSP

code can then take any needed action to cover the interruption. When service resumes,

the system will move the backed up data through the system to the application normally.

Figure 3.5 shows the block diagram of DSP streaming mode. The DSP streaming in-

terface is bi-directional. Two streams can run simultaneously, one running from the analog

peripherals through the DSP into the application. This is called the “incoming stream.”

The other stream runs out to the analog peripherals. This is the “outgoing stream.” In

both cases, the DSP needs to act as a mediator, since there is no direct access to analog

peripherals from the host. This arrangement allows the DSP to process the streams as

they move from the application to the hardware.

• Software implementation:

DSP streaming is initiated and started on the host, using the Caliente component,

which handles bi-directional streaming of data between the host memory and the
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Fig. 3.5: DSP streaming mode [16].

target DSP. On the target, the DSP interface uses one pair of DSP/BIOS device

drivers, PciIn (on the outgoing stream) and PciOut (on the incoming stream), pro-

vided in the Pismo peripheral libraries for the DSP.

• Hardware implementation:

The Quixote baseboard has a 32 or 64 bit PCI interface, 33 MHz, compatible with

3V or 5V signalling PCI bus systems. This interface supports both busmastering

and “slave” interfaces to the baseboard and supports data burst rates of 264 MB/sec

for 64-bit systems, or 132 MB/sec for 32-bit systems.

The baseboard uses busmastering to host memory as the primary method for mov-

ing large amounts of data in the system. From the DSP perspective, the busmas-

tering interface is a bi-directional FIFO that manages the interaction with the host

memory. The PCI controller is responsible for moving data to and from the host as

required by the DSP. Slave accesses, from the host processor to the target DSP, are

used to support configuration, control, and communications.
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3.3.2 CPU Busmastering Interface

The TI 64x baseboard is capable of using PCI busmastering to move data between target

and host memory. This additional busmaster channel can be used to transfer data between

host and target applications.

The primary busmaster interface is based on a streaming model where logically data

constitute an infinite stream between the source and destination. This model is more

efficient because the signalling between the two parties in the transfer can be kept to a

minimum and transfers can be buffered for maximum throughput. On the other hand the

streaming model can have relatively high latency for a particular piece of data. This is

because a data item may remain in internal buffering until subsequent data accumulates

to allow for an efficient transfer. The CPU busmaster interface uses a different model: it

transfers discrete blocks between the source and destination. Each data buffer is trans-

ferred completely to the destination in a single operation. Only if several transfers are

requested at once will any delay in beginning transmission occur, as multiple requests

have to be serialized through the single hardware system.

The data buffers transferred can be of different sizes. Each requested buffer is in-

terrogated for its size and fully transmitted. At the destination, the destination buffer is

re-sized to allow the incoming data to fit. If the buffer given is too small for the data,

it will be reallocated to allow the transfer. Reallocating buffers can take some time, for

best performance buffers should be pre-sized to be large enough for the largest transfer

expected. This will make allocation of buffers at critical times unnecessary.

CPU busmastering uses a simple blocking interface for its sending and receiving func-

tions. The sending function will not return until the transfer has completed and the buffer

is ready for reuse. Similarly, the receiving function waits until data have arrived from the

data source and transferred into the data buffer before returning. At this point the buffer

is ready for use. This blocking allows sequences of transfers managed by a simple se-

quence of calls to transfer functions. Since the transfer functions are blocking, they are
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best avoided in the main user interface thread of a Windows application. The GUI will

appear to be frozen until the transfer has completed. For best results, the data transfer

functions should be placed in separate threads on the target and host applications. In fact,

each direction of transfer should have its own thread, so that the two directions of transfer

can interleave as much as possible.

The CPU busmaster interface allows separate channels of data between the target

and the host. Using separate channels allows multiple, independent data streams to be

maintained between the target and host. At present, only a single channel is supported.

The largest transfer allowed is half the total size of the DMA buffer allocated by the

INF file (a kind of files used for software/firmware installation in windows system) when

the driver is installed. Half of the memory is dedicated to each direction. The default

buffer size in the INF is 0x200000 bytes, so the maximum transfer is 1 MB.

PciTransfer::Send() sends the contents of a Buffer-derived object to the target on the

channel Channel. All of the data in the buffer are transferred. There is no means of

sending a partial buffer. Only channel 0 is currently supported. The function will not

return until the block has been transferred to the host. The use of the base buffer class

allows any of the IntBuffer, CharBuffer, FloatBuffer and similar classes to be sent across

the interface. The function returns true if the transfer succeeded. It returns false if the

transfer failed due to a PCI bus error. PciTransfer::Recv() waits for data to arrive from

the target, then returns the data in the buffer provided. The data must be sent on the same

channel as the Channel argument. The Buffer will be re-sized to fit the data transferred

from the source. If the buffer is too small, this may involve a reallocation of the data

block. The function returns true if the transfer succeeded. It returns false if the transfer

failed due to a PCI bus error.
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3.3.3 Packetized Message Interface

The DSP and host have a lower bandwidth communications link for sending commands

or out-of-band information between target and host. These packets can provide the users

another way to send commands for many purposes. For example, we can use these packets

to tell the target what to do next, or when to do next. These packets provide a very

important “bridge” for the host and the DSP.

A set of sixteen mailboxes in each direction to and from the host PC are shared with

the DSP to allow for an efficient message mechanism that complements the busmastering

interface. These mailboxes have a handshake mechanism that signals the recipient for the

availability of data, and a corresponding signalling to the sender when the message was

received. Data rate is limited to about 56 kB per second. Higher data rate requirements

should use the busmastering interface.

A single bi-directional path can be set up with minimal configuration for applications

with simple communication needs. A virtually unlimited number of independent com-

munication channels may be set up to run in parallel, with messages on each channel

directed to their own receiver on the other side. Figure 3.6 shows a single bi-directional

path between the DSP and the host PC. As we see, this figure is divided into two parts,

one is host application, and the other is target application. On the host side, CIIMessage

class can encapsulate the packet, that may contain up to 14 32-bit data words plus two

32-bit header words, to be transmitted. On the target, the corresponding class is called

IIMessage. Messages sent by the target are collected into CIIMessage objects for delivery

to the event handlers dedicated to respond to the messages. For all practical purposes, we

can think of the Message System as exchanging IIMessage/CIIMessage objects.

The header portion of the Message Packet contains some system data and some fields

that can be used by the application. Table 3.3 gives the header field that CIIMessage can

read.

The 14 words of Data are accessable as array. Table 3.4 shows these methods all have
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Fig. 3.6: Simple target to host messaging configuration [16].

Table 3.3: CIIMessage Header Field [16]

an additional argument giving the index into the data section.

On the target side, the Pismo library supports a very similar class, IIMessage, to con-

tain the message. The header field access and the data section interface are identical to

the host side, CIIMessage.

The packetized message system is event driven. When the sender posts a message

packet, at the first available opportunity the packet is loaded in the communication reg-

isters and an interrupt generated on the receiving side. On the receiver, the interrupt is

Table 3.4: CIIMessage Data Section Interface [16]
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detected and the message removed and enqueued for later processing. The sender is then

acknowledged that the previous packet has been removed and the hardware is free for an-

other transmission. The receiver then analyzes the message and distributes it to the proper

handler for processing.

For more information, refer to [16].
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Chapter 4

Integration and Optimization of the
IEEE 802.16a OFDMA TDD Uplink
Transmitter-Receiver System

In previous chapters, the components of the uplink transceiver system have been intro-

duced and the DSP implementation platform has been described. In this chapter, we

discuss the major topic of this thesis — the integration and optimization of the specified

uplink transceiver system on II’s Quixote DSP baseboard, using the TI TMS320C6416

DSP chip. At first, we briefly introduce the entire structure of our system, its transmis-

sion mechanism, and the precision of the fixed-point numbers that we use. Secondly, we

introduce the DSP code development environment and some features of the TI C6000

family DSP tools for doing compiler level optimization. Then, we discuss optimization

of the major blocks in the uplink transceiver, including the TX/RX SRRC filters, the TX

IFFT, and others. Finally, we present the improvement after the efforts we have made by

showing the simulation profile generated by TI’s Code Composer Studio (CCS) built-in

profiler.

4.1 Structure of the Implemented System

The structure of the uplink transmitter and receiver system is shown in Fig. 4.1. There

are two SSs and one BS. In consequence, the FEC scheme and the channel modulation
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Fig. 4.1: Structure of implemented system.

scheme each ideally needs to use one individual DSP board and be linked by the PCI port

on the personal computer (PC), which are illustrated in Figs. 4.2 and 4.3, respectively.

In our work, however, we merge the two on only one DSP board, for the reason that

the data transmission mechanism across the DSP boards is too complex to realize. The

FEC part consists of randomizer/de-randomizer, Reed-Solomon encoder/decoder, con-

volutional encoder/decoder, and interleaver/de-interleaver. The channel modulation part

consists of data modulation/demodulation, data framing/deframing, IFFT/FFT, 4-times

upsampling/downsampling, and SRRC filtering.

Due to the unknown system software bug, we are unable to run the channel equalizer()

on the DSP baseboard yet. We think memory allocation problem may be the reason for the

bugs. Hence, only parts of the functions in the receiver (i.e., RX SRRC() and RX sync)

are workable now. The implementation of other parts of the receiver on DSP are now

leaved to the future work.
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Fig. 4.2: System structure on transmitter side (modified from [15]).

Fig. 4.3: System structure on receiver side (modified from [15]).

4.1.1 CPU Busmastering Interface

The data transmission mechanism between the DSP board and PC employs the CPU bus-

mastering interface described in chapter 3, because this mechanism is relatively easier to

implement than the data streaming mode. The size of the transmitting blocks from the

transmitter is chosen to be 8200 samples, that is, 2050 samples before the 4-times up-

sampling. Here one sample means a complex number that contains the real part and the

imaginary part. The reasons why we do not use 2304 samples (one OFDM symbol) as

block size are given below. The size of one OFDMA frame in our work consists of three

downlink symbols, four uplink symbols, one TTG, and one RTG. Figure 2.16 shows the

frame structure. After 4-times upsampling, the SS transmits 9216 samples per OFDM
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symbol, and 544 samples in both TTG and RTG. Therefore, the SS transmits 65600 sam-

ples in one frame time. We assume that we do not know the precise boundary of the

received symbols on the receiver side. To cope with this assumption, we can let our trans-

mitting block size be a constant value. But we must ensure that the output sample time is

an integer fraction of the input time, or we will have to take care of complicated timing.

Mathematically, we have

output sample time =
input sample time

N
,

where N is a positive integer bigger than 1.

In our work, the input sample time is 65600 samples. The value of N is chosen to be

8, resulting in the output sample time of 8200 samples. There are no particular theoretical

reasons to choose 8 as N . We just let the output sample time be close to one OFDM

symbol, 9216 samples.

Figure 4.4 shows the organization of our transmitter and receiver. Note that the trans-

mitter will not return until the transfer has completed and the buffer is ready for reuse,

and the receiver waits until data has arrived from the data source and transferred into the

data buffer before returning. The transmitters (2 SSs) and the receiver (BS) are actually

both on the same DSP chip, and the channel simulators for both users are located in the

host PC. The reason for excluding the channel simulator from the DSP chip is because

the C6416 is a fixed-point DSP and floating-point operations on it are time-consuming.

Therefore, we exclude the channel simulator from the DSP chip, for it uses expensive

floating-point operations.

Since there are two SSs in the transmitter side, the buffer size of the transmitting block

is 16400 samples, that is, 2 times the 8200 samples. The receiver’s block size is 8200

samples. In the following section, we first introduce the data format we use to represent

one sample.
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Fig. 4.4: Organization of transmitter and receiver using CPU busmastering interface.

Fig. 4.5: Fixed-point data formats at the transmitter side.

4.2 Fixed-Point Data Formats

For improving the speed and saving the memory, we have to work with fixed-point num-

bers instead of floating-point numbers. The data formats we use in the transmitter are

shown in Fig. 4.5. Since the DSP chip supports 16 × 16 multiply operations, and [19]

suggests that use of the short data type (16 bits) for fixed-point multiplication inputs

whenever possible, most of the data types are chosen to be 16-bit in our implementation:

• Data format before IFFT is Q1.14, which is in the range [−2,2].

• Data format after IFFT is Q.15, which is in the range [−1,1].

The Q1.14 format places the sign bit in the leftmost position, followed by 1 integer bit and

14 fractional bits (Table 4.1), and the Q.15 format places the sign bit in the leftmost po-

sition, and the remainder 15 bits are fractional ones. We explain the reasons for adopting

these representations below.
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Table 4.1: Q1.14 Bit Fields

Bits 15 14 13 ... 1 0
Value S I0 Q13 ... Q1 Q0

After the binary sequence passes through the modulator, the range of data values, at

normalized symbol energies as shown in Table 4.2. The widest range occurs in the 64-

QAM, it is [ −7√
42

, 7√
42

], and the Q.15 can not cover this range. Thus, Q1.14 is the suitable

range to use.

Then, the range of data values at the framing block’s output is located in [-3
4
, 3

4
], where

the values ±3
4

occur in the UL preamble carriers [1]. Again, it can be represented by the

data format Q1.14. The fractional part of the fixed-point number in this system is 14 bits;

hence the finest fractional resolution is 2−14 = 6.10 × 10−5.

Now, we focus on the IFFT’s output range. The 2048-point IFFT defined as

x(n) =
1

N

N−1∑
k=0

X(k)WN
−kn, n = 0, ..., N − 1, (4.2.1)

where N = 2048, WN = e−j(2π/N), X(k) is the input sequence, and x(n) is the resulting

output sequence. This function is implemented by the 16-bit FFT function DSP fft16x16r()

provided in the TI TMS320C64x DSP library (DSPLIB) [20]. The detailed operation of

it can be found in later sections. Because of the factor 1
2048

, the range of the output data

values will be smaller than 1. For this reason, the data format after FFT is set to be Q.15.

The fractional part of the fixed-point number in this system is 15 bits; hence the finest

fractional resolution is 2−15 = 3.05 × 10−5. Finally, the data field of the SRRC filter’s

output is Q.15, and it’s SNR is 44.90dB comparing to the floating-point results.

In the receiver side, the main consideration of setting fixed-point formats is that the

multiplier operations are always 16 × 16. We show the data formats in the receiver side

in Fig. 4.6. The data formats are:

• The data format before the synchronization is Q.15, which is in the range [-1,1].
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Table 4.2: Range of Data Values After Modulation

Modulation Range

QPSK [ −1√
2

, 1√
2

]

16-QAM [ −3√
10

, 3√
10

]

64-QAM [ −7√
42

, 7√
42

]

Fig. 4.6: The fixed-point data formats at the receiver side.

• The data format of the FFT input is Q2.13, and the output is Q7.8.

• The data format after the channel equalizer is Q1.14.

In the receiver side, we must take into account the channel gain introduced by the

fading channel. Since the fading coefficients implemented are not normalized, it is better

for us to give some guard bits to the integer part of the FFT input. Thus, we set the

data format of the FFT input to Q2.13. This prevents data overflows in the FFT output.

According to [20], the FFT function we use scale the output by 5 bits (i.e., � 5), to

prevent output overflow. As a result, the output of the FFT is Q7.8. The finest fractional

resolution is 2−8 = 3.91 × 10−3.

For simplicity, we assume that the receiver knows the frequency response of the chan-

nel. We implement a zero forcing equalizer, which is simply an inverse filter which inverts

the frequency response of the channel. After the channel equalizer, the output shall be in

the range [−2,2] as the transmitter output. Hence, we set the data format to Q1.14.
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4.3 TI’s Code Development Environment [21]

In the following sections, we introduce the software environments we utilize in our work

and how to successfully develop an efficient DSP code as quickly as possible. Then, we

introduce some important and useful techniques to improve the program speed perfor-

mance. The optimization of each block in our work is discussed after introduction of the

software environment.

The Code Composer Studio, TI’s GUI development tool, is the software platform that

we use to develop and debug the projects. Some main features of it are listed below:

• Real-time analysis.

• Source code debugger common interface for both simulator and emulator targets.

– C/C++ assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS support.

– Pre-emptive multi-threading.

– Interthread communication.

– Interupt handing.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

• DSP libraries for optimum DSP functionality. The DSP library includes many C-

callable, assembly-optimized, general-purpose signal-processing and image/video

processing routines. These routines are typically used in computationally intensive
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real-time applications where optimal execution speed is critical. The TMS320C64x

digital signal processor library (DSPLIB) provides some routines shown below:

– Adaptive filtering.

– Correlation.

– FFT.

– Filtering and convolution.

– Math.

– Matrix functions.

– Miscellaneous.

In our project, some routines are used in the implementation, such as FFT and filtering.

We introduce them in later sections.

4.3.1 Code Development Flow [19]

The recommended code development flow involves utilizing the C6000 code generation

tools to aid in optimization rather than forcing the programmer to code by hand in as-

sembly. These advantages allow the compiler to do all the laborious work of instruction

selection, parallelizing, pipelining, and register allocation. These features simplify the

maintenance of the code, as everything resides in a C framework that is simple to main-

tain, support, and upgrade. Figure 4.7 illustrates the three phases in the code development

flow. Because phase 3 is usually too detailed and time consuming, most of the time we

will not go into phase 3 to write linear assembly code unless the software pipelining effi-

ciency is too bad or the resource allocation is too unbalanced. The following techniques

can be used to analyze the performance of our specific code regions:

• Use the clock( ) and printf( ) functions in C/C++ to time and display the perfor-

mance of specific code regions. Use the stand-alone simulator (load6x) to run the

code for this purpose.
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Fig. 4.7: Code development flow of C6000 (from [19]).
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• Use the profile mode of the stand-alone simulator. This can be done by compiling

our code with the -mg option and executing load6x with the -g option. Then enable

the clock and use profile points and the RUN command in the Code Composer

debugger to track the number of CPU clock cycles consumed by a particular section

of code. Use “View Statistics” to view the number of cycles consumed.

Usually, we use the second technique above to analyze our C code performance. The

feedback of the optimization result can be obtained with the -mw option. It shows some

important results of the assembly optimizer of the particular loop. In our analysis, this

shall be taken into consideration for improving the computational speed of certain loops

in our program.

4.3.2 Compiler Optimization Options [19]

In this subsection, we introduce the compiler options that control the operation of the

compiler. CCS compiler offers high-level language support by transforming C/C++ code

into more efficient assembly language source code. The compiler options can be used to

optimize our code size or the executing performance.

The major compiler options we utilize are -o3,-k, -pm -op2, -mh<n>, -mw, and -mi.

• -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the

type and degree of optimization.

– -o3: highest level optimization, main features are:

∗ Performs software pipelining.

∗ Performs loop optimizations, and loop unrolling.

∗ Removes all functions that are never called.

∗ Reorders function declarations so that the attributes of called functions

are known when the caller is optimized.
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∗ Propagates arguments into function bodies when all calls pass the same

value in the same argument position.

∗ Identifies file-level variable characteristics.

• -k: Keep the assembly file to analyze the compiler feedback.

• -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.

– -pm: Gives the compiler global access to the whole program or module and

allows it to be more aggressive in ruling out dependencies.

– -op2: Specifies that the module contains no functions or variables that are

called or modified from outside the source code provided to the compiler.

This improves variable analysis and allowed assumptions.

• -mh<n>: Allows speculative execution. The appropriate amount of padding, n,

must be available in data memory to insure correct execution. This is normally not

a problem but must be adhered to.

• -mw: Produce additional compiler feedback. This option has no performance or

code size impact.

• -mi: Describes the interrupt threshold to the compiler. If we know that no interrupts

will occur in our code, the compiler can avoid enabling and disabling interrupts

before and after software pipelined loops for a code size and performance improve-

ment. In addition, there is potential for performance improvement where interrupt

registers may be utilized in high register pressure loops.

4.3.3 Software Pipelining [22]

Software pipelining is a technique used to schedule instructions from a loop so that mul-

tiple iterations of the loop execute in parallel. The compiler always attempts to software
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Fig. 4.8: Software pipeline loop (from [18]).

pipeline. Figure 4.8 illustrates a software pipelined loop. The stages of the loop are rep-

resented by A, B, C, D, and E. In this figure, a maximum of five iterations of the loop can

execute at one time. The shaded area represents the loop kernel. In the loop kernel, all

five stages execute in parallel. The area above the kernel is known as the pipelined loop

prolog, and the area below the kernel is known as the pipelined loop epilog.

But under the conditions listed below, the compiler will not do software pipelin-

ing [19]:

• If a register value lives too long, the code is not software-pipelined.

• If a loop has complex condition code within the body that requires more than five

condition registers, the loop is not software pipelined.

• A software-pipelined loop cannot contain function calls, including code that calls

the run-time support routines.

• In a sequence of nested loops, the innermost loop is the only one that can be

software-pipelined.

• If a loop contains conditional break, it is not software-pipelined.
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In our work, we must maximize the number of loops that satisfy the requirements of

software pipelining. Software pipelining is a very important technique for optimization,

its importance cannot be overemphasized.

4.3.4 Intrinsics [19]

The C6000 compiler provides intrinsics, which are special functions that map directly

to inlined C64x instructions, to optimize C/C++ code quickly. All assembly instruc-

tions that are not easily expressed in C/C++ code are supported as intrinsics. A table of

TMS320C6000 C/C++ compiler intrinsics can be found in [19].

4.4 Performance of the Original Program

Before we enter the detailed description of how to accelerate our implementation, we

present the performance of the original program (from [14]). Tables 4.3 and 4.4 show the

code size, average cycles per sample of individual function blocks for the transmitter and

the receiver, respectively.

In the original program, many blocks contain disqualified software pipelining loops.

The compiler feedbacks tell us that many loops contain complex condition code and func-

tion calls, such as fread() and fwrite(). Also, there are some unneeded computation that

can be discarded. Detail descriptions are given in later sections.

In our system, the clock frequency of DSP is 600 MHz, and one symbol duration is

201.6 µs (2304 samples). Therefore, the available execution clock cycles are 120960 in a

symbol duration, averaging to 52.5 in a sample duration. To achieve real-time processing

speed, one sample must execute less than 52.5 clock cycles. In Tables 4.3 and 4.4, the

“multiples of real-time” is defined as the ratio of average cycles count per sample to 52.5.

We can see that many blocks cannot operate in real-time rate. In this work, we try to

optimize all the blocks as we can.
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Table 4.3: Profile of Transmitter Function Blocks

Code Size Avg. Count Number of Avg. Cycles Multiples
Blocks Sample per of

(Bytes) (Cycles) Processed Sample Real-Time

Modulation 616 90252 288 313.38 5.97
Framing 2144 124089 1696 73.17 1.39

IFFT 936 35710 2048 17.44 0.11
TX SRRC 1624 6199459 2304 2690.74 51.25

Table 4.4: Profile of Receiver Function Blocks

Code Size Avg. Count Number of Avg. Cycles Multiples
Blocks Sample per of

(Bytes) (Cycles) Processed Sample Real-Time

de framing 2144 124089 1696 73.17 1.39
CP correlation 756 57 1 57 1.75

Preamble correlation 1416 8327 1 8327 158.61
SRRC downsample 564 2302 1 2302 43.85

FFT 276 32247 2048 15.75 0.3

4.5 The Modulation Function

The original version of the modulation software cannot satisfy the requirements of soft-

ware pipelining due to loop containing control code, as shown in Figure 4.9. Our solution

is to reduce the if-else statements and rewrite the modulation schemes into 3 indepen-

dent files. The first thing we do is construct 3 independent look-up tables that contain

the constellation points of their own modulation schemes. Then we extract the modula-

tion schemes from the original function, modulation(). Finally, we let the main function

Fig. 4.9: Compiler’s feedback of the modulation().
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Fig. 4.10: A part of C code in the main function.

Fig. 4.11: C code for modulation 16QAM().
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Fig. 4.12: A part of the assembly code in the modulation 16QAM().

57



Fig. 4.13: Compiler’s feedback of the modulation QPSK().

Fig. 4.14: Compiler’s feedback of the modulation 16QAM().
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Table 4.5: Breakdown of Clock Cycles for Three Modulation Functions

One FEC Block modulation QPSK modulation 16QAM modulation 64QAM

Code Size (bytes) 780 364 280
Max. Cycles 374 412 419
Min. Cycles 374 395 412
Avg. Cycles 374 404 416
Avg. Cycles
per Sample 2.59 2.81 2.89

Fig. 4.15: Compiler’s feedback of the modulation 64QAM().

control the program flow, and let the compiler optimize the individual functions, modula-

tion QPSK(), modulation 16QAM(), and modulation 64QAM(). Figure 4.10 shows the

a part of C code in the main function. Figures 4.11 and 4.12 show the C code and its

resulting assembly code of modulation 16QAM().

Table 4.5 lists the performance of three different modulation schemes. The size of

output data is one FEC block, which has 48 × 3 samples. Figures 4.13, 4.14 and 4.15

show the compiler’s feedback of the major loop in the codes. The number of iteration

intervals (ii) is bounded on the .D functional units. Therefore, if we want to reduce “ii”,
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Fig. 4.16: C code for original PRBS generator (from [14]).

Fig. 4.17: C code for generating the carrier locations.

we must find a way to deal with data moves more efficiently.

4.6 The Framing and Deframing Functions

In the original code shown in Fig. 4.16, the pseudo random binary sequence (PRBS)

generator was for pilot/preamble modulation for the framing function. The polynomial

for the PRBS generator is X11 + X9 + 1, and the initialization vector is fixed to 0x0555.

So we can find that the output is always the same; hence, we can eliminate this function

and place the output in the header file for repeated use.
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Fig. 4.18: Two versions of C program for framing of the preamble.

Fig. 4.19: Two versions of C program for framing of other symbols.
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Fig. 4.20: The resulting assembly code for the revised code.
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Fig. 4.21: Compiler feedback of the optimized code for other symbols.
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In the original code for framing, the carrier locations for each user are always re-

computed, while these locations are fixed when the transmission parameters are given.

Therefore, we can implement an structure that computes the carrier locations of all the

subchannels in the beginning of the transmission. Its output is a sequence with a length

of 1696 (the number of the data carriers in one OFDM symbol) that contains the carrier

locations of subchannels 0− 31 in order. Figure 4.17 shows the C code that computes the

carrier locations. Figure 4.18 shows the original version and the optimized version. This

technique can also be used in the deframing program.

Since the framing structure deals with the carrier allocation of the preamble symbol

and other UL symbols, we also consider the optimization of the part for other UL symbols.

The original program are too complex for the compiler to software pipeline. Therefore,

our goal is to reduce the complex code in that part of the program. Figure 4.19 shows

the original code and the optimized code. This modification lets the compiler do software

pipelining, and the resulting assembly code is shown in Fig. 4.20. And their feedbacks are

shown in Figure 4.21. Tables 4.6 and 4.7 compare the original version and the optimized

version for framing and deframing, respectively. The original version here is not the same

as the code in [14], where the major modification is eliminating the use of fread() and

fwrite(). Note that the number of minimum cycles is for preamble and the number of

the maximum cycles is for other symbols in both tables. The revised codes are 4.52 and

Table 4.6: Breakdown of Clock Cycles for framing()

4 × OFDMA Symbols
8 Subchannels Original Revised

Number of execution 4 4
Code Size (bytes) 1568 1788

Max. Cycles 24472 4828
Min. Cycles 5552 3012
Avg. Cycles 19737 4366
Total Cycles 78950 17466

Cycles per Sample 46.55 10.29
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Table 4.7: Breakdown of Clock Cycles for deframing()

4 × OFDMA Symbols
8 Subchannels Original Revised

Number of execution 4 4
Code Size (bytes) 696 784

Max. Cycles 17882 6131
Min. Cycles 31 32
Avg. Cycles 13414 4601
Total Cycles 53656 18407

Cycles per Sample 28.91 10.85

2.66 times faster than the original ones, respectively. The first optimized loop in revised

version shown in Fig. 4.19 can still be improved, and we leave it to future work.

4.7 The IFFT and FFT Functions

According to IEEE 802.16a, the length of IFFT/FFT is 2048. In the original program [14],

it employs the 32-bit fixed-point data type for inputs, outputs and twiddle factors. In order

to reduce the computation complexity due to lots of 32 × 32 multiply operations, we use

the 16×16-bit IFFT function in the TI C64x DSPLIB to replace the original one.

As mentioned in Section 4.3, DSPLIB includes many C-callable, assembly-optimized,

general-purpose signal processing routines. These routines are typically used in computation-

intensive real-time applications where optimal execution speed is critical. By using these

routines, we can achieve execution speeds considerably faster than equivalent code writ-

ten in standard ANSI C language.

Complex forward mixed radix 16×16-bit FFT with rounding (DSP fft16x16r) com-

putes a complex forward mixed radix FFT with scaling, rounding and digit reversal. Input

data x[] , output data y[] and coefficients w[] are 16-bit. The output is returned in the sepa-

rate array y[] in normal order. Each complex value is stored as interleaved 16-bit real and

imaginary parts. The code uses a special ordering of FFT coefficients (also called twiddle

factors). These twiddle factors are generated by using the program tw fft16x16 provided
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by TI.

Scaling by 2 (i.e., � 1) takes place at each radix-4 stage except the last one. A radix-4

stage could give a maximum bit-growth of 2 bits, which would require scaling by 4. To

completely prevent overflows, the input data must be scaled by 2(BT−BS), where BT (i.e.,

total number of bit growth) = log2(N), BS (i.e., 2’s exponent of scaling) = ceil[log4(N)–

1], and N is the length of the FFT. All shifts are rounded to reduce truncation noise power

by 3 dB.

Note that the DSPLIB does not provide a 16×16-bit IFFT routine. The IFFT function

we perform is just a reuse of the DSP fft16x16r routine. The IFFT function we implement

follows the equation below, with input x[], output y[], and twiddle factor WN :

x[n] =
1

N

N−1∑
k=0

y[k]WN
−kn =

1

N

N−1∑
k=0

y[k](WN
kn)∗ =

1

N
(
N−1∑
k=0

y[k]∗WN
kn)∗, (4.7.1)

where n = 0, ..., N − 1. We first conjugate the input, then perform FFT, and conjugate

the output again. This IFFT uses the same twiddle factor as the DSP fft16x16r routine.

In the following subsection, we discuss an issue that takes some effort to address in im-

plementing the IFFT.

4.7.1 Analysis of the Output Performance

Since the DSP fft16x16r routine computes fixed-point numbers, it is recommended by [20]

that when using the FFT function, the input data must be scaled by 2BT−BS to completely

prevent output overflow. In our case, BT = log2(2048) = 11, and BS = ceil[log4(2048)–

1] = 5, so we need to shift right the input by 6 bits. There is a tradeoff between output

performance and probability of output overflow. Remember that all shifts can result in

quantization errors, the more bits we scale, the more errors we have. As a result, we must

try to avoid directly scaling the input by 6 bits (i.e., � 6).

The IFFT function we implement can be depicted as in Figure 4.22. We note that the

number of scaling bits we utilize is not a constant value. The total shift-right bits are 5.
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Fig. 4.22: Block diagram of the IFFT function.

This is because by the IFFT factor, 1
N

= 1
2048

, we need to shift right the output by 11 bits,

but since there are 5 “built-in” shift-right bits introduced by DSP fft16x16r, we only need

to shift right 6 bits. Then we shift left the output by 1 bit to obtain the data format Q.15.

The reason for adopting a variable number of scaling bits is that different SSs may use a

different amount of subchannels, so it is not suitable to set a constant value for all users.

We find that, not surprisingly, the more subchannels the SS uses, the more scaling bits it

needs.

We simulate use of different number of subchannels. In each simulation, 10000

OFDM symbols are generated. We evaluate the performance of the IFFT output by means

of the normalized SNR defined as follows:

• The SNR measures the differences between the output of the IFFT and the output

of the original DSP ifft32x32 routine used in [14].

• Since it is possible to have output overflows, when we calculate the SNR, we discard

all the outputs that have overflowed.

• “Normalized” means that the the SNR is divided by the number of subchannels that

the SS uses.

From Fig. 4.23, we see that the more subchannels we use, the higher the probabil-

ity of output overflow is. When x = 1, the figure shows that when using more than 20

subchannels, the output always overflows.
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Table 4.8: Computational Complexity for FFT algorithm

Complexity No. of Real Multiplications No. of Real Additions

Radix-4 FFT 9
8
N log2 N − 3N + 3 25

8
N log2 N − 3N + 3

If the number of subchannels used is fixed, the probability of output overflow de-

creases with increasing x. The normalized SNR is about 50.6 dB at x = 1, 47.6 dB at x

= 2, and 44.5 dB at x = 3. Scaling the input by one more bit can result in 3 dB loss in

normalized SNR. Figure 4.24 shows the performance of IFFT when using 64-QAM for

modulation.

4.7.2 Complexity Analysis

Theoretically, there are 4 radix-4 and 1 radix-2 stages in DSP fft16x16r. Table 4.8 gives

the computational complexity for radix-4 FFT algorithm. We can find that the number of

real multiplications theoretically needed in DSP fft16x16r are

2︸︷︷︸
Use two N=1024 radix−4

×( 8451︸︷︷︸
from Table 4.8

+ 1024 × 3

4︸ ︷︷ ︸
no. of complex twiddle factors

× 2︸︷︷︸
from complex muls

) = 19974,

and the real additions needed are

2 × ( 28931︸ ︷︷ ︸
from Table 4.8

+1024 × 3

4
× 4︸︷︷︸

from complex muls

) + 2048 × 2︸ ︷︷ ︸
2048 radix−2 FFT

= 68102.

Since the C6416 DSP chip has 4 16 × 16 multipliers and 6 32 × 32 adders executing

in parallel, the minimum number of clock cycles needed is given by

max[ 19974︸ ︷︷ ︸
multiplications

×1

4
, 68102︸ ︷︷ ︸
additions

×1

6
] = 11350.

Practically, the time DSP fft16x16r needed is 15511 clock cycles. We list the complexity

and efficiency of DSP fft16x16 and DSP fft32x32 (the latter used in [14]) in Table 4.9.

Note that the IFFT implementation includes lots of data moves. Since the former stage

is framing, whose output is composed of 1696-point data carriers, we need to move them
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Fig. 4.23: Performance of IFFT when the modulation is 16-QAM.

Fig. 4.24: Performance of IFFT when the modulation is 64-QAM.
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into their locations in a 2048-point OFDM symbol. Table 4.10 shows a comparison of the

IFFT performance for the original version (from [14]) and the revised version.

We give a part of assembly code in the pipeline kernel for DSP fft16x16r in Fig. 4.25.

From this figure, we see that there can be eight instructions executing in parallel. Also

we find that this code uses the DOTP2 instruction to execute 16 × 16 multiplications.

This confirms that it can do 4 16 × 16 multiplications per cycle. Another point is that it

uses packet data transmission, through the PACKH2 and PACKLH2 instructions. These

instructions are helpful in reducing the number of memory accesses. Thus, the clock

cycles can be considerably reduced as the C64x is more efficient in 16-bit multiplies.

Fig. 4.25: A part of the assembly code in DSP fft16x16r.

Table 4.9: Complexity and Efficiency of DSP fft16x16r and DSP fft32x32

Needed Number Equivalent Number Efficiency
of Clock Cycles of Clock Cycles

DSP fft16x16r 11350 15511 73.18%
DSP fft32x32 11350 28811 39.40%
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Table 4.10: Breakdown of Clock Cycles for IFFT()

Number of Frames = 1
Frame Size = 4×OFDMA Symbols Original Version Refined Version

Code size (bytes) 936 1180
Number of execution 4 4

Max. cycles 35710 24149
Min. cycles 35710 24149
Avg. cycles 35710 24149
Total cycles 142840 96596

4.8 Transmission Filtering

In order to provide the ability to simulate path delays at non-integer sample times, an

interpolator is induced in the transmitter to yield 4-times oversampled transmitter out-

put. In our system, we adopt the 57-taps SRRC filter with α = 0.155. We implement a

polyphase system, shown in Fig. 4.26. This implementation would involve applying filter

coefficients only to input values that are nonzero. In our work, L = 4. When computing

an output value at the boundary of a sequence, a portion of the convolution or correla-

tion kernel is usually off the edge of sequence, as illustrated in Fig. 4.27. We assume the

values outside the data sequence to be 0, that is, zero padding. Thus, we can avoid using

many if-else statements to handle the boundary values when doing convolution.

Table 4.11 shows a comparison of the performance of the original version (from [14])

and the revised version. Note that the refined version can achieve real-time processing,

which requires less than 120960 cycles for 2304 samples.

We give a part of C code for convolution the input with E0(z) and E2(z) in Fig. 4.28,

its compiler’s feedback in Fig. 4.29, and a part of the assembly code in the pipeline kernel

in Fig. 4.30. From the feedback, we see that the loop can run 8 iterations in parallel with

each iteration completed in 5 cycles. From the assembly code, we see that the DOPT2,

PCKLH2, and LDNDW instructions are used. The first two we have introduced in last

section, the last one is for 8 bytes memory accesses. We know that this is the widest
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Fig. 4.26: Implementation of interpolation filter with polyphase decomposition [11].

Fig. 4.27: Convolution kernel at the boundary of a finite-length sequence.

memory access provided by the C6416 DSP chip. Although there are not 8 instructions

executing in parallel every cycle, the improvement of the performance is impressive.

We also consider replacing the 4 decomposition filters in our revised code by 4 DSP fir gen()

routines from DSPLIB. DSP fir gen() does real FIR filtering. It operates on 16-bit data

with a 32-bit accumulate. From [20], one DSP fir gen() needs 15675 clock cycles. Since

there are 8 real decomposition filters, the total cycles needed are 125400.

After profiling the code, we obtain the performance as listed in Table 4.12. In this

table, we do not show the Max and Min cycles, since they are all equal to the average

cycles. The inclusive cycles are the cycles for one pass over the profile area, including
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Fig. 4.28: C code for convolution with E0(z) and E2(z).

Fig. 4.29: Compiler’s feedback for convolution with E0(z) and E2(z).
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Fig. 4.30: A part of assembly code for convolution with E0(z) and E2(z).
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Table 4.11: Breakdown of Clock Cycles for TX SRRC()

Number of Frames = 1
Frame size = 4×OFDMA Symbols Original version Revised version

Code size (bytes) 1624 2576
Number of execution 4 4

Max. cycles 6199459 72209
Min. cycles 6199459 72209
Avg. cycles 6199459 72209
Total cycles 24797836 288836

Table 4.12: Breakdown of Clock Cycles for Modified Code using DSP fir gen()

Code Size (bytes) Inclusive Average Exclusive Average

1856 146372 20956

the execution time (cycle count) of any subroutines called from within the profile area.

The exclusive cycles are the cycles spent executing the profile area, excluding the exe-

cution time (cycle count) of any subroutines called from within the profile area. After

subtracting the inclusive cycles from the exclusive cycles, we can get the cycles spent on

the subroutines only. This results in 125416 clock cycles, very close to our calculated,

125400. Table 4.13 summarizes the performance of our optimized versions. The revised

version without using DSP fir gen() performs the best and achieves real-time processing.

This version is 85.85 times faster than the original version.

4.8.1 Complexity Analysis

Each OFDMA symbol has 2304 samples. The SRRC filter is 57-tap, so the number of

real multiplications is

2304 × 57 × 2︸︷︷︸
I− and Q− channels

= 262656.

And the number of real additions is

2304 × 56 × 2︸︷︷︸
I− and Q− channels

= 258048.
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Table 4.13: Breakdown of Clock Cycles for TX SRRC()

Number of Frames = 1 Revised version
Frame size = Original Version Revised Version with

4×OFDMA Symbols DSP fir gen()

Code size (bytes) 1624 2576 1856
Number of execution 4 4 4

Max. cycles 6199459 72209 146372
Min. cycles 6199459 72209 146372
Avg. cycles 6199459 72209 146372
Total cycles 24797836 288836 585488

Table 4.14: Complexity and Efficiency of SRRC Filter

SRRC filter Ideal Practical Efficiency

Clock cycles 65664 72209 90.94%

The DSP chip can support four 16×16 multiplications and six 32×32 additions per cycle.

Hence the total cycles we need are at least

max[ 262656︸ ︷︷ ︸
multiplications

×1

4
, 258048︸ ︷︷ ︸
additions

×1

6
] = 65664.

Table 4.14 lists the complexity and efficiency of our revised version without using the

DSP fir gen() routine.

4.9 The Uplink Synchronization Function

The main operation in the uplink synchronization is preamble correlation. We correlate

the received signal with the SS’s preamble symbols. Figure 4.31 shows a part of the C

code for preamble correlation in sync(). In this loop, Buffer length equals 2048. This

loop performs 2048-point complex multiplication and generates one sample per iteration.

Although this loop satisfies the requirements of software pipelining, it can be more effi-

cient if we make some improvements on it. Figure 4.32 shows the code after optimization.

The optimization techniques that we utilize are listed below:
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Fig. 4.31: C code in sync() before optimization.

• intrinsics

– hi: Returns the high 32 bits of a double as an integer.

– lo: Returns the low 32 bits of a double as an integer.

– amemd8 const: Allows aligned loads of 8 bytes to memory.

– dotp2: Returns the dot product between two pairs of signed packed 16-bit

values residing in two 32-bit registers. Figure 4.33 illustrates how the dotp2

intrinsic operates.

We use the intrinsics to help the C64x bring in data as 64-bit values. Our aim is to

let C64x access eight 16-bit values every clock cycle to be able to do four 16 × 16

multiplies every clock cycle.

• Loop unrolling: It expands small loops so that all iterations of the loop appear, and

increase the number of instructions available to execute in parallel. ThereW is a

speed-space tradeoff. We choose to unroll the loop by 8 times.

Figures 4.34 and 4.35 show the compiler’s feedback for the loop. We can see that

before optimization, each sample takes 2 cycles (ii=2). After optimization, each sample

only takes 1 cycle (ii=8, and loop-unrolling 8x). Figure 4.36 shows the assembly code in

the optimized loop kernel. We see that the instructions used are just the way we want the

DSP to do. DOTP2 instructions do 16 × 16 multiplications and LDW instructions do 8

bytes memory accesses.

77



Fig. 4.32: C code in sync() after optimization.

Fig. 4.33: Graphical illustration of c = dotp2(b,a) [19].
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Table 4.15: Breakdown of Clock Cycles for sync()

Number of Frames = 1
Frame size = 4×OFDMA Symbols Original Version Revised Version

Code size (bytes) 716 1020
Number of execution 205 205

Max. cycles 8331 4770
Min. cycles 8331 4770
Avg. cycles 8331 4770
Total cycles 1707855 977850

Table 4.15 compares the performance of the original code and the revised code. The

revised version is 1.75 times faster than the original one.

4.9.1 Complexity Analysis

Figures 2.14 and 2.15 have shown the structure of preamble correlation and the number

of executions, respectively. We only do uplink synchronization at the first symbol of one

frame.

For each user, the real multiplications we need are

2048 × 4︸︷︷︸
complex multiplication

× 205︸︷︷︸
range

= 1679360.

The real additions we need are

2048 × 2︸︷︷︸
from complex multiplication

× 205︸︷︷︸
range

+2047 × 2︸︷︷︸
complex addition

× 205︸︷︷︸
range

= 1678950.

In our work, the number of users is 2. We need to do preamble correlation for each user,

then we can get the peak locations (i.e., arriving timing positions) of them. After knowing

their peak locations, we start comparing and decide which SS is first coming. The total

multiplications per frame are

1679360 × 2 = 3358720.

The total additions per frame are

1678950 × 2 = 3357900.
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Fig. 4.34: Compiler’s feedback of the code shown in Fig. 4.31.

Fig. 4.35: Compiler’s feedback of the code shown in Fig. 4.32.
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Fig. 4.36: A part of the assembly code in sync().

Hence, the total clock cycles we need are at least

max[ 3358720︸ ︷︷ ︸
multiplications

×1

4
, 3357900︸ ︷︷ ︸

additions

×1

6
] = 839680.

We list the complexity and Efficiency of sync() in Table 4.16. Note that the complexity

of sync() depends on the number of correlators so that it is linearly proportional to the

number of SSs.
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Table 4.16: Complexity and Efficiency of sync()

SRRC filter Ideal Practical Efficiency

Clock cycles 839680 977850 85.87%

4.10 Conclusion in Optimization

In this section, we give a conclusion in optimization. Tables 4.17 and 4.18 give the perfor-

mance of the optimized DSP code in the transmitter and the receiver, respectively. In our

system, the clock frequency of the DSP is 600 MHz, and one symbol duration is 201.6

µs (2304 samples). Therefore, the execution clock cycles is 120960 in a symbol duration

and average 52.5 in a sample duration. To achieve real-time processing speed, one sample

must consume no more than 52.5 clock cycles. The “multiples of real-time” is defined as

the consumed cycles per sample divided by 52.5.

In Table 4.17, we show the transmitter function. We have only done optimizations

to the functions from [14]. They are modulation, framing, TX SRRC, and IFFT. The

FEC functions [15] are also integrated to our system, but only QPSK is functioning at

the moment. The FEC decoder for the 16-QAM is not workable, so the 16QAM option

does not work normally yet. Except for some of the FEC functions, the other functions

we have optimized can operate in real-time individually. The performance of modulation

and framing are limited to the number of data moves. If we want to further accelerate

them, we may consider rewriting them in linear assembly. The computational efficiencies

of TX SRRC and IFFT are 90.94% and 73.18%, respectively, as already discussed pre-

viously. The enc main first and enc main second are for FEC encoding, and they are for

coding rates 1
2

and 3
4

in QPSK, respectively. They need the computing power of at least 5

C6416 chips to achieve real-time, at this moment.

Table 4.18 gives the performance of the functions in the receiver. The deframing and

deinter QPSK can achieve real-time rate. In the deframing function, there are still many

data moves instructions. So rewriting it in linear assembly is also a way to improve it. The

82



Table 4.17: Profile of 802.16a UL Transmitter Function Blocks

Avg. Multiples Fraction
Function Code Size Cycles per Improv- of of

(Bytes) sample ements (%) Real-Time Total

modulation QPSK 780 2.6 61.63 0.045
modulation 16QAM 364 2.84 95.38 0.054 4.87%
modulation 64QAM 280 2.88 96.11 0.055

framing 1812 11.04 77.89 0.21 19.39%
TX SRRC 2576 31.34 99.89 0.60 55.03%

IFFT 1180 11.79 46.15 0.22 20.70%
enc main first 1732 164.87 none 3.14

enc main second 2124 230.10 none 4.38 Excluded
inter QPSK 244 26.13 none 0.50

Table 4.18: Profile of 802.16a UL Receiver Function Blocks

Code Size Avg. Cycles Multiples Fraction
Function (Bytes) per Sample of Real-Time of Total

de framing 784 10.85 0.21 1.82%
sync 1020 4770 90.86 Excluded

channel equalizer 1424 178.18 3.39 41.63%
RX SRRC 400 242 4.61 56.55%
dec main 0 2340 883.92 16.84
dec main 1 2244 1203.66 22.93 Excluded

deinter QPSK 216 17.67 0.34

sync function cannot achieve real-time yet, since one sample needs 4770 cycles. It needs

at least 91 C6416 chips to process in real-time rate. But it only needed at the start of a

frame. And the computational efficiency of it is 85.87%. If the number of SSs is increased,

the number of cycles needed will also be increased. The RX SRRC is optimized in [25].

But it needs at least 5 C6416 chips to achieve real-time rate. The channel equalizer needs

at least 4 C6416 chips to achieve real-time rate. We can do some modifications to it for

further improvements. The dec main 0 and dec main 1 are used for FEC decoder, and

they are for coding rates 1
2

and 3
4

in QPSK, respectively. They need at least 23 C6416

chips for real-time processing.
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In this thesis, we do not analyze the SNR performance of the SRRC function and the

sync function, neither. This shall be done in the future work.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, the implementation of TDD OFDMA uplink system on TI’s C6416 dig-

ital signal processor has been introduced. The implementation was based on the codes

from [14] and [15], which dealt with uplink synchronization and FEC encoder/decoder,

respectively. We rewrote and integrated those codes into a version that was friendly in

block transmission mechanism, which is the method for communication between the host

PC and the DSP baseboard. But due to the unknown system software bug, we are unable

to run the channel equalizer() on the DSP baseboard yet.

Another part of this thesis was to introduce the optimization techniques in order to

accelerate the blocks in our work. We have optimized the modulation, framing/deframing,

TX SRRC, FFT/IFFT, and sync blocks. Most of them can achieve real-time rate, but the

sync cannot. The computational efficiency was also discussed in this thesis. We computed

the ideal complexity needed, and compared it with the practical complexity. The results

can remind us that if there still has rooms for further improvements. The efficiencies of

TX SRRC, FFT, and sync are 90.94%, 73.18%, and 85.87%, respectively.

The UL synchronization we proposed use the preamble correlation to obtain the sym-

bol arriving time instant. Since the values of the preamble of each SS are known by the

BS, it can be used as the reference to correlate the received signals. By using this method,

we can find the precise timing of the first coming SS. The timing errors are in some degree
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to correlated to the channel model. The results are similar to [11].

5.2 Potential Future work

In the realized system, we find that there are several possible extensions that would en-

hance the capability and performance.

• The implementation of overall functions in the receiver on DSP should be workable.

The memory allocation problem should be solved.

• The ideal channel equalizer shall be replace by other practical algorithms.

• The BS shall compute the BER and SNR of each user and tune their used subchan-

nels to approach the real conditions.

• Strictly speaking, the CPU busmastering interface is not efficient for the DSP base-

board communicating with the host PC. We shall consider the streaming interface,

another mechanism provided by the Quixote.

• Since there are still many blocks not satisfying the real-time requirement, we can

try to partition them on FPGA or other DSP boards.

• Since the communications among DSP baseboards are not applicable in our system,

we can not process couples of DSP boards in parallel. If this functionality can be

applied, we can consider connecting the source encoder/decoder to our system.

• The integration of other modulation choice (i.e., 16-QAM) in FEC encoder/decoder

are not workable yet.

• Analyze the SNR performance of the sync function.
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