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摘要 
 

 在 Java處理器執行 Java程式時，需要很多的執行時間和計憶體的存取來完
成 object field access的動作。在此篇論文中，我們提出對於 object field access的
加速方法是利用一硬體的緩衝區，稱作 object cache，來儲存先前已經被存取過
的 object field的值。這種 object cache不但能加速 object field access的動作，並
且支援 garbage collection，保證在發生 garbage collection時，依然可由 object cache
拿到正確的資料。藉由透過 Trace-driven 的方式對 SPECjvm98 標竿程式進行模
擬，結果顯示在昇陽的 picoJava-II處理器中加入我們所提出的 object cache，將
可使 object field access的速度提升 3.3倍。 
 



 ii 

 

Boosting Java Processor 
Performance by  

Reusing Object Fields 

 
Student：En-Shen Lin  Advisor：Dr. Jean, J.J. Shann 

 
Institute of Computer Science and Information Engineering 

National Chiao-Tung University 
 

ABSTRACT 
 

 The operations of object field accesses in the Java processor require many clock 
cycles and memory references. Our approach of improving the performance of object 
field accesses is to cache the values of object fields of previous execution in hardware 
buffers, called object cache. In this thesis, object cache that can reduce the object field 
access time and support garbage collection, is proposed. A detailed trace-driven 
simulation of the proposed method on SPECjvm98 benchmark show that our 
proposed method can achieve 3.3 speedup over Sun’s picoJava-II on object field 
accesses. 
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Chapter 1 
Introduction 

 
 
 
 

Java has become the most popular language to develop network programs. Its 

suitability for networked environments is inherent in its architecture, secure, 

platform-independent programs and run on a great variety of computers and devices 

[1,2]. A Java program is compiled to the class files of an abstract virtual machine , 

called bytecodes, to achieve its platform-independent feature. As an interpreted 

language, its disadvantage is slow performance. Thus, there are some solutions to 

enhance Java’s execution performance such as Just-In-Time compilers and Java 

processors. A Just-In-Time (JIT) compiler translates Java bytecode dynamically to 
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native machine code to get partial speedup. But it needs more memory space to store 

the translated machine code. Java processor executes Java bytecode directly as its 

native code without interpreting [2,3,4]. With the appearance of Java processor, we 

have the new concept to be considered and studied. 

Because a Java processor executes Java bytecode as its native code, to 

understand the features of Java language is important when we design it. One of 

Java’s features is its cross-platform compatibility. A Java program is compiled to class 

file format. These class files may be loaded and executed by Java virtual machine 

(JVM) interpreters of various platforms without re-compilation, i.e., compiles once 

and runs everywhere. A Java processor is just the implementation of the abstract Java 

virtual machine. Another feature is its object-oriented programming model of Java. 

Java is an object-oriented language and it does not allow programmers to use pointers 

to access memory locations directly. Using object-oriented programming model 

advances the readability and maintainability of source code. The astriction of using 

pointers avoids the unpredictable errors of C programs and enhances the security. 

Object-oriented programming model makes programmers maintain their source 

code easily, but with the penalty of more execution time of programs. We call those 

instructions used to access object data “object manipulation instructions”. This kind of 

instructions is executed frequently and usually cost many clock cycles. We found that 

object field access instructions usually reference to the same entity. Therefore, we 

may accelerate the object access by recording and reusing some useful information. 

Sun’s picoJava-II has proposed a rewriting method to accelerate the constant pool 

resolution and made it more simple to access object field [5]. Thus, we propose a 

hardware support to enhance the object access performance of a Java processor. 

The purpose of this thesis is to accelerate the access of Java object fields. Our 

approach is to use a buffer, called object cache, to store the value of object fields. We 
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use an object virtual address instead of a physical memory address to index the object 

cache. This method will reduce unnecessary memory accesses and, thus, enhance 

performance. 

 The organization of this thesis is as follows. In Chapter 2, the background and 

related work are presented. In Chapter 3, the object field access behavior of the Java 

applications are investigated. Based on this study, a hardware acceleration mechanism 

of object field access is proposed. And then, the performance of the proposed 

acceleration mechanism is evaluated. Finally, conclusions and future research are 

presented in Chapter 4. 
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Chapter 2
 Background and 

Related work 
 
 
 

In this chapter, we describe the related background and researches of Java. First, 

Java technologies are discussed in detail, including several Java bytecode 

manipulation methods and Java class file organization. And then, the architecture of 

Java virtual machine is presented.  
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2.1 Java Technologies 

 

Programs of traditional programming languages have only one form, a running 

program. Whereas Java programs come with two flavors: a stand-alone program to 

run as a separate unit or an applet to run from the Internet browser. The life cycle of a 

traditional language program is very simple. A programmer writes a program, which 

may consist of a number of modules but are all linked at compile time. The compiler 

then converts the program to the underlying machine assembly language. As far Java 

program modules, each consisting of one or more classes, they are compiled 

independently to Java Virtual Machine bytecode. At this stage, these modules which 

are called class files can be exchanged and transferred around the network. Users load 

the module into an implementation of a the JVM. JVM may then load additional 

“.class” files as needed, from the user or across the Internet. Only at this point, 

references between different modules are resolved. And a dynamic linking step 

performed by a linker before the user gets starting the program.  

 

2.1.1 Java Bytecode Manipulation Methods 

 

Java bytecodes in their way to run take one of three methods: interpreter, 

Just-In-Time (JIT) compiler, and Java processor. These methods connect the virtual 

machine to the actual machine, where Java software can run. 

 A Java interpreter, like a translator, can convert Java bytecodes on-the-fly (at 

run-time) into native codes. The interpreter must process the same code over and over 

again while a Java program is running. Interpretation is simple and does not require 
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much memory. It is relatively easy to be implemented on any processor. However, it 

involves a time-consuming loop to translate every Java bytecode, and, thus, affects 

performance signitificantly.  

A Java Just-In-Time (JIT) compiler, like an interpreter, translates Java bytecodes 

into native code but it does not have to translate the same code over and over again as 

it cache the native code. This can result in significant speedup. However, sometimes a 

JIT compiler takes a large number of time to do its job and results in code size 

expansion and consuming more memory.  

A Java processor natively understands Java bytecode without the overhead of an 

interpreter or a JIT compiler. We can take advantage of high performance by running 

Java programs on Java processors. 

 

2.1.2 Java Class File Organization 

  

Like any compiler, the Java compiler takes the source code of a program and 

translates it into machine code and binary symbolic information. In a traditional 

system, these data will be stored in an object file for later use or execution. In Java  

case, they are placed into a separate “.class” file for each Java class or interface in the 

source code. 

The Java class file is a precisely defined binary file for Java programs. Each Java 

class file represents a complete description of one Java class or interface. There is no 

way to put more than one class or interface into a single class file. The precise 

definition for the format of the class file ensures that any Java class file can be loaded 

and correctly interpreted by any Java virtual machine, no matter which system 

produced the class file or which system hosts the virtual machine. 



 7 

 The Java class file is a binary stream of 8-bit bytes. Data items are stored 

sequentially in the class file, with no padding between adjacent items. The lack of 

padding helps to keep class files compact. Items that occupy more than one byte are 

split into several consecutive bytes that appear in big-endian order. The class files 

follow a rigid five-part format as shown in Figure 2-1. Each class file begins with a 

magic number and version information, followed by a constant pool, a class descriptor 

header, fields, methods, and finally an extension area. Because of Java’s dynamically 

linked nature, each class file must contain a large amount of symbolic and typing 

information. This data informs the JVM about how to resolve internal and external 

class references, and also allows it to verify the security and integrity of classes. 
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Name TypeLong UTF

Method/Field ImportInt Float

superclassClass
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this class
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Fig. 2-1: Linear, record-based organization of a Java class file 
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Constant Pool and Class Descriptor 

 

The constant pool of a class file is similar to the symbol table in a traditional 

object file; see Figure 2-1(a). The data with constant pool is referenced primarily by 

other structures and code within the class file, and thus contains a wealth of additional 

information beyond the usual symbol names. The pool is treated as an 

one-dimensional array of slots each containing one variable-length data type called a 

tag. The most common constant pool tags are strings. Strings are stored in the UTF-8 

format in Unicode characters which are packed into bytes to save space. 

The constant pool also integrates the aspects of traditional import/export and 

relocation tables. There are a number of special linking tags, which simply contain the 

indices of other pool slots. These tags (such as CLASS, METHOD, and NAMETYPE) 

are used to dynamically link Java classes. For example, a METHOD tag points to a 

CLASS tag (to specify an imported class), as well as a NAMETYPE tag (to identify a 

specific method in that class). Linking tags are also directly referenced by the 

bytecode of the class as a dynamic relocation table. 

Following the constant pool, the class descriptor consists of several fields related 

to the entire class; see Figure 2-1(b). These fields include the access flags of the class 

(public, private, and so on), as well as constant pool indexes to the class and its 

superclass. An array of constant pool indexes to any interfaces implemented by the 

class also appears here. 
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Fields, Methods, and Attributes 

 

Following the class descriptor, there are two arrays that describe fields (Figure 

2-1(c)) and methods (Figure 2-1(d)). Both arrays have an identical structure, but they 

describe different types of class members. Each variable length entry identifies the 

access flags, name, and signature of the member, as well as a list of associated 

“attributes”. 

 An attribute is a basic component of the class format, and is merely a special 

type of record that provides additional information in a more flexible format. For 

instance, each method descriptor contains a nested Code attribute that fully describes 

the actual bytecode for that method. Similarly, a field descriptor may contain a 

ConstantValue attribute, which points to a constant pool entry that describes a “static” 

constant in a class. In addition, several attributes are optional and are related to 

debugging. You can include your own attributes in class files to extend the class 

format without breaking existing code or Java Virtual Machine. 

 The Code attribute is especially important because it contains the actual Java 

bytecode (along with stack and local variable information). It can also contain nested 

attributes. For example, it can nest an Exceptions attribute (to list any exceptions 

thrown by the method owning the Code attribute) as well as several debug attributes, 

such as LineNumberTable, LocalVariables, and SourceFile. 

 At the end of the class file (Figure 2-1(e)) is a separate section for other 

attributes that apply to the class as a whole. The SourceFile attribute is placed here by 

the Java compiler, and vendors are free to put additional attributes in this section as 

well. For instance, the Attributes section is a good place to put class authentication or 

security information, or perhaps revision control system data. 
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2.2 Architecture of Java Virtual Machine 

 

In the Java virtual machine specification, the behavior of a virtual machine 

instance is described in terms of subsysytems, memory areas, and instructions. These 

components describe an abstract inner architecture for the abstract Java virtual 

machine. The purpose of these components is not so much to dictate an inner 

architecture for implementations but to provide a way to strictly define the external 

behavior of implementations. The specification defines the required behavior of any 

Java virtual machine implementation in terms of these abstract components and their 

interactions. 

 Figure 2-2 shows a block diagram of the Java virtual machine that includes the 

major subsystems and memory areas described in the specifications. Each Java virtual 

machine has a class loader subsystem, which is a mechanism for loading types 

(classes and interfaces) when given fully qualified names. Each Java virtual machine 

also has an execution engine, which is a mechanism responsible for executing the 

instructions contained in the methods of loaded classes. When a Java virtual machine 

runs a program, it needs memory to store many items—including bytecodes and other 

information that it extracts from loaded class files, objects that the program 

instantiates, parameters to methods, return values, local variables, and intermediate 

results of computations. The Java virtual machine organizes the memory it needs to 

execute a program into several runtime data areas. 
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Fig. 2-2: The internal architecture of the Java virtual machine 

 

 Some runtime data areas are shared among all threads of an application, and 

others are unique to individual threads. Each instance of the Java virtual machine has 

one method area and one heap. These areas are shared by all threads running inside 

the virtual machine. When the virtual machine loads a class file, it parses the 

information about a type from the binary data contained in the class file, then places 

this type information into the method area. As the program runs, the virtual machine 

places all objects that the program instantiates onto the heap. Figure 2-3 shows a 

graphical depiction of these memory areas. More details about the memory area and 

the heap are described in subsection 2.2.1 and 2.2.2. 
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Fig. 2-3: Runtime data areas that are shared among all threads 

 

 As each new thread comes into existence, it receives its own PC register 

(program counter) and Java stack. If the thread is executing a Java method (not a 

native method), the value of the PC register tells the next instruction to execute. The  

Java stack of a thread stores the state of Java method invocations (not native 

invocations) for the thread. The state of a Java method invocation includes its local 

variables, the parameters with which it was invoked, its return value (if any), and 

intermediate calculations. The state of native method invocations is stored in an 

implementation- dependent way in native method stacks, as well as possibly in 

registers or other implementation-dependent memory areas. 

 The Java stack is composed of stack frames (or frames), which contain the state 

of one Java method invocation. When a thread invokes a method, the Java virtual 

machine pushes a new frame onto the Java stack of a thread. When the method 

completes, the virtual machine pops and discards the frame for that method. The Java 

virtual machine has no registers to hold intermediate data values. The instruction set 

uses the Java stack for storage of intermediate data values. This approach was taken 

by Java designers to keep the JVM instruction set compact and to facilitate 
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implementation on architectures with few or irregular general-purpose registers. In 

addition, the stack-based architecture of the JVM instruction set facilitates the code 

optimization work done by just-in-time and dynamic compilers that operate at run 

time in some virtual machine implementations. 

 Figure 2-4 shows the memory areas that the Java virtual machine creates for each 

thread. These areas are private to the owning thread, and no thread can access the PC 

register or Java stack of another thread. In the figure, threads one and two are 

executing Java methods, while thread three is executing a native method. 
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Fig. 2-4: Runtime data areas that are exclusive to each thread 
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2.2.1 Method Area 

 

Inside a Java virtual machine instance, information about loaded types is stored 

in a logical area of memory called the method area. When the Java virtual machine 

loads a type, it uses a class loader to locate the appropriate class file. The class loader 

reads the class file—a linear stream of binary data—and passes it to the virtual 

machine. The virtual machine then extracts information about the type from the 

binary data and stores the information in the method area. Memory for class (static) 

variables declared in the class is also taken from the method area. All threads share 

the same method area, so accessing the data structure of the method area must be 

designed to be threadsafe. The class data that store in method include type 

information, constant pool, field, method information, class variables, and method 

tables. 

 

2.2.2 Heap 

 

Whenever a class instance or array is created in a running Java application, the 

memory for the new object is allocated from a single heap. Because there is only one 

heap inside a Java virtual machine instance, all threads share the heap. Since a Java 

application runs inside its own exclusive Java virtual machine instance, there is a 

separate heap for every individual running application. Two different Java 

applications can not access each other’s heap data. Two different threads of the same 

application could access each other’s heap data. For this reason, we must concern 

about the proper synchronization of multi-threaded access to objects (heap data) in 
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Java programs. 

The Java virtual machine has an instruction that allocates memory on the heap 

for a new object but has no instruction for freeing that memory. Just as you can not 

explicitly free an object in Java source code, you can not explicitly free an object in 

Java bytecodes. The virtual machine itself is responsible for deciding whether and 

when to free memory occupied by objects that are no longer referenced by the running 

application. Usually, a Java virtual machine implementation uses a garbage collector 

to manage the heap. 

 In Java virtual machine, there is no specification in regard to how objects should 

be represented on the heap. Object representation—an integral aspect of the overall 

design of the heap and garbage collector—is a decision left to implementation 

designers. The instance variables declared in the object’s class and all of its 

superclasses make up the primary data that must be represented for each object. Given 

an object reference, the virtual machine must have the capability to quickly locate the 

instance data for the object. In addition, there must be some way to access the object’s 

class data (stored in the method area) when given a reference to the object. For this 

reason, the memory allocated for an object usually includes some kind of pointer to 

the method area. 

 One possible heap design divides the heap into two parts: a handle pool and an 

object pool. An object reference is a native pointer to a handle pool entry. A handle 

pool entry has two components: a pointer to instance data in the object pool, and a 

pointer to class data in the method area. The advantage of this scheme is that the 

virtual machine can easily combat heap fragmentation. When the virtual machine 

moves an object in the object pool, it only needs to update one pointer with the 

object’s new address: the related pointer in the handle pool. The disadvantage of this 

approach is that every point of access to an object’s instance data requires 
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dereferencing two pointers. This approach to object representation is shown in Figure 

2-5. 

ptr into object pool

ptr to class data

instance data

instance data

instance data

instance data

the handle pool the object pool

the heap

the method area

class
data

ptr into handle pool

an object reference

 
Fig. 2-5: Splitting an object across a handle pool and an object pool 

 

 Another design of heap makes an object reference a native pointer to a bundle of 

data that contains the object’s instance data and a pointer to the object’s class data. 

This approach requires dereferencing only one pointer to access an object’s instance 

data but makes moving objects more complicated. When the virtual machine moves 

an object to combat fragmentation of this kind of heap, it must update every reference 

to that object anywhere in the runtime data areas. This approach to object 

representation is shown in Figure 2-6. 
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Fig. 2-6: Keeping object data in one place 
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Chapter 3    
Design and Simulation 

of Object Cache 
 
 
 

In this chapter, the analysis of the object-field access behaviors is presented. First, 

an example and execution flow of the object-field access are presented. And then, an 

optimization method of rewriting bytecode proposed by Sun is shown. Next, the 

benchmark behavior analysis is given. Base on this result, a new acceleration 

mechanism for object-field access is proposed. Then, the issues that affect our 

proposed mechanism and the operations of the mechanism are presented. Finally, the 

performance of the proposed accelerated mechanism is evaluated. 
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3.1 Object-Field Access Behavior 

 

Java is an object-oriented language. One of its important feature is the data 

encapsulation. The data and methods of a sturcture are encapsulation into a class. We 

have to access object data or method through object manipulation instructions. 

Traditionally, this kind of instructions are performed by traps and always cost lots of 

cycles to execute. Figure 3-1 shows the dynamic instruction mix of SPECjvm98 

benchmark [6]. We find that class object manipulation (COM) insturctions constitute 

19% of total instruction counts. Therein, opcode “getfidle” and “putfield” constitute 

most of this kind of instructions. In this section, we explain the detail execution flow 

of object-field access instructions ,especially getfield and putfield, and declare that we 

want to accelerate the speed of these two instructions. 

 

 
LS: load and store OC: object creation 
A: arithmetic AOM: array object manipulation 
OSM: operand stack management MI: method invocation 
TC: type conversion COM: class object manipulation 
CT: control transfer  

 
Fig. 3-1: The dynamic instruction mix of SPECjvm98 benchmark 
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3.1.1 An Example of Object-Field Access 

 

Figure 3-2 shows the formats of bytecode “getfield” and “putfield” and the 

changes of the operand stack before and after the execution of the bytecode. These 

two instructions are used to access object-field data. There are two indexbytes follow 

the opcode and are used to index into the constant pool. Bytecode “getfield” is used to 

fetch a field data from an object. Before the opcode “getfield” be executed, the  

object reference of the target field must be put on the top of stack (TOS). After 

execution, the value of target field is on top of stack. Bytecode “putfield” is used to 

set a field value in an object. Before the opcode “putfield” be executed, the object 

reference of the target fieldand the value must be put on the top of stack (TOS). After 

execution, the value is set in the target field. 

 

 
Fig. 3-2: The format of opcode “getfield” and “putfield” and the changes of the 

operand stack before and after the execution of the bytecode 

 

 An example of object-field access is shown in Figure 3-3. Figure 3-3(a) is the 

example source code. We declare two classes (class A and B), each contains one field 

(field aInt and bInt). We use the keyword “new” to create the object instance from a 
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class. In this example, A1 is an instance created from class A and B1 is an instance 

created from class B. Figure 3-3(b) shows the Java bytecode compiled from the 

source code. It will call the opcode “new” to create the object instance. There is one 

indexbyte following the opcode. This byte is used to index into the constant pool. 

Figure 3-3(c) shows the state of constant pool and local variables. When the bytecode 

“new #1” is executed, it will go to constant pool entry #1 to get the necessary 

information. After execution, the created object reference is on the top of stack. It will 

call the opcode “astore” to save the object reference to local variables. When we want 

to access object field data, it will call the opcode “getfield” or “putfield” and need  to 

load some information from constant pool or local variables. 

 

 

              (a)                            (b)                (c) 

Fig. 3-3: An example of object-field access 
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3.1.2 Execution Flow of Object-Field Access 

 

In the Java virtual machine, memory is allocated on the garbage-collected heap 

only as objects. You can not allocate memory for a primitive type on the heap, except 

as part of an object. On the other hand, only object references and primitive types can 

reside on the Java stack as local variables. Objects can never reside on the Java stack. 

The architectural separation of objects and primitive types in the Java virtual machine 

is reflected in the Java programming language, in which objects can not be declared 

as local variables—only object references and primitive types can. Upon declaration, 

an object reference refers to nothing. Only after the reference has been explicitly 

initialized—either with a reference to an existing object or with a call to new, the 

reference refer to an actual object. 

When we want to access an object method or field, some sequential actions will 

be executed. Opcode “getfield” and “putfield” are used to get and put object fields. 

There are 2-byte operands called “indexbytes” followed the opcodes used to index to 

constant pool. Constant pool resolution is executed to find the physical memory 

location of the referenced field or method. It is the process of dynamically 

determining concrete values from the symbolic references in the constant pool. The 

2-byte operand is used to index to constant pool to find offset. It may need to involve 

loading one or more classes or interfaces, binding several types, and initializing types. 

This process always cost many execution cycles. And then, it is needed to translate 

the object reference on the top of stack and offset to the physical memory address to 

access data. This process may need another memory access of handle table to get the 

object base memory address. The flow of the object field access for getfield is shown 

in Figure 3-4. 
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Class A

...
...

constant_pool
base + index

constant pool

fields

methods

Offset

operand stack

obj_ref

handle table

Instance data
base addr.

+ physical addr.

getfield
index

 The index becomes an
offset into the constant pool .

Find the referenced field's
offset in the constant pool.

Use the object reference
on the top of stack to get
the instance base address.

Get physical address
by adding instance base
and offset.

 
Fig. 3-4: Execution flow of object field access for getfield 

 

Constant Pool Resolution 

 

Java classes and interfaces are dynamically loaded, linked and initialized. Loading 

is the process of finding the binary form of a class or interface type with a particular 

name and constructing a class object to represent the class or interface. Linking is the 

process of taking a binary form of a class or interface type and combining it into the 

runtime state of the Java Virtual Machine so that it can be executed. Initialization of a 

class consists of executing its static initialization and the initialization for the static 

fields declared in the class. 

A Java compiler does not presume to know the way in which a Java Virtual 

Machine lays out classes, interfaces, class instances, or arrays. References in the 
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constant pool are always initially symbolic. At run-time, the symbolic representation 

of the reference in the constant pool is used to work out the actual location of the 

referenced entity. The process of dynamically determining actual locations from 

symbolic references in the constant pool is known as constant pool resolution or 

dynamic linking. Constant pool resolution may involve loading one or more classes or 

interfaces, binding several types, and initializing types. This process always costs lots 

of cycles. After resolution, the useful information, such as the offset and type of the 

referenced target, will be placed in the corresponsive constant pool entry. We can get 

the resolved information when reference to the constant pool entry. 

 

3.1.3 Mechanism of rewriting Java bytecode by 

SUN 

 

In the optimization implemented in Sun’s version of Java Virtual Machine, 

compiled Java code is modified at run-time for better performance. The optimization 

works by dynamically replacing certain instructions by more efficient variants at the 

first time they are executed. The new instructions take advantage of loading and 

linking work done the first time the associated normal instruction is executed. For 

instructions that are rewritten, each instance of the instruction is replaced on its first 

execution by a _quick pseudo-instruction. Subsequent execution of that instruction 

instance is always the _quick variant. 

In all cases, the instructions with _quick variants reference the constant pool. The 

_quick pseudo-instructions save time by exploiting that, while the first time an 

instruction referencing the constant pool must dynamically resolve the constant pool 
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entry, subsequent invocations of that same instruction must reference the same object 

and need not resolve the entry again. The rewriting process is as follows: 

 

1. Resolve the specified item in the constant pool. 

2. Throw an exception if the item in the constant pool can not be resolved. 

3. Overwrite the instruction with the _quick pseudo-instruction and any new 

operands it requires. 

4. Execute the new _quick pseudo-instruction. 

For instance, if we execute the bytecode getfield to access object field data, only 

the first execution goes through the process as shown in Figure 3-4. Subsequent 

executions become much faster because the Java Virtual Machine substitutes 

getfield_quick (or getfield2_quick, depend on its type) in place of the getfield 

bytecode. The index bytes after this _quick pseudo-instruction already becomes the 

offset of the target object as shown in Figure 3-5. 

The benefit of dynamic linking via rewriting is that “Rewrite once, profited 

forever.” However, Java Virtual Machine must perform mechanism, such as 

coherency keeping between instruction cache and data cache, flushing the contents of 

the instruction buffer or instruction pipeline, to ensure correct functionality. 
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Fig. 3-5: Execution flow of object field access for getfield_quick 

 

3.2 Design of Object Cache 

 

In this thesis, we intend to accelerate the execution of object-field access 

instructions (getfield and putfield). In Section 3.1.2, we have given the detail 

execution flow of these instructions. To reach our purpose, we divide the design 

process into two parts: one is benchmark behavior analysis, the other is design issue 

consideration and simulation. In the first part, benchmark behavior analysis, we 

analyze the actual execution state of the SPECjvm98 benchmark. We have detailedly 

investigated the execution features of the benchmark suite, including temporal locality 

and reusing probability. Base on these results, we propose our acceleration 

technique—using of object cache. In the second part, cache design issues, design 

issues that may affect our acceleration mechanism are discussed and simulated. The 

design issues include the pipeline stage, index policies, cache line size, and cache 
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size. 

 

3.2.1 Benchmark Behavior Analysis 

 

In this subsection, we analyze the execution of SPECjvm98 benchmark. First, we 

describe our simulation approach including the benchmark and simulation 

environment. Then, some important features of benchmark behavior is presented. 

Base on these features, we propose our acceleration approach. 

 

Simulation Approach 

 

We choose the SPECjvm98 benchmark as our testing program. A brief 

explanation of the SPECjvm98 benchmark suite is given below: 

 _200_check is a simple program to test various features of the JVM to ensure 

that it provides a suitable environment for Java programs. 

 _201_compress implements file compression and decompression. It performs 

five iterations over a set of five tar files, each of them between 0.9 Mbytes and 3 

Mbytes large. Each file is read in, compressed, the result is written to memory, 

then read again, uncompressed, and finally the new file size is checked. 

 _202_jess is an expert system that reads a list of facts about several word games 

from an input file and attempts to solve the riddles. 

 _209_db simulates a simple database management system with a file of 

persistent records and a list of transactions as inputs. The task is to first build up 

the database by parsing the records file and then to apply the transactions to this 
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set. 

 _213_javac is the JDK 1.0.2 compiler iterating four times over several thousand 

lines of Java code; the source code of jess serves as input for javac. 

 _222_mpegaudio is an application that decompresses 4 Mbytes of audio data 

that conform to the ISO MPEG Layer-3 audio specification. 

 _228_jack is a Java parser generator that is based on the Purdue Compiler 

Construction Tool Set (PCCTS). This is an early version of what is now called 

JavaCC. The workload consists of a file named jack.jack, which contains 

instructions for the generation of jack itself. This file is fed to jack so that the 

parser generates itself multiple times. 

The class files of the benchmarks were executed on a modified JDK 1.0.2 

interpreter to obtain the traces of the instrumented execution characteristics. 

These traces were then analyzed to identify the behavior of object-field access. 

Moreover, architectural components to support object-field access were proposed 

and simulated. The benchmark traces were also used to evaluate the proposed 

architectural components. Figure 3-6 shows this approach. 

 
Fig. 3-6: Simulation approach 
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Temporal Locality and Reusing Probability 

 

To accelerate object-field access, we analyzed the actual execution of the 

instructions of SPECjvm98 first. We find that most of these instructions usually 

access the same fields. Figure 3-7 shows the probability of an object field that will be 

reused in the next n object field accesses. We can see that over 70% of the object 

fields will be reused in the next 100 times access. Then, we make a simple simulation. 

We use an LRU buffer to store these object fields. Figure 3-8 shows the hit rate of the 

LRU buffer with m entries. We find that over 80% of the object fields can be hit in a 

256-entry LRU buffer except for benchmark _209_db. Because _209_db simulate a 

large number of database records, only 60% of object fields can be hit in a 256-entry 

LRU buffer. Base on the analysis, we conclude that object fields have good temporal 

locality and are good for reuse. 

 

 
Fig. 3-7: Probability of an object field that to be reused in the next n object field 

accesses 
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Fig. 3-8: Hit rate of the LRU buffer with m entries 

 

Acceleration Approach — Object Cache 

 

Through the analysis in the previous subsection, we know that object fields have 

good temporal locality and are good for reuse. Because of this feature of object fields, 

obviously, there is a good chance to earn speedup of performance by using a 

dedicated cache to store the data of referenced object fields. Therefore, we attach a 

cache, called object cache, in Java processor to execute _quick code directly without 

accessing constant pool and handle table. See Figure 3-9. 
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Fig. 3-9: Using an object cache to access object field data directly 

 

3.2.2 Design Issues 

 

The issues that affect the performance and the operations of our proposed 

mechanism for optimizing object field accesses are discussed in this subsection. The 

design issues of the object cache include indexing policy, pipeline stage design, cache 

line size, and cache size. 
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Issue I: Indexing Policy 

 

Now we have to choose how to index the object cache entry, that is, how to 

identify a referenced object field. In the original bytecode “getfield” and “putfield”, 

the value of the constant pool base register is added with the index byte of the 

bytecode to access constant pool. It means that the constant pool base register and 

index byte pair is used to identify a referenced object field. However, when garbage 

collection happened, constant pool base address may be changed, i.e., the physical 

memory address of an object field is not always invariable. In other words, we can not 

use physical memory address to index object cache because of garbage collection. 

Therefore, we consider another choice. The choice is to use object reference and 

offset supported by _quick code to index the object cache. Object reference is the 

unique id of an object and will never be changed. Offset is the location of the field 

inside the class instance and will never be changed, either. These mean that one object 

reference and offset pair map to only one object field. Hence, we use object reference 

and offset to index object cache. 

To reduce the overhead of the tag field in the object cache, we analyzed the range 

of offset. An offset is an 8-bit value, 0~28-1(=255) but is usually much smaller than 

255. Figure 3-10 shows the range of the offsets for each benchmark. We obtained that 

the average value of offsets is 8.954. We can see that only 5 bits are required to almost 

100% of the offsets. For those _quick codes with offset >= 32, we may use normal 

_quick execution without accessing object cache. 
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Fig. 3-10: Range of the offsets for each benchmark 

 

We consider two schemes for the index bits of the object cache. These two 

schemes are shown in Figure 3-11. Scheme 1 uses object reference only to index 

object cache; scheme 2 uses the concatenation of object reference and offset to index 

object cache. The hit rates of the object cache under these two schemes are shown in 

Figure 3-11, too. We find that when the number of the object cache entries is larger 

than 1K, scheme 2 has better performance and has over 90% hit rate. Base on this, we 

use scheme 2 to index our object cache. 
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Fig. 3-11: Hit rates of the object cache under different indexing schemes and numbers 

of indexing bits. Assume that the object cache is direct-mapped with 8-word line 
size. 

 

Issue II: Pipeline Stage Design 

 

In our design, we use the six pipeline stages of PicoJava-II, as shown in Figure 

3-12, without modification. The pipeline stage diagram is shown as figure 3-13. At 

decode stage, the indexbyte followed the quick code is decoded. Our object cache 

resides at register stage because all the information used to index object cache are 

ready then. In fact, our object cache can reside at either register or execute stage for 

forwarding. 
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Fig. 3-12: Six pipeline stages of Sun’s PicoJava-II 

 

 

Fig. 3-13: Pipeline stage diagram 

 

Issue III: Cache Line Size and Cache Size 

 

From the previous analysis of the offsets, we obtained that the average value of 

offsets is 8.954. It means that the average size of an object is 8.954 word. For 

simplifying our design, we chose the line size of the object cache as 8 words. Figure 

3-14 shows the hit rate of the object cache with different entry numbers under index 

policy of Scheme 2. We can see that when the size of the object cache is larger than 
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1K entries, the hit rate does not increase so notedly. Therefore, We choose an 

1K-entry object cache in our design. 

 
Fig. 3-14: Hit rates of the object cache with 8-word line size and index scheme 2 

under different numbers of entries. 

 

3.3 Performance Comparison 

 

The speedup over Sun’s picoJava-II for object field accesses by using the 

proposed object cache is shown in Figure 3-15. We can see that a direct-mapped 

object cache with 8-word line size, index scheme 2, and 1K entries can get the 

average speedup of 3.3. 
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Fig. 3-15: Speedup over Sun’s picoJava-II for object field accesses by using a 
direct-mapped object cache with an 8-word line size, index scheme 2, and 1K 

entries. 
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Chapter 4 
Conclusions and Future 

Research 
 
 
 
 In this thesis, we presented the simulation studies to document how the 

performance of Java benchmark is impacted by the inclusion of a hardware 

acceleration mechanism for object field accesses into Sun’s picoJava-II pipelined 

stack based architecture. We presented how an object field access is executed. The 

characteristics of object fields were identified by analyzing the benchmark programs. 

 Our simulation results show that the use of our proposed mechanism can be quite 

effective in speeding up the object field accesses by caching the field data in the 

object cache. For the benchmark programs we have studied, the inclusion of an 
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8-word line size, 1K-entry direct-map object cache can achieve 91% hit rate and 3.3 

speedup over Sun’s picoJava-II on object field accesses. 

 Future research efforts can address techniques to use object cache on superscalar 

Java processor. The object cache we proposed can speedup the performance of 

superscalar Java processor because its faster object field accesses may make more 

instructions be executable earlier. 
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