
 i

重用 object fields以加速
Java處理器之執行效率

學生：林恩申 指導教授：單智君 博士

國立交通大學資訊工程學系碩士班

摘要

 在 Java處理器執行 Java程式時，需要很多的執行時間和計憶體的存取來完
成 object field access的動作。在此篇論文中，我們提出對於 object field access的
加速方法是利用一硬體的緩衝區，稱作 object cache，來儲存先前已經被存取過
的 object field的值。這種 object cache不但能加速 object field access的動作，並
且支援 garbage collection，保證在發生 garbage collection時，依然可由 object cache
拿到正確的資料。藉由透過 Trace-driven 的方式對 SPECjvm98 標竿程式進行模
擬，結果顯示在昇陽的 picoJava-II處理器中加入我們所提出的 object cache，將
可使 object field access的速度提升 3.3倍。

 ii

Boosting Java Processor
Performance by

Reusing Object Fields

Student：En-Shen Lin Advisor：Dr. Jean, J.J. Shann

Institute of Computer Science and Information Engineering

National Chiao-Tung University

ABSTRACT

 The operations of object field accesses in the Java processor require many clock
cycles and memory references. Our approach of improving the performance of object
field accesses is to cache the values of object fields of previous execution in hardware
buffers, called object cache. In this thesis, object cache that can reduce the object field
access time and support garbage collection, is proposed. A detailed trace-driven
simulation of the proposed method on SPECjvm98 benchmark show that our
proposed method can achieve 3.3 speedup over Sun’s picoJava-II on object field
accesses.

 iii

Acknowledgment

首先感謝我的指導老師 單智君教授，在他的諄諄教誨、辛勤指導與勉勵下，

而得以順利完成此論文。同時也感謝本論文所屬計畫老師、同時也是我的口試委

員的鍾崇斌教授，以及另一位口試委員馬瑞良博士，由於他們的建議，使得這篇

論文能更加完整。

感謝 Java研究群的唐立人學長、張隆昌學長、喬偉豪同學、與周明俊、吳

志宏兩位學弟，尤其是唐立人學長，這篇論文在他的指導與提供寶貴的意見下，

才能更加完整。也感謝實驗室的學長們不厭其煩地與我討論許多問題，給予了我

莫大的幫助。此外，感謝諸位同學與學弟們，你們的陪伴讓我的生活充滿歡樂；

也讓這些年的研究生活更加多采多姿與充實。

感謝陪伴我走過這段時間的每一個人。讓我在這研究的路上走的更順利，進

而能更無後顧之憂的從容學習，使我能堅持追求自己的理想。

所有支持我、勉勵我的師長與親友，奉上我最誠摯的感謝與祝福，謝謝你們。

林恩申

2000.6.25

 iv

Contents

摘要... I

ABSTRACT... II

ACKNOWLEDGMENT ...III

CONTENTS.. IV

LIST OF FIGURES ... VI

CHAPTER 1 INTRODUCTION...1

CHAPTER 2 BACKGROUND AND RELATED WORK4

2.1 JAVA TECHNOLOGIES...5
2.1.1 Java Bytecode Manipulation Methods...5
2.1.2 Java Class File Organization..6

Constant Pool and Class Descriptor...8
Fields, Methods, and Attributes ...9

2.2 ARCHITECTURE OF JAVA VIRTUAL MACHINE ..10
2.2.1 Method Area ..14
2.2.2 Heap ...14

CHAPTER 3 DESIGN AND SIMULATION OF OBJECT CACHE....
...18

3.1 OBJECT-FIELD ACCESS BEHAVIOR..19
3.1.1 An Example of Object-Field Access..20
3.1.2 Execution Flow of Object-Field Access ..22

Constant Pool Resolution...23
3.1.3 Mechanism of rewriting Java bytecode by SUN24

3.2 DESIGN OF OBJECT CACHE ...26
3.2.1 Benchmark Behavior Analysis ..27

Simulation Approach ...27
Temporal Locality and Reusing Probability ..29
Acceleration Approach — Object Cache...30

 v

3.2.2 Design Issues ...31
Issue I: Indexing Policy ...32
Issue II: Pipeline Stage Design ..34
Issue III: Cache Line Size and Cache Size ..35

3.3 PERFORMANCE COMPARISON..36

CHAPTER 4 CONCLUSIONS AND FUTURE RESEARCH...........38

REFERENCE..40

 vi

List of Figures

Fig. 2-1: Linear, record-based organization of a Java class file.....................................7
Fig. 2-2: The internal architecture of the Java virtual machine11
Fig. 2-3: Runtime data areas that are shared among all threads12
Fig. 2-4: Runtime data areas that are exclusive to each thread....................................13
Fig. 2-5: Splitting an object across a handle pool and an object pool16
Fig. 2-6: Keeping object data in one place ..17
Fig. 3-1: The dynamic instruction mix of SPECjvm98 benchmark.............................19
Fig. 3-2: The format of opcode “getfield” and “putfield” and the changes of the

operand stack before and after the execution of the bytecode.............................20
Fig. 3-3: An example of object-field access ..21
Fig. 3-4: Execution flow of object field access for getfield ...23
Fig. 3-5: Execution flow of object field access for getfield_quick26
Fig. 3-6: Simulation approach..28
Fig. 3-7: Probability of an object field that to be reused in the next n object field

accesses ..29
Fig. 3-8: Hit rate of the LRU buffer with m entries ...30
Fig. 3-9: Using an object cache to access object field data directly31
Fig. 3-10: Range of the offsets for each benchmark..33
Fig. 3-11: Hit rates of the object cache under different indexing schemes and numbers

of indexing bits. Assume that the object cache is direct-mapped with 8-word line
size. ..34

Fig. 3-12: Six pipeline stages of Sun’s PicoJava-II ...35
Fig. 3-13: Pipeline stage diagram ..35
Fig. 3-14: Hit rates of the object cache with 8-word line size and index scheme 2

under different numbers of entries. ..36
Fig. 3-15: Speedup over Sun’s picoJava-II for object field accesses by using a

direct-mapped object cache with an 8-word line size, index scheme 2, and 1K
entries...37

 1

Chapter 1
Introduction

Java has become the most popular language to develop network programs. Its

suitability for networked environments is inherent in its architecture, secure,

platform-independent programs and run on a great variety of computers and devices

[1,2]. A Java program is compiled to the class files of an abstract virtual machine ,

called bytecodes, to achieve its platform-independent feature. As an interpreted

language, its disadvantage is slow performance. Thus, there are some solutions to

enhance Java’s execution performance such as Just-In-Time compilers and Java

processors. A Just-In-Time (JIT) compiler translates Java bytecode dynamically to

 2

native machine code to get partial speedup. But it needs more memory space to store

the translated machine code. Java processor executes Java bytecode directly as its

native code without interpreting [2,3,4]. With the appearance of Java processor, we

have the new concept to be considered and studied.

Because a Java processor executes Java bytecode as its native code, to

understand the features of Java language is important when we design it. One of

Java’s features is its cross-platform compatibility. A Java program is compiled to class

file format. These class files may be loaded and executed by Java virtual machine

(JVM) interpreters of various platforms without re-compilation, i.e., compiles once

and runs everywhere. A Java processor is just the implementation of the abstract Java

virtual machine. Another feature is its object-oriented programming model of Java.

Java is an object-oriented language and it does not allow programmers to use pointers

to access memory locations directly. Using object-oriented programming model

advances the readability and maintainability of source code. The astriction of using

pointers avoids the unpredictable errors of C programs and enhances the security.

Object-oriented programming model makes programmers maintain their source

code easily, but with the penalty of more execution time of programs. We call those

instructions used to access object data “object manipulation instructions”. This kind of

instructions is executed frequently and usually cost many clock cycles. We found that

object field access instructions usually reference to the same entity. Therefore, we

may accelerate the object access by recording and reusing some useful information.

Sun’s picoJava-II has proposed a rewriting method to accelerate the constant pool

resolution and made it more simple to access object field [5]. Thus, we propose a

hardware support to enhance the object access performance of a Java processor.

The purpose of this thesis is to accelerate the access of Java object fields. Our

approach is to use a buffer, called object cache, to store the value of object fields. We

 3

use an object virtual address instead of a physical memory address to index the object

cache. This method will reduce unnecessary memory accesses and, thus, enhance

performance.

 The organization of this thesis is as follows. In Chapter 2, the background and

related work are presented. In Chapter 3, the object field access behavior of the Java

applications are investigated. Based on this study, a hardware acceleration mechanism

of object field access is proposed. And then, the performance of the proposed

acceleration mechanism is evaluated. Finally, conclusions and future research are

presented in Chapter 4.

 4

Chapter 2
 Background and

Related work

In this chapter, we describe the related background and researches of Java. First,

Java technologies are discussed in detail, including several Java bytecode

manipulation methods and Java class file organization. And then, the architecture of

Java virtual machine is presented.

 5

2.1 Java Technologies

Programs of traditional programming languages have only one form, a running

program. Whereas Java programs come with two flavors: a stand-alone program to

run as a separate unit or an applet to run from the Internet browser. The life cycle of a

traditional language program is very simple. A programmer writes a program, which

may consist of a number of modules but are all linked at compile time. The compiler

then converts the program to the underlying machine assembly language. As far Java

program modules, each consisting of one or more classes, they are compiled

independently to Java Virtual Machine bytecode. At this stage, these modules which

are called class files can be exchanged and transferred around the network. Users load

the module into an implementation of a the JVM. JVM may then load additional

“.class” files as needed, from the user or across the Internet. Only at this point,

references between different modules are resolved. And a dynamic linking step

performed by a linker before the user gets starting the program.

2.1.1 Java Bytecode Manipulation Methods

Java bytecodes in their way to run take one of three methods: interpreter,

Just-In-Time (JIT) compiler, and Java processor. These methods connect the virtual

machine to the actual machine, where Java software can run.

 A Java interpreter, like a translator, can convert Java bytecodes on-the-fly (at

run-time) into native codes. The interpreter must process the same code over and over

again while a Java program is running. Interpretation is simple and does not require

 6

much memory. It is relatively easy to be implemented on any processor. However, it

involves a time-consuming loop to translate every Java bytecode, and, thus, affects

performance signitificantly.

A Java Just-In-Time (JIT) compiler, like an interpreter, translates Java bytecodes

into native code but it does not have to translate the same code over and over again as

it cache the native code. This can result in significant speedup. However, sometimes a

JIT compiler takes a large number of time to do its job and results in code size

expansion and consuming more memory.

A Java processor natively understands Java bytecode without the overhead of an

interpreter or a JIT compiler. We can take advantage of high performance by running

Java programs on Java processors.

2.1.2 Java Class File Organization

Like any compiler, the Java compiler takes the source code of a program and

translates it into machine code and binary symbolic information. In a traditional

system, these data will be stored in an object file for later use or execution. In Java

case, they are placed into a separate “.class” file for each Java class or interface in the

source code.

The Java class file is a precisely defined binary file for Java programs. Each Java

class file represents a complete description of one Java class or interface. There is no

way to put more than one class or interface into a single class file. The precise

definition for the format of the class file ensures that any Java class file can be loaded

and correctly interpreted by any Java virtual machine, no matter which system

produced the class file or which system hosts the virtual machine.

 7

 The Java class file is a binary stream of 8-bit bytes. Data items are stored

sequentially in the class file, with no padding between adjacent items. The lack of

padding helps to keep class files compact. Items that occupy more than one byte are

split into several consecutive bytes that appear in big-endian order. The class files

follow a rigid five-part format as shown in Figure 2-1. Each class file begins with a

magic number and version information, followed by a constant pool, a class descriptor

header, fields, methods, and finally an extension area. Because of Java’s dynamically

linked nature, each class file must contain a large amount of symbolic and typing

information. This data informs the JVM about how to resolve internal and external

class references, and also allows it to verify the security and integrity of classes.

File Headersignatureversion

Class

Constant Pool

Name TypeLong UTF

Method/Field ImportInt Float

superclassClass
Descriptor

this class

Imported Interfaces

public float j;

Fi
el
ds

"Constant Value"

public static int i = 123;

M
et
ho
ds

"code"

void method1(int, int)

At
tr
ib
ut
es

Vendor-Specific Data

"Exceptions"

"LineNumberTable"

"Local Variables"

"Source File"

e.g. authentication, RCS, ...

(a)

(b)

(c)

(d)

(e)

Fig. 2-1: Linear, record-based organization of a Java class file

 8

Constant Pool and Class Descriptor

The constant pool of a class file is similar to the symbol table in a traditional

object file; see Figure 2-1(a). The data with constant pool is referenced primarily by

other structures and code within the class file, and thus contains a wealth of additional

information beyond the usual symbol names. The pool is treated as an

one-dimensional array of slots each containing one variable-length data type called a

tag. The most common constant pool tags are strings. Strings are stored in the UTF-8

format in Unicode characters which are packed into bytes to save space.

The constant pool also integrates the aspects of traditional import/export and

relocation tables. There are a number of special linking tags, which simply contain the

indices of other pool slots. These tags (such as CLASS, METHOD, and NAMETYPE)

are used to dynamically link Java classes. For example, a METHOD tag points to a

CLASS tag (to specify an imported class), as well as a NAMETYPE tag (to identify a

specific method in that class). Linking tags are also directly referenced by the

bytecode of the class as a dynamic relocation table.

Following the constant pool, the class descriptor consists of several fields related

to the entire class; see Figure 2-1(b). These fields include the access flags of the class

(public, private, and so on), as well as constant pool indexes to the class and its

superclass. An array of constant pool indexes to any interfaces implemented by the

class also appears here.

 9

Fields, Methods, and Attributes

Following the class descriptor, there are two arrays that describe fields (Figure

2-1(c)) and methods (Figure 2-1(d)). Both arrays have an identical structure, but they

describe different types of class members. Each variable length entry identifies the

access flags, name, and signature of the member, as well as a list of associated

“attributes”.

 An attribute is a basic component of the class format, and is merely a special

type of record that provides additional information in a more flexible format. For

instance, each method descriptor contains a nested Code attribute that fully describes

the actual bytecode for that method. Similarly, a field descriptor may contain a

ConstantValue attribute, which points to a constant pool entry that describes a “static”

constant in a class. In addition, several attributes are optional and are related to

debugging. You can include your own attributes in class files to extend the class

format without breaking existing code or Java Virtual Machine.

 The Code attribute is especially important because it contains the actual Java

bytecode (along with stack and local variable information). It can also contain nested

attributes. For example, it can nest an Exceptions attribute (to list any exceptions

thrown by the method owning the Code attribute) as well as several debug attributes,

such as LineNumberTable, LocalVariables, and SourceFile.

 At the end of the class file (Figure 2-1(e)) is a separate section for other

attributes that apply to the class as a whole. The SourceFile attribute is placed here by

the Java compiler, and vendors are free to put additional attributes in this section as

well. For instance, the Attributes section is a good place to put class authentication or

security information, or perhaps revision control system data.

 10

2.2 Architecture of Java Virtual Machine

In the Java virtual machine specification, the behavior of a virtual machine

instance is described in terms of subsysytems, memory areas, and instructions. These

components describe an abstract inner architecture for the abstract Java virtual

machine. The purpose of these components is not so much to dictate an inner

architecture for implementations but to provide a way to strictly define the external

behavior of implementations. The specification defines the required behavior of any

Java virtual machine implementation in terms of these abstract components and their

interactions.

 Figure 2-2 shows a block diagram of the Java virtual machine that includes the

major subsystems and memory areas described in the specifications. Each Java virtual

machine has a class loader subsystem, which is a mechanism for loading types

(classes and interfaces) when given fully qualified names. Each Java virtual machine

also has an execution engine, which is a mechanism responsible for executing the

instructions contained in the methods of loaded classes. When a Java virtual machine

runs a program, it needs memory to store many items—including bytecodes and other

information that it extracts from loaded class files, objects that the program

instantiates, parameters to methods, return values, local variables, and intermediate

results of computations. The Java virtual machine organizes the memory it needs to

execute a program into several runtime data areas.

 11

native method
interface

class loader
subsystem

class files

method
area

heap
Java
stacks

pc
registers

native
method
stacks

runtime data areas

execution engine

Native
method
libraries

Fig. 2-2: The internal architecture of the Java virtual machine

 Some runtime data areas are shared among all threads of an application, and

others are unique to individual threads. Each instance of the Java virtual machine has

one method area and one heap. These areas are shared by all threads running inside

the virtual machine. When the virtual machine loads a class file, it parses the

information about a type from the binary data contained in the class file, then places

this type information into the method area. As the program runs, the virtual machine

places all objects that the program instantiates onto the heap. Figure 2-3 shows a

graphical depiction of these memory areas. More details about the memory area and

the heap are described in subsection 2.2.1 and 2.2.2.

 12

class
data

class
data

class
data

class
data

class
data

class
data

method area

object

heap

object

object

object

object

object

object

object

Fig. 2-3: Runtime data areas that are shared among all threads

 As each new thread comes into existence, it receives its own PC register

(program counter) and Java stack. If the thread is executing a Java method (not a

native method), the value of the PC register tells the next instruction to execute. The

Java stack of a thread stores the state of Java method invocations (not native

invocations) for the thread. The state of a Java method invocation includes its local

variables, the parameters with which it was invoked, its return value (if any), and

intermediate calculations. The state of native method invocations is stored in an

implementation- dependent way in native method stacks, as well as possibly in

registers or other implementation-dependent memory areas.

 The Java stack is composed of stack frames (or frames), which contain the state

of one Java method invocation. When a thread invokes a method, the Java virtual

machine pushes a new frame onto the Java stack of a thread. When the method

completes, the virtual machine pops and discards the frame for that method. The Java

virtual machine has no registers to hold intermediate data values. The instruction set

uses the Java stack for storage of intermediate data values. This approach was taken

by Java designers to keep the JVM instruction set compact and to facilitate

 13

implementation on architectures with few or irregular general-purpose registers. In

addition, the stack-based architecture of the JVM instruction set facilitates the code

optimization work done by just-in-time and dynamic compilers that operate at run

time in some virtual machine implementations.

 Figure 2-4 shows the memory areas that the Java virtual machine creates for each

thread. These areas are private to the owning thread, and no thread can access the PC

register or Java stack of another thread. In the figure, threads one and two are

executing Java methods, while thread three is executing a native method.

stack
frame

stack
frame

stack
frame

stack
frame

stack
frame

stack
frame

stack
frame

stack
frame

stack
frame

thread 1thread 2 thread 3

Java stacks

thread 1

thread 2

thread 3

pc registers

native
method
stacks

thread 3

Fig. 2-4: Runtime data areas that are exclusive to each thread

 14

2.2.1 Method Area

Inside a Java virtual machine instance, information about loaded types is stored

in a logical area of memory called the method area. When the Java virtual machine

loads a type, it uses a class loader to locate the appropriate class file. The class loader

reads the class file—a linear stream of binary data—and passes it to the virtual

machine. The virtual machine then extracts information about the type from the

binary data and stores the information in the method area. Memory for class (static)

variables declared in the class is also taken from the method area. All threads share

the same method area, so accessing the data structure of the method area must be

designed to be threadsafe. The class data that store in method include type

information, constant pool, field, method information, class variables, and method

tables.

2.2.2 Heap

Whenever a class instance or array is created in a running Java application, the

memory for the new object is allocated from a single heap. Because there is only one

heap inside a Java virtual machine instance, all threads share the heap. Since a Java

application runs inside its own exclusive Java virtual machine instance, there is a

separate heap for every individual running application. Two different Java

applications can not access each other’s heap data. Two different threads of the same

application could access each other’s heap data. For this reason, we must concern

about the proper synchronization of multi-threaded access to objects (heap data) in

 15

Java programs.

The Java virtual machine has an instruction that allocates memory on the heap

for a new object but has no instruction for freeing that memory. Just as you can not

explicitly free an object in Java source code, you can not explicitly free an object in

Java bytecodes. The virtual machine itself is responsible for deciding whether and

when to free memory occupied by objects that are no longer referenced by the running

application. Usually, a Java virtual machine implementation uses a garbage collector

to manage the heap.

 In Java virtual machine, there is no specification in regard to how objects should

be represented on the heap. Object representation—an integral aspect of the overall

design of the heap and garbage collector—is a decision left to implementation

designers. The instance variables declared in the object’s class and all of its

superclasses make up the primary data that must be represented for each object. Given

an object reference, the virtual machine must have the capability to quickly locate the

instance data for the object. In addition, there must be some way to access the object’s

class data (stored in the method area) when given a reference to the object. For this

reason, the memory allocated for an object usually includes some kind of pointer to

the method area.

 One possible heap design divides the heap into two parts: a handle pool and an

object pool. An object reference is a native pointer to a handle pool entry. A handle

pool entry has two components: a pointer to instance data in the object pool, and a

pointer to class data in the method area. The advantage of this scheme is that the

virtual machine can easily combat heap fragmentation. When the virtual machine

moves an object in the object pool, it only needs to update one pointer with the

object’s new address: the related pointer in the handle pool. The disadvantage of this

approach is that every point of access to an object’s instance data requires

 16

dereferencing two pointers. This approach to object representation is shown in Figure

2-5.

ptr into object pool

ptr to class data

instance data

instance data

instance data

instance data

the handle pool the object pool

the heap

the method area

class
data

ptr into handle pool

an object reference

Fig. 2-5: Splitting an object across a handle pool and an object pool

 Another design of heap makes an object reference a native pointer to a bundle of

data that contains the object’s instance data and a pointer to the object’s class data.

This approach requires dereferencing only one pointer to access an object’s instance

data but makes moving objects more complicated. When the virtual machine moves

an object to combat fragmentation of this kind of heap, it must update every reference

to that object anywhere in the runtime data areas. This approach to object

representation is shown in Figure 2-6.

 17

ptr into object pool

instance data

instance data

instance data

instance data

the heap

the method area

class
data

ptr into handle pool

an object reference

Fig. 2-6: Keeping object data in one place

 18

Chapter 3
Design and Simulation

of Object Cache

In this chapter, the analysis of the object-field access behaviors is presented. First,

an example and execution flow of the object-field access are presented. And then, an

optimization method of rewriting bytecode proposed by Sun is shown. Next, the

benchmark behavior analysis is given. Base on this result, a new acceleration

mechanism for object-field access is proposed. Then, the issues that affect our

proposed mechanism and the operations of the mechanism are presented. Finally, the

performance of the proposed accelerated mechanism is evaluated.

 19

3.1 Object-Field Access Behavior

Java is an object-oriented language. One of its important feature is the data

encapsulation. The data and methods of a sturcture are encapsulation into a class. We

have to access object data or method through object manipulation instructions.

Traditionally, this kind of instructions are performed by traps and always cost lots of

cycles to execute. Figure 3-1 shows the dynamic instruction mix of SPECjvm98

benchmark [6]. We find that class object manipulation (COM) insturctions constitute

19% of total instruction counts. Therein, opcode “getfidle” and “putfield” constitute

most of this kind of instructions. In this section, we explain the detail execution flow

of object-field access instructions ,especially getfield and putfield, and declare that we

want to accelerate the speed of these two instructions.

LS: load and store OC: object creation
A: arithmetic AOM: array object manipulation
OSM: operand stack management MI: method invocation
TC: type conversion COM: class object manipulation
CT: control transfer

Fig. 3-1: The dynamic instruction mix of SPECjvm98 benchmark

 20

3.1.1 An Example of Object-Field Access

Figure 3-2 shows the formats of bytecode “getfield” and “putfield” and the

changes of the operand stack before and after the execution of the bytecode. These

two instructions are used to access object-field data. There are two indexbytes follow

the opcode and are used to index into the constant pool. Bytecode “getfield” is used to

fetch a field data from an object. Before the opcode “getfield” be executed, the

object reference of the target field must be put on the top of stack (TOS). After

execution, the value of target field is on top of stack. Bytecode “putfield” is used to

set a field value in an object. Before the opcode “putfield” be executed, the object

reference of the target fieldand the value must be put on the top of stack (TOS). After

execution, the value is set in the target field.

Fig. 3-2: The format of opcode “getfield” and “putfield” and the changes of the

operand stack before and after the execution of the bytecode

 An example of object-field access is shown in Figure 3-3. Figure 3-3(a) is the

example source code. We declare two classes (class A and B), each contains one field

(field aInt and bInt). We use the keyword “new” to create the object instance from a

 21

class. In this example, A1 is an instance created from class A and B1 is an instance

created from class B. Figure 3-3(b) shows the Java bytecode compiled from the

source code. It will call the opcode “new” to create the object instance. There is one

indexbyte following the opcode. This byte is used to index into the constant pool.

Figure 3-3(c) shows the state of constant pool and local variables. When the bytecode

“new #1” is executed, it will go to constant pool entry #1 to get the necessary

information. After execution, the created object reference is on the top of stack. It will

call the opcode “astore” to save the object reference to local variables. When we want

to access object field data, it will call the opcode “getfield” or “putfield” and need to

load some information from constant pool or local variables.

 (a) (b) (c)

Fig. 3-3: An example of object-field access

 22

3.1.2 Execution Flow of Object-Field Access

In the Java virtual machine, memory is allocated on the garbage-collected heap

only as objects. You can not allocate memory for a primitive type on the heap, except

as part of an object. On the other hand, only object references and primitive types can

reside on the Java stack as local variables. Objects can never reside on the Java stack.

The architectural separation of objects and primitive types in the Java virtual machine

is reflected in the Java programming language, in which objects can not be declared

as local variables—only object references and primitive types can. Upon declaration,

an object reference refers to nothing. Only after the reference has been explicitly

initialized—either with a reference to an existing object or with a call to new, the

reference refer to an actual object.

When we want to access an object method or field, some sequential actions will

be executed. Opcode “getfield” and “putfield” are used to get and put object fields.

There are 2-byte operands called “indexbytes” followed the opcodes used to index to

constant pool. Constant pool resolution is executed to find the physical memory

location of the referenced field or method. It is the process of dynamically

determining concrete values from the symbolic references in the constant pool. The

2-byte operand is used to index to constant pool to find offset. It may need to involve

loading one or more classes or interfaces, binding several types, and initializing types.

This process always cost many execution cycles. And then, it is needed to translate

the object reference on the top of stack and offset to the physical memory address to

access data. This process may need another memory access of handle table to get the

object base memory address. The flow of the object field access for getfield is shown

in Figure 3-4.

 23

Class A

...
...

constant_pool
base + index

constant pool

fields

methods

Offset

operand stack

obj_ref

handle table

Instance data
base addr.

+ physical addr.

getfield
index

 The index becomes an
offset into the constant pool .

Find the referenced field's
offset in the constant pool.

Use the object reference
on the top of stack to get
the instance base address.

Get physical address
by adding instance base
and offset.

Fig. 3-4: Execution flow of object field access for getfield

Constant Pool Resolution

Java classes and interfaces are dynamically loaded, linked and initialized. Loading

is the process of finding the binary form of a class or interface type with a particular

name and constructing a class object to represent the class or interface. Linking is the

process of taking a binary form of a class or interface type and combining it into the

runtime state of the Java Virtual Machine so that it can be executed. Initialization of a

class consists of executing its static initialization and the initialization for the static

fields declared in the class.

A Java compiler does not presume to know the way in which a Java Virtual

Machine lays out classes, interfaces, class instances, or arrays. References in the

 24

constant pool are always initially symbolic. At run-time, the symbolic representation

of the reference in the constant pool is used to work out the actual location of the

referenced entity. The process of dynamically determining actual locations from

symbolic references in the constant pool is known as constant pool resolution or

dynamic linking. Constant pool resolution may involve loading one or more classes or

interfaces, binding several types, and initializing types. This process always costs lots

of cycles. After resolution, the useful information, such as the offset and type of the

referenced target, will be placed in the corresponsive constant pool entry. We can get

the resolved information when reference to the constant pool entry.

3.1.3 Mechanism of rewriting Java bytecode by

SUN

In the optimization implemented in Sun’s version of Java Virtual Machine,

compiled Java code is modified at run-time for better performance. The optimization

works by dynamically replacing certain instructions by more efficient variants at the

first time they are executed. The new instructions take advantage of loading and

linking work done the first time the associated normal instruction is executed. For

instructions that are rewritten, each instance of the instruction is replaced on its first

execution by a _quick pseudo-instruction. Subsequent execution of that instruction

instance is always the _quick variant.

In all cases, the instructions with _quick variants reference the constant pool. The

_quick pseudo-instructions save time by exploiting that, while the first time an

instruction referencing the constant pool must dynamically resolve the constant pool

 25

entry, subsequent invocations of that same instruction must reference the same object

and need not resolve the entry again. The rewriting process is as follows:

1. Resolve the specified item in the constant pool.

2. Throw an exception if the item in the constant pool can not be resolved.

3. Overwrite the instruction with the _quick pseudo-instruction and any new

operands it requires.

4. Execute the new _quick pseudo-instruction.

For instance, if we execute the bytecode getfield to access object field data, only

the first execution goes through the process as shown in Figure 3-4. Subsequent

executions become much faster because the Java Virtual Machine substitutes

getfield_quick (or getfield2_quick, depend on its type) in place of the getfield

bytecode. The index bytes after this _quick pseudo-instruction already becomes the

offset of the target object as shown in Figure 3-5.

The benefit of dynamic linking via rewriting is that “Rewrite once, profited

forever.” However, Java Virtual Machine must perform mechanism, such as

coherency keeping between instruction cache and data cache, flushing the contents of

the instruction buffer or instruction pipeline, to ensure correct functionality.

 26

Class A

...
...

constant pool

fields

methods

operand stack

obj_ref

handle table

Instance data
base addr.

+

physical addr.getfield_quick
index

 The index becomes the
offset of the target.

Use the object reference
on the top of stack to get
the instance base address.

Get physical address
by adding instance base
and offset.

Fig. 3-5: Execution flow of object field access for getfield_quick

3.2 Design of Object Cache

In this thesis, we intend to accelerate the execution of object-field access

instructions (getfield and putfield). In Section 3.1.2, we have given the detail

execution flow of these instructions. To reach our purpose, we divide the design

process into two parts: one is benchmark behavior analysis, the other is design issue

consideration and simulation. In the first part, benchmark behavior analysis, we

analyze the actual execution state of the SPECjvm98 benchmark. We have detailedly

investigated the execution features of the benchmark suite, including temporal locality

and reusing probability. Base on these results, we propose our acceleration

technique—using of object cache. In the second part, cache design issues, design

issues that may affect our acceleration mechanism are discussed and simulated. The

design issues include the pipeline stage, index policies, cache line size, and cache

 27

size.

3.2.1 Benchmark Behavior Analysis

In this subsection, we analyze the execution of SPECjvm98 benchmark. First, we

describe our simulation approach including the benchmark and simulation

environment. Then, some important features of benchmark behavior is presented.

Base on these features, we propose our acceleration approach.

Simulation Approach

We choose the SPECjvm98 benchmark as our testing program. A brief

explanation of the SPECjvm98 benchmark suite is given below:

 _200_check is a simple program to test various features of the JVM to ensure

that it provides a suitable environment for Java programs.

 _201_compress implements file compression and decompression. It performs

five iterations over a set of five tar files, each of them between 0.9 Mbytes and 3

Mbytes large. Each file is read in, compressed, the result is written to memory,

then read again, uncompressed, and finally the new file size is checked.

 _202_jess is an expert system that reads a list of facts about several word games

from an input file and attempts to solve the riddles.

 _209_db simulates a simple database management system with a file of

persistent records and a list of transactions as inputs. The task is to first build up

the database by parsing the records file and then to apply the transactions to this

 28

set.

 _213_javac is the JDK 1.0.2 compiler iterating four times over several thousand

lines of Java code; the source code of jess serves as input for javac.

 _222_mpegaudio is an application that decompresses 4 Mbytes of audio data

that conform to the ISO MPEG Layer-3 audio specification.

 _228_jack is a Java parser generator that is based on the Purdue Compiler

Construction Tool Set (PCCTS). This is an early version of what is now called

JavaCC. The workload consists of a file named jack.jack, which contains

instructions for the generation of jack itself. This file is fed to jack so that the

parser generates itself multiple times.

The class files of the benchmarks were executed on a modified JDK 1.0.2

interpreter to obtain the traces of the instrumented execution characteristics.

These traces were then analyzed to identify the behavior of object-field access.

Moreover, architectural components to support object-field access were proposed

and simulated. The benchmark traces were also used to evaluate the proposed

architectural components. Figure 3-6 shows this approach.

Fig. 3-6: Simulation approach

 29

Temporal Locality and Reusing Probability

To accelerate object-field access, we analyzed the actual execution of the

instructions of SPECjvm98 first. We find that most of these instructions usually

access the same fields. Figure 3-7 shows the probability of an object field that will be

reused in the next n object field accesses. We can see that over 70% of the object

fields will be reused in the next 100 times access. Then, we make a simple simulation.

We use an LRU buffer to store these object fields. Figure 3-8 shows the hit rate of the

LRU buffer with m entries. We find that over 80% of the object fields can be hit in a

256-entry LRU buffer except for benchmark _209_db. Because _209_db simulate a

large number of database records, only 60% of object fields can be hit in a 256-entry

LRU buffer. Base on the analysis, we conclude that object fields have good temporal

locality and are good for reuse.

Fig. 3-7: Probability of an object field that to be reused in the next n object field

accesses

 30

Fig. 3-8: Hit rate of the LRU buffer with m entries

Acceleration Approach — Object Cache

Through the analysis in the previous subsection, we know that object fields have

good temporal locality and are good for reuse. Because of this feature of object fields,

obviously, there is a good chance to earn speedup of performance by using a

dedicated cache to store the data of referenced object fields. Therefore, we attach a

cache, called object cache, in Java processor to execute _quick code directly without

accessing constant pool and handle table. See Figure 3-9.

 31

Fig. 3-9: Using an object cache to access object field data directly

3.2.2 Design Issues

The issues that affect the performance and the operations of our proposed

mechanism for optimizing object field accesses are discussed in this subsection. The

design issues of the object cache include indexing policy, pipeline stage design, cache

line size, and cache size.

 32

Issue I: Indexing Policy

Now we have to choose how to index the object cache entry, that is, how to

identify a referenced object field. In the original bytecode “getfield” and “putfield”,

the value of the constant pool base register is added with the index byte of the

bytecode to access constant pool. It means that the constant pool base register and

index byte pair is used to identify a referenced object field. However, when garbage

collection happened, constant pool base address may be changed, i.e., the physical

memory address of an object field is not always invariable. In other words, we can not

use physical memory address to index object cache because of garbage collection.

Therefore, we consider another choice. The choice is to use object reference and

offset supported by _quick code to index the object cache. Object reference is the

unique id of an object and will never be changed. Offset is the location of the field

inside the class instance and will never be changed, either. These mean that one object

reference and offset pair map to only one object field. Hence, we use object reference

and offset to index object cache.

To reduce the overhead of the tag field in the object cache, we analyzed the range

of offset. An offset is an 8-bit value, 0~28-1(=255) but is usually much smaller than

255. Figure 3-10 shows the range of the offsets for each benchmark. We obtained that

the average value of offsets is 8.954. We can see that only 5 bits are required to almost

100% of the offsets. For those _quick codes with offset >= 32, we may use normal

_quick execution without accessing object cache.

 33

Fig. 3-10: Range of the offsets for each benchmark

We consider two schemes for the index bits of the object cache. These two

schemes are shown in Figure 3-11. Scheme 1 uses object reference only to index

object cache; scheme 2 uses the concatenation of object reference and offset to index

object cache. The hit rates of the object cache under these two schemes are shown in

Figure 3-11, too. We find that when the number of the object cache entries is larger

than 1K, scheme 2 has better performance and has over 90% hit rate. Base on this, we

use scheme 2 to index our object cache.

 34

Fig. 3-11: Hit rates of the object cache under different indexing schemes and numbers

of indexing bits. Assume that the object cache is direct-mapped with 8-word line
size.

Issue II: Pipeline Stage Design

In our design, we use the six pipeline stages of PicoJava-II, as shown in Figure

3-12, without modification. The pipeline stage diagram is shown as figure 3-13. At

decode stage, the indexbyte followed the quick code is decoded. Our object cache

resides at register stage because all the information used to index object cache are

ready then. In fact, our object cache can reside at either register or execute stage for

forwarding.

 35

Fig. 3-12: Six pipeline stages of Sun’s PicoJava-II

Fig. 3-13: Pipeline stage diagram

Issue III: Cache Line Size and Cache Size

From the previous analysis of the offsets, we obtained that the average value of

offsets is 8.954. It means that the average size of an object is 8.954 word. For

simplifying our design, we chose the line size of the object cache as 8 words. Figure

3-14 shows the hit rate of the object cache with different entry numbers under index

policy of Scheme 2. We can see that when the size of the object cache is larger than

 36

1K entries, the hit rate does not increase so notedly. Therefore, We choose an

1K-entry object cache in our design.

Fig. 3-14: Hit rates of the object cache with 8-word line size and index scheme 2

under different numbers of entries.

3.3 Performance Comparison

The speedup over Sun’s picoJava-II for object field accesses by using the

proposed object cache is shown in Figure 3-15. We can see that a direct-mapped

object cache with 8-word line size, index scheme 2, and 1K entries can get the

average speedup of 3.3.

 37

Fig. 3-15: Speedup over Sun’s picoJava-II for object field accesses by using a
direct-mapped object cache with an 8-word line size, index scheme 2, and 1K

entries.

 38

Chapter 4
Conclusions and Future

Research

 In this thesis, we presented the simulation studies to document how the

performance of Java benchmark is impacted by the inclusion of a hardware

acceleration mechanism for object field accesses into Sun’s picoJava-II pipelined

stack based architecture. We presented how an object field access is executed. The

characteristics of object fields were identified by analyzing the benchmark programs.

 Our simulation results show that the use of our proposed mechanism can be quite

effective in speeding up the object field accesses by caching the field data in the

object cache. For the benchmark programs we have studied, the inclusion of an

 39

8-word line size, 1K-entry direct-map object cache can achieve 91% hit rate and 3.3

speedup over Sun’s picoJava-II on object field accesses.

 Future research efforts can address techniques to use object cache on superscalar

Java processor. The object cache we proposed can speedup the performance of

superscalar Java processor because its faster object field accesses may make more

instructions be executable earlier.

 40

reference

[1] J. Gosling, B. Joy, and G. Steele, The Java Language Specification,

Addison-Wesley, see also http://www.javasoft.com/docs/books/jls/index.html.

[2] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, Addison Wesley,

1997.

[3] Bill Venners, Inside the Java 2 Virtual Machine, McGraw-Hill, June 1996

[4] N. Vijaykrishnan, Issues In The Design Of A Java Processor Architecture.

Ph.D.’s Thesis, University of South Florida, Dec. 1998

[5] Sun Mircosystems, PicoJava-II Mircoarchitecture Guide, March 1999

[6] “ Spec JVM 98 Benchmarks “ http://www.spec.org/osh/jvm98 , 1998

[7] N. Vijaykrishnan, N. Ranganathan, “Supporting Object Accesses In A Java

Processor” Computers and Digital Techniques, IEE Proceedings-, Volume: 147,

Nov. 2000

