
Discrete Mathematics 309 (2009) 5474–5483

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Mutually independent hamiltonian cycles for the pancake graphs and
the star graphs
Cheng-Kuan Lin a,∗, Jimmy J.M. Tan a, Hua-Min Huang b, D. Frank Hsu c, Lih-Hsing Hsu d
a Department of Computer Science, National Chiao Tung University, Hsinchu, 30010 Taiwan, ROC
b Department of Mathematics, National Central University, Chungli, 32001 Taiwan, ROC
c Department of Computer and Information Science, Fordham University, New York, NY 10023, USA
d Department of Computer Science and Information Engineering, Providence University, Taichung, 43301 Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 19 September 2006
Accepted 8 December 2008
Available online 14 January 2009

Keywords:
Hamiltonian
Pancake networks
Star networks

a b s t r a c t

A hamiltonian cycle C of a graph G is an ordered set 〈u1, u2, . . . , un(G), u1〉 of vertices such
that ui 6= uj for i 6= j and ui is adjacent to ui+1 for every i ∈ {1, 2, . . . , n(G) − 1} and
un(G) is adjacent to u1, where n(G) is the order of G. The vertex u1 is the starting vertex
and ui is the ith vertex of C . Two hamiltonian cycles C1 = 〈u1, u2, . . . , un(G), u1〉 and
C2 = 〈v1, v2, . . . , vn(G), v1〉 of G are independent if u1 = v1 and ui 6= vi for every i ∈
{2, 3, . . . , n(G)}. A set of hamiltonian cycles {C1, C2, . . . , Ck} of G is mutually independent
if its elements are pairwise independent. Themutually independent hamiltonicity IHC(G) of
a graph G is the maximum integer k such that for any vertex u of G there exist kmutually
independent hamiltonian cycles of G starting at u.
In this paper, the mutually independent hamiltonicity is considered for two families of

Cayley graphs, the n-dimensional pancake graphs Pn and the n-dimensional star graphs Sn.
It is proven that IHC(P3) = 1, IHC(Pn) = n− 1 if n ≥ 4, IHC(Sn) = n− 2 if n ∈ {3, 4} and
IHC(Sn) = n− 1 if n ≥ 5.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1969, Lovász [32] askedwhether every finite connected vertex transitive graph has a hamiltonian path, that is, a simple
path that traverses every vertex exactly once. All known vertex transitive graphs have a hamiltonian path and moreover,
only four vertex transitive graphs without a hamiltonian cycle are known. Since none of these four graph is a Cayley graph
there is a folklore conjecture [9] that every Cayley graph with more than two vertices has a hamiltonian cycle. In the last
decades this problemwas extensively studied (see [2–5,7,12,19,33–36]) and for those Cayley graphs for which the existence
of hamiltonian cycles is already proven, further properties related to this problem, such as edge-hamiltonicity, Hamilton-
connectivity and Hamilton-laceability, are investigated (see [4,8]). In this paper we introduce one of such properties, the
concept of mutually independent hamiltonian cycles which is related to the number of hamiltonian cycles in a given graph.
In particular,mutually independent hamiltonian cycles of pancake graphs Pn and star graphs Sn (for definitions see Sections 4
and 5) are studied.
The paper is organized as follows. In Section 2 definitions andnotations needed in the subsequent sections are introduced.

In Section 3 applications of the mutually independent hamiltonicity concept are given. In Sections 4 and 5 the mutually
independent hamiltonicity of pancake graphs Pn and star graphs Sn, respectively, is computed. And in the last section,
Section 6, directions for further research on this topic are discussed.
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2. Definitions

For definitions and notations not defined here see [6]. Let V be a finite set and E a subset of {(u, v) |

(u, v) is an unordered pair of V }. Then G = (V , E) is a graph with vertex set V and edge set E. The order of G, that is, the
cardinality of the set V , is denoted by n(G). For a subset S of V the graph G[S] induced by S is a graph with vertex set
V (G[S]) = S and edge set E(G[S]) = {(x, y) | (x, y) ∈ E(G) and x, y ∈ S}. Two vertices u and v are adjacent if (u, v) is an edge
of G. For a vertex u the set NG(u) = {v | (u, v) ∈ E} is called the set of neighbors of u. The degree degG(u) of a vertex u in G, is
the cardinality of the setNG(u). Theminimum degree of G, δ(G), is min{degG(x) | x ∈ V }. A graph G is k-regular if degG(u) = k
for every vertex u in G. The connectivity of G is the minimum number of vertices whose removal leaves the remaining graph
disconnected or trivial. A path between vertices v0 and vk is a sequence of vertices represented by 〈v0, v1, . . . , vk〉 such that
there is no repeated vertex and (vi, vi+1) is an edge of G for every i ∈ {0 . . . k− 1}. We use Q (i) to denote the ith vertex vi of
Q = 〈v1, v2, . . . , vk〉. We also write the path 〈v0, v1, . . . , vk〉 as 〈v0, . . . , vi,Q , vj, . . . , vk〉, where Q is a path form vi to vj. A
path is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path
joining any two distinct vertices of G. A cycle is a sequence of vertices represented by 〈v0, v1, . . . , vk, v0〉 such that vi 6= vj
for all i 6= j, (v0, vk) is an edge of G, and (vi, vi+1) is an edge of G for every i ∈ {0, . . . , k − 1}. A hamiltonian cycle of G is a
cycle that traverses every vertex of G. A graph is hamiltonian if it has a hamiltonian cycle.
A hamiltonian cycle C of graph G is described as 〈u1, u2, . . . , un(G), u1〉 to emphasize the order of vertices in C . Thus,

u1 is the starting vertex and ui is the ith vertex in C . Two hamiltonian cycles C1 = 〈u1, u2, . . . , un(G), u1〉 and C2 =
〈v1, v2, . . . , vn(G), v1〉 of G are independent if u1 = v1 and ui 6= vi for every i ∈ {2, . . . , n(G)}. A set of hamiltonian
cycles {C1, C2, . . . , Ck} of G are mutually independent if its elements are pairwise independent. The mutually independent
hamiltonicity IHC(G) of graph G the maximum integer k such that for any vertex u of G there exist kmutually independent
hamiltonian cycles of G starting at u. Obviously, IHC(G) ≤ δ(G) if G is a hamiltonian graph.
The mutually independent hamiltonicity of a graph can be interpreted as a Latin rectangle. A Latin square of order n is an

n×n arraymade from the integers 1 to nwith the property that any integer occurs once in each row and column. If we delete
some rows from a Latin square, we will get a Latin rectangle. Let K5 be the complete graph with vertex set {0, 1, 2, 3, 4} and
let C1 = 〈0, 1, 2, 3, 4, 0〉, C2 = 〈0, 2, 3, 4, 1, 0〉, C3 = 〈0, 3, 4, 1, 2, 0〉, and C4 = 〈0, 4, 1, 2, 3, 0〉. Obviously, C1, C2, C3, and
C4 are mutually independent. Thus, IHC(K5) = 4. We rewrite C1, C2, C3, and C4 into the following Latin square:

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

In general, a Latin square of order n can be viewed as n mutually independent hamiltonian cycles with respect to the
complete graph Kn+1.
LetH be a group and let S be the generating set ofH such that S−1 = S. Then the Cayley graph Cayley(S;H) of the groupH

with respect to the generating set S is the graph with vertex set H and two vertex u and v are adjacent in Cayley(S;H)
if and only if u−1v ∈ S. Hamiltonian cycles in Cayley graphs naturally arise in computer science [25], in the study of
word-hyperbolic groups and automatic groups [14], in changing-ringing [40], in creating Escher-like repeating patterns
in hyperbolic plane [13], and in combinatorial designs [11].

3. Applications of the concept of mutually independent hamiltonian cycles

Mutually independent hamiltonicity of graphs can be applied to many areas. Consider the following scenario. In
Christmas, we have a holiday of 10-days. A tour agency will organize a 10-day tour to Italy. Suppose that there will be a
lot of people joining this tour. However, the maximum number of people stay in each local area is limited, say 100 people,
for the sake of hotel contract. One trivial solution is on the First-Come-First-Serve basis. So only 100 people can attend
this tour. (Note that we cannot schedule the tour in a pipelined manner because the holiday period is fixed.) Nonetheless,
we observe that a tour is like a hamiltonian cycle based on a graph, in which a vertex is denoted as a hotel and any two
vertices are joinedwith an edge if the associated two hotels can be traveled in a reasonable time. Therefore, we can organize
several subgroups, that is, each subgroup has its own tour. In this way, we do not allow two subgroups stay in the same area
during the same time period. In other words, any two different tours are indeed independent hamiltonian cycles. Suppose
that there are 10 mutually independent hamiltonian cycles. Then we may allow 1000 people to visit Italy on Christmas
vacation. For this reason, we would like to find the maximum number of mutually independent hamiltonian cycles. Such
applications are useful for task scheduling and resource placement, which are also important for compiler optimization to
exploit parallelism.
An interconnection network connects the processors of parallel computers. Its architecture can be represented as a graph

inwhich the vertices correspond to processors and the edges correspond to connections. Hence,we use graphs and networks
interchangeably. There are many mutually conflicting requirements in designing the topology for computer networks. The
n-cube is one of the most popular topologies [27]. The n-dimensional star network Sn was proposed in [1] as n attractive
alternative to the n-cube topology for interconnecting processors in parallel computers. Since its introduction, the network
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Fig. 1. The pancake graphs P2 , P3 , and P4 .

has received considerable attention. Akers and Krishnameurthy [1] showed that the star graphs are vertex transitive and
edge transitive. The diameter and fault diameters were computed in [1,26,37]. The hamiltonian and hamiltonian laceability
of star graphs are studied in [16,17,21,23,31]. The spanning container of star graph is studied in [28].
Akers and Krishnameurthy [1] proposed another family of interesting interconnection networks, the n-dimensional

pancake graph Pn. Hung et al. [22] studied the hamiltonian connectivity on the faulty pancake graphs. The embedding of
cycles and trees into the pancake graphswere discussed in [10,15,22,24]. The spanning container of pancake graph is studied
in [28]. Gates and Papadimitriou [18] studied the diameter of the pancake graphs. Up to now,we do not know the exact value
of the diameter of the pancake graphs [20].

4. The pancake graphs

Let n be a positive integer. We use 〈n〉 to denote the set {1, 2, . . . , n}. The n-dimensional pancake graph, Pn, is a graphwith
the vertex set V (Pn) = {u1u2 . . . un | ui ∈ 〈n〉 and uj 6= uk for j 6= k}. The adjacency is defined as follows: u1u2 . . . ui . . . un
is adjacent to v1v2 . . . vi . . . vn through an edge of dimension i with 2 ≤ i ≤ n if vj = ui−j+1 for all 1 ≤ j ≤ i and vj = uj
for all i < j ≤ n. We will use boldface to denote a vertex of Pn. Hence, u1,u2, . . . ,un denote a sequence of vertices in Pn. In
particular, e denotes the vertex 12 . . . n. The pancake graphs P2, P3, and P4 are illustrated in Fig. 1.
By definition, Pn is an (n−1)-regular graph with n! vertices. Akers and Krishnameurthy [1] showed that the connectivity

of Pn is (n− 1). Let u = u1u2 . . . un be an arbitrary vertex of Pn. We use (u)i to denote the ith component ui of u, and use P
{i}
n

to denote the ith subgraph of Pn induced by those vertices uwith (u)n = i. Then Pn can be decomposed into n vertex disjoint
subgraphs P {i}n , 1 ≤ i ≤ n, and each P

{i}
n is isomorphic to Pn−1 for all i, i ≤ n. Thus, the pancake graph can be constructed

recursively. Let H be any subset of 〈n〉. We use PHn to denote the subgraph of Pn induced by ∪i∈H V (P
{i}
n ). By definition, there

is exactly one neighbor v of u such that u and v are adjacent through an i-dimensional edge with 2 ≤ i ≤ n. We use (u)i to
denote the unique i-neighbor of u. We have ((u)i)i = u and (u)n ∈ P {(u)1}n . For any two distinct elements i and j in 〈n〉, we
use E i,jn to denote the set of edges between P

{i}
n and P

{j}
n .

Lemma 1. Let i and j be any two distinct elements in 〈n〉 with n ≥ 3. Then |E i,jn | = (n− 2)!.

Lemma 2. Let u and v be any two distinct vertices of Pn with d(u, v) ≤ 2. Then (u)1 6= (v)1.

Theorem 1 ([22]). Suppose that F is a subset of V (Pn) with |F | ≤ n− 4. Then Pn − F is hamiltonian connected.

Theorem 2. Let {a1, a2, . . . , ar} be a subset of 〈n〉 for some positive integer r ∈ 〈n〉 with n ≥ 5. Assume that u and v are two
distinct vertices of Pn withu ∈ P

{a1}
n and v ∈ P {ar }n . Then there is a hamiltonian path 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr =

v〉 of ∪ri=1 P
{ai}
n joining u to v such that x1 = u, yr = v, and Hi is a hamiltonian path of P

{ai}
n joining xi to yi for every i, 1 ≤ i ≤ r.

Proof. We set x1 as u and yr as v. We know that P
{ai}
n is isomorphic to Pn−1 for every i ∈ 〈r〉. By Theorem 1, this statement

holds for r = 1. Thus, we assume that r ≥ 2. By Lemma 1, |Eai,ai+1n | = (n − 2)! ≥ 6 for every i ∈ 〈r − 1〉. We choose
(yi, xi+1) ∈ E

ai,ai+1
n for every i ∈ 〈r − 1〉 with y1 6= x1 and xr 6= yr. By Theorem 1, there is a hamiltonian path Hi of P

{ai}
n

joining xi to yi for every i ∈ 〈r〉. Then 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr = v〉 is the desired path. See Fig. 2 for
illustration on Pn. �

Lemma 3. Let k ∈ 〈n〉 with n ≥ 4, and let x be a vertex of Pn. There is a hamiltonian path P of Pn − {x} joining the vertex (x)n
to some vertex v with (v)1 = k.
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Fig. 2. Illustration for Theorem 2 on Pn .

Proof. Suppose that n = 4. Since P4 is vertex transitive, we may assume that x = 1234. The required paths of P4 − {1234}
are listed below:
k = 1 〈4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 2143, 4132, 2314, 3214, 4123, 2143, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 1243〉
k = 2 〈4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341〉
k = 3 〈4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 2314, 3214, 4123, 1423, 2413, 4213, 1342, 2143, 3412, 1432, 2341, 3241〉
k = 4 〈4321, 3421, 2431, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 2134, 3124, 1324, 4231〉

With Theorem 1, we can find the required hamiltonian path in Pn for every n, n ≥ 5. �

Lemma 4. Let a and b be any two distinct elements in 〈n〉 with n ≥ 4, and let x be a vertex of Pn. There is a hamiltonian path P
of Pn − {x} joining a vertex u with (u)1 = a to a vertex v with (v)1 = b.
Proof. Suppose that n = 4. Since P4 is vertex transitive, we may assume that x = 1234. Without loss of generality, we may
assume that a < b. The required paths of P4 − {1234} are listed below:

a = 1 and b = 2
〈1423, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 4132, 1432, 3412, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 4213, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 2314, 3214〉
a = 1 and b = 4
〈1423, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 3214, 4123, 2143, 1243, 4213, 3124, 2134, 4312, 3412, 1432, 4132〉
a = 2 and b = 3
〈2134, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324, 3124〉
a = 2 and b = 4
〈2134, 3124, 1324, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 4231, 2431, 3421, 4321, 2341, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4
〈3214, 4123, 2143, 1243, 4213, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342, 3142, 2413, 1423, 3241, 4231, 1324, 2314, 4132〉

With Theorem 1, we can find the required hamiltonian path on Pn for every n, n ≥ 5. �

Lemma 5. Let a and b be any two distinct elements in 〈n〉with n ≥ 4. Assume that x and y are two adjacent vertices of Pn. There
is a hamiltonian path P of Pn − {x, y} joining a vertex u with (u)1 = a to a vertex v with (v)1 = b.
Proof. Since Pn is vertex transitive, we may assume that x = e and y = (e)i for some i ∈ {2, 3, . . . , n}. Without loss of
generality, we assume that a < b. Thus, a 6= n and b 6= 1.We prove this statement by induction on n. For n = 4, the required
paths of P4 − {1234, (1234)i} are listed below:

y = 2134
a = 1 and b = 2
〈1432, 2413, 3142, 4132, 1432, 3412, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 3124, 4213, 1243, 2143, 4123, 3214, 2314〉
a = 1 and b = 3
〈1432, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 4213, 3124, 1324, 2314, 3214〉
a = 1 and b = 4
〈1432, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 4132, 1432, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 2143, 1243, 3421, 4321〉
a = 2 and b = 3
〈2314, 3214, 4123, 2143, 1243, 4213, 3124, 1324, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 1423, 3241, 2341, 4321, 3421〉
a = 2 and b = 4
〈2314, 3214, 4123, 2143, 3412, 4312, 1342, 2431, 3421, 1243, 4213, 3124, 1324, 4231, 3241, 1423, 2413, 3142, 4132, 1432, 2341, 4321〉
a = 3 and b = 4
〈3214, 4123, 2143, 1243, 3421, 2431, 4231, 3241, 1423, 2413, 4213, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321〉

y = 3214
a = 1 and b = 2
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 2413, 4213, 3124, 1324, 2314, 4132, 1432, 3412, 4312, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 4213, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 4132, 1432, 3412, 4312, 2134, 3124〉
a = 1 and b = 4
〈1423, 4123, 2143, 1243, 3421, 2431, 1342, 3142, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 3241, 2341, 4321〉
a = 2 and b = 3
〈2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 2143, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132, 2314, 1324, 3124〉
a = 2 and b = 4
〈2134, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243, 2143, 4123, 1423, 3241, 2341, 4321〉
a = 3 and b = 4
〈3124, 2134, 4312, 1342, 3142, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 2314, 4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321〉
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y = 4321
a = 1 and b = 2
〈1423, 4123, 3214, 2314, 4132, 3142, 2413, 4213, 3124, 1324, 4231, 3241, 2341, 1432, 3412, 2143, 1243, 3421, 2431, 1342, 4312, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 3412, 1432, 2341, 3241, 4231, 1324, 3124, 2134, 4312, 1342, 2431, 2431, 1243, 4213, 2413, 3142, 4132, 2314, 3214〉
a = 1 and b = 4
〈1423, 2413, 4213, 3124, 2134, 4312, 3412, 2143, 1243, 3421, 2431, 1342, 3142, 4132, 1432, 2341, 3241, 4231, 1324, 2314, 3214, 4123〉
a = 2 and b = 3
〈2134, 4312, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 3124〉
a = 2 and b = 4
〈2134, 3124, 4213, 2413, 1423, 3241, 2341, 1432, 4132, 3142, 1342, 4312, 3412, 2143, 1243, 3421, 2431, 4231, 1324, 2314, 3214, 4123〉
a = 3 and b = 4
〈3214, 2314, 1324, 4231, 3241, 2341, 1432, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 3412, 4312, 2134, 3124, 4213, 2413, 1423, 4123〉

Suppose that this statement holds for Pk for every k, 4 ≤ k < n. We have the following cases:

Case 1. y = (e)i for some i 6= 1 and i 6= n, that is, y ∈ P {n}n . Let c be an element in 〈n − 1〉 − {a}. By induction, there is
a hamiltonian path R of P {n}n − {e, (e)i} joining a vertex u with (u)1 = a to a vertex z with (z)1 = c. We choose a vertex
v in P 〈n−1〉−{c}n with (v)1 = b. By Theorem 2, there is a hamiltonian path H of P

〈n−1〉
n joining the vertex (z)n to v. Then

〈u, R, z, (z)n,H, v〉 is the desired path.

Case 2. y = (e)n, that is, y ∈ P {1}n . Let c be an element in 〈n − 1〉 − {1, a}, and let d be an element in 〈n − 1〉 − {1, b, c}. By
Lemma 4, there is a hamiltonian path R of P {n}n − {e} joining a vertex u with (u)1 = a to a vertex w with (w)1 = c. Again,
there is a hamiltonian path H of P {1}n − {(e)n} joining a vertex z with (z)1 = d to a vertex v with (v)1 = b. By Theorem 2,
there is a hamiltonian path Q of P 〈n−1〉−{1}n joining the vertex (w)n to the vertex (z)n. Then 〈u, R,w, (w)n,Q , (z)n, z,H, v〉 is
the desired path. �

Lemma 6. Let a and b be any two distinct elements in 〈n〉 with n ≥ 4. Let x be any vertex of Pn. Assume that x1 and x2 are two
distinct neighbors of x. There is a hamiltonian path P of Pn − {x, x1, x2} joining a vertex u with (u)1 = a to a vertex v with
(v)1 = b.

Proof. Since Pn is vertex transitive, we may assume that x = e. Moreover, we assume that x1 = (e)i and x2 = (e)j for some
{i, j} ⊂ 〈n〉 − {1}with i < j. Without loss of generality, we assume that a < b. Thus, a 6= n and b 6= 1. We prove this lemma
by induction on n. For n = 4, the required paths of P4 − {1234, (1234)i, (1234)j} are listed below:

x1 = 2134 and x2 = 3214
a = 1 and b = 2
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 4213, 3124, 1324, 2314〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 3124, 4213, 2413, 3142〉
a = 1 and b = 4
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 2413, 4213, 3124, 1324, 2314, 4132, 1432, 3412, 4312〉
a = 2 and b = 3
〈2143, 4123, 1423, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132, 2314, 1324, 3124〉
a = 2 and b = 4
〈2143, 4123, 1423, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 3124, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321〉
a = 3 and b = 4
〈3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243, 2143, 4123, 1423, 3241, 2341, 4321〉

x1 = 2134 and x2 = 4321
a = 1 and b = 2
〈1423, 2413, 3142, 4132, 1432, 2341, 3241, 4231, 1324, 3124, 4213, 1243, 3421, 2431, 1342, 4312, 3412, 2143, 4123, 3214, 2314〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 3421, 2431, 1342, 4312, 3412, 1432, 2341, 3241, 4231, 1342, 3124, 4213, 2413, 3142, 4132, 2314, 3214〉
a = 1 and b = 4
〈1423, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 2143, 1243, 3421, 2431, 4231, 3241, 2341, 1432, 4132〉
a = 2 and b = 3
〈2314, 3214, 4123, 2143, 3412, 4312, 1342, 3142, 4132, 1432, 2341, 3241, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 3124〉
a = 2 and b = 4
〈2314, 3214, 4123, 2143, 1243, 3421, 2431, 4231, 1324, 3124, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4
〈3214, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 3124, 1324, 4231, 2431, 3421, 1243, 2143, 4123〉
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x1 = 3214 and x2 = 4321
a = 1 and b = 2
〈1423, 4123, 2143, 1243, 3421, 2431, 1342, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 3124, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 2431, 1342, 4312, 2134, 3124〉
a = 1 and b = 4
〈1423, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 4123〉
a = 2 and b = 3
〈2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1341, 2431, 3421, 1243, 2143, 4123, 1423, 2413, 4213, 3124〉
a = 2 and b = 4
〈2134, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 2341, 3241, 1423, 4123, 2143, 1243, 3421, 2431, 4231, 1324, 2314, 4132〉
a = 3 and b = 4
〈3124, 2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 4123, 1423, 2413, 4213〉

Suppose that this statement holds for Pk for every k, 4 ≤ k < n. We have the following cases:
Case 1. j 6= n, that is, x1 ∈ P

{n}
n and x2 ∈ P

{n}
n . Let c ∈ 〈n − 1〉 − {1, a}. By induction, there is a hamiltonian path R of

P {n}n − {e, x1, x2} joining a vertex u with (u)1 = a to a vertex z with (z)1 = c. We choose a vertex v in P
{1}
n with (v)1 = b.

By Theorem 2, there is a hamiltonian path H of P 〈n−1〉n joining the vertex (z)n to v. We set P = 〈u, R, z, (z)n,H, v〉. Then P is
the desired path.
Case 2. j = n, that is, x1 ∈ P

{n}
n and x2 ∈ P

{1}
n . Let c ∈ 〈n − 1〉 − {1, a} and d ∈ 〈n − 1〉 − {1, b, c}. By Lemma 5, there is

a hamiltonian path R of P {n}n − {e, x1} joining a vertex u with (u)1 = a to a vertex z with (z)1 = c . By Lemma 4, there is a
hamiltonian path H of P {1}n − {x2} joining a vertex w with (w)1 = d to a vertex v with (v)1 = b. By Theorem 2, there is a
hamiltonian Q of P 〈n−1〉−{1}n joining the vertex (z)n to the vertex (w)n. We set P = 〈u, R, z, (z)n,Q , (w)n,w,H, v〉. Then P is
the desired path. �

Our main result for the pancake graph Pn is stated in the following theorem.

Theorem 3. IHC(P3) = 1 and IHC(Pn) = n− 1 if n ≥ 4.
Proof. It is easy to see that P3 is isomorphic to a cycle with six vertices. Thus, IHC(P3) = 1. Since Pn is (n − 1)-regular
graph, it is clear that IHC(Pn) ≤ n− 1. Since Pn is vertex transitive, we only need to show that there exist (n− 1)mutually
independent hamiltonian cycles of Pn starting form the vertex e. For n = 4, we prove that IHC(P4) ≥ 3 by listing the required
hamiltonian cycles as follows:

C1 =
〈1234, 2134, 4312, 3412, 2143, 1243, 4213, 3124, 1324, 4231, 3241, 2341, 1432, 4132, 2314, 3214, 4123, 1423, 2413, 3142, 1342, 2431, 3421, 4321, 1234〉
C2 =
〈1234, 3214, 2314, 1324, 3124, 4213, 2413, 1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134, 1234〉
C3 =
〈1234, 4321, 2341, 1432, 4132, 2314, 1324, 4231, 3241, 1423, 2413, 3142, 1342, 2431, 3421, 1243, 4213, 3124, 2134, 4312, 3412, 2143, 4123, 3214, 1234〉

Suppose that n ≥ 5. Let B be the (n− 1)× nmatrix with

bi,j =
{
i+ j− 1 if i+ j− 1 ≤ n,
i+ j− n+ 1 if n ≥ i+ j.

More precisely,

B =


1 2 3 4 · · · n− 1 n
2 3 4 5 · · · n 1
...

...
...

...
. . .

...
...

n− 1 n 1 2 · · · n− 3 n− 2

 .
It is not hard to see that bi,1bi,2 . . . bi,n forms a permutation of {1, 2, . . . , n} for every i with 1 ≤ i ≤ n − 1. Moreover,

bi,j 6= bi′,j for any 1 ≤ i < i′ ≤ n− 1 and 1 ≤ j ≤ n. In other words, B forms a Latin rectangle with entries in {1, 2, . . . , n}.
For every k ∈ 〈n− 1〉, we construct Ck as follows:
(1) k = 1. By Lemma3, there is a hamiltonian pathH1 of P

{b1,n}
n −{e} joining a vertex xwith x 6= (e)n−1 and (x)1 = n−1 to

the vertex (e)n−1. By Theorem 2, there is a hamiltonian path H2 of ∪n−1t=1 P
{b1,t }
n joining the vertex (e)n to the vertex (x)n with

H2(i+(j−1)(n−1)!) ∈ P
{b1,j}
n for every i ∈ 〈(n−1)!〉 and for every j ∈ 〈n−1〉.We set C1 = 〈e, (e)n,H2, (x)n, x,H1, (e)n−1, e〉.

(2) k = 2. By Lemma 5, there is a hamiltonian path Q1 of P
{b2,n−1}
n − {e, (e)2} joining a vertex y with (y)1 = n − 1 to a

vertex z with (z)1 = 1. By Theorem 2, there is a hamiltonian Q2 of ∪n−2t=1 P
{b2,t }
n joining the vertex ((e)2)n to the vertex (y)n

such thatQ2(i+(j−1)(n−1)!) ∈ P
{b2,j}
n for every i ∈ 〈(n−1)!〉 and for every j ∈ 〈n−2〉. By Theorem1, there is a hamiltonian

path Q3 of P
{b2,n}
n joining the vertex (z)n to the vertex (e)n. We set C2 = 〈e, (e)2, ((e)2)n,Q2, (y)n, y,Q1, z, (z)n,Q3, (e)n, e〉.

(3) k ∈ 〈n − 1〉 − {1, 2}. By Lemma 6, there is a hamiltonian path Rk1 of P
{bk,n−k+1}
n − {e, (e)k−1, (e)k} joining a vertex

wk with (wk)1 = n − 1 to a vertex vk with (vk)1 = 1. By Theorem 2, there is a hamiltonian path Rk2 of ∪
n−k
t=1 P

{bk,t }
n
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Fig. 3. Illustration for Theorem 3 on P5 .

joining the vertex ((e)k)n to the vertex (wk)
n such that Rk2(i + (j − 1)(n − 1)!) ∈ P

{bk,j}
n for every i ∈ 〈(n − 1)!〉 and

for every j ∈ 〈n − k〉. Again, there is a hamiltonian path Rk3 of ∪
n
t=n−k+2 P

{bk,t }
n joining the vertex (vk)n to the vertex

((e)k−1)n such that Rk3(i + (j − 1)(n − 1)!) ∈ P
{bk,n−k+j+1}
n for every i ∈ 〈(n − 1)!〉 and for every j ∈ 〈k − 1〉. We set

Ck = 〈e, (e)k, ((e)k)n, Rk2, (wk)
n,wk, Rk1, vk, (vk)

n, Rk3, ((e)
k−1)n, (e)k−1, e〉.

Then {C1, C2, . . . , Cn−1} forms a set of (n− 1)mutually independent hamiltonian cycles of Pn starting from the vertex e.
�

Example. We illustrate the proof of Theorem 3 with n = 5 as follows:
We set

B =

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

 .
Then we construct {C1, C2, C3, C4} as follows:
(1)k = 1. By Lemma 3, there is a hamiltonian path H1 of P

{b1,5}
5 − {e} joining a vertex x with x 6= (e)4 and (x)1 = 4 to

the vertex (e)4. By Theorem 2, there is a hamiltonian path H2 of ∪4t=1 P
{b1,t }
5 joining the vertex (e)5 to the vertex (x)5 with

H2(i+ 24(j− 1)) ∈ P
{b1,j}
5 for every i ∈ 〈24〉 and for every j ∈ 〈4〉. We set C1 = 〈e, (e)5,H2, (x)5, x,H1, (e)4, e〉.

(2)k = 2. By Lemma 5, there is a hamiltonian path Q1 of P
{b2,4}
5 − {e, (e)2} joining a vertex ywith (y)1 = 4 to a vertex z

with (z)1 = 1. By Theorem 2, there is a hamiltonian Q2 of ∪3t=1 P
{b2,t }
5 joining the vertex ((e)2)5 to the vertex (y)5 such that

Q2(i + 24(j − 1)) ∈ P
{b2,j}
5 for every i ∈ 〈24〉 and for every j ∈ 〈3〉. By Theorem 1, there is a hamiltonian path Q3 of P

{b2,5}
5

joining the vertex (z)5 to the vertex (e)5. We set C2 = 〈e, (e)2, ((e)2)5,Q2, (y)5, y,Q1, z, (z)5,Q3, (e)5, e〉.
(3)k ∈ {3, 4}. By Lemma 6, there is a hamiltonian path Rk1 of P

{bk,6−k}
5 −{e, (e)k−1, (e)k} joining a vertexwkwith (wk)1 = 4

to a vertex vk with (vk)1 = 1. By Theorem 2, there is a hamiltonian path Rk2 of ∪
5−k
t=1 P

{bk,t }
5 joining the vertex ((e)k)5 to the

vertex (wk)
5 such that Rk2(i+ 24(j− 1)) ∈ P

{bk,j}
5 for every i ∈ 〈24〉 and for every j ∈ 〈5− k〉. Again, there is a hamiltonian

path Rk3 of ∪
5
t=7−k P

{bk,t }
5 joining the vertex (vk)5 to the vertex ((e)k−1)5 such that Rk3(i + 24(j − 1)) ∈ P

{bk,6−k+j}
5 for every

i ∈ 〈24〉 and for every j ∈ 〈k− 1〉. We set Ck = 〈e, (e)k, ((e)k)5, Rk2, (wk)
5,wk, Rk1, vk, (vk)

5, Rk3, ((e)
k−1)5, (e)k−1, e〉.

Then {C1, C2, C3, C4} forms a set of 4 mutually independent hamiltonian cycles of P5 starting from the vertex e. See Fig. 3
for illustration.

5. The star graphs

Let n be a positive integer. The n-dimensional star graph, Sn, is a graph with the vertex set V (Sn) = {u1 . . . un | ui ∈ 〈n〉
and uj 6= uk for j 6= k}. The adjacency is defined as follows: u1 . . . ui . . . un is adjacent to v1 . . . vi . . . vn through an edge of
dimension i with 2 ≤ i ≤ n if vj = uj for every j ∈ 〈n〉 − {1, i}, v1 = ui, and vi = u1. The star graphs S2, S3, and S4 are
illustrated in Fig. 4. In [1], it showed that the connectivity of Sn is (n − 1). We use boldface to denote vertices in Sn. Hence,
u1,u2, . . . ,un denotes a sequence of vertices in Sn.
By definition, Sn is an (n − 1)-regular graph with n! vertices. We use e to denote the vertex 12 . . . n. It is known that Sn

is a bipartite graph with one partite set containing the vertices corresponding to odd permutations and the other partite
set containing those vertices correspond to even permutations. We use white vertices to represent those even permutation
vertices and we use black vertices to represent those odd permutation vertices. Let u = u1u2 . . . un be an arbitrary vertex
of the star graph Sn. We say that ui is the ith coordinate of u, (u)i, for 1 ≤ i ≤ n. For 1 ≤ i ≤ n, let S

{i}
n be the subgraph of

Sn induced by those vertices u with (u)n = i. Then Sn can be decomposed into n subgraph S
{i}
n , 1 ≤ i ≤ n, and each S

{i}
n is

isomorphic to Sn−1. Thus, the star graph can also be constructed recursively. Let I be any subset of 〈n〉. We use S In to denote
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Fig. 4. The star graphs S2 , S3 , and S4 .

the subgraph of Sn induced by ∪i∈I V (S
{i}
n ). For any two distinct elements i and j in 〈n〉, we use E

i,j
n to denote the set of edges

between S{i}n and S
{j}
n . By the definition of Sn, there is exactly one neighbor v of u such that u and v are adjacent through an

i-dimensional edge with 2 ≤ i ≤ n. For this reason, we use (u)i to denote the unique i-neighbor of u. We have ((u)i)i = u
and (u)n ∈ S{(u)1}n .

Lemma 7. Let i and j be any two distinct elements in 〈n〉 with n ≥ 3. Then |E i,jn | = (n − 2)!. Moreover, there are (n − 2)!/2
edges joining black vertices of S{i}n to white vertices of S

{j}
n .

Lemma 8. Let u and v be two distinct vertices of Sn with d(u, v) ≤ 2. Then (u)1 6= (v)1.

Theorem 4 ([21]). Let n ≥ 4. Suppose that u is a white vertex of Sn and v is a black vertex of Sn. Then there is a hamiltonian
path of Sn joining u to v.

Theorem 5. Let {a1, a2, . . . , ar} be a subset of 〈n〉 for some r ∈ 〈n〉 with n ≥ 5. Assume that u is a white vertex in S
{a1}
n and v

is a black vertex in S{ar }n . Then there is a hamiltonian path 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr = v〉 of ∪ri=1 S
{ai}
n joining u

to v such that x1 = u, yr = v, and Hi is a hamiltonian path of S
{ai}
n joining xi to yi for every i, 1 ≤ i ≤ r.

Proof. We set x1 as u and yr as v. By Theorem 4, this theorem holds on r = 1. Suppose that r ≥ 2. By Lemma 7, there are
(n− 2)!/2 ≥ 3 edges joining black vertices of S{ai}n to white vertices of S{ai+1}n for every i ∈ 〈r − 1〉. We can choose an edge
(yi, xi+1) ∈ E

ai,ai+1
n with yi being a black vertex and xi+1 being a white vertex for every i ∈ 〈r − 1〉. By Theorem 4, there is a

hamiltonian path Hi of S
{ai}
n joining xi to yi for every i ∈ 〈r〉. Then the path 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr = v〉 is

the desired path. �

Theorem 6 ([21]). Let w be a black vertex of Sn with n ≥ 4. Assume that u and v are two distinct white vertices of Sn − {w }.
Then there is a hamiltonian path H of Sn − {w} joining u to v.

Lemma 9 ([30]). Let i be any element in 〈n〉 with n ≥ 4. Assume that r and s are two adjacent vertices of Sn and u is a white
vertex of Sn − {r, s}. Then there is a hamiltonian path of Sn − {r, s} joining u to some black vertex v with (v)1 = i.

Lemma 10. Let a and b be any two distinct elements in 〈n〉 with n ≥ 4. Assume that x is a white vertex of Sn, and assume that
x1 and x2 are two distinct neighbors of x. Then there is a hamiltonian path P of Sn − {x, x1, x2} joining a white vertex u with
(u)1 = a to a white vertex v with (v)1 = b.

Proof. Since Sn is vertex transitive and edge transitive, we may assume that x = e, x1 = (e)2, and x2 = (e)3. Without loss
of generality, we may also assume that a < b. We have a 6= n and b 6= 1. We prove this statement by induction on n. For
n = 4, the required paths of S4 − {1234, 2134, 3214} are listed below:

a = 1 and b = 2 〈1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431〉
a = 1 and b = 3 〈1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241〉
a = 1 and b = 4 〈1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 2431, 4231, 3241, 2341, 4321〉
a = 2 and b = 3 〈2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 4132, 3142, 1342, 4312, 3412〉
a = 2 and b = 4 〈2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4 〈3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213〉
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Suppose that this statement holds for Sk for every k, 4 ≤ k ≤ n−1. Let c be any element in 〈n−1〉−{1, a}. By induction,
there is a hamiltonian pathH of S{n}n −{e, (e)2, (e)3} joining awhite vertex uwith (u)1 = a to awhite vertex zwith (z)1 = c.
We choose a white vertex v in S{1}n with (v)1 = b. By Theorem 5, there is a hamiltonian path R of S

〈n−1〉
n joining the black

vertex (z)n to v. Then 〈u,H, z, (z)n, R, v〉 is the desired path of Sn − {e, (e)2, (e)3}. �

The following theorem is our main result for the star graph Sn.

Theorem 7. IHC(S3) = 1, IHC(S4) = 2, and IHC(Sn) = n− 1 if n ≥ 5.
Proof. It is easy to see that S3 is isomorphic to a cycle with six vertices. Thus, IHC(S3) = 1. Using a computer, we have
IHC(S4) = 2 by brute force checking. Thus, we assume that n ≥ 5. We know that Sn is (n − 1)-regular graph. Hence,
IHC(Sn) ≤ n−1. Since Sn is vertex transitive, we only need to show that there are (n−1)mutually independent hamiltonian
cycles of Sn starting from e. Let B be the (n− 1)× nmatrix with

bi,j =
{
i+ j− 1 if i+ j− 1 ≤ n,
i+ j− n+ 1 if n < i+ j− 1.

We construct {C1, C2, . . . , Cn−1} as follows:
(1)k = 1. We choose a black vertex x in S{b1,n}n − {(e)n−1}with (x)1 = n− 1. By Theorem 6, there is a hamiltonian path

H1 of S
{b1,n}
n − {e} joining x to the black vertex (e)n−1. By Theorem 5, there is a hamiltonian path H2 of ∪n−1t=1 S

{b1,t }
n joining

the black vertex (e)n to the white vertex (x)n with H2(i + (j − 1)(n − 1)!) ∈ S
{b1,j}
n for every i ∈ 〈(n − 1)!〉 and for every

j ∈ 〈n− 1〉. We set C1 = 〈e, (e)n,H2, (x)n, x,H1, (e)n−1, e〉.
(2)k = 2. We choose a white vertex y in S{b2,n−1}n − {e, (e)2}with (y)1 = n− 1. By Lemma 9, there is a hamiltonian path

Q1 of S
{b2,j}
n − {e, (e)2} joining y to a black vertex z with (z)1 = 1. By Theorem 5, there is a hamiltonian Q2 of ∪n−2t=1 S

{b2,t }
n

joining the white vertex ((e)2)n to the black vertex (y)n such that Q2(i+ (j−1)(n−1)!) ∈ S
{b2,j}
n for every i ∈ 〈(n−1)!〉 and

for every j ∈ 〈n − 2〉. Again, there is a hamiltonian path Q3 of S
{b2,n}
n joining the white vertex (z)n to the black vertex (e)n.

We set C2 = 〈e, (e)2, ((e)2)n,Q2, (y)n, y,Q1, z, (z)n,Q3, (e)n, e〉.
(3)3 ≤ k ≤ n− 1. By Lemma 10, there is a hamiltonian path Rk1 of S

{bk,n−k+1}
n − {e, (e)k−1, (e)k} joining a white vertexwk

with (wk)1 = n− 1 to a white vertex vk with (vk)1 = 1. By Theorem 5, there is a hamiltonian path Rk2 of ∪
n−k
t=1 S

{bk,t }
n joining

the white vertex ((e)k)n to the black vertex (wk)
n such that Rk2(i + (j − 1)(n − 1)!) ∈ S

{bk,j}
n for every i ∈ 〈(n − 1)!〉 and

for every j ∈ 〈n− k− 1〉. Again, there is a hamiltonian path Rk3 of ∪
n
t=n−k+2 S

{bk,t }
n joining the black vertex (vk)n to the black

vertex ((e)k−1)n such that Rk3(i + (j − 1)(n − 1)!) ∈ S
{bk,n−k+j+1}
n for every i ∈ 〈(n − 1)!〉 and for every j ∈ 〈k − 1〉. We set

Ck = 〈e, (e)k, ((e)k)n, Rk2, (wk)
n,wk, Rk1, vk, (vk)

n, Rk3, ((e)
k−1)n, (e)k−1, e〉.

Then {C1, C2, . . . , Cn−1} forms a set of (n− 1)mutually independent hamiltonian cycles of Sn starting form the vertex e.
�

6. Discussion

In this paper, we discuss the mutually independent hamiltonian cycles for the pancake graphs and the star graphs. The
concept of mutually independent hamiltonian cycle can be viewed as a generalization of Latin rectangles. Perhaps one of
the most interesting topics in Latin square is orthogonal Latin square. Two Latin squares of order n are orthogonal if the
n-squared pairs formed by juxtaposing the two arrays are all distinct. Similarly, two Latin rectangles of order n × m are
orthogonal if the n×m pairs formed by juxtaposing the two arrays are all distinct. With this in mind, let G be a hamiltonian
graph and C1 and C2 be two sets of mutually independent hamiltonian cycles of G from a given vertex x. We say C1 and C2 are
orthogonal if their corresponding Latin rectangles are orthogonal. For example, we know that IHC(P4) = 3. The following
Latin rectangle represents three mutually independent hamiltonian cycles beginning at 1234.

2134, 4312, 1342, 2431, 3421, 1243, 4213, 3124, 1324, 4231, 3241, 1423, 2413, 3142, 4132, 2314, 3214, 4123, 2143, 3412, 1432,
2341, 4321
3214, 2314, 4132, 1432, 3412, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324,
3124, 2134
4321, 2341, 1432, 3412, 2143, 4123, 1423, 3241, 4231, 1324, 3124, 2134, 4312, 1342, 2431, 3421, 1243, 4213, 2413, 3142, 4132,
2314, 3214

Yet, the following Latin rectangle also represents three mutually independent hamiltonian cycles beginning at 1234.
2134, 3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324,
2314, 3214
3214, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 2431, 1342, 4312, 2134, 3124, 1324, 4231, 3241, 1423, 4123, 2143, 3412, 1432,
2341, 4321
4321, 3421, 1243, 2143, 3412, 4312, 1342, 2431, 4231, 1324, 2314, 3214, 4123, 1423, 3241, 2341, 1432, 4132, 3142, 2413, 4213,
3124, 2134

We can check that these two Latin rectangles are orthogonal. Thus, we have two sets of three mutually independent
hamiltonian cycles that are orthogonal. With this example in mind, we can consider the following problem. Let G be any
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hamiltonian graph. We can define MOMH(G) as the largest integer k such that there exist k sets of mutually independent
hamiltonian cycle of G beginning from any vertex x such that each set contains exactly IHC(G) hamiltonian cycles and any
two different sets are orthogonal. It would be interesting to study the value ofMOMH(G) for some hamiltonian graphs G.
We can also discuss mutually independent hamiltonian paths for some graphs. Let P1 = 〈v1, v2, . . . , vn〉 and P2 =

〈u1, u2, . . . , un〉 be two hamiltonian paths of a graph G. We say that P1 and P2 are independent if u1 = v1, un = vn, and
ui 6= vi for 1 < i < n. We say a set of hamiltonian paths {P1, P2, . . . , Ps} of G between two distinct vertices are mutually
independent if any twodistinct paths in the set are independent. There are some study onmutually independent hamiltonian
paths [29,39].
Recently, people are interested in amathematical puzzle, called Sudoku [38]. Sudoku can be viewed as a 9×9 Latin square

with some constraints. There are several variations of Sudoku have been introduced. Mutually independent hamiltonian
cycles can also be considered as a variation of Sudoku.
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