

i

應用於介面相符驗證之

處理程序層級的功能涵蓋

研究生 : 蘇 曼 勻 指導教授 : 周 景 揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘 要

在設計現今的系統單晶片過程中，介面相符驗證扮演了一個相當重要的角色。

一般而言，涵蓋量測有助於定量分析模擬式驗證的完整性；而在這篇論文中，我們

針對介面相符驗證提出了處理程序層級的功能涵蓋方法，並發展一套可以在更高抽

象層次描述處理程序的語言 – State-Oriented Language (SOL)。SOL 的表達能力較

先前使用常規表示式的語言來的強，因此，藉由 SOL 便可在介面協定的規格有限

狀態機模型上，更容易且不失嚴謹的詳細描述處理程序。經由實驗證明，我們所提

議的方法的確可以有效的提高驗證的品質，並且加快驗證的效率。

ii

Transaction-Level Functional Coverage
for Interface Compliance Verification

Student : Man-Yun Su Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

Interface compliance verification plays a very important role in modern SoC

designs. In order to perform a quantitative analysis of simulation completeness, some

coverage metrics are required. In this thesis, we propose a transaction-level functional

coverage methodology for interface compliance verification. We also develop a new

language, State-Oriented Language (SOL), to specify functional transactions at a higher

level of abstraction. Moreover, SOL owns a stronger expressive power than previous

regular-expression-based languages do. Therefore, by utilizing SOL, it is simple and

rigorous to specify transactions from the specification FSM of the interface protocol.

Experimental results show that the proposed methodology can effectively improve the

verification quality and increase the verification efficiency.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisors, Professor Jing-Yang

Jou and Professor Juinn-Dar Huang, for their insightful suggestion and patient guidance

throughout the course of this work. I am also indebted to Che-Hua Shih, for his great

help and constructive suggestions on my research. Special thanks to all members in the

EDA lab for their friendship and company. Finally, I have to show my greatest

appreciation to my family and my boyfriend, Wayne Hsieh. Without their love and

encouragement, this work would not be completed.

iv

Contents

摘 要 .. i

ABSTRACT .. ii

Acknowledgements ..iii

Contents .. iv

List of Tables .. vi

List of Figures..vii

Chapter 1 Introduction ... 1
1.1 Interface compliance verification .. 1
1.2 Coverage metrics ... 2

1.2.1 Code coverage ... 3
1.2.2 Functional coverage... 5

1.3 Proposed approach... 6

Chapter 2 Transaction-Level Functional Coverage.. 8
2.1 Related works .. 9
2.2 Motivation ... 12
2.3 Concept of our transaction description style ... 13

Chapter 3 State-Oriented Language ... 14
3.1 Abstract structure... 15
3.2 Syntax conventions.. 15
3.3 Boolean layer... 17

3.3.1 Extra signal qualification (“ ”) .. 17
3.4 Sequential layer ... 18

3.4.1 Concatenation (;) ... 18
3.4.2 Repetition ([]) ... 19
3.4.3 Sequence AND (&&) .. 25

v

3.4.4 Sequence OR (|) ... 26
3.4.5 Sequence fusion (:) .. 27

3.5 Transaction layer ... 28
3.6 Coverage layer... 28

3.6.1 Sequence set cross (**) ... 29
3.7 Case study.. 30

Chapter 4 Proposed Methodology.. 36

Chapter 5 Experimental Results... 38
5.1 Experimental environment .. 38
5.2 Results analysis ... 41

5.2.1 Coverage comparison .. 41
5.2.2 Efficiency improvement .. 43

Chapter 6 Conclusions and Future Works.. 45
6.1 Contributions ... 46
6.2 Future works .. 46

References ... 48

Appendix A SOL Syntax Rule Summary ... 51

Vita... 55

vi

List of Tables

Table 1. Design information. ... 39

Table 2. Coverage comparison for Case 1. .. 42

Table 3. Coverage comparison for Case 2. .. 43

Table 4. Efficiency improvement. ... 44

vii

List of Figures

Figure 1. The platform-based design methodology. .. 2

Figure 2. The interesting transactions derivation. ... 9

Figure 3. Sample transactions.. 11

Figure 4. CWL descriptions of Figure 3.. 11

Figure 5. A 4-beat burst of the AMBA AHB protocol. .. 12

Figure 6. An example FSM. .. 17

Figure 7. The spec. FSM of the simplified AMBA AHB slave protocol......................... 31

Figure 8. The flow of our verification methodology. .. 37

Figure 9. The experimental environment. ... 39

Figure 10. The NEFSM of the AMBA AHB master.. 40

1

Chapter 1

Introduction

1.1 Interface compliance verification

In order to cope with the growing size and complexity of modern system-on-a-chip

(SoC) designs, the block-based approach is used to partition the design into smaller

blocks with well-defined functionality to be tackled by many individual teams. The

blocks nowadays are usually reusable intellectual property (IP) cores, which are

pre-designed and pre-verified, for the acceleration of the overall design process. To

provide a higher level of reusability, the platform-based design methodology described

in [1] is frequently adopted. Figure 1 illustrates the basic concept of this methodology.

Since a system platform is based on a specific interface protocol, the used IP cores must

be wrapped with appropriate interface logic before integration. If an IP core is desired in

2

another platform utilizing a different interface protocol, the designers only need to

simply change the interface logic wrapper without altering the core inside. In this

methodology, to ensure that each component can concordantly communicate with others

within the system, it is very important to guarantee that the interface logic of each IP

core conforms to the specific interface protocol before an SoC is built up. Hence,

interface compliance verification becomes an essential part of the SoC verification flow.

Figure 1. The platform-based design methodology.

1.2 Coverage metrics

Typically, the verification techniques can be classified into two types: formal

methods and simulation-based ones. Formal verification is very efficient when verifying

small designs. But it may take excessively long run time and suffer from memory

explosion problem as the design size increases. Therefore, simulation is still the most

commonly used method for design verification. During simulation, we can verify the

functionality of a design in a short time by applying either direct (deterministic) or

Communication
Interface

IP core 1

Interface Wrapper

IP core 2

Interface Wrapper

IP core 3

Interface Wrapper

Platform
‧‧‧

‧‧‧

3

random patterns. Nevertheless, exhaustive simulation is nearly impossible for large

designs. To notify us of how many of the verification patterns are enough and when the

simulation can be done, an indicator is needed.

Coverage metric is usually adopted as the indicator to perform a quantitative

analysis of simulation completeness. Coverage metric means the method used to

measure coverage. It usually comprises a lot of coverage tasks which are evaluated true

when a specific condition is satisfied. By means of coverage metrics can not only

objectively measure how well a design has been verified but also improve the quality of

verification patterns. That is, it is capable of guiding either direct (deterministic) or

random patterns to target those unverified design corners. As a result, coverage metrics

can definitely provide a more systematic way to manage the simulation-based

verification process. However, all of above hold only if suitable metrics are taken for

different designs. Hence, exploring adequate coverage metrics is a very crucial issue in

today’s functional verification.

In general, there are two major categories of coverage metrics [2]: code coverage

(structural coverage) and functional coverage.

1.2.1 Code coverage

Code coverage methods concentrate on identifying which part of the hardware

description language (HDL) code has been executed in the design under verification

(DUV). That is, they measure how much of the HDL implementation has been exercised.

For example, statement coverage, branch (decision) coverage, expression (condition)

4

coverage, toggle coverage, and variable coverage are well-known code coverage metrics

[3]. They are easy to define and measure. Once the definition is selected, the coverage

metric can be derived from the HDL code intuitively. Besides, many commercial code

coverage tools are available nowadays.

However, the excitation of an erroneous statement does not necessarily mean that

the incorrect value would manifest itself at an observation point during simulation.

Activation without observation may not contribute to the error detection. Some

approaches are proposed to address this observability issue. In [4], the

observability-based code coverage metric (OCCOM) injects tags on each variable in the

HDL code to simulate possible value changes caused by activated errors. Then it checks

the percentage of tags that can be propagated to output ports. The validation vector

grade (VVG) [5] extends toggle coverage by adding the concept of observability and

arithmetic fault library. This approach is quite close to the gate level fault coverage. In

[6], the extended condition coverage with excitation observation (ECC) detects the

excitation of each condition variable and monitors the effect at output ports.

In spite of these refinements, the fundamental issue of all code coverage metrics

remains unchanged - they can only measure how well the structural HDL code has been

exercised. They are not sufficient to represent the whole functionality of the design

specification. Namely, the verification quality is generally considered not enough for

modern complex SoC designs even if a high code coverage is achieved. Thus, the

functional coverage is usually applied to further boost the verification quality.

5

1.2.2 Functional coverage

Functional coverage, as its name implies, focuses on the design functionality. It

measures how much of the original design specification has been exercised, and is

independent of the HDL implementation details. In other words, when applying a given

set of verification patterns, the function coverage results should be the same even if

different HDL implementations are used for a specific design specification. Functional

coverage includes item coverage and cross-product (cross) coverage. Item coverage

concerns with a single specific attribute, which is sampled at specific locations at

specific points in time with specific values. For example, a 4-beat burst and an 8-beat

burst can be considered as two distinct items. Cross-product coverage is similar to item

coverage. It consists of two or more items. For example, a 4-beat write burst can be a

simple cross item while a 4-beat burst followed by an 8-beat one can be a complex cross

item.

Since the functional coverage metrics are specific to the design specification and

application, they are considerably not straightforward to define and measure. Many

methods are proposed to address these issues. In [7], a user defined cross-product

coverage measurement tool is developed. [8] proposes a method for defining views on

the cross-product functional coverage data. This method allows users to focus on the

interesting information, and thus improve the quality of coverage analysis. In the

cross-product functional coverage with LTL-assertions [9], auxiliary variables are used

to reduce the number of assertions (coverage tasks) when collecting coverage

information. The simulation overhead can thus be reduced. Some other works focus on

6

the automation of the functional coverage metrics. In [10-11], the specification must be

first given as a proprietary graph. Then the functional coverage analyzer can be

automatically generated by traversing the graph.

Although the methods mentioned above can facilitate interface compliance

verification, the definitions or descriptions of the coverage metrics in [7-9] are still too

complicated. It is not easy to put them to good use. Besides, the methods of the

automatic generation of functional coverage metrics in [10-11] provide limited helps due

to the proprietary graph is not generally used and designers may not be familiar with this

form. Accordingly, these methods are hard to be widely used for the interface

compliance verification.

1.3 Proposed approach

In this thesis, we propose a transaction-level functional coverage methodology, and

provide a mean to specify functional transactions at a higher level of abstraction. First,

the interface protocol is given as a specification FSM (spec. FSM) by using the concept

in [12-13]. Then a transaction can be defined as a specific sequence of state transitions

within the spec. FSM. We also develop a transaction description language,

State-Oriented Language (SOL), which is cable of modeling diverse state transition

sequences precisely and rigorously. The transactions can then be specified in a simpler

and more systematic way. Moreover, the specified transactions with the spec. FSM can

be translated into the corresponding functional coverage analyzer automatically.

The rest of this thesis is organized as follows. In Section 2, the basic concept and

7

the related works of transaction-level functional coverage are introduced. Section 3

presents the proposed new transaction description language State-Oriented Language. In

Section 4, the details of our verification methodology are given. Section 5 demonstrates

the proposed methodology with the AMBA AHB slave interface protocol and shows the

experimental results. Finally, the concluding remarks are given in Section 6.

8

Chapter 2

Transaction-Level

Functional Coverage

As mentioned, functional coverage concentrates on identifying how much of the

original design specification has been verified, and it is favorable to improve the quality

of interface compliance verification. Transaction-level functional coverage is one of the

commonly used methods to measure the functional coverage for an interface design

[14-16]. An interface protocol specification usually defines a set of different transactions.

Note that a transaction here can be thought as the transfer of data and control over an

interface to perform certain basic operation. For example, a transaction can be a 4-beat

9

burst or an 8-beat burst, or a 4-beat burst followed by an 8-beat one. By considering the

design information (e.g., supported burst modes or responses) with these pre-defined

transactions, the interesting transactions for a specific design can then be derived.

Transaction-level functional coverage is generally measured by how many interesting

transactions are exercised. However, a design instance usually implements a subset of

the full interface protocol. For example, ‘WAIT’ response is optional in a specific

interface protocol. A design which complies with this interface protocol does not allow

‘WAIT’ response during transaction. If ‘WAIT’ response is required to occur in

coverage metric for this design, the coverage will never achieve 100%. This coverage

result becomes ineffectual and insignificant. Since the interesting transactions for a

given design are specific to design specification, they are usually derived manually and

subjectively. This idea is illustrated in Figure 2. Therefore, a user-friendly but still

rigorous transaction description language is needed.

Figure 2. The interesting transactions derivation.

2.1 Related works

Several approaches are proposed for transaction-level functional coverage. For

M-path coverage [13], the protocol is first modeled as a spec. FSM. Then an M-path is

defined as a path which can form a complete bus transfer in the FSM model. In other

Transactions
Defined in an

Interface Protocol
Specification Add Design Information

Interesting
 Transactions for
a Specific Design

Derived Manually
and Subjectively

10

words, an M-path, which is a finite sequence of state transitions, is actually a simple

transaction. M-paths are used as the targets for coverage measurement. However, the

proposed FSM model here is too simple. Since only several control signals are checked,

many transactions cannot be differentiated from others. For the AMBA AHB protocol,

the write transactions cannot be distinguished from the read ones due to the signal

HWRITE is not checked. This may make it too easy to achieve 100% M-path coverage.

Besides, the definition of M-path is neither clear nor rigorous enough. It is not

convenient to put it to good use for lack of sufficient expressive power. Moreover,

consecutive transfers are not considered in this work. It may conceal the design errors

since some errors may merely occur during consecutive transfers.

In [14], Component Wrapper Language (CWL) is used to describe signal sequences

based on regular expressions. For example, there are three sample transactions, idle, read

and write. The timing diagram of each transaction is given in Figure 3. CWL

descriptions of these transactions are depicted in Figure 4. In CWL descriptions, the

input and output signals must be declared first. Then signal values at each cycle are

defined as signal sets. For the cycle RRB, the signal values of clk, reset, wait_n,

msel_n, read_n, adr, and dat are R (for rising edge), 0, 1, 0, 0, Xa (for the read

address), and ? (for the unknown read data), respectively. Next, each simple transaction

is modeled by utilizing the defined signal sets. For example, the idle transaction

comprises at least one NOP. Finally, a more complex transaction can be built up by

assembling simple ones. Users can construct transactions and do transaction-level

verification by using CWL.

11

Figure 3. Sample transactions.

Figure 4. CWL descriptions of Figure 3.

In this approach, individual signals need to be considered when describing

thorough transactions. In other words, the signal-level descriptions are required. If the

transactions are getting more complex, it might be troublesome and time-consuming to

Signal Set Naming

Port Declaration

Overall Definition

Transaction Definition

idle read write

12

author the corresponding CWL descriptions. Thus, CWL is not suitable to model

complex transactions.

2.2 Motivation

Typically, the interesting transactions need to be derived manually before

measuring transaction-level functional coverage. It is tedious and error-prone for human

to specify transactions if the detailed signal values are required. Take a 4-beat burst of

the AMBA AHB protocol as an example. The corresponding timing diagram is given in

Figure 5. If the signal-level description is used for this transaction, each signal must be

specified at each cycle, and similar processes must be done iteratively until the

description is complete. As the transactions get more complex, the description processes

become very tedious. Under this low-level description style, it is really a bothersome

and time-consuming work to specify transactions.

Figure 5. A 4-beat burst of the AMBA AHB protocol.

13

To cope with this issue, it is a good idea to provide a simple, human-friendly,

rigorous, and systematic way to specify transactions at a higher level of abstraction

instead of at the signal level.

2.3 Concept of our transaction description style

The transaction description style in our approach is directly inspired by the work

proposed in [12-13]. Both works give the concept of specifying interface protocol in the

higher FSM level. All engineers are very familiar with this style and are very likely to

accept this style since no particular specification languages need to be learned.

In our work, the interface protocol is specified as a spec. FSM by using the

methods in [12-13]. The spec. FSM only needs to be created once for a specific interface

protocol and can be massively reused later. A transaction can then be defined as a

specific sequence of state transitions within the spec. FSM. This enables the use of states

in the spec. FSM as basic elements to describe transactions. This method can raise the

level of abstraction as well as encapsulate the details of the low-level signals. In other

words, the detailed signal values are no longer required. Hence, one can put more

emphasis on the functionality at the higher FSM level.

14

Chapter 3

State-Oriented Language

Since the existing transaction description languages are neither simple nor

human-friendly enough, we develop a new transaction description language,

State-Oriented Language (SOL), in which we can specify transactions at the higher FSM

level. In SOL, PSL-like syntax [17] is used to represent a sequence of state transitions

within the spec. FSM as a transaction. We believe the expressive power of SOL is

stronger than that of traditional regular-expression-based approaches. Therefore, it is

easier to model complex transactions by using SOL.

15

3.1 Abstract structure

SOL consists of four layers - Boolean, Sequential, Transaction, and Coverage layer

- which cut the language along the axis of functionality.

(1) Boolean layer is used to build expressions which are used by the other layers.

Boolean expressions are evaluated over a single state transition.

(2) Sequential layer is used to describe basic sequences. Sequential expressions are

evaluated over a specific sequence of state transitions.

(3) Transaction layer is used to define sequences as transactions (named sequences) by

using the assignment operator.

(4) Coverage layer is used to specify interesting transactions for coverage measurement.

3.2 Syntax conventions

The formal syntax described in this work uses the following extended Backus-Naur

Form (BNF).

(1) The initial character of each word in a nonterminal is capitalized. A nonterminal can

be either a single word or multiple words separated by underscores. When a

multiple-word nonterminal containing underscores is referred within the text, the

underscores are replaced with spaces. For example,

 Boolean_Expression

Indicates a Boolean Expression.

16

(2) Boldface words are used to denote reserved keywords, operators, and punctuation

marks as a required part of the syntax. These words appear in a larger font for

distinction. For example,

 “Condition”

(3) The ::= operator separates the two parts of a BNF syntax definition. The syntax

category appears to the left of this operator and the syntax description appears to the

right of the operator. For example,

 Condition ::= Boolean_Expression

(4) A vertical bar separates alternative items (use one only) unless it appears in boldface,

in which case it stands for itself. For example,

 SERE ::= State | Sequence | Sequence_Name

(5) Square brackets enclose optional items unless they appear in boldface. In which case

they stand for themselves. For example,

 State ::= State [“Condition”]

Indicates “Condition” is an optional syntax item for State.

(6) Braces enclose a repeated item unless they appear in boldface, in which case they

stand for themselves. A repeated item may appear zero or more times. For example,

 Sequence_Set ::= < {Sequence_Name} { ,{Sequence_Name} } >

Indicates {Sequence_Name} may appear more than one time.

(7) A comment is preceded by a colon unless it appears in boldface, in which case it

stands for itself.

17

The detailed syntax of SOL is introduced below (shown in shaded area). The FSM

shown in Figure 6 is taken as an example to introduce the operators in SOL.

Figure 6. An example FSM.

3.3 Boolean layer

Since a transaction can be defined as a specific sequence of state transitions within

the spec. FSM, States are used as basic elements in Boolean layer.

3.3.1 Extra signal qualification (“ ”)

In order to keep the spec. FSM as simple as possible, extra signals can be included

in additional to the states while defining a transaction. The Boolean expression built

from the extra signals should be enclosed in double quotes, shown in Box 1.

State ::=
State [“Condition”]

Condition ::=
Boolean_Expression : An expression that yields a logical value

Box 1. Extra signal qualification.

S1

S2 S3

S4

(a)

V==1 V==1

(b)

S1

S2

S3

S4

FSM
State: S1, S2, S3, S4

18

Example 1.

In Figure 6(b), the extra signal V must be checked to be true when moving from S1 to

the next state.

 S1 “ V==1 ”

3.4 Sequential layer

State Extended Regular Expressions (SEREs), shown in Box 2, describe

single-cycle or multi-cycle behavior built from a series of States.

SERE ::=
State

| Sequence
| Sequence_Name
Sequence ::=

{ SERE }

Box 2. SEREs and Sequences.

3.4.1 Concatenation (;)

The concatenation operator, shown in Box 3, constructs a SERE that is the

concatenation of two other SEREs.

SERE ::=
SERE ; SERE

Box 3. Concatenation operator.

19

Example 2.

In Figure 6(a), T1 is a transaction with the state transitions that starts from S1, then

moves through S3, S4, and ends at S1.

 T1 : S1 S3 S4 S1

 T1 = { S1 ; S3 ; S4 ; S1 };

The sequence can be defined as a transaction by using the assignment operator which is

detailed described in Section 3.5 Transaction layer.

Example 3.

In Figure 6(b), T2 is another transaction with the same state transitions sequence as T1

while the extra signal V must be true when moving from S1 to S3.

 T2 : S1 1 V ⎯⎯ →⎯ ==
S3 S4 S1

 T2 = { S1 “V == 1” ; S3 ; S4 ; S1 };

3.4.2 Repetition ([])

The repetition operators are used to describe succinctly repeated concatenations of

a sequence. There are three types of repetition operators: consecutive repetition ([*]),

non-consecutive repetition ([=]), and goto repetition ([]). Each is introduced

below.

20

(a) consecutive repetition ([*])

The consecutive repetition operator, shown in Box 4, constructs repeated

concatenation of the same State or Sequence.

SERE ::=
State [* [Count]]

| Sequence [* [Count]]
| State [+]
| Sequence [+]
Count ::=

Non-negative integer | Range
Range ::=

Low_Bound : High_Bound
Low_Bound ::=

Non-negative integer | 0
High_Bound ::=

Non-negative integer | inf

Box 4. Consecutive repetition operator.

Informal semantics: (0 ≦ n ≦ m)

A[*n] A repeats n times
A[*n:m] A repeats between n to m times
A[*:m] = A[*0:m] A repeats at most m times (including 0 time)
A[*n:] = A[*n:inf] A repeats at least n times
A[*] = A[*:]

= A[*0:inf]
A repeats any number of times (including 0 time)

A[+] = A[*1:] A repeats at least one time

21

Example 4.

In Figure 6(a), T3 is a transaction with the state transitions that starts from S1, moves to

S2, and stays at S2 for three consecutive cycles, then ends at S1.

 T3 : S1 S2 S2 S2 S1

 T3 = { S1 ; S2 ; S2 ; S2 ; S1 };

T3 can also be defined by using the consecutive repetition operator.

 T3 = { S1 ; S2[*3] ; S1 };

Example 5.

In Figure 6(a), T4 is a transaction with the state transitions that starts from S1, moves to

S2, and stays at S2 for one to five consecutive cycles, then ends at S1.

 T4 : S1 S2 (1~5 cycles) S1

 T4 = { S1 ; S2[*1:5] ; S1 };

Example 6.

In Figure 6(a), T5 is a transaction with the state transitions that starts from S1, moves to

S2, and stays at S2 for any consecutive cycles (including zero cycle).

 T5 : S1 S2 (Any number of cycle)

 T5 = { S1 ; S2[*] };

22

(b) non-consecutive repetition ([=])

The non-consecutive repetition operator, shown in Box 5, constructs repeated

(possibly non-consecutive) concatenation of a State.

SERE ::=
State [= Count]

Count ::=
Non-negative integer | Range

Range ::=
Low_Bound : High_Bound

Low_Bound ::=
Non-negative integer | 0

High_Bound ::=
Non-negative integer | inf

Box 5. Non-consecutive repetition operator.

Informal semantics: (0 ≦ n ≦ m)

A[=n] A occurs n times
A[=n:m] A occurs between n to m times
A[=:m] = A[=0:m] A occurs at most m times (including 0 time)
A[=n:] = A[=n:inf] A occurs at least n times
A[=:] = A[=0:inf] A occurs any number of times (including 0 time)

Example 7.

In Figure 6(a), T6 is a transaction with the state transitions that starts from S1, and then

visits S2 three times. The visits of S2 need not to be in consecutive cycles. In addition,

T6 holds after the 3rd S2 is visited and still holds before the 4th S2 appears.

23

 T6 : S1 … S2 … S2 … S2 …

 T6 = { S1 ; S2[=3] };

If the transactions below occur during simulation, T6 matches from the state S1 to

the state before the 4th S2 happened.

(c) goto repetition ([])

The goto repetition operator, shown in Box 6, constructs repeated (possibly

non-consecutive) concatenation of a State, such that it holds on the last cycle of the

sequence.

SERE ::=
State [[Positive_Count]]

Positive_Count ::=
Positive integer | Positive_Range

Positive_Range ::=
Low_Bound : High_Bound

Low_Bound ::=
Positive integer | 1

High_Bound ::=
Positive integer | inf

Box 6. Goto repetition operator.

S1 S2 S2 S2 S1 S3 S4 S1 S2
S1 S2 S1 S2 S1 S2 S1 S2
S1 S3 S4 S1 S2 S2 S2 S2
S1 S3 S4 S1 S2 S2 S1 S3 S4 S1 S2 S2

24

Informal semantics: (1 ≦ n ≦ m)

A[n] A occurs n times
A[n:m] A occurs between n to m times
A[:m] = A[1:m] A occurs at most m times (excluding 0 time)
A[n:inf] = A[n:] A occurs at least n times
A[1:inf] = A[:] A occurs one or more times
A[] = A[1] A occurs exactly one time

Example 8.

In Figure 6(a), similar to T6, T7 is also a transaction with the state transitions starts from

S1, then moves to S2 three times (can be non-consecutive). In addition, T7 holds only at

the cycle in which the 3rd S2 is visited.

 T7 : S1 … S2 … S2 … S2

 T7 = { S1 ; S2[3] };

Under the same condition during simulation as that in Example 7, T7 matches from

the state S1 to the 3rd S2 exactly.

S1 S2 S2 S2 S1 S3 S4 S1 S2
S1 S2 S1 S2 S1 S2 S1 S2
S1 S3 S4 S1 S2 S2 S2 S2
S1 S3 S4 S1 S2 S2 S1 S3 S4 S1 S2 S2

25

3.4.3 Sequence AND (&&)

The transaction comprising two sequences using the sequence AND operator,

shown in Box 7, holds only if both sequences hold and complete at the same cycle.

SERE ::=
Sequence && Sequence

Sequence ::=
{ SERE }

Box 7. Sequence AND operator.

Example 9.

In Figure 6(a), similar to T7, T8 is also a transaction with the state transitions starts from

S1, and then visit S2 three times (can be non-consecutive). However, S3 is strictly not

allowed showing up in the sequence T7.

 T8 : S1 …(!S3) S2 …(!S3) S2 …(!S3) S2

 T8 = { S1 ; {S3[=0]} && {S2[3]} };

Under the same simulation condition as that in Example 8, T8 not only matches to

the 3rd S2 exactly but the state S3 occurs zero time within the matched duration.

S1 S2 S2 S2 S1 S3 S4 S1 S2
S1 S2 S1 S2 S1 S2 S1 S2
S1 S3 S4 S1 S2 S2 S2 S2
S1 S3 S4 S1 S2 S2 S1 S3 S4 S1 S2 S2

26

3.4.4 Sequence OR (|)

The transaction comprising two sequences using the sequence OR operator, shown

in Box 8, holds if one of two alternative sequences holds.

SERE ::=
Sequence | Sequence

Sequence ::=
{ SERE }

Box 8. Sequence OR operator.

Example 10.

In Figure 6(a), T9 is either one of the following two sequences,

 T9 : S1 S3 S4 S1

 S1 S2 S2 S2 S1

 T9 = { {S1;S3;S4;S1} | {S1;S2[*3];S1} };

Note that above two sequences are previously defined as T1 and T3. Hence, T9 can

also be defined in terms of these named sequences.

 T9 = { {T1} | {T3} };

Under the same simulation condition as before, T9 matches sequence T1 or T3.

S1 S2 S2 S2 S1 S3 S4 S1 S2
S1 S2 S1 S2 S1 S2 S1 S2
S1 S3 S4 S1 S2 S2 S2 S2
S1 S3 S4 S1 S2 S2 S1 S3 S4 S1 S2 S2

27

3.4.5 Sequence fusion (:)

Similar to the concatenation operator, the sequence fusion operator, shown in Box 9,

concatenates two sequences overlapping by one cycle. In other words, the 2nd sequence

starts at the cycle in which the 1st sequence completes. This operator is used to

concatenate two consecutive transactions.

SERE ::=
Sequence : Sequence

Sequence ::=
{ SERE }

Box 9. Sequence fusion operator.

Example 11.

In Figure 6(a), T10 is a transaction shown below,

T10 : S1 S3 S4 S1 S2 S2 S2 S1

 T10 = { S1;S3;S4;S1;S2[*3];S1 };

T10 can also be treated as two sequences that overlap each other for one cycle:

 T10 : S1 S3 S4 S1 : S1 S2 S2 S2 S1

 T10 = { {S1;S3;S4;S1} : {S1;S2[*3];S1} };

Again, T10 can also be defined in terms of T1 and T3.

 T10 = { {T1} : {T3} };

28

3.5 Transaction layer

A sequence can be defined once as a named sequence (transaction) and then be

reused later. The assignment operator, shown in Box 10, is used to declare a named

sequence. The left-hand side of the assignment operator becomes a synonym for the

sequence on the right-hand side. The sequence names must be enclosed in braces when

referred. This operator is extensively used in the previous examples.

Transaction_Declaration ::=
Sequence_Name = Sequence ;

Box 10. Transaction declaration.

3.6 Coverage layer

The interesting transactions for coverage measurement, shown in Box 11, can be

defined by the previously declared sequence names or generated by the sequence set

cross operator.

Coverage_Declaration ::=
Sequence_Name ;

| Sequence_Cross ;

Box 11. Coverage declaration.

29

3.6.1 Sequence set cross (**)

A sequence set comprises one or more sequences. Sequences are enclosed in angle

bracket and separated by commas. A sequence set cross operator, shown in Box 12, is

used to represent a set of back-to-back consecutive transactions with cross behavior.

Sequence_Cross ::=
Sequence_Set ** Sequence_Set { ** Sequence_Set }

Sequence_Set ::=
< {Sequence_Name} { ,{Sequence_Name} } >

Box 12. Sequence set cross operator.

Example 12.

Assume the transactions with the following cross behavior are interesting.

These 6 transactions can be defined by the previously introduced operator:

 {{T1}:{T3}}; {{T1}:{T4}}; {{T1}:{T5}};

 {{T2}:{T3}}; {{T2}:{T4}}; {{T2}:{T5}};

These transactions can also be defined by using the sequence set cross operator.

The transaction T1 and T2 can form a sequence set, and the transaction T3, T4, and T5

can form another. Then these 6 transactions can be defined as follows,

 <{T1},{T2}> ** <{T3},{T4},{T5}>;

T3T1

T2 T5

T4

30

This means each sequence in the first sequence set must be followed by each sequence

in the next sequence set, respectively.

Example 13.

The sequence set cross operator can also work on more than two sequence sets.

 <{T1},{T2}> ** <{T3},{T4}> ** <{T9},{T10}>;

For this expression, 8 (2*2*2) transactions are generated for coverage measurement.

That is,

{{T1}:{T3}:{T9}}; {{T1}:{T3}:{T10}}; {{T1}:{T4}:{T9}}; {{T1}:{T4}:{T10}};

{{T2}:{T3}:{T9}}; {{T2}:{T3}:{T10}}; {{T2}:{T4}:{T9}}; {{T2}:{T4}:{T10}};

The sequence set cross operator can provide a much more elegant but equivalent

representations while the transactions become complex. This operator can reduce the

transaction description complexity as well as help generate more interesting transactions

easily.

3.7 Case study

To apply our methodology, the interface protocol should be given as a spec. FSM

first. The details about how to construct a spec. FSM can be found in [12-13]. The

AMBA AHB slave interface protocol [18] is adopted as an example here to demonstrate

how to define transactions in SOL. The spec. FSM of the simplified AMBA AHB slave

protocol is given in Figure 7.

31

Figure 7. The spec. FSM of the simplified AMBA AHB slave protocol.

In this spec. FSM, only several important control signals (HSEL, HTRANS,

HREADY, and HRESP) are concerned. Besides, one special state is defined: DUV_ERR.

If the DUV behaves illegally, the design moves to the state DUV_ERR. Otherwise, the

design moves among the other normal states excluding DUV_ERR. By traversing the

spec. FSM, many defined properties can be found. For example, in the state

IDLE/BUSY, if HREADY is not asserted or HRESP is not set to OKAY, the design

moves to the state DUV_ERR. This infers that a slave cannot respond anything but a

zero WAIT state OKAY response to an IDLE or a BUSY transfer. In addition, in the

state WAIT, if HREADY is asserted but HRESP is not set to OKAY, the design moves to

the state DUV_ERR. This implies that a slave can only respond OKAY when HREADY

is transient to be asserted. These are explicitly defined in the AMBA AHB specification.

32

However, the spec. FSM is not omnipotent for the lack of consideration to each

signal. For example, the read transactions cannot be distinguished from the write

transactions. The burst mode of each transaction cannot be detected, either. To retrieve

these issues, the extra signal qualification operation should be applied.

Now, use SOL to define basic transactions on the spec. FSM.

Example 1.

A 1-beat burst transaction.

The construction procedure of a 1-beat burst transaction can be decomposed into

four steps.

(1) For a 1-beat burst transaction, the signal HBURST must be set to 0.

(2) The given design must move to state NSEQ/SEQ (S1) one time and cannot move to

state ERROR (S4) for a complete 1-beat transfer, i.e., {S4[=0]} && {S1[1]} .

(3) A 1-beat burst transaction consists of two cases. One starts from the state ORIG (S0),

which indicates the slave is just selected and going to do the first transaction. The

other starts from the state NSEQ/SEQ (S1), which implies the slave is already

selected and going to do another transaction.

○1 starting from the state ORIG (S0) :

 OneBeat_S0 = {S0 “HBURST==0”;{S4[=0]}&&{S1[1]}};

○2 starting from the state NSEQ/SEQ (S1) :

 OneBeat_S1 = {S1 “HBURST==0”;{S4[=0]}&&{S1[1]}};

33

(4) A 1-beat burst transaction is either the sequence OneBeat_S0 or the sequence

OneBeat_S1. Then a 1-beat burst transaction is composed of these two sequences by

using the sequence OR operator. That is,

 OneBeat = {{OneBeat_S0} | {OneBeat_S1}};

Example 2.

A 4-beat burst transaction.

The construction procedure of a 4-beat burst transaction is similar to that of a

1-beat burst transaction.

(1) The signal HBURST should be set to 2 or 3.

(2) The design must visit the state NSEQ/SEQ (S1) four times and cannot move to state

ERROR (S4) to complete a 4-beat transfer, i.e., {S4[=0]} && S1[4] .

(3) A 4-beat burst transaction also consists of two cases.

○1 starting from the state ORIG (S0) :

 FourBeat_S0 = {S0 “HBURST==2 || HBURST==3”;{S4[=0]}&&{S1[4]}};

○2 starting from the state NSEQ/SEQ (S1) :

 FourBeat_S1 = {S1 “HBURST==2 || HBURST==3”;{S4[=0]}&&{S1[4]}};

(4) A 4-beat burst transaction can then be defined as,

 FourBeat = {{FourBeat_S0} | {FourBeat_S1}};

34

Follow similar procedure, more basic transactions can be defined. For a 4-beat

burst with wait transaction (FourBeatWithWAIT), the state WAIT (S3) must be visited

at least one time during the transaction. That is, the sequence {S3[=1:]} must hold.

Therefore, the 2nd step of the construction procedure of the 4-beat burst with wait

transaction must be written as {S3[=1:]}&&{{S4[=0]}&&{S1[4]}}. For an 8-beat

write burst transaction (EightBeatWrite), the signal HBURST must be set to proper

values (4 or 5) and the signal HWRITE must be asserted, i.e., the 1st step:

(HBURST==4 || HBURST==5) && HWRITE . As well, the design must visit the state

NSEQ/SEQ (S1) eight times during this 8-beat burst transaction, i.e., the 2nd step:

{S4[=0]} && {S1[8]}.

Example 3.

A 4-beat burst transaction instantly followed by an 8-beat write burst transaction.

A 4-beat burst transaction (FourBeat) and an 8-beat write burst transaction

(EightBeatWrite) are defined before. Since the required transaction can be defined by

fusing these two transactions, it can be written as follows,

 {{FourBeat}:{EightBeatWrite}};

More complex transactions can be constructed by the sequence fusion operator (:).

For example, a 1-beat burst transaction followed by an 8-beat write burst transaction,

then followed by a 4-beat burst transaction can be defined as follows,

 {{OneBeat}:{EightBeatWrite}:{FourBeat}};

35

In addition, the sequence set cross operator (**) can be used to describe a lot of

back-to-back consecutive transactions in a more easy way. The expression below can

represent 12 (3*2*2) different consecutive transactions.

 <{EightBeatWrite},{FourBeatWithWAIT},{OneBeat}>

 ** <{FourBeat},{OneBeat}> ** <{EightBeatWrite},{FourBeat}>;

If the interesting transactions are comprised by many other transactions with this

complex cross behavior, the sequence set cross operator can provide a strong expressive

power.

36

Chapter 4

Proposed Methodology

By means of SOL, transactions can be defined in a simpler, but still rigorous, and

more systematic way. As well, the transaction-level functional coverage for the interface

compliance verification can be done at the higher FSM level.

The flow of our verification methodology is illustrated in Figure 8. The interface

protocol needs to be first specified as a spec. FSM by using the methods in [12-13]. Note

that the spec. FSM can be translated into an interface protocol checker [13]. Meanwhile,

a transaction can be thought as a specific sequence of state transitions within the spec.

FSM. The interesting transactions are manually specified by using SOL. These

transactions with the spec. FSM are further translated into a functional coverage

37

analyzer automatically. Next, we simulate the whole system, including the DUV,

verification patterns, checker, and coverage analyzer. According to the outcome of the

checker, we can know if the DUV conforms to the interface protocol. From the coverage

analyzer, the report tells how many interesting transactions have been verified.

Moreover, the coverage information can guide either direct or random patterns to hit

those unverified design corner cases.

Figure 8. The flow of our verification methodology.

Coverage
AnalyzerTranslator

Coverage
Report

Spec.
FSM

Guidance

Checker
(Monitor)

Simulator
DUV

Direct/Random
Patterns

User-Defined
Transaction-Based

Scenarios using
SOL

SOL

38

Chapter 5

Experimental Results

5.1 Experimental environment

To demonstrate our methodology, we choose the AMBA AHB slave interface

protocol [18] as an example. The spec. FSM of simplified AMBA AHB slave protocol is

given in Figure 7. Figure 9 illustrates the experimental environment. It consists of three

parts: a DUV, a constraint-driven random pattern generator, and the proposed work.

39

Figure 9. The experimental environment.

(1) The DUV is the slave which we want to verify. The experiments are conducted over

three real AHB slave designs. The information about these three designs is shown in

Table 1. The design RGB2YCrCB is a RGB-to-YCrCB color space converter. The

design MAC is a multiply-accumulator. The design Convolution is a convolution

calculator for discrete wavelet transfer.

Table 1. Design information.

Design Supporting AHB
responses

of
State / Transition / M-path

RGB2YCrCb OKAY 3 / 8 / 14
MAC OKAY, ERROR 4 / 10 / 12

Convolution OKAY (wait) 4 / 10 / 16

DUV (Slave)

Interface Wrapper

IP

Weight
Info.

Pattern
Generator
(Master)

Spec.

NEFSM

Translator

Coverage
Analyzer

Checker
(Monitor)

Transaction
Scenarios using

SOL

Coverage

Report

Spec.
FSM

Static Biasing

40

(2) The constraint-driven random pattern generator is an AHB master which generates

verification patterns based on an NEFSM (Non-deterministic Extended FSM) with

the weight information about the transitions and bursts. The NEFSM is given in

Figure 10. The weight of each transition and burst is configurable. For example, the

weights of transition t15, t16, t27, and t41 can be assigned to a higher value to

increase the probability of the occurrence of BUSY conditions. In order to balance

the occurrence of total verification patterns, the transitions and bursts are assigned to

be equal weight.

Figure 10. The NEFSM of the AMBA AHB master.

orig
(0)

non-
seq(1)

t5

t1 | t2 | t3 | t4

t6 | t7 | t8

seq
(4)

busy
(3)

Error
(5)

t15 | t16

t17

incr
(2)

t12

t 34 | t35 | t36

t41
t33

t37 | t38 | t39

t9 | t10 | t11

t23 | t24 | t25

t32

t28 | t29

t18 | t19 | t20

t42

t43 | t44 | t45

t13 | t14

t21 | t22

t27

t40

t30 | t31

t26

t46

busy
(3)

41

(3) We develop a translator which accepts the spec. FSM and user-defined SOL

transactions then produces the corresponding coverage analyzer. The coverage report

tells how many interesting transactions have been verified. In addition, the coverage

information is used to help statically bias the random pattern generator to create

more effective verification patterns.

5.2 Results analysis

Two experiments are conducted: coverage comparison and efficiency improvement.

In the first experiment, four coverage results (State coverage, Transition coverage,

M-path coverage, and our Transaction coverage) are compared for three designs,

respectively. In the second experiment, the coverage information is sent back to bias the

random pattern generator to produce more effective patterns.

5.2.1 Coverage comparison

Case 1

The interesting transactions are defined as 10 basic read and write transactions as

follows,

{IncrBeatRead}; {OneBeatRead}; {FourBeatRead}; {EightBeatRead}; {SixteenBeatRead};

{IncrBeatWrite}; {OneBeatWrite}; {FourBeatWrite}; {EightBeatWrite}; {SixteenBeatWrite};

The comparison results are shown in Table 2. Since the supporting responses of

each design are different from each other, each takes distinct simulation time to reach

100% State/Transition/M-path/Transaction coverage. For the design RGB2YCrCb, it

takes 4/16/82/492 cycles to reach 100% State/Transition/M-path/Transaction coverage.

42

As the State/Transition/M-path coverage reach 100%, the Transaction coverage is only

0/10/20%. For the other two designs, the results are similar. It is observed that the

Transaction coverage is very low while the other three coverage metrics reach 100%.

Table 2. Coverage comparison for Case 1.

Design

Coverage # of cycles to
reach 100%

Transaction
coverage (%)

State 4 0 (0/10)
Transition 16 10 (1/10)

M-path 82 20 (2/10)

RGB2YCrCb

Transaction 492 100 (10/10)
State 61 30 (3/10)

Transition 61 30 (3/10)
M-path 33 10 (1/10)

MAC

Transaction 9644 100 (10/10)
State 12 10 (1/10)

Transition 47 20 (2/10)
M-path 102 30 (3/10)

Convolution

Transaction 787 100 (10/10)

Case 2

Make the interesting transactions more complex by adding 15 more basic

transactions with BUSY or WAIT (e.g, {OneBeatWithWAIT}; {FourBeatWithBUSY};

{FourBeatWithWAIT}; {EightBeatWithBUSY};, etc.) and 25 back-to-back consecutive

transactions (i.e., <{IncrBeat},{OneBeat},{FourBeat},{EightBeat},{SixteenBeat}>**

<{IncrBeat}, {OneBeat},{FourBeat},{EightBeat},{SixteenBeat}>;).

The comparison results are shown in Table 3. Since the status of the random pattern

generator is the same as that in Case 1, the design Convolution still takes 12/47/102

43

cycles to reach 100% State/Transition/M-path coverage. But it takes 11135 cycles to

reach 100% Transaction coverage. As the State/Transition/M-path coverage reach 100%,

the Transaction coverage is only 4/8/12%. It is shown that the Transaction coverage is

even lower than that in Case 1 as the other three coverage metrics reach 100%.

Table 3. Coverage comparison for Case 2.

Design

Coverage # of cycles to
reach 100%

Transaction
coverage (%)

State 12 4 (2/50)
Transition 47 8 (4/50)

M-path 102 12 (6/50)

Convolution

Transaction 11135 100 (50/50)

From these two cases, we get some conclusions. While the interesting transactions

become more complex, it needs a significantly longer simulation time to reach 100%

Transaction coverage. Besides, as the State/Transition/M-path coverage reach 100%, the

Transaction coverage can still be very low. Experimental results exactly show that the

classical coverage metrics are not capable of providing enough verification quality. By

means of our approach, we can put more emphasis on the functionality that we want to

verify and detect more errors. In other words, the verification quality can be improved in

large.

5.2.2 Efficiency improvement

After analyzing the coverage report in Section 5.2.1 Case 2, we find the major

reason why so many cycles are required to reach 100% Transaction coverage is the

seldom occurrence of BUSY transactions. Hence, it is possible to reduce the simulation

44

time by statically biasing the constraint-driven random pattern generator.

The biasing information is shown in Table 4. In bias1, we increase the weights of

transition t15, t16, t27, and t41 in the NEFSM that may generate BUSY transactions.

This is an intuitive configuration. This bias indeed decreases the simulation time to 1864

cycles, which is only 16.7% of the original one. In bias2, the weights of INCR burst,

1-beat burst, 4-beat burst, 8-beat burst, and 16-beat burst are given in a decreasing order

because the BUSY transaction takes place more frequently in the long-beat transfers.

Bias2 can balance the occurrence of BUSY transactions in each burst. Combing bias1

with bias2, the simulation time can be further decreased to 981 cycles, which is only

8.8% of the original one.

Table 4. Efficiency improvement.

Design

Bias # of cycles to
reach 100%

Factor

equal weight 11135 1
bias1 1864 0.167

Convolution

bias1+ bias2 981 0.088

The results show that the coverage information can help bias the random pattern

generator to create more effective patterns and help verify the DUV in a short time. This

technique is extremely useful for the regression verification environment in which the

compact and effective patterns are crucial to minimize the required simulation time.

45

Chapter 6

Conclusions and Future Works

In this thesis, we propose a transaction-level functional coverage methodology for

interface compliance verification. To provide an intuitive, user-friendly, but still rigorous,

and systematic way to specify transactions at the higher FSM level, we develop a new

transaction description language SOL. The expressive power of SOL is stronger than

that of previous regular-expression-based approaches. It is shown that SOL is capable of

modeling very complex functional transactions. Meanwhile, a translator is also

developed to automatically convert a set of SOL-based transactions with the spec. FSM

into the corresponding functional coverage analyzer. The experimental results

demonstrate that the proposed methodology can indeed improve the verification quality

46

as well as increase the verification efficiency.

6.1 Contributions

The main contributions of this work are summarized as follows:

♦ Transaction description style

1. A transaction description language, SOL, is developed to define transactions

at the FSM level.

2. SOL owns a very strong expressive power to model complex transactions.

♦ Verification methodology

1. A transaction-level functional coverage methodology for interface

compliance verification is proposed.

2. A translator is developed to automatically convert the user-defined

transaction scenarios into a coverage analyzer.

3. The coverage report can help generate more effective verification patterns.

6.2 Future works

Our work focuses on how to define transaction at the higher FSM level and the

automatic translation of user defined SOL-based transaction scenarios into a coverage

analyzer. The proposed verification methodology can be further improved by the

following two aspects:

47

1. In our experiment, we use a spec. NEFSM as a constraint-driven random pattern

generator. However, there is another spec. FSM for the checker and the coverage

analyzer. The developments of two distinct FSMs may require a huge number of

man-hours. Besides, the inconsistencies may exist between these two FSMs.

Therefore, a unified FSM model for the pattern generator, checker, and coverage

analyzer should be preferred.

2. The coverage report in our work is merely used to statically and manually bias

the pattern generator. To increase the verification efficiency, automatically

dynamic biasing approaches should be further considered and developed.

48

References

[1] Michael Keating and Pierre Bricaud, “Reuse Methodology Manual for

System-On-A-Chip Designs, 3rd Edition,” Kluwer Academic Publishers, July

2002.

[2] Janick Bergeron, “Writing Testbenches: Functional Verification of HDL Models,

2nd Edition,” Kluwer Academic Publishers, February 2003.

[3] Dean Drako and Paul Cohen, “HDL Verification Coverage,” Integrated System

Design Magazine, pp. 46-52, June 1998.

[4] Farzan Fallah, Srinivas Devadas, and Kurt Keutzer, “OCCOM: Efficient

Computation of Observability-Based Code Coverage Metrics for Functional

Verification,” Proceedings of the Design Automation Conference, pp. 152-157,

June 1998.

[5] Pradip A. Thaker, Vishwani D. Agrawal, and Mona E. Zaghloul, “Validation

Vector Grade (VVG): A New Coverage Metric for Validation and Test,”

Proceedings of the IEEE VLSI Test Symposium, pp. 182-188, April 1998.

[6] Byeong Min and Gwan Choi, “ECC: Extended Condition Coverage for Design

Verification Using Excitation and Observation,” Proceedings of the Pacific Rim

International Symposium on Dependable Computing, pp. 183-190, December 2001.

49

[7] Raanan Grinwald, Eran Harel, Michael Orgad, Shmuel Ur, and Avi Ziv, “User

Defined Coverage - A Tool Supported Methodology for Design Verification,”

Proceedings of the Design Automation Conference, pp. 158-163, June 1998.

[8] Sigal Asaf, Eitan Marcus, and Avi Ziv, “Defining Coverage Views to Improve

Functional Coverage Analysis,” Proceedings of the Design Automation Conference,

pp. 41-44, June 2004.

[9] Avi Ziv, “Cross-Product Functional Coverage Measurement with Temporal

Properties-Based Assertions,” Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, pp. 834-839, March 2003.

[10] Young-Su Kwon, Young-Il Kim, and Chong-Min Kyung, “Systematic Functional

Coverage Metric Synthesis from Hierarchical Temporal Event Relation Graph,”

Proceedings of the Design Automation Conference, pp. 45-48, June 2004.

[11] Young-Su Kwon and Chong-Min Kyung, “Functional Coverage Metric Generation

from Temporal Event Relation Graph,” Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition, pp. 670-671, February 2004.

[12] Ya-Ching Yang, Juinn-Dar Huang, Chia-Chih Yen, Che-Hua Shih, and Jing-Yang

Jou, “Formal Compliance Verification of Interface Protocols,” Proceedings of the

IEEE International Symposium on VLSI Design, Automation, and Test, pp. 12-15,

April 2005.

50

[13] Hue-Min Lin, Chia-Chih Yen, Che-Hua Shih, and Jing-Yang Jou, “On Compliance

Test of On-Chip Bus for SOC,” Proceedings of the Asia and South Pacific Design

Automation Conference, pp. 328-333, January 2004.

[14] Koji Ara and Kei Suzuki, “A Proposal for Transaction-Level Verification with

Component Wrapper Language,” Proceedings of the Design, Automation and Test

in Europe Conference and Exhibition, pp. 82-87, March 2003.

[15] Chris Browy, “Comparing TestWizard and Specman for Transaction-Level

Verification,” White Paper, available at http://www.avery-design.com/twwp.html

[16] Heinz-Josef Schlebusch, Gary Smith, Donatella Sciuto, Daniel Gajski, Carsten

Mielenz, Christopher K. Lennard, Frank Ghenassia, Stuart Swan, and Joachim

Kunkel, “Transaction-Based Design: Another Buzzword or the Solution to a

Design Problem?,” Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition, pp. 876-877, March 2003.

[17] http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf

[18] ARM Limited, AMBA Specification (Rev 2.0), May 1999.

51

Appendix A
SOL Syntax Rule Summary

A.0 Syntax conventions

The formal syntax described here uses the following extended BNF.

(1) The initial character of each word in a nonterminal is capitalized. A nonterminal can
be either a single word or multiple words separated by underscores. When a
multiple-word nonterminal containing underscores is referred within the text, the
underscores are replaced with spaces.

(2) Boldface words are used to denote reserved keywords, operators, and punctuation
marks as a required part of the syntax. These words appear in a larger font for
distinction.

(3) The ::= operator separates the two parts of a BNF syntax definition. The syntax
category appears to the left of this operator and the syntax description appears to the
right of the operator.

(4) A vertical bar separates alternative items (use one only) unless it appears in boldface,
in which case it stands for itself.

(5) Square brackets enclose optional items unless they appear in boldface. In which case
they stand for themselves.

(6) Braces enclose a repeated item unless they appear in boldface, in which case they
stand for themselves. A repeated item may appear zero or more times.

(7) A comment is preceded by a colon unless it appears in boldface, in which case it
stands for itself.

52

A.1 Boolean layer
A.1.1 Extra signal qualification (“ ”)

State ::=
State [“Condition”]

Condition ::=
Boolean_Expression : An expression that yields a logical value

A.2 Sequential layer
SERE : State Extended Regular Expression

SERE ::=
State

| Sequence
| Sequence_Name
Sequence ::=

{ SERE }

A.2.1 SERE construction
A.2.1.1 Concatenation (;)

SERE ::=
SERE ; SERE

A.2.1.2 Repetition ([])
A.2.1.2.1 Consecutive repetition ([*])

SERE ::=
State [* [Count]]

| Sequence [* [Count]]
| State [+]
| Sequence [+]
Count ::=

Non-negative integer | Range
Range ::=

Low_Bound : High_Bound
Low_Bound ::=

Non-negative integer | 0
High_Bound ::=

Non-negative integer | inf

53

A.2.1.2.2 Non-consecutive repetition ([=])

SERE ::=
State [= Count]

Count ::=
Non-negative integer | Range

Range ::=
Low_Bound : High_Bound

Low_Bound ::=
Non-negative integer | 0

High_Bound ::=
Non-negative integer | inf

A.2.1.2.3 Goto repetition ([])

SERE ::=
State [[Positive_Count]]

Positive_Count ::=
Positive integer | Positive_Range

Positive_Range ::=
Low_Bound : High_Bound

Low_Bound ::=
Positive integer | 1

High_Bound ::=
Positive integer | inf

A.2.2 Sequence composition
A.2.2.1 Sequence AND (&&)

SERE ::=
Sequence && Sequence

Sequence ::=
{ SERE }

A.2.2.2 Sequence OR (|)

SERE ::=
Sequence | Sequence

Sequence ::=
{ SERE }

54

A.2.2.3 Sequence fusion (:)

SERE ::=
Sequence : Sequence

Sequence ::=
{ SERE }

A.3 Transaction layer
Transaction_Declaration ::=

Sequence_Name = Sequence ;

A.4 Coverage layer

Coverage_Declaration ::=
Sequence_Name ;

| Sequence_Cross ;

A.4.1 Sequence set cross (**)

Sequence_Cross ::=
Sequence_Set ** Sequence_Set { ** Sequence_Set }

Sequence_Set ::=
< {Sequence_Name} { ,{Sequence_Name} } >

55

Vita

Man-Yun Su was born in Taitung, Taiwan on January 3, 1981. She received the

B.S. degree in Electrical Engineering from National Tsing Hua University in June 2003.

From September 2003, she is a graduate student advised by Professor Jing-Yang Jou in

the Institute of Electronics, National Chiao Tung University. Her research interests

include design methodology and functional verification of VLSIs. She received the M.S.

degree from National Chiao Tung University in June 2005.

