

國 立 交 通 大 學

電子工程系

碩 士 論 文

建構在 ARM 平台的 H.264/MPEG-4 AVC 解碼器以及

去方塊濾波加速器

ARM-based Platform Design for H.264/MPEG-4 AVC
Decoder and Accelerator for Deblocking Filter

研 究 生：張世騫

指導教授：蔣迪豪 教授

中 華 民 國 九 十 四 年 七 月

建構在 ARM 平台的 H.264/MPEG-4 AVC 解碼器以及去方塊濾波加速器

ARM-based Platform Design for H.264/MPEG-4 AVC Decoder

and Accelerator for Deblocking Filter

研 究 生：張世騫 Student：Shih-Chien Chang

指導教授：蔣迪豪 Advisor：Tihao Chiang

國 立 交 通 大 學

電 子 工 程 系

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

July 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年七月

建構在 ARM 平台的 H.264/MPEG-4 AVC 解碼器

以及去方塊濾波加速器

 學生：張世騫 指導教授：蔣迪豪

國立交通大學電子學系﹙研究所﹚碩士班

摘 要

本論文使用最佳化的平台式設計方法去建構一個 H264/MPEG-4 AVC 解碼器。考

量其高效能、低成本及廣泛的應用範圍，我們使用 ARM 微處理器作為 CPU 核心。

同時，我們使用高效能控制匯排流架構 (AMBA) 去提升系統傳輸效能和彈性。為

了提升解碼器的速度，我們同時對軟體及硬體做最佳化。同時，我們提出一個巨

方塊平行處理的架構(macroblock-level pipelining) 使得軟體和硬體能夠同

步處理而提升效能。在我們的硬體設計裡，我們實現三個加速器去滿足三個計算

需求最強的模組: 去方塊濾波器(deblocking filter), 動作補償(motion

compensation) 和轉置 DCT 運算(inverse transform)。其中,在去方塊濾波器

的設計裡，我們提出適應性傳輸方法(adaptive transfer scheme)和匯排流同步

傳輸的架構(bus-interleaved architecture)。考量去方塊濾波器需要大量的傳

輸頻寬，我們將傳輸分成 8種模式以適應性的方法減少傳輸資料量而使頻寬有效

被利用。另外，為了減少去方塊濾波處理的時間，我們使用匯排流同步傳輸資料

的架構使資料傳輸和濾波處理能平行處理。和前人去方塊濾波硬體設計比較，我

們最高有 7 倍的效能改善。就整體解碼效能改善而言，我們的設計比起 H.264

參考軟體 JM6.0 有 9 到 16 倍的效能提升。整體而言，我們的平台系統設計可以

快速的整合到單晶片系統(system-on-chip)的設計中。而且，我們提出的硬體架

構設計也可滿足低成本與即時播放(real-time)的應用。

 i

ARM-based Platform Design for H.264/MPEG-4 AVC
Decoder and Accelerator for Deblocking Filter

 Student：Shih-Chien Chang Advisor：Tihao Chiang

Department of Electronics Engineering
 National Chiao Tung University

ABSTRACT

In this thesis, we present a baseline H264/MPEG-4 AVC decoder based on an
optimized platform-based design methodology. In our platform, we employ the ARM
microprocessor as the CPU core due to its high performance, low cost, and wide
application. Besides, the Advanced Microcontroller Bus Architecture (AMBA) is
integrated into our system as the on-chip bus due to its high performance and
flexibility. To improve our system, we jointly optimize the software and hardware in
the decoder. Also, we propose a macroblock-level pipelining architecture to achieve
the synchronization of the software and the dedicated hardware co-processors. In our
hardware design, three dedicated accelerators of deblocking filter, motion
compensation and inverse transform, which are the most computationally intensive
modules, are realized. Specifically, in the architecture design of deblocking filter, we
proposed an adaptive transfer scheme and a platform-based bus-interleaved
architecture. As considering the high bandwidth usage of bus for deblocking filter, we
classify the filtering mode into 8 types and use an adaptive transmission scheme to
avoid redundant data transfers so as to efficiently use the bus bandwidth. Moreover, to
reduce the processing latency, we use a bus-interleaved architecture for conducting
data transfer and filtering operation in parallel. As compared to the state-of-the-art
designs of deblocking filter, our scheme offers up to 7x performance improvement. To
compare the overall decoding performance, our experiments show that the throughput
of H.264 reference software of JM6.0 decoder can be improved by 9 to 16 times.
Finally, our proposed platform system can be easily applied in the system-on-chip
design. Also, our proposed hardware architectures are suitable for low-cost and
real-time applications.

 ii

誌 謝

首先我要感謝我的指導教授蔣迪豪老師，老師豐富的學養與多元化的實務經驗，

使我在專業領域上獲益良多。老師平日的關心和不吝惜指導的熱忱，我更是點滴

在心頭。此外，老師對於「年輕不要留白」的人生觀大大地啟發了我對人生的看

法，無形中也教育我積極為事與樂觀進取的工作態度與思考方法。也期許未來我

能培養出和老師一樣擁有強大精神力卻不失風雅幽默的人格特質。

感謝一路帶領我學習的兩位學長:彭文孝學長與王士豪學長。儘管我時常無法達

到要求，學長們總是不厭其煩指導我正確學習方法並且絕對不會草率妥協。對於

學長們每一字一句的指導，我真的發自內心的感謝因為學長們其實都還忙碌於自

己的工作卻不吝惜花費時間精力在我身上。除了指導我實事求是的做事方法，學

長們「好一定還能更好」的學習精神，更教育我無止境學習的研究態度並擴展了

我的眼光到全世界。

感謝我的實驗室好夥伴林承毅、楊思浩和全體實驗室的成員。除了謝謝你們平日

的幫忙外，也祝福你們不管是現在或未來畢業後都能實現自己的理想並享受自己

創造的人生旅程。

 iii

Content

Chinese Abstract..i

English Abstract ...ii

Acknowledgement...iii

Content ..iv

Figure List ...vi

Table List ...ix

1. Introduction...1

1.1. Overview of Thesis ...1

1.1.1. H.264/MPEG-4 AVC Standard. ..1

1.1.2. Platform-based Design for H.264/MPEG-4 AVC Decoder5

1.1.3. Deblocking Accelerator for H.264/MPEG-4 AVC 6

1.2. Contributions and Organization..7

2. H.264/MPEG-4 AVC Decoder..9

2.1. Introduction...9

2.2. Context-Based Adaptive Variable Length Coding. ...10

2.3. Motion Compensation...12

2.4. Intra Prediction ...14

2.5. Inverse Quantization ...15

2.6. Inverse Discrete Cosine Transform...15

2.7. Adaptive In-loop Deblocking Filter ..17

2.7.1. Video filtering overview...17

2.7.2. Deblocking Process..19

2.7.3. Boundary Strength ...20

2.7.4. One-dimension Filtering Decision...20

 iv

3. Platform-based System Design for H.264/MPEG-4 AVC Decoder.................24

3.1. ARM Microprocessor Introduction...24

3.2. Advanced Microcontroller Bus Architecture (AMBA) Overview.28

3.3. Advanced High-performance (AHB) Bus Introduction..................................29

3.4. Emulation Platform of Our System ..34

3.5. Proposed Macroblock Pipeline Architecture for H.264 Decoder37

3.6. Non-buffered Memory Architecture for IQ-IDCT and Deblocking filter.......41

4. Hardware Accelerators for H.264/MPEG-4 AVC Decoder46

4.1. Introduction...46

4.2. Accelerator for Deblocking Filter...46

4.2.1. Overview of State-of-art Works...46

4.2.2. Proposed Adaptive Transfer Scheme ...47

4.2.3. Proposed Bus-interleaved Architecture..52

4.2.4. Comparisons of Simulation Results...60

4.3. Accelerator for IQ-IDCT ..64

4.3.1. Bus-interleaved IQ-IDCT. ...64

4.3.2. Interleaved process for IQ-IDCT and deblocking filter.........................64

4.4. Accelerator for Motion Compensation ...67

5. Experiment Results...69

5.1. Experiment Environment and Tools ...69

5.2. System Performance Comparison Using H.264/MPEG-4 AVC Decoder......73

6. Conclusion and Future Work...77

Bibliography.. .79

Curriculum Vitae ..83

 v

List of Figures

1. Application range for well-known video standards ..1

2. Encoding architecture for H.264/MPEG-4 AVC ..2

3. Decoding architecture for H.264/MPEG-4 AVC ..9

4. Zigzag scan order for entropy encoding ...11

5. Flowchart of CAVLC encoding ..11

6. Variable partition sizes for inter prediction...13

7. Bit rate comparison for the catachrestic features of motion estimation..............13

8. Nine 4x4 luma prediction modes ..14

9. Four 16x16 luma prediction modes ..14

10. Quantization step sizes and related QP...15

11. Two-dimensional 4x4 (a) transform and (b)inverse transform16

12. DC coefficients within a macroblock ...16

13. Two-dimensional Hadamard transform for (a) luma and (b) chroma DC

coefficients ..17

14. Overlapped-block motion compensation (OBMC) in 263..................................18

15. Sequential order for filtering the edges of 4x4 blocks in a luminance macroblock

...20

16. Decision flow of boundary strength (bS) where P and Q denote two adjacent 4x4

blocks ..20

17. Decision flow of filter tap selection..23

18. 37 sets of 32-bit registers in ARM processor..25

19. 32-bit program status registers..26

20. Five-stage pipeline data path ..27

21. Architecture of ARM966E-S ..27

 vi

22. AMBA architecture...28

23. AHB components and multi-layer interconnection ..29

24. Interfaces of AHB (a) master, (b) slave, (c) arbiter and (d) decoder31

25. AHB pipeline transaction..31

26. Proposed ARM-based H.264/MPEG-4 AVC decoder architecture.....................36

27. Decoding profiling for H.264/MPEG-4 AVC on ARM 966 CPU37

28. Scheduling approach for macroblock-level pipelining38

29. Flowchart to synchronize CPU with the three accelerators at macroblock-level40

30. Architecture of non-shared memory design..42

31. Architecture of shared memory design ...42

32. Architecture of non-buffered design...44

33. Pipeline schedule comparison...45

34. Macroblock data and its adjacent blocks used for macroblock-based deblocking

filtering..49

35. Macroblock filtering mode distribution in Akiyo and Foreman sequences that

are coded at QCIF@15fps 64Kbps with JM6.0..51

36. Proposed bus-interleaved architecture ..52

37. Operation of the transposed memory (Reg2)..53

38. Sequential edge processing order of (a) horizontal filtering and (b) vertical

filtering in a luminance macroblock ...54

39. The 4x4 block input order to the dedicated hardware...54

40. Data flow of horizontal filtering in the bus-interleaved architecture..................56

41. Data flow of vertical filtering in the bus-interleaved architecture......................56

42. Analysis of processing latency reduction ...57

43. Comparison of average latency per macroblock...59

44. Architecture of bus-interleaved IQ-IDCT...63

45. Decoding flow for a macroblock ..65

46. Interleaved process for IQ-IDCT, reconstruction and deblocking filter66

47. Latency of inverse transforming and deblocking a macroblock.........................66

48. Interpolation architecture for quarter-pel motion compensation67

49. Our proposed decoding system...70

50. ARM integrator baseboard..71

 vii

51. ARM MultiICE ...71

52. Window interface to CodeWarrior ..71

53. Window interface to AXD ..72

54. Window interface to Xlinx Project Navigator ..72

55. Software design flow ..72

56. Hardware design flow...72

57. System performance comparison using h.264/MPEG-4 decoder74

 viii

List of Tables

1. Comparisons of MPEG-2, MPEG-4 ASP and H.264/MPEG-4 AVC4

2. Comparisons among the ARM process families...25

3. The detailed AHB signals ...32

4. Eight burst types depending on the HBURST signal..34

5. H.264/MPEG-4 AVC baseline profile and level 1 ..36

6. Key operations for AVC decoding modules..37

7. Main features of prior works for H.264/MPEG-4 AVC deblocking filter48

8. Filtering mode for a macroblock...50

9. Transfer macroblock data for the 8 filtering modes..50

10. Macroblock latency for each transfer mode..58

11. Comparisons of state-of-the-art deblocking filter designs..................................61

12. Comparisons of local memory access frequency..63

13. The processing rate of CPU, FPGA and AHB bus ...70

14. Five cases for performance evaluation ...74

15. Experiment parameters of test sequences ...75

 ix

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview of Thesis

1.1.1 H.264/MPEG-4 AVC Standard

Quality

HDTV
(1920x1080)

DVD
(720x480)

(352x288)
VHS

TV conference
(176x144, 352x288)

TV phone
(176x144)

10K 100K 1M 10M 100M
Speed (Hz)

H261

H263

MPEG-1

Motion
JPEG

MPEG-2

H.264/MPEG-4AVC

MPEG-4

Fig. 1. Application range for well-known video standards.

For low bit-rate and real-time communication, the International Telecommunication

Union (ITU-T) developed a series of standards like H.261 [1] and H.263 [2]. For high

quality video application under limited bandwidth, the Motion Picture Expert Group

(MPEG) of International Standard Organization (ISO) announced the standards of

MPEG-1 [3], MPEG-2 [4], and MPEG-4 [5]. Fig. 1 shows the application range for

1

CHAPTER 1. INTRODUCTION

Fig. 2. Encoding architecture for H.264/MPEG-4 AVC.

the well-known video standards. To support 720x480 of frame size under high

bandwidth, MPEG-2 has been widely employed in DVD and digital TV broadcast. On

the other hand, H.263 is suitable for TV conference and TV phones due to its high

compression ratio under low bit-rates. In 1998, MPEG-4 is announced with higher

compression ability, visual quality and computational complexity. In 2001, the Joint

Video Team (JVT) formed by ITU-T Video Coding Experts Group (VCEG) and

ISO/IEC MPEG announced the new video coding standard, H.264/MPEG-4

Advanced Video Coding (AVC) [6]. H.264/MPEG-4 AVC has the advantages of

H.263 and MPEG-4 and trades off between the coding gain and implementation cost.

Under equal video quality, H.264/MPEG-4 AVC provides double compression ratio

as compared to H.263 and 1.5 times compression ratio as compared to MPEG-4.

Besides, H.264/MPEG-4 AVC has been proven to have much better visual quality as

compared to MPEG-1, -2, -4, and H.263/+/++.

With great coding efficiency and visual quality, H.264/MPEG-4 AVC can be

widely applied to many digital video applications. For example, it can be employed in

low bit-rates wireless communication, high resolution HDTV, digital video

2

CHAPTER 1. INTRODUCTION

broadcasting (DVB), ADSL video phone and conference, high resolution DVD, high

quality digital camera application, real-time streaming on internet, 3G applications,

satellite broadcasting and so on. Besides, H.264/MPEG-4 AVC has become the

official standard for the two high resolution DVD formats, HD-DVD and Blu-ray.

Also, the Digital Video Broadcasters (DVB) and 3rd Generation Partnership Project

(3GPP) have permitted H.264/MPEG-4 AVC as the latest official video standard.

Until now, innumerable broadcasting businesses, cable providers and consumer

electronic companies have employed H.264/MPEG-4 AVC as the video coding

standard for developing their products.

Fig. 2 shows the encoding architecture for H.264/MPEG-4 AVC. Similar to

previous standards, the prediction distortion from the difference between intra/inter

prediction and reference frame is compacted by discrete cosine transform (DCT).

Then, the entropy coding encodes the DCT coefficients and output the results as bit

streams. However, to be more advanced, H.264/MPEG-4 AVC provides more

characteristic features. Table 1 shows the comparisons for the features in MPEG-2,

MPEG-4 ASP and H.264/MPEG-4 AVC. These characteristic features in

H.264/MPEG-4 AVC are described as follows:

1. Variable block size for motion estimation. Unlike previous standards that

utilize fixed size of the 16x16 macroblock, H.264/MPEG-4 AVC employs

variable block size that ranges from 16x16 macroblock down to a 4x4 block

for motion estimation.

2. Multiple reference frames. To increase coding efficiency and prediction

accuracy, H.264/MPEG-4 AVC supports multiple reference frames for inter

perdition. Even B-frame can be referenced. Besides, the reference order of

reference frame is variable instead of depending on the display order in

previous standards.

3. Quarter pixel resolution. The pixel resolution in many previous standards is

half resolution. Quarter pixel resolution is first employed in MPEG-4 part2.

In H.264/MPEG-4 AVC, the complexity of interpolation process for quarter

3

CHAPTER 1. INTRODUCTION

4

Table 1. Comparisons of MPEG-2, MPEG-4 ASP and
H.264/MPEG-4 AVC.

Features MPEG-2 MPEG-4
ASP

H.264/

MPEG-4
AVC

I, P,B frames Yes Yes Yes

Multiple reference frames Yes

Variable Block size Yes

Quarter pixel resolution Yes Yes

Weighted Prediction Yes

Switching pictures Yes

Slice-based motion prediction Yes

Interlace Yes Yes Yes

MB AFF Yes

GMC Yes

Integer DCT Yes

Huffman coding Yes Yes Yes

Arithmetic coding Yes

Rate distortion optimization Yes

In loop Deblocking filter Yes

Bit rate comparison 100% 61% 36%

CHAPTER 1. INTRODUCTION

pixel resolution is significantly reduced.

4. Enhanced intra prediction. H.264/MPEG-4 AVC employs spatial intra

prediction. As compared to previous standards, it increases the prediction

accuracy in the details of high-motion picture.

5. Integer 4x4 DCT. H.264/MPEG-4 AVC employs integer 4x4 DCT instead

of floating point 8x8 transform in previous standards.

6. In-loop deblocking filter. H.264/MPEG-4 AVC adopts deblocking filter to

reduce blocking artifact. The deblocking filter is applied both on the encoder

and decoder. For the encoder, the deblocking filter is performed in the

compensation loop to improve the quality of reference frame so as to increase

the accuracy of inter prediction.

7. Short word length in calculation. To save implementation cost and power

consumption, H.264/MPEG-4 AVC utilizes 16 bit in calculation instead of

32 bit operation in previous standards.

8. Enhanced error resilience and network friendliness. H.264/MPEG-4

AVC can reduce the error rate resulted from the packet loss or channel

damage. Hence, it is easier to be applied on network packet control and

internet steaming service.

9. Context-based entropy coding. H.264/MPEG-4 AVC utilizes context-based

variable length coding or context-based binary arithmetic coding for the

entropy coding.

1.1.2 Platform-based Design for H.264/MPEG-4 AVC Decoder

H264/MPEG-4 AVC has been proven to have much better visual quality and

compression ability as compared to the existing standards. However, the high

complexity in H264/MPEG-4 AVC becomes the bottleneck for the low-cost and

real-time applications. To improve the system performance and reduce the cost, we

have to develop more system or architecture design methodologies for H264/MPEG-4

AVC.

5

CHAPTER 1. INTRODUCTION

In this thesis, we present a baseline H.264/MPEG-4 AVC decoder based on an

optimized platform-based design methodology. Some characteristic features in our

system design show as follows.

1. ARM-based platform: The ARM processor [7-8] is one of the most popular

32-bit microprocessor and widely employed in mobile phones, portable

devices and multimedia digital consumer applications. Hence, to quickly

integrate our proposed design into system-on-chip system and consider the IP

reusability and flexibility of on-chip bus [9], we construct our system on an

ARM-based platform.

2. Software/Hardware co-operation: In our system, we implement software

/hardware partition and jointly optimize the software and hardware design of

the decoder. To increase overall decoding throughput, we synchronizes the

software procedures and dedicated hardware co-processors.

3. Macroblock pipeline architecture: To achieve synchronization so as to

enhance throughput, we propose a macroblock-level pipelining [10-11]. In the

pipeline schedule, the entropy decoding, motion compensation, inverse

transform and deblocking filter perform the decoding process in a macroblock

by macroblock manner.

1.1.3 Deblocking Accelerator for H.264/MPEG-4 AVC

To conduct hardware and software partition, we profile the AVC decoder and decide

to realize 3 dedicated accelerators to speed up deblocking filter, motion compensation

and inverse transform respectively. Specifically, we propose a platform-based

deblocking filter [12-13] for H.264/MPEG-4 AVC. The deblocking accelerator

represents several features as follows.

1. Adaptive transfer scheme: To efficiently use the bus bandwidth and reduce

the power consumption, we classify the filtering modes into various types.

According to the filtering type distribution, we propose an adaptive transfer

6

CHAPTER 1. INTRODUCTION

scheme to avoid redundant data transfer. Hence, we can significantly reduce

bus workload and power consumption. Besides, this scheme also improves our

system performance due to less transfer time.

2. Bus-interleaved architecture: With bus-interleaved architecture, we perform

the filtering operation and the data transfer in parallel. Hence, processing

latency can be reduced. Besides, this bus-interleaved architecture also has the

advantages of low cost and low memory access frequency.

3. Non-buffered memory architecture: We propose non-buffered memory

architecture for inverse transform and deblocking process. In an interleaved

process manner, the inverse transform results can be propagated to deblocking

module immediately without to be buffered. As compared to traditional shared

memory architecture, our non-buffered architecture is more competitive that

reduces significant cost in memory buffer and memory access.

1.2 Contribution and Organization

In this thesis, we present a macroblock-level pipelining H264/MPEG-4 AVC decoder

based on an optimized platform-based design methodology. The synchronization of

the software and the dedicated hardware co-processors increases throughput.

Specifically, to speed up deblocking filter, we proposed a deblocking accelerator with

bus-interleaved architecture. For more details, the remainder of this thesis is

organized as follows:

 Chapter 2 introduces the algorithm of H.264/MPEG-4 AVC decoder.

 Chapter 3 describes our proposed platform-based system design for H.264

/MPEG-4 AVC decoder.

− We use platform design methodology to increase system flexibility and

reusability.

− We analyze the computational complexity for each functional module and

perform software and hardware partition.

7

CHAPTER 1. INTRODUCTION

− We conduct software and hardware co-operation for parallel processing.

− We propose macroblock-level pipelining architecture to improve system

throughput.

− We propose non-buffered memory architecture to significantly reduce memory

cost and achieve the same performance as compared to traditional shared

memory architecture [17].

 Chapter 4 illustrates our proposed hardware accelerators for H.264/MPEG-4

AVC decoder. For the design of deblocking filter, our contributions include the

following:

− We propose adaptive transfer scheme to reduce 25%-94% bus bandwidth

requirement as compared to [14-20]. Hence, the costly frame-length buffer

used for reducing bus workload in [17],[20] can be removed.

− We propose bus-interleaved architecture to parallel process data transfer and

filtering operation. Not only reducing processing latency, the bus-interleaved

architecture can avoid the usage of costly dual-ported local memory in

[14],[16],[18]-[20].

− We propose an overlapped scheme for the calculation of boundary strength.

Hence, the calculation of boundary strength and deblocking filter can be

performed in parallel so as to reduce latency.

− Our design offer up to 7.1x improvement on processing latency and uses

simpler memory configuration as compared to [14-20].

 Chapter 5 presents the experiment results. We compare 4 types of architecture

and evaluate system performance on ARM966-based platform.

− As compared to H.264 reference software JM6.0 decoder, we have 9-16 times

improvement to achieve a decoding average rate of 7.3 fps and up to 10.4 fps

for QCIF video sequences.

 Lastly, Chapter 6 concludes this work.

8

CHAPTER 2. H.264/MPEG-4 AVC DECODER

Chapter 2

H.264/MPEG-4 AVC Decoder

2.1 Introduction

Fig. 3. Decoding architecture for H.264/MPEG-4 AVC.

Fig. 3 shows the decoding flow for H.264/MPEG-4 AVC decoder where the decoding

tasks are partitioned into four main parts as follows.

1. Entropy coding.

2. Motion compensation (MC) or intra prediction.

3. Inverse quantization and inverse 4x4 discrete cosine transform (IQ-IDCT).

4. In loop deblocking filtering.

 9

CHAPTER 2. H.264/MPEG-4 AVC DECODER

The decoding is performed by first parsing the compressed bit-stream by entropy

coding. After the parsing, the quantized prediction residues and macroblock side

information including macroblock type, the prediction mode, and the motion vector

difference are extracted. The extracted macroblock type determines the prediction

type. The intra prediction values are derived based on the neighboring pixels for an

intra macroblock and the inter prediction values are generated from motion

compensated pixels for an inter macroblock. The addition of the prediction and the

decoded residuals produces the reconstructed frame. After the reconstruction, the in

loop deblocking filter is applied to reduce blocking artifacts and the deblocking

results are put into the frame buffer as reference frames.

2.2 Context-Based Adaptive Variable Length

Coding

In H.264/MPEG-4 AVC, there are two types of entropy coding: Context-based

Adaptive Binary Arithmetic Coding (CABAC) [21] and Context-based Adaptive

Variable-Length Coding (CAVLD) [22]. Since our design is based on the Baseline

Profile of H.264/MPEG-4 AVC, we utilize CAVLD as the entropy coding. Some

features of CAVLD are described as follows:

1. The entropy encoding order for a 4x4 block is based on zigzag scan as shown

in Fig. 4.

2. In a context-based adaptive manner, the number of non-zeros is encoded by

using a look-up table depending on the number of non-zeros in the adjacent

blocks.

3. In an adaptive manner, the value of non-zero coefficients is encoded by using

VLC look-up tables.

4. By taking advantage of many zero results produced by transform, the strings

of zeros before the last non-zeros are compacted by using run-level coding.

Fig. 5 shows the flowchart of CAVLC encoding. The right part in the figure goes on

 10

CHAPTER 2. H.264/MPEG-4 AVC DECODER

 11

Fig. 4. Zigzag scan order for entropy encoding.

Fig. 5. Flow chart of CAVLC encoding.

CHAPTER 2. H.264/MPEG-4 AVC DECODER

Fig 6. Variable partition sizes for inter prediction

an example. Number of non-zeros, number of +1/-1, signs of +1/-1, values of

non-zeros, string of zeros and each run of zero before last non-zero coefficient are

encoded in order. Also, in the decoder, we can perform CAVLD decoding in a reverse

fashion.

2.3 Motion Compensation

In H.264/MPEG-4 AVC, inter prediction has 7 types of partition size for each 16x16

macroblock. As shown in Fig.6, the basic size for a motion vector can be 16x16, 16x8,

8x16, 8x8, 8x4, 4x8 or 4x4. In an adaptive manner, we can choose larger partition size

for motion vector when a macroblock contains fewer details. Hence, the coding

complexity and blocking artifacts can be reduced.

Besides, H.264/MPEG-4 AVC utilizes quarter pixel resolution for motion vector.

To achieve quarter pixel resolution, we have to produce the sub-pixel samples first at

half pixel positions. After all half pixel samples are filtered by a 6-tap FIR filter, the

 12

CHAPTER 2. H.264/MPEG-4 AVC DECODER

Fig.7. Bit rate comparison for the catachrestic features of motion estimation

quarter pixel samples are produced by using bilinear interpolation between the

adjacent half pixel samples or integer-pixel ones. Besides, another important feature

for motion prediction is the utilization of multiple reference frames. Thus,

H.264/MPEG-4 AVC can provide better visual quality and more efficient encoding.

Fig. 7 shows the comparisons of bit-rates for the catachrestic features in motion

estimation.

Moreover, H.264/MPEG-4 AVC uses motion vector prediction scheme to reduce

bit-rates. Hence, only the motion vector difference (MVD), which is the difference

between the exact vector and the predicted vector, is transmitted. Then, the decoder

has to calculate motion vector by adding MVD to the motion vector prediction.

Next, we can compensate the prediction frame from multiple reference frames under

quarter pixel resolution in the decoder.

2.4 Intra Prediction

H.264/MPEG-4 AVC utilizes intra prediction when the current sample is not highly

correlated with other reference frames, such as I picture. To take advantage of the

correlation between the neighboring samples within the same frame, the current

sample can be predicted depending on the neighboring sample. By using neighboring

 13

CHAPTER 2. H.264/MPEG-4 AVC DECODER

Fig.8. Nine 4x4 luma prediction modes.

Fig.9. Four 16x16 luma prediction modes.

sample for prediction, H.264/MPEG-4 AVC provides 9 types of intra prediction mode

for 4x4 luminance block as shown in Fig.8. Besides, another 4 types of intra

prediction mode for 16x16 luminance macroblock as shown in Fig.9 are applied when

the current sample contain fewer details. Also, the chrominance goes the same fashion

for each 8x8 chrominance components.

2.5 Inverse Quantization

 14

CHAPTER 2. H.264/MPEG-4 AVC DECODER

To be more accurate in trading-off between bit-rates and quality, H.264/MPEG-4

AVC defines 52 levels for quantization. There are 52 quantization parameter (QP)

related to each quantization level. To conduct inverse quantization, we have to obtain

the quantization step size first. As shown in Fig. 10, the quantization step size

becomes double for each increment of 6 in QP. Based on the quantization step size,

the inverse quantization coefficient is obtained by the multiplicity of quantized

coefficient and quantization step size.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

0 6 12 18 24 30 36 42 48

QP

Q
P

st
ep

 s
iz

e

Fig. 10. Quantization step sizes and related QP.

2.6 Inverse Discrete Cosine Transform

H.264/MPEG-4 AVC utilizes the 4x4 integer Discrete Cosine Transform (DCT) [23]

to transform prediction distortion so as to remove spatial correlation inside it. Unlike

8x8 floating point transform in previous standards such as MPEG-1, -2, -4, and H.263,

integer transform can avoid the mismatch caused by floating rounding when inverse

transform is performed. Besides, H.264/MPEG-4 AVC utilizes smaller size of a 4x4

block for transform because the correlation among prediction residuals is significantly

reduced in H.264/MPEG-4 AVC.

 To transform each 4x4 block, Fig.11 (a) shows the Two-dimensional 4x4 integer

 15

CHAPTER 2. H.264/MPEG-4 AVC DECODER

Fig.11. Two-dimensional 4x4 (a) transform and (b)inverse transform.

Fig. 12. DC coefficients within a macroblock.

transform in H.264/MPEG-4 AVC and Fig.11 (b) show the inverse transform. By

using the post-scaling and pre-scaling the scaling factors (the 4x4 matrix E in Fig 11),

the DCT and inverse DCT operation can be simplified so that only addition,

subtraction and shift operation are required. Hence, it is very suitable for low-cost and

high-speed hardware implementation.

If the current macroblock is intra-coded, the DC coefficients of each block as shown

in Fig.12 contain much energy. Hence, these DC coefficients require to be

transformed again to reduce the correlation among them so as to increase compression

 16

CHAPTER 2. H.264/MPEG-4 AVC DECODER

Fig.13. Two-dimensional Hadamard transform for (a) luma and (b) chroma DC

coefficients.

performance. H.264/MPEG-4 AVC utilizes Hadamard transform to transform the DC

coefficients. Fig.13 shows the Two-dimensional 4x4 Hadamard transform for luma

DC coefficients and 2x2 Hadamard transform for chroma ones. Therefore, the

decoder has to perform inverse Hadamard transform of DC coefficients first then each

block can update its DC coefficient to perform the 4x4 integer discrete cosine

transform.

2.7 Adaptive In-loop Deblocking Filter

2.7.1 Video filtering in previous standards

H.264/MPEG-4 AVC employs 4x4 DCT/IDCT for transform. However, it introduces

noticeable blocking artifact especially at low bit-rates. The blocking artifact results

from three sources: (1) the nature discontinuity of transform digital signals, (2) the

distortion of quantization which enhances the blocking effect when quantization

parameter is large, and (3) the propagation of blocking artifact from reference frames

when conducting motion compensation.

To eliminate blocking artifact, the simplest way is to utilize a FIR low-pass filter

to smooth the block boundary. However, low-pass filtering causes the blurring effect

that decreases the visual quality. In H.263, overlapped-block motion compensation

 17

CHAPTER 2. H.264/MPEG-4 AVC DECODER

(OBMC) [24] is employed to reduce the blocking artifact. The OBMC is not only

applied in the decoder to improve the visual quality of display video but also in the

encoder to increase the accuracy of motion estimation. Fig. 14 shows the

reconstruction operation in OBMC mode of H.263. Each 8x8 block is reconstructed

by a combination of the upper, bottom, left right and current block in the reference

frame. For a 4x4 block within the 8x8 block, each reconstructed pixel is the weighted

sum of 3 prediction values depending on the motion vectors from 3 adjacent blocks in

reference frame. For example as shown in Fig. 14, all pixels of the 4x4 block W’ are

constructed by the accumulation of every block W in the reference frame. By the

weighting operation, the blocking artifact can be reduced.

Fig. 14. Overlapped-block motion compensation (OBMC) in 263.

Different to H.263, MPEG-4 employs an adaptive deblocking filter [25]. Because

the deblocking filter is post-processing, it is only applied on the decoder to improve

the quality of the output video sequence and reference frames used by motion

compensation. The filter operations are performed along the 8x8 block edges. Based

on the sample values, one of two filter modes, smooth mode and default mode, is

judged. Then, different taps of filtering is applied depending on the quantization

 18

CHAPTER 2. H.264/MPEG-4 AVC DECODER

parameter. As compared to OBMC in H.263, the adaptive filter has better ability to

avoid the filtering on the image region where human vision is less susceptible to

blocking artifact. Hence, the computational complexity can be reduced.

 By taking the advantages of OBMC in H.263 and the adaptive filter in MPEG-4,

H.264/MPEG-4 AVC utilizes an in-loop adaptive deblocking filter to reduce blocking

artifact. Both encoder and decoder apply the deblocking filter to increase the accuracy

of motion estimation or compensation. As compared to the deblocking filter in

MPEG-4, the deblocking filter in H.264/MPEG-4 AVC is more complex with more

control parameter, filter modes, and different types of FIR filter. The following

sections describe the operation of deblocking filter in H.264/MPEG-4 AVC.

2.7.2 Deblocking Process

The in-loop deblocking filter in H.264/MPEG-4 AVC is designed to reduce the

blocking artifacts. As compared to the decoder without applying deblocking filtering,

the bit rate can be saved 5%-10% when deblocking filter is applied under the same

performance. The filter operation is applied to each edge of a 4x4 block. Fig. 15

shows the edge filtering order within a 16x16 luminance macroblock. As shown, the

vertical edges are filtered first and then the horizontal ones. In addition, for filtering

an edge of a 4x4 block, consecutive 8 pixels from the same row (or column) of two

adjacent 4x4 blocks are required. For example in Fig. 15, the pixels (A0-A3, B0-B3)

are accessed for the vertical (or horizontal) filtering of a 4x4 block. Particularly, each

sample pixel of (A0-A3, B0-B3) is filtered adaptively by different filter taps. To

decide the filter tap for each pixel, the following factors are considered:

1. Boundary strength.

2. Thresholds of α and β.

3. The content of sample pixels.

2.7.3 Boundary Strength

 19

CHAPTER 2. H.264/MPEG-4 AVC DECODER

 20

Fig. 15 Sequential order for filtering the edges of 4x4 blocks in a luminance

macroblock.

Edge between two adjacent blocks,
P and Q

P or Q has
 non-zero transform

coeff.

BS=4BS=3

YN

BS=2

P or Q is intra-coded

Edge is at
MB boundary

MV(P) =MV(Q)

YY

YN

N N

BS=1 BS=0
(skip)

N

Ref. frame (P)
= Ref. frame (Q)

Num. of Ref. frame (P)
= Num of Ref. (Q)

Y

Y

N

Fig.16. Decision flow of boundary strength (bS) where P and Q denote two

adjacent 4x4 blocks.

CHAPTER 2. H.264/MPEG-4 AVC DECODER

The boundary strength (bS) level is mainly used to decide the necessity of filtering

and filter type. In H.264, the bS has 5 levels. The actual level is determined by the

MB type, edge position, reference frame type, and motion vectors of two adjacent

blocks. Fig. 16 shows the decision of bS level. As shown, the strongest bS level, i.e.,

bS=4, is identified when two adjacent blocks are intra coded and locate at the MB

boundary. In this case, obvious blocking artifact could be noticed. As a result, higher

bS level invokes stronger low pass filtering. On the other hand, when the bS is at the

weakest level, i.e., bS=0, there is no filtering.

2.7.4 One-dimension Filtering Decision

Fig.17 elaborates the detail about how these factors are used to decide the filter tap for

each pixel of (A0-A3, B0-B3). In addition to the bS level, the parameters (α, β) are

used to preserve the real edge. In Equation (1), the necessity of filtering is also

controlled by the parameters (α, β). Specifically, α and β are assigned with higher

values to increase the possibility of filtering as higher quantization parameters cause

more noticeable blocking artifact. In contrast, smaller α and β are used for lower

quantization parameters.

bS!=0 AND |A0–B0|<α AND |A1–A0|<β AND |B1–B0|<β Equation (1)

Hence, the first step is to use Equation (1) for deciding whether the filtering is

required or not. Then, according to the bS level, thresholds (α, β) and the absolute

differences of adjacent reconstructed pixels, different filters are applied to different

pixels. Specifically, in Fig. 17, not all the input pixels (A0-A3, B0-B3) will be

updated with the filtered results. For example, if bS is not of strongest level, only A0,

B0, A1, B1 are updated. For those pixels without update, the pixel values are

unchanged. The process is continued by sliding the filtering window one block to the

right (or to the bottom) at a time as in Fig. 15. Note that the updated (B0-B3) could be

 21

CHAPTER 2. H.264/MPEG-4 AVC DECODER

used for the filtering of next adjacent block when the filtering window slides one

block to the right (or to the bottom).

 22

CHAPTER 2. H.264/MPEG-4 AVC DECODER

 Input the bS, α, β and 8 pixels
(A3,A2,A1,A0 B0,B1,B2,B3)

Eq. (1) satisify?

 Is bS the
strongest level?

 |A0-A2|<β
& |A0-B0|<α/4

Y

N

 Update_A0=5_tap(A2,A1,A0,B0,B1)
 Update_A1=4_tap(A2,A1,A0,B0)
 If Luma
 Update_A2=5_tap(A3,A2,A1,A0,B0)

Update_A0=3_tap(A1,A0,B0)

 Update_B0=5_tap(B2,B1,B0,A0,A1)
 Update_B1=4_tap(B2,B1,B0,A0)
 If Luma
 Update_B2=5_tap(B3,B2,B1,B0,A0)

Update_B0=3_tap(B1,B0,A0)

 Sample
new data

Update_A1=4_tap(A2,A1,A0,B0)

 Luma &
 |B0-B2|<β

 Luma &
 |A0-A2|<β

Update_B1=4_tap(B2,B1,B0,A0)

Update_A0=4_tap(A1,A0,B0,B1)
Update_B0=4_tap(B1,B0,A0,A1)

N

N

N

N

Y

Y

Y

Y

No update

No update

 |B0-B2|<β
& |B0-A0|<α/4

N Y

Fig. 17. Decision flow of filter tap selection.

 23

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Chapter 3

Platform-based System Design for
H.264/MPEG-4 AVC Decoder

3.1 ARM Microprocessor Introduction

ARM (Advanced RISC Machines) [7] Ltd. is an IP cooperation founded in 1990 by

Hermann Hauser. It leads the industrial providing of the 32-bit embedded RISC

microprocessor and is the most widely-used 32-bit microprocessor family in the world.

The characteristic features of ARM processors are high-performance, low-cost, low

power consumption. It is especially suitable for the appication in mobile phones and

about 70% of all modern mobile phones are embedded with the ARM processor core.

In fact, ARM microprocessor can be integrated into all portable wireless

communications, hand-held computing, automotive systems, mass storage device, and

multimedia digital consumer applications, such as MP3 engines, and personal digital

assistants (PDAs).

 24

http://en.wikipedia.org/wiki/1990
http://en.wikipedia.org/wiki/Hermann_Hauser
http://en.wikipedia.org/wiki/Mobile_phone

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

 25

Table 2. Comparisons among different ARM process families.

Process Family Pipeline Stages Memory
Organization

Clock Rate (MHz)

ARM6 3 Unified 25

ARM7 3 Unified 66

ARM8 5 Unified 72

ARM9 5 Harvard 200

StrongARM 5 Harvard 233

ARM10 6 Harvard 400

ARM11 8 Harvard 533

Fig. 18. 37 sets of 32-bit registers in ARM processor.

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Fig. 19. 32-bit program status registers.

ARM microprocessor is based on 32/16-bit RISC architecture. There are two types of

instruction set. One is the 32-bit ARM instruction set that can be applied when

considering performance. The other is the 16-bit Thumb instruction set that can be

applied when considering increasing the code density. Besides, the ARM has 7

operating mode (User, FIQ, IRQ, Supervisor, Abort, Undefined, and System mode)

and 37 sets of 32-bit registers (31 of them are general purpose registers and 6 of them

are program status registers) as shown in Fig. 18. Also, Fig. 19 shows the task for

each bit of program status registers.

In this thesis, we utilize the ARM966E-S [8] as our embedded microprocessor.

The ARM966E-S that belongs to the ARM9 family supports 5 stages for pipeline

configuration and up to 200 MHz clock rate as shown in Table 2. Fig.20 shows the

5-stage pipeline data path. Besides, in the architecture of ARM966E-S as shown in

Fig. 21, it contains the interface of tightly coupled memory (TCM), interface of

optional ETM9, interface of advanced high-performance bus, and a coprocessor

interface for connection of acceleration hardware.

 26

http://www.arm.com/products/CPUs/archi-thumb.html

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

 27

 Fig. 20. Five-stage pipeline data path.

Fig. 21. Architecture of ARM966E-S.

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

3.2. Advanced Microcontroller Bus Architecture

(AMBA) Overview

Fig. 22. AMBA architecture.

The open standard of AMBA (Advanced Microcontroller Bus Architecture) [9]

provides a solution for the flexibility and reusability under system-on-chip (SOC)

integration. Fig. 22 shows the architecture. With multi-layer architecture, AMBA

utilizes on–chip bus connecting with embedded processors to conduct the on-chip

memory or peripherals. To optimize the utilization of bandwidth and frequency of

on-chip bus, AMBA defined three types of bus:

1. The Advanced High-performance Bus (AHB)

2. The Advanced System Bus (ASB)

3. The Advanced Peripheral Bus (APB)

The AHB and ASB support multiple masters and burst transfers to conduct a

pipelined operation with high performance. Moreover, the AHB supports more

transfer techniques, such as split transactions and wide data bus configurations. On

the other hand, with simple interface, the APB is suitable for many peripherals to

 28

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Fig 23. AHB components and multi layer interconnection.

conduct bus protocol from high performance to low power and low bandwidth bus.

3.3. Advanced High-performance (AHB) Bus

Introduction

Multi-layer AHB is a new standard of AMBA 2.0 [9]. With single-clock edge

operation, the AHB reduces the delay of multiple masters system and efficiently use

the bandwidth. The AHB bus bandwidth is allowed to be 8, 16, 32, 64, 128, 256, 512,

and 1024 bits. Considering the 32-bit configuration of general purpose processors and

high performance of AHB, in this thesis, we apply the 32-bit AHB as our system

on-chip bus.

 29

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

To describe the protocols and architecture of the AHB, Fig 23 shows the AHB

components and multi-layer interconnection. A typical AMBA AHB system includes

four components: master, slave, arbiter and decoder. Each component is described as

following:

1. AHB master: The bus master has the ability to perform read or write operation

on the bus. The AMBA supports multiple AHB masters on the system. Typical

AHB masters include the CPU processors, the DMA (direct memory access)

controller, the DSP (digital signal processors) and so on. However, only one bus

master is permitted to use the AHB bus at any one time.

2. AHB slave: The bus slave waits the reading or writing demand from masters and

response the transfer condition. Typical AHB slaves include the internal

memory, the external memory interface, the APB Bridge and so on.

3. AHB arbiter: Because only one bus master is permitted to use the AHB bus, an

AHB arbiter is constructed on the bus to judge the access priority of active

masters.

4. AHB decoder –The AHB decoder decodes the bus address and selects one of the

signals from the slave modules depending on the decoded results.

Basically, the transfer signals on AHB bus include clock, arbitration, address, control

signal, write data, read data, and response signal. Table 3 shows the detailed AHB

signals and Fig 24 shows these signals applying on the interfaces of AHB master,

slave, arbiter and decoder. Besides, to increase the system performance, the AHB

utilizes some important transfer techniques:

1. Pipeline operation: An AHB transfer consists two phases. One is the address

phase that conducts the transfers of address and control signals. The other is the

data phase that conducts the transfers of read, write and response signals. With

 30

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Fig. 24. The interfaces of AHB (a) master, (b) slave, (c) arbiter and (d) decoder.

Fig. 25. AHB pipeline transaction.

 31

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Table 3. The detailed AHB signals

Name Source Signal Type

HADDR[31:0] Master Address

HTRANS[1:0] Master Response

HWRITE Master Control

HSIZE[2:0] Master Control

HBURST[2:0] Master Control

HPROT[3:0] Master Control

HWDATA[31:0] Master Write

HSELx Decoder Control

HRDATA[31:0] Slave Read

HREADY Slave Response

HRESP[1:0] Slave Response

HBUSREQx Master Arbitration

HLOCKx Master Arbitration

HGRANTx Arbiter Arbitration

HMASTER[3:0] Arbiter Arbitration

HMASTLOCK Arbiter Arbitration

HSPLITx[15:0] Slave Arbitration

HCLK Clock Source Clock

HRESETn Reset Reset

 32

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

pipelined transaction, the data phase of previous transfer can be overlapped with

the address phase of current transfer to increase throughput. For example as

shown in Fig. 25, the address phase B is overlapped with the data phase A.

2. Burst transfer: Table 4 shows the 8 burst types depending on the HBURST

signal. It supports 1, 4, 8, 16 beat and undefined length transfer. Besides, the

incrementing burst and wrapping burst are supported. The address of the

incrementing burst is just an increment of previous address. However, the

address of the wrapping burst will wrap to start address when the boundary is

reached. For example, the a start address is 0x40 and WRAP8 is performed,

then the address range is 4x8=32=0x20 and the boundary is 0x40+0x20=0x60.

Hence, if the address in current single time is 0x5c, the address in next single

time will wrap to 0x40.

3. Retry transfer: When the slave is unable to supply data immediately, it can

return RETRY response. The RETRY response does not change the master

access priority in arbiter. Hence, only the master owning a higher priority can

access the bus first. For example, a slave S1 returns RETRY response when a

master M1 is reading data from S1. Then, a master M2 owning lower priority

still can not access bus if the master M1 has the highest priority in the arbiter.

4. Split transfer: When the slave is unable to supply data immediately, it can also

return SPLIT response. The SPLIT response can adjust the master access

priority in arbiter. Hence, even the master owning a lower priority can access the

bus. For example, a slave S1 returns SPLIT response when a master M1 is

reading data from S1. Then, a master M2 owning lower priority can access the

bus until the access of slave S1 is available and the master M1 also keep the

highest priority in the arbiter.

 33

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Table 4. Eight burst types depending on the HBURST signal.

HBURST Size Type

000 Single Single transfer

001 Undefined length Incrementing

010 4 beat Wrapping

011 4 beat Incrementing

100 8 beat Wrapping

101 8 beat Incrementing

110 16 beat Wrapping

111 16 beat Incrementing

3.4 Emulation Platform of Our System

We adopt a platform based design methodology to construct an optimized AVC

decoder with a novel scheduling to achieve macroblock-level pipelining [10-11]. The

platform-based design methodology has been widely adopted to solve complicated

system-level designs of a multimedia system on a single chip. The platform-based

design could be defined in following two ways [26-27]. First is reuse of architecture

of hardware and software blocks. Second is the construction of a system with stable

microprocessor, memory hierarchy, interconnecting bus, and peripherals. The

construction has the abilities to cover rapid extension, feasible customization for a

wide range of applications, and a short time-to-market. In addition, the platform-based

design can improve the yield in circuit design. In short, the platform-based design [26]

 34

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

has the multiple advantages including efficient system-level design methodology,

short time-to-market, reusability of software and hardware IP blocks, feasible chip

integration, etc. Thus, the platform-based design methodology is adopted for this

project.

Some systems [28-30] are developed on a circuit design level and some systems

[31-32] are built on existing hardware platforms. In [28], a videophone system

compliant with H.263 is developed where the system is partitioned into hardware

modules and software modules based on complexity analysis. Several

microcontrollers are used to manage data and functional flow. The dedicated

hardware is used to improve computationally intensive parts. In addition, the modules

work with macroblock-level pipelining. In [29] the MPEG-2 encoding processes is

partitioned into 3 layers including processing control, video processing, and data

buffering. A RISC processor controls and pipelines the 3-layer functional modules in

macroblock-level. In [30], a multi-core SoC architecture is proposed for MPEG-4

streaming video. Based on the application profile characteristics, the task scheduling

of the decoding processes is optimized by a macroblock engine. In addition, the SoC

architecture has a global controller using a RISC processor and a computation

accelerator with a DSP. On a multi-core platform, all processor cores are

communicated via ARM Master Bus Architecture (AMBA). In summary, the

platform-based design methodology has been widely adopted to construct the codec

of H.263 and MPEG-2/4 standards as discussed [28-32]. Since the complexity of the

H.264/MPEG-4 AVC codec is much higher than that of the aforementioned coding

standards, it is challenging to build a H.264/MPEG-4 AVC decoder on existing

platforms.

 35

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Table 5. H.264/MPEG-4 AVC baseline profile and level 1.

Max macroblock processing rate 1485

Max picture size 176x144

Max bit rate 64kbit/s

Max # of reference frames 5

Max horizontal and vertical MV range (full pels) -16~16

Fig. 26. Proposed ARM-based H.264/MPEG-4 AVC decoder architecture.

External SDRAM

Host interface (Multi ICE)

Embedded
SRAM

Slave

ARM 966
CPU

Master

SDRAM
Controller

Slave

AHB
Arbiter +
Decoder

Slave
IQ/IDCT

&Reconstruction

Slave

Deblocking
Filter

Slave

Motion
Comp.

Host
bridge

Emulated with a hard core

AHB
Emulated on FPGA

Dedicated accelerators

PC

Fig. 26 shows our emulation configuration to test our new architecture for the

H.264/MPEG-4 AVC decoder. The proposed architecture is compliant with the

H.264/MPEG-4 AVC baseline profile of level 1. Table 5 summarizes its main

parameters. The architecture is emulated on an ARM development board. In addition,

the ARM platform provides a general purpose ARM966E-S CPU core for data flow

control and a logic module for multiple dedicated accelerators. The ARM also

provides an industry standardized 32-bit AHB for high-speed computation and

emulations.

 36

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

The ARM966 CPU acts as a master on the AHB bus and controls the

synchronization among all functional blocks. All the remaining functional blocks that

respond to the requests from CPU are slaves. Specifically, the dedicated accelerators

are used to speed up computation or reduce memory access. The firmware of the

accelerators and the software for the decoding modules are stored in the embedded

SRAM. In addition to the embedded memory, our decoder also requires external

memory for frame buffering. The external memory is accessed via an external

memory interface.

3.5 Proposed Macroblock Pipeline Architecture for

H.264/MPEG-4 AVC Decoder

.Table 6. Key operations for AVC decoding modules [10].

Modules MC IQ-IDCT CAVLD
Deblocking

Filter

Mul., Add, Add, Branch,
Operation

Shift, MemA Shift MemA
Add, Shift,
MemA

Mul.: multiplication; MemA: memory access

0

5

10

15

20

25

30

MC LoopFilter IQ-IDCT CAVLD
Modules

Pe
rc

en
ta

ge
s

Foreman_QCIF_10FPS_62kbps

Akiyo_QCIF_10FPS_12kbps

 `

Fig.27. Decoding profiling for H.264/MPEG-4 AVC on ARM 966 CPU [10].

 37

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

In the ARM platform based design, a task can be done with either the software

executing on CPU or the dedicated hardware running in parallel with CPU. Thus, to

optimize the overall performance through parallel processing, it’s challenging to

partition the tasks to separately match CPU capability and the dedicated accelerators.

Computational characteristic is a good criterion for task partition [28-30]. The

modules with regular and computational intensive tasks are perfect for hardware

implementation and the modules with lots of branches are more suitable for software

realization. Table 6 illustrates the kernel operations of each AVC decoding module.

Most modules except the IQ-IDCT require a great amount of memory access (MemA).

In addition, the MC and deblocking filter require intensive arithmetic operations for

interpolation and filtering, respectively. The CAVLD uses lots of branching

instructions for context-adaptive table switching. Thus, to optimize the performance,

the MC, deblocking filter, and IQ-IDCT are implemented in hardware and the

CAVLD is realized in software. .

Fig. 27 shows the decoding profiling in relative execution time for different

modules. From the Amdahl’s law and the observations of Fig. 27, we reduce the

computational loads by adding 3 dedicated accelerators for the deblocking filter, MC

Fig. 28. Scheduling approach for macroblock-level pipelining

 38

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

and IQ-IDCT, respectively. The remaining coding modules are implemented and

optimized in software.

To save the buffers for intermediate data and maximize the throughput, module

synchronization is required. In Fig. 28, we design a scheduling approach for

macroblock-level pipelining based on data dependency and working load distribution.

The subscript n denotes the macroblock index. Basically, a macroblock is decoded

through the three stages including (1) CAVLD, (2) MC, (3) IQ-IDCT and (4)

deblocking filtering. With a macroblock pipeline manner, CPU conducts the software

for CAVLD and three hardware accelerators conduct functional operation for MC,

IQ-IDCT and deblocking filter respectively. Hence, all functional modules can be

processed in parallel. Specifically, the scheduling for IQ-IDCT is overlapped with

deblocking filter. Hence, we do not have to buffer the IQ-IDCT and reconstruction

results and can pass them to deblocking filter immediately. We describe the detail in

section 3.6. Fig. 29 shows the flow chart to synchronize CPU with the three

accelerators at macroblock-level. At the beginning of each stage,

1. CPU proceeds to decode the CAVLD of (n+1)-th macroblock header.

2. CPU sends the data to the IQ-IDCT accelerators for IQ-IDCT of the

(n-1)-th macroblock. At the same time, the IQ-IDCT accelerator outputs IQIDCT

results and performs reconstruction described in Chapter 4.

3. In an adaptive manner described in Chapter 4, CPU sends the data of

neighboring macroblocks and IQ-IDCT passes the reconstruction results to the

deblocking filter accelerators. At the same time, the deblocking accelerator

performs the filtering of the (n-1)-th macroblock.

4. CPU receives the filtered data and writes the data to reference memory.

 39

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Frame Decoding
Initialization

MB_Type
Decoding

Intra_MB?

Get Intra Prediction
Modes

CAVLD for (N+1)th-
MB

Get Inter Motion
Vector

Skip_MB?

Intra Prediction

Dedicated Motion
Compensation
co-processor

Dedicated Deblocking
filter co-processor

All MB decoded?

One Frame
decoding completed

Emulated on
FPGA

CPU

Yes No

Yes
No

interrupt

Intra_MB?

Send data of Nth-MB to MC
co-processor

Send data of (N-1)th-MB
adaptively to Deblocking filter

Yes

Dedicated IQ-IDCT
& Reconstruction

co-processor

Receive filtered (N-1)th-MB

Send prediction results of Nth-
MB to MC memory

Send data of (N-1)th-MB to
IQ-IDCT co-processor

Yes

No

No

Fig. 29. Flowchart to synchronize CPU with the three accelerators at macroblock

(MB)-level.

5. If the n-th macroblock is inter-coded, CPU sends the MC data to the MC

accelerator for motion compensation of the n-th macroblock. If the macroblock is

intra-coded, CPU sends the results of intra prediction to the MC local memory for

the reconstruction of the n-th macroblock.

 40

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

3.6 Non-buffered Memory Architecture for

IQ-IDCT and Deblocking filter

Memory architecture usually has great impact on the cost, performance and power

consumption. To improve the pipeline latency and memory cost, we propose the

non-buffered memory architecture for IQ-IDCT and deblocking filter. Traditionally,

to process the macroblock pipelining of IQ-IDCT and deblocking filter, we can use

non-shared memory architecture or shared memory architecture [33] described as

follows. Fig. 30 shows the non-shared architecture. The IQ-IDCT and deblocking

filter have their own single-ported local memory SRAM_1 and SRAM_2 respectively

to store macroblock-sized data. To start deblocking the current macroblock, the

IQ-IDCT reconstructed results stored in SRAM_1 have to load to SRAM_2 first.

During the time of data copy from SRAM_1 to SRAM_2, IQ-IDCT and deblocking

filter can not access SRAM_1 and SRAM_2 to perform calculation because of lack of

memory bandwidth. Hence, the time of data copy causes the delay time in pipeline

schedule and reduces the performance.

Besides, to enhance the throughput, some prior deblocking works propose the

architecture of shared memory [17] or dual-ported memory [14],[16],[19]. Fig. 31

represents the shared architecture for IQ-IDCT and deblocking filter modules. By

alternatively using the SRAM_1 and SRAM_A, we can load new macroblock data to

SRAM_A prepared for next IQ-IDCT calculation while we are operating IQ-IDCT

calculation for current macroblock in SRAM_1. The same method can be applied to

deblocking filter by alternatively using the SRAM_2 and SRAM_B. Hence, the

latency of data copy can be removed. However, some problems of shared architecture

have to be considered:

 41

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Fig. 30. Architecture of non-shared memory design

Fig. 31. Architecture of shared memory design.

1. Shared architecture is not suitable for hardware and software co-operation.

Take our system design as example, we realize the CAVLD by software.

Hence, the shared architecture can not be applied to the transaction of CAVLD

and IQ-IDCT because the CPU can not load CAVLD results to IQ-IDCT and

calculate CAVLD for next macroblock in parallel. Once the shared

architecture can not be applied to the transaction of CAVLD and IQ-IDCT, it

can not be applied to the transaction of IQ-IDCT and deblocking filter either.

2. Shared architecture requires double size of memory buffer that in general

increase the overall cost significantly. If the IQ-IDCT and deblocking filter

 42

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Fig. 32. Architecture of non-buffered design.

modules are integrated in the compensation loop of the encoder, the designer

may not prefer to increase the cost because the critical pipeline latency is made

by motion estimation.

3. The frequent memory access in shared architecture costs more power

consumption than the one in non-shared architecture.

Therefore, to improve pipeline throughput, we propose a non-buffered architecture for

IQ-IDCT and deblocking filter modules. Fig. 32 shows the non-buffered architecture

for IQ-IDCT and deblocking filter. It mainly includes a bus-interleaved deblocking

filter accelerator and a bus interleaved IQ-IDCT accelerator described in Chapter 4.

With the bus-interleaved scheme, the data transfer and functional operation can be

performed in parallel. Hence, our IQ-IDCT accelerator can pass the reconstruction

results to deblocking filter while it performs transforming for current macroblock.

Also, deblocking accelerator can perform deblocking operation while it is receiving

the reconstruction results. Hence, the macroblock-size memory for buffering

reconstruction results can be removed.

As compared to the non-shared and shared memory architecture, Fig. 33 shows

the pipeline schedule comparison. Basically, the proposed non-buffered architecture

has some advantages:

1. It has lower memory cost. Our non-buffered architecture can achieve the same

performance as shared memory architecture but reduce significant memory cost.

By utilizing the non-buffered architecture, the intermediate memories

 43

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

(SRAM_1, SRAM_2, SRAM_A and mode.SRAM_B shown in Fig. 30 and Fig.

31) can be removed.

2. It has better latency than non-shared memory architecture. We can overlap the

IQ-IDCT and reconstruction with the deblocking process. Also, the

bus-interleaved design of IQ-IDCT and deblocking filter overlap the time of

data transfer and the time of hardware calculation. Therefore, the pipeline

latency can be reduced.

3. It cost lower power consumption. Non-buffered architecture has less memory

access frequency due to the less intermediate memories are used. Hence, the

power consumption of memory access is lower.

 44

CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

Fig. 33. Pipeline schedule comparison

 45

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Chapter 4

Hardware Accelerators for
H.264/MPEG-4 AVC Decoder

4.1. Introduction

We have learned the macroblock pipelining architecture for H.264/MPEG-4 AVC

decoder in Chapter 3. In the pipeline schedule, four functional modules of CAVLD,

MC, IQ-IDCT and deblocking filter perform the decoding process in a macroblock by

macroblock manner. Based on software/hardware partition methodology, we realize

three hardware accelerators of MC, IQ-IDCT and deblocking filter and implement

CAVLD and other modules by software. In this chapter, we describe the architecture

designs for these accelerators.

4.2. Bus-interleaved Deblocking Filter

4.2.1 Overview of State-of-art Works

Among various coding tools in H.264, the in-loop deblocking filtering has significant

impact on the visual quality improvement. To reduce the blocking artifact, the in-loop

deblocking filter adaptively conducts the filtering along the boundaries of each 4x4

block according to the boundary strength (bS), the quantization parameter (Qp) and

the content of the block. The blocking artifact is removed. However, the improvement

is at the cost of intensive computation and memory access.

 46

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

For real-time applications, the deblocking filtering becomes one of the performance

bottlenecks. In [12]-[20], dedicated hardware was developed for acceleration. Table 7

shows the main features of prior works for H.264/MPEG-4 AVC deblocking filter.

Specifically, the architecture of [18] is for frame-based filtering. The deblocking

filtering is invoked after the reconstruction of the entire frame. Apparently,

frame-based filtering requires a frame buffer and longer system latency. To reduce the

buffer size and latency, macroblock-based (MB-based) filtering architectures were

proposed in [12]-[17],[19],[20]. The filtering can be started upon the reconstruction of

a macroblock. To achieve high throughput, in [14],[16],[18]-[20], dual-ported SRAM

is used to simultaneously conduct the reading and writing during the filtering. Also,

[17],[20] utilize frame-length memory to buffer data of neighboring macroblock.

However, the high throughput is at the cost of complex and costly memory

architecture. In addition, for filtering a macroblock, [14],[16],[19] need to first buffer

the entire macroblock. The hardware is idled for waiting the data. Moreover, the data

movement of [14]-[20] is not mode aware which means that the data transmission

overhead is not minimized. Hence, in this thesis, we propose a parallel processing

architecture and a more efficient data transmission scheme to improve the

performance.

4.2.2 Proposed Adaptive Transfer Scheme

In this thesis, our deblocking filtering is designed to operate at macroblock level. The

entire frame is filtered in a macroblock-by- macroblock manner and the macroblocks

within a frame are processed in a raster scanning order. The filtering can be started

upon the reconstruction of a macroblock. For filtering a macroblock, we need to first

retrieve the reconstructed data from the embedded memory (or certain module) and

transfer the data to the dedicated accelerator via a bus. As more and more dedicated

accelerators are deployed, the limited and shared bus bandwidth could become the

performance bottleneck. To reduce the demand of bus bandwidth, we propose an

adaptive macroblock transmission scheme.

 47

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Table 7: Main features of prior works for H.264/MPEG-4 AVC deblocking filter

 [14], [16] [15] [17] [18] [19] [20]

Average

macroblock

Latency

(cycles)

614 386 250 >600 510 286

SRAM

Memory

Architecture

2x

Dual-port

1x

Single-port

3x

Single-port

1x

Dual-port

2x

Dual-port

1x

Single-port

1x

Dual-port

1x

Single-port

Local

Memory

Size (bits)

96x32 +

64x32

80x32 96x32x2 +

2xFrame

Widthx32

Frame size Dual:

88x32

+72x32

Single:

32x32

Dual:

64x32

Single:

2xFrame

Widthx32

Processing

Throughput

(1280x720,

100Mhz)

71.9fps

111.1fps

N/A

54.5fps

45.2fps 97.1fps

Gate Count

(UMC

0.18um)

20.6K 9.2K 19.6K N/A N/A 14.5K

 48

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 34. macroblock data and its adjacent blocks used for macroblock-based

deblocking filtering.

A. MB Mode Classification

Fig. 34 depicts the data required for filtering a macroblock. As shown, in addition to

the current macroblock, the adjacent 4x4 blocks at the right and the left boundaries

are also needed. In [14]-[20], fixed macroblock data are transferred to the accelerator.

However, we find that not all the 4x4 blocks within a macroblock are to be filtered.

Thus, we can more efficiently use the bus bandwidth by minimizing the redundant

data transfers. To do so, we define 8 macroblock filtering modes according to the

filtering necessity of the left macroblock boundary, the top macroblock boundary and

the current macroblock. Table 8 and Table 9 summarize the corresponding data size

transfer macroblock data of each mode. For example, mode 5 denotes the case in

which only the left and the top macroblock boundaries are required for filtering. As a

result, for the luminance part, we simply need the adjacent 4 blocks in the left

macroblock, the adjacent 4 blocks in the top macroblock and the adjacent 7 blocks in

the current macroblock. By the same token, one can derive the data size for the

chrominance part. Totally, the data transfer size required for filtering a mode 5

macroblock is 116 words which include 60 words for the luminance component and

56 words for the chrominance part. Following the same principle, one can derive the

data size for the other modes. By distinguishing different filtering modes, we can

 49

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

 50

Table 8. Filtering mode for a macroblock

Mode Left* Top* Current
macroblock

Data Size**

1 Y Y Y 160

2 N Y Y 128

3 Y N Y 128

4 N N Y 96

5 Y Y N 116

6 N Y N 64

7 Y N N 64

Skip N N N 0
*: The macroblock boundary required for filtering.

**: Data transfer size in words.

Table 9. Transfer macroblock data for the 8 filtering modes

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Akiyo Skip
83%

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 Skip
mode

Foreman
Akiyo

Fig. 35. macroblock filtering mode distribution in Akiyo and Foreman sequences
that are coded at QCIF@15fps 64Kbps with JM6.0.

minimize the redundant data transfers.

B. Macroblock Filtering Mode Distribution

Fig. 35 shows the mode distribution of Akiyo and Foreman sequences based on JM6.0.

Without mode classification, [14]-[16],[18],[19] treat all macroblocks as mode 1, i.e.,

all the input samples shown in Fig. 34 are to be transferred. Particularly, [17],[20]

treats all macroblocks as mode 4 because they previously buffer the left macroblock

and one row of top macroblocks. From Fig. 35, we learn that different modes have

different weightings. Specifically, mode 1 is actually less than 30% and mode 4 is less

than 5%. In the extreme case of Akiyo, most macroblocks use skip mode which does

not require any input samples. Thus, [14]-[20] incur many redundant data transfers.

With the filtering mode classification, we can more efficiently use the bus bandwidth.

According to our mode analysis, in Akiyo sequence, we can save 94% of the data

transfers used in [18], 89% of those in [14]-[16],[19] and 85% of those in [17],[20].

Similarly, in Foreman sequence, our design can save 70% of the data transfers in [18],

 51

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 36. Proposed bus-interleaved architecture.

41% of those in [14]-[16],[19], and 25% of those in [17],[20]. As compared to

[14]-[19], significant data transfer reduction is achieved.

In addition, as compared to [17],[20], our design shows benefit with much less

memory usage. The detail comparison will be shown in Section 4.2.4.

4.2.3. Proposed Bus-interleaved Architecture

To reduce the processing latency, we propose a bus-interleaved architecture in

[12],[13]. Specifically, we perform the filtering and the data transfer in parallel.

Different from the prior designs, [14],[16]-[19], we can start the filtering while the

data is being streamed in and out. The processing latency is reduced due to the

parallelism.

A. Proposed Bus-interleaved Architecture

Fig. 36 shows our proposed architecture. It mainly includes four components:

 52

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 37. Operation of the transposed memory (Reg2).

1. One-dimensional Adaptive FIR Filter

The one-dimensional FIR filter adaptively performs the horizontal/vertical filtering

in a row-by-row manner. For each row, it takes 8 input samples from two adjacent

4x4 blocks to conduct filtering. Accordingly, it produces 4 filtered results and 4

intermediate results for the filtering of next block.

2. Single-ported SRAM

A single-ported SRAM is used as local memory for buffering the horizontally

filtered and transposed macroblock. Specifically, for the luminance component, it

stores all the 4x4 blocks in the current macroblock (i.e., 64x32 bits) and the

adjacent 4x4 blocks in the top and the left macroblocks (,i.e., 32x32 bits). The total

size of the SRAM is 96x32 bits. In our design, the filtering of chrominance and

luminance components shares the same memory.

3. 4x4 Pixel Arrays (Reg1 and Reg2)

In Fig. 36, Reg1 buffers the intermediate results produced by the FIR filter. On the

other hand, Reg2 acts as a transposed memory. Particularly, Reg2 performs the

transposition by storing the data in either Horizontal-In-Vertical-Out or

Vertical-In-Horizontal-Out fashion. Fig. 37 shows an example of the transposition

 53

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 38. Sequential edge processing order of (a) horizontal filtering

and (b) vertical filtering in a luminance macroblock.

Fig. 39. The 4x4 block input order to the dedicated hardware.

where Row(n, Bm) represents the n-th row of m-th block and Col(n, Bm) denotes

the n-th column of m-th block. Specifically, Fig. 37 (a) depicts the case as the

horizontally filtered Block 0 is being written to Reg2 in a row-by-row manner.

After Block 0 is completely buffered in Reg2, Fig. 37 (b) illustrates that the

transposition is done by writing Block 0 to the SRAM in a column-by-column

manner. Particularly, after Col(1, B0) is stored in the SRAM, we filled out the left

space in Reg2 with Row(1, B1), i.e., the first row of next horizontally filtered

block. Such replacement is continued until horizontally filtered Block 1 is

 54

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

completely buffered in Reg2. Since Block 1 is stored column-by-column in Reg2,

we transpose Block 1 by outputting the data row-by-row to the SRAM. Such

cyclical rotation between Horizontal-In-Vertical-Out and

Vertical-In-Horizontal-Out is conducted throughout the entire deblocking process.

Traditional designs [14],[16],[18] require stalls for block transposition. However,

our seamless design requires no stalls.

4. Data Flow Control Unit

The data flow control unit consists of a finite state machine which controls

synchronization among 1-D FIR filter, 4x4 pixel arrays and local SRAM buffer.

Moreover, it responses to the deblocking filtering request from the AHB bus.

B. Operation of Bus-interleaved Architecture

To describe the operation of our bus-interleaved architecture, we use the filtering of a

mode 1 macroblock as an example. Fig. 38 shows the processing order of horizontal

and vertical filtering for a mode 1 macroblock and Fig. 39 depicts the sequential block

input order to the dedicated accelerator. In Fig. 40, we show the status of our

bus-interleaved architecture during the horizontal filtering. Here, we assume Reg1 has

buffered the non-filtered samples of Block 0. To perform the horizontal filtering for

the edge between Block 0 and Block 1 in Fig. 39, the FIR filter takes Row(1,B1) from

the bus and Row(1,B0) from the 1st row of Reg1 for computation. After the filtering,

we overwrite the 1st row of Reg1 with the intermediate results,

Row(1,B1)_intermediate, and save the horizontally filtered results, Row(1,B0)_h, in

the 1st row of Reg2. The other rows are processed in the same way. When the

horizontally filtered Block 0 is completely stored in the Reg2, we transpose the block

by writing it to the SRAM in a column-by-column fashion. While the SRAM is being

written, the FIR filter performs the horizontal filtering for the edge between Block 1

and Block 2 by receiving Row(n,B2) from bus and retrieving

Row(n,B1)_intermediate from Reg1. Such process is continued until the horizontal

filtering of a macroblock is done. After the horizontal filtering, we read the

 55

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 40. Data flow of horizontal filtering in the bus-interleaved architecture.

Fig. 41. Data flow of vertical filtering in the bus-interleaved architecture.

 56

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 42. Analysis of processing latency reduction

Input MB pixels

 bS level calculation

Filtering process

Output MB pixelsInput control signals

C C
Step 0 : Traditional design, e.g., [14],[16]

Turn around time

bS for current MB

Step 1 : Apply bus-interleaved scheme

0 100 200 300 400 500 600

Cycles

Step 3 : Apply adaptive transmission scheme (in SKIP mode)
T3

T1

T2

T1: Reduced latency from bus-Interleaved scheme
T2: Reduced latency from overlapping of bS calculation
T3: Reduced latency from adaptive transmission scheme
L: Luminance component
C: Chrominance component

bS for current MB

L L

L L C C

Step 2 : Apply bS overlapping scheme

bS for next MB

L L C C

bS for next MB

horizontally filtered macroblock from the SRAM and perform the vertical filtering in

the same manner. Specifically, during the vertical filtering, the input data of FIR filter

is now configured to be from the SRAM. In addition, the filtered and transposed data

is written to the CPU instead of local SRAM. Fig. 41 shows the configuration of our

 57

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Table 10. Macroblock latency for each transfer mode

Transmission Mode Latency Per macroblock
(cycles)

1 374

2 310

3 310

4 246

5 286

6 182

7 182

SKIP 50

bus-interleaved architecture during the vertical filtering. Note that the luminance and

the chrominance components are sequentially processed in the same manner.

C. Overlapping of bS Level Calculation

In our design, the bS level calculation is done by hardware. Particularly, to reduce

the macroblock processing latency, the bS level for current macroblock is calculated

in the previous macroblock cycle so that the data dependency between the bS level

and the filtering can be removed. Moreover, we overlap the computations of filtering

and bS level calculation. Note that there is a turn-around time between the last input

data and the first filtered output result. During the turn-around time, the bus is idled.

Thus, we use this turn-around time to transmit the data required for bS level

calculation and conduct the actual computation.

D. Processing Latency Analysis

Fig. 42 illustrates how our proposed schemes can reduce the processing latency for

filtering a macroblock. We show the improvement of each proposed scheme step by

step. For comparison, Step 0 shows the processing latency of traditional design, e.g.,

[14], which does not deploy bus-interleave architecture and macroblock adaptive

transmission scheme. As shown in Step 1, our bus-interleaved architecture offers 1.5x

performance improvement over the design of [14] due to the parallelism of data

 58

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

50

100

150

200

250

300

350

400

450

500

550

600

650

1 2 3 4
Test sequeces

La
te

nc
y

 p
er

 M
B

 (c
yc

le
s)

[14],[16] [15] [17]

[19] [20] Our design

Fig. 43. Comparison of average latency per macroblock (including 50 cycles for bS

l l ti)
transfer and filtering. Moreover, with the overlapping of bS level calculation, Step 2

shows that the processing latency can be further reduced. Furthermore, Step 3 shows

that our adaptive transmission scheme can reduce the processing latency to be merely

50 cycles when the skip mode is detected. In the skip mode, there is no need to

conduct data transfer. By the adaptive transmission scheme, our design can detect skip

mode and avoid the redundant data transfers. However, without mode aware,

traditional design [14]-[20] incur many redundant data transfers even in the skip mode.

Table 10 lists the cycle counts for the other macroblock modes. According to our

mode analysis in Fig. 35, our design averagely requires 86 to 244 cycles for filtering a

macroblock. As compared to [14]-[20], Fig. 43 shows that our design has up to 7.1x

performance improvement. Significant latency improvement is achieved.

 59

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

4.2.4 Comparisons of Simulation Results

In this Section, we show the comparisons of different hardware designs. Moreover,

we analyze the memory access frequency in different approaches. Lastly, we use an

ARM based H.264 decoder as an example to demonstrate the system performance of

our design

A. Comparison of Hardware Implementation

Table 11 compares our accelerator with the state-of-the-art designs [14]-[20]. As

shown, for filtering a macroblock, our design averagely requires less cycle counts.

Specifically, as compared to [14],[16],[18]-[20], we provide 1.2x to 7.1x performance

improvement with simpler and smaller single-ported memory. In addition, we have up

to 4.5x performance improvement as compared to [15],[17]. While clocking at

100MHz, our design can support 2560x1280@30Hz processing throughput.

Additionally, our bus bandwidth requirement

is down to 6%-30% of [18], 11%-59% of [14]-[16],[19] and 15%-75% of [17],[20].

B. Comparison of Memory Access Frequency

Table 12 further compares the local SRAM access frequency of different approaches.

For filtering a macroblock, [14], [16]-[19] require read and write operation to

previously buffer the input macroblock. In addition, [17], [20] also need to buffer one

row of top macroblocks and the left macroblock. During the horizontal and vertical

filtering, [14],[16],[18],[19] require more frequent read and write operation.

Particularly, for [17], they use additional 4x4 pixel arrays to buffer the horizontally

filtered and transposed results instead of using local memory. As compared to the

prior works, our design simply needs one write operation for horizontal filtering and

one read operation for vertical filtering. There is no need to previously buffer the

input macroblock. Significant memory access reduction is achieved. Less frequent

memory access and simpler memory architecture bring the advantages of lower power

consumption and lower cost.

 60

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Table 11. Comparisons of state-of-the-art deblocking filter designs.

 [14], [16] [15] [17] [18]

Average macroblock

Latency (cycles)

614 386 250 >600

SRAM Memory

Architecture

2x

Dual-port

1x

Single-port

3x

Single-port

1x

Dual-port

Local Memory Size (bits) 96x32 +

64x32

80x32 96x32x2

+ Frame

Widthx2x32

Frame

size

Number of 4x4 Pixel

Arrays

2

2 4 4

Number of 1-D Filter 1 1 1 1

Bandwidth Requirement

(Normalized with respect

to [18])

50% 50% 40% 100%

Processing Throughput

(1280x720, 100Mhz)

45.2fps 71.9fps 111.1fps N/A

Gate Count (UMC

0.18um)

20.6K 9.2K 19.6K N/A

 61

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Table 11(continue). Comparisons of state-of-the-art deblocking filter designs.

(Continue) [19] [20] Our design

Average macroblock

Latency (cycles)

510 286 86 – 244

SRAM Memory

Architecture

2xDual-port

1xSingle-port

1xDual-port

1x Single-port

1xSingle-port

Local Memory Size (bits) Dual: 88x32

 + 72x32

Single: 32x32

Dual: 64x32

Single: Frame

Widthx2x32

96x32

Number of 4x4 Pixel

Arrays

11

(3 pixel array

+8 FIFO)

6

(2 pixel array

+4 FIFO)

2

Number of 1-D Filter 2 1 1

Bandwidth Requirement

(Normalized with respect

to [18])

50% 40% 6% – 30%

Processing Throughput

(1280x720, 100Mhz)

54.5fps 97.1fps 113.8 –322.9fps

Gate Count (UMC

0.18um)

N/A 14.5K 11.8K

 62

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

 63

Table 12. Comparisons of local memory access frequency

 [14],[16],

[18], [19]

[17] [20] Our

design,[15]

Current

macroblock

Buffering

Read/Write Read/Write None None

Left and Top

macroblocks

Buffering

None Read/Write Read/Write None

Horizontal

Filtering
Read/Write None Write Write

Vertical

Filtering
Read/Write None Read Read

Fig. 44. Architecture of bus-interleaved IQ-IDCT

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

4.3. Accelerator for IQ-IDCT

4.3.1. Bus-interleaved IQ-IDCT

Prior work [34] proposed a parallel architecture for DCT in H.264/MPEG-4 AVC.

This parallel architecture uses two sets of 1-domension DCT module to parallel

process 2-dimension DCT and achieve 100% hardware utilization. To realize the

IQ-IDCT with bus-interleaved architecture, we take advantage of the parallel

architecture. Fig 44 shows the bus-interleaved architecture of IQ-IDCT. It mainly

includes a 4x4 transposed buffer and two sets of one-dimension inverse DCT, an

embedded AHB bus, a bus-interleaved controller and an inverse quantization module.

To describe the processing flow of IQIDCT, the quantized DTC data are inputted

from bus row by row at first. At the same time, we can perform inverse quantization

and transform by using the inverse quantization module and the first 1-dimension

inverse transform. The results are stored on 4x4 transposed registers in 4 cycles. Next,

the current block on transposed buffer can perform 1-dimension inverse DCT column

by column by using the second inverse transform module to complete 2-dimension

inverse transform. To maintain the 100% utilization of transform modules, the first

1-D inverse transform module can process the inverse transform of the next block

while the second inverse transform module is processing the inverse transform of the

current block. Besides, the bus-interleaved controller controls the reading and writing

of transposed registers based on the bus address. Hence, the data transfer and

transform can be performed in parallel without mismatches. In our simulation, our

IQ-IDCTdesign takes 104 cycles to transform one macroblock. The area used is 6680

gates.

4.3.2. Interleaved process for IQ-IDCT and deblocking filter

To describe the interleaved process for IQ-IDCT and deblocking filter, Fig. 45

 64

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

 65

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

Fig. 46. Interleaved process for IQ-IDCT, reconstruction and deblocking filter.

150

200

250

300

350

400

450

500

Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 SKIP
Transfer Mode

La
te

nc
y

 p
er

 M
B

 (c
yc

le
s)

With Interleaved Processing
Without Interleaved Processing

Fig. 47. Latency of inverse transforming and deblocking a macroblock.

represents the decoding flow for a macroblock. The macroblock-sized quantized DCT

coefficients (C0-C15) are transformed inversely into IQ-IDCT residuals (T0- T15).

Next, reconstruction macroblock (R0-R15) is produced after predictions (P0-P15)

have added with the residuals. Finally, the reconstruction macroblock and the data

from upper and left macroblock are passed for deblocking filtering. By using

bus-interleaved IQ-IDCT and deblocking filter, the data transmission, IQ-IDCT

calculation, reconstruction and deblocking filtering can be performed in parallel. Fig.

 66

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

46 shows the interleaved process for IQ-IDCT, reconstruction and deblocking. By

adaptive transfer scheme for deblocking filter described in section 4.2, the processing

latency is variable depending on the transfer mode. Fig 47 shows the processing

latency for inverse transforming and deblocking a macroblock. With interleaved

process, the processing latency for IQ-IDCT can overlap with processing latency for

deblocking filter so as to increase system performance.

4.4. Accelerator for Motion Compensation

Y control signal

Local Memory

(12Kbits SRAM)

MUX MUX

Filter
Y1

Filter

Y2

Filter
UV

Reg Reg

MUX MUX/ADDER

+

U/V control singal

Filter
UV

Filter
UV

Interpolation engine for Luma Interpolation engine for chroma

Fig. 48. Interpolation architecture for quarter-pel motion compensation [10].

To speed up interpolation, we design a dedicated co-processor for motion

compensation [10] as show in in Fig. 48. For a macroblock interpolation, the motion

compensation uses a local memory to store 1500 integer pixels and two interpolation

engines for parallel processing of the luminance and chrominance components. Each

engine consists of multiple multipliers and accumulators. Particularly, the multiplier is

 67

CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER T

implemented in a hardwired manner to maximize performance. To get one

interpolated macroblock, the intermediate results (output) of row and column filtering

in each engine may be fed back to conduct the filtering of another columns and rows.

The AVC specification uses variable block size motion compensation. The minimum

granularity for motion compensation is a 4x4 block. Therefore, our interpolation

engine is designed for a 4x4 block. The interpolation of each macroblock takes 16

iterations. In the worst case, our design takes 1280 cycles to interpolate one

macroblock. As operating at 10 MHz, the throughput for each macroblock is 7812

macroblock/sec. The area used is 11172 gates.

 68

CHAPTER 5. EXPERIMENT RESULTS

Chapter 5

Experiment Results

5.1 Experiment Environment and Tools

In our experiment, we design an ARM-based platform for the H.264/MPEG-4 AVC

decoder. Basically, our decoding system is constructed with the configuration in Fig.

49. Specifically, our ARM integrator baseboard [35] (as shown in Fig.50) employs

JTAG (Joint Task Action Group) interface to connect with an ARM MultiICE (as

shown in Fig.51). The MultiICE connects to a host computer to conduct the

communication between computer and ARM board. Our ARM board mainly includes

two parts, core module and logic module. In the core module, there are ARM966 CPU,

embedded SRAM (1 MBytes), and external memory interface. On the other hand, the

dedicated accelerators are implemented on the logic module which is a FPGA

(Filed-programmable Gate Array). Moreover, ARM board employs the AHB bus

interfaces to communicate the core module and logic module. Besides, the clock rates

for ARM CPU, FPGA and AHB bus list in Table 13.

To facilitate the verification, we utilize ARM developer suite v1.2 [36] to develop

our system. It mainly includes two development software tools, CodeWarrior and

AXD, which window interfaces are shown in Fig.52 and Fig.53 respectively. In the

software design flow of Fig.55, our source codes are coded as assembly (for firmware

design) and C/C++ language. At first, we employ CodeWarrior to compile these

source codes and produce ARM-based link object files. Then, the CodeWarrior link

 69

CHAPTER 5. EXPERIMENT RESULTS

Table 13. The processing rate of CPU, FPGA and AHB bus.

Modules Processing Rate

ARM966E-S 130MHz

FPGA 10MHz

AHB 33MHz

Fig. 49. Our peoposed decoding system

these object files to generate executable AXD code for ARM966E-S processor. Next,

the development host use AXD to interfacing the JTAG port on ARM board through

the ARM multiICE cable. Hence, we can run the executable file at the ARM966E-S

processor and debug it using AXD environment.

On the other hand, we develop our hardware designs based on the design follow

as shown in Fig.56. We code our hardware designs as Verilog RTL language. After

debugging and simulation using the tools of Cadence Verilog Simulator, Debussy,

 70

CHAPTER 5. EXPERIMENT RESULTS

 71

Fig. 50. ARM integrator baseboard.

Fig. 51. ARM MultiICE.

Fig. 52. Window interface to CodeWarrior [36].

CHAPTER 5. EXPERIMENT RESULTS

 72

Fig. 53. Window interface to AXD [36].

Fig. 54. Window interface to Xlinx Project Navigator [37].

Fig. 55. Software design flow.

Fig. 56. Hardware design flow.

CHAPTER 5. EXPERIMENT RESULTS

and Logic Synthesis, we employ the tool of Xlinx Project Navigator [37], which

window interface show in Fig.54, to perform FPGA synthesis and P&R. The

produced programming file is burned on the FPGA module on ARM board. Next, to

verify software and hardware simultaneously, we can probe the hardware signal from

FPGA by using the logic analyzer and debug the software and firmware by using

AXD.

5.2 System Performance Comparison Using

H.264/MPEG-4 AVC Decoder

In this section, we use an ARM based H.264/MPEG-4 AVC decoder as an example to

demonstrate the system performance of our design. In Table 14, we classify 4 types of

architecture based on whether the software is optimized or whether the MC, IQ-IDCT,

or deblocking filter accelerator is integrated. To compare the system performance of

the 4 types of architecture, Fig. 57 illustrates the decoding throughput for the 4

architectures in frames per second (fps) on ARM966 CPU. Table 15 shows the

experiment parameters of test sequences. We describe these architectures as follows:

1. The case of JM6.0 Decoder [38]: When only the reference software of

H.264 JM 6.0 decoder is executed on ARM-based platform, the decoding

speed is about 0.3 to 1.2 fps for the video sequences in QCIF resolution.

2. The Architecture A: On the other hand, we optimize the software without

integrating any hardware accelerator in Architecture A. The decoding speed

is about 2.3 to 8.1 fps and 5 fps on the average.

3. The Architecture B: We replace the software MC and IQ-IDCT with 2

accelerators of MC and IQ-IDCT to our system in Architecture B. As

compared to only software optimization of Architecture A, the throughput

of Case B is increased by 30%~60% and 6.6 fps on the average.

4. The Architecture C: The accelerator of bus-interleave deblocking filter is

embedded to our system in Architecture C. As compared to the software

deblocking filter in Arcitecture B, our proposed deblocking accelerator can

 73

CHAPTER 5. EXPERIMENT RESULTS

Table 14. Four ahcitectures for performance evolution.

 JM6.0
Decoder

Architecture
A

Architecture
B

Architecture
C

MC SW Optimized
SW

HW HW

IQ-IDCT SW Optimized
SW

HW HW

Deblocking
Filter

SW Optimized
SW

Optimized
SW

HW

CAVLD &
Others

SW Optimized
SW

Optimized
SW

Optimized
SW

Performance Comparison

0

2

4

6

8

10

12

JM6.0 Decoder Architecture A Architecture B Architecture C

(f
ps

)

Coastguard Foreman
Mother Container
Akiyo On Average

Fig. 57. System performance comparison using h.264/MPEG-4 decoder.

 74

CHAPTER 5. EXPERIMENT RESULTS

Table15. Experiment parameters of test sequences.

Frame Size QCIF

Frame Rate 15fps

Qp I(28)P(31)

Group of Picture 1I + 149P

Reference Frame Number 5

Coastguard 13.15

Foreman 8.67

Mother 58.69

Container 14.43

Bit-rate

(kbits/s)

Akiyo 42.47

contribute up to 30% throughput improvement. Hence, the throughput ranges from

4.7 to 10.4 fps and 7.26 fps on the average.

In conclude, our overall throughput is enhanced from 0.3/1.2 fps in JM6.0 to 4.7/10.4

fps in Architecture C. Thus, our experiments show that the throughput of the

H.264/MPEG-4 AVC reference decoder can be improved by 8.6 to 15.6 times.

Besides, based on Fig. 57, some features can be observed as follows. First, the

decoding throughput is sequence dependent. Our decoder performs better for slow

motion sequences for some reasons: (1) slow motion sequences have more zero DCT

blocks, (2) slow motion sequences have high probability of using integer pixel

resolution MC, and (3) most of macroblocks in slow motion sequences require no

deblocking filtering. Hence, the decoding rate is increased due to less computation for

the MC, IDCT-IQ and deblocking filter modules with slow motion sequences.

However, less computation for hardware accelerators also results in lower percentage

of hardware operation. By Amdahl’s law, the improvement ratio using accelerators

for decoding slow motion sequences is smaller than for decoding fast motion ones. In

addition, especially for decoding slow motion sequences, the adaptive transfer scheme

described in chpater4 is important because most data transfers in slow motion

 75

CHAPTER 5. EXPERIMENT RESULTS

sequences are not required. Hence, the redundant data transfer burdens the bandwidth

and performance.

 76

CHAPTER 6. CONCLUSION AND FUTURE WORK.T

Chapter 6

Conclusion and Future Work

In this thesis, we propose a macroblock-level pipelining architecture for a

H.264/MPEG-4 AVC decoder based on both platform-based design methodology and

application specific circuit design methodology. With platform design methodology,

the software procedures and hardware modules retain a high degree of reusability.

Hence, it shortens the design cycles so that we can quickly integrate our design into

industrial application. With application specific circuit design methodology, we

conduct task partitioning and scheduling in the macroblock-level to enhance the

overall decoding throughput. The software parts control the branching data flow and

the hardware accelerators speed up the regular and computationally intensive

modules.

In the hardware acceleration designs, we present a platform based

bus-interleaved architecture for deblocking filter in H.264/MPEG-4 AVC. We have

shown that performing the data transfer and filtering operation in parallel can

significantly reduce the processing latency. Moreover, classifying macroblock

filtering mode can avoid redundant data transfer so as to efficiently use bus bandwidth.

Moreover, we utilize bus-interleaved IQ-IDCT and deblocking filter to perform data

transfer, inverse transforming, reconstruction and deblocking filtering in parallel. As

compared to traditional shared memory architecture, we have shown that we can

remove intermediate buffer and achieve the same performance.

Based on the dedicated accelerators and macroblock-level pipelining, our

proposed decoder achieves significant improvement in speed using both software and

 77

CHAPTER 6. CONCLUSION AND FUTURE WORK.T

hardware co-design. For the industrial applications, our proposed design is suitable

for low cost and high performance multimedia applications. Also, it can be quickly

embedded into the ARM based system-on-chip design.

In the future works, we dedicate to our project in two aspects:

1. Non-buffered architecture design for H.264/MPEG-4 AVC decoder

In this thesis, we have shown the low-cost and high-performance of

bus-interleaved designs. By taking advantage of the interleaved processing

method, we can implement bus-interleaved MC and intra prediction. Our goal is to

parallel process the data transfer and functional computation for all dedicated

accelerators. Hence, the interleaved processing reduces the processing latency.

Besides, we pass the intermediate data to next accelerator to avoid the usage of

intermediate buffer for macroblock-level pipelining. Thus, our proposed decoder

represents the non-buffered memory architecture among all the bus-interleaved

accelerators to achieve low cost and high performance.

2. Processor-based chip implementation

Our system is processor-based that contains an ARM processor to conduct

software operation and hardware control behavior. As compared to VLSI ASIC

circuit, it is more challengeable to implement a processor-based chip. Our goal is

to realize system-on-chip implementation. Several expected features of our chip

list as follows.

− Processor-based configuration.

− Low cost.

− Low power consumption.

− High processing ability.

− Flexibility.

− IP reusability.

 78

Bibliography

[1] Video codec for audio visual services at 64 kbit/s, ITU-T Rec. H.261, 1993.

[2] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, 1998.

[3] Information technology -- Coding of moving pictures and associated audio for

digital storage media at up to about 1,5 Mbit/s -- Part 2: Video, ISO/IEC

11172-2, 1993.

[4] Information Technology - Generic Coding of Moving Pictures and Associated

Audio Information: Video, ISO/IEC 13818-2 and ITU-T Rec. H.262, 1996.

[5] MPEG-4 Overview, ISO/IEC JTC1/SC29/WG11 N4668, 2002.

[6] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, "Overview of the

H.264/AVC Video Coding Standard," IEEE Trans. Circuits Syst. Video

Technol., vol. 13, pp. 560-576, July. 2003.

[7] http://www.arm.com, ARM Ltd

[8] ARM968E-S Technical Reference Manual, ARM Ltd., 2004.

[9] AMBA™ Specification Rev 2.0, ARM Ltd, 1999.

[10] S. H. Wang, W. H. Peng, Y. He, G. Y. Lin, C. Y. Lin, S. C. Chang, C. N.

Wang, and T. Chiang, "A platform-based MPEG-4 advanced video coding

(AVC) decoder with block level pipelining", IEEE Pacific Rim Conf. on

Multimedia, vol. 1, pp. 51-55, Dec. 2003.

[11] S. H. Wang, W. H. Peng, Y. He, G. Y. Lin, C. Y. Lin, S. C. Chang, C. N.

 79

http://www.arm.com/

Wang, and T. Chiang, “A Software-Hardware Co-Implementation of MPEG-4

Advanced Video Coding (AVC) Decoder with Block Level Pipelining, ” VLSI

Signal Processing, vol. 41, no. 1, pp. 93-110, Aug. 2005.

[12] S. C. Chang, W. H. Peng, S. H. Wang and T. Chiang, “A platform-based

de-blocking filter design with bus-interleaved architecture for H.264”, IEEE

Int’l Conf. on Consumer Electronics, pp. 293-294, Las Vegas, Jan. 2005.

[13] S. C. Chang, W. H. Peng, S. H. Wang and T. Chiang, “A Platform Based

Bus-interleaved Architecture for Deblocking Filter in H.264/MPEG-4 AVC”,

IEEE Trans. on Consumer Electronics, vol. 51, pp. 249-255, Feb. 2005.

[14] T. C. Chen, Y. W. Huang, C. H. T, T. W. Chen, and L. G. Chen, "A 1.3 TOPS

H.264/AVC single-chip encoder for HDTV applications", IEEE Int'l

Solid-State Circuits Conf., San Francisco, USA, Feb. 2005

[15] C. C. Cheng and T. S. Chang, "An hardware efficient deblocking filter for

H.264/AVC", IEEE Int'l Conf. on Consumer Electronics, pp. 235-236, Las

Vegas, Jan. 2005.

[16] Y. W. Huang, T. W. Chen, B. Y. Hsieh, T. C. Wang, T. H. Chang, and L. -G.

Chen, "Architecture design for deblocking filter in H.264/JVT/AVC", IEEE

Int'l Conf. on Multimedia and Expo. vol. 1, pp. 693-696, July 2003.

[17] T. M. Liu, W. P. Lee, T. A. Lin, and C. Y. Lee, "A memory-efficient

deblocking filter for H.264/AVC video coding", IEEE Int'l Symposium on

Circuits and Systems, pp. 2140 – 2143, May 2005.

[18] M. Sima, Y. Zhou, and W. Zhang, "An efficient architecture for adaptive

deblocking filter of H.264/AVC", IEEE Trans. on Consumer Electronics, vol.

50, no. 1, pp. 292-296, Feb. 2004.

[19] V. Venkatraman, S. Krishnan, and N. Ling, "Architecture for de-blocking filter

 80

in H.264", Picture Coding Symposium, San Francisco, USA, Dec. 2004

[20] G. Q. Zheng and L. Yu, "An efficient architecture design for deblocking loop

filter", Picture Coding Symposium, San Francisco, USA, Dec. 2004

[21] D. Marpe, H. Schwarz, and T.Wiegand, “Context-based adaptive binary

arithmetic coding in the H.264/AVC video compression standard,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.

620–644, July 2003.

[22] Bergeron, C., Lamy-Bergot, C., “Soft-input decoding of variable-length codes

applied to the H.264 standard,” Multimedia Signal Processing, pp. 87 – 90,

Oct. 2004.

[23] H. S. Malvar, A. Hallapuro, M. Karczewicz, and Louis Kerosfsky, “Low

complexity transform and quantization in H.264/AVC,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 598–603, July

2003.

[24] M. T. Orchard and G. J. Sullivan, “Overlapped Block Motion Compensation:

An Estimation-Theoretic Approach,” IEEE Trans. Image Processing, pp.

693-699, Sept. 1994

[25] S. D. Kim, J. Yi, and J. B. Ra, “A Deblocking Filter with Two Separate Modes

in Block-Based Video Coding.” IEEE Trans. Circuits Syst. Video Technol., pp.

156-161, Feb.1999.

[26] G. Martin, "A design chain for embedded systems," IEEE Computer Magazine,

vol. 35, pp. 100-103, March, 2002.

[27] T. Givargis and F. Vahid, "Platune: a tuning framework for system-on-a-chip

platforms, " IEEE Trans. on Computer-Aided-Design of Integrated Circuits

and Systems, vol. 21, pp. 1317 – 1327, Nov. 2002.

 81

[28] M. Harrand, et al., "A single chip CIF 30-Hz, H.261, H.263, and H.263+ video

encoder\decoder with embedded display controller," IEEE Journal of Solid

State Circuits, vol. 34, pp.1627-1633, Nov. 1998.

[29] M. Ikeda, et al, "SuperEnc: MPEG-2 video encoder chip," IEEE Micro

magazine, vol.19, pp. 56-65, July 1999.

[30] M. Berekovic, et al, "Muiticore system-on-chip architecture for MPEG-4

streaming video," IEEE Trans. On Circuit and System for Video Technology,

vol. 12, no. 8, pp. 688-699, Aug. 2002.

[31] K. Ramkishor and V. Gunashree, "Real time implementation of MPEG-4 video

decoder on ARM7TDMI," Proc. IEEE International Symposium on Intelligent

Multimedia, Video, and Speech Processing, pp. 522-526, May 2001.

[32] M. Zhou and R. Talluri, "DSP-based real time video decoding," Proc. IEEE

International Conference on Consumer Electronics, pp. 296-297, June 1999.

[33] Lukowicz, P, “Design of an efficient shared memory architecture using hybrid

opto-electronic VLSI circuits and space invariant optical buses”, Massively

Parallel Processing Using Optical Interconnections, pp. 231-238, Oct. 1996.

[34] T.C. Wang, Y.W. Huang, H.C. Fang, and L.G. Chen, “Parallel 4/spl times/4 2D

transform and inverse transform architecture for MPEG-4 AVC/H.264”, Circits

and Systems (ISCAS'03), vol. 2, pp. 800-803, Thailand, Taiwan, April, 2003

[35] Integrator™/LM-XCV600E+ and Integrator™/LM-EP20K600E+ User Guide,

ARM Ltd, 2001

[36] ARM Developer Suite Getting Started, ARM Ltd, 2001.

[37] Xilinx-Platform FPGA Virtex-II datasheet, Xilinx.Ltd, 2000.

[38] Joint Mode Reference Software version 6.0, ARM Ltd, 2001.

 82

張世騫(Shih-Chien Chang)
Contact Details:
E-mail address : Shihchien.ee92g@nctu.edu.tw

Key Skills:
 Hardware Design Skill:

 Verilog and VHDL coding and debugging
 Synthesis optimization
 Physical layout skill

 System Architecture Skill:

 System integration on ARM-based platform
 Firmware and Embedded C programming
 AMBA on-chip bus optimization

 Knowledge:

 Video compressor standards knowledge, e.g. H.264/MPEG4 AVC
 Digital communications and signal processing

Education:
2003-2005

Master Degree in Electronics Engineering, National Chiao Tung
University, Taiwan.

2000-2003

1999-2000

Bachelor Degree in Electronics Engineering, National Chiao
Tung University, Taiwan.
Bachelor study in Industrial Engineering & Management, National
Chiao Tung University, Taiwan.

2002 English Language School, Australia Sydney University

Publications
A. Journal Paper

1. Shih-Chien Chang, Wen-Hsiao Peng, Shih-Hao Wang and Tihao Chiang, "A
Platform based Bus-interleaved Architecture for Deblocking Filter in
H.264/MPEG-4 AVC", IEEE Trans. on Consumer Electronics, 2005.

 83

mailto:Shihchien.ee92g@nctu.edu.tw

2. Shih-Hao Wang, Wen-Hsiao Peng, Yuwen He, Guan-Yi Lin, Chen-Yi Lin,
Shih-Chien Chang, C.-N. Wang, and Tihao Chiang, "A Software-Hardware
Co-Implementation of MPEG-4 Advanced Video Coding (AVC) Decoder with
Block Level Pipelining, " Journal of VLSI Signal Processing Systems, 2004.

B. International Conference Papers

1. Shih-Chien Chang, Wen-Hsiao Peng, Shih-Hao Wang and Tihao Chiang, “A
Platform based Deblocking Filter Design with Bus Interleaved Architecture for
H.264”, IEEE Int’l Conf. on Consumer Electronics, Las Vegas, Jan. 2005.

2. Shih-Hao Wang, Wen-Hsiao Peng, Yuwen He, Guan-Yi Lin, Chen-Yi Lin,

Shih-Chien Chang, Chung-Neng Wang, and Tihao Chiang, “A Platform-Based
MPEG-4 Advanced Video Coding (AVC) Decoder with Block Level Pipelining”,
Proc. IEEE ICICS-PCM, Singapore, Nov. 2003

D. Thesis

1. Shih-Chien Chang and Tihao Chiang, " ARM-based Platform Design for
H.264/MPEG-4 AVC Decoder and Accelerator for Deblocking Filter", Master
Thesis, Dept. of Electronics Engineering, NCTU, R.O.C., 2005.

Research Project
 H.264 video encoder/decoder implementation

Research Interests
 Digital IC design
 Video encoder/decoder implementation and optimization
 Communication network optimization
 System-on-chip architecture improvement
 Biomedical signal processing and neural network

 84

	00封面.pdf
	01中英文摘要致謝.pdf
	02_Content_new.pdf
	03Figure List_new.pdf
	04Table List_new.pdf
	Chapter 1.pdf
	Chapter 2.pdf
	Chapter 3.pdf
	Chapter 4.pdf
	A. MB Mode Classification
	B. Macroblock Filtering Mode Distribution
	A. Proposed Bus-interleaved Architecture
	B. Operation of Bus-interleaved Architecture
	C. Overlapping of bS Level Calculation
	D. Processing Latency Analysis
	A. Comparison of Hardware Implementation
	B. Comparison of Memory Access Frequency

	Chapter 5.pdf
	Chapter 6.pdf
	zBibliography.pdf
	自我簡介.pdf

