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ABSTRACT

In this thesis, we present a baseline H264/MPEG-4 AVC decoder based on an
optimized platform-based design methodology. In our platform, we employ the ARM
microprocessor as the CPU core due to its high performance, low cost, and wide
application. Besides, the Advanced Microcontroller Bus Architecture (AMBA) is
integrated into our system as the on-chip bus due to its high performance and
flexibility. To improve our system, we jointly optimize the software and hardware in
the decoder. Also, we propose a macroblock-level pipelining architecture to achieve
the synchronization of the software and the dedicated hardware co-processors. In our
hardware design, three dedicated accelerators of deblocking filter, motion
compensation and inverse transform, which are the most computationally intensive
modules, are realized. Specifically, in the architecture design of deblocking filter, we
proposed an adaptive transfer scheme and a platform-based bus-interleaved
architecture. As considering the high bandwidth usage of bus for deblocking filter, we
classify the filtering mode into 8 types and use an adaptive transmission scheme to
avoid redundant data transfers so as to efficiently use the bus bandwidth. Moreover, to
reduce the processing latency, we use a bus-interleaved architecture for conducting
data transfer and filtering operation in parallel. As compared to the state-of-the-art
designs of deblocking filter, our scheme offers up to 7x performance improvement. To
compare the overall decoding performance, our experiments show that the throughput
of H.264 reference software of JM6.0 decoder can be improved by 9 to 16 times.
Finally, our proposed platform system can be easily applied in the system-on-chip
design. Also, our proposed hardware architectures are suitable for low-cost and
real-time applications.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview of Thesis

111 H.264/MPEG-4 AVC Standard

Quality

A
H.264/MPEG-4AVC

HDTV
(1920x1080)

DVD
(720x480)

VHS
(352x288)

TV conference
(176x144, 352x288

TV phone
(176x144 )

| d (H
10K 100K M 10M 100M Speed (Hz)

Fig. 1. Application range for well-known video standards.

For low bit-rate and real-time communication, the International Telecommunication

Union (ITU-T) developed a series of standards like H.261 [1] and H.263 [2]. For high

quality video application under limited bandwidth, the Motion Picture Expert Group

(MPEG) of International Standard Organization (ISO) announced the standards of

MPEG-1 [3], MPEG-2 [4], and MPEG-4 [5]. Fig. 1 shows the application range for
1
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Fig. 2. Encoding architecture for H.264/MPEG-4 AVC.

the well-known video standards. To support 720x480 of frame size under high
bandwidth, MPEG-2 has been widely employed in DVD and digital TV broadcast. On
the other hand, H.263 is suitable for TV conference and TV phones due to its high
compression ratio under low bit-rates. In 1998, MPEG-4 is announced with higher
compression ability, visual quality and computational complexity. In 2001, the Joint
Video Team (JVT) formed by ITU-T Video Coding Experts Group (VCEG) and
ISO/IEC MPEG announced the new video coding standard, H.264/MPEG-4
Advanced Video Coding (AVC) [6]. H.264/MPEG-4 AVC has the advantages of
H.263 and MPEG-4 and trades off between the coding gain and implementation cost.
Under equal video quality, H.264/MPEG-4 AVC provides double compression ratio
as compared to H.263 and 1.5 times compression ratio as compared to MPEG-4.
Besides, H.264/MPEG-4 AVC has been proven to have much better visual quality as
compared to MPEG-1, -2, -4, and H.263/+/++.

With great coding efficiency and visual quality, H.264/MPEG-4 AVC can be
widely applied to many digital video applications. For example, it can be employed in

low bit-rates wireless communication, high resolution HDTYV, digital video

2
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broadcasting (DVB), ADSL video phone and conference, high resolution DVD, high
quality digital camera application, real-time streaming on internet, 3G applications,
satellite broadcasting and so on. Besides, H.264/MPEG-4 AVC has become the
official standard for the two high resolution DVD formats, HD-DVD and Blu-ray.
Also, the Digital Video Broadcasters (DVB) and 3rd Generation Partnership Project
(3GPP) have permitted H.264/MPEG-4 AVC as the latest official video standard.
Until now, innumerable broadcasting businesses, cable providers and consumer
electronic companies have employed H.264/MPEG-4 AVC as the video coding
standard for developing their products.

Fig. 2 shows the encoding architecture for H.264/MPEG-4 AVC. Similar to
previous standards, the prediction distortion from the difference between intra/inter
prediction and reference frame is compacted by discrete cosine transform (DCT).
Then, the entropy coding encodes the DCT coefficients and output the results as bit
streams. However, to be more advanced, H.264/MPEG-4 AVC provides more
characteristic features. Table 1 shows the comparisons for the features in MPEG-2,
MPEG-4 ASP and H.264/MPEG-4 AVC. These characteristic features in
H.264/MPEG-4 AVC are described as follows:

1. Variable block size for motion estimation. Unlike previous standards that
utilize fixed size of the 16x16 macroblock, H.264/MPEG-4 AVC employs
variable block size that ranges from 16x16 macroblock down to a 4x4 block
for motion estimation.

2. Multiple reference frames. To increase coding efficiency and prediction
accuracy, H.264/MPEG-4 AVC supports multiple reference frames for inter
perdition. Even B-frame can be referenced. Besides, the reference order of
reference frame is variable instead of depending on the display order in
previous standards.

3. Quarter pixel resolution. The pixel resolution in many previous standards is
half resolution. Quarter pixel resolution is first employed in MPEG-4 part2.

In H.264/MPEG-4 AVC, the complexity of interpolation process for quarter
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Table 1. Comparisons of MPEG-2, MPEG-4 ASP and
H.264/MPEG-4 AVC.

Features MPEG-2 MPEG-4  H.264/
ASP MPEG-4
AVC
I, P,B frames Yes Yes Yes
Multiple reference frames Yes
Variable Block size Yes
Quarter pixel resolution Yes Yes
Weighted Prediction Yes
Switching pictures Yes
Slice-based motion prediction Yes
Interlace Yes Yes Yes
MB AFF Yes
GMC Yes
Integer DCT Yes
Huffman coding Yes Yes Yes
Arithmetic coding Yes
Rate distortion optimization Yes
In loop Deblocking filter Yes
Bit rate comparison 100% 61% 36%
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pixel resolution is significantly reduced.

4. Enhanced intra prediction. H.264/MPEG-4 AVC employs spatial intra
prediction. As compared to previous standards, it increases the prediction
accuracy in the details of high-motion picture.

5. Integer 4x4 DCT. H.264/MPEG-4 AVC employs integer 4x4 DCT instead

of floating point 8x8 transform in previous standards.

6. In-loop deblocking filter. H.264/MPEG-4 AVC adopts deblocking filter to
reduce blocking artifact. The deblocking filter is applied both on the encoder
and decoder. For the encoder, the deblocking filter is performed in the
compensation loop to improve the quality of reference frame so as to increase
the accuracy of inter prediction.

7. Short word length in calculation. To save implementation cost and power
consumption, H.264/MPEG-4 AVC utilizes 16 bit in calculation instead of
32 bit operation in previous standards.

8. Enhanced error resilience and network friendliness. H.264/MPEG-4
AVC can reduce the error rate resulted from the packet loss or channel
damage. Hence, it is easier to be applied on network packet control and
internet steaming service.

9. Context-based entropy coding. H.264/MPEG-4 AVC utilizes context-based
variable length coding or context-based binary arithmetic coding for the

entropy coding.

1.1.2 Platform-based Design for H.264/MPEG-4 AVC Decoder

H264/MPEG-4 AVC has been proven to have much better visual quality and
compression ability as compared to the existing standards. However, the high
complexity in H264/MPEG-4 AVC becomes the bottleneck for the low-cost and
real-time applications. To improve the system performance and reduce the cost, we
have to develop more system or architecture design methodologies for H264/MPEG-4
AVC.
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In this thesis, we present a baseline H.264/MPEG-4 AVC decoder based on an

optimized platform-based design methodology. Some characteristic features in our

system design show as follows.

1.

1.1.3

ARM-based platform: The ARM processor [7-8] is one of the most popular
32-bit microprocessor and widely employed in mobile phones, portable
devices and multimedia digital consumer applications. Hence, to quickly
integrate our proposed design into system-on-chip system and consider the IP
reusability and flexibility of on-chip bus [9], we construct our system on an
ARM-based platform.

Software/Hardware co-operation: In our system, we implement software
/hardware partition and jointly optimize the software and hardware design of
the decoder. To increase overall decoding throughput, we synchronizes the
software procedures and dedicated hardware co-processors.

Macroblock pipeline architecture: To achieve synchronization so as to
enhance throughput, we propose a macroblock-level pipelining [10-11]. In the
pipeline schedule, the entropy decoding, motion compensation, inverse
transform and deblocking filter perform the decoding process in a macroblock

by macroblock manner.

Deblocking Accelerator for H.264/MPEG-4 AVC

To conduct hardware and software partition, we profile the AVC decoder and decide

to realize 3 dedicated accelerators to speed up deblocking filter, motion compensation

and inverse transform respectively. Specifically, we propose a platform-based

deblocking filter [12-13] for H.264/MPEG-4 AVC. The deblocking accelerator

represents several features as follows.

1.

Adaptive transfer scheme: To efficiently use the bus bandwidth and reduce
the power consumption, we classify the filtering modes into various types.

According to the filtering type distribution, we propose an adaptive transfer
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1.2

scheme to avoid redundant data transfer. Hence, we can significantly reduce
bus workload and power consumption. Besides, this scheme also improves our
system performance due to less transfer time.

Bus-interleaved architecture: With bus-interleaved architecture, we perform
the filtering operation and the data transfer in parallel. Hence, processing
latency can be reduced. Besides, this bus-interleaved architecture also has the
advantages of low cost and low memory access frequency.

Non-buffered memory architecture: We propose non-buffered memory
architecture for inverse transform and deblocking process. In an interleaved
process manner, the inverse transform results can be propagated to deblocking
module immediately without to be buffered. As compared to traditional shared
memory architecture, our non-buffered architecture is more competitive that

reduces significant cost in memory buffer and memory access.

Contribution and Organization

In this thesis, we present a macroblock-level pipelining H264/MPEG-4 AVC decoder

based on an optimized platform-based design methodology. The synchronization of

the software and the dedicated hardware co-processors increases throughput.

Specifically, to speed up deblocking filter, we proposed a deblocking accelerator with

bus-interleaved architecture. For more details, the remainder of this thesis is

organized as follows:

Chapter 2 introduces the algorithm of H.264/MPEG-4 AVC decoder.

Chapter 3 describes our proposed platform-based system design for H.264
/MPEG-4 AVC decoder.

— We use platform design methodology to increase system flexibility and

reusability.

— We analyze the computational complexity for each functional module and

perform software and hardware partition.
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— We conduct software and hardware co-operation for parallel processing.

— We propose macroblock-level pipelining architecture to improve system
throughput.

— We propose non-buffered memory architecture to significantly reduce memory
cost and achieve the same performance as compared to traditional shared

memory architecture [17].

® Chapter 4 illustrates our proposed hardware accelerators for H.264/MPEG-4

AVC decoder. For the design of deblocking filter, our contributions include the

following:

— We propose adaptive transfer scheme to reduce 25%-94% bus bandwidth
requirement as compared to [14-20]. Hence, the costly frame-length buffer
used for reducing bus workload in [17],[20] can be removed.

— We propose bus-interleaved architecture to parallel process data transfer and
filtering operation. Not only reducing processing latency, the bus-interleaved
architecture can avoid the usage of costly dual-ported local memory in
[14],[16],[18]-[20].

— We propose an overlapped scheme for the calculation of boundary strength.
Hence, the calculation of boundary strength and deblocking filter can be
performed in parallel so as to reduce latency.

— Our design offer up to 7.1x improvement on processing latency and uses

simpler memory configuration as compared to [14-20].

® Chapter 5 presents the experiment results. We compare 4 types of architecture
and evaluate system performance on ARM966-based platform.

— As compared to H.264 reference software JM6.0 decoder, we have 9-16 times

improvement to achieve a decoding average rate of 7.3 fps and up to 10.4 fps

for QCIF video sequences.

® Lastly, Chapter 6 concludes this work.
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Chapter 2

H.264/MPEG-4 AVC Decoder

o
2.1 Introduction
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Fig. 3. Decoding architecture for H.264/MPEG-4 AVC.

Fig. 3 shows the decoding flow for H.264/MPEG-4 AVC decoder where the decoding

tasks are partitioned into four main parts as follows.

1.
2.
3.

Entropy coding.
Motion compensation (MC) or intra prediction.
Inverse quantization and inverse 4x4 discrete cosine transform (IQ-IDCT).

In loop deblocking filtering.
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The decoding is performed by first parsing the compressed bit-stream by entropy
coding. After the parsing, the quantized prediction residues and macroblock side
information including macroblock type, the prediction mode, and the motion vector
difference are extracted. The extracted macroblock type determines the prediction
type. The intra prediction values are derived based on the neighboring pixels for an
intra macroblock and the inter prediction values are generated from motion
compensated pixels for an inter macroblock. The addition of the prediction and the
decoded residuals produces the reconstructed frame. After the reconstruction, the in
loop deblocking filter is applied to reduce blocking artifacts and the deblocking

results are put into the frame buffer as reference frames.

2.2 Context-Based Adaptive Variable Length
Coding

In H.264/MPEG-4 AVC, there are two types of entropy coding: Context-based
Adaptive Binary Arithmetic Coding (CABAC) [21] and Context-based Adaptive
Variable-Length Coding (CAVLD) [22]. Since our design is based on the Baseline
Profile of H.264/MPEG-4 AVC, we utilize CAVLD as the entropy coding. Some
features of CAVLD are described as follows:

1. The entropy encoding order for a 4x4 block is based on zigzag scan as shown
in Fig. 4.

2. In a context-based adaptive manner, the number of non-zeros is encoded by
using a look-up table depending on the number of non-zeros in the adjacent
blocks.

3. In an adaptive manner, the value of non-zero coefficients is encoded by using

VLC look-up tables.
4. By taking advantage of many zero results produced by transform, the strings

of zeros before the last non-zeros are compacted by using run-level coding.
Fig. 5 shows the flowchart of CAVLC encoding. The right part in the figure goes on

10
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4x4 block Example
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Fig. 4. Zigzag scan order for entropy encoding.
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Fig. 5. Flow chart of CAVLC encoding.
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Fig 6. Variable partition sizes for inter prediction

an example. Number of non-zeros, number of +1/-1, signs of +1/-1, values of
non-zeros, string of zeros and each run of zero before last non-zero coefficient are
encoded in order. Also, in the decoder, we can perform CAVLD decoding in a reverse

fashion.

2.3 Motion Compensation

In H.264/MPEG-4 AVC, inter prediction has 7 types of partition size for each 16x16
macroblock. As shown in Fig.6, the basic size for a motion vector can be 16x16, 16x8,
8x16, 8x8, 8x4, 4x8 or 4x4. In an adaptive manner, we can choose larger partition size
for motion vector when a macroblock contains fewer details. Hence, the coding
complexity and blocking artifacts can be reduced.

Besides, H.264/MPEG-4 AVC utilizes quarter pixel resolution for motion vector.
To achieve quarter pixel resolution, we have to produce the sub-pixel samples first at

half pixel positions. After all half pixel samples are filtered by a 6-tap FIR filter, the
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Fig.7. Bitrate comparison for the catachrestic features of motion estimation

quarter pixel samples are produced by using bilinear interpolation between the
adjacent half pixel samples or integer-pixel ones. Besides, another important feature
for motion prediction is the utilization of multiple reference frames. Thus,
H.264/MPEG-4 AVC can provide better visual quality and more efficient encoding.
Fig. 7 shows the comparisons of bit-rates for the catachrestic features in motion
estimation.

Moreover, H.264/MPEG-4 AVC uses motion vector prediction scheme to reduce
bit-rates. Hence, only the motion vector difference (MVD), which is the difference
between the exact vector and the predicted vector, is transmitted. Then, the decoder
has to calculate motion vector by adding MVD to the motion vector prediction.
Next, we can compensate the prediction frame from multiple reference frames under

quarter pixel resolution in the decoder.

2.4 Intra Prediction

H.264/MPEG-4 AVC utilizes intra prediction when the current sample is not highly
correlated with other reference frames, such as I picture. To take advantage of the
correlation between the neighboring samples within the same frame, the current

sample can be predicted depending on the neighboring sample. By using neighboring

13



CHAPTER 2. H.264/MPEG-4 AVC DECODER

Vertical
1[2]3]4]

[=]e[=]=]>°

Diagonal down-left

Horizontal

1]2]3]4]

D-lﬁl

——
——————»
>
—

Diagonal down-right

Horizontal-down

0 1|2|3|4|5|6 7|8| 0 1|2|3|4|
| [ SN
i/// - NSNS
[ d | 4 I

Vertical-left

DC
of1]2]3]4]
a
EMeanof
¢ | 1-4,a-d
d

Vertical-right

1]2]3]4]

c.nlc.*-w =

A

Horizontal-up

01|2|3|4| 01|2|3|4|5|6| Ul|2|3|4|5|6|?|
a \ a
B b b |
B |
o @ o
Fig.8. Nine 4x4 luma prediction modes.
E B EEE R EE K D0 EEE E ] : I IEEEEDEEEDDNEEEED] I. T I’l/l Te “/1"
% -------------------- % % Mcan 0f(l_16,a-p) %
: : :;/
£ " E XA /

Fig.9. Four 16x16 luma prediction modes.

sample for prediction, H.264/MPEG-4 AVC provides 9 types of intra prediction mode

for 4x4 luminance block as shown in Fig.8. Besides, another 4 types of intra

prediction mode for 16x16 luminance macroblock as shown in Fig.9 are applied when

the current sample contain fewer details. Also, the chrominance goes the same fashion

for each 8x8 chrominance components.

2.5

Inverse Quantization
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To be more accurate in trading-off between bit-rates and quality, H.264/MPEG-4
AVC defines 52 levels for quantization. There are 52 quantization parameter (QP)
related to each quantization level. To conduct inverse quantization, we have to obtain
the quantization step size first. As shown in Fig. 10, the quantization step size
becomes double for each increment of 6 in QP. Based on the quantization step size,
the inverse quantization coefficient is obtained by the multiplicity of quantized

coefficient and quantization step size.

QP step size
S

)
S
*

o
S
*

—
(=]

Lo

e

()
(@)}
—_
[\
—
(o)

24 30 36 42 48
QP

Fig. 10. Quantization step sizes and related QP.

2.6 Inverse Discrete Cosine Transform

H.264/MPEG-4 AVC utilizes the 4x4 integer Discrete Cosine Transform (DCT) [23]
to transform prediction distortion so as to remove spatial correlation inside it. Unlike
8x8 floating point transform in previous standards such as MPEG-1, -2, -4, and H.263,
integer transform can avoid the mismatch caused by floating rounding when inverse
transform is performed. Besides, H.264/MPEG-4 AVC utilizes smaller size of a 4x4
block for transform because the correlation among prediction residuals is significantly
reduced in H.264/MPEG-4 AVC.

To transform each 4x4 block, Fig.11 (a) shows the Two-dimensional 4x4 integer
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Fig.11. Two-dimensional 4x4 (a) transform and (b)inverse transform.

4x4 Luma DC

coefficients
2x2 Chroma 2x2 Chroma
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O O o o

Fig. 12. DC coefficients within a macroblock.

transform in H.264/MPEG-4 AVC and Fig.11 (b) show the inverse transform. By
using the post-scaling and pre-scaling the scaling factors (the 4x4 matrix E in Fig 11),
the DCT and inverse DCT operation can be simplified so that only addition,
subtraction and shift operation are required. Hence, it is very suitable for low-cost and
high-speed hardware implementation.

If the current macroblock is intra-coded, the DC coefficients of each block as shown
in Fig.12 contain much energy. Hence, these DC coefficients require to be

transformed again to reduce the correlation among them so as to increase compression
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Fig.13. Two-dimensional Hadamard transform for (a) luma and (b) chroma DC

coefficients.

performance. H.264/MPEG-4 AVC utilizes Hadamard transform to transform the DC
coefficients. Fig.13 shows the Two-dimensional 4x4 Hadamard transform for luma
DC coefficients and 2x2 Hadamard transform for chroma ones. Therefore, the
decoder has to perform inverse Hadamard transform of DC coefficients first then each
block can update its DC coefficient to perform the 4x4 integer discrete cosine

transform.

2.7 Adaptive In-loop Deblocking Filter

2.7.1 Video filtering in previous standards

H.264/MPEG-4 AVC employs 4x4 DCT/IDCT for transform. However, it introduces
noticeable blocking artifact especially at low bit-rates. The blocking artifact results
from three sources: (1) the nature discontinuity of transform digital signals, (2) the
distortion of quantization which enhances the blocking effect when quantization
parameter is large, and (3) the propagation of blocking artifact from reference frames
when conducting motion compensation.

To eliminate blocking artifact, the simplest way is to utilize a FIR low-pass filter
to smooth the block boundary. However, low-pass filtering causes the blurring effect

that decreases the visual quality. In H.263, overlapped-block motion compensation
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Fig. 14. Overlapped-block motion compensation (OBMC) in 263.

(OBMC) [24] is employed to reduce the blocking artifact. The OBMC is not only
applied in the decoder to improve the visual quality of display video but also in the
encoder to increase the accuracy of motion estimation. Fig. 14 shows the
reconstruction operation in OBMC mode of H.263. Each 8x8 block is reconstructed
by a combination of the upper, bottom, left right and current block in the reference
frame. For a 4x4 block within the 8x8 block, each reconstructed pixel is the weighted
sum of 3 prediction values depending on the motion vectors from 3 adjacent blocks in
reference frame. For example as shown in Fig. 14, all pixels of the 4x4 block W’ are
constructed by the accumulation of every block W in the reference frame. By the
weighting operation, the blocking artifact can be reduced.

Different to H.263, MPEG-4 employs an adaptive deblocking filter [25]. Because
the deblocking filter is post-processing, it is only applied on the decoder to improve
the quality of the output video sequence and reference frames used by motion
compensation. The filter operations are performed along the 8x8 block edges. Based
on the sample values, one of two filter modes, smooth mode and default mode, is

judged. Then, different taps of filtering is applied depending on the quantization
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parameter. As compared to OBMC in H.263, the adaptive filter has better ability to
avoid the filtering on the image region where human vision is less susceptible to
blocking artifact. Hence, the computational complexity can be reduced.

By taking the advantages of OBMC in H.263 and the adaptive filter in MPEG-4,
H.264/MPEG-4 AVC utilizes an in-loop adaptive deblocking filter to reduce blocking
artifact. Both encoder and decoder apply the deblocking filter to increase the accuracy
of motion estimation or compensation. As compared to the deblocking filter in
MPEG-4, the deblocking filter in H.264/MPEG-4 AVC is more complex with more
control parameter, filter modes, and different types of FIR filter. The following
sections describe the operation of deblocking filter in H.264/MPEG-4 AVC.

2.7.2 Deblocking Process

The in-loop deblocking filter in H.264/MPEG-4 AVC is designed to reduce the
blocking artifacts. As compared to the decoder without applying deblocking filtering,
the bit rate can be saved 5%-10% when deblocking filter is applied under the same
performance. The filter operation is applied to each edge of a 4x4 block. Fig. 15
shows the edge filtering order within a 16x16 luminance macroblock. As shown, the
vertical edges are filtered first and then the horizontal ones. In addition, for filtering
an edge of a 4x4 block, consecutive 8 pixels from the same row (or column) of two
adjacent 4x4 blocks are required. For example in Fig. 15, the pixels (A0-A3, B0-B3)
are accessed for the vertical (or horizontal) filtering of a 4x4 block. Particularly, each
sample pixel of (A0-A3, B0-B3) is filtered adaptively by different filter taps. To
decide the filter tap for each pixel, the following factors are considered:

1. Boundary strength.

2. Thresholds of a and .

3. The content of sample pixels.

2.7.3 Boundary Strength
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Fig. 15 Sequential order for filtering the edges of 4x4 blocks in a luminance

macroblock.
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Fig.16. Decision flow of boundary strength (bS) where P and Q denote two
adjacent 4x4 blocks.
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The boundary strength (bS) level is mainly used to decide the necessity of filtering
and filter type. In H.264, the bS has 5 levels. The actual level is determined by the
MB type, edge position, reference frame type, and motion vectors of two adjacent
blocks. Fig. 16 shows the decision of bS level. As shown, the strongest bS level, i.e.,
bS=4, is identified when two adjacent blocks are intra coded and locate at the MB
boundary. In this case, obvious blocking artifact could be noticed. As a result, higher
bS level invokes stronger low pass filtering. On the other hand, when the bS is at the

weakest level, i.e., bS=0, there is no filtering.

2.7.4 One-dimension Filtering Decision

Fig.17 elaborates the detail about how these factors are used to decide the filter tap for
each pixel of (A0-A3, B0-B3). In addition to the bS level, the parameters (a, ) are
used to preserve the real edge. In Equation (1), the necessity of filtering is also
controlled by the parameters (o, 3). Specifically, a and B are assigned with higher
values to increase the possibility of filtering as higher quantization parameters cause
more noticeable blocking artifact. In contrast, smaller o and B are used for lower

quantization parameters.

bS!=0 AND |A0-B0|<a AND |AI-A0|<f AND |BI-B0|<p  Equation (1)

Hence, the first step is to use Equation (1) for deciding whether the filtering is
required or not. Then, according to the bS level, thresholds (a, ) and the absolute
differences of adjacent reconstructed pixels, different filters are applied to different
pixels. Specifically, in Fig. 17, not all the input pixels (A0-A3, B0-B3) will be
updated with the filtered results. For example, if bS is not of strongest level, only A0,
B0, Al, Bl are updated. For those pixels without update, the pixel values are
unchanged. The process is continued by sliding the filtering window one block to the

right (or to the bottom) at a time as in Fig. 15. Note that the updated (B0-B3) could be
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used for the filtering of next adjacent block when the filtering window slides one

block to the right (or to the bottom).
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Fig. 17. Decision flow of filter tap selection.
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Chapter 3

Platform-based System Design for
H.264/MPEG-4 AVC Decoder

3.1 ARM Microprocessor Introduction

ARM (Advanced RISC Machines) [7] Ltd. is an IP cooperation founded in 1990 by
Hermann Hauser. It leads the industrial providing of the 32-bit embedded RISC
microprocessor and is the most widely-used 32-bit microprocessor family in the world.
The characteristic features of ARM processors are high-performance, low-cost, low
power consumption. It is especially suitable for the appication in mobile phones and
about 70% of all modern mobile phones are embedded with the ARM processor core.
In fact, ARM microprocessor can be integrated into all portable wireless
communications, hand-held computing, automotive systems, mass storage device, and
multimedia digital consumer applications, such as MP3 engines, and personal digital

assistants (PDAS).
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Table 2. Comparisons among different ARM process families.

Process Family

Pipeline Stages

Memory

Organization

Clock Rate (MHz)

ARMG6 Unified 25
ARMY7 Unified 66
ARMS Unified 72
ARM9 Harvard 200
StrongARM Harvard 233
ARM10 Harvard 400
ARM11 Harvard 533
User Mode
RO
R1
R2
R3
R4
RS
R6 . .
7 FIQ IRQ SVC Undef Abort
RS RS
R9 R9
R10 R10
RI1 RI1
R12 RI12
RI13 (sp) R13 (sp) R13 (sp) R13 (sp) R13 (sp) R13 (sp)
R14 (Ir) R14 (Ir) R14 (Ir) R14 (Ir) R14 (1) R14 (1)
R15 (pc)
| cpsr |
| Spsr | | spsr | | Spsr | | Spsr | | Spsr
Fig. 18. 37 sets of 32-Dbit registers in ARM processor.
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operation overflow Disable bit of F1Q

Condition flag of ALU Disable bit of IRQ
operation carried out

Condition flag of zero
results from ALU

Condition flag of negative
results from ALU

Fig. 19. 32-bit program status registers.

ARM microprocessor is based on 32/16-bit RISC architecture. There are two types of
instruction set. One is the 32-bit ARM instruction set that can be applied when
considering performance. The other is the 16-bit Thumb instruction set that can be
applied when considering increasing the code density. Besides, the ARM has 7
operating mode (User, FIQ, IRQ, Supervisor, Abort, Undefined, and System mode)
and 37 sets of 32-bit registers (31 of them are general purpose registers and 6 of them
are program status registers) as shown in Fig. 18. Also, Fig. 19 shows the task for
each bit of program status registers.

In this thesis, we utilize the ARM966E-S [8] as our embedded microprocessor.
The ARM966E-S that belongs to the ARM9 family supports 5 stages for pipeline
configuration and up to 200 MHz clock rate as shown in Table 2. Fig.20 shows the
5-stage pipeline data path. Besides, in the architecture of ARM966E-S as shown in
Fig. 21, it contains the interface of tightly coupled memory (TCM), interface of
optional ETM9, interface of advanced high-performance bus, and a coprocessor

interface for connection of acceleration hardware.
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Fig. 20. Five-stage pipeline data path.
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Fig. 21. Architecture of ARM966E-S.
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3.2. Advanced Microcontroller Bus Architecture

(AMBA) Overview

Reset Arbiter
TIC
ARM CPU
\ External
Core External
Bus -
Interface Memory
Remap Bus Interface
/Pause
- APB & | AHBor ASB
Timer =
® |
Interrupt On-chip ]
Controller Memory Decoder

Fig. 22. AMBA architecture.

The open standard of AMBA (Advanced Microcontroller Bus Architecture) [9]
provides a solution for the flexibility and reusability under system-on-chip (SOC)
integration. Fig. 22 shows the architecture. With multi-layer architecture, AMBA
utilizes on—chip bus connecting with embedded processors to conduct the on-chip
memory or peripherals. To optimize the utilization of bandwidth and frequency of
on-chip bus, AMBA defined three types of bus:

1. The Advanced High-performance Bus (AHB)

2. The Advanced System Bus (ASB)

3. The Advanced Peripheral Bus (APB)
The AHB and ASB support multiple masters and burst transfers to conduct a
pipelined operation with high performance. Moreover, the AHB supports more
transfer techniques, such as split transactions and wide data bus configurations. On

the other hand, with simple interface, the APB is suitable for many peripherals to
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Fig 23. AHB components and multi layer interconnection.

conduct bus protocol from high performance to low power and low bandwidth bus.

3.3. Advanced High-performance (AHB) Bus

Introduction

Multi-layer AHB is a new standard of AMBA 2.0 [9]. With single-clock edge
operation, the AHB reduces the delay of multiple masters system and efficiently use
the bandwidth. The AHB bus bandwidth is allowed to be 8, 16, 32, 64, 128, 256, 512,
and 1024 bits. Considering the 32-bit configuration of general purpose processors and
high performance of AHB, in this thesis, we apply the 32-bit AHB as our system

on-chip bus.
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To describe the protocols and architecture of the AHB, Fig 23 shows the AHB
components and multi-layer interconnection. A typical AMBA AHB system includes
four components: master, slave, arbiter and decoder. Each component is described as
following:

1. AHB master: The bus master has the ability to perform read or write operation
on the bus. The AMBA supports multiple AHB masters on the system. Typical
AHB masters include the CPU processors, the DMA (direct memory access)
controller, the DSP (digital signal processors) and so on. However, only one bus
master is permitted to use the AHB bus at any one time.

2. AHB slave: The bus slave waits the reading or writing demand from masters and
response the transfer condition. Typical AHB slaves include the internal
memory, the external memory interface, the APB Bridge and so on.

3. AHB arbiter: Because only one bus master is permitted to use the AHB bus, an
AHB arbiter is constructed on the bus to judge the access priority of active
masters.

4. AHB decoder —-The AHB decoder decodes the bus address and selects one of the

signals from the slave modules depending on the decoded results.

Basically, the transfer signals on AHB bus include clock, arbitration, address, control
signal, write data, read data, and response signal. Table 3 shows the detailed AHB
signals and Fig 24 shows these signals applying on the interfaces of AHB master,
slave, arbiter and decoder. Besides, to increase the system performance, the AHB

utilizes some important transfer techniques:
1. Pipeline operation: An AHB transfer consists two phases. One is the address
phase that conducts the transfers of address and control signals. The other is the

data phase that conducts the transfers of read, write and response signals. With
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Fig. 24. The interfaces of AHB (a) master, (b) slave, (c) arbiter and (d) decoder.
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Fig. 25. AHB pipeline transaction.
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Table 3. The detailed AHB signals

Name Source Signal Type
HADDR[31:0] Master Address
HTRANSJ[1:0] Master Response
HWRITE Master Control
HSIZE[2:0] Master Control
HBURST[2:0] Master Control
HPROT[3:0] Master Control
HWDATA[31:0] Master Write
HSELX Decoder Control
HRDATAJ[31:0] Slave Read
HREADY Slave Response
HRESP[1:0] Slave Response
HBUSREQx Master Arbitration
HLOCKXx Master Arbitration
HGRANTX Arbiter Arbitration
HMASTER]3:0] Arbiter Avrbitration
HMASTLOCK Arbiter Arbitration
HSPLITx[15:0] Slave Avrbitration
HCLK Clock Source Clock
HRESETn Reset Reset
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pipelined transaction, the data phase of previous transfer can be overlapped with
the address phase of current transfer to increase throughput. For example as
shown in Fig. 25, the address phase B is overlapped with the data phase A.

2. Burst transfer: Table 4 shows the 8 burst types depending on the HBURST
signal. It supports 1, 4, 8, 16 beat and undefined length transfer. Besides, the
incrementing burst and wrapping burst are supported. The address of the
incrementing burst is just an increment of previous address. However, the
address of the wrapping burst will wrap to start address when the boundary is
reached. For example, the a start address is 0x40 and WRAPS is performed,
then the address range is 4x8=32=0x20 and the boundary is 0x40+0x20=0x60.
Hence, if the address in current single time is 0x5c, the address in next single
time will wrap to 0x40.

3. Retry transfer: When the slave is unable to supply data immediately, it can
return RETRY response. The RETRY response does not change the master
access priority in arbiter. Hence, only the master owning a higher priority can
access the bus first. For example, a slave S1 returns RETRY response when a
master M1 is reading data from S1. Then, a master M2 owning lower priority

still can not access bus if the master M1 has the highest priority in the arbiter.

4. Split transfer: When the slave is unable to supply data immediately, it can also
return SPLIT response. The SPLIT response can adjust the master access
priority in arbiter. Hence, even the master owning a lower priority can access the
bus. For example, a slave S1 returns SPLIT response when a master M1 is
reading data from S1. Then, a master M2 owning lower priority can access the
bus until the access of slave S1 is available and the master M1 also keep the

highest priority in the arbiter.
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Table 4. Eight burst types depending on the HBURST signal.

HBURST Size Type

000 Single Single transfer
001 Undefined length Incrementing
010 4 beat Wrapping
011 4 beat Incrementing
100 8 beat Wrapping
101 8 beat Incrementing
110 16 beat Wrapping
111 16 beat Incrementing

3.4 Emulation Platform of Our System

We adopt a platform based design methodology to construct an optimized AVC
decoder with a novel scheduling to achieve macroblock-level pipelining [10-11]. The
platform-based design methodology has been widely adopted to solve complicated
system-level designs of a multimedia system on a single chip. The platform-based
design could be defined in following two ways [26-27]. First is reuse of architecture
of hardware and software blocks. Second is the construction of a system with stable
microprocessor, memory hierarchy, interconnecting bus, and peripherals. The
construction has the abilities to cover rapid extension, feasible customization for a
wide range of applications, and a short time-to-market. In addition, the platform-based

design can improve the yield in circuit design. In short, the platform-based design [26]
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has the multiple advantages including efficient system-level design methodology,
short time-to-market, reusability of software and hardware IP blocks, feasible chip
integration, etc. Thus, the platform-based design methodology is adopted for this
project.

Some systems [28-30] are developed on a circuit design level and some systems
[31-32] are built on existing hardware platforms. In [28], a videophone system
compliant with H.263 is developed where the system is partitioned into hardware
modules and software modules based on complexity analysis. Several
microcontrollers are used to manage data and functional flow. The dedicated
hardware is used to improve computationally intensive parts. In addition, the modules
work with macroblock-level pipelining. In [29] the MPEG-2 encoding processes is
partitioned into 3 layers including processing control, video processing, and data
buffering. A RISC processor controls and pipelines the 3-layer functional modules in
macroblock-level. In [30], a multi-core SoC architecture is proposed for MPEG-4
streaming video. Based on the application profile characteristics, the task scheduling
of the decoding processes is optimized by a macroblock engine. In addition, the SoC
architecture has a global controller using a RISC processor and a computation
accelerator with a DSP. On a multi-core platform, all processor cores are
communicated via ARM Master Bus Architecture (AMBA). In summary, the
platform-based design methodology has been widely adopted to construct the codec
of H.263 and MPEG-2/4 standards as discussed [28-32]. Since the complexity of the
H.264/MPEG-4 AVC codec is much higher than that of the aforementioned coding
standards, it is challenging to build a H.264/MPEG-4 AVC decoder on existing

platforms.
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Table 5. H.264/MPEG-4 AVC baseline profile and level 1.

Max macroblock processing rate 1485
Max picture size 176x144
Max bit rate 64kbit/s
Max # of reference frames 5
Max horizontal and vertical MV range (full pels) -16~16

External SDRAM £\

Emulated with a hard core
Embedded ARM 966 SDRAM AHB
SRAM CPU Controller Arbiter +
Slave Master Slave Decoder
A 1 1 I
L  j v AHB
Emulated on FPGA i I
T YA ==
: Slave Slave Slave :
: Motion 1Q/IDCT Deblocking : bl;ligzte
Comp. &Reconstruction Filter |
| i i
i | :
I
I

Dedicated accelerators

N Host interface (Multi ICE)
N2 PC

Fig. 26. Proposed ARM-based H.264/MPEG-4 AVC decoder architecture.

Fig. 26 shows our emulation configuration to test our new architecture for the
H.264/MPEG-4 AVC decoder. The proposed architecture is compliant with the
H.264/MPEG-4 AVC baseline profile of level 1. Table 5 summarizes its main
parameters. The architecture is emulated on an ARM development board. In addition,
the ARM platform provides a general purpose ARM966E-S CPU core for data flow
control and a logic module for multiple dedicated accelerators. The ARM also
provides an industry standardized 32-bit AHB for high-speed computation and

emulations.

36



CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER

The ARM966 CPU acts as a master on the AHB bus and controls the
synchronization among all functional blocks. All the remaining functional blocks that
respond to the requests from CPU are slaves. Specifically, the dedicated accelerators
are used to speed up computation or reduce memory access. The firmware of the
accelerators and the software for the decoding modules are stored in the embedded
SRAM. In addition to the embedded memory, our decoder also requires external
memory for frame buffering. The external memory is accessed via an external

memory interface.

3.5 Proposed Macroblock Pipeline Architecture for
H.264/MPEG-4 AVC Decoder

.Table 6. Key operations for AVC decoding modules [10].

Deblocking
Modules MC IQ-IDCT CAVLD )
Filter
] Mul., Add, Add, Branch, Add, Shift,
Operation ) .
Shift, MemA Shift MemA MemA

Mul.: multiplication; MemA: memory access
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Fig.27. Decoding profiling for H.264/MPEG-4 AVC on ARM 966 CPU [10].
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Time

Fig. 28. Scheduling approach for macroblock-level pipelining

In the ARM platform based design, a task can be done with either the software
executing on CPU or the dedicated hardware running in parallel with CPU. Thus, to
optimize the overall performance through parallel processing, it’s challenging to

partition the tasks to separately match CPU capability and the dedicated accelerators.

Computational characteristic is a good criterion for task partition [28-30]. The
modules with regular and computational intensive tasks are perfect for hardware
implementation and the modules with lots of branches are more suitable for software
realization. Table 6 illustrates the kernel operations of each AVC decoding module.
Most modules except the 1Q-IDCT require a great amount of memory access (MemA).
In addition, the MC and deblocking filter require intensive arithmetic operations for
interpolation and filtering, respectively. The CAVLD uses lots of branching
instructions for context-adaptive table switching. Thus, to optimize the performance,
the MC, deblocking filter, and 1Q-IDCT are implemented in hardware and the

CAVLD is realized in software. .

Fig. 27 shows the decoding profiling in relative execution time for different
modules. From the Amdahl’s law and the observations of Fig. 27, we reduce the

computational loads by adding 3 dedicated accelerators for the deblocking filter, MC
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and 1Q-IDCT, respectively. The remaining coding modules are implemented and

optimized in software.

To save the buffers for intermediate data and maximize the throughput, module
synchronization is required. In Fig. 28, we design a scheduling approach for
macroblock-level pipelining based on data dependency and working load distribution.
The subscript n denotes the macroblock index. Basically, a macroblock is decoded
through the three stages including (1) CAVLD, (2) MC, (3) IQ-IDCT and (4)
deblocking filtering. With a macroblock pipeline manner, CPU conducts the software
for CAVLD and three hardware accelerators conduct functional operation for MC,
IQ-IDCT and deblocking filter respectively. Hence, all functional modules can be
processed in parallel. Specifically, the scheduling for 1Q-IDCT is overlapped with
deblocking filter. Hence, we do not have to buffer the 1Q-IDCT and reconstruction
results and can pass them to deblocking filter immediately. We describe the detail in
section 3.6. Fig. 29 shows the flow chart to synchronize CPU with the three

accelerators at macroblock-level. At the beginning of each stage,
1.  CPU proceeds to decode the CAVLD of (n+1)-th macroblock header.
2. CPU sends the data to the 1Q-IDCT accelerators for 1Q-IDCT of the

(n-1)-th macroblock. At the same time, the IQ-IDCT accelerator outputs IQIDCT

results and performs reconstruction described in Chapter 4.

3. In an adaptive manner described in Chapter 4, CPU sends the data of
neighboring macroblocks and 1Q-IDCT passes the reconstruction results to the
deblocking filter accelerators. At the same time, the deblocking accelerator

performs the filtering of the (n-1)-th macroblock.

4. CPU receives the filtered data and writes the data to reference memory.
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Fig. 29. Flowchart to synchronize CPU with the three accelerators at macroblock
(MB)-level.
5. If the n-th macroblock is inter-coded, CPU sends the MC data to the MC
accelerator for motion compensation of the n-th macroblock. If the macroblock is
intra-coded, CPU sends the results of intra prediction to the MC local memory for

the reconstruction of the n-th macroblock.
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3.6 Non-buffered Memory Architecture for
1Q-IDCT and Deblocking filter

Memory architecture usually has great impact on the cost, performance and power
consumption. To improve the pipeline latency and memory cost, we propose the
non-buffered memory architecture for 1Q-IDCT and deblocking filter. Traditionally,
to process the macroblock pipelining of IQ-IDCT and deblocking filter, we can use
non-shared memory architecture or shared memory architecture [33] described as
follows. Fig. 30 shows the non-shared architecture. The 1Q-IDCT and deblocking
filter have their own single-ported local memory SRAM_1 and SRAM _2 respectively
to store macroblock-sized data. To start deblocking the current macroblock, the
IQ-IDCT reconstructed results stored in SRAM 1 have to load to SRAM 2 first.
During the time of data copy from SRAM 1 to SRAM_2, 1Q-IDCT and deblocking
filter can not access SRAM_1 and SRAM 2 to perform calculation because of lack of
memory bandwidth. Hence, the time of data copy causes the delay time in pipeline
schedule and reduces the performance.

Besides, to enhance the throughput, some prior deblocking works propose the
architecture of shared memory [17] or dual-ported memory [14],[16],[19]. Fig. 31
represents the shared architecture for 1Q-IDCT and deblocking filter modules. By
alternatively using the SRAM_1 and SRAM_A, we can load new macroblock data to
SRAM_A prepared for next 1Q-IDCT calculation while we are operating 1Q-IDCT
calculation for current macroblock in SRAM_1. The same method can be applied to
deblocking filter by alternatively using the SRAM_2 and SRAM_B. Hence, the
latency of data copy can be removed. However, some problems of shared architecture

have to be considered:
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Fig. 30. Architecture of non-shared memory design
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Fig. 31. Architecture of shared memory design.

1. Shared architecture is not suitable for hardware and software co-operation.
Take our system design as example, we realize the CAVLD by software.
Hence, the shared architecture can not be applied to the transaction of CAVLD
and 1Q-IDCT because the CPU can not load CAVLD results to 1Q-IDCT and
calculate CAVLD for next macroblock in parallel. Once the shared
architecture can not be applied to the transaction of CAVLD and IQ-IDCT, it
can not be applied to the transaction of 1Q-IDCT and deblocking filter either.

2. Shared architecture requires double size of memory buffer that in general

increase the overall cost significantly. If the 1Q-IDCT and deblocking filter
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Fig. 32. Architecture of non-buffered design.

modules are integrated in the compensation loop of the encoder, the designer
may not prefer to increase the cost because the critical pipeline latency is made
by motion estimation.

3. The frequent memory access in shared architecture costs more power

consumption than the one in non-shared architecture.

Therefore, to improve pipeline throughput, we propose a non-buffered architecture for
IQ-IDCT and deblocking filter modules. Fig. 32 shows the non-buffered architecture
for 1Q-IDCT and deblocking filter. It mainly includes a bus-interleaved deblocking
filter accelerator and a bus interleaved 1Q-IDCT accelerator described in Chapter 4.
With the bus-interleaved scheme, the data transfer and functional operation can be
performed in parallel. Hence, our 1Q-IDCT accelerator can pass the reconstruction
results to deblocking filter while it performs transforming for current macroblock.
Also, deblocking accelerator can perform deblocking operation while it is receiving
the reconstruction results. Hence, the macroblock-size memory for buffering
reconstruction results can be removed.

As compared to the non-shared and shared memory architecture, Fig. 33 shows
the pipeline schedule comparison. Basically, the proposed non-buffered architecture
has some advantages:

1. It has lower memory cost. Our non-buffered architecture can achieve the same
performance as shared memory architecture but reduce significant memory cost.

By utilizing the non-buffered architecture, the intermediate memories
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(SRAM_1, SRAM_2, SRAM_A and mode.SRAM_B shown in Fig. 30 and Fig.
31) can be removed.

2. It has better latency than non-shared memory architecture. We can overlap the
IQ-IDCT and reconstruction with the deblocking process. Also, the
bus-interleaved design of 1Q-IDCT and deblocking filter overlap the time of
data transfer and the time of hardware calculation. Therefore, the pipeline
latency can be reduced.

3. It cost lower power consumption. Non-buffered architecture has less memory
access frequency due to the less intermediate memories are used. Hence, the

power consumption of memory access is lower.
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Fig. 33. Pipeline schedule comparison
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Chapter 4

Hardware Accelerators for
H.264/MPEG-4 AVC Decoder

4.1. Introduction

We have learned the macroblock pipelining architecture for H.264/MPEG-4 AVC
decoder in Chapter 3. In the pipeline schedule, four functional modules of CAVLD,
MC, 1Q-IDCT and deblocking filter perform the decoding process in a macroblock by
macroblock manner. Based on software/hardware partition methodology, we realize
three hardware accelerators of MC, 1Q-IDCT and deblocking filter and implement
CAVLD and other modules by software. In this chapter, we describe the architecture

designs for these accelerators.
4.2. Bus-interleaved Deblocking Filter

4.2.1 Overview of State-of-art Works

Among various coding tools in H.264, the in-loop deblocking filtering has significant
impact on the visual quality improvement. To reduce the blocking artifact, the in-loop
deblocking filter adaptively conducts the filtering along the boundaries of each 4x4
block according to the boundary strength (bS), the quantization parameter (Qp) and
the content of the block. The blocking artifact is removed. However, the improvement

is at the cost of intensive computation and memory access.
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For real-time applications, the deblocking filtering becomes one of the performance
bottlenecks. In [12]-[20], dedicated hardware was developed for acceleration. Table 7
shows the main features of prior works for H.264/MPEG-4 AVC deblocking filter.
Specifically, the architecture of [18] is for frame-based filtering. The deblocking
filtering is invoked after the reconstruction of the entire frame. Apparently,
frame-based filtering requires a frame buffer and longer system latency. To reduce the
buffer size and latency, macroblock-based (MB-based) filtering architectures were
proposed in [12]-[17],[19],[20]. The filtering can be started upon the reconstruction of
a macroblock. To achieve high throughput, in [14],[16],[18]-[20], dual-ported SRAM
is used to simultaneously conduct the reading and writing during the filtering. Also,
[17],[20] utilize frame-length memory to buffer data of neighboring macroblock.
However, the high throughput is at the cost of complex and costly memory
architecture. In addition, for filtering a macroblock, [14],[16],[19] need to first buffer
the entire macroblock. The hardware is idled for waiting the data. Moreover, the data
movement of [14]-[20] is not mode aware which means that the data transmission
overhead is not minimized. Hence, in this thesis, we propose a parallel processing
architecture and a more efficient data transmission scheme to improve the

performance.

4.2.2 Proposed Adaptive Transfer Scheme

In this thesis, our deblocking filtering is designed to operate at macroblock level. The
entire frame is filtered in a macroblock-by- macroblock manner and the macroblocks
within a frame are processed in a raster scanning order. The filtering can be started
upon the reconstruction of a macroblock. For filtering a macroblock, we need to first
retrieve the reconstructed data from the embedded memory (or certain module) and
transfer the data to the dedicated accelerator via a bus. As more and more dedicated
accelerators are deployed, the limited and shared bus bandwidth could become the
performance bottleneck. To reduce the demand of bus bandwidth, we propose an

adaptive macroblock transmission scheme.
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Table 7: Main features of prior works for H.264/MPEG-4 AVC deblocking filter

[14], [16] [15] [17] [18] [19] [20]
Average
macroblock 614 386 250 >600 510 286
Latency
(cycles)
SRAM 2X 1x 3X 1x 2X 1x
Memory Dual-port  Single-port  Single-port ~ Dual-port Dual-port Dual-port
Architecture 1x 1x
Single-port  Single-port
Local 96x32 + 80x32 96x32x2 +  Frame size Dual: Dual:
Memory 64x32 2xFrame 88x32 64x32
Size (bits) Widthx32 +72x32 Single:
Single: 2xFrame
32x32 Widthx32
Processing
Throughput 45.2fps 71.9fps 111.1fps N/A 54.5fps 97.1fps
(1280x720,
100Mhz)
Gate Count
(UMC 20.6K 9.2K 19.6K N/A N/A 145K
0.18um)
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Fig. 34. macroblock data and its adjacent blocks used for macroblock-based

deblocking filtering.

A. MB Mode Classification

Fig. 34 depicts the data required for filtering a macroblock. As shown, in addition to
the current macroblock, the adjacent 4x4 blocks at the right and the left boundaries
are also needed. In [14]-[20], fixed macroblock data are transferred to the accelerator.
However, we find that not all the 4x4 blocks within a macroblock are to be filtered.
Thus, we can more efficiently use the bus bandwidth by minimizing the redundant
data transfers. To do so, we define 8 macroblock filtering modes according to the
filtering necessity of the left macroblock boundary, the top macroblock boundary and
the current macroblock. Table 8 and Table 9 summarize the corresponding data size
transfer macroblock data of each mode. For example, mode 5 denotes the case in
which only the left and the top macroblock boundaries are required for filtering. As a
result, for the luminance part, we simply need the adjacent 4 blocks in the left
macroblock, the adjacent 4 blocks in the top macroblock and the adjacent 7 blocks in
the current macroblock. By the same token, one can derive the data size for the
chrominance part. Totally, the data transfer size required for filtering a mode 5
macroblock is 116 words which include 60 words for the luminance component and
56 words for the chrominance part. Following the same principle, one can derive the

data size for the other modes. By distinguishing different filtering modes, we can
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Table 8. Filtering mode for a macroblock

Mode Left” Top” Current Data Size™
macroblock
1 Y Y 160
2 N Y Y 128
3 Y N Y 128
4 N N Y 96
5 Y Y N 116
6 N Y N 64
7 Y N N 64
Skip N N N 0

*: The macroblock boundary required for filtering.

**: Data transfer size in words.

Table 9. Transfer macroblock data for the 8 filtering modes

Mode 1 Mode 2 Mode 3 Mode 4
(| 1 [ 1
T gEg| 0 G| T 0@| 0 [
QB ((EEE | BE 2|EEE
HEH HEH H BB HEH
Mode 5 Mode 6 Mode 7 SKIP Mode
(| 13 (N
E . 0O E . 0O E . . SKIP
BEE HE H FE

|:| : A 4x4 block that requires to be transmitted.
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Fig. 35. macroblock filtering mode distribution in Akiyo and Foreman sequences
that are coded at QCIF@15fps 64Kbps with JM6.0.

minimize the redundant data transfers.

B. Macroblock Filtering Mode Distribution

Fig. 35 shows the mode distribution of Akiyo and Foreman sequences based on JM6.0.
Without mode classification, [14]-[16],[18],[19] treat all macroblocks as mode 1, i.e.,
all the input samples shown in Fig. 34 are to be transferred. Particularly, [17],[20]
treats all macroblocks as mode 4 because they previously buffer the left macroblock
and one row of top macroblocks. From Fig. 35, we learn that different modes have
different weightings. Specifically, mode 1 is actually less than 30% and mode 4 is less
than 5%. In the extreme case of Akiyo, most macroblocks use skip mode which does
not require any input samples. Thus, [14]-[20] incur many redundant data transfers.
With the filtering mode classification, we can more efficiently use the bus bandwidth.
According to our mode analysis, in Akiyo sequence, we can save 94% of the data
transfers used in [18], 89% of those in [14]-[16],[19] and 85% of those in [17],[20].

Similarly, in Foreman sequence, our design can save 70% of the data transfers in [18],
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Fig. 36. Proposed bus-interleaved architecture.

41% of those in [14]-[16],[19], and 25% of those in [17],[20]. As compared to
[14]-[19], significant data transfer reduction is achieved.
In addition, as compared to [17],[20], our design shows benefit with much less

memory usage. The detail comparison will be shown in Section 4.2.4.

4.2.3.  Proposed Bus-interleaved Architecture

To reduce the processing latency, we propose a bus-interleaved architecture in
[12],[13]. Specifically, we perform the filtering and the data transfer in parallel.
Different from the prior designs, [14],[16]-[19], we can start the filtering while the
data is being streamed in and out. The processing latency is reduced due to the

parallelism.

A. Proposed Bus-interleaved Architecture

Fig. 36 shows our proposed architecture. It mainly includes four components:
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Fig. 37. Operation of the transposed memory (Reg2).

1. One-dimensional Adaptive FIR Filter
The one-dimensional FIR filter adaptively performs the horizontal/vertical filtering
in a row-by-row manner. For each row, it takes 8 input samples from two adjacent
4x4 blocks to conduct filtering. Accordingly, it produces 4 filtered results and 4

intermediate results for the filtering of next block.

2. Single-ported SRAM
A single-ported SRAM is used as local memory for buffering the horizontally
filtered and transposed macroblock. Specifically, for the luminance component, it
stores all the 4x4 blocks in the current macroblock (i.e., 64x32 bits) and the
adjacent 4x4 blocks in the top and the left macroblocks (,i.e., 32x32 bits). The total
size of the SRAM is 96x32 bits. In our design, the filtering of chrominance and

luminance components shares the same memory.

3. 4x4 Pixel Arrays (Regl and Reg2)
In Fig. 36, Regl buffers the intermediate results produced by the FIR filter. On the
other hand, Reg2 acts as a transposed memory. Particularly, Reg2 performs the
transposition by storing the data in either Horizontal-In-Vertical-Out or

Vertical-In-Horizontal-Out fashion. Fig. 37 shows an example of the transposition
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Fig. 38. Sequential edge processing order of (a) horizontal filtering
and (b) vertical filtering in a luminance macroblock.
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Fig. 39. The 4x4 block input order to the dedicated hardware.

where Row(n, Bm) represents the n-th row of m-th block and Col(n, Bm) denotes
the n-th column of m-th block. Specifically, Fig. 37 (a) depicts the case as the
horizontally filtered Block 0 is being written to Reg2 in a row-by-row manner.
After Block 0 is completely buffered in Reg2, Fig. 37 (b) illustrates that the
transposition is done by writing Block 0 to the SRAM in a column-by-column
manner. Particularly, after Col(1, BO) is stored in the SRAM, we filled out the left
space in Reg2 with Row(1, B1), i.e., the first row of next horizontally filtered

block. Such replacement is continued until horizontally filtered Block 1 is
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completely buffered in Reg2. Since Block 1 is stored column-by-column in Reg2,
we transpose Block 1 by outputting the data row-by-row to the SRAM. Such
cyclical rotation between Horizontal-In-Vertical-Out and
Vertical-In-Horizontal-Out is conducted throughout the entire deblocking process.
Traditional designs [14],[16],[18] require stalls for block transposition. However,

our seamless design requires no stalls.

4. Data Flow Control Unit
The data flow control unit consists of a finite state machine which controls
synchronization among 1-D FIR filter, 4x4 pixel arrays and local SRAM buffer.

Moreover, it responses to the deblocking filtering request from the AHB bus.

B. Operation of Bus-interleaved Architecture

To describe the operation of our bus-interleaved architecture, we use the filtering of a
mode 1 macroblock as an example. Fig. 38 shows the processing order of horizontal
and vertical filtering for a mode 1 macroblock and Fig. 39 depicts the sequential block
input order to the dedicated accelerator. In Fig. 40, we show the status of our
bus-interleaved architecture during the horizontal filtering. Here, we assume Regl has
buffered the non-filtered samples of Block 0. To perform the horizontal filtering for
the edge between Block 0 and Block 1 in Fig. 39, the FIR filter takes Row(1,B1) from
the bus and Row(1,B0) from the 1% row of Regl for computation. After the filtering,
we overwrite the 1% row of Regl with the intermediate results,
Row(1,B1) intermediate, and save the horizontally filtered results, Row(1,B0) h, in
the 1% row of Reg2. The other rows are processed in the same way. When the
horizontally filtered Block 0 is completely stored in the Reg2, we transpose the block
by writing it to the SRAM in a column-by-column fashion. While the SRAM is being
written, the FIR filter performs the horizontal filtering for the edge between Block 1
and Block 2 by receiving Row(n,B2) from bus and retrieving
Row(n,B1)_intermediate from Regl. Such process is continued until the horizontal

filtering of a macroblock is done. After the horizontal filtering, we read the

55



CHAPTER 4. HARDWARE ACCELERATORS FOR H.264/MPEG-4 AVC DECODER

Row(l, B1)
TR
—
_g Row(2, B0) Row(1, BO) Row(l, B1)
v
% Row(3, B0) 8 Pixels In
] Row(4, BO) 1-D FIR Filter
Regl 8 Pixels Oul
(o8] . .
) Row(l, B1)_intermediate
I
o)
- Row(1, B0)_h
>
= B 2
1
o - \
c
@ 96x32
Local [
SRAM |&
Reg2 g
o ? Write transposed block

Fig. 40. Data flow of horizontal filtering in the bus-interleaved architecture.
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Fig. 42. Analysis of processing latency reduction

horizontally filtered macroblock from the SRAM and perform the vertical filtering in
the same manner. Specifically, during the vertical filtering, the input data of FIR filter
is now configured to be from the SRAM. In addition, the filtered and transposed data

is written to the CPU instead of local SRAM. Fig. 41 shows the configuration of our
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Table 10. Macroblock latency for each transfer mode

Transmission Mode Latency Per macroblock
(cycles)
374
310
310
246
286
182
7 182
SKIP 50

OO |IW|IN|PEF

bus-interleaved architecture during the vertical filtering. Note that the luminance and

the chrominance components are sequentially processed in the same manner.

C. Overlapping of bS Level Calculation

In our design, the bS level calculation is done by hardware. Particularly, to reduce
the macroblock processing latency, the bS level for current macroblock is calculated
in the previous macroblock cycle so that the data dependency between the bS level
and the filtering can be removed. Moreover, we overlap the computations of filtering
and bS level calculation. Note that there is a turn-around time between the last input
data and the first filtered output result. During the turn-around time, the bus is idled.
Thus, we use this turn-around time to transmit the data required for bS level

calculation and conduct the actual computation.

D. Processing Latency Analysis

Fig. 42 illustrates how our proposed schemes can reduce the processing latency for
filtering a macroblock. We show the improvement of each proposed scheme step by
step. For comparison, Step 0 shows the processing latency of traditional design, e.g.,
[14], which does not deploy bus-interleave architecture and macroblock adaptive
transmission scheme. As shown in Step 1, our bus-interleaved architecture offers 1.5x

performance improvement over the design of [14] due to the parallelism of data
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Fig. 43. Comparison of average latency per macroblock (including 50 cycles for bS

transfer and filtering. Moreover, with the overlapping of bS level calculation, Step 2
shows that the processing latency can be further reduced. Furthermore, Step 3 shows
that our adaptive transmission scheme can reduce the processing latency to be merely
50 cycles when the skip mode is detected. In the skip mode, there is no need to
conduct data transfer. By the adaptive transmission scheme, our design can detect skip
mode and avoid the redundant data transfers. However, without mode aware,
traditional design [14]-[20] incur many redundant data transfers even in the skip mode.
Table 10 lists the cycle counts for the other macroblock modes. According to our
mode analysis in Fig. 35, our design averagely requires 86 to 244 cycles for filtering a
macroblock. As compared to [14]-[20], Fig. 43 shows that our design has up to 7.1x

performance improvement. Significant latency improvement is achieved.
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4.2.4 Comparisons of Simulation Results

In this Section, we show the comparisons of different hardware designs. Moreover,
we analyze the memory access frequency in different approaches. Lastly, we use an
ARM based H.264 decoder as an example to demonstrate the system performance of

our design

A. Comparison of Hardware Implementation

Table 11 compares our accelerator with the state-of-the-art designs [14]-[20]. As
shown, for filtering a macroblock, our design averagely requires less cycle counts.
Specifically, as compared to [14],[16],[18]-[20], we provide 1.2x to 7.1x performance
improvement with simpler and smaller single-ported memory. In addition, we have up
to 4.5x performance improvement as compared to [15],[17]. While clocking at
100MHz, our design can support 2560x1280@30Hz processing throughput.
Additionally, our bus bandwidth requirement

is down to 6%-30% of [18], 11%-59% of [14]-[16],[19] and 15%-75% of [17],[20].
B. Comparison of Memory Access Frequency

Table 12 further compares the local SRAM access frequency of different approaches.
For filtering a macroblock, [14], [16]-[19] require read and write operation to
previously buffer the input macroblock. In addition, [17], [20] also need to buffer one
row of top macroblocks and the left macroblock. During the horizontal and vertical
filtering, [14],[16],[18],[19] require more frequent read and write operation.
Particularly, for [17], they use additional 4x4 pixel arrays to buffer the horizontally
filtered and transposed results instead of using local memory. As compared to the
prior works, our design simply needs one write operation for horizontal filtering and
one read operation for vertical filtering. There is no need to previously buffer the
input macroblock. Significant memory access reduction is achieved. Less frequent
memory access and simpler memory architecture bring the advantages of lower power

consumption and lower cost.
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Table 11. Comparisons of state-of-the-art deblocking filter designs.

[14], [16] [15] [17] [18]
Average macroblock 614 386 250 >600
Latency (cycles)
SRAM Memory 2X 1x 3X 1x
Architecture Dual-port  Single-port  Single-port Dual-port
Local Memory Size (bits) 96x32 + 80x32 96x32x2 Frame
64x32 + Frame size
Widthx2x32
Number of 4x4 Pixel 2 2 4 4
Arrays
Number of 1-D Filter 1 .. 1 1
Bandwidth Requirement 50% 50% 40% 100%
(Normalized with respect
to [18])
Processing Throughput 45.2fps 71.9fps 111.1fps N/A
(1280x720, 100Mhz)
Gate Count (UMC 20.6K 9.2K 19.6K N/A

0.18um)
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Table 11(continue).

Comparisons of state-of-the-art deblocking filter designs.

(Continue) [19] [20] Our design
Average macroblock 510 286 86 — 244
Latency (cycles)

SRAM Memory 2xDual-port 1xDual-port 1xSingle-port

Architecture

1xSingle-port

1x Single-port

Local Memory Size (bits)  Dual: 88x32 Dual: 64x32 96x32
+ 72x32 Single: Frame

Single: 32x32 Widthx2x32
Number of 4x4 Pixel 11 6 2
Arrays (3 pixel array (2 pixel array

+8 FIFO) +4 FIFO)
Number of 1-D Filter 2 1 1
Bandwidth Requirement 50% 40% 6% — 30%
(Normalized with respect
to [18])
Processing Throughput 54.5fps 97.1fps 113.8 —322.9fps
(1280x720, 100Mhz)
Gate Count (UMC N/A 145K 11.8K
0.18um)
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Table 12. Comparisons of local memory access frequency

[14],[16], [17] [20] our
[18], [19] design,[15]
Current Read/Write  Read/Write None None
macroblock
Buffering
Left and Top None Read/Write  Read/Write None
macroblocks
Buffering
Horizontal Read/Write None Write Write
Filtering
Vertical Read/Write None Read Read
Filtering
3
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Fig. 44. Architecture of bus-interleaved 1Q-IDCT
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4.3. Accelerator for 1Q-IDCT

4.3.1. Bus-interleaved 1Q-IDCT

Prior work [34] proposed a parallel architecture for DCT in H.264/MPEG-4 AVC.
This parallel architecture uses two sets of 1-domension DCT module to parallel
process 2-dimension DCT and achieve 100% hardware utilization. To realize the
IQ-IDCT with bus-interleaved architecture, we take advantage of the parallel
architecture. Fig 44 shows the bus-interleaved architecture of 1Q-IDCT. It mainly
includes a 4x4 transposed buffer and two sets of one-dimension inverse DCT, an
embedded AHB bus, a bus-interleaved controller and an inverse quantization module.
To describe the processing flow of IQIDCT, the quantized DTC data are inputted
from bus row by row at first. At the same time, we can perform inverse quantization
and transform by using the inverse quantization module and the first 1-dimension
inverse transform. The results are stored on 4x4 transposed registers in 4 cycles. Next,
the current block on transposed buffer can perform 1-dimension inverse DCT column
by column by using the second inverse transform module to complete 2-dimension
inverse transform. To maintain the 100% utilization of transform modules, the first
1-D inverse transform module can process the inverse transform of the next block
while the second inverse transform module is processing the inverse transform of the
current block. Besides, the bus-interleaved controller controls the reading and writing
of transposed registers based on the bus address. Hence, the data transfer and
transform can be performed in parallel without mismatches. In our simulation, our
IQ-IDCTdesign takes 104 cycles to transform one macroblock. The area used is 6680

gates.

4.3.2. Interleaved process for 1Q-IDCT and deblocking filter

To describe the interleaved process for 1Q-IDCT and deblocking filter, Fig. 45
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Fig. 46. Interleaved process for IQ-IDCT, reconstruction and deblocking filter.
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Fig. 47. Latency of inverse transforming and deblocking a macroblock.

represents the decoding flow for a macroblock. The macroblock-sized quantized DCT
coefficients (C0-C15) are transformed inversely into 1Q-IDCT residuals (TO- T15).
Next, reconstruction macroblock (R0-R15) is produced after predictions (PO-P15)
have added with the residuals. Finally, the reconstruction macroblock and the data
from upper and left macroblock are passed for deblocking filtering. By using
bus-interleaved 1Q-IDCT and deblocking filter, the data transmission, 1Q-IDCT

calculation, reconstruction and deblocking filtering can be performed in parallel.  Fig.
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46 shows the interleaved process for 1Q-IDCT, reconstruction and deblocking. By
adaptive transfer scheme for deblocking filter described in section 4.2, the processing
latency is variable depending on the transfer mode. Fig 47 shows the processing
latency for inverse transforming and deblocking a macroblock. With interleaved
process, the processing latency for 1Q-IDCT can overlap with processing latency for

deblocking filter so as to increase system performance.

4.4. Accelerator for Motion Compensation
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Fig. 48. Interpolation architecture for quarter-pel motion compensation [10].

To speed up interpolation, we design a dedicated co-processor for motion
compensation [10] as show in in Fig. 48. For a macroblock interpolation, the motion
compensation uses a local memory to store 1500 integer pixels and two interpolation
engines for parallel processing of the luminance and chrominance components. Each

engine consists of multiple multipliers and accumulators. Particularly, the multiplier is
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implemented in a hardwired manner to maximize performance. To get one
interpolated macroblock, the intermediate results (output) of row and column filtering
in each engine may be fed back to conduct the filtering of another columns and rows.

The AVC specification uses variable block size motion compensation. The minimum
granularity for motion compensation is a 4x4 block. Therefore, our interpolation
engine is designed for a 4x4 block. The interpolation of each macroblock takes 16
iterations. In the worst case, our design takes 1280 cycles to interpolate one
macroblock. As operating at 10 MHz, the throughput for each macroblock is 7812

macroblock/sec. The area used is 11172 gates.
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Chapter 5

Experiment Results

5.1 Experiment Environment and Tools

In our experiment, we design an ARM-based platform for the H.264/MPEG-4 AVC
decoder. Basically, our decoding system is constructed with the configuration in Fig.
49. Specifically, our ARM integrator baseboard [35] (as shown in Fig.50) employs
JTAG (Joint Task Action Group) interface to connect with an ARM MultilCE (as
shown in Fig.51). The MultilCE connects to a host computer to conduct the
communication between computer and ARM board. Our ARM board mainly includes
two parts, core module and logic module. In the core module, there are ARM966 CPU,
embedded SRAM (1 MBytes), and external memory interface. On the other hand, the
dedicated accelerators are implemented on the logic module which is a FPGA
(Filed-programmable Gate Array). Moreover, ARM board employs the AHB bus
interfaces to communicate the core module and logic module. Besides, the clock rates
for ARM CPU, FPGA and AHB bus list in Table 13.

To facilitate the verification, we utilize ARM developer suite v1.2 [36] to develop
our system. It mainly includes two development software tools, CodeWarrior and
AXD, which window interfaces are shown in Fig.52 and Fig.53 respectively. In the
software design flow of Fig.55, our source codes are coded as assembly (for firmware
design) and C/C++ language. At first, we employ CodeWarrior to compile these

source codes and produce ARM-based link object files. Then, the CodeWarrior link
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Table 13. The processing rate of CPU, FPGA and AHB bus.

Modules Processing Rate
ARMOI66E-S 130MHz
FPGA 10MHz
AHB 33MHz

Multi-ICE
AXD
L]
Core Module Logic Module
LEELS, AHB Arbiter
e - AW IQ-IDCT
ARMY66 | [, v g
. a
&Y ES Tlg| |& AHB
= — o)
g § S [
= g =
=l [ cPUu ||2| |&|[ Motion Deblocking
memory | || || [ Compensation Filter
ARM board

these object files to generate executable AXD code for ARM966E-S processor. Next,
the development host use AXD to interfacing the JTAG port on ARM board through
the ARM multilCE cable. Hence, we can run the executable file at the ARM966E-S

Fig. 49. Our peoposed decoding system

processor and debug it using AXD environment.

On the other hand, we develop our hardware designs based on the design follow
as shown in Fig.56. We code our hardware designs as Verilog RTL language. After

debugging and simulation using the tools of Cadence Verilog Simulator, Debussy,
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Fig. 54. Window interface to Xlinx Project Navigator [37].
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and Logic Synthesis, we employ the tool of Xlinx Project Navigator [37], which
window interface show in Fig.54, to perform FPGA synthesis and P&R. The
produced programming file is burned on the FPGA module on ARM board. Next, to
verify software and hardware simultaneously, we can probe the hardware signal from
FPGA by using the logic analyzer and debug the software and firmware by using
AXD.

5.2  System Performance Comparison Using

H.264/MPEG-4 AVC Decoder

In this section, we use an ARM based H.264/MPEG-4 AVC decoder as an example to
demonstrate the system performance of our design. In Table 14, we classify 4 types of
architecture based on whether the software is optimized or whether the MC, 1Q-IDCT,
or deblocking filter accelerator is integrated. To compare the system performance of
the 4 types of architecture, Fig. 57 illustrates the decoding throughput for the 4
architectures in frames per second (fps) on ARM966 CPU. Table 15 shows the

experiment parameters of test sequences. We describe these architectures as follows:

1. The case of JM6.0 Decoder [38]: When only the reference software of
H.264 JM 6.0 decoder is executed on ARM-based platform, the decoding

speed is about 0.3 to 1.2 fps for the video sequences in QCIF resolution.

2. The Architecture A: On the other hand, we optimize the software without
integrating any hardware accelerator in Architecture A. The decoding speed

is about 2.3 to 8.1 fps and 5 fps on the average.
3. The Architecture B: We replace the software MC and IQ-IDCT with 2

accelerators of MC and 1Q-IDCT to our system in Architecture B. As
compared to only software optimization of Architecture A, the throughput

of Case B is increased by 30%~60% and 6.6 fps on the average.

4. The Architecture C: The accelerator of bus-interleave deblocking filter is
embedded to our system in Architecture C. As compared to the software

deblocking filter in Arcitecture B, our proposed deblocking accelerator can
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Table 14. Four ahcitectures for performance evolution.

JM6.0 Architecture Architecture Architecture
Decoder A B C
MC SW Optimized HW HW
SW
1Q-IDCT SwW Optimized HW HW
SW
Deblocking SW Optimized Optimized HW
Filter SW SW
CAVLD & SW Optimized Optimized Optimized
Others SW SW SW
—@— Coastguard ~ —+— Foreman
—2&— Mother —<— Container
—%— Akiyo #==0n Average
12

(fps)

JM6.0 Decoder

Architecture A

Architecture B

Architecture C

Fig. 57. System performance comparison using h.264/MPEG-4 decoder.
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Tablel5. Experiment parameters of test sequences.

Frame Size QCIF
Frame Rate 15fps
Qp 1(28)P(31)
Group of Picture 11 + 149P
Reference Frame Number 5
Coastguard 13.15
Bit-rate | Foreman 8.67
(kbits/s) | Mother 58.69
Container 14.43
Akiyo 42.47

contribute up to 30% throughput improvement. Hence, the throughput ranges from

4.7 t0 10.4 fps and 7.26 fps on the average.

In conclude, our overall throughput is enhanced from 0.3/1.2 fps in JM6.0 to 4.7/10.4
fps in Architecture C. Thus, our experiments show that the throughput of the
H.264/MPEG-4 AVC reference decoder can be improved by 8.6 to 15.6 times.
Besides, based on Fig. 57, some features can be observed as follows. First, the
decoding throughput is sequence dependent. Our decoder performs better for slow
motion sequences for some reasons: (1) slow motion sequences have more zero DCT
blocks, (2) slow motion sequences have high probability of using integer pixel
resolution MC, and (3) most of macroblocks in slow motion sequences require no
deblocking filtering. Hence, the decoding rate is increased due to less computation for
the MC, IDCT-IQ and deblocking filter modules with slow motion sequences.
However, less computation for hardware accelerators also results in lower percentage
of hardware operation. By Amdahl’s law, the improvement ratio using accelerators
for decoding slow motion sequences is smaller than for decoding fast motion ones. In
addition, especially for decoding slow motion sequences, the adaptive transfer scheme

described in chpater4 is important because most data transfers in slow motion
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sequences are not required. Hence, the redundant data transfer burdens the bandwidth

and performance.
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Chapter 6

Conclusion and Future Work

In this thesis, we propose a macroblock-level pipelining architecture for a
H.264/MPEG-4 AVC decoder based on both platform-based design methodology and
application specific circuit design methodology. With platform design methodology,
the software procedures and hardware modules retain a high degree of reusability.
Hence, it shortens the design cycles so that we can quickly integrate our design into
industrial application. With application specific circuit design methodology, we
conduct task partitioning and scheduling in the macroblock-level to enhance the
overall decoding throughput. The software parts control the branching data flow and
the hardware accelerators speed up the regular and computationally intensive
modules.

In the hardware acceleration designs, we present a platform based
bus-interleaved architecture for deblocking filter in H.264/MPEG-4 AVC. We have
shown that performing the data transfer and filtering operation in parallel can
significantly reduce the processing latency. Moreover, classifying macroblock
filtering mode can avoid redundant data transfer so as to efficiently use bus bandwidth.
Moreover, we utilize bus-interleaved IQ-IDCT and deblocking filter to perform data
transfer, inverse transforming, reconstruction and deblocking filtering in parallel. As
compared to traditional shared memory architecture, we have shown that we can
remove intermediate buffer and achieve the same performance.

Based on the dedicated accelerators and macroblock-level pipelining, our

proposed decoder achieves significant improvement in speed using both software and
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hardware co-design. For the industrial applications, our proposed design is suitable
for low cost and high performance multimedia applications. Also, it can be quickly
embedded into the ARM based system-on-chip design.
In the future works, we dedicate to our project in two aspects:
1. Non-buffered architecture design for H.264/MPEG-4 AVC decoder
In this thesis, we have shown the low-cost and high-performance of
bus-interleaved designs. By taking advantage of the interleaved processing
method, we can implement bus-interleaved MC and intra prediction. Our goal is to
parallel process the data transfer and functional computation for all dedicated
accelerators. Hence, the interleaved processing reduces the processing latency.
Besides, we pass the intermediate data to next accelerator to avoid the usage of
intermediate buffer for macroblock-level pipelining. Thus, our proposed decoder
represents the non-buffered memory architecture among all the bus-interleaved
accelerators to achieve low cost and high performance.
2. Processor-based chip implementation
Our system is processor-based that contains an ARM processor to conduct
software operation and hardware control behavior. As compared to VLSI ASIC
circuit, it is more challengeable to implement a processor-based chip. Our goal is
to realize system-on-chip implementation. Several expected features of our chip
list as follows.
— Processor-based configuration.
— Low cost.
— Low power consumption.
— High processing ability.
— Flexibility.

— [P reusability.
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