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摘 要       

本論文使用最佳化的平台式設計方法去建構一個 H264/MPEG-4 AVC 解碼器。考

量其高效能、低成本及廣泛的應用範圍，我們使用 ARM 微處理器作為 CPU 核心。

同時，我們使用高效能控制匯排流架構 (AMBA) 去提升系統傳輸效能和彈性。為

了提升解碼器的速度，我們同時對軟體及硬體做最佳化。同時，我們提出一個巨

方塊平行處理的架構(macroblock-level pipelining) 使得軟體和硬體能夠同

步處理而提升效能。在我們的硬體設計裡，我們實現三個加速器去滿足三個計算

需求最強的模組: 去方塊濾波器(deblocking filter), 動作補償(motion 

compensation) 和轉置 DCT 運算(inverse transform)。其中,在去方塊濾波器

的設計裡，我們提出適應性傳輸方法(adaptive transfer scheme)和匯排流同步

傳輸的架構(bus-interleaved architecture)。考量去方塊濾波器需要大量的傳

輸頻寬，我們將傳輸分成 8種模式以適應性的方法減少傳輸資料量而使頻寬有效

被利用。另外，為了減少去方塊濾波處理的時間，我們使用匯排流同步傳輸資料

的架構使資料傳輸和濾波處理能平行處理。和前人去方塊濾波硬體設計比較，我

們最高有 7 倍的效能改善。就整體解碼效能改善而言，我們的設計比起 H.264

參考軟體 JM6.0 有 9 到 16 倍的效能提升。整體而言，我們的平台系統設計可以

快速的整合到單晶片系統(system-on-chip)的設計中。而且，我們提出的硬體架

構設計也可滿足低成本與即時播放(real-time)的應用。 
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Department of Electronics Engineering 
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ABSTRACT 

In this thesis, we present a baseline H264/MPEG-4 AVC decoder based on an 
optimized platform-based design methodology. In our platform, we employ the ARM 
microprocessor as the CPU core due to its high performance, low cost, and wide 
application. Besides, the Advanced Microcontroller Bus Architecture (AMBA) is 
integrated into our system as the on-chip bus due to its high performance and 
flexibility. To improve our system, we jointly optimize the software and hardware in 
the decoder. Also, we propose a macroblock-level pipelining architecture to achieve 
the synchronization of the software and the dedicated hardware co-processors. In our 
hardware design, three dedicated accelerators of deblocking filter, motion 
compensation and inverse transform, which are the most computationally intensive 
modules, are realized. Specifically, in the architecture design of deblocking filter, we 
proposed an adaptive transfer scheme and a platform-based bus-interleaved 
architecture. As considering the high bandwidth usage of bus for deblocking filter, we 
classify the filtering mode into 8 types and use an adaptive transmission scheme to 
avoid redundant data transfers so as to efficiently use the bus bandwidth. Moreover, to 
reduce the processing latency, we use a bus-interleaved architecture for conducting 
data transfer and filtering operation in parallel. As compared to the state-of-the-art 
designs of deblocking filter, our scheme offers up to 7x performance improvement. To 
compare the overall decoding performance, our experiments show that the throughput 
of H.264 reference software of JM6.0 decoder can be improved by 9 to 16 times. 
Finally, our proposed platform system can be easily applied in the system-on-chip 
design. Also, our proposed hardware architectures are suitable for low-cost and 
real-time applications. 
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CHAPTER 1. INTRODUCTION 

Chapter 1 

Introduction 

1.1 Overview of Thesis 

1.1.1 H.264/MPEG-4 AVC Standard 
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Fig. 1.  Application range for well-known video standards. 

For low bit-rate and real-time communication, the International Telecommunication 

Union (ITU-T) developed a series of standards like H.261 [1] and H.263 [2]. For high 

quality video application under limited bandwidth, the Motion Picture Expert Group 

(MPEG) of International Standard Organization (ISO) announced the standards of 

MPEG-1 [3], MPEG-2 [4], and MPEG-4 [5]. Fig. 1 shows the application range for 
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CHAPTER 1. INTRODUCTION 

Fig. 2. Encoding architecture for H.264/MPEG-4 AVC. 

the well-known video standards. To support 720x480 of frame size under high 

bandwidth, MPEG-2 has been widely employed in DVD and digital TV broadcast. On 

the other hand, H.263 is suitable for TV conference and TV phones due to its high 

compression ratio under low bit-rates. In 1998, MPEG-4 is announced with higher 

compression ability, visual quality and computational complexity. In 2001, the Joint 

Video Team (JVT) formed by ITU-T Video Coding Experts Group (VCEG) and 

ISO/IEC MPEG announced the new video coding standard, H.264/MPEG-4 

Advanced Video Coding (AVC) [6]. H.264/MPEG-4 AVC has the advantages of 

H.263 and MPEG-4 and trades off between the coding gain and implementation cost. 

Under equal video quality, H.264/MPEG-4 AVC provides double compression ratio 

as compared to H.263 and 1.5 times compression ratio as compared to MPEG-4. 

Besides, H.264/MPEG-4 AVC has been proven to have much better visual quality as 

compared to MPEG-1, -2, -4, and H.263/+/++.   

With great coding efficiency and visual quality, H.264/MPEG-4 AVC can be 

widely applied to many digital video applications. For example, it can be employed in 

low bit-rates wireless communication, high resolution HDTV, digital video 
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CHAPTER 1. INTRODUCTION 

broadcasting (DVB), ADSL video phone and conference, high resolution DVD, high 

quality digital camera application, real-time streaming on internet, 3G applications, 

satellite broadcasting and so on. Besides, H.264/MPEG-4 AVC has become the 

official standard for the two high resolution DVD formats, HD-DVD and Blu-ray. 

Also, the Digital Video Broadcasters (DVB) and 3rd Generation Partnership Project 

(3GPP) have permitted H.264/MPEG-4 AVC as the latest official video standard. 

Until now, innumerable broadcasting businesses, cable providers and consumer 

electronic companies have employed H.264/MPEG-4 AVC as the video coding 

standard for developing their products. 

Fig. 2 shows the encoding architecture for H.264/MPEG-4 AVC. Similar to 

previous standards, the prediction distortion from the difference between intra/inter 

prediction and reference frame is compacted by discrete cosine transform (DCT). 

Then, the entropy coding encodes the DCT coefficients and output the results as bit 

streams. However, to be more advanced, H.264/MPEG-4 AVC provides more 

characteristic features. Table 1 shows the comparisons for the features in MPEG-2, 

MPEG-4 ASP and H.264/MPEG-4 AVC. These characteristic features in 

H.264/MPEG-4 AVC are described as follows: 

1. Variable block size for motion estimation. Unlike previous standards that 

utilize fixed size of the 16x16 macroblock, H.264/MPEG-4 AVC employs 

variable block size that ranges from 16x16 macroblock down to a 4x4 block 

for motion estimation. 

2. Multiple reference frames. To increase coding efficiency and prediction 

accuracy, H.264/MPEG-4 AVC supports multiple reference frames for inter 

perdition. Even B-frame can be referenced. Besides, the reference order of 

reference frame is variable instead of depending on the display order in 

previous standards. 

3. Quarter pixel resolution. The pixel resolution in many previous standards is 

half resolution. Quarter pixel resolution is first employed in MPEG-4 part2. 

In H.264/MPEG-4 AVC, the complexity of interpolation process for quarter 

3 



CHAPTER 1. INTRODUCTION 

4 

Table 1.  Comparisons of MPEG-2, MPEG-4 ASP and 
H.264/MPEG-4 AVC. 

Features MPEG-2 MPEG-4 
ASP 

H.264/ 

MPEG-4 
AVC 

I, P,B frames Yes Yes Yes 

Multiple reference frames   Yes 

Variable Block size   Yes 

Quarter pixel resolution  Yes Yes 

Weighted Prediction   Yes 

Switching pictures   Yes 

Slice-based motion prediction   Yes 

Interlace Yes Yes Yes 

MB AFF   Yes 

GMC  Yes  

Integer DCT   Yes 

Huffman coding Yes Yes Yes 

Arithmetic coding   Yes 

Rate distortion optimization   Yes 

In loop Deblocking filter   Yes 

Bit rate comparison 100% 61% 36% 

 



CHAPTER 1. INTRODUCTION 

pixel resolution is significantly reduced.  

4. Enhanced intra prediction. H.264/MPEG-4 AVC employs spatial intra 

prediction. As compared to previous standards, it increases the prediction 

accuracy in the details of high-motion picture. 

5. Integer 4x4 DCT. H.264/MPEG-4 AVC employs integer 4x4 DCT instead 

of floating point 8x8 transform in previous standards.  

6. In-loop deblocking filter. H.264/MPEG-4 AVC adopts deblocking filter to 

reduce blocking artifact. The deblocking filter is applied both on the encoder 

and decoder. For the encoder, the deblocking filter is performed in the 

compensation loop to improve the quality of reference frame so as to increase 

the accuracy of inter prediction.  

7. Short word length in calculation. To save implementation cost and power 

consumption, H.264/MPEG-4 AVC utilizes 16 bit in calculation instead of 

32 bit operation in previous standards.  

8. Enhanced error resilience and network friendliness. H.264/MPEG-4 

AVC can reduce the error rate resulted from the packet loss or channel 

damage. Hence, it is easier to be applied on network packet control and 

internet steaming service.  

9. Context-based entropy coding. H.264/MPEG-4 AVC utilizes context-based 

variable length coding or context-based binary arithmetic coding for the 

entropy coding.  

1.1.2 Platform-based Design for H.264/MPEG-4 AVC Decoder 

H264/MPEG-4 AVC has been proven to have much better visual quality and 

compression ability as compared to the existing standards. However, the high 

complexity in H264/MPEG-4 AVC becomes the bottleneck for the low-cost and 

real-time applications. To improve the system performance and reduce the cost, we 

have to develop more system or architecture design methodologies for H264/MPEG-4 

AVC. 

5 



CHAPTER 1. INTRODUCTION 

In this thesis, we present a baseline H.264/MPEG-4 AVC decoder based on an 

optimized platform-based design methodology. Some characteristic features in our 

system design show as follows. 

1. ARM-based platform: The ARM processor [7-8] is one of the most popular 

32-bit microprocessor and widely employed in mobile phones, portable 

devices and multimedia digital consumer applications. Hence, to quickly 

integrate our proposed design into system-on-chip system and consider the IP 

reusability and flexibility of on-chip bus [9], we construct our system on an 

ARM-based platform.  

2. Software/Hardware co-operation: In our system, we implement software 

/hardware partition and jointly optimize the software and hardware design of 

the decoder. To increase overall decoding throughput, we synchronizes the 

software procedures and dedicated hardware co-processors. 

3. Macroblock pipeline architecture: To achieve synchronization so as to 

enhance throughput, we propose a macroblock-level pipelining [10-11]. In the 

pipeline schedule, the entropy decoding, motion compensation, inverse 

transform and deblocking filter perform the decoding process in a macroblock 

by macroblock manner. 

1.1.3 Deblocking Accelerator for H.264/MPEG-4 AVC 

To conduct hardware and software partition, we profile the AVC decoder and decide 

to realize 3 dedicated accelerators to speed up deblocking filter, motion compensation 

and inverse transform respectively. Specifically, we propose a platform-based 

deblocking filter [12-13] for H.264/MPEG-4 AVC. The deblocking accelerator 

represents several features as follows. 

1. Adaptive transfer scheme: To efficiently use the bus bandwidth and reduce 

the power consumption, we classify the filtering modes into various types. 

According to the filtering type distribution, we propose an adaptive transfer 

6 
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scheme to avoid redundant data transfer. Hence, we can significantly reduce 

bus workload and power consumption. Besides, this scheme also improves our 

system performance due to less transfer time. 

2. Bus-interleaved architecture: With bus-interleaved architecture, we perform 

the filtering operation and the data transfer in parallel. Hence, processing 

latency can be reduced. Besides, this bus-interleaved architecture also has the 

advantages of low cost and low memory access frequency.  

3. Non-buffered memory architecture:  We propose non-buffered memory 

architecture for inverse transform and deblocking process. In an interleaved 

process manner, the inverse transform results can be propagated to deblocking 

module immediately without to be buffered. As compared to traditional shared 

memory architecture, our non-buffered architecture is more competitive that 

reduces significant cost in memory buffer and memory access. 

1.2  Contribution and Organization 

In this thesis, we present a macroblock-level pipelining H264/MPEG-4 AVC decoder 

based on an optimized platform-based design methodology. The synchronization of 

the software and the dedicated hardware co-processors increases throughput. 

Specifically, to speed up deblocking filter, we proposed a deblocking accelerator with 

bus-interleaved architecture. For more details, the remainder of this thesis is 

organized as follows: 

 Chapter 2 introduces the algorithm of H.264/MPEG-4 AVC decoder.  

 Chapter 3 describes our proposed platform-based system design for H.264 

/MPEG-4 AVC decoder. 

− We use platform design methodology to increase system flexibility and 

reusability. 

− We analyze the computational complexity for each functional module and 

perform software and hardware partition. 

7 
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− We conduct software and hardware co-operation for parallel processing. 

− We propose macroblock-level pipelining architecture to improve system 

throughput. 

− We propose non-buffered memory architecture to significantly reduce memory 

cost and achieve the same performance as compared to traditional shared 

memory architecture [17].  

 Chapter 4 illustrates our proposed hardware accelerators for H.264/MPEG-4 

AVC decoder. For the design of deblocking filter, our contributions include the 

following: 

− We propose adaptive transfer scheme to reduce 25%-94% bus bandwidth 

requirement as compared to [14-20]. Hence, the costly frame-length buffer 

used for reducing bus workload in [17],[20] can be removed. 

− We propose bus-interleaved architecture to parallel process data transfer and 

filtering operation. Not only reducing processing latency, the bus-interleaved 

architecture can avoid the usage of costly dual-ported local memory in 

[14],[16],[18]-[20]. 

− We propose an overlapped scheme for the calculation of boundary strength. 

Hence, the calculation of boundary strength and deblocking filter can be 

performed in parallel so as to reduce latency. 

− Our design offer up to 7.1x improvement on processing latency and uses 

simpler memory configuration as compared to [14-20].  

 Chapter 5 presents the experiment results. We compare 4 types of architecture 

and evaluate system performance on ARM966-based platform. 

− As compared to H.264 reference software JM6.0 decoder, we have 9-16 times 

improvement to achieve a decoding average rate of 7.3 fps and up to 10.4 fps 

for QCIF video sequences. 

 Lastly, Chapter 6 concludes this work. 
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Chapter 2 

H.264/MPEG-4 AVC Decoder    

2.1 Introduction 

 

Fig. 3.  Decoding architecture for H.264/MPEG-4 AVC. 

Fig. 3 shows the decoding flow for H.264/MPEG-4 AVC decoder where the decoding 

tasks are partitioned into four main parts as follows.  

1. Entropy coding. 

2. Motion compensation (MC) or intra prediction. 

3. Inverse quantization and inverse 4x4 discrete cosine transform (IQ-IDCT). 

4. In loop deblocking filtering.  

 9
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The decoding is performed by first parsing the compressed bit-stream by entropy 

coding. After the parsing, the quantized prediction residues and macroblock side 

information including macroblock type, the prediction mode, and the motion vector 

difference are extracted. The extracted macroblock type determines the prediction 

type. The intra prediction values are derived based on the neighboring pixels for an 

intra macroblock and the inter prediction values are generated from motion 

compensated pixels for an inter macroblock. The addition of the prediction and the 

decoded residuals produces the reconstructed frame. After the reconstruction, the in 

loop deblocking filter is applied to reduce blocking artifacts and the deblocking 

results are put into the frame buffer as reference frames. 

2.2  Context-Based Adaptive Variable Length 

Coding 

In H.264/MPEG-4 AVC, there are two types of entropy coding: Context-based 

Adaptive Binary Arithmetic Coding (CABAC) [21] and Context-based Adaptive 

Variable-Length Coding (CAVLD) [22]. Since our design is based on the Baseline 

Profile of H.264/MPEG-4 AVC, we utilize CAVLD as the entropy coding. Some 

features of CAVLD are described as follows: 

1. The entropy encoding order for a 4x4 block is based on zigzag scan as shown 

in Fig. 4. 

2. In a context-based adaptive manner, the number of non-zeros is encoded by   

using a look-up table depending on the number of non-zeros in the adjacent    

blocks. 

3. In an adaptive manner, the value of non-zero coefficients is encoded by using 

VLC look-up tables. 

4. By taking advantage of many zero results produced by transform, the strings 

of zeros before the last non-zeros are compacted by using run-level coding. 

Fig. 5 shows the flowchart of CAVLC encoding. The right part in the figure goes on 

 10
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Fig. 4.  Zigzag scan order for entropy encoding. 

 
Fig. 5.  Flow chart of CAVLC encoding. 
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Fig 6.  Variable partition sizes for inter prediction 

an example. Number of non-zeros, number of +1/-1, signs of +1/-1, values of 

non-zeros, string of zeros and each run of zero before last non-zero coefficient are 

encoded in order. Also, in the decoder, we can perform CAVLD decoding in a reverse 

fashion.    

2.3  Motion Compensation 

In H.264/MPEG-4 AVC, inter prediction has 7 types of partition size for each 16x16 

macroblock. As shown in Fig.6, the basic size for a motion vector can be 16x16, 16x8, 

8x16, 8x8, 8x4, 4x8 or 4x4. In an adaptive manner, we can choose larger partition size 

for motion vector when a macroblock contains fewer details. Hence, the coding 

complexity and blocking artifacts can be reduced. 

Besides, H.264/MPEG-4 AVC utilizes quarter pixel resolution for motion vector. 

To achieve quarter pixel resolution, we have to produce the sub-pixel samples first at 

half pixel positions. After all half pixel samples are filtered by a 6-tap FIR filter, the 
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Fig.7.  Bit rate comparison for the catachrestic features of motion estimation 

quarter pixel samples are produced by using bilinear interpolation between the 

adjacent half pixel samples or integer-pixel ones. Besides, another important feature 

for motion prediction is the utilization of multiple reference frames. Thus, 

H.264/MPEG-4 AVC can provide better visual quality and more efficient encoding. 

Fig. 7 shows the comparisons of bit-rates for the catachrestic features in motion 

estimation.  

Moreover, H.264/MPEG-4 AVC uses motion vector prediction scheme to reduce 

bit-rates. Hence, only the motion vector difference (MVD), which is the difference 

between the exact vector and the predicted vector, is transmitted. Then, the decoder 

has to calculate motion vector by adding MVD to the motion vector prediction.  

Next, we can compensate the prediction frame from multiple reference frames under 

quarter pixel resolution in the decoder. 

2.4  Intra Prediction 

H.264/MPEG-4 AVC utilizes intra prediction when the current sample is not highly 

correlated with other reference frames, such as I picture. To take advantage of the 

correlation between the neighboring samples within the same frame, the current 

sample can be predicted depending on the neighboring sample. By using neighboring 

 13
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Fig.8.  Nine 4x4 luma prediction modes. 

Fig.9.  Four 16x16 luma prediction modes. 

sample for prediction, H.264/MPEG-4 AVC provides 9 types of intra prediction mode 

for 4x4 luminance block as shown in Fig.8. Besides, another 4 types of intra 

prediction mode for 16x16 luminance macroblock as shown in Fig.9 are applied when 

the current sample contain fewer details. Also, the chrominance goes the same fashion 

for each 8x8 chrominance components. 

2.5  Inverse Quantization 
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To be more accurate in trading-off between bit-rates and quality, H.264/MPEG-4 

AVC defines 52 levels for quantization. There are 52 quantization parameter (QP) 

related to each quantization level. To conduct inverse quantization, we have to obtain 

the quantization step size first. As shown in Fig. 10, the quantization step size 

becomes double for each increment of 6 in QP. Based on the quantization step size, 

the inverse quantization coefficient is obtained by the multiplicity of quantized 

coefficient and quantization step size. 
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Fig. 10.  Quantization step sizes and related QP. 

2.6  Inverse Discrete Cosine Transform 

H.264/MPEG-4 AVC utilizes the 4x4 integer Discrete Cosine Transform (DCT) [23] 

to transform prediction distortion so as to remove spatial correlation inside it. Unlike 

8x8 floating point transform in previous standards such as MPEG-1, -2, -4, and H.263, 

integer transform can avoid the mismatch caused by floating rounding when inverse 

transform is performed. Besides, H.264/MPEG-4 AVC utilizes smaller size of a 4x4 

block for transform because the correlation among prediction residuals is significantly 

reduced in H.264/MPEG-4 AVC. 

  To transform each 4x4 block, Fig.11 (a) shows the Two-dimensional 4x4 integer 
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Fig.11.  Two-dimensional 4x4 (a) transform and (b)inverse transform. 

 

Fig. 12.  DC coefficients within a macroblock. 

transform in H.264/MPEG-4 AVC and Fig.11 (b) show the inverse transform. By 

using the post-scaling and pre-scaling the scaling factors (the 4x4 matrix E in Fig 11), 

the DCT and inverse DCT operation can be simplified so that only addition, 

subtraction and shift operation are required. Hence, it is very suitable for low-cost and 

high-speed hardware implementation. 

If the current macroblock is intra-coded, the DC coefficients of each block as shown 

in Fig.12 contain much energy. Hence, these DC coefficients require to be 

transformed again to reduce the correlation among them so as to increase compression  
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Fig.13.  Two-dimensional Hadamard transform for (a) luma and (b) chroma DC 

coefficients. 

performance. H.264/MPEG-4 AVC utilizes Hadamard transform to transform the DC 

coefficients. Fig.13 shows the Two-dimensional 4x4 Hadamard transform for luma 

DC coefficients and 2x2 Hadamard transform for chroma ones. Therefore, the 

decoder has to perform inverse Hadamard transform of DC coefficients first then each 

block can update its DC coefficient to perform the 4x4 integer discrete cosine 

transform. 

2.7  Adaptive In-loop Deblocking Filter 

2.7.1  Video filtering in previous standards 

H.264/MPEG-4 AVC employs 4x4 DCT/IDCT for transform. However, it introduces 

noticeable blocking artifact especially at low bit-rates. The blocking artifact results 

from three sources: (1) the nature discontinuity of transform digital signals, (2) the 

distortion of quantization which enhances the blocking effect when quantization 

parameter is large, and (3) the propagation of blocking artifact from reference frames 

when conducting motion compensation. 

To eliminate blocking artifact, the simplest way is to utilize a FIR low-pass filter 

to smooth the block boundary. However, low-pass filtering causes the blurring effect 

that decreases the visual quality. In H.263, overlapped-block motion compensation 
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(OBMC) [24] is employed to reduce the blocking artifact. The OBMC is not only 

applied in the decoder to improve the visual quality of display video but also in the 

encoder to increase the accuracy of motion estimation. Fig. 14 shows the 

reconstruction operation in OBMC mode of H.263. Each 8x8 block is reconstructed 

by a combination of the upper, bottom, left right and current block in the reference 

frame. For a 4x4 block within the 8x8 block, each reconstructed pixel is the weighted 

sum of 3 prediction values depending on the motion vectors from 3 adjacent blocks in 

reference frame. For example as shown in Fig. 14, all pixels of the 4x4 block W’ are 

constructed by the accumulation of every block W in the reference frame. By the 

weighting operation, the blocking artifact can be reduced. 

 
Fig. 14.  Overlapped-block motion compensation (OBMC) in 263. 

Different to H.263, MPEG-4 employs an adaptive deblocking filter [25]. Because 

the deblocking filter is post-processing, it is only applied on the decoder to improve 

the quality of the output video sequence and reference frames used by motion 

compensation. The filter operations are performed along the 8x8 block edges. Based 

on the sample values, one of two filter modes, smooth mode and default mode, is 

judged. Then, different taps of filtering is applied depending on the quantization 
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parameter. As compared to OBMC in H.263, the adaptive filter has better ability to 

avoid the filtering on the image region where human vision is less susceptible to 

blocking artifact. Hence, the computational complexity can be reduced. 

  By taking the advantages of OBMC in H.263 and the adaptive filter in MPEG-4, 

H.264/MPEG-4 AVC utilizes an in-loop adaptive deblocking filter to reduce blocking 

artifact. Both encoder and decoder apply the deblocking filter to increase the accuracy 

of motion estimation or compensation. As compared to the deblocking filter in 

MPEG-4, the deblocking filter in H.264/MPEG-4 AVC is more complex with more 

control parameter, filter modes, and different types of FIR filter. The following 

sections describe the operation of deblocking filter in H.264/MPEG-4 AVC. 

2.7.2  Deblocking Process 

The in-loop deblocking filter in H.264/MPEG-4 AVC is designed to reduce the 

blocking artifacts. As compared to the decoder without applying deblocking filtering, 

the bit rate can be saved 5%-10% when deblocking filter is applied under the same 

performance. The filter operation is applied to each edge of a 4x4 block. Fig. 15 

shows the edge filtering order within a 16x16 luminance macroblock. As shown, the 

vertical edges are filtered first and then the horizontal ones. In addition, for filtering 

an edge of a 4x4 block, consecutive 8 pixels from the same row (or column) of two 

adjacent 4x4 blocks are required. For example in Fig. 15, the pixels (A0-A3, B0-B3) 

are accessed for the vertical (or horizontal) filtering of a 4x4 block. Particularly, each 

sample pixel of (A0-A3, B0-B3) is filtered adaptively by different filter taps. To 

decide the filter tap for each pixel, the following factors are considered:  

1. Boundary strength.  

2. Thresholds of α and β.  

3. The content of sample pixels. 

2.7.3  Boundary Strength 
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Fig. 15  Sequential order for filtering the edges of 4x4 blocks in a luminance 

macroblock. 
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Fig.16.  Decision flow of boundary strength (bS) where P and Q denote two 

adjacent 4x4 blocks. 
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The boundary strength (bS) level is mainly used to decide the necessity of filtering 

and filter type. In H.264, the bS has 5 levels. The actual level is determined by the 

MB type, edge position, reference frame type, and motion vectors of two adjacent 

blocks. Fig. 16 shows the decision of bS level. As shown, the strongest bS level, i.e., 

bS=4, is identified when two adjacent blocks are intra coded and locate at the MB 

boundary. In this case, obvious blocking artifact could be noticed. As a result, higher 

bS level invokes stronger low pass filtering. On the other hand, when the bS is at the 

weakest level, i.e., bS=0, there is no filtering.  

2.7.4  One-dimension Filtering Decision 

Fig.17 elaborates the detail about how these factors are used to decide the filter tap for 

each pixel of (A0-A3, B0-B3). In addition to the bS level, the parameters (α, β) are 

used to preserve the real edge. In Equation (1), the necessity of filtering is also 

controlled by the parameters (α, β). Specifically, α and β are assigned with higher 

values to increase the possibility of filtering as higher quantization parameters cause 

more noticeable blocking artifact. In contrast, smaller α and β are used for lower 

quantization parameters. 

bS!=0 AND  |A0–B0|<α AND  |A1–A0|<β AND  |B1–B0|<β  Equation (1) 

Hence, the first step is to use Equation (1) for deciding whether the filtering is 

required or not. Then, according to the bS level, thresholds (α, β) and the absolute 

differences of adjacent reconstructed pixels, different filters are applied to different 

pixels. Specifically, in Fig. 17, not all the input pixels (A0-A3, B0-B3) will be 

updated with the filtered results. For example, if bS is not of strongest level, only A0, 

B0, A1, B1 are updated. For those pixels without update, the pixel values are 

unchanged. The process is continued by sliding the filtering window one block to the 

right (or to the bottom) at a time as in Fig. 15. Note that the updated (B0-B3) could be 
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used for the filtering of next adjacent block when the filtering window slides one 

block to the right (or to the bottom).  
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Chapter 3 

Platform-based System Design for 
H.264/MPEG-4 AVC Decoder    

3.1  ARM Microprocessor Introduction 

ARM (Advanced RISC Machines) [7] Ltd. is an IP cooperation founded in 1990 by 

Hermann Hauser. It leads the industrial providing of the 32-bit embedded RISC 

microprocessor and is the most widely-used 32-bit microprocessor family in the world. 

The characteristic features of ARM processors are high-performance, low-cost, low 

power consumption. It is especially suitable for the appication in mobile phones and 

about 70% of all modern mobile phones are embedded with the ARM processor core. 

In fact, ARM microprocessor can be integrated into all portable wireless 

communications, hand-held computing, automotive systems, mass storage device, and 

multimedia digital consumer applications, such as MP3 engines, and personal digital 

assistants (PDAs). 
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Table 2. Comparisons among different ARM process families. 

Process Family Pipeline Stages Memory 
Organization 

Clock Rate (MHz)

ARM6 3 Unified 25 

ARM7 3 Unified 66 

ARM8 5 Unified 72 

ARM9 5 Harvard 200 

StrongARM 5 Harvard 233 

ARM10 6 Harvard 400 

ARM11 8 Harvard 533 

 

Fig. 18.  37 sets of 32-bit registers in ARM processor. 
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Fig. 19.  32-bit program status registers. 

ARM microprocessor is based on 32/16-bit RISC architecture. There are two types of 

instruction set. One is the 32-bit ARM instruction set that can be applied when 

considering performance. The other is the 16-bit Thumb instruction set that can be 

applied when considering increasing the code density. Besides, the ARM has 7 

operating mode (User, FIQ, IRQ, Supervisor, Abort, Undefined, and System mode) 

and 37 sets of 32-bit registers (31 of them are general purpose registers and 6 of them 

are program status registers) as shown in Fig. 18. Also, Fig. 19 shows the task for 

each bit of program status registers.  

In this thesis, we utilize the ARM966E-S [8] as our embedded microprocessor. 

The ARM966E-S that belongs to the ARM9 family supports 5 stages for pipeline 

configuration and up to 200 MHz clock rate as shown in Table 2. Fig.20 shows the 

5-stage pipeline data path. Besides, in the architecture of ARM966E-S as shown in 

Fig. 21, it contains the interface of tightly coupled memory (TCM), interface of 

optional ETM9, interface of advanced high-performance bus, and a coprocessor 

interface for connection of acceleration hardware.  

 26

http://www.arm.com/products/CPUs/archi-thumb.html


CHAPTER 3. PLATFORM-BASED SYSTEM DESIGN FOR H.264/MPEG-4 AVC DECODER    

 27

 

 Fig. 20.  Five-stage pipeline data path. 

 

 

Fig. 21.  Architecture of ARM966E-S. 
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3.2. Advanced Microcontroller Bus Architecture 

(AMBA) Overview 

 
Fig. 22.  AMBA architecture. 

 

The open standard of AMBA (Advanced Microcontroller Bus Architecture) [9] 

provides a solution for the flexibility and reusability under system-on-chip (SOC) 

integration. Fig. 22 shows the architecture. With multi-layer architecture, AMBA 

utilizes on–chip bus connecting with embedded processors to conduct the on-chip 

memory or peripherals. To optimize the utilization of bandwidth and frequency of 

on-chip bus, AMBA defined three types of bus: 

1. The Advanced High-performance Bus (AHB) 

2. The Advanced System Bus (ASB) 

3. The Advanced Peripheral Bus (APB) 

The AHB and ASB support multiple masters and burst transfers to conduct a 

pipelined operation with high performance. Moreover, the AHB supports more 

transfer techniques, such as split transactions and wide data bus configurations. On 

the other hand, with simple interface, the APB is suitable for many peripherals to 
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Fig 23. AHB components and multi layer interconnection. 

conduct bus protocol from high performance to low power and low bandwidth bus.  

3.3. Advanced High-performance (AHB) Bus 

Introduction 

Multi-layer AHB is a new standard of AMBA 2.0 [9]. With single-clock edge 

operation, the AHB reduces the delay of multiple masters system and efficiently use 

the bandwidth. The AHB bus bandwidth is allowed to be 8, 16, 32, 64, 128, 256, 512, 

and 1024 bits. Considering the 32-bit configuration of general purpose processors and 

high performance of AHB, in this thesis, we apply the 32-bit AHB as our system 

on-chip bus. 
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To describe the protocols and architecture of the AHB, Fig 23 shows the AHB 

components and multi-layer interconnection. A typical AMBA AHB system includes 

four components: master, slave, arbiter and decoder. Each component is described as 

following: 

1. AHB master: The bus master has the ability to perform read or write operation 

on the bus. The AMBA supports multiple AHB masters on the system. Typical 

AHB masters include the CPU processors, the DMA (direct memory access) 

controller, the DSP (digital signal processors) and so on. However, only one bus 

master is permitted to use the AHB bus at any one time. 

2. AHB slave: The bus slave waits the reading or writing demand from masters and 

response the transfer condition. Typical AHB slaves include the internal 

memory, the external memory interface, the APB Bridge and so on.  

3. AHB arbiter: Because only one bus master is permitted to use the AHB bus, an 

AHB arbiter is constructed on the bus to judge the access priority of active 

masters. 

4. AHB decoder –The AHB decoder decodes the bus address and selects one of the 

signals from the slave modules depending on the decoded results. 

Basically, the transfer signals on AHB bus include clock, arbitration, address, control 

signal, write data, read data, and response signal. Table 3 shows the detailed AHB 

signals and Fig 24 shows these signals applying on the interfaces of AHB master, 

slave, arbiter and decoder. Besides, to increase the system performance, the AHB 

utilizes some important transfer techniques: 

1. Pipeline operation: An AHB transfer consists two phases. One is the address 

phase that conducts the transfers of address and control signals. The other is the 

data phase that conducts the transfers of read, write and response signals. With  
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Fig. 24. The interfaces of AHB (a) master, (b) slave, (c) arbiter and (d) decoder. 

 
Fig. 25.  AHB pipeline transaction. 
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Table 3.  The detailed AHB signals 

Name Source Signal Type 

HADDR[31:0] Master Address 

HTRANS[1:0]  Master Response 

HWRITE  Master Control 

HSIZE[2:0]  Master Control 

HBURST[2:0]  Master Control 

HPROT[3:0]  Master Control 

HWDATA[31:0]  Master Write 

HSELx  Decoder Control 

HRDATA[31:0]  Slave Read 

HREADY  Slave Response 

HRESP[1:0]  Slave Response 

HBUSREQx  Master Arbitration 

HLOCKx  Master Arbitration 

HGRANTx Arbiter Arbitration 

HMASTER[3:0]  Arbiter Arbitration 

HMASTLOCK Arbiter Arbitration 

HSPLITx[15:0]  Slave Arbitration 

HCLK  Clock Source Clock 

HRESETn  Reset Reset 
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pipelined transaction, the data phase of previous transfer can be overlapped with 

the address phase of current transfer to increase throughput. For example as 

shown in Fig. 25, the address phase B is overlapped with the data phase A.  

2. Burst transfer: Table 4 shows the 8 burst types depending on the HBURST 

signal. It supports 1, 4, 8, 16 beat and undefined length transfer. Besides, the 

incrementing burst and wrapping burst are supported. The address of the 

incrementing burst is just an increment of previous address. However, the 

address of the wrapping burst will wrap to start address when the boundary is 

reached. For example, the a start address is 0x40 and WRAP8 is performed, 

then the address range is 4x8=32=0x20 and the boundary is 0x40+0x20=0x60. 

Hence, if the address in current single time is 0x5c, the address in next single 

time will wrap to 0x40. 

3. Retry transfer: When the slave is unable to supply data immediately, it can 

return RETRY response. The RETRY response does not change the master 

access priority in arbiter. Hence, only the master owning a higher priority can 

access the bus first. For example, a slave S1 returns RETRY response when a 

master M1 is reading data from S1. Then, a master M2 owning lower priority 

still can not access bus if the master M1 has the highest priority in the arbiter. 

4.  Split transfer: When the slave is unable to supply data immediately, it can also 

return SPLIT response. The SPLIT response can adjust the master access 

priority in arbiter. Hence, even the master owning a lower priority can access the 

bus. For example, a slave S1 returns SPLIT response when a master M1 is 

reading data from S1. Then, a master M2 owning lower priority can access the 

bus until the access of slave S1 is available and the master M1 also keep the 

highest priority in the arbiter. 
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Table 4.  Eight burst types depending on the HBURST signal. 

HBURST Size Type 

000 Single Single transfer 

001 Undefined length Incrementing 

010 4 beat Wrapping 

011 4 beat Incrementing 

100 8 beat Wrapping 

101 8 beat Incrementing 

110 16 beat Wrapping 

111 16 beat Incrementing 

 

 

3.4  Emulation Platform of Our System 

We adopt a platform based design methodology to construct an optimized AVC 

decoder with a novel scheduling to achieve macroblock-level pipelining [10-11]. The 

platform-based design methodology has been widely adopted to solve complicated 

system-level designs of a multimedia system on a single chip. The platform-based 

design could be defined in following two ways [26-27]. First is reuse of architecture 

of hardware and software blocks. Second is the construction of a system with stable 

microprocessor, memory hierarchy, interconnecting bus, and peripherals. The 

construction has the abilities to cover rapid extension, feasible customization for a 

wide range of applications, and a short time-to-market. In addition, the platform-based 

design can improve the yield in circuit design. In short, the platform-based design [26] 
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has the multiple advantages including efficient system-level design methodology, 

short time-to-market, reusability of software and hardware IP blocks, feasible chip 

integration, etc. Thus, the platform-based design methodology is adopted for this 

project.  

Some systems [28-30] are developed on a circuit design level and some systems 

[31-32] are built on existing hardware platforms. In [28], a videophone system 

compliant with H.263 is developed where the system is partitioned into hardware 

modules and software modules based on complexity analysis. Several 

microcontrollers are used to manage data and functional flow. The dedicated 

hardware is used to improve computationally intensive parts. In addition, the modules 

work with macroblock-level pipelining. In [29] the MPEG-2 encoding processes is 

partitioned into 3 layers including processing control, video processing, and data 

buffering. A RISC processor controls and pipelines the 3-layer functional modules in 

macroblock-level. In [30], a multi-core SoC architecture is proposed for MPEG-4 

streaming video. Based on the application profile characteristics, the task scheduling 

of the decoding processes is optimized by a macroblock engine. In addition, the SoC 

architecture has a global controller using a RISC processor and a computation 

accelerator with a DSP. On a multi-core platform, all processor cores are 

communicated via ARM Master Bus Architecture (AMBA). In summary, the 

platform-based design methodology has been widely adopted to construct the codec 

of H.263 and MPEG-2/4 standards as discussed [28-32]. Since the complexity of the 

H.264/MPEG-4 AVC codec is much higher than that of the aforementioned coding 

standards, it is challenging to build a H.264/MPEG-4 AVC decoder on existing 

platforms. 
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Table 5. H.264/MPEG-4 AVC baseline profile and level 1. 

Max macroblock processing rate 1485 

Max picture size 176x144 

Max bit rate 64kbit/s 

Max # of reference frames 5 

Max horizontal and vertical MV range (full pels) -16~16 

 

Fig. 26. Proposed ARM-based H.264/MPEG-4 AVC decoder architecture. 
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Fig. 26 shows our emulation configuration to test our new architecture for the 

H.264/MPEG-4 AVC decoder. The proposed architecture is compliant with the 

H.264/MPEG-4 AVC baseline profile of level 1. Table 5 summarizes its main 

parameters. The architecture is emulated on an ARM development board. In addition, 

the ARM platform provides a general purpose ARM966E-S CPU core for data flow 

control and a logic module for multiple dedicated accelerators. The ARM also 

provides an industry standardized 32-bit AHB for high-speed computation and 

emulations. 
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The ARM966 CPU acts as a master on the AHB bus and controls the 

synchronization among all functional blocks. All the remaining functional blocks that 

respond to the requests from CPU are slaves. Specifically, the dedicated accelerators 

are used to speed up computation or reduce memory access. The firmware of the 

accelerators and the software for the decoding modules are stored in the embedded 

SRAM. In addition to the embedded memory, our decoder also requires external 

memory for frame buffering. The external memory is accessed via an external 

memory interface.  

3.5  Proposed Macroblock Pipeline Architecture for 

H.264/MPEG-4 AVC Decoder 

.Table 6.  Key operations for AVC decoding modules [10]. 

Modules MC IQ-IDCT CAVLD 
Deblocking 

Filter 

Mul., Add, Add, Branch, 
Operation 

Shift, MemA Shift MemA 
Add, Shift, 
MemA 
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Fig.27.  Decoding profiling for H.264/MPEG-4 AVC on ARM 966 CPU [10]. 
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In the ARM platform based design, a task can be done with either the software 

executing on CPU or the dedicated hardware running in parallel with CPU. Thus, to 

optimize the overall performance through parallel processing, it’s challenging to 

partition the tasks to separately match CPU capability and the dedicated accelerators. 

Computational characteristic is a good criterion for task partition [28-30]. The 

modules with regular and computational intensive tasks are perfect for hardware 

implementation and the modules with lots of branches are more suitable for software 

realization. Table 6 illustrates the kernel operations of each AVC decoding module. 

Most modules except the IQ-IDCT require a great amount of memory access (MemA). 

In addition, the MC and deblocking filter require intensive arithmetic operations for 

interpolation and filtering, respectively. The CAVLD uses lots of branching 

instructions for context-adaptive table switching. Thus, to optimize the performance, 

the MC, deblocking filter, and IQ-IDCT are implemented in hardware and the 

CAVLD is realized in software. . 

Fig. 27 shows the decoding profiling in relative execution time for different 

modules.  From the Amdahl’s law and the observations of Fig. 27, we reduce the 

computational loads by adding 3 dedicated accelerators for the deblocking filter, MC 

 
Fig. 28.  Scheduling approach for macroblock-level pipelining  
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and IQ-IDCT, respectively. The remaining coding modules are implemented and 

optimized in software. 

To save the buffers for intermediate data and maximize the throughput, module 

synchronization is required. In Fig. 28, we design a scheduling approach for 

macroblock-level pipelining based on data dependency and working load distribution. 

The subscript n denotes the macroblock index. Basically, a macroblock is decoded 

through the three stages including (1) CAVLD, (2) MC, (3) IQ-IDCT and (4) 

deblocking filtering. With a macroblock pipeline manner, CPU conducts the software 

for CAVLD and three hardware accelerators conduct functional operation for MC, 

IQ-IDCT and deblocking filter respectively. Hence, all functional modules can be 

processed in parallel. Specifically, the scheduling for IQ-IDCT is overlapped with 

deblocking filter. Hence, we do not have to buffer the IQ-IDCT and reconstruction 

results and can pass them to deblocking filter immediately. We describe the detail in 

section 3.6. Fig. 29 shows the flow chart to synchronize CPU with the three 

accelerators at macroblock-level. At the beginning of each stage, 

1. CPU proceeds to decode the CAVLD of (n+1)-th macroblock header.  

2. CPU sends the data to the IQ-IDCT accelerators for IQ-IDCT of the 

(n-1)-th macroblock. At the same time, the IQ-IDCT accelerator outputs IQIDCT 

results and performs reconstruction described in Chapter 4. 

3. In an adaptive manner described in Chapter 4, CPU sends the data of 

neighboring macroblocks and IQ-IDCT passes the reconstruction results to the 

deblocking filter accelerators. At the same time, the deblocking accelerator 

performs the filtering of the (n-1)-th macroblock. 

4. CPU receives the filtered data and writes the data to reference memory.  
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Fig. 29.  Flowchart to synchronize CPU with the three accelerators at macroblock 

(MB)-level. 

5. If the n-th macroblock is inter-coded, CPU sends the MC data to the MC 

accelerator for motion compensation of the n-th macroblock. If the macroblock is 

intra-coded, CPU sends the results of intra prediction to the MC local memory for 

the reconstruction of the n-th macroblock.  
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3.6 Non-buffered Memory Architecture for 

IQ-IDCT and Deblocking filter 

Memory architecture usually has great impact on the cost, performance and power 

consumption. To improve the pipeline latency and memory cost, we propose the 

non-buffered memory architecture for IQ-IDCT and deblocking filter. Traditionally, 

to process the macroblock pipelining of IQ-IDCT and deblocking filter, we can use 

non-shared memory architecture or shared memory architecture [33] described as 

follows. Fig. 30 shows the non-shared architecture. The IQ-IDCT and deblocking 

filter have their own single-ported local memory SRAM_1 and SRAM_2 respectively  

to store macroblock-sized data. To start deblocking the current macroblock, the 

IQ-IDCT reconstructed results stored in SRAM_1 have to load to SRAM_2 first. 

During the time of data copy from SRAM_1 to SRAM_2, IQ-IDCT and deblocking 

filter can not access SRAM_1 and SRAM_2 to perform calculation because of lack of 

memory bandwidth.  Hence, the time of data copy causes the delay time in pipeline 

schedule and reduces the performance.  

Besides, to enhance the throughput, some prior deblocking works propose the 

architecture of shared memory [17] or dual-ported memory [14],[16],[19]. Fig. 31 

represents the shared architecture for IQ-IDCT and deblocking filter modules. By 

alternatively using the SRAM_1 and SRAM_A, we can load new macroblock data to 

SRAM_A prepared for next IQ-IDCT calculation while we are operating IQ-IDCT 

calculation for current macroblock in SRAM_1. The same method can be applied to 

deblocking filter by alternatively using the SRAM_2 and SRAM_B. Hence, the 

latency of data copy can be removed. However, some problems of shared architecture 

have to be considered: 
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Fig. 30. Architecture of non-shared memory design 

Fig. 31. Architecture of shared memory design. 

1. Shared architecture is not suitable for hardware and software co-operation. 

Take our system design as example, we realize the CAVLD by software. 

Hence, the shared architecture can not be applied to the transaction of CAVLD 

and IQ-IDCT because the CPU can not load CAVLD results to IQ-IDCT and 

calculate CAVLD for next macroblock in parallel. Once the shared 

architecture can not be applied to the transaction of CAVLD and IQ-IDCT, it 

can not be applied to the transaction of IQ-IDCT and deblocking filter either. 

2. Shared architecture requires double size of memory buffer that in general 

increase the overall cost significantly. If the IQ-IDCT and deblocking filter 
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Fig. 32.  Architecture of non-buffered design. 

modules are integrated in the compensation loop of the encoder, the designer 

may not prefer to increase the cost because the critical pipeline latency is made 

by motion estimation. 

3. The frequent memory access in shared architecture costs more power 

consumption than the one in non-shared architecture. 

Therefore, to improve pipeline throughput, we propose a non-buffered architecture for 

IQ-IDCT and deblocking filter modules. Fig. 32 shows the non-buffered architecture 

for IQ-IDCT and deblocking filter. It mainly includes a bus-interleaved deblocking 

filter accelerator and a bus interleaved IQ-IDCT accelerator described in Chapter 4. 

With the bus-interleaved scheme, the data transfer and functional operation can be 

performed in parallel. Hence, our IQ-IDCT accelerator can pass the reconstruction 

results to deblocking filter while it performs transforming for current macroblock. 

Also, deblocking accelerator can perform deblocking operation while it is receiving 

the reconstruction results. Hence, the macroblock-size memory for buffering 

reconstruction results can be removed. 

As compared to the non-shared and shared memory architecture, Fig. 33 shows 

the pipeline schedule comparison. Basically, the proposed non-buffered architecture 

has some advantages: 

1. It has lower memory cost. Our non-buffered architecture can achieve the same 

performance as shared memory architecture but reduce significant memory cost. 

By utilizing the non-buffered architecture, the intermediate memories 
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(SRAM_1, SRAM_2, SRAM_A and mode.SRAM_B shown in Fig. 30 and Fig. 

31) can be removed.  

2. It has better latency than non-shared memory architecture. We can overlap the 

IQ-IDCT and reconstruction with the deblocking process. Also, the 

bus-interleaved design of IQ-IDCT and deblocking filter overlap the time of 

data transfer and the time of hardware calculation. Therefore, the pipeline 

latency can be reduced. 

3. It cost lower power consumption. Non-buffered architecture has less memory 

access frequency due to the less intermediate memories are used. Hence, the 

power consumption of memory access is lower. 
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Fig. 33. Pipeline schedule comparison 
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Chapter 4 

Hardware Accelerators for 
H.264/MPEG-4 AVC Decoder   

4.1. Introduction 

We have learned the macroblock pipelining architecture for H.264/MPEG-4 AVC 

decoder in Chapter 3. In the pipeline schedule, four functional modules of CAVLD, 

MC, IQ-IDCT and deblocking filter perform the decoding process in a macroblock by 

macroblock manner. Based on software/hardware partition methodology, we realize 

three hardware accelerators of MC, IQ-IDCT and deblocking filter and implement 

CAVLD and other modules by software. In this chapter, we describe the architecture 

designs for these accelerators.  

4.2. Bus-interleaved Deblocking Filter  

4.2.1 Overview of State-of-art Works 

Among various coding tools in H.264, the in-loop deblocking filtering has significant 

impact on the visual quality improvement. To reduce the blocking artifact, the in-loop 

deblocking filter adaptively conducts the filtering along the boundaries of each 4x4 

block according to the boundary strength (bS), the quantization parameter (Qp) and 

the content of the block. The blocking artifact is removed. However, the improvement 

is at the cost of intensive computation and memory access. 
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For real-time applications, the deblocking filtering becomes one of the performance 

bottlenecks. In [12]-[20], dedicated hardware was developed for acceleration. Table 7 

shows the main features of prior works for H.264/MPEG-4 AVC deblocking filter. 

Specifically, the architecture of [18] is for frame-based filtering. The deblocking 

filtering is invoked after the reconstruction of the entire frame. Apparently, 

frame-based filtering requires a frame buffer and longer system latency. To reduce the 

buffer size and latency, macroblock-based (MB-based) filtering architectures were 

proposed in [12]-[17],[19],[20]. The filtering can be started upon the reconstruction of 

a macroblock. To achieve high throughput, in [14],[16],[18]-[20], dual-ported SRAM 

is used to simultaneously conduct the reading and writing during the filtering. Also, 

[17],[20] utilize frame-length memory to buffer data of neighboring macroblock. 

However, the high throughput is at the cost of complex and costly memory 

architecture. In addition, for filtering a macroblock, [14],[16],[19] need to first buffer 

the entire macroblock. The hardware is idled for waiting the data. Moreover, the data 

movement of [14]-[20] is not mode aware which means that the data transmission 

overhead is not minimized. Hence, in this thesis, we propose a parallel processing 

architecture and a more efficient data transmission scheme to improve the 

performance.  

4.2.2  Proposed Adaptive Transfer Scheme 

In this thesis, our deblocking filtering is designed to operate at macroblock level. The 

entire frame is filtered in a macroblock-by- macroblock manner and the macroblocks 

within a frame are processed in a raster scanning order. The filtering can be started 

upon the reconstruction of a macroblock. For filtering a macroblock, we need to first 

retrieve the reconstructed data from the embedded memory (or certain module) and 

transfer the data to the dedicated accelerator via a bus. As more and more dedicated 

accelerators are deployed, the limited and shared bus bandwidth could become the 

performance bottleneck. To reduce the demand of bus bandwidth, we propose an 

adaptive macroblock transmission scheme.  
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Table 7: Main features of prior works for H.264/MPEG-4 AVC deblocking filter 
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Fig. 34.  macroblock data and its adjacent blocks used for macroblock-based 

deblocking filtering. 

A. MB Mode Classification 

Fig. 34 depicts the data required for filtering a macroblock. As shown, in addition to 

the current macroblock, the adjacent 4x4 blocks at the right and the left boundaries 

are also needed. In [14]-[20], fixed macroblock data are transferred to the accelerator. 

However, we find that not all the 4x4 blocks within a macroblock are to be filtered. 

Thus, we can more efficiently use the bus bandwidth by minimizing the redundant 

data transfers. To do so, we define 8 macroblock filtering modes according to the 

filtering necessity of the left macroblock boundary, the top macroblock boundary and 

the current macroblock. Table 8 and Table 9 summarize the corresponding data size 

transfer macroblock data of each mode. For example, mode 5 denotes the case in 

which only the left and the top macroblock boundaries are required for filtering. As a 

result, for the luminance part, we simply need the adjacent 4 blocks in the left 

macroblock, the adjacent 4 blocks in the top macroblock and the adjacent 7 blocks in 

the current macroblock. By the same token, one can derive the data size for the 

chrominance part. Totally, the data transfer size required for filtering a mode 5 

macroblock is 116 words which include 60 words for the luminance component and 

56 words for the chrominance part. Following the same principle, one can derive the 

data size for the other modes. By distinguishing different filtering modes, we can 
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Table 8. Filtering mode for a macroblock 

Mode Left* Top* Current 
macroblock 

Data Size**

1 Y Y Y 160 

2 N Y Y 128 

3 Y N Y 128 

4 N N Y 96 

5 Y Y N 116 

6 N Y N 64 

7 Y N N 64 

Skip N N N 0 
*: The macroblock boundary required for filtering.  

**: Data transfer size in words. 
 

 
Table 9. Transfer macroblock data for the 8 filtering modes  
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Fig. 35. macroblock filtering mode distribution in Akiyo and Foreman sequences 
that are coded at QCIF@15fps 64Kbps with JM6.0. 

minimize the redundant data transfers.  

B. Macroblock Filtering Mode Distribution  

Fig. 35 shows the mode distribution of Akiyo and Foreman sequences based on JM6.0. 

Without mode classification, [14]-[16],[18],[19] treat all macroblocks as mode 1, i.e., 

all the input samples shown in Fig. 34 are to be transferred. Particularly, [17],[20] 

treats all macroblocks as mode 4 because they previously buffer the left macroblock 

and one row of top macroblocks. From Fig. 35, we learn that different modes have 

different weightings. Specifically, mode 1 is actually less than 30% and mode 4 is less 

than 5%. In the extreme case of Akiyo, most macroblocks use skip mode which does 

not require any input samples. Thus, [14]-[20] incur many redundant data transfers. 

With the filtering mode classification, we can more efficiently use the bus bandwidth. 

According to our mode analysis, in Akiyo sequence, we can save 94% of the data 

transfers used in [18], 89% of those in [14]-[16],[19] and 85% of those in [17],[20]. 

Similarly, in Foreman sequence, our design can save 70% of the data transfers in [18], 
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Fig. 36. Proposed bus-interleaved architecture. 

41% of those in [14]-[16],[19], and 25% of those in [17],[20]. As compared to 

[14]-[19], significant data transfer reduction is achieved.  

In addition, as compared to [17],[20], our design shows benefit with much less 

memory usage. The detail comparison will be shown in Section 4.2.4.  

4.2.3.  Proposed Bus-interleaved Architecture 

To reduce the processing latency, we propose a bus-interleaved architecture in 

[12],[13]. Specifically, we perform the filtering and the data transfer in parallel. 

Different from the prior designs, [14],[16]-[19], we can start the filtering while the 

data is being streamed in and out. The processing latency is reduced due to the 

parallelism. 

A. Proposed Bus-interleaved Architecture 

Fig. 36 shows our proposed architecture. It mainly includes four components:  
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Fig. 37.  Operation of the transposed memory (Reg2). 

1. One-dimensional Adaptive FIR Filter  

The one-dimensional FIR filter adaptively performs the horizontal/vertical filtering 

in a row-by-row manner. For each row, it takes 8 input samples from two adjacent 

4x4 blocks to conduct filtering. Accordingly, it produces 4 filtered results and 4 

intermediate results for the filtering of next block. 

2. Single-ported SRAM  

A single-ported SRAM is used as local memory for buffering the horizontally 

filtered and transposed macroblock. Specifically, for the luminance component, it 

stores all the 4x4 blocks in the current macroblock (i.e., 64x32 bits) and the 

adjacent 4x4 blocks in the top and the left macroblocks (,i.e., 32x32 bits). The total 

size of the SRAM is 96x32 bits. In our design, the filtering of chrominance and 

luminance components shares the same memory. 

3. 4x4 Pixel Arrays (Reg1 and Reg2)  

In Fig. 36, Reg1 buffers the intermediate results produced by the FIR filter. On the 

other hand, Reg2 acts as a transposed memory. Particularly, Reg2 performs the 

transposition by storing the data in either Horizontal-In-Vertical-Out or 

Vertical-In-Horizontal-Out fashion. Fig. 37 shows an example of the transposition 
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Fig. 38.  Sequential edge processing order of (a) horizontal filtering 

and (b) vertical filtering in a luminance macroblock. 
 

 
Fig. 39.  The 4x4 block input order to the dedicated hardware. 

where Row(n, Bm) represents the n-th row of m-th block and Col(n, Bm) denotes 

the n-th column of m-th block. Specifically, Fig. 37 (a) depicts the case as the 

horizontally filtered Block 0 is being written to Reg2 in a row-by-row manner. 

After Block 0 is completely buffered in Reg2, Fig. 37 (b) illustrates that the 

transposition is done by writing Block 0 to the SRAM in a column-by-column 

manner. Particularly, after Col(1, B0) is stored in the SRAM, we filled out the left 

space in Reg2 with Row(1, B1), i.e., the first row of next horizontally filtered 

block. Such replacement is continued until horizontally filtered Block 1 is 
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completely buffered in Reg2. Since Block 1 is stored column-by-column in Reg2, 

we transpose Block 1 by outputting the data row-by-row to the SRAM. Such 

cyclical rotation between Horizontal-In-Vertical-Out and 

Vertical-In-Horizontal-Out is conducted throughout the entire deblocking process. 

Traditional designs [14],[16],[18] require stalls for block transposition. However, 

our seamless design requires no stalls.  

4. Data Flow Control Unit 

The data flow control unit consists of a finite state machine which controls 

synchronization among 1-D FIR filter, 4x4 pixel arrays and local SRAM buffer. 

Moreover, it responses to the deblocking filtering request from the AHB bus. 

B. Operation of Bus-interleaved Architecture 

To describe the operation of our bus-interleaved architecture, we use the filtering of a 

mode 1 macroblock as an example. Fig. 38 shows the processing order of horizontal 

and vertical filtering for a mode 1 macroblock and Fig. 39 depicts the sequential block 

input order to the dedicated accelerator. In Fig. 40, we show the status of our 

bus-interleaved architecture during the horizontal filtering. Here, we assume Reg1 has 

buffered the non-filtered samples of Block 0. To perform the horizontal filtering for 

the edge between Block 0 and Block 1 in Fig. 39, the FIR filter takes Row(1,B1) from 

the bus and Row(1,B0) from the 1st row of Reg1 for computation. After the filtering, 

we overwrite the 1st row of Reg1 with the intermediate results, 

Row(1,B1)_intermediate, and save the horizontally filtered results, Row(1,B0)_h, in 

the 1st row of Reg2. The other rows are processed in the same way. When the 

horizontally filtered Block 0 is completely stored in the Reg2, we transpose the block 

by writing it to the SRAM in a column-by-column fashion. While the SRAM is being 

written, the FIR filter performs the horizontal filtering for the edge between Block 1 

and Block 2 by receiving Row(n,B2) from bus and retrieving 

Row(n,B1)_intermediate from Reg1. Such process is continued until the horizontal 

filtering of a macroblock is done. After the horizontal filtering, we read the 
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Fig. 40.  Data flow of horizontal filtering in the bus-interleaved architecture. 

 
Fig. 41.  Data flow of vertical filtering in the bus-interleaved architecture. 
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Fig. 42.  Analysis of processing latency reduction 
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horizontally filtered macroblock from the SRAM and perform the vertical filtering in 

the same manner. Specifically, during the vertical filtering, the input data of FIR filter 

is now configured to be from the SRAM. In addition, the filtered and transposed data 

is written to the CPU instead of local SRAM. Fig. 41 shows the configuration of our 
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Table 10. Macroblock latency for each transfer mode  

Transmission Mode Latency Per macroblock 
(cycles) 

1 374 

2 310 

3 310 

4 246 

5 286 

6 182 

7 182 

SKIP 50 

bus-interleaved architecture during the vertical filtering. Note that the luminance and 

the chrominance components are sequentially processed in the same manner.  

C. Overlapping of bS Level Calculation 

In our design, the bS level calculation is done by hardware. Particularly, to reduce 

the macroblock processing latency, the bS level for current macroblock is calculated 

in the previous macroblock cycle so that the data dependency between the bS level 

and the filtering can be removed. Moreover, we overlap the computations of filtering 

and bS level calculation. Note that there is a turn-around time between the last input 

data and the first filtered output result. During the turn-around time, the bus is idled. 

Thus, we use this turn-around time to transmit the data required for bS level 

calculation and conduct the actual computation.  

D. Processing Latency Analysis 

Fig. 42 illustrates how our proposed schemes can reduce the processing latency for 

filtering a macroblock. We show the improvement of each proposed scheme step by 

step. For comparison, Step 0 shows the processing latency of traditional design, e.g., 

[14], which does not deploy bus-interleave architecture and macroblock adaptive 

transmission scheme. As shown in Step 1, our bus-interleaved architecture offers 1.5x 

performance improvement over the design of [14] due to the parallelism of data 
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Fig. 43. Comparison of average latency per macroblock (including 50 cycles for bS 

l l ti )
transfer and filtering. Moreover, with the overlapping of bS level calculation, Step 2 

shows that the processing latency can be further reduced. Furthermore, Step 3 shows 

that our adaptive transmission scheme can reduce the processing latency to be merely 

50 cycles when the skip mode is detected. In the skip mode, there is no need to 

conduct data transfer. By the adaptive transmission scheme, our design can detect skip 

mode and avoid the redundant data transfers. However, without mode aware, 

traditional design [14]-[20] incur many redundant data transfers even in the skip mode. 

Table 10 lists the cycle counts for the other macroblock modes. According to our 

mode analysis in Fig. 35, our design averagely requires 86 to 244 cycles for filtering a 

macroblock. As compared to [14]-[20], Fig. 43 shows that our design has up to 7.1x 

performance improvement. Significant latency improvement is achieved. 
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4.2.4  Comparisons of Simulation Results  

In this Section, we show the comparisons of different hardware designs. Moreover, 

we analyze the memory access frequency in different approaches. Lastly, we use an 

ARM based H.264 decoder as an example to demonstrate the system performance of 

our design 

A. Comparison of Hardware Implementation 

Table 11 compares our accelerator with the state-of-the-art designs [14]-[20]. As 

shown, for filtering a macroblock, our design averagely requires less cycle counts. 

Specifically, as compared to [14],[16],[18]-[20], we provide 1.2x to 7.1x performance 

improvement with simpler and smaller single-ported memory. In addition, we have up 

to 4.5x performance improvement as compared to [15],[17]. While clocking at 

100MHz, our design can support 2560x1280@30Hz processing throughput. 

Additionally, our bus bandwidth requirement  

is down to 6%-30% of [18], 11%-59% of [14]-[16],[19] and 15%-75% of [17],[20].  

B. Comparison of Memory Access Frequency 

Table 12 further compares the local SRAM access frequency of different approaches. 

For filtering a macroblock, [14], [16]-[19] require read and write operation to 

previously buffer the input macroblock. In addition, [17], [20] also need to buffer one 

row of top macroblocks and the left macroblock. During the horizontal and vertical 

filtering, [14],[16],[18],[19] require more frequent read and write operation. 

Particularly, for [17], they use additional 4x4 pixel arrays to buffer the horizontally 

filtered and transposed results instead of using local memory. As compared to the 

prior works, our design simply needs one write operation for horizontal filtering and 

one read operation for vertical filtering. There is no need to previously buffer the 

input macroblock. Significant memory access reduction is achieved. Less frequent 

memory access and simpler memory architecture bring the advantages of lower power 

consumption and lower cost. 
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Table 11.  Comparisons of state-of-the-art deblocking filter designs. 

 [14], [16] [15] [17] [18] 

Average macroblock 

Latency  (cycles) 

614 386 250 >600 

SRAM Memory 

Architecture 

2x 

Dual-port 

1x 

Single-port 

3x 

Single-port 

1x 

Dual-port 

Local Memory Size (bits) 96x32 + 

64x32 

80x32 96x32x2  

+ Frame 

Widthx2x32 

Frame 

size 

Number of 4x4 Pixel 

Arrays 

2 

 

 

2 4 4 

Number of 1-D Filter 1 1 1 1 

Bandwidth Requirement 

(Normalized with respect 

to [18]) 

50% 50% 40% 100% 

Processing Throughput  

(1280x720, 100Mhz) 

45.2fps 71.9fps 111.1fps N/A 

Gate Count (UMC 

0.18um) 

20.6K 9.2K 19.6K N/A 
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Table 11(continue).  Comparisons of state-of-the-art deblocking filter designs. 

(Continue) [19] [20] Our design 

Average macroblock 

Latency  (cycles) 

510 286 86 – 244  

SRAM Memory 

Architecture 

2xDual-port 

1xSingle-port 

1xDual-port     

1x Single-port 

1xSingle-port 

Local Memory Size (bits) Dual: 88x32 

 + 72x32 

Single: 32x32 

Dual: 64x32 

Single: Frame 

Widthx2x32 

96x32 

 

Number of 4x4 Pixel 

Arrays 

11 

(3 pixel array 

+8 FIFO) 

6 

(2 pixel array 

+4 FIFO) 

2 

Number of 1-D Filter 2 1 1 

Bandwidth Requirement 

(Normalized with respect 

to [18]) 

50% 40% 6% – 30% 

Processing Throughput  

(1280x720, 100Mhz) 

54.5fps 97.1fps 113.8 –322.9fps 

Gate Count (UMC 

0.18um) 

N/A 14.5K 11.8K 
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Table 12. Comparisons of local memory access frequency  

 [14],[16], 

[18], [19] 

[17] [20] Our 

design,[15] 

Current 

macroblock  

Buffering 

Read/Write Read/Write None None 

Left and Top 

macroblocks 

Buffering 

None Read/Write Read/Write None 

Horizontal 

Filtering 
Read/Write None Write Write 

Vertical 

Filtering 
Read/Write None Read Read 

 
Fig. 44.  Architecture of bus-interleaved IQ-IDCT 
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4.3.  Accelerator for IQ-IDCT 

4.3.1. Bus-interleaved IQ-IDCT 

Prior work [34] proposed a parallel architecture for DCT in H.264/MPEG-4 AVC. 

This parallel architecture uses two sets of 1-domension DCT module to parallel 

process 2-dimension DCT and achieve 100% hardware utilization. To realize the 

IQ-IDCT with bus-interleaved architecture, we take advantage of the parallel 

architecture. Fig 44 shows the bus-interleaved architecture of IQ-IDCT. It mainly 

includes a 4x4 transposed buffer and two sets of one-dimension inverse DCT, an 

embedded AHB bus, a bus-interleaved controller and an inverse quantization module. 

To describe the processing flow of IQIDCT, the quantized DTC data are inputted 

from bus row by row at first. At the same time, we can perform inverse quantization 

and transform by using the inverse quantization module and the first 1-dimension 

inverse transform. The results are stored on 4x4 transposed registers in 4 cycles. Next, 

the current block on transposed buffer can perform 1-dimension inverse DCT column 

by column by using the second inverse transform module to complete 2-dimension 

inverse transform. To maintain the 100% utilization of transform modules, the first 

1-D inverse transform module can process the inverse transform of the next block 

while the second inverse transform module is processing the inverse transform of the 

current block. Besides, the bus-interleaved controller controls the reading and writing 

of transposed registers based on the bus address. Hence, the data transfer and 

transform can be performed in parallel without mismatches. In our simulation, our 

IQ-IDCTdesign takes 104 cycles to transform one macroblock. The area used is 6680 

gates.  

4.3.2. Interleaved process for IQ-IDCT and deblocking filter 

To describe the interleaved process for IQ-IDCT and deblocking filter, Fig. 45 
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Fig. 46.  Interleaved process for IQ-IDCT, reconstruction and deblocking filter.  
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Fig. 47.  Latency of inverse transforming and deblocking a macroblock. 

 

represents the decoding flow for a macroblock. The macroblock-sized quantized DCT 

coefficients (C0-C15) are transformed inversely into IQ-IDCT residuals (T0- T15). 

Next, reconstruction macroblock (R0-R15) is produced after predictions (P0-P15) 

have added with the residuals. Finally, the reconstruction macroblock and the data 

from upper and left macroblock are passed for deblocking filtering. By using 

bus-interleaved IQ-IDCT and deblocking filter, the data transmission, IQ-IDCT 

calculation, reconstruction and deblocking filtering can be performed in parallel.  Fig. 
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46 shows the interleaved process for IQ-IDCT, reconstruction and deblocking. By 

adaptive transfer scheme for deblocking filter described in section 4.2, the processing 

latency is variable depending on the transfer mode. Fig 47 shows the processing 

latency for inverse transforming and deblocking a macroblock. With interleaved 

process, the processing latency for IQ-IDCT can overlap with processing latency for 

deblocking filter so as to increase system performance.  

4.4.  Accelerator for Motion Compensation 

Y control signal 

Local Memory 

(12Kbits SRAM)

MUX MUX

Filter 
Y1 

Filter

Y2

Filter
UV

Reg Reg

MUX MUX/ADDER

+

U/V control singal 

Filter
UV

Filter
UV

Interpolation engine for Luma Interpolation engine for chroma  

Fig. 48.  Interpolation architecture for quarter-pel motion compensation [10]. 

 

To speed up interpolation, we design a dedicated co-processor for motion 

compensation [10] as show in in Fig. 48. For a macroblock interpolation, the motion 

compensation uses a local memory to store 1500 integer pixels and two interpolation 

engines for parallel processing of the luminance and chrominance components. Each 

engine consists of multiple multipliers and accumulators. Particularly, the multiplier is 
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implemented in a hardwired manner to maximize performance. To get one 

interpolated macroblock, the intermediate results (output) of row and column filtering 

in each engine may be fed back to conduct the filtering of another columns and rows. 

The AVC specification uses variable block size motion compensation. The minimum 

granularity for motion compensation is a 4x4 block. Therefore, our interpolation 

engine is designed for a 4x4 block. The interpolation of each macroblock takes 16 

iterations. In the worst case, our design takes 1280 cycles to interpolate one 

macroblock. As operating at 10 MHz, the throughput for each macroblock is 7812 

macroblock/sec. The area used is 11172 gates. 
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Chapter 5 

Experiment Results 

5.1  Experiment Environment and Tools  

In our experiment, we design an ARM-based platform for the H.264/MPEG-4 AVC 

decoder. Basically, our decoding system is constructed with the configuration in Fig. 

49. Specifically, our ARM integrator baseboard [35] (as shown in Fig.50) employs 

JTAG (Joint Task Action Group) interface to connect with an ARM MultiICE (as 

shown in Fig.51). The MultiICE connects to a host computer to conduct the 

communication between computer and ARM board. Our ARM board mainly includes 

two parts, core module and logic module. In the core module, there are ARM966 CPU, 

embedded SRAM (1 MBytes), and external memory interface. On the other hand, the 

dedicated accelerators are implemented on the logic module which is a FPGA 

(Filed-programmable Gate Array).  Moreover, ARM board employs the AHB bus 

interfaces to communicate the core module and logic module. Besides, the clock rates 

for ARM CPU, FPGA and AHB bus list in Table 13. 

To facilitate the verification, we utilize ARM developer suite v1.2 [36] to develop 

our system. It mainly includes two development software tools, CodeWarrior and 

AXD, which window interfaces are shown in Fig.52 and Fig.53 respectively. In the 

software design flow of Fig.55, our source codes are coded as assembly (for firmware 

design) and C/C++ language. At first, we employ CodeWarrior to compile these 

source codes and produce ARM-based link object files. Then, the CodeWarrior link 
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Table 13.  The processing rate of CPU, FPGA and AHB bus. 

Modules Processing Rate

ARM966E-S 130MHz 

FPGA 10MHz  

AHB 33MHz 

 

 

 

 

Fig. 49. Our peoposed decoding system 

these object files to generate executable AXD code for ARM966E-S processor. Next, 

the development host use AXD to interfacing the JTAG port on ARM board through 

the ARM multiICE cable. Hence, we can run the executable file at the ARM966E-S 

processor and debug it using AXD environment.  

On the other hand, we develop our hardware designs based on the design follow 

as shown in Fig.56. We code our hardware designs as Verilog RTL language. After 

debugging and simulation using the tools of Cadence Verilog Simulator, Debussy, 
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Fig. 50.  ARM integrator baseboard. 

 

 
Fig. 51.  ARM MultiICE. 

 

  
Fig. 52.  Window interface to CodeWarrior [36]. 
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Fig. 53.  Window interface to AXD [36]. 

 
Fig. 54.  Window interface to Xlinx Project Navigator [37]. 

Fig. 55.  Software design flow. 

Fig. 56.  Hardware design flow. 
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and Logic Synthesis, we employ the tool of Xlinx Project Navigator [37], which 

window interface show in Fig.54, to perform FPGA synthesis and P&R. The 

produced programming file is burned on the FPGA module on ARM board. Next, to 

verify software and hardware simultaneously, we can probe the hardware signal from 

FPGA by using the logic analyzer and debug the software and firmware by using 

AXD. 

5.2  System Performance Comparison Using 

H.264/MPEG-4 AVC Decoder 

In this section, we use an ARM based H.264/MPEG-4 AVC decoder as an example to 

demonstrate the system performance of our design. In Table 14, we classify 4 types of 

architecture based on whether the software is optimized or whether the MC, IQ-IDCT, 

or deblocking filter accelerator is integrated. To compare the system performance of 

the 4 types of architecture, Fig. 57 illustrates the decoding throughput for the 4 

architectures in frames per second (fps) on ARM966 CPU. Table 15 shows the 

experiment parameters of test sequences. We describe these architectures as follows: 

1. The case of JM6.0 Decoder [38]: When only the reference software of 

H.264 JM 6.0 decoder is executed on ARM-based platform, the decoding 

speed is about 0.3 to 1.2 fps for the video sequences in QCIF resolution. 

2. The Architecture A: On the other hand, we optimize the software without 

integrating any hardware accelerator in Architecture A. The decoding speed 

is about 2.3 to 8.1 fps and 5 fps on the average. 

3. The Architecture B: We replace the software MC and IQ-IDCT with 2 

accelerators of MC and IQ-IDCT to our system in Architecture B. As 

compared to only software optimization of Architecture A, the throughput 

of Case B is increased by 30%~60% and 6.6 fps on the average.  

4. The Architecture C: The accelerator of bus-interleave deblocking filter is 

embedded to our system in Architecture C. As compared to the software 

deblocking filter in Arcitecture B, our proposed deblocking accelerator can 
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Table 14. Four ahcitectures for performance evolution. 

 JM6.0 
Decoder 

Architecture 
A 

Architecture 
B 

Architecture 
C 

MC  SW Optimized 
SW 

HW HW 

IQ-IDCT SW Optimized 
SW  

HW HW 

Deblocking 
Filter 

SW Optimized 
SW 

Optimized 
SW 

HW 

CAVLD & 
Others 

SW Optimized 
SW 

Optimized 
SW 

Optimized 
SW 

Performance Comparison

0

2

4

6

8

10

12

JM6.0 Decoder Architecture A Architecture B Architecture C

(f
ps

)

Coastguard Foreman
Mother Container
Akiyo On Average

  

Fig. 57.  System performance comparison using h.264/MPEG-4 decoder. 
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Table15. Experiment parameters of test sequences.  

Frame Size QCIF 

Frame Rate 15fps 

Qp I(28)P(31) 

Group of Picture 1I + 149P 

Reference Frame Number 5 

Coastguard 13.15 

Foreman 8.67 

Mother 58.69 

Container 14.43 

 

Bit-rate 

(kbits/s) 

Akiyo 42.47 

contribute up to 30% throughput improvement. Hence, the throughput ranges from 

4.7 to 10.4 fps and 7.26 fps on the average.  

In conclude, our overall throughput is enhanced from 0.3/1.2 fps in JM6.0 to 4.7/10.4 

fps in Architecture C. Thus, our experiments show that the throughput of the 

H.264/MPEG-4 AVC reference decoder can be improved by 8.6 to 15.6 times. 

Besides, based on Fig. 57, some features can be observed as follows. First, the 

decoding throughput is sequence dependent. Our decoder performs better for slow 

motion sequences for some reasons: (1) slow motion sequences have more zero DCT 

blocks, (2) slow motion sequences have high probability of using integer pixel 

resolution MC, and (3) most of macroblocks in slow motion sequences require no 

deblocking filtering. Hence, the decoding rate is increased due to less computation for 

the MC, IDCT-IQ and deblocking filter modules with slow motion sequences. 

However, less computation for hardware accelerators also results in lower percentage 

of hardware operation. By Amdahl’s law, the improvement ratio using accelerators 

for decoding slow motion sequences is smaller than for decoding fast motion ones. In 

addition, especially for decoding slow motion sequences, the adaptive transfer scheme 

described in chpater4 is important because most data transfers in slow motion 
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sequences are not required. Hence, the redundant data transfer burdens the bandwidth 

and performance.  
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Chapter 6 

Conclusion and Future Work 

In this thesis, we propose a macroblock-level pipelining architecture for a 

H.264/MPEG-4 AVC decoder based on both platform-based design methodology and 

application specific circuit design methodology. With platform design methodology, 

the software procedures and hardware modules retain a high degree of reusability. 

Hence, it shortens the design cycles so that we can quickly integrate our design into 

industrial application. With application specific circuit design methodology, we 

conduct task partitioning and scheduling in the macroblock-level to enhance the 

overall decoding throughput. The software parts control the branching data flow and 

the hardware accelerators speed up the regular and computationally intensive 

modules.  

In the hardware acceleration designs, we present a platform based 

bus-interleaved architecture for deblocking filter in H.264/MPEG-4 AVC. We have 

shown that performing the data transfer and filtering operation in parallel can 

significantly reduce the processing latency. Moreover, classifying macroblock 

filtering mode can avoid redundant data transfer so as to efficiently use bus bandwidth. 

Moreover, we utilize bus-interleaved IQ-IDCT and deblocking filter to perform data 

transfer, inverse transforming, reconstruction and deblocking filtering in parallel. As 

compared to traditional shared memory architecture, we have shown that we can 

remove intermediate buffer and achieve the same performance. 

Based on the dedicated accelerators and macroblock-level pipelining, our 

proposed decoder achieves significant improvement in speed using both software and 
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hardware co-design. For the industrial applications, our proposed design is suitable 

for low cost and high performance multimedia applications. Also, it can be quickly 

embedded into the ARM based system-on-chip design. 

In the future works, we dedicate to our project in two aspects: 

1. Non-buffered architecture design for H.264/MPEG-4 AVC decoder 

In this thesis, we have shown the low-cost and high-performance of 

bus-interleaved designs. By taking advantage of the interleaved processing 

method, we can implement bus-interleaved MC and intra prediction. Our goal is to 

parallel process the data transfer and functional computation for all dedicated 

accelerators. Hence, the interleaved processing reduces the processing latency. 

Besides, we pass the intermediate data to next accelerator to avoid the usage of 

intermediate buffer for macroblock-level pipelining. Thus, our proposed decoder 

represents the non-buffered memory architecture among all the bus-interleaved 

accelerators to achieve low cost and high performance. 

2. Processor-based chip implementation 

Our system is processor-based that contains an ARM processor to conduct 

software operation and hardware control behavior. As compared to VLSI ASIC 

circuit, it is more challengeable to implement a processor-based chip. Our goal is 

to realize system-on-chip implementation. Several expected features of our chip 

list as follows.  

− Processor-based configuration. 

− Low cost. 

− Low power consumption. 

− High processing ability. 

− Flexibility. 

− IP reusability. 
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