
 I

在網路處理器上實作差別服務時所衍生出之延

展性和瓶頸之探討

學生: 林義能 指導教授： 林盈達

國立交通大學資訊科學系

摘要

 網路處理器已漸漸成為傳統以ASIC為主用來處理使用者平面封包的另一可

程式化的選擇。它利用其共同處理器(co-processors)協助處理原本一般用途處理

器(general-purpose processor)所負責的使用者平面的封包。在本論文中，我們將

描述將差別式服務邊緣路由器(DiffServ edge router)實作於 IXP1200 網路處理器

的流程，並探討其效能。 IXP1200 網路處理器具有一個處理控制平面的

StrongARM 核心處理器 (core processor)和六個共同處理器，並將分類

(classification)和排程(scheduling)的規則寫在 SRAM，封包則儲存於 SDRAM。根

據外部測試顯示，就一條輸入埠 (input port)而處理能力(throughput)為 50Mbps

時，本系統可以支援符合個別行為(Per-Hop Behavior)的 500個資料流(flow)，且

可隨著 SRAM 的增加而繼續擴充。經由內部測試我們發現效能瓶頸(bottleneck)

會隨著不同的服務和實作而轉移到不同的地方。就簡單的遞送服務(forwarding

service)而言，SDRAM為一當然瓶頸。然而當涉及眾多的規則表查詢和計算時，

SRAM和 microengine 則分別成為其效能瓶頸。另外，我們也指出了 IXP1200硬

體設計的可能缺失，稱之為”媒體存取控制緩衝儲存器的問題” (MAC buffer

problem)。

關鍵字： 網路處理器，差別式服務，IXP1200，延展性，SRAM，SDRAM

 II

Scalability and Bottlenecks of DiffServ

over Network Processors

Student: Yi-Neng Lin Advisor: Dr.

Ying-Dar Lin

Department of Computer and Information

Science

National Chiao Tung University

Abstract

Network processors are emerging as a programmable

alternative to the traditional ASIC-based solutions in

scaling up the user-plane processing of network services. They

serve as co-processors to offload user-plane traffic from the

original general-purpose microprocessor. In this work, we

illustrate the process and investigate performance issues in

prototyping a DiffServ edge router with IXP1200, which has

one control-plane StrongARM core processor and six user-plane

microengines, and stores classification and scheduling rules

at SRAM and packets at SDRAM. The external benchmark shows

that the system can support an aggregated throughput of

141Mbps of eight input ports, and 500 flows, which is

extensible provided enough SRAM space, at one input port while

conforming the PHB of each flow. Through internal benchmarks,

 III

we found that performance bottlenecks may shift from one place

to another given different network services and

implementations. For simple forwarding services, SDRAM is a

nature bottleneck. However, it could shift to SRAM or

microengines if involving heavy table access or computation,

respectively. We also identify the design pitfall of the

hardware called the “MAC buffer problem”.

Keywords: Network Processor, DiffServ, IXP1200, scalability,

SRAM, SDRAM

Contents

SCALABILITY AND BOTTLENECKS OF DIFFSERV OVER NETWORK
PROCESSORS.......................................I

ABSTRACT...................................... II

CONTENTS..................................... III
LIST OF FIGURES................................ IV

CHAPTER 1. INTRODUCTION.......................... 1

CHAPTER 2. ARCHITECTURE AND DEVELOPMENT ENVIRONMENT OF
IXP1200 3
2.1 Architecture of IXP1200....................... 3

2.2 Development Environment....................... 6

CHAPTER 3. DESIGN AND IMPLEMENTATION OF DIFFSERV ON IXP1200

... 8
3.1 DiffServ Briefing............................. 8

3.2 Mapping DiffServ Components 9

3.3 Detailed Packet Flow in IXP1200 12

3.4 Algorithm Implementations 13

3.4.1 Classifier................................ 14

3.4.2 Scheduler................................. 17

CHAPTER 4. EXTERNAL BENCHMARK AND DESIGN PITFALLS ... 19
4.1 Benchmark Environment........................ 20

4.2 Functionality test........................... 21

 IV

4.3 Scalability test............................. 28

4.4 MAC buffer problem........................... 30

CHAPTER 5. INTERNAL BENCHMARK AND BOTTLENECK DISCUSSIONS33
5.1 Simulation Model............................. 33

5.2 Simulation Result—Linear Search 34

5.3 Simulation Result—Range Matching 37

5.4 Simulation Result—Execution Coverage 39

CHAPTER 6. CONCLUSIONS.......................... 41
REFERENCES: 43

List of Figures
Fig. 1. Hardware architecture of IXP1200......................4
Fig. 2. Software architecture and development

environment of IXP1200...7

Fig. 3. Inside a DiffServ edge device.............................9
Fig. 4 User-plane architecture of DiffServ edge

router over IXP1200... 10

Fig. 5. Detailed DiffServ packet flow in IXP120013

Fig. 6. Fields in a rule ... 15
Fig. 7. Example and relative tables for lookup in

Source IP dimension... 15

Fig. 8. Code of Policer and Marker 17

Fig. 9. Scheduler using DRR.. 18

Fig. 10. Packets in a queue.. 19

Fig. 11. Benchmark environment... 21
Fig. 12. Throughput and loss rate with varying number

of rules ... 22
Fig. 13 Aggregated throughput (Len=64bytes, worst

case)... 23
Fig. 14. Loss rate with varying packet length

(128-rules worst case).. 24

Fig. 15. Priority test (Len=64bytes)............................. 25
Fig. 16. Priority and bandwidth control test

(Len=64byte, EF=62500pps)... 26
Fig. 17. 4(EF, AF1-3) to 1 latency test (Len=64bytes,

 V

EF=62500pps).. 26
Fig. 18. Four-to-One fairness test (64rules, 4 Rx in

one ME).. 27
Fig. 19. Four-to-One fairness test(64rules, 2 Rx in

ME0, 2Rx in ME1).. 27

Fig. 20. Single flow loss rate test............................... 28
Fig. 21. Scalability test (Len=64bytes, 100flows,

BW=74400/100=744 frame/sec, normal case)............. 29
Fig. 22. Scalability test (Len=64bytes, 500 flows,

BW=74400/500=148pps, normal case) 30
Fig. 23. Packet loss of different packet lengths in

Linear Search ... 31

Fig. 24. Receiving process of a packet........................ 31

Fig. 25. Software simulation model 34

Fig. 26. Summary of performance statistics.............. 35
Fig. 27. microengine statistics of Linear Search

DiffServ ... 35
Fig. 28. Execution history of Linear-Search

classifier... 36
Fig. 29. Microengine statistics of Range Matching

classifier... 38
Fig. 30. The execution history of Linear Search in

macro view... 39
Fig. 31. The execution history of Range Matching in

macro view... 39
Fig. 32. Execution coverage of Linear Search DiffServ

... 40
Fig. 33. Execution coverage of Range Matching

DiffServ ... 40

 1

Chapter 1. Introduction

 The increasing link bandwidth demands even faster nodal

processing especially for the user-plane traffic. The nodal

user-plane processing may range from routing table lookup to

various classifications for firewall, DiffServ and Web

switching. The traditional single-processor architecture is

no longer scalable enough for wire-speed processing so that

some ASIC components or co-processors are commonly used to

offload the user-plane processing, while leaving only

control-plane processing to the original processor.

 Many ASIC-driven products have been seen in the market,

such as the acceleration cards [1] for encryption/decryption,

VPN gateways [2], Layer 3 switches [3], DiffServ routers [4]

and Web switches [5]. While they indeed speedup the user-plane

packet processing, they lack flexibility in reprogrammability

and have a long development cycle which is usually nine months

per ASIC.

 Network processors are emerging as an alternative solution

to ASIC for providing scalable capability for user-plane

packet processing while retaining programmability.

Nevertheless, it might not be powerful enough to replace the

ASIC implementations which are application specific in

designing the functional units such as a much wider memory

bus, lower delay between functional units, and faster excution

process, compared to instruction excution in processors. In

 2

this study, we adopt IXP1200 (Internet Exchange Processor)

[6] which is composed of one StrongARM core processor and six

co-processors, referred as microengines, so that developers

can embed the control-plane and user-plane traffic management

modules into the StrongARM processor and microengines,

respectively. Scalability concerns could be satisfied because

of the six programmable microengines, with hardware threads,

new instructions for networking purposes, and the extensible

architecture of IXP1200.

 Tammo, Spalink, and Scott [7] demonstrated and evaluated

the IXP1200 in IP forwarding and concluded that the SDRAM

storing packets is the bottleneck. However, the evaluation

results cannot be generalized for today’s complex services

which need more SRAM table accesses and computing power.

 The objective of this work is therefore to implement a more

sophisticated service, Differentiated Services (DiffServ),

and identify possible performance bottlenecks and design

pitfalls, if any, in IXP1200. There are three most important

modules in DiffServ � classifier, leaky bucket and scheduler.

They are deployed into IXP1200 microengines and configured

by the StrongARM.

 In benchmarking the implemented system, two topics are

investigated. First, how well can this DiffServ

implementation scale, in terms of throughput and number of

flows? Second, where are the potential bottlenecks of network

processors, especially IXP1200’s, and their causes? We

 3

anticipate that the exact bottleneck depends on the specific

service and its algorithmic implementation.

 The paper is organized as follows. Chapter 2 briefly

reviews the architecture and development environment of

IXP1200. C hapter 3 presents the design and implementation of

DiffServ over IXP1200. Chapter 4 and Chapter 5 illustrate the

results of external and internal benchmarking through

experiment and simulation, respectively. Finally, Chapter 6

ends this work with conclusive remarks.

Chapter 2. Architecture and

Development Environment of IXP1200

2.1 Architecture of IXP1200

Fig. 1 shows the hardware architecture of IXP1200. The

32-bit StrongARM, which is the core processor of IXP1200, is

responsible for the initialization of the whole evaluation

system and part of the packet processing. A Memory Management

 4

Unit is also included to translate virtual addresses into

physical addresses and control memory access permissions.

IXP1200
Network Processor

32

IX Bus InterfaceUnit

64
FIFO Bus (IXBus) 66/85MHz

10Mb/100Mb/1Gb
Ethernet MAC Another

IXP 1200

SDRAM
(up to 256MB)

SRAM
(up to 8 MB)

Boot ROM
(up ot 8MB)

64

32

TFIFO RFIFO.

PCI Bus
Unit

SDRAM Memory
Unit

SRAM Memory
Unit

StrongARM Core

Microengine1
Microengine2

Microengine3
Microengine4

Microengine5
Microengine6

.

Ready Bus
Sequencer

Fig. 1. Hardware architecture of IXP1200

The six microengines, which support four hardware contexts,

i.e. threads, and 128 general-purpose registers and 128

transfer registers in each of them, are mainly used for

receiving, manipulating, and transmitting the packets. Not

shown in this figure is the Control Store in each microengine

that holds microcode of up to 1024 32-bit instructions. For

networking purposes, microengines also support zero context

switching overhead, single-cycle ALU with shifter, and other

specifically designed instructions for bit, byte, and

longword operations. Table 1 lists some example instructions

of IXP1200 for comparing with the ones of x86 processors.

 5

Instructions of

IXP1200

Instruction description Instructions of x86

processor

Used in

ALU Perform ALU with shift in one

instruction

ALU (ADD or SUB)

+ shift

Rule matching

(classification)

IMMED Load an immediate value with

shift

Load + shift Load rule

(classification)

FIND_BSET

LOAD_BSET

Determine the position of the first

set bit in a 16-bit field of a register

At least 5 instructions

to test one single bit

Longest prefix

match

BR_BSET Branch if the specified bit in a

register is set

Shift + bit test +

JUMP

Ready Bus

Sequencer

HASH1_64 Perform one 64-bit hash operation Many instructions Faster table

lookup

Table 1. Some comparisons between instructions of IXP1200

and x86

The SRAM Unit, which is used for storing lookup tables and

pointers in scheduling queues for packet forwarding, accesses

SRAM via a 32-bit bus that provides a peak bandwidth of up

to 400Mbytes per second and access time of 30 cycles [7].

The SDRAM Unit, which is used for storing mass data of

packets, accesses SDRAM via a 64-bit bus that provides a peak

bandwidth of up to 800Mbytes per second and access time from

40 to 55 cycles depending on the destination functional unit

[7].

The 64-bit IX bus Interface Unit is responsible for

servicing MAC interface ports on the IX Bus, moving data to

and from the Receive and Transmit FIFOs. It provides a 4.2Gbps

interface to MAC devices, meaning that it can afford 2.1Gbps

of the input ports and output ports, respectively. In

 6

addition, two IXP1200 network processors can be supported

directly on the IX Bus without additional support logic.

 Operations of IXP1200 hardware components when handling

packet-forwarding services can be described below. At boot

time, the StrongARM loads boot image from Boot ROM and

initializes other functional units, including loading the

routing table into SRAM and microcode into microengines. The

system is now ready to receive packets. When the Ready Bus

Sequencer detects an incoming packet in a MAC port, it notifies

the corresponding receiver thread to retrieve and store it

in the RFIFO. After the receiver thread completes routing

table lookup, it moves the packet to SDRAM waiting to be

forwarded. A transmitter thread on another microengine later

forwards the packet in SDRAM through TFIFO to another MAC port.

There may be multiple receiver, transmitter, and scheduler

threads distributed to 6 microengines, though some

restrictions apply.

2.2 Development Environment

 Fig. 2 shows the software architecture of IXP1200. The

software architecture consists of control-plane processing

in StrongARM running under the VxWorks operating system [8]

and user-plane processing in microengines running packet

-processing threads. Though StrongARM can do the user-plane

 7

work, such unclearly divided workload distribution would lead

to complex packet processing and thus low performance. The

same thing happens otherwise for microengines with the

control-plane work. A microengine can also communicate with

StrongARM and other microengines using interrupt or signal

mechanism, which helps in realizing the control/user plane

architecture.

StrongARM

ME0

Input Traffic

Tornado

Linker

C/C++
compiler

Assembler

Loader
WorkBench

Control-plane

User-plane

IXP1200Host PC
E
t
h
e
r
n
e
t

o
r

s
e
r
i
a
l

p
o
r
t

Output Traffic

Control
Store

SRAM

Fig. 2. Software architecture and development environment of

IXP1200

 Also shown in Fig. 2 is the overview of the development

environment. The IXP1200 programming can be divided into two

aspects, which are StrongARM programming and microengine

programming. While StrongARM programs are written in C/C++

under Tornado [8], microengine programs are written in

assembly under WorkBench [9] for low-level packet processing

capability. The compiled StrongARM executable is linked with

 8

object microcode compiled by the assembler, and then loaded

into IXP1200 SRAM from which StrongARM initializes and loads

microcode into the Control Store of microengines. The linked

program can also be executed by the Transactor for pure

software simulation. Besides, the StrongARM is big-endian and

byte-addressable while microengines are little-endian and

longword-addressable.

Chapter 3. Design and Implementation

of DiffServ on IXP1200

 In this chapter, we first give a brief introduction to

DiffServ. Then we explain how to map DiffServ components onto

IXP1200 program, followed by the detailed packet flow in the

system. At last, we describe how to implement two major

components, classifier and scheduler, in DiffServ with two

existing algorithms, Multi-Dimensional Range Matching [11]

and Deficit Round Robin [12], respectively.

3.1 DiffServ Briefing

 Differentiated Services (DiffServ) [10] mechanisms allow

users to receive different levels of service from a provider

 9

to support various types of applications. Fig. 3 shows the

functional components of a DiffServ edge device. According

to the service configuration in a DiffServ edge node, packets

are classified, according to multiple fields (MF), leaky

bucket policed, and marked to receive a particular per-hop

forwarding behavior (PHB), i.e. class-based scheduling, which

is Expedited Forwarding (EF) or one of four Assured

Forwarding’s (AF’s).

Service Configuration

MF
classifier

Policer Marker Queue
Mngt

Scheduler

Traffic

Fig. 3. Inside a DiffServ edge device

The service differentiation of packets often takes effect

in delay and loss rate. Packets of higher classes are more

likely to be scheduled earlier than those of lower classes,

and thus result in smaller latency and loss rate.

3.2 Mapping DiffServ Components

 Fig. 4 shows the software architecture of DiffServ and its

corresponding task allocation on IXP1200. We insert six

 10

DiffServ modules (the shadowed blocks) on top of the original

software of simple IP forwarding.

Rx

nextpac ipverify

lmatchenqueue

classification

Tx

policing

marking

leaky
bucket
timer

8 threads for 8 10/100 ports
8 threads for 1 Giga port

Tx fill

3 threads for 10/100 ports
3 threads for 1 Giga port

1 threads for 10/100 ports
1 threads for 1 Giga port

StrongARM

scheduling

Tx_ReadAssignment

packet store
not EOP

receiver thread

transmitter thread

scheduler thread

Fig. 4 User-plane architecture of DiffServ edge router over

IXP1200

The DiffServ process is described below. After a packet

header is received at a transfer register from an RFIFO and

verified as legal, it is passed to the range-matching

classifier, described in section 3.4.1, for the matching

process. If the packet’s header matches one of the rules and

is classified as, for example, EF traffic, we admit or discard

it according to the policing bandwidth set in the rule. If

admitted, it is marked with a DSCP (DiffServ Code Point) in

the header. After longest prefix matching in routing table

lookup, the packet is queued in the corresponding queue of

the output port waiting for scheduling, i.e. the packet’s

descriptor is enqueued in SRAM while the packet itself is

 11

stored in SDRAM. The scheduler thread chooses one transmitter

thread and assigns it a port, which contains six queues (1

EF, 4 AF’s and 1 BE), to serve. The transmitter thread examines

the queue with the highest priority to see whether there is

a packet to be sent and whether it has enough quantum, which

is used in Deficit Round Robin scheduling described in section

3.4.2, for that packet. If having enough quantum, the

transmitter thread fetches the packet’s descriptor in SRAM

and in turn the entire packet in SDRAM to TFIFO for output.

Otherwise, it examines the next queue of lower priority for

the packet and the corresponding quantum.

The 24 threads are divided evenly into two groups, eight

10/100M ports and one giga port. Each group has 12 threads

that are used as 8 receivers assigned to 2 microengines, 3

transmitters and 1 scheduler assigned to 1 microengine. Each

10/100M receiver thread is responsible for a specific 10/100M

port, while 8 giga receiver threads serve one giga port. The

transmitter threads, however, are not bound to specific ports.

They output packets to ports according to the assignments from

the scheduler thread. We use static task allocation instead

of dynamic task allocation for the following reasons. First,

the 1K Control Store of a microengine might not be large enough

to hold microcode of two threads of different types, for

example, receiver (1012 instructions) and transmitter (552

instructions) whose summed size of instructions exceeds 1024.

However, transmitter and scheduler (144 instructions) whose

 12

summed size is below 1024 can co-exist in one microengine.

Therefore, we’d better group threads of the same type in one

microengine. Second, if we choose dynamic allocation, the

programming would be more complex and, since we cannot have

a clear task division between threads, the communication

overhead between threads or microengines would be large.

3.3 Detailed Packet Flow in IXP1200

Fig. 5 illustrates the key components and the packet

processing flow. The Ready Bus Sequencer periodically polls

the MAC buffer and sets the receive flag in a global rec_rdy

register when a packet comes. Once the receiver thread

responsible for the MAC port detects the flag, it asks the

Receive State Machine to move the packet, in units of 64-byte

MAC packet, referred as MP which is a basic data unit in the

system, from the MAC buffer into RFIFO.

A FIFO, including RFIFO and TFIFO in the system, is used

as an intermediate buffer for packets. Implemented as a

64-byte memory array, it could hold an MP to be stored in SDRAM

or transmitted to a MAC interface.

If an MP is a SOP (Start Of Packet), its first 32-byte

containing the packet header is transferred into eight SRAM

transfer registers, 4 bytes each, for classification, while

the second half is directly stored in SDRAM.

 13

1. Poll MAC buffer and set the rec_rdy
 flag of the port

2. Poll rec_rdy of the port

4. Move MP to RFIFO

3. Issue a reference to Rx State Machine

8. Store the packet header to SDRAM

9. Store the rest of the MPs to SDRAM

7. Policing, marking, routing table lookup
 and enqueue (after classification)

6. Load rules into SRAM xfer regs
 (classification iteration)

5. If SOP, move half of the MP(header)
 to SRAM xfer regs for classification,
 half to SDRAM

* If SOP, process from 1 to 8, otherwise
 from 1 to 4, then skip to 9

10. DRR scheduling and then transmit to
 TFIFO, MAC buffer

SDRAM

per-port
MAC buffer

per-port
RFIFO

SRAM

Thread0 of ME0

SRAM transfer registers
(x8)

SDRAM transfer
registers (x8)

filter
rules &
routing
table

per-port
TFIFO

.

Ready Bus
Sequencer

DRR

rec_rdy

Receive
state
machine

1

23

4

5

5, 9

6

7

8

10

Fig. 5. Detailed DiffServ packet flow in IXP1200

 After classification, policing, marking and routing table

lookup, the packet is enqueued in one of the six queues of

the output port; the first 32 bytes and the remaining packet

body are then moved into SDRAM in units of MP. The queues are

implemented as link lists and each element in a list represents

a packet’s descriptor. The descriptor contains address of the

packet stored in SDRAM so that the transmitter thread knows

where to get the packet scheduled to be sent.

3.4 Algorithm Implementations

 The following two sections present how to implement

classifier and scheduler in our system. For classifier, we

employ the Multi-Dimensional Range Matching to exploit its

efficiency in setting up filter rules. For scheduler, we adopt

 14

Deficit Round Robin because of the flexibility in adjusting

the priority between different flows and its long-term

fairness.

3.4.1 Classifier

 Fig. 6 shows the format of a rule used by the classifier.

Each pair of fields grouped in a rectangle represents the range

of a specific dimension. The TOS field can also be seen as

the DSCP field if the incoming packet is from another DiffServ

domain. The policer uses Bandwidth to police EF traffic.

The concept of the Multi-Dimensional Range Matching used

to implement the classifier is described below. The rules in

a dimension form intervals, which may be overlapped by

multiple rules. Each interval is associated with a BV (Bit

Vector, which is 512-bit in our implementation and is stored

in SRAM), which keeps track of the rules overlapped in this

interval. Fig. 7 illustrates an example of the matching

process in the source ip dimension.

 15

Src_ip_low Src_ip_hi Dst_ip_low Dst_ip_hi Src_port_low Src_port_hi

Dst_port_low Dst_port_hi Proto_low Proto_hi TOS_low TOS_hi

DSCP Bandwidth

DiffServ Code Point

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14)

1 longword (4 bytes) for each field

14 fields totally

Fig. 6. Fields in a rule

#2#2

#3#3

#4#4

#7#7

#5#5 #6#6 #1

140.113.88.170 140.113.88.190

#1

140.113.88.170 140.113.88.190

#1#1

140.113.88.170 140.113.88.190

140.113.88.172

Src_ip of the packet

140.113.88.172

Src_ip of the packet

0.0.0.0 255.255.255.255

Source IP rules

0.0.0.00.0.0.0

Source IP rules

11 10 0
512 511 3 2 1

Intervals

.

.

.

BE

.

.

.

.

.

.

CBV
table

32bit

.

.

.

512bit

BV
table

bit vector for
this interval

SRAM

Fig. 7. Example and relative tables for lookup in Source IP

dimension

 Upon the arrival of a packet, the classifier searches the

interval table of each dimension for a match with the

corresponding field in the packet. Once an interval is found

for a dimension, the classifier consults the BV table for the

corresponding BV. If all six fields of a packet match an

interval in six dimensions, respectively, the classifier ANDs

the BVs of the intervals, and the index of the first non-zero

bit in the result vector is the index of the matched rule.

An additional 32-bit CBV (Compact Bit Vector), also stored

 16

in SRAM, is associated with each interval in order to speed

up the lookup process of the BV. The usage of CBV is described

as follows. If the Nth bit in a CBV equals 0, it means that

all bits in the range from [32(N-1)+1]th to 32Nth bit in the

BV are 0. On the other hand, more than one bit in the BV equal

1 in that range if the Nth bit of CBV equals 1.

Because each bit in CBV containing 32-bit information in

BV, the CBV can detect and avoid the unnecessary memory

accesses and computations in ANDing the BV’s. Note that since

AND and SRAM operations are longword-based in microengines,

a BV is stored in the memory as 32-bit words.

 Because the SRAM in our hardware platform is only 2Mbyte,

the maximum number of rules must be limited to 1024 (6

dimensions*2049*1024/8 > 2Mbytes, since there will be 2049

intervals in the worst case of 1024 rules, and 1024 bit of

BV for each interval). We set it to 512 rules in our

implementation for simplicity, in addition to other space

overhead such as routing table and queues.

 After classifier returns the index of the matched rule,

the policer and marker use the information contained in the

rule to do the further processing (as described in Fig. 8).

Each rule is associated with additional two fields,

last_arrival_time and token, which are used in maintaining

per-flow Leaky Bucket.

Policing and Marking:

 17

 If(rule[index].dscp = EF)

token=(time_now-rule[index].last_arrival_time)*rule[in

dex].bw+rule[index].token

 If(len_of_packet <= token)

 rule[index].token = token – len; // restore the rest of

the tokens

 Else

 packet_discard();

 TOS_of_packet = rule[index].dscp; // marked with DSCP in the

packet header

ElseIf(index = BE)

enqueue(BE);

 Else

enqueue(rule[index].dscp);

Fig. 8. Code of Policer and Marker

 A timer is implemented by StrongARM to obtain the timing

information. The last_arrival_time means the arrival time of

the previous packet, and the token indicates the number of

tokens left in the processing of last packet that matches this

rule and available to the next one. Therefore, the total tokens

available to the incoming packet can be computed and we can

decide whether to admit it or not.

3.4.2 Scheduler

 18

 Fig. 9 illustrates the design of the s cheduler using DRR.

The ratio of quantum sizes between two adjacent classes is

2 in our implementation. To prevent from longer queuing delay

and higher drop rate, the capacity of each queue is set to

32 the same as the quantum size of EF. The quantum of EF could

be wasted if the queue size is smaller than 32, and the packets

are also more likely to be dropped.

Each packet is represented in a form of buffer descriptor

when it is queued in SRAM, as shown in Fig. 10. The IXP1200

implements an SRAM free_list, which can be called for a memory

block to store the buffer descriptor. The real packet is stored

in SDRAM, and once it is scheduled for transfer, the

transmitter thread uses the address of buffer descriptor and

buffer handle in the descriptor to locate the packet. The

former is used to map the start address of the real packet

(buf_des_addr*64) in SDRAM, and the later is used to obtain

the number of valid bytes in EOP (End Of Packet).

EF

AF1

BE

AF4

AF3

AF2
TFIFOEnqueue

EF : AF1 : AF2 : AF3 : AF4 : BE

= 32 : 16 : 8 : 4 : 2 : 1

Quantum ratio between
 all classes

32 descriptors

Fig. 9. Scheduler using DRR

 19

Tail AddrHead Addr
31 01516

Packet Count

78

SRAM_QUEUE_DESCRIPTOR_BASE
Per Queue, Per Port

SRAM_BUFF_DESCRIPTOR_BASE
PACKET_FREELIST

SDRAM_PKT_BUFF_BASE
Actual Packet Storage

32 032 0

buf_handle
Next

Addr B

64 bytes MP

0

0

32

32

64 bytes MP

buf_handle
Next

buf_handle
Next

Fig. 10. Packets in a queue

Chapter 4. External Benchmark and

Design Pitfalls

 There are works [13,14,15,16] describing DiffServ

performance evaluation. However, most of them are conducted

through simulations. In this chapter, we investigate two

important issues for a DiffServ edge device, functionality

and scalability, through hardware benchmark. For

functionality, w e evaluate the PHB of different flows and the

 20

fairness among input ports. For scalability, we want to know

the aggregated throughput and how many flows our system can

support while conforming their PHBs. Last, we identify a

possible design pitfall named the MAC buffer problem and

propose solutions for it. Another two versions of DiffServ

are also implemented for comparison with the one of Range

Matching, the Linear Search classifier in IXP1200 and the

Linux-based Range Matching DiffServ whose CPU is Pentium III

800 and RAM is 128MB.

4.1 Benchmark Environment

 Fig. 11 illustrates the benchmark environment [13]. The

host PC is used to remotely control the initialization and

activities of IXP1200. We first setup the connection from host

PC to IXP1200 and the IXP1200 then automatically download the

linked image of StrongARM and microcode executables with

Tornado. After entering the debugging mode in WorkBench, we

can run the DiffServ code continually or set break points.

 21

IXP1200SmartBits

NIC(10/100MB)

NIC(10/100MB)

NIC(10/100MB)

.

.

.

.

.

.

Host PC
Ethernet

WorkBench
(for Microengins)

&
Tornado

(for StrongARM)

Download VxWorks and
compiled excutables

Benchmark softwares :
1. SmartWindow

2. SmartFlow

Fig. 11. Benchmark environment

4.2 Functionality Test

 Though the time complexity of Range Matching is O(n), the

benchmark result in Fig. 12 shows a k*log n decrease in the

throughput when the number of rules increases. This is because

when the number of rules is small (as in our experiment), the

coefficient k, which represents the effect from binary

searches of multiple dimensions, dominates the classification

process. As for linear search, we can see that the throughput

is linearly decreased as the number of rules increases.

 22

Throughput V.S # of rules (Len=64bytes, Load=100%=148Kpps, worst-case)

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128 256 512

n: number of rules (at input port x1)

T
h
r
o
u
g
h
p
u
t

(
K
p
p
s
)

RM_thrput

LS_thrput

Fig. 12. Throughput and loss rate with varying number of rules

 Fig. 13 shows the throughput of the receiver threads of

different allocations. Naturally, the throughput of two

threads in two microengines is approximately two times of the

one of a single thread. However, due to the lack of the

computing power, the throughput of four threads in a

microengine is not four times of only one thread. In addition,

the throughput of eight threads is not two times of the one

of four threads. This is the result of memory contention. Not

shown in Fig. 13 is the throughput, which is 20.5Mbps, of

Linux-based Range Matching DiffServ when the number of rules

is 512. It is almost same with the throughput of one thread

in IXP1200, which means IXP1200 outperforms the general PC.

 23

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256 512

number of rules

Th
r
o
u
g
h
p
u
t

(
M
b
p
s
)

1FE Rx on 1 ME

4FE Rx on 1 ME

2 FE Rx on 2 ME

8FE Rx on 2 ME

Fig. 13 Aggregated throughput (Len=64bytes, worst case)

 Fig. 14 shows the relation between loss rate and packet

length. When the packet length increases, the loss rate

decreases. The reason is quite straightforward. At the same

load condition, longer packets result in fewer packets for

the classifier to process. One thing is interesting in this

figure. No matter under what load condition, the loss rate

of the flow, whose packet l ength is 512 bytes, is near 100%.

Actually, this always happens to flows whose packet length

is longer than a threshold. We call it the MAC buffer problem

and will discuss it in the later section.

 24

0

20

40

60

80

100

120

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Load (%) at input port x1

L
o
s
s

R
a
t
e

(
%
)

64byte

128byte

256byte

512byte

Fig. 14. Loss rate with varying packet length (128-rules

worst case)

Fig. 15 shows the receive rate of four AF classes from four

input ports, respectively. The traffic of AF4 begins to be

dropped at load 25% because the output link is fully utilized

so that the packets of low priority are more likely to be

dropped. We can also observe from the figure that the service

differentiation is strictly carried out in the 2:1 manner,

as defined in our system, for two adjacent classes.

We include the EF flow in our priority test in Fig. 16.

Again, we see the AF3 flow that is of the lowest priority in

this test begins to be dropped at load 25%. However, the other

three flows continue to consume the bandwidth left by AF3 until

the output queue of AF2 is full due to the growing traffic

rate and its lower priority. While the other 3 AF flows obey

the 2:1 traffic proportion, the EF flow reaches the steady

state at 62,500pps set in the rule. It does not obey the 2:1

 25

proportion with other AF flows since the EF queue is not full

yet.

In the latency test in Fig. 17 corresponding to Fig. 16,

we observe that the EF flow has a very low latency under all

load conditions. Before load 25%, every flow has the same

latency because the queues are not full. We also observe that

the latency of AF flows still obey the 2:1 proportion, which

means the delay in output queues dominants the whole

end-to-end delay.

0

20

40

60

80

100

120

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Load (%) at input port (x4)

R
ec

ei
ve

 r
a
t
e

(
%
)

AF1

AF2

AF3

AF4

Fig. 15. Priority test (Len=64bytes)

 26

0

10000

20000

30000

40000

50000

60000

70000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Load (%) at input port x4

R
e
c
e
i
v
e

t
h
r
o
u
g
h
p
u
t

(
p
p
s
)

EF

AF1

AF2

AF3

Fig. 16. Priority and bandwidth control test (Len=64byte,

EF=62500pps)

Fig. 18 shows the fairness among four input flows of the

same class to one output link. The packet loss from load 25%

to 42% is due to the fullness of the output link and is e ven

between the four flows. After load 42%, we see an acute changing

of loss rate among flows. This is because the unstableness

of the receivers. The traffic load is too heavy in each input

port so that the classification cannot be finished in time.

0

20

40

60

80

100

120

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Load (%) at input port (x4)

R
ec

ei
ve

 r
a
t
e

(
%
)

AF1

AF2

AF3

AF4

Fig. 17. 4(EF, AF1-3) to 1 latency test (Len=64bytes,

 27

EF=62500pps)

0

10000

20000

30000

40000

50000

60000

70000

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

Load (%) at input port x4

R
e
c
e
i
v
e

t
h
r
o
u
g
h
p
u
t

(
p
p
s
)

EF

AF1

AF2

AF3

Fig. 18. Four-to-One fairness test (64rules, 4 Rx in one ME)

 Compared with the four receiver threads in only one

microengine in Fig. 18, the four receiver threads are divided

into two groups in two microengines, as shown in Fig. 19. It

is very clear that the receivers are more stable than those

in one microeigine, thanks to the additional computing power

from the second microengine.

0

20

40

60

80

100

120

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Load (%) at input port (x4)

L
o
s
s

(
%
)

Average

1->5

2->5

3->5

4->5

Fig. 19. Four-to-One fairness test(64rules, 2 Rx in ME0, 2Rx

in ME1)

 28

4.3 Scalability Test

 The test methodology is described below. We first measure

the maximum load, which is 58% as shown in Fig. 20, for one

flow that results in no packet loss. Then we want to know how

well the system supports for a larger number of flows when

the input load is below or above the load measured in Fig.

20. The bandwidth of each flow is set the same and the

aggregated bandwidth is 50% of the link. The input load is

evenly divided into 100 and 500 flows in the following two

experiments, respectively.

0

2 0

4 0

6 0

8 0

100

120

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Load (%) at input port (x4)

L
o
s
s

(
%
)

Average

1->5

2->5

3->5

4->5

Fig. 20. Single flow loss rate test

Fig. 21 shows the throughputs of 100-flows at three load

conditions. The flows strictly follow their bandwidth

settings when the input load is 50%, which is below 58%, and

become unstable when overloaded. However, most of the flows

 29

are limited to their bandwidth settings.

0

100

200

300

400

500

600

700

800

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Flow index

T
h
r
o
u
g
h
p
u
t

(
p
p
s
)

50%

80%

100%

Fig. 21. Scalability test (Len=64bytes, 100flows,

BW=74400/100=744 frame/sec, normal case)

 Fig. 22 shows the test of 500-flows as an extension of Fig.

21. To compare the results in these two figures, we define

Average Performance Dropdown (APD) of the flows at different

loads as

APD =
N
BW

TN

i

i∑
=− 11 ,

where iT is the throughput of flow i, N is the number of flows

and BW is the bandwidth of each flow set in this experiment.

 The APD’s of load 80% and 100% are 0.022 and 0.09 in

100-flows test, whereas 0.047 and 0.15, which are larger, in

500-flows test. This is due to the extra memory accesses

required in binary search in 500-flows test. Besides, the

flows in Fig. 22 still strictly follow their bandwidth

 30

settings when the input load is 50%.

0

20

40

60

80

100

120

140

160

180

200

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

2
5
3

2
6
7

2
8
1

2
9
5

3
0
9

3
2
3

3
3
7

3
5
1

3
6
5

3
7
9

3
9
3

4
0
7

4
2
1

4
3
5

4
4
9

4
6
3

4
7
7

4
9
1

Flow index

T
h
r
o
u
g
h
p
u
t

(
p
p
s
)

50%

80%

100%

Fig. 22. Scalability test (Len=64bytes, 500 flows,

BW=74400/500=148pps, normal case)

4.4 MAC buffer problem

 This section discusses the MAC buffer problem introduced

in Fig. 14. An interesting thing is observed in Fig. 23. When

the classifier is implemented with Linear Search, the system

loses all the packets of length 512-byte under all load

conditions. There are two causes to this situation, the slow

classification and the small buffer size, which are

illustrated below.

Fig. 24 shows a diagram of packets reception. As described

in section 3.3, the rest of MPs are transferred from MAC buffer,

RFIFO to SDRAM after the SOP is classified. However, if SOP

cannot be processed in time and the buffer is not large enough,

the incoming MPs of the same packet could fill up the whole

 31

buffer and thus result in a packet drop, and then 100% packet

loss.

0

20

40

60

80

100

120

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Load(%) at input port (x1)

P
a
c
k
e
t

L
o
s
s

r
a
t
e

(
%
)

64_byte

128_byte

192_byte

224_byte

256_byte

512_byte

Fig. 23. Packet loss of different packet lengths in Linear

Search

MAC buffer

Classification
process

Classification
process

RFIFO
(64bytes)

Receiver

SDRAM

SOP

MP&EOP

Fig. 24. Receiving process of a packet

304 31th normal

305 31th 100%

Any 30th normal

Packet Length
(byte) Rule matched Loss

1

2

3

Table 2. Experiment results of Linear Search classifier for

MAC buffer problem

 32

Since both the slow classification and small buffer

contribute to the MAC buffer problem, two things are therefore

interested, the maximum tolerable processing time of the

classification and the maximum buffer size, which both help

avoid this problem.

The first question can be answered in table 2. From result

2 and 3 we can learn that, when a packet matches 30th rule,

the classification is fast enough so that the receiver can

move all MPs into SDRAM in time. That is, the maximum tolerable

processing time (from classification to packet store in Fig.

4) for a SOP is about 120 SRAM accesses and 950 instructions,

or 4550 cycles totally.

 We also find from result 1 and 2 that, the threshold of

the packet length in MAC buffer problem is 304 bytes, and the

size of MAC buffer is therefore 240 bytes (304 bytes - 64 bytes

of RFIFO), which is different from 256 bytes mentioned in the

specification of IXP1200.

 Another solution to MAC buffer problem is to enlarge the

MAC buffer size to 1454 bytes (1518 bytes - 64 bytes of RFIFO),

whose sum with RFIFO is the maximum packet size in Ethernet.

Since there can be at least one packet in the MAC buffer and

RFIFO, the problem can be avoided.

 Third, since the incoming MPs could fill up the whole buffer

before SOP is classified, we just move the MPs into SDRAM before

classification. Though the average delay may become longer

due to the postponement of the classification and enqueue,

 33

it won’t have critical impact on the system compared with the

dominant output queuing delay.

 As to the Fig. 14, it is strange to see that the loss rates

under MAC buffer problem are not 100%, which are different

from the ones in Fig. 23. The reason is quite interesting.

The receiving thread is not fast enough to avoid the MAC buffer

problem in this experiment. However, the thread might

sometimes get extra computing power for classification

process thanks to context switching.

Chapter 5. Internal Benchmark and

Bottleneck Discussions

 In this chapter we will have simulations for two DiffServs

whose classifiers are implemented with Linear Search and Range

Matching, respectively. Our goal is to see what cannot be seen

in the external benchmarks, for example, the utilizations of

microengines, SRAM and SDRAM, and try to find out the

performance bottlenecks from above observations. Some

solutions will also be proposed to solve those bottlenecks.

5.1 Simulation Model

 34

 Fig. 25 illustrates the simulation model. The HAL (Hardware

Abstraction Layer) is used as an interface of StrongARM to

IXP1200 hardware and Transactor. The Transactor, which is a

simulator in the development tool called WorkBnech, instructs

the virtual devices with the StrongARM and microengine

executables. There are seven 100Mb input ports and one giga

port for output. The input traffic in each port is configured

as wire-speed.

StrongARM App

HALHAL

Transactor

Transactor IO

SRAM SDRAM MEs IX bus

virtual devices

IXP1200

Foreign Model

.dll file
Tornado

1. Input Port: 0-6
2. Wire -speed input

traffic

Host PC

Fig. 25. Software simulation model

We simulate DiffServ in two algorithms, Linear Search and

Range Matching, and try to find the performance bottlenecks

of IXP1200. The number of rules is 64 in both cases.

5.2 Simulation Result—Linear Search

 Fig. 26 shows the performance statistics of the functional

units. We see that SDRAM utilization is very low. This is

because packet forwarding, which is the major consumer of

 35

SDRAM, is not critical in DiffServ.

Fig. 26. Summary of performance statistics

ExecutingAborted Stalled Idle

Microengine 0 61.7% 18.1% 0.1% 20.1%
 Rec 10/100, 0 15.5% 4.6% 0.1%
 Rec 10/100, 1 15.4% 4.4% 0.1%
 Rec 10/100, 2 15.4% 4.5% 0.1%
 Rec 10/100, 3 15.4% 4.5% 0.1%
Microengine 1 72.2% 18.8% 0.2% 0.2%
 Rec 10/100, 4 15.3% 4.3% 0.1%
 Rec 10/100, 5 15.2% 3.9% 0.1%
 Rec 10/100, 6 15.1% 4.3% 0.1%
 Rec 10/100, 7 26.7% 6.2% 0.0%
Microengine4 68.5% 27.4% 0.0% 4.1%
 Xmit Sched 22.4% 15.6% 0.0%
 Xmit 10/100, 1 14.6% 3.8% 0.0%
 Xmit 10/100, 2 14.9% 3.8% 0.0%
 Xmit 10/100, 3 16.5% 4.1% 0.0%

Fig. 27. microengine statistics of Linear Search DiffServ

From section 3.4.1 we know that the computing power of

receiving threads and SRAM accesses are two important factors

that affect the performance of the classifier. How ever, we

can see from Fig. 26 and Fig. 27 that both receiver microengines

and SRAM are not fully utilized while the actual throughput

of the system is not wire-speed.

 The reason can be answered in the execution history in Fig.

28. There are four stages in a SRAM access, which are also

shown in the figure and illustrated below. First, the request

 36

is queued in one of the three command queues waiting for other

SRAM accesses to complete. After a period of time the request

is in the head of the queue and then removed from queue waiting

to be scheduled. Third, when scheduled, the request is

processed and a processing done is issued as the access

completes. Finally, the thread that issues the request is

signaled of the completion.

Fig. 28. Execution history of Linear-Search classifier

 The reason of low utilization of receiver microengines is

that the SRAM accesses in Linear Search classifier are bursty,

which can be seen in the execution history of Fig.28. Sometimes

all the threads in a microengine wait for their SRAM accesses

and thus cause an idle microengine.

The vertical lines are added over the processing done

 37

points of some SRAM accesses in Fig. 28. The small gap between

two lines means the actual SRAM access time, which is shorter

than waiting time, and implicates the low SRAM utilization.

Three methods can be proposed to solve the SRAM bottleneck

that leads to the low utilization of receiver microengines.

First is to divide one large SRAM into many smaller modules

of the same address space. This could shorten the queuing delay

of requests in the command queue if the requested addresses

are in different memory modules. Second, we may adopt a new

memory architecture, for example, RAMBUS DRAM (RDRAM) [17]

in IQ2000 [18] that has a peak bandwidth of up to 1.6GBps which

is two to three times of what SRAM supports. However, it may

need a new interface between the memory and other functional

units. Third, an additional cache can be used to reduce the

number of memory accesses because the traffic in the same time

period usually shows locality either in classification or in

routing table lookup.

5.3 Simulation Result—Range Matching

 Not shown in Fig. 29 is the utilization of SDRAM and SRAM,

which are 13% and 35.3%, respectively. The same explanation

in section 5.1 can be applied to the low utilization of these

two functional units. However, the two receiver microengines

are nearly fully utilized in this simulation. Since both SRAM

 38

accesses and computing power are critical to the

classification process, we can identify that the later is a

performance bottleneck in the Range Matching DiffServ.

ExecutingAborted Stalled Idle

Microengine 0 80.4% 18.9% 0.4% 0.3%
 Rec 10/100, 0 20.1% 4.7% 0.1%
 Rec 10/100, 1 20.1% 4.7% 0.1%
 Rec 10/100, 2 20.1% 4.7% 0.1%
 Rec 10/100, 3 20.1% 4.7% 0.1%
Microengine 1 80.4% 19.2% 0.2% 0.2%
 Rec 10/100, 4 22.7% 5.4% 0.1%
 Rec 10/100, 5 22.7% 5.4% 0.1%
 Rec 10/100, 6 22.7% 5.4% 0.1%
 Rec 10/100, 7 12.3% 3.1% 0.0%
Microengine4 68.3% 27.8% 0.0% 4.0%
 Xmit Sched 23.1% 16.3% 0.0%
 Xmit 10/100, 1 14.1% 3.6% 0.0%
 Xmit 10/100, 2 14.8% 3.8% 0.0%
 Xmit 10/100, 3 16.3% 4.1% 0.0%

Fig. 29. Microengine statistics of Range Matching classifier

 Fig. 30 and Fig. 31 confirm our identification. From Fig.

30 we can see that most of the receiving threads spend all

their time (not computing power) waiting for the completion

of SRAM accesses, while the threads of Range Matching do

utilize their computing power in Fig. 31.

 39

Fig. 30. The execution history of Linear Search in macro view

Fig. 31. The execution history of Range Matching in macro view

5.4 Simulation Result—Execution Coverage

 Fig. 32 and 33 shows the execution coverage of two

implementations. The X-axis represents the index of the

Thread executing

 40

instruction in Microcode and the Y-axis represents the

execution times of the instruction. It is very easy to see

that, when processing the same amount of packets (70 packets

in our simulation), Linear Search takes three times of

execution times of Range Matching. The ratio could be larger

if the number of rules increases.

Fig. 32. Execution coverage of Linear Search DiffServ

Fig. 33. Execution coverage of Range Matching DiffServ

ME0

ME1 Polling

Classification

ME4

ME0

ME1 Polling

Classification

ME4

 41

Chapter 6. Conclusions

 In this work, we first explain the need of network

processors for today’s complex applications, and introduce

the architecture and packet flow in IXP1200. Then we detail

the mapping of DiffServ onto IXP1200. There are two most

important modules in DiffServ, classifier and scheduler,

which are implemented with Multi-Dimensional Range Matching

and Deficit Round Robin. Finally we have external and internal

benchmarks in order to find the bottlenecks in our

implementation and possible design pitfalls of IXP1200.

 The external benchmarks have shown that our implementation

 42

can support well the PHBs in DiffServ, and 500 flows at the

input load of 58%. However, from the four-to-one test we see

that the classifier is the performance bottleneck. The

internal benchmarks prove this observation and identify that

SRAM and microengines are the bottlenecks inside the

classifiers of Linear Search and Range Matching, respectively.

However, the classifier of Range Matching could still suffer

from the SRAM bottleneck after the computing power of

microengines is speeded up because of its heavy memory

accesses. Together with the SDRAM bottleneck in IP forwarding,

we can observe that the bottlenecks may shift from one

functional unit to another depending on the specific service.

Another interesting thing is shown in simulation that the

bottleneck of SRAM does not necessarily occur at 100%

utilization, it could even occur at 55% when the traffic is

bursty.

 We also identify the MAC buffer problem and propose three

solutions to attack the two necessary conditions, slow

classification and small buffer. We show that the maximum

classification time is 4550 cycles. Besides, the experiment

result shows the buffer size is 240 bytes that is different

from the one in the specification of IXP1200.

 Table 3 compares Linear Search and Range Matching adopted

in our system. The time complexity of Range Matching is O(log

n) when the number of rules is small as the ones in our

experiment, and O(n) otherwise. The Control Store usage means

 43

the number of instructions used to implement the receiver

thread. The programmer should be aware of the 1K limit of the

Control Store.

 Time

Complexity

Space

Complexity

Bottleneck MAC

buffer

problem

Control

Store

usage of

Rx

Linear

Search

)(nO)(nO SRAM Yes 980

Range

Matching

S:O(log n)
M:)(nO

)(2nO microengine

(SRAM)

Yes 1010

Table 3. Comparisons between Linear Search and Range Matching

References:

[1] NetScreen Appliances,

http://www.netscreen.com/international/products/

appliances.html#ns5.

[2] Intel NetStructure VPN Gateway Family,

http://www.intel.com/network/idc/

products/vpn_gateway.htm.

[3] Intel Layer 3 Switching, “High speed LAN routing in an

affordable switching solution”,

http://www.intel.com/network/tech_brief/layer_3_switch

ing.htm.

[4] eQoS Solutions for Service Providers using Riverstone

Networks' Switch Routers,

 44

http://www.riverstonenet.com/technology/eqos.shtml.

[5] Technical report on Hardware-Based Layer5 load balancer,

http://www.nwfusion.com/research/2000/0501feat2.html.

[6] Intel Electronic Design Kit,

http://developer.intel.com/design/

edk/product/ixp1200_edk.htm.

[7] Tammo, S., Scott, K., Larry, P., “Evaluating Network

Processors in IP Forwarding”, Technical Report TR-626-00,

Computer Science, University of Princeton, Nov 1999.

[8] WindRiver, http://www.windriver.com/.

[9] Development Tools User’s Guide, a document in the IXP1200

development tools CD.

[10] Blake, S., Black, D., Carlson, M., Davies, E., Wang,

Z., Weiss, W., “An Architecture for Differentiated

Services”, RFC 2475, Dec 1998.

[11] Lakshinan, T.V., Stiliadis, D., “High-Speed

Policy-based Packet Forwarding Using Efficient

Multi-dimensional Range Matching”, ACM SIGCOMM’98.

[12] Shreedhar, M., George, V., “Efficient Fair Queuing

Using Deficit Round-Robin”, IEEE/ACM Transactions on

Networking, June 1996, vol. 4, no. 3, pp. 375-385.

[13] Nguyen, L.V., Eyers, T., Chicharo, J.F., “Differentiated

Service Performance Analysis”, Fifth IEEE Symposium on

Computers and Communications, 2000, pp. 328 –333.

[14] Muppala, J.K., Bancherdvanich, T., Tyagi, A., “VoIP

Performance on Differentiated Services Enabled Network”,

 45

IEEE International Conference on Network, 2000, pp.

419 –423.

[15] Harju, J., Kivimaki, P., “Co-operation and Comparison

of Diffserv and Intserv: performance measurements”, 25th

Annual IEEE Conference on Local Computer Networks, 2000,

pp. 177 –186.

[16] Di, Z., Mouftah, H.T., “Performance Evaluation of Per-Hop

Forwarding Behaviors in the DiffServ Internet”, Fifth IEEE

Symposium on Computers and Communications, 2000, pp.

334-339.

[17] Data Sheets of RDRAM,

http://www.rambus.com/developer/support_rdram. html

[18] IQ2000 Network Processor, VITESSE Corp,

http://www.vitesse.com/products/

categories.cfm?family_id=5&category_id=16

