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Abstr act

Network processors are energing as a programmable
alternative to the traditional ASIG based solutions in
scal i ng up t he user - pl ane processi ng of network servi ces. They
serve as co- processors to of fl oad user-plane traffic fromthe
origi nal general-purpose mcroprocessor. In this work, we
illustrate the process and i nvesti gate perfornmance i ssues in
prototyping a Diff Serv edge router with |1 XP1200, which has
one control -pl ane St rongARMcor e processor and si x user - pl ane
m croengi nes, and stores cl assification and scheduling rules
at SRAM and packets at SDRAM The external benchmark shows
that the system can support an aggregated throughput of
141Mops of eight input ports, and 500 flows, which is
ext ensi bl e provi ded enough SRAMspace, at one i nput port whil e

conform ng the PHB of each fl ow. Through i nternal benchmarks,



we found t hat performance bottl| enecks may shi ft fromone pl ace
to anot her given different network services and
i npl enentations. For sinple forwardi ng services, SDRAMis a
nature bottleneck. However, it could shift to SRAM or
m croengi nes i f i nvol ving heavy tabl e access or conputati on,
respectively. We also identify the design pitfall of the
hardware called the “MAC buffer probleni.

Keywor ds: Networ k Processor, DiffServ, | XP1200, scal ability,
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Chapter 1. Introduction

The increasing |link bandw dt h demands even faster nodal
processi ng especially for the user-plane traffic. The noda
user - pl ane processi ng may range fromrouting table | ookup to
various classifications for firewall, D ffServ and Wb
switching. The traditional single-processor architectureis
no | onger scal abl e enough for w re-speed processing so that
sone ASI C conponents or co-processors are conmmonly used to
offload the wuser-plane processing, while leaving only
control - pl ane processing to the original processor.

Many ASI G driven products have been seen in the market,
suchastheaccelerationcards [1] for encryption/decryption
VPN gat eways [2], Layer 3 switches [ 3], DiffServ routers [4]
and Wb swi tches [ 5]. Whi |l et hey i ndeed speedup t he user - pl ane
packet processing, theylackflexibilityinreprogrammbility
and have a | ong devel opnent cycl e which i s usual ly nine nonths
per ASI C.

Net wor k processors are energi ngas analternative sol ution
to ASIC for providing scalable capability for user-plane
packet processing while retaining progranmmability.
Neverthel ess, it m ght not be powerful enough to repl ace the
ASIC inplenentations which are application specific in
desi gning the functional units such as a nuch w der nenory
bus, | ower del ay bet ween functional units, andfaster excution

process, conpared to instruction excution in processors. In
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this study, we adopt | XP1200 (I nternet Exchange Processor)
[ 6] which is conposed of one StrongARMcor e processor and si X
co-processors, referred as mcroengi nes, so that devel opers
can enbed t he control -pl ane and user -pl ane traf fi c managenent
modules into the StrongARM processor and m croengines,
respectively. Scal ability concerns coul dbe satisfiedbecause
of the six programmabl e m croengi nes, w thhardware threads,
newinstructions for networking purposes, and t he extensi bl e
architecture of |XP1200.

Tamo, Spalink, and Scott [ 7] denonstrated and eval uat ed
the | XP1200 in I P forwardi ng and concl uded that the SDRAM
storing packets is the bottl eneck. However, the evaluation
results cannot be generalized for today’s conplex services
whi ch need nore SRAM t abl e accesses and conputi ng power.

The objective of thisworkis thereforetoinplenent anore
sophi sticated service, Differentiated Services (DiffServ),
and identify possible performance bottl enecks and design
pitfalls, if any, in |IXP1200. There are three nost inportant
modul esinDi ffServ classifier, | eaky bucket and schedul er.
They are deployed into | XP1200 m croengi nes and confi gured
by the StrongARM

I n benchmarki ng the inplenented system two topics are
i nvesti gat ed. First, how wel | can this D ffServ
i npl enentation scale, in terns of throughput and nunber of
fl ows? Second, where are the potential bottl enecks of network

processors, especially 1XP1200's, and their causes? W
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anticipate that the exact bottl eneck depends on the specific
service and its algorithm c inplenentation.

The paper is organized as follows. Qapter 2 briefly
reviews the architecture and devel opment environnment of
| XP1200. Chapter 3 presents the design and i npl enentati on of
D ffServ over | XP1200. Chapter 4 and Chapter 5illustrate the
results of external and internal benchmarking through
experi ment and sinul ation, respectively. Finally, Chapter 6

ends this work with concl usive remarKks.

Chapt er 2. Architecture and
Devel opnent Environnent of | XP1200

2.1 Architecture of | XP1200

Fig. 1 shows the hardware architecture of |XP1200. The
32-bit StrongARM which is the core processor of |XP1200, is
responsible for the initialization of the whole eval uation

systemand part of the packet processi ng. A Menory Managenent

3



Unit is also included to translate virtual addresses into

physi cal addresses and control nmenory access perm ssions.

IXP1200

Network Processor
37% A
PCI Bus
Unit < » StrongARM Core
SDRAM 64 o SDRAM Memory | N
(upto256MB) N Unit < >
SRAM 2 < | [ Micoengines
(upto8MB) |« > SRAMUlr\:iItemory < >4 b Microengine6
Boot ROM P o
(up ot 8MB) d I 3 I
TFI {l_pq] RFI FO |_|_||L|
| . . | .
. us
| IX Bus InterfaceUnit Seqi

FIFO Bus (IXBus) 66/85MHz

| | A
10Mb/100Mb/1Gb v
Ethernet MAC |_| ' ' |_| " Another

IXP 1200

Fig. 1. Hardware architecture of |XP1200

The si x m croengi nes, whi ch support four hardware cont exts,
i.e. threads, and 128 general -purpose registers and 128
transfer registers in each of them are mainly used for
recei ving, mani pulating, and transmtting the packets. Not
showmmn inthis figureis the Control Store in each m croengi ne
t hat hol ds mi crocode of up to 1024 32-bit instructions. For
net wor ki ng pur poses, m croengi nes al so support zero cont ext
swi t chi ng over head, single-cycle ALUw th shifter, and ot her
specifically designed instructions for bit, byte, and
| ongwor d operations. Table 1 1ists some exanpl e instructions

of | XP1200 for conparing with the ones of x86 processors.



Instructions of Instruction description Instructions of x86 Usedin

IXP1200 processor

ALU Perform ALU with shift in onefALU (ADD or SUB) |Rule matching
instruction + shift (classification)

IMMED Load an immediate value with Load + shift Load rule)
shift (classification)

FIND BSET |Determinethe position of thefirst [At least 5 instructions |Longest prefix
LOAD_BSET |set bitinal6-bit field of aregister [totest onesinglebit [match

BR BSET Branch if the specified bit in a|Shift + bit test + Ready Bus
register isset JUMP Sequencer
HASH1 64 |Perform one 64-bit hash operation [Many instructions Faster table

lookup

Tabl e 1. Sone conpari sons between i nstructions of |1 XP1200

and x86

The SRAMUni t, whichis used for storing | ookup tables and
poi nters inschedul i ng queues for packet forwardi ng, accesses
SRAM via a 32-bit bus that provides a peak bandw dth of up
to 400Mboytes per second and access tinme of 30 cycles [7].

The SDRAM Unit, which is used for storing mass data of
packets, accesses SDRAMvi a a 64-bit bus that provi des a peak
bandw dth of up to 800NMoytes per second and access tinme from
40 to 55 cycl es dependi ng on the destination functional unit
[7].

The 64-bit 11X bus Interface Unit is responsible for
servicing MAC interface ports on the | X Bus, noving data to
and fromt he Recei ve and Transmt FIFGCs. It provi des a 4. 2Gops
interface to MAC devices, neaning that it can afford 2. 1Gps

of the input ports and output ports, respectively. In



addi tion, two | XP1200 network processors can be supported
directly on the 1 X Bus wi thout additional support |ogic.

Qper ations of | XP1200 hardware conponents when handl i ng
packet-forwardi ng services can be descri bed bel ow. At boot
time, the StrongARM | oads boot inage from Boot ROM and
initializes other functional units, including |oading the
routing table into SRAMand m crocode i nt o m croengi nes. The
systemis now ready to receive packets. Wen the Ready Bus
Sequencer detects ani ncom ng packet inaMACport, it notifies
the corresponding receiver thread to retrieve and store it
in the RFIFO After the receiver thread conpletes routing
tabl e |l ookup, it noves the packet to SDRAM waiting to be
forwarded. Atransmtter thread on another m croengine | ater
f orwar ds t he packet i n SDRAMt hr ough TFI FOt o anot her MAC port.
There may be nultiple receiver, transmtter, and schedul er
threads distributed to 6 mcroengines, though sone

restrictions apply.

2.2 Devel opnment Environnent

Fig. 2 shows the software architecture of |XP1200. The
software architecture consists of control - pl ane processi ng
in StrongARMrunni ng under the VxWorks operating system]| 8]
and user-plane processing in mcroengi nes running packet

- processing threads. Though StrongARM can do t he user - pl ane



wor k, such uncl early di vi ded wor kl oad di stri buti onwoul dI ead
to conpl ex packet processing and thus | ow performance. The
sanme thing happens otherwise for mcroengines with the
control -pl ane work. A m croengi ne can al so conmuni cate with
St rongARM and ot her m cr oengizmes using interrupt or signal

(@)
mechani sm which helps in reakizing the control/user plane

architecture.

«
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Fig. 2. Software architecture anddevel opment envi ronnent of
| XP1200

Al so shown in Fig. 2 is the overview of the devel opnent
envi ronnment. The | XP1200 progranm ng can be divided into two
aspects, which are StrongARM progranmm ng and m croengi ne
progranmm ng. While StrongARM prograns are witten in C C++
under Tornado [8], mcroengine prograns are witten in
assenbl y under WorkBench [ 9] for | ow | evel packet processing

capability. The conpil ed StrongARMexecutable is |linked with

-pl ane

| ane
Traffic

fic



obj ect m crocode conpil ed by the assenbl er, and then | oaded
into | XP1200 SRAMfromwhi ch StrongARMinitializes and | oads
m crocode into the Control Store of m croengi nes. The |Ii nked
program can al so be executed by the Transactor for pure
sof twar e si nul ati on. Besi des, the StrongARMi s bi g-endi an and
byt e- addressabl e while m croengines are little-endian and

| ongwor d- addr essabl e.

Chapter 3. Design and I npl enent ati on
of DiffServ on | XP1200

In this chapter, we first give a brief introduction to
DiffServ. Then we expl ain howto map Di ff Serv conponents onto
| XP1200 program followed by the detail ed packet flowin the
system At |ast, we describe how to inplenent two ngjor
conponents, classifier and scheduler, in DiffServ with two
exi sting algorithnms, Milti-D nensional Range Matching [ 11]

and Deficit Round Robin [12], respectively.

3.1 DiffServ Briefing

Differentiated Services (D ffServ) [10] nmechani sns al | ow

users to receive different | evels of service froma provider
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to support various types of applications. Fig. 3 shows the
functional conponents of a DiffServ edge device. According
tothe serviceconfigurationinabD ffServ edge node, packets
are classified, according to nultiple fields (M), |eaky
bucket policed, and marked to receive a particul ar per-hop
f orwar di ng behavi or (PHB), i.e. cl ass-based schedul i ng, whi ch
is Expedited Forwarding (EF) or one of four Assured

Forwarding’ s (AF' s).

Service Configuration

P

/ N\

Policer {—>| Marker |—> Queue

Mngt
Schedul er

'I'raffic‘

MF
classifier

v

Fig. 3. Inside a DiffServ edge device

The service differentiation of packets often takes effect
in delay and | oss rate. Packets of higher classes are nore
likely to be schedul ed earlier than those of | ower classes,

and thus result in smaller latency and | oss rate.

3.2 Mapping D ffServ Conponents

Fig. 4 shows the software architecture of DiffServandits

corresponding task allocation on |XP1200. W insert six



Di ff Serv nodul es (t he shadowed bl ocks) on t op of the ori gi nal

software of sinple |IP forwarding.

StrongARM
receiver thread 8 threadsfor 8 10/100 ports leaky
e —— 8 threads for 1 Giga port bucket
i Rx timer

' \

1 3
' i
' '

nextpac —| ipverify — |classification —>| policing| |

A A 4

not|[EOP v |
packet store | engueue [« | Imaich [«—| marking !

A 4

; 1 threads for 10/100 ports
?_c_r_‘f'_g_‘{'_'_r_‘_q____S_?f‘_‘?ﬂE‘_'fr__thf?f’_“?____1__th_teags_f_ot_l_gma_m[t-______________

i[_Tx_ || Tx ReadAssignment|—| Txfil |

. 3 threads for 10/100 péﬁé_
transmitter thread
3 threadsfor 1 Giga port

1
—————}e- g |

Fig. 4 User-plane architecture of DiffServedge router over
| XP1200

The DiffServ process is described bel ow. After a packet
header is received at a transfer register froman RFI FO and
verified as legal, it is passed to the range-matching
classifier, described in section 3.4.1, for the matching
process. |If the packet’ s header matches one of the rul es and
isclassifiedas, for exanple, EFtraffic, we admt or discard
it according to the policing bandwidth set in the rule. If
admtted, it is marked with a DSCP (D ffServ Code Point) in
t he header. After longest prefix matching in routing table
| ookup, the packet is queued in the correspondi ng queue of
the output port waiting for scheduling, i.e. the packet’s

descriptor is enqueued in SRAM while the packet itself is

10



stored in SDRAM The schedul er thread chooses one transmtter
thread and assigns it a port, which contains six queues (1
EF, 4 AF sand 1BE), toserve. Thetransmtter t hread exam nes
the queue with the highest priority to see whether there is
a packet to be sent and whether it has enough quantum which
i susedinDeficit Round Robi nschedul i ng descri bedinsection
3.4.2, for that packet. |f having enough quantum the
transmtter thread fetches the packet’ s descriptor in SRAM
and in turn the entire packet in SDRAMto TFI FO for out put.
O herwi se, it exam nes the next queue of |ower priority for
t he packet and the correspondi ng quantum

The 24 threads are divided evenly into two groups, eight
10/100M ports and one giga port. Each group has 12 threads
that are used as 8 receivers assigned to 2 mcroengines, 3
transmtters and 1 schedul er assigned to 1 m croengi ne. Each
10/ 100Mr ecei ver thread i s responsi bl e for a specific 10/ 100M
port, while 8 giga receiver threads serve one giga port. The
transmtter t hreads, however, are not boundto specific ports.
They out put packetstoports accordingtothe assignnents from
t he schedul er thread. W use static task allocation instead
of dynam c task allocation for the foll om ng reasons. First,
t he 1K Control Store of am croengi ne m ght not bel arge enough
to hold mcrocode of two threads of different types, for
exanpl e, receiver (1012 instructions) and transmtter (552
i nstructions) whose sumred si ze of i nstructi ons exceeds 1024,

However, transmtter and schedul er (144 instructions) whose

1



sumred size is below 1024 can co-exi st in one mcroengine.
Therefore, we’ d better group threads of the sanetype in one
m croengi ne. Second, if we choose dynam c allocation, the
progranmm ng woul d be nore conpl ex and, since we cannot have
a clear task division between threads, the communication

over head between threads or m croengi nes would be |arge.

3.3 Detailed Packet Flow in | XP1200

Fig. 5 illustrates the key conponents and the packet
processi ng fl ow. The Ready Bus Sequencer periodically polls
the MAC buffer and sets the receive flag in a gl obal rec_rdy
regi ster when a packet conmes. Once the receiver thread
responsi ble for the MAC port detects the flag, it asks the
Recei ve State Machi ne to nove t he packet, inunits of 64-byte
MAC packet, referred as MP which is a basic data unit in the
system fromthe MAC buffer into RFIFO

A FIFQO, including RFIFO and TFIFOin the system is used
as an internediate buffer for packets. Inplenented as a
64-byte nenory array, it could hold an MPto be stored i n SDRAM
or transmtted to a MAC interface.

If an MP is a SOP (Start O Packet), its first 32-byte
contai ni ng the packet header is transferred into ei ght SRAM
transfer registers, 4 bytes each, for classification, while

the second half is directly stored in SDRAM
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Fig. 5. Detailed DiffServ packet flow in | XP1200

After classification, policing, marking and routing table
| ookup, the packet is enqueued in one of the six queues of
the output port; the first 32 bytes and t he remai ni ng packet
body are then noved i nt o SDRAMi n units of MP. The queues are
inplementedas|linklistsandeachelenent inalist represents
a packet’ s descriptor. The descri ptor contai ns address of the
packet stored in SDRAM so that the transmtter thread knows

where to get the packet scheduled to be sent.

3.4 Algorithm I nplenentations

The following two sections present how to inplenent
classifier and scheduler in our system For classifier, we
enpl oy the Miul ti-Di nensional Range Matching to exploit its

efficiencyinsettingupfilter rules. For schedul er, we adopt
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Deficit Round Robin because of the flexibility in adjusting
the priority between different flows and its long-term

f ai rness.

3.4.1 Classifier

Fig. 6 shows the format of a rule used by the classifier
Each pair of fields groupedinarectangl erepresentstherange
of a specific dinension. The TGS field can al so be seen as
the DSCPfieldif theincom ng packet is fromanother D ffServ
domai n. The policer uses Bandwidth to police EF traffic.

The concept of the Multi - Di nensi onal Range Mat chi ng used
toinplenent the classifier is described below. The rules in
a dinmension form intervals, which nmay be overl apped by
multiple rules. Each interval is associated with a BV (Bit
Vector, whichis 512-bit in our inplenentation and is stored
in SRAM, which keeps track of the rules overlapped in this
interval. Fig. 7 illustrates an exanple of the matching

process in the source ip dinension.
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Fig. 7. Exanple and relative tables for | ookup in Source IP
di mensi on

Upon the arrival of a packet, the classifier searches the
interval table of each dinension for a match with the
corresponding field in the packet. Once aninterval is found
for a dinmension, the classifier consults the BVtable for the
corresponding BV. If all six fields of a packet match an
interval insixdinensions, respectively, theclassifier ANDs
the BVs of the intervals, and the i ndex of the first non-zero
bit in the result vector is the index of the matched rule.

An addi tional 32-bit CBV (Conpact Bit Vector), al so stored

15



in SRAM is associated wwth each interval in order to speed
up the | ookup process of the BV. The usage of CBV i sdescri bed
as follows. If the Nth bit in a CBV equals 0, it neans that
all bitsinthe range from[32(N-1)+1]Jth to 32Nth bit in the
BV are 0. On the other hand, nore than one bit in the BV equal
1 in that range if the Nth bit of CBV equals 1.

Because each bit in CBV containing 32-bit information in
BV, the CBV can detect and avoid the unnecessary nenory
accesses and conputations in ANDing the BV's. Note that since
AND and SRAM oper ati ons are | ongwor d- based i n m croengi nes,
a BVis stored in the nmenory as 32-bit words.

Because t he SRAMi n our hardware platformis only 2Moyte,
the maxi mum nunber of rules nust be limted to 1024 (6
di mensi ons*2049*1024/8 > 2Moytes, since there will be 2049
intervals in the worst case of 1024 rules, and 1024 bit of
BV for each interval). W set it to 512 rules in our
i npl ementation for sinplicity, in addition to other space
over head such as routing table and queues.

After classifier returns the index of the matched rule,
t he policer and marker use the information contained in the
rule to do the further processing (as described in Fig. 8).
Each rule is associated with additional two fields,
|ast _arrival _tinme and token, which are used in maintaining

per-flow Leaky Bucket.

Pol i ci ng and Mar ki ng:
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I f(rule[index].dscp = EF)
token=(tinme_nowrul e[index].last_arrival _time)*rule[in
dex] . bw+rul e[ i ndex] . t oken
| f(l en_of packet <= token)
rul e[index].token = token —len; // restore the rest of
t he tokens
El se
packet discard();
TOS of packet =rul e[index].dscp; // marked wth DSCPinthe
packet header
El sel f (i ndex = BE)
enqueue( BE) ;
El se

enqueue(rul e[i ndex] . dscp);

Fig. 8. Code of Policer and Marker

Atinmer is inplenented by StrongARMto obtain the tim ng
information. The last_arrival _tinme neans the arrival tinme of
t he previous packet, and the token indicates the nunber of
tokens l eft inthe processing of | ast packet that matches this
rul e and avai |l abl et ot he next one. Therefore, thetotal tokens
avai l abl e to the incom ng packet can be conputed and we can

deci de whether to admt it or not.

3.4.2 Schedul er

17



Fig. 9illustrates the design of the s chedul er usi ng DRR
The ratio of quantum sizes between two adjacent classes is
2inour inplenentation. To prevent froml onger queui ng del ay
and higher drop rate, the capacity of each queue is set to
32 the sane as the quantumsi ze of EF. The quantumof EF coul d
be wasted i f the queue sizeis smaller than 32, and t he packets
are also nore likely to be dropped.

Each packet is represented in a formof buffer descriptor
when it is queued in SRAM as shown in Fig. 10. The | XP1200
i mpl ements an SRAMfree_list, which can be called for a nenory
bl ocktostorethe buffer descriptor. Thereal packet i s stored
in SDRAM and once it is scheduled for transfer, the
transmtter thread uses the address of buffer descriptor and
buffer handle in the descriptor to |ocate the packet. The
former is used to map the start address of the real packet
(buf _des_addr*64) in SDRAM and the later is used to obtain

t he nunber of valid bytes in EOP (End OF Packet).

32 descriptors

EF ;
Enqueue Q:E;E_'_ TFI FO
- =
AF3 ——— 1 B
AF 4
B E o

Quantum ratio between EF: AFl1: AF2:AF3: AF4:BE

all classes =32: 16: 8 : 4 : 2 1

Fig. 9. Schedul er using DRR
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SRAM QUEUE_DESCRI PTOR_BASE SRAM BUFF_DESCRI PTOR BASE ~ SDRAM PKT_BUFF_BASE

Per Queue, Per Port PACKET_FREELI ST Actual Packet Storage
Addr B
31 | 1615 87 0 32 0 32 0
Head Addr [Tail_Addr ] | 64 bytes Mp_ |
Packet Count ] Next | |_64_bytes Mp_]
buf _handl e -
Ll
32 ]
Next
| buf_handl e -
Ll
232 0
Next
> buf _handle -

Fig. 10. Packets in a queue

Chapter 4. External Benchnark and
Design Pitfalls

There are works [13,14,15,16] describing D ffServ
per f or mance eval uati on. However, nost of themare conducted
through sinulations. In this chapter, we investigate two
i mportant issues for a DiffServ edge device, functionality
and scal ability, t hr ough har dwar e benchmar k. For

functionality, we evaluate the PHBof different fl ows and t he
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fai rness anong i nput ports. For scalability, we want to know
t he aggregated throughput and how many fl ows our system can
support while conformng their PHBs. Last, we identify a
possi bl e design pitfall named the MAC buffer problem and
propose solutions for it. Another two versions of D ffServ
are also inplenented for conparison with the one of Range
Mat chi ng, the Linear Search classifier in | XP1200 and the
Li nux- based Range Matching Di ffServ whose CPUis PentiumlI|

800 and RAMis 128MB.

4.1 Benchmark Environnent

Fig. 11 illustrates the benchmark environnment [13]. The
host PCis used to renotely control the initialization and
activities of | XP1200. We first setupthe connectionfromhost
PCto | XP1200 and t he | XP1200 t hen aut omati cal | y downl oad t he
i nked i mage of StrongARM and m crocode executables with
Tornado. After entering the debuggi ng node i n Wr kBench, we

can run the DiffServ code continually or set break points.



(for Mi cjoeng.i Pownl oad VxWorks and
& compiled excutables
Tornad

(for Str

Et hernet
B )

EDDDDDDDDDDI
Smart Bits

Benchmar k softwares
1. SmartWindow NI C(10/100MB)
2. Smart FIl ow

Fig. 11. Benchmark environnment

4.2 Functionality Test

Though the time conplexity of Range Matching is Q(n), the
benchmark result in Fig. 12 shows a k*l og n decrease in the
t hr oughput when t he nunber of rul es i ncreases. Thisis because
when t he nunber of rules is small (as in our experinent), the
coefficient k, which represents the effect from binary
searches of nmul ti pl e di nensi ons, dom nates thecl assification
process. As for |inear search, we can see that the t hroughput

is linearly decreased as the nunmber of rules increases.
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Throughput V.S # of rules (Len=64bytes,

16

14

12

10/6

ORM_t Rrput
BELS_thrput

8 0—

Through

6 04—

4 04—

2 0

Hid e

1 2 4 8 16 32 64 128 256 512
n: number of rules (at input port x1)

Fig. 12. Throughput andlossratew th varyi ng nunber of rul es

Fig. 13 shows the throughput of the receiver threads of
different allocations. Naturally, the throughput of two
threads intwo m croenginesis approxi mately two tines of the
one of a single thread. However, due to the lack of the
conputing power, the throughput of four threads in a
m croengineis not four tines of only one thread. I naddition,
t he t hroughput of eight threads is not two tines of the one
of four threads. Thisis the result of nenory contention. Not
shown in Fig. 13 is the throughput, which is 20.5Mps, of
Li nux-based Range Matching Di ff Serv when t he nunber of rul es
is 512. It is alnost sane with the throughput of one thread

in 1 XP1200, whi ch neans | XP1200 out performnms the general PC.

Load
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Fig. 13 Aggregated throughput (Len=64bytes, worst case)

Fig. 14 shows the relation between | oss rate and packet
| ength. When the packet |ength increases, the loss rate
decreases. The reason is quite straightforward. At the sane
| oad condition, |onger packets result in fewer packets for
the classifier to process. One thing is interesting in this
figure. No matter under what |oad condition, the loss rate
of the flow, whose packet | ength is 512 bytes, is near 100%
Actual ly, this always happens to fl ows whose packet |ength
islonger than a threshold. We call it the MAC buffer problem

and will discuss it in the |ater section.
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Fig. 14. Loss rate with varying packet length (128-rules
wor st case)

Fi g. 15 shows the receive rate of four AF cl asses fromf our
i nput ports, respectively. The traffic of AF4 begins to be
dropped at | oad 25%because the output linkis fully utilized
so that the packets of low priority are nore likely to be
dropped. We can al so observe fromthe figure that the service
differentiation is strictly carried out in the 2:1 manner,
as defined in our system for two adjacent classes.

We include the EF flowin our priority test in Fig. 16.
Again, we see the AF3flow that is of the | owest priority in
t hi s test begi nsto be dropped at | oad 25% However, the ot her
threefl ows continuetoconsunethe bandwi dthleft by AF3 unti |
t he output queue of AF2 is full due to the growng traffic
rate and its lower priority. Wiile the other 3 AF fl ows obey
the 2:1 traffic proportion, the EF fl ow reaches the steady

state at 62,500pps set intherule. It does not obey the 2:1
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proportionwth other AF fl ows since the EF queue i s not full
yet .

In the latency test in Fig. 17 correspondingto Fig. 16,
we observe that the EF fl ow has a very | ow | at ency under al
| oad conditions. Before |oad 25% every flow has the sane
| at ency because t he queues are not full. W al so observe t hat
the latency of AF flows still obeythe 2:1 proportion, which

nmeans the delay in output queues domnants the whole

end-to-end del ay.

12

—*—AF1

El o B e ——AF2

(] —=—AF3

= so AF 4

©

- <
L g
Ev
4 0F
2 OF

O e

mmmmmmmmmmmmmmmmmmmmmmmmmmmm °

Load (%) at input port (x4)

Fig. 15. Priority test (Len=64bytes)
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(pps)

throughput

Recei ve

Fig. 16. Priority and bandw dth control test (Len=64byte,
EF=62500pps)

Fig. 18 shows the fairness anong four i nput flows of the
sane class to one output |ink. The packet | oss froml oad 25%
to 42%is due to the fullness of the output Iink and is even
betweenthefour fl ows. After | oad 42% we see an acut e changi ng
of loss rate anong flows. This is because the unstabl eness
of thereceivers. Thetraffic loadis too heavy in each i nput

port so that the classification cannot be finished in tine.

12
—*+—AF1
10 —+—AF2
—*—AF3
8ol AF4
w
—
= o
2 ol
5\/
40F
20F
I TN
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 3
Load (%) at input port (x4)

Fig. 17. 4(EF, AFl1-3) to 1 latency test (Len=64bytes,
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EF=62500pps)

(pps)

throughput

Recei ve

Fig. 18. Four-to-One fairness test (64rules, 4 Rx in one ME)

Conpared with the four receiver threads in only one
m croengineinFig. 18, the four receiver threads are divided
into two groups in tw m croengi nes, as shownin Fig. 19. It
is very clear that the receivers are nore stable than those
i none mcroeigine, thanks to the additional conputing power

fromthe second m croengi ne.

( %)

Average

—=1->5

80 —w—2 .55
— 3.5

60f —%—4->5

Loss

40F

20F

mmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Load (%) at input port (x4)

Fig. 19. Four-to-One fairness test(64rules, 2 Rxin MO, 2Rx
in ME1)
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4.3 Scalability Test

The test net hodol ogy i s descri bed below. We first neasure
t he maxi mum | oad, which is 58%as shown in Fig. 20, for one
flowthat results in no packet | oss. Then we want to know how
wel | the system supports for a |l arger nunber of flows when
the input |oad is bel ow or above the | oad neasured in Fig.
20. The bandwi dth of each flow is set the sanme and the
aggregated bandwidth is 50% of the link. The input load is
evenly divided into 100 and 500 flows in the follow ng two

experinments, respectively.

Loss

Load ( %) at i nput port (x4)

Fig. 20. Single flow loss rate test

Fig. 21 shows the t hroughputs of 100-fl ows at three | oad
conditions. The flows strictly follow their bandw dth
settings when theinput |loadis 50% which is below58% and

beconme unst abl e when overl oaded. However, nobst of the fl ows
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are limted to their bandw dth settings.

Fl ow i ndex

Fig. 21. Scalability test (Len=64bytes, 100fl ows,
BW£74400/ 100=744 franme/ sec, nornmal case)

Fig. 22 shows t he test of 500-fl ows as an extensi on of Fig.
21. To conpare the results in these two figures, we define
Aver age Performance Dropdown ( APD) of the flows at di fferent

| oads as

d T

a i
APD = 1- 2BV
N

where T is the throughput of flowi, Nis the nunber of flows
and BWis the bandw dth of each flow set in this experinent.

The APD's of |oad 80% and 100% are 0.022 and 0.09 in
100-fl ows test, whereas 0.047 and 0. 15, which are larger, in
500-flows test. This is due to the extra nenory accesses

required in binary search in 500-flows test. Besides, the

flows in Fig. 22 still strictly follow their bandw dth



settings when the input load is 50%
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Fig. 22. Scalability test (Len=64bytes, 500 fl ows,
BW£74400/ 500=148pps, normal case)

4.4 MAC buffer problem

Thi s section discusses the MAC buffer problemintroduced
in Fig. 14. Aninteresting thingis observed in Fig. 23. Wen
the classifier isinplenented with Li near Search, the system
| oses all the packets of length 512-byte under all | oad
conditions. There are two causes to this situation, the slow
classification and the small buffer size, which are
illustrated bel ow.

Fi g. 24 shows a di agram of packets reception. As descri bed
insection3. 3, therest of MPsaretransferredfromMAChuf fer,
RFIFOto SDRAM after the SOP is classified. However, if SOP
cannot be processedintineandthebuffer isnot|argeenough,

the i ncom ng MPs of the sane packet could fill up the whole
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buffer and thus result in a packet drop, and t hen 100% packet

| 0ss.

(%)

12

rate

10

Loss

Packet

Fig. 23. Packet |oss of different packet |lengths in Linear

Sear ch
RFIFO
MAC buffer  (64bytes)

S S

SDRAM

Classification
process

Receiver

Fig. 24. Receiving process of a packet

Packet Length

(byte) Rule matched Loss
1 304 31t normal
3 Any 3oth normal

Tabl e 2. Experinment results of Linear Search classifier for
MAC buffer problem

31



Since both the slow classification and small buffer
contributetothe MACbuffer problem twothingsaretherefore
interested, the maxi num tol erable processing tine of the
classification and t he maxi mum buffer size, which both help
avoid this problem

The first question can be answered in table 2. Fromresult
2 and 3 we can learn that, when a packet matches 30'" rule,
the classification is fast enough so that the receiver can
nove al | MPs into SDRAMintine. That i s, the maxi nrumtol erabl e
processingtinme (fromclassificationto packet storein Fig.
4) for a SOP is about 120 SRAMaccesses and 950 i nstructi ons,
or 4550 cycles totally.

We also find fromresult 1 and 2 that, the threshol d of
t he packet | ength in MAC buffer problemis 304 bytes, and the
si ze of MAC buffer istherefore 240 bytes (304 bytes - 64 bytes
of RFIFO, whichis different from256 bytesnentioned inthe
speci fication of | XP1200.

Anot her solution to MAC buffer problemis to enlarge the
MAC buf fer size to 1454 bytes (1518 bytes - 64 bytes of RFI FO ,
whose sumw th RFI FO i s the maxi num packet size in Ethernet.
Since there can be at | east one packet in the MAC buffer and
RFI FO, the problem can be avoi ded.

Third, sincetheincomng MPs couldfill upthe whol e buffer
before SOPi scl assified, wejust novet he MPs i nt o SDRAMbef ore
classification. Though the average del ay nay becone | onger

due to the postponenent of the classification and enqueue,
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it won’t have critical inpact on the systemconpared with the
dom nant out put queui ng del ay.

Astothe Fig. 14, it isstrange to see that the |loss rates
under MAC buffer problemare not 100% which are different
fromthe ones in Fig. 23. The reason is quite interesting.
Thereceivingthreadis not fast enoughtoavoi dthe MACbuffer
problem in this experinent. However, the thread m ght
sonetimes get extra conputing power for classification

process thanks to context sw tching.

Chapter 5. Internal Benchmark and

Bottl eneck D scussi ons

Inthis chapter we will have sinulations for two DiffServs
whose cl assifiersareinplenentedw thLinear Search and Range
Mat chi ng, respectively. Qur goal is to see what cannot be seen
inthe external benchmarks, for exanple, the utilizations of
m croengi nes, SRAM and SDRAM and try to find out the
performance bottlenecks from above observations. Sone

solutions will also be proposed to sol ve those bottl enecks.

5.1 Sinmulation Mdel



Fig. 25illustratesthesinmul ati onnodel. The HAL ( Har dwar e
Abstraction Layer) is used as an interface of StrongARMto
| XP1200 har dware and Transactor. The Transactor, which is a
simul ator i nthe devel opnment t ool cal | ed Wor kBnech, instructs
the virtual devices with the StrongARM and m croengi ne
execut abl es. There are seven 100M i nput ports and one giga
port for output. The input traffic in each port is configured

as wre-speed.

H Zend '
Tornado __- B e T E T e e e e
dil file
r’l y ¥ l< = < - \‘\
Transactoh|O -
L. Input Port: 06 Nl x_virtual devices " T
2. Wire-speed input SRAM SDRAM MEs IX bus
traffic

Fig. 25. Software sinmulation nodel

We sinulate DiffServ in two al gorithns, Linear Search and
Range Matching, and try to find the perfornmance bottl enecks

of | XP1200. The nunber of rules is 64 in both cases.

5.2 Simulation Result—i near Search

Fi g. 26 shows the perfornmance statistics of the functi onal
units. We see that SDRAM utilization is very low This is

because packet forwarding, which is the nmajor consuner of



SDRAM is not critical in DiffServ.

FPerfonmsamce

Summery | MicroEngine | AL 1

Statistics were gathered startines at cwcle 1.

B ctive Rate
Gl 7% 12= .4 kMips
T2 2% 144 .5 kips
41.0% 22.0 kMip=s
40.6% 21 .2 kMips
a3 5% 1=7.0 D
aa.0% 1=2a.0 D=
FO4.0 D=
Q.35 594 .8 kMbfs
55.1% 1754.1 MMbis

Fig. 26. Summary of performance statistics

ExecutinAgborted Stalled | dl e
Mi cr oengi ne 0 61. 7% 18. 1% 0. 1% 20. 1%
Rec 10/ 10015 .05% 4. 6% 0. 1%
Rec 10/ 10015 .14 % 4. 4% 0. 1%
Rec 10/ 10015 .24 % 4. 5% 0. 1%
Rec 10/ 10015 .34 % 4. 5% 0. 1%
Mi croengi ne 1 72. 2% 18. 8% 0. 2% 0. 2%
Rec 10/ 10015 .43 % 4. 3% 0. 1%
Rec 10/ 10015 .52 % 3.9% 0. 1%
Rec 10/ 10015 .61 % 4. 3% 0. 1%
Rec 10/ 10026 .77 % 6. 2% 0. 0%
Mi croengine#é4 6 8. 5% 27 . 4% 0. 0% 4. 1%
Xmi t Sched2. 4% 15. 6% 0. 0%
Xmi t 10/ 1004, 61% 3.8% 0. 0%
Xmi t 10/ 100, 9% 3.8% 0. 0%
Xmi t 10/ 10106, 53% 4 . 1% 0. 0%

Fig. 27. mcroengine statistics of Linear Search DffServ

From section 3.4.1 we know that the conputing power of
recei ving t hreads and SRAMaccesses are two i nportant factors
that affect the performance of the classifier. How ever, we
canseefromFig. 26 and Fi g. 27t hat bothrecei ver m croengi nes
and SRAM are not fully utilized while the actual throughput
of the systemis not w re-speed.

The reason can be answered i n the execution history in Fig.
28. There are four stages in a SRAM access, which are al so
showninthefigureandillustrated bel ow. First, the request
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i s queued i n one of the three command queues wai ti ng for ot her
SRAM accesses to conpl ete. After a period of tine the request
isinthe head of the queue and t hen renoved fromqueue wai ti ng
to be scheduled. Third, when scheduled, the request is
processed and a processing done is issued as the access
conpletes. Finally, the thread that issues the request is

signal ed of the conpletion.
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Fig. 28. Execution history of Linear-Search classifier

The reason of lowutilization of receiver mcroenginesis
t hat t he SRAMaccesses i n Li near Search cl assifier arebursty,
whi ch can be seenintheexecutionhistoryof Fig.28. Sonetines
all thethreads inamcroengine wait for their SRAMaccesses
and thus cause an idle m croengine.

The vertical lines are added over the processing done



poi nts of some SRAMaccesses in Fig. 28. The snal|l gap bet ween
two | i nes neans the actual SRAMaccess tinme, which is shorter
than waiting tinme, and i nplicates the | ow SRAMutilization.
Thr ee met hods can be proposed to sol ve t he SRAMbot t| eneck
that leads to the lowutilization of receiver m croengi nes.
First is to divide one |large SRAMinto many snal | er nodul es
of t he sanme addr ess space. Thi s coul d shortenthe queui ng del ay
of requests in the conmand queue if the requested addresses
are in different nenory nodul es. Second, we nay adopt a new
menory architecture, for exanple, RAMBUS DRAM ( RDRAM [17]
in 1 Q000 [18] that has a peak bandw dth of up to 1. 6GBps whi ch
istw to three tinmes of what SRAM supports. However, it may
need a newinterface between the nenory and ot her functi onal
units. Third, an additional cache can be used to reduce the
nunber of nmenory accesses becausethetrafficinthe sanetine
period usually shows locality either inclassificationor in

routing table | ookup.

5.3 Sinulation Result—Range Matchi ng

Not shown in Fig. 29 is the utilization of SDRAMand SRAM
whi ch are 13%and 35.3% respectively. The sane expl anati on
insection5.1can be appliedtothelowutilization of these
two functional units. However, the two recei ver m croengi nes

arenearly fullyutilizedinthis simulation. Sinceboth SRAM
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accesses and conputing power are critical to the
classification process, we can identify that the later is a

performance bottleneck in the Range Matching Diff Serv.

ExecutinAgborted Stalled 1 diI e
Mi cr oengi ne 0 80. 4% 18. 9% 0. 4% 0. 3%
Rec 10/ 1002001 % 4. 7% 0. 1%
Rec 10/ 1002011% 4. 7% 0. 1%
Rec 10/ 1002021% 4. 7% 0. 1%
Rec 10/ 1002031% 4. 7% 0. 1%
Mi cr oengi ne 1 80 . 4% 19. 2% 0. 2% 0. 2%
Rec 10/ 10022 47 % 5. 4% 0. 1%
Rec 10/ 1002257% 5. 4% 0. 1%
Rec 10/ 1002267 % 5. 4% 0. 1%
Rec 10/ 10012 73% 3. 1% 0. 0%
Mi cr oengi ne?@4 6 8. 3% 27 . 8% 0. 0% 4. 0%
Xmi t Sched23. 1% 16. 3% 0. 0%
Xmi t 10/ 10104 1 % 3. 6% 0. 0%
Xmi t 10/ 10104. % 3. 8% 0. 0%
Xmi t 10/ 10106. 3% 4. 1% 0. 0%

Fig. 29. Mcroengine statistics of Range Matching cl assifier

Fig. 30 and Fig. 31 confirmour identification. FromFig.
30 we can see that nost of the receiving threads spend al
their tine (not conmputing power) waiting for the conpletion
of SRAM accesses, while the threads of Range Matching do

utilize their computing power in Fig. 31.



Fig. 30. The execution history of Linear Searchin macro view

Fig. 31. The execution history of Range Matchi ngi n nacro vi ew

5.4 Sinmulation Result—Execution Coverage

Fig. 32 and 33 shows the execution coverage of two

impl ementations. The X-axis represents the index of the



instruction in Mcrocode and the Y-axis represents the
execution tinmes of the instruction. It is very easy to see
t hat, when processing the sane anobunt of packets (70 packets
in our sinulation), Linear Search takes three tinmes of
execution ti nes of Range Matching. The ratio could be | arger

if the nunber of rules increases.
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Fig. 32. Execution coverage of Linear Search DiffServ
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Chapter 6. Concl usi ons

In this work, we first explain the need of network
processors for today’'s conplex applications, and introduce
the architecture and packet flow in | XP1200. Then we detail
the mapping of DiffServ onto |XP1200. There are two nost
inportant nodules in DffServ, classifier and schedul er,
which are i npl emented with Miul ti-Di nmensi onal Range Mat ching
and Defi cit Round Robi n. Fi nal |l y we have ext ernal and i nt er nal
benchmarks in order to find the bottlenecks in our
i npl enentati on and possi ble design pitfalls of | XP1200.

The ext ernal benchmar ks have shown t hat our i npl enent ati on

a4



can support well the PHBs in DiffServ, and 500 flows at the
i nput | oad of 58% However, fromthe four-to-one test we see
that the classifier is the performance bottleneck. The
i nternal benchmarks prove this observation and identify that

SRAM and mcroengines are the bottlenecks inside the
cl assifiers of Li near Search and Range Mat chi ng, respectively.
However, the cl assifier of Range Matching could still suffer
from the SRAM bottleneck after the conputing power of

m croengines is speeded up because of its heavy nenory
accesses. Toget her wththe SDRAMbott| eneck i n | Pforwardi ng,

we can observe that the bottlenecks may shift from one
functional unit to anot her dependi ng onthe specific service.

Anot her interesting thing is shown in sinulation that the

bottl eneck of SRAM does not necessarily occur at 100%
utilization, it could even occur at 55%when the traffic is
bursty.

We al so identify the MAC buffer probl emand propose three
solutions to attack the two necessary conditions, slow
classification and small buffer. W show that the maximum
classification tinme is 4550 cycl es. Besides, the experinent
result shows the buffer size is 240 bytes that is different
fromthe one in the specification of | XP1200.

Tabl e 3 conpar es Li near Search and Range Mat chi ng adopt ed
inour system The tinme conpl exity of Range Matching is (Il og
n) when the nunber of rules is snmall as the ones in our

experinment, and Q(n) ot herwi se. The Control Store usage neans
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the nunber of instructions used to inplenent the receiver
t hread. The progranmer shoul d be aware of thelKIlimt of the

Control Store.

Ti me Space Bot t | eneck MAC |Control
Conpl exi ty|Conpl exity buffer | Store
pr obl emusage of
Rx
Li near O(n) O(n) SRAM Yes 980
Sear ch
Range S: (1 og n) o(n?) m croengi ne| Yes 1010
Mat chi ng |M O(n) ( SRAM

Tabl e 3. Conpari sons bet ween Li near Sear ch and Range Mat chi ng
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