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摘要 

 網路處理器已漸漸成為傳統以ASIC為主用來處理使用者平面封包的另一可

程式化的選擇。它利用其共同處理器(co-processors)協助處理原本一般用途處理

器(general-purpose processor)所負責的使用者平面的封包。在本論文中，我們將

描述將差別式服務邊緣路由器(DiffServ edge router)實作於 IXP1200 網路處理器

的流程，並探討其效能。 IXP1200 網路處理器具有一個處理控制平面的

StrongARM 核心處理器 (core processor)和六個共同處理器，並將分類

(classification)和排程(scheduling)的規則寫在 SRAM，封包則儲存於 SDRAM。根

據外部測試顯示，就一條輸入埠 (input port)而處理能力(throughput)為 50Mbps

時，本系統可以支援符合個別行為(Per-Hop Behavior)的 500個資料流(flow)，且

可隨著 SRAM 的增加而繼續擴充。經由內部測試我們發現效能瓶頸(bottleneck)

會隨著不同的服務和實作而轉移到不同的地方。就簡單的遞送服務(forwarding 

service)而言，SDRAM為一當然瓶頸。然而當涉及眾多的規則表查詢和計算時，

SRAM和 microengine 則分別成為其效能瓶頸。另外，我們也指出了 IXP1200硬

體設計的可能缺失，稱之為”媒體存取控制緩衝儲存器的問題” (MAC buffer 

problem)。 
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Abstract 

Network processors are emerging as a programmable 

alternative to the traditional ASIC-based solutions in 

scaling up the user-plane processing of network services. They 

serve as co-processors to offload user-plane traffic from the 

original general-purpose microprocessor. In this work, we 

illustrate the process and investigate performance issues in 

prototyping a DiffServ edge router with IXP1200, which has 

one control-plane StrongARM core processor and six user-plane 

microengines, and stores classification and scheduling rules 

at SRAM and packets at SDRAM. The external benchmark shows 

that the system can support an aggregated throughput of 

141Mbps of eight input ports, and 500 flows, which is 

extensible provided enough SRAM space, at one input port while 

conforming the PHB of each flow. Through internal benchmarks, 
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we found that performance bottlenecks may shift from one place 

to another given different network services and 

implementations. For simple forwarding services, SDRAM is a 

nature bottleneck. However, it could shift to SRAM or 

microengines if involving heavy table access or computation, 

respectively. We also identify the design pitfall of the 

hardware called the “MAC buffer problem”. 

Keywords: Network Processor, DiffServ, IXP1200, scalability, 

SRAM, SDRAM  

Contents 

SCALABILITY AND BOTTLENECKS OF DIFFSERV OVER NETWORK 
PROCESSORS.......................................I 

ABSTRACT...................................... II 

CONTENTS..................................... III 
LIST OF FIGURES................................ IV 

CHAPTER 1. INTRODUCTION.......................... 1 

CHAPTER 2. ARCHITECTURE AND DEVELOPMENT ENVIRONMENT OF 
IXP1200 ...................................... 3 
2.1 Architecture of IXP1200....................... 3 

2.2 Development Environment....................... 6 

CHAPTER 3. DESIGN AND IMPLEMENTATION OF DIFFSERV ON IXP1200

............................................. 8 
3.1 DiffServ Briefing............................. 8 

3.2 Mapping DiffServ Components ................... 9 

3.3 Detailed Packet Flow in IXP1200 .............. 12 

3.4 Algorithm Implementations .................... 13 

3.4.1 Classifier................................ 14 

3.4.2 Scheduler................................. 17 

CHAPTER 4. EXTERNAL BENCHMARK AND DESIGN PITFALLS ... 19 
4.1 Benchmark Environment........................ 20 

4.2 Functionality test........................... 21 



 IV 

4.3 Scalability test............................. 28 

4.4 MAC buffer problem........................... 30 

CHAPTER 5. INTERNAL BENCHMARK AND BOTTLENECK DISCUSSIONS33 
5.1 Simulation Model............................. 33 

5.2 Simulation Result—Linear Search .............. 34 

5.3 Simulation Result—Range Matching ............. 37 

5.4 Simulation Result—Execution Coverage ......... 39 

CHAPTER 6. CONCLUSIONS.......................... 41 
REFERENCES: ................................... 43 

 

 

 

List of Figures 
Fig. 1.  Hardware architecture of IXP1200......................4 
Fig. 2.  Software architecture and development 

environment of IXP1200...........................................................7 

Fig. 3.  Inside a DiffServ edge device.............................9 
Fig. 4  User-plane architecture of DiffServ edge 

router over IXP1200............................................................... 10 

Fig. 5.  Detailed DiffServ packet flow in IXP120013 

Fig. 6.  Fields in a rule ......................................................... 15 
Fig. 7.  Example and relative tables for lookup in 

Source IP dimension............................................................... 15 

Fig. 8.  Code of Policer and Marker ................................. 17 

Fig. 9.  Scheduler using DRR.................................................. 18 

Fig. 10.  Packets in a queue.................................................. 19 

Fig. 11.  Benchmark environment........................................... 21 
Fig. 12.  Throughput and loss rate with varying number 

of rules ......................................................................................... 22 
Fig. 13  Aggregated throughput (Len=64bytes, worst 

case)................................................................................................. 23 
Fig. 14.  Loss rate with varying packet length 

(128-rules worst case)........................................................ 24 

Fig. 15.  Priority test (Len=64bytes)............................. 25 
Fig. 16.  Priority and bandwidth control test 

(Len=64byte, EF=62500pps)................................................. 26 
Fig. 17.  4(EF, AF1-3) to 1 latency test (Len=64bytes, 



 V 

EF=62500pps)................................................................................ 26 
Fig. 18.  Four-to-One fairness test (64rules, 4 Rx in 

one ME)............................................................................................ 27 
Fig. 19.  Four-to-One fairness test(64rules, 2 Rx in 

ME0, 2Rx in ME1)...................................................................... 27 

Fig. 20.  Single flow loss rate test............................... 28 
Fig. 21.  Scalability test (Len=64bytes, 100flows, 

BW=74400/100=744 frame/sec, normal case)............. 29 
Fig. 22.  Scalability test (Len=64bytes, 500 flows, 

BW=74400/500=148pps, normal case) ............................. 30 
Fig. 23.  Packet loss of different packet lengths in 

Linear Search ............................................................................. 31 

Fig. 24.  Receiving process of a packet........................ 31 

Fig. 25.  Software simulation model ................................. 34 

Fig. 26.  Summary of performance statistics.............. 35 
Fig. 27.  microengine statistics of Linear Search 

DiffServ ......................................................................................... 35 
Fig. 28.  Execution history of Linear-Search 

classifier..................................................................................... 36 
Fig. 29.  Microengine statistics of Range Matching 

classifier..................................................................................... 38 
Fig. 30.  The execution history of Linear Search in 

macro view..................................................................................... 39 
Fig. 31.  The execution history of Range Matching in 

macro view..................................................................................... 39 
Fig. 32.  Execution coverage of Linear Search DiffServ

............................................................................................................. 40 
Fig. 33.  Execution coverage of Range Matching 

DiffServ ......................................................................................... 40 



 1

Chapter 1. Introduction 
 

 The increasing link bandwidth demands even faster nodal 

processing especially for the user-plane traffic. The nodal 

user-plane processing may range from routing table lookup to 

various classifications for firewall, DiffServ and Web 

switching. The traditional single-processor architecture is 

no longer scalable enough for wire-speed processing so that 

some ASIC components or co-processors are commonly used to 

offload the user-plane processing, while leaving only 

control-plane processing to the original processor.  

 Many ASIC-driven products have been seen in the market, 

such as the acceleration cards [1] for encryption/decryption, 

VPN gateways [2], Layer 3 switches [3], DiffServ routers [4] 

and Web switches [5]. While they indeed speedup the user-plane 

packet processing, they lack flexibility in reprogrammability 

and have a long development cycle which is usually nine months 

per ASIC. 

 Network processors are emerging as an alternative solution 

to ASIC for providing scalable capability for user-plane 

packet processing while retaining programmability. 

Nevertheless, it might not be powerful enough to replace the 

ASIC implementations which are application specific in 

designing the functional units such as a much wider memory 

bus, lower delay between functional units, and faster excution 

process, compared to instruction excution in processors. In 
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this study, we adopt IXP1200 (Internet Exchange Processor) 

[6] which is composed of one StrongARM core processor and six 

co-processors, referred as microengines, so that developers 

can embed the control-plane and user-plane traffic management 

modules into the StrongARM processor and microengines, 

respectively. Scalability concerns could be satisfied because 

of the six programmable microengines, with hardware threads, 

new instructions for networking purposes, and the extensible 

architecture of IXP1200. 

 Tammo, Spalink, and Scott [7] demonstrated and evaluated 

the IXP1200 in IP forwarding and concluded that the SDRAM 

storing packets is the bottleneck. However, the evaluation 

results cannot be generalized for today’s complex services 

which need more SRAM table accesses and computing power. 

 The objective of this work is therefore to implement a more 

sophisticated service, Differentiated Services (DiffServ), 

and identify possible performance bottlenecks and design 

pitfalls, if any, in IXP1200. There are three most important 

modules in DiffServ � classifier, leaky bucket and scheduler. 

They are deployed into IXP1200 microengines and configured 

by the StrongARM.  

 In benchmarking the implemented system, two topics are 

investigated. First, how well can this DiffServ 

implementation scale, in terms of throughput and number of 

flows? Second, where are the potential bottlenecks of network 

processors, especially IXP1200’s, and their causes? We 
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anticipate that the exact bottleneck depends on the specific 

service and its algorithmic implementation. 

 The paper is organized as follows. Chapter 2 briefly 

reviews the architecture and development environment of 

IXP1200. C hapter 3 presents the design and implementation of 

DiffServ over IXP1200. Chapter 4 and Chapter 5 illustrate the 

results of external and internal benchmarking through 

experiment and simulation, respectively. Finally, Chapter 6 

ends this work with conclusive remarks. 

 

 

 

 

 

 

 

Chapter 2. Architecture and 

Development Environment of IXP1200 

 

2.1 Architecture of IXP1200 

 

Fig. 1 shows the hardware architecture of IXP1200. The 

32-bit StrongARM, which is the core processor of IXP1200, is 

responsible for the initialization of the whole evaluation 

system and part of the packet processing. A Memory Management 
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Unit is also included to translate virtual addresses into 

physical addresses and control memory access permissions.  
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Fig. 1.  Hardware architecture of IXP1200 

 

The six microengines, which support four hardware contexts, 

i.e. threads, and 128 general-purpose registers and 128 

transfer registers in each of them, are mainly used for 

receiving, manipulating, and transmitting the packets. Not 

shown in this figure is the Control Store in each microengine 

that holds microcode of up to 1024 32-bit instructions. For 

networking purposes, microengines also support zero context 

switching overhead, single-cycle ALU with shifter, and other 

specifically designed instructions for bit, byte, and 

longword operations. Table 1 lists some example instructions 

of IXP1200 for comparing with the ones of x86 processors. 
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Instructions of 

IXP1200 

Instruction description Instructions of x86 

processor 

Used in 

ALU Perform ALU with shift in one 

instruction 

ALU (ADD or SUB) 

+ shift 

Rule matching 

(classification) 

IMMED Load an immediate value with 

shift 

Load + shift Load rule 

(classification) 

FIND_BSET 

LOAD_BSET 

Determine the position of the first 

set bit in a 16-bit field of a register 

At least 5 instructions 

to test one single bit  

Longest prefix 

match 

BR_BSET Branch if the specified bit in a 

register is set 

Shift + bit test + 

JUMP 

Ready Bus 

Sequencer 

HASH1_64 Perform one 64-bit hash operation Many instructions Faster table 

lookup 

Table 1. Some comparisons between instructions of IXP1200 

and x86 

 

The SRAM Unit, which is used for storing lookup tables and 

pointers in scheduling queues for packet forwarding, accesses 

SRAM via a 32-bit bus that provides a peak bandwidth of up 

to 400Mbytes per second and access time of 30 cycles [7]. 

The SDRAM Unit, which is used for storing mass data of 

packets, accesses SDRAM via a 64-bit bus that provides a peak 

bandwidth of up to 800Mbytes per second and access time from 

40 to 55 cycles depending on the destination functional unit 

[7].  

The 64-bit IX bus Interface Unit is responsible for 

servicing MAC interface ports on the IX Bus, moving data to 

and from the Receive and Transmit FIFOs. It provides a 4.2Gbps 

interface to MAC devices, meaning that it can afford 2.1Gbps 

of the input ports and output ports, respectively.  In 
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addition, two IXP1200 network processors can be supported 

directly on the IX Bus without additional support logic.  

 Operations of IXP1200 hardware components when handling 

packet-forwarding services can be described below. At boot 

time, the StrongARM loads boot image from Boot ROM and 

initializes other functional units, including loading the 

routing table into SRAM and microcode into microengines. The 

system is now ready to receive packets. When the Ready Bus 

Sequencer detects an incoming packet in a MAC port, it notifies 

the corresponding receiver thread to retrieve and store it 

in the RFIFO. After the receiver thread completes routing 

table lookup, it moves the packet to SDRAM waiting to be 

forwarded. A transmitter thread on another microengine later 

forwards the packet in SDRAM through TFIFO to another MAC port. 

There may be multiple receiver, transmitter, and scheduler 

threads distributed to 6 microengines, though some 

restrictions apply. 

 

2.2 Development Environment 

 

 Fig. 2 shows the software architecture of IXP1200. The 

software architecture consists of control-plane processing 

in StrongARM running under the VxWorks operating system [8] 

and user-plane processing in microengines running packet 

-processing threads. Though StrongARM can do the user-plane 
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work, such unclearly divided workload distribution would lead 

to complex packet processing and thus low performance. The 

same thing happens otherwise for microengines with the 

control-plane work. A microengine can also communicate with 

StrongARM and other microengines using interrupt or signal 

mechanism, which helps in realizing the control/user plane 

architecture. 
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Fig. 2.  Software architecture and development environment of 

IXP1200 

 

 Also shown in Fig. 2 is the overview of the development 

environment. The IXP1200 programming can be divided into two 

aspects, which are StrongARM programming and microengine 

programming. While StrongARM programs are written in C/C++ 

under Tornado [8], microengine programs are written in 

assembly under WorkBench [ 9] for low-level packet processing 

capability. The compiled StrongARM executable is linked with 
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object microcode compiled by the assembler, and then loaded 

into IXP1200 SRAM from which StrongARM initializes and loads 

microcode into the Control Store of microengines. The linked 

program can also be executed by the Transactor for pure 

software simulation. Besides, the StrongARM is big-endian and 

byte-addressable while microengines are little-endian and 

longword-addressable. 

 

 

 

Chapter 3. Design and Implementation 

of DiffServ on IXP1200 

 

 In this chapter, we first give a brief introduction to 

DiffServ. Then we explain how to map DiffServ components onto 

IXP1200 program, followed by the detailed packet flow in the 

system. At last, we describe how to implement two major 

components, classifier and scheduler, in DiffServ with two 

existing algorithms, Multi-Dimensional Range Matching [11] 

and Deficit Round Robin [12], respectively. 

 

3.1 DiffServ Briefing 

 

 Differentiated Services (DiffServ) [10] mechanisms allow 

users to receive different levels of service from a provider 
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to support various types of applications. Fig. 3 shows the 

functional components of a DiffServ edge device. According 

to the service configuration in a DiffServ edge node, packets 

are classified, according to multiple fields (MF), leaky 

bucket policed, and marked to receive a particular per-hop 

forwarding behavior (PHB), i.e. class-based scheduling, which 

is Expedited Forwarding (EF) or one of four Assured 

Forwarding’s (AF’s). 

  

Service Configuration

MF
classifier

Policer Marker Queue
Mngt

Scheduler

Traffic

 

Fig. 3.  Inside a DiffServ edge device 

 

The service differentiation of packets often takes effect 

in delay and loss rate. Packets of higher classes are more 

likely to be scheduled earlier than those of lower classes, 

and thus result in smaller latency and loss rate. 

 

3.2 Mapping DiffServ Components 

 

 Fig. 4 shows the software architecture of DiffServ and its 

corresponding task allocation on IXP1200. We insert six 
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DiffServ modules (the shadowed blocks) on top of the original 

software of simple IP forwarding. 

Rx
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not EOP
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Fig. 4  User-plane architecture of DiffServ edge router over 

IXP1200 

 

The DiffServ process is described below. After a packet 

header is received at a transfer register from an RFIFO and 

verified as legal, it is passed to the range-matching 

classifier, described in section 3.4.1, for the matching 

process. If the packet’s header matches one of the rules and 

is classified as, for example, EF traffic, we admit or discard 

it according to the policing bandwidth set in the rule. If 

admitted, it is marked with a DSCP (DiffServ Code Point) in 

the header. After longest prefix matching in routing table 

lookup, the packet is queued in the corresponding queue of 

the output port waiting for scheduling, i.e. the packet’s 

descriptor is enqueued in SRAM while the packet itself is 
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stored in SDRAM. The scheduler thread chooses one transmitter 

thread and assigns it a port, which contains six queues (1 

EF, 4 AF’s and 1 BE), to serve. The transmitter thread examines 

the queue with the highest priority to see whether there is 

a packet to be sent and whether it has enough quantum, which 

is used in Deficit Round Robin scheduling described in section 

3.4.2, for that packet. If having enough quantum, the 

transmitter thread fetches the packet’s descriptor in SRAM 

and in turn the entire packet in SDRAM to TFIFO for output. 

Otherwise, it examines the next queue of lower priority for 

the packet and the corresponding quantum.  

The 24 threads are divided evenly into two groups, eight 

10/100M ports and one giga port. Each group has 12 threads 

that are used as 8 receivers assigned to 2 microengines, 3 

transmitters and 1 scheduler assigned to 1 microengine. Each 

10/100M receiver thread is responsible for a specific 10/100M 

port, while 8 giga receiver threads serve one giga port. The 

transmitter threads, however, are not bound to specific ports. 

They output packets to ports according to the assignments from 

the scheduler thread. We use static task allocation instead 

of dynamic task allocation for the following reasons. First, 

the 1K Control Store of a microengine might not be large enough 

to hold microcode of two threads of different types, for 

example, receiver (1012 instructions) and transmitter (552 

instructions) whose summed size of instructions exceeds 1024. 

However, transmitter and scheduler (144 instructions) whose 
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summed size is below 1024 can co-exist in one microengine. 

Therefore, we’d better group threads of the same type in one 

microengine. Second, if we choose dynamic allocation, the 

programming would be more complex and, since we cannot have 

a clear task division between threads, the communication 

overhead between threads or microengines would be large. 

 

3.3 Detailed Packet Flow in IXP1200 

 

Fig. 5 illustrates the key components and the packet 

processing flow. The Ready Bus Sequencer periodically polls 

the MAC buffer and sets the receive flag in a global rec_rdy 

register when a packet comes. Once the receiver thread 

responsible for the MAC port detects the flag, it asks the 

Receive State Machine to move the packet, in units of 64-byte 

MAC packet, referred as MP which is a basic data unit in the 

system, from the MAC buffer into RFIFO.  

A FIFO, including RFIFO and TFIFO in the system, is used 

as an intermediate buffer for packets. Implemented as a 

64-byte memory array, it could hold an MP to be stored in SDRAM 

or transmitted to a MAC interface. 

If an MP is a SOP (Start Of Packet), its first 32-byte 

containing the packet header is transferred into eight SRAM 

transfer registers, 4 bytes each, for classification, while 

the second half is directly stored in SDRAM. 
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Fig. 5.  Detailed DiffServ packet flow in IXP1200 

 

 After classification, policing, marking and routing table 

lookup, the packet is enqueued in one of the six queues of 

the output port; the first 32 bytes and the remaining packet 

body are then moved into SDRAM in units of MP. The queues are 

implemented as link lists and each element in a list represents 

a packet’s descriptor. The descriptor contains address of the 

packet stored in SDRAM so that the transmitter thread knows 

where to get the packet scheduled to be sent. 

  

3.4 Algorithm Implementations 

  

 The following two sections present how to implement 

classifier and scheduler in our system. For classifier, we 

employ the Multi-Dimensional Range Matching to exploit its 

efficiency in setting up filter rules. For scheduler, we adopt 
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Deficit Round Robin because of the flexibility in adjusting 

the priority between different flows and its long-term 

fairness.  

 

3.4.1 Classifier 

 

 Fig. 6 shows the format of a rule used by the classifier. 

Each pair of fields grouped in a rectangle represents the range 

of a specific dimension. The TOS field can also be seen as 

the DSCP field if the incoming packet is from another DiffServ 

domain. The policer uses Bandwidth to police EF traffic. 

The concept of the Multi-Dimensional Range Matching used 

to implement the classifier is described below. The rules in 

a dimension form intervals, which may be overlapped by 

multiple rules. Each interval is associated with a BV (Bit 

Vector, which is 512-bit in our implementation and is stored 

in SRAM), which keeps track of the rules overlapped in this 

interval. Fig. 7 illustrates an example of the matching 

process in the source ip dimension. 
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Fig. 6.  Fields in a rule 
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Fig. 7.  Example and relative tables for lookup in Source IP 

dimension 

 

 Upon the arrival of a packet, the classifier searches the 

interval table of each dimension for a match with the 

corresponding field in the packet. Once an interval is found 

for a dimension, the classifier consults the BV table for the 

corresponding BV. If all six fields of a packet match an 

interval in six dimensions, respectively, the classifier ANDs 

the BVs of the intervals, and the index of the first non-zero 

bit in the result vector is the index of the matched rule.  

An additional 32-bit CBV (Compact Bit Vector), also stored 
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in SRAM, is associated with each interval in order to speed 

up the lookup process of the BV. The usage of CBV is described 

as follows. If the Nth bit in a CBV equals 0, it means that 

all bits in the range from [32(N-1)+1]th to 32Nth bit in the 

BV are 0. On the other hand, more than one bit in the BV equal 

1 in that range if the Nth bit of CBV equals 1. 

Because each bit in CBV containing 32-bit information in 

BV, the CBV can detect and avoid the unnecessary memory 

accesses and computations in ANDing the BV’s. Note that since 

AND and SRAM operations are longword-based in microengines, 

a BV is stored in the memory as 32-bit words. 

 Because the SRAM in our hardware platform is only 2Mbyte, 

the maximum number of rules must be limited to 1024 (6 

dimensions*2049*1024/8 > 2Mbytes, since there will be 2049 

intervals in the worst case of 1024 rules, and 1024 bit of 

BV for each interval). We set it to 512 rules in our 

implementation for simplicity, in addition to other space 

overhead such as routing table and queues. 

 After classifier returns the index of the matched rule, 

the policer and marker use the information contained in the 

rule to do the further processing (as described in Fig. 8). 

Each rule is associated with additional two fields, 

last_arrival_time and token, which are used in maintaining 

per-flow Leaky Bucket.  

 

Policing and Marking: 
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  If(rule[index].dscp = EF) 

token=(time_now-rule[index].last_arrival_time)*rule[in

dex].bw+rule[index].token 

 If(len_of_packet <= token) 

   rule[index].token = token – len; // restore the rest of 

the tokens 

 Else  

   packet_discard();   

  TOS_of_packet = rule[index].dscp; // marked with DSCP in the 

packet header 

ElseIf(index = BE) 

enqueue(BE); 

  Else 

enqueue(rule[index].dscp); 

Fig. 8.  Code of Policer and Marker 

 

 A timer is implemented by StrongARM to obtain the timing 

information. The last_arrival_time means the arrival time of 

the previous packet, and the token indicates the number of 

tokens left in the processing of last packet that matches this 

rule and available to the next one. Therefore, the total tokens 

available to the incoming packet can be computed and we can 

decide whether to admit it or not. 

 

3.4.2 Scheduler 
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 Fig. 9 illustrates the design of the s cheduler using DRR. 

The ratio of quantum sizes between two adjacent classes is 

2 in our implementation. To prevent from longer queuing delay 

and higher drop rate, the capacity of each queue is set to 

32 the same as the quantum size of EF. The quantum of EF could 

be wasted if the queue size is smaller than 32, and the packets 

are also more likely to be dropped. 

Each packet is represented in a form of buffer descriptor 

when it is queued in SRAM, as shown in Fig. 10. The IXP1200 

implements an SRAM free_list, which can be called for a memory 

block to store the buffer descriptor. The real packet is stored 

in SDRAM, and once it is scheduled for transfer, the 

transmitter thread uses the address of buffer descriptor and 

buffer handle in the descriptor to locate the packet. The 

former is used to map the start address of the real packet 

(buf_des_addr*64) in SDRAM, and the later is used to obtain 

the number of valid bytes in EOP (End Of Packet). 

 

EF

AF1

BE

AF4

AF3

AF2
TFIFOEnqueue

EF : AF1 : AF2 : AF3 : AF4 : BE

= 32 :   16 :   8    :   4    :   2    :   1

Quantum ratio between
 all classes

32 descriptors

 

Fig. 9.  Scheduler using DRR 
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Fig. 10.  Packets in a queue 

 

 

 

 

 

 

 

 

 

Chapter 4. External Benchmark and 

Design Pitfalls 

 

 There are works [13,14,15,16] describing DiffServ 

performance evaluation. However, most of them are conducted 

through simulations. In this chapter, we investigate two 

important issues for a DiffServ edge device, functionality 

and scalability, through hardware benchmark. For 

functionality, w e evaluate the PHB of different flows and the 
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fairness among input ports. For scalability, we want to know 

the aggregated throughput and how many flows our system can 

support while conforming their PHBs. Last, we identify a 

possible design pitfall named the MAC buffer problem and 

propose solutions for it. Another two versions of DiffServ 

are also implemented for comparison with the one of Range 

Matching, the Linear Search classifier in IXP1200 and the 

Linux-based Range Matching DiffServ whose CPU is Pentium III 

800 and RAM is 128MB. 

 

4.1 Benchmark Environment 

 

 Fig. 11 illustrates the benchmark environment [13]. The 

host PC is used to remotely control the initialization and 

activities of IXP1200. We first setup the connection from host 

PC to IXP1200 and the IXP1200 then automatically download the 

linked image of StrongARM and microcode executables with 

Tornado. After entering the debugging mode in WorkBench, we 

can run the DiffServ code continually or set break points. 
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IXP1200SmartBits

NIC(10/100MB)

NIC(10/100MB)

NIC(10/100MB)

.

.

.

.

.

.

Host PC
Ethernet

WorkBench
(for Microengins)

&
Tornado

(for StrongARM)

Download VxWorks and
compiled excutables

Benchmark softwares :
1. SmartWindow

2. SmartFlow  

Fig. 11.  Benchmark environment 

 

4.2 Functionality Test 

 

 Though the time complexity of Range Matching is O(n), the 

benchmark result in Fig. 12 shows a k*log n decrease in the 

throughput when the number of rules increases. This is because 

when the number of rules is small (as in our experiment), the 

coefficient k, which represents the effect from binary 

searches of multiple dimensions, dominates the classification 

process. As for linear search, we can see that the throughput 

is linearly decreased as the number of rules increases. 
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Throughput V.S # of rules (Len=64bytes, Load=100%=148Kpps, worst-case)
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Fig. 12.  Throughput and loss rate with varying number of rules 

 Fig. 13 shows the throughput of the receiver threads of 

different allocations. Naturally, the throughput of two 

threads in two microengines is approximately two times of the 

one of a single thread. However, due to the lack of the 

computing power, the throughput of four threads in a 

microengine is not four times of only one thread. In addition, 

the throughput of eight threads is not two times of the one 

of four threads. This is the result of memory contention. Not 

shown in Fig. 13 is the throughput, which is 20.5Mbps, of 

Linux-based Range Matching DiffServ when the number of rules 

is 512. It is almost same with the throughput of one thread 

in IXP1200, which means IXP1200 outperforms the general PC. 
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Fig. 13  Aggregated throughput (Len=64bytes, worst case) 

 

 Fig. 14 shows the relation between loss rate and packet 

length. When the packet length increases, the loss rate 

decreases. The reason is quite straightforward. At the same 

load condition, longer packets result in fewer packets for 

the classifier to process. One thing is interesting in this 

figure. No matter under what load condition, the loss rate 

of the flow, whose packet l ength is 512 bytes, is near 100%. 

Actually, this always happens to flows whose packet length 

is longer than a threshold. We call it the MAC buffer problem 

and will discuss it in the later section. 
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Fig. 14.  Loss rate with varying packet length (128-rules 

worst case) 

 

Fig. 15 shows the receive rate of four AF classes from four 

input ports, respectively. The traffic of AF4 begins to be 

dropped at load 25% because the output link is fully utilized 

so that the packets of low priority are more likely to be 

dropped. We can also observe from the figure that the service 

differentiation is strictly carried out in the 2:1 manner, 

as defined in our system, for two adjacent classes. 

We include the EF flow in our priority test in Fig. 16. 

Again, we see the AF3 flow that is of the lowest priority in 

this test begins to be dropped at load 25%.  However, the other 

three flows continue to consume the bandwidth left by AF3 until 

the output queue of AF2 is full due to the growing traffic 

rate and its lower priority. While the other 3 AF flows obey 

the 2:1 traffic proportion, the EF flow reaches the steady 

state at 62,500pps set in the rule. It does not obey the 2:1 
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proportion with other AF flows since the EF queue is not full 

yet. 

In the latency test in Fig. 17 corresponding to Fig. 16, 

we observe that the EF flow has a very low latency under all 

load conditions. Before load 25%, every flow has the same 

latency because the queues are not full. We also observe that 

the latency of AF flows still obey the 2:1 proportion, which 

means the delay in output queues dominants the whole 

end-to-end delay.  
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Fig. 15.  Priority test (Len=64bytes) 

 



 26 

0

10000

20000

30000

40000

50000

60000

70000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Load (%) at input port x4

R
e
c
e
i
v
e
 
t
h
r
o
u
g
h
p
u
t
 
(
p
p
s
)

EF

AF1

AF2

AF3

 

Fig. 16.  Priority and bandwidth control test (Len=64byte, 

EF=62500pps) 

 

Fig. 18 shows the fairness among four input flows of the 

same class to one output link. The packet loss from load 25% 

to 42% is due to the fullness of the output link and is e ven 

between the four flows. After load 42%, we see an acute changing 

of loss rate among flows. This is because the unstableness 

of the receivers. The traffic load is too heavy in each input 

port so that the classification cannot be finished in time. 
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Fig. 17.  4(EF, AF1-3) to 1 latency test (Len=64bytes, 
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EF=62500pps)  
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Fig. 18.  Four-to-One fairness test (64rules, 4 Rx in one ME) 

 

 Compared with the four receiver threads in only one 

microengine in Fig. 18, the four receiver threads are divided 

into two groups in two microengines, as shown in Fig. 19. It 

is very clear that the receivers are more stable than those 

in one microeigine, thanks to the additional computing power 

from the second microengine.  
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Fig. 19.  Four-to-One fairness test(64rules, 2 Rx in ME0, 2Rx 

in ME1) 
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4.3 Scalability Test  

 

 The test methodology is described below. We first measure 

the maximum load, which is 58% as shown in Fig. 20, for one 

flow that results in no packet loss. Then we want to know how 

well the system supports for a larger number of flows when 

the input load is below or above the load measured in Fig. 

20. The bandwidth of each flow is set the same and the 

aggregated bandwidth is 50% of the link. The input load is 

evenly divided into 100 and 500 flows in the following two 

experiments, respectively.  
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Fig. 20.  Single flow loss rate test 

 

Fig. 21 shows the throughputs of 100-flows at three load 

conditions. The flows strictly follow their bandwidth 

settings when the input load is 50%, which is below 58%, and 

become unstable when overloaded. However, most of the flows 
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are limited to their bandwidth settings. 
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Fig. 21.  Scalability test (Len=64bytes, 100flows, 

BW=74400/100=744 frame/sec, normal case) 

 

 Fig. 22 shows the test of 500-flows as an extension of Fig. 

21. To compare the results in these two figures, we define 

Average Performance Dropdown (APD) of the flows at different 

loads as 

APD = 
N
BW

TN

i

i∑
=− 11 , 

 

where iT  is the throughput of flow i, N is the number of flows 

and BW is the bandwidth of each flow set in this experiment. 

 The APD’s of load 80% and 100% are 0.022 and 0.09 in 

100-flows test, whereas 0.047 and 0.15, which are larger, in 

500-flows test. This is due to the extra memory accesses 

required in binary search in 500-flows test. Besides, the 

flows in Fig. 22 still strictly follow their bandwidth 
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settings when the input load is 50%. 
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Fig. 22.  Scalability test (Len=64bytes, 500 flows, 

BW=74400/500=148pps, normal case) 

 

4.4 MAC buffer problem 

 

 This section discusses the MAC buffer problem introduced 

in Fig. 14. An interesting thing is observed in Fig. 23. When 

the classifier is implemented with Linear Search, the system 

loses all the packets of length 512-byte under all load 

conditions. There are two causes to this situation, the slow 

classification and the small buffer size, which are 

illustrated below. 

Fig. 24 shows a diagram of packets reception. As described 

in section 3.3, the rest of MPs are transferred from MAC buffer, 

RFIFO to SDRAM after the SOP is classified. However, if SOP 

cannot be processed in time and the buffer is not large enough, 

the incoming MPs of the same packet could fill up the whole 
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buffer and thus result in a packet drop, and then 100% packet 

loss.  
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Fig. 23.  Packet loss of different packet lengths in Linear 

Search 
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Fig. 24.  Receiving process of a packet 

 

304 31th normal

305 31th 100%

Any 30th normal

Packet Length
(byte) Rule matched Loss

1

2

3  

Table 2. Experiment results of Linear Search classifier for 

MAC buffer problem 
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Since both the slow classification and small buffer 

contribute to the MAC buffer problem, two things are therefore 

interested, the maximum tolerable processing time of the 

classification and the maximum buffer size, which both help 

avoid this problem.  

The first question can be answered in table 2. From result 

2 and 3 we can learn that, when a packet matches 30th rule, 

the classification is fast enough so that the receiver can 

move all MPs into SDRAM in time. That is, the maximum tolerable 

processing time (from classification to packet store in Fig. 

4) for a SOP is about 120 SRAM accesses and 950 instructions, 

or 4550 cycles totally. 

 We also find from result 1 and 2 that, the threshold of 

the packet length in MAC buffer problem is 304 bytes, and the 

size of MAC buffer is therefore 240 bytes (304 bytes - 64 bytes 

of RFIFO), which is different from 256 bytes mentioned in the 

specification of IXP1200. 

 Another solution to MAC buffer problem is to enlarge the 

MAC buffer size to 1454 bytes (1518 bytes - 64 bytes of RFIFO), 

whose sum with RFIFO is the maximum packet size in Ethernet. 

Since there can be at least one packet in the MAC buffer and 

RFIFO, the problem can be avoided. 

 Third, since the incoming MPs could fill up the whole buffer 

before SOP is classified, we just move the MPs into SDRAM before 

classification. Though the average delay may become longer 

due to the postponement of the classification and enqueue, 
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it won’t have critical impact on the system compared with the 

dominant output queuing delay. 

 As to the Fig. 14, it is strange to see that the loss rates 

under MAC buffer problem are not 100%, which are different 

from the ones in Fig. 23. The reason is quite interesting. 

The receiving thread is not fast enough to avoid the MAC buffer 

problem in this experiment. However, the thread might 

sometimes get extra computing power for classification 

process thanks to context switching. 

 

 

 

Chapter 5. Internal Benchmark and 

Bottleneck Discussions 
 

 In this chapter we will have simulations for two DiffServs 

whose classifiers are implemented with Linear Search and Range 

Matching, respectively. Our goal is to see what cannot be seen 

in the external benchmarks, for example, the utilizations of 

microengines, SRAM and SDRAM, and try to find out the 

performance bottlenecks from above observations. Some 

solutions will also be proposed to solve those bottlenecks. 

 

5.1 Simulation Model 
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 Fig. 25 illustrates the simulation model. The HAL (Hardware 

Abstraction Layer) is used as an interface of StrongARM to 

IXP1200 hardware and Transactor. The Transactor, which is a 

simulator in the development tool called WorkBnech, instructs 

the virtual devices with the StrongARM and microengine 

executables. There are seven 100Mb input ports and one giga 

port for output. The input traffic in each port is configured 

as wire-speed.  

StrongARM App

HALHAL

Transactor

Transactor IO

SRAM SDRAM MEs IX bus

virtual devices

IXP1200

Foreign Model

.dll file
Tornado

1. Input Port:  0-6
2. Wire -speed input 

traffic

Host PC

 

Fig. 25.  Software simulation model 

 

We simulate DiffServ in two algorithms, Linear Search and 

Range Matching, and try to find the performance bottlenecks 

of IXP1200. The number of rules is 64 in both cases. 

 

5.2 Simulation Result—Linear Search 

 

 Fig. 26 shows the performance statistics of the functional 

units. We see that SDRAM utilization is very low. This is 

because packet forwarding, which is the major consumer of 
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SDRAM, is not critical in DiffServ.  

 

 

Fig. 26.  Summary of performance statistics 

 

ExecutingAborted Stalled Idle

Microengine 0   61.7%  18.1%   0.1% 20.1%
     Rec 10/100, 0   15.5%  4.6%   0.1%
     Rec 10/100, 1   15.4%  4.4%   0.1%
     Rec 10/100, 2   15.4%  4.5%   0.1%
     Rec 10/100, 3   15.4%  4.5%   0.1%
Microengine 1   72.2%  18.8%   0.2% 0.2%
     Rec 10/100, 4   15.3%  4.3%   0.1%
     Rec 10/100, 5   15.2%  3.9%   0.1%
     Rec 10/100, 6   15.1%  4.3%   0.1%
     Rec 10/100, 7   26.7%  6.2%   0.0%
Microengine4   68.5%  27.4%   0.0% 4.1%
     Xmit Sched   22.4%  15.6%   0.0%
     Xmit 10/100, 1   14.6%  3.8%   0.0%
     Xmit 10/100, 2   14.9%  3.8%   0.0%
     Xmit 10/100, 3   16.5%  4.1%   0.0%  

Fig. 27.  microengine statistics of Linear Search DiffServ 

 

From section 3.4.1 we know that the computing power of 

receiving threads and SRAM accesses are two important factors 

that affect the performance of the classifier. How ever, we 

can see from Fig. 26 and Fig. 27 that both receiver microengines 

and SRAM are not fully utilized while the actual throughput 

of the system is not wire-speed.  

 The reason can be answered in the execution history in Fig. 

28. There are four stages in a SRAM access, which are also 

shown in the figure and illustrated below. First, the request 
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is queued in one of the three command queues waiting for other 

SRAM accesses to complete. After a period of time the request 

is in the head of the queue and then removed from queue waiting 

to be scheduled. Third, when scheduled, the request is 

processed and a processing done is issued as the access 

completes. Finally, the thread that issues the request is 

signaled of the completion. 

 

 

Fig. 28.  Execution history of Linear-Search classifier 

 

 The reason of low utilization of receiver microengines is 

that the SRAM accesses in Linear Search classifier are bursty, 

which can be seen in the execution history of Fig.28. Sometimes 

all the threads in a microengine wait for their SRAM accesses 

and thus cause an idle microengine. 

The vertical lines are added over the processing done 
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points of some SRAM accesses in Fig. 28. The small gap between 

two lines means the actual SRAM access time, which is shorter 

than waiting time, and implicates the low SRAM utilization. 

Three methods can be proposed to solve the SRAM bottleneck 

that leads to the low utilization of receiver microengines. 

First is to divide one large SRAM into many smaller modules 

of the same address space. This could shorten the queuing delay 

of requests in the command queue if the requested addresses 

are in different memory modules. Second, we may adopt a new 

memory architecture, for example, RAMBUS DRAM (RDRAM) [17] 

in IQ2000 [18] that has a peak bandwidth of up to 1.6GBps which 

is two to three times of what SRAM supports. However, it may 

need a new interface between the memory and other functional 

units. Third, an additional cache can be used to reduce the 

number of memory accesses because the traffic in the same time 

period usually shows locality either in classification or in 

routing table lookup. 

 

5.3 Simulation Result—Range Matching 

 

 Not shown in Fig. 29 is the utilization of SDRAM and SRAM, 

which are 13% and 35.3%, respectively. The same explanation 

in section 5.1 can be applied to the low utilization of these 

two functional units. However, the two receiver microengines 

are nearly fully utilized in this simulation. Since both SRAM 
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accesses and computing power are critical to the 

classification process, we can identify that the later is a 

performance bottleneck in the Range Matching DiffServ. 

 

ExecutingAborted Stalled Idle

Microengine 0   80.4%  18.9%   0.4% 0.3%
     Rec 10/100, 0   20.1%  4.7%   0.1%
     Rec 10/100, 1   20.1%  4.7%   0.1%
     Rec 10/100, 2   20.1%  4.7%   0.1%
     Rec 10/100, 3   20.1%  4.7%   0.1%
Microengine 1   80.4%  19.2%   0.2% 0.2%
     Rec 10/100, 4   22.7%  5.4%   0.1%
     Rec 10/100, 5   22.7%  5.4%   0.1%
     Rec 10/100, 6   22.7%  5.4%   0.1%
     Rec 10/100, 7   12.3%  3.1%   0.0%
Microengine4   68.3%  27.8%   0.0% 4.0%
     Xmit Sched   23.1%  16.3%   0.0%
     Xmit 10/100, 1   14.1%  3.6%   0.0%
     Xmit 10/100, 2   14.8%  3.8%   0.0%
     Xmit 10/100, 3   16.3%  4.1%   0.0%  

Fig. 29.  Microengine statistics of Range Matching classifier 

 

 Fig. 30 and Fig. 31 confirm our identification. From Fig. 

30 we can see that most of the receiving threads spend all 

their time (not computing power) waiting for the completion 

of SRAM accesses, while the threads of Range Matching do 

utilize their computing power in Fig. 31. 
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Fig. 30.  The execution history of Linear Search in macro view 

 

 

Fig. 31.  The execution history of Range Matching in macro view 

 

5.4 Simulation Result—Execution Coverage 

 

 Fig. 32 and 33 shows the execution coverage of two 

implementations. The X-axis represents the index of the 

Thread executing 
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instruction in Microcode and the Y-axis represents the 

execution times of the instruction. It is very easy to see 

that, when processing the same amount of packets (70 packets 

in our simulation), Linear Search takes three times of 

execution times of Range Matching. The ratio could be larger 

if the number of rules increases. 

 

 

 

 

 

 

Fig. 32.  Execution coverage of Linear Search DiffServ 

 

 

 

 

 

 

Fig. 33.  Execution coverage of Range Matching DiffServ 
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Chapter 6. Conclusions 

 

 In this work, we first explain the need of network 

processors for today’s complex applications, and introduce 

the architecture and packet flow in IXP1200. Then we detail 

the mapping of DiffServ onto IXP1200. There are two most 

important modules in DiffServ, classifier and scheduler, 

which are implemented with Multi-Dimensional Range Matching 

and Deficit Round Robin. Finally we have external and internal 

benchmarks in order to find the bottlenecks in our 

implementation and possible design pitfalls of IXP1200. 

 The external benchmarks have shown that our implementation 
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can support well the PHBs in DiffServ, and 500 flows at the 

input load of 58%. However, from the four-to-one test we see 

that the classifier is the performance bottleneck. The 

internal benchmarks prove this observation and identify that 

SRAM and microengines are the bottlenecks inside the 

classifiers of Linear Search and Range Matching, respectively. 

However, the classifier of Range Matching could still suffer 

from the SRAM bottleneck after the computing power of 

microengines is speeded up because of its heavy memory 

accesses. Together with the SDRAM bottleneck in IP forwarding, 

we can observe that the bottlenecks may shift from one 

functional unit to another depending on the specific service. 

Another interesting thing is shown in simulation that the 

bottleneck of SRAM does not necessarily occur at 100% 

utilization, it could even occur at 55% when the traffic is 

bursty. 

 We also identify the MAC buffer problem and propose three 

solutions to attack the two necessary conditions, slow 

classification and small buffer. We show that the maximum 

classification time is 4550 cycles. Besides, the experiment 

result shows the buffer size is 240 bytes that is different 

from the one in the specification of IXP1200. 

 Table 3 compares Linear Search and Range Matching adopted 

in our system. The time complexity of Range Matching is O(log 

n) when the number of rules is small as the ones in our 

experiment, and O(n) otherwise. The Control Store usage means 
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the number of instructions used to implement the receiver 

thread. The programmer should be aware of the 1K limit of the 

Control Store. 

 

 Time 

Complexity 

Space 

Complexity 

Bottleneck MAC 

buffer 

problem 

Control 

Store 

usage of 

Rx 

Linear 

Search 

)(nO  )(nO  SRAM Yes 980 

Range 

Matching 

S:O(log n) 
M: )(nO  

)( 2nO  microengine

(SRAM) 

Yes 1010 

Table 3.  Comparisons between Linear Search and Range Matching 
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