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橢圓曲線密碼系統之設計與實現 

 

學生 : 徐維均   

指導教授 : 張錫嘉 

電子工程學系電子研究所碩士班 

摘 要       

橢圓曲線密碼系統用來對資料作加密，使得資料在傳輸中不會被竊取。

它主要是根據在有限場中的橢圓曲線上之點的運算，加密與解密都是利用點

的 scalar multiplication。本論文利用 point halving 演算法，來實現橢圓曲線

密碼系統。此實現座落在有限場 GF(2163)上，且利用 normal basis。所使用的

橢圓曲線為 pseudo-random elliptic curve，其輸入之 base point 為λ

-representation，輸入編碼過之 scalar，以為 halve-and-add 演算法所使用。再

利用 add-and-subtract 演算法來進一步減少 1 的個數。所使用的 normal basis

乘法器為序列式乘法器，點之相加則利用 projective coordinates。此架構以

0.18μm 的製程來實現，需 77K 個邏輯閘。根據模擬的結果，throughput 為 

1.76Mb/s。也利用 Xilinx Virtex2 (2V8000) 之 FPGA 作驗證。其頻率為

90Mhz，LUT 數目為 8815. 
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Design and Implementation for Elliptic Curve 
Cryptosystems 

 

Student: Wei-Chun Hsu  

Advisor: Hsie-Chia Chang 

 

Institute of Electronics Engineering 
National Chiao Tung University 

ABSTRACT 

Elliptic Curve Cryptosystems encrypts data so that the opponent 

eavesdropping over the channel can’t get any information.  Its operation is 

mainly based on the point operations on elliptic curve over finite field.  The 

encryption and decryption utilize scalar multiplication.  This thesis 

demonstrates the implementation of Elliptic Curve Cryptosystems using point 

halving.  This implementation uses normal basis over GF(2163).  The chosen 

elliptic curve is pseudo-random elliptic curve and the input base point is in λ

-representation.  The input scalar encoded first for halve-and-add algorithm.  

We further use the add-and-sub algorithm to reduce the amount of 1’s in the 

input scalar.  Serial normal basis multiplier is used while the point addition is in 

projective coordinates.  The architecture is synthesized using 0.18μm 

technology and requires 77K gates.  The throughput is 1.76Mb/s.  Verify the 

implementation with Xilinx Virtex2 (2V8000) FPGA.  The frequency is 90Mhz 

and number of LUTS is 8815. 
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CHAPTER 1 

Introduction 

The objective of cryptography is to enable two people to communicate with each other 

over an insecure channel such that an opponent can’t steal the information.  For private key 

system or symmetric key system, the two people share the same key and this key must be kept 

secret.  Let Alice wants to send information to Bob, which this information is called plaintext.  

Alice uses the predetermined key to encrypt the information and then send it to Bob.  Bob 

receive the resulting ciphertext and use the same key to decrypt the information back.  

Advanced Encryption Standard (AES) and Digital Encryption Standard (DES) are private key 

systems. 

For public key systems or asymmetric key systems, user has two keys one is public key 

and one is private key which is kept secret.  If Alice wants to send a message to Bob, she 

takes Bob’s public key and encrypts the message.  After Bob receive the encrypted data Alice 

sent.  He decrypts the message with his own private key.  There are two advantages for 

public key systems.  One of them is the amount of keys.  Given a group with many users, 

and users communication with each using private key systems.  Then one is required to have 

the same amount of private keys as the amount of users, since private key can only be share by 

two people.  In case of public key systems, the public key is broadcast to everyone.  So 

given a large group users, only two keys need for each user one public and one private.  The 

other advantage is that private key systems need to establish a secure channel first and send the 

private key to the user the other side, so that both sides have the same key.  While a totally 

safe channel is not possible, private key system requires addition mechanism to exchange key.  

The Elliptic Curve Cryptosystems and RSA are public key systems. 
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1.1 Motivation 

As the popularity of Internet and WLAN grows, the demand of information security rises.  

Thus, efficient and secure cryptosystems is of great importance.  The Elliptic Curve 

Cryptosystems, one of the most advanced cryptosystems, is becoming the mainstream security 

system in all kinds of application.  It is a part of the Digital Signature Standard (DSS) 

proposed by the National Institute of Standards and Technology.  The Elliptic Curve 

Cryptosystems is based on the mathematical operations of elliptic curve.  It can achieve high 

security level using shorter key respect to RSA cryptosystems.  As shown bellow[1], the 

163-bit ECC key offers the same level of security as 1024-bit RSA key and AES is compared 

with these two cryptosystems. 

Table 1.1: NIST guidelines for public key sizes for AES 

ECC Key Size 

(Bits) 

RSA Key Size 

(Bits) 

Key Size 

Ratio 

AES Key Size 

(Bits) 

163 1024 1:6  

256 3072 1:12 128 

384 7680 1:20 192 

512 15360 1:30 256 

In order to speed up the Elliptic Curve Cryptosystem, we proposed an efficient hardware 

implement for the elliptic curve cryptosystems.  The proposed architecture utilizes the point 

halving technique to achieve a better performance. 
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1.2 Thesis Organization 

In chapter 2, the mathematical background of finite field, normal basis, polynomial basis, 

and elliptic curves in projective and affine coordinates are introduced.  Chapter 3 shows 

several algorithms for calculating scalar multiplication, which includes double-and-add 

algorithm, halve-and-add algorithm, and add-and-subtract algorithm.  The idea of Elliptic 

Curve Cryptosystems is introduced in Chapter 4.  Chapter 5 contains the implementation 

results of the proposed architecture for Elliptic Curve Cryptosystems and comparisons between 

other implementations are made.  Finally, chapter 6 is the conclusion. 
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CHAPTER 2 

Mathemetical Background 

The Elliptic Curve Cryptosystems utilize elliptic curves over finite field, either binary field 

GF(2n) or prime field GF(p).  In this chapter, I will give the mathematical background related 

to Elliptic Curve Cryptosystems.  I will focus on finite field GF(2n), where two kinds of basis 

in this field and each of their basic arithmetic will be introduced.   

In the second part of the chapter, elliptic curve will be introduced.  Elliptic curve, the 

foundation of Elliptic Curve Cryptosystems, will be specified according to different fields and 

coordinates.  Each different fields and coordinates yields different formulas for the operations 

of points on elliptic curve, while these point operations are the basis operations of Elliptic 

Curve Cryptosystems. 

2.1 Finite Field Arithmetic 

Polynomial Basis 

 For finite field GF(2n), the set of polynomial basis is {αn-1, αn-2, …, α, 1}, where α 

is the root of the field polynomial.  Each element belongs to GF(2n) could be represented as a 

linear combination of the basis.  For instance, let B be an element of GF(2n) with polynomial 

basis: 

1,..., 0
2

1
2

2
1

1 ⋅+⋅⋅+⋅= −
−

−
− bbbbB n

n
n

n ααα  (2.1)

, and we can give a binary notation to this element: 

"..." 0121 bbbbB nn −−=   
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For example, given a GF(28) element  

1246 ++++ αααα   

or  

111101010 234567 ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅ ααααααα   

, its binary representation is “01010111” where each bit match to the coefficient of each 

term. 

The arithmetic for elements over finite field with polynomial basis will be introduced in the 

following paragraph. 

The sum of two elements in the field is simply bitwise exclusive-or of the two elements.  

For example, (α6+α4+α2+α+1) and (α7+α+1) are elements of GF(2n) and in binary 

notation we can find the bitwise exclusive-or of these two numbers: 

“01010111”♁“10000011”=”11010100”  

, which means 

(α6+α4+α2+α+1)+ (α7+α+1) =(α7+α6+α4+α2)  

In the case of multiplication, the two elements are treated as polynomials and multiplied 

first, then module the result by the field polynomial.  An example is shown bellow.  Let 

GF(28) and field polynomial 1)( 348 ++++= αααααf  find (α 6+α 4+α 2+α +1) 

multiply by (α7+α+1): 

1)1)(1( 34568911137246 ++++++++=++++++ αααααααααααααα  
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1
)1mod(1

67

3483456891113

++=

++++++++++++

αα

αααααααααααα   

So the multiplication result is 167 ++αα . 

 Squaring is a special case of multiplication when two inputs are the same.  For example , 

let B=(α7+α+1) be an element of GF(28) and its square 

B2=(α7+α+1)2 =(α14+α2+1)  

(α14+α2+1)mod )1( 348 ++++ αααα  

=(α4+α2+α) 

 

Observing the above example, note that squaring a function has the same result as squaring 

each and every term.  As a result, given a element B=B(α)∈GF(2n) and the field polynomial 

f(α). 

B(α)2=B(α2)mod f(α) (2.2)

 
 

Normal Basis 

 In the normal basis case, the set of the basis is },,...,,{ 222 21

ββββ
−− nn

 over GF(2n) where 

β is the root of the field polynomial.  Each element in the field could be expressed as the 

linear combination of the basis.  Let A be an element of GF(2n) with normal basis: 

ββββ 0
2

1
2

2
2

1 ,,...,
21

aaaaA
nn

nn

−−

−− +=  (2.3)

 Similarly, we can express each element of the field as a binary number “an-1an-2…a1a0”.  

Addition in normal basis is the same as polynomial basis.  It’s still bitwise exclusive-or of the 
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two elements. For example, let (β8+β2) where its binary notation is “1010” and (β4+β2+β) 

“0111” are two elements of GF(24), then 

“1010”♁”0111”=”1101”  

)()() ( 482428 ββββββββ ++=++++   

 In the case of squaring, let A be an elements of GF(2n) equation (2.3): then from equation 

(2.2) 

2
0

2
1

2
2

2
1

2 21

,..., ββββ aaaaA
nn

nn ++=
−

−−  (2.4)

and from Fermat’s little theorem:  

Given β∈GF(2n) 

ββ =
n2  (2.5)

We can derive from equation (2.4) 

ββββ

ββββ

1
2

0
2

1
2

2

2
0

2
1

2
21

2

,,...,

,...,
21

21

−−

−−

+=

++=
−

−

nn

nn

aaaa

aaaaA
n

n

 
(2.6)

In normal basis, squaring operation is simply one bit cyclic shift of the original data.  Let 

A=“an-1an-2…a1a0”∈ GF(2n), A2=“an-2…a1a0 an-1”.  This squaring characteristic gives normal 

basis an advantage over polynomial basis, because the implement of the normal basis squaring 

requires no extra hardware only wiring. 

Next we will derive the multiplication of normal basis.  Suppose A, B are elements in the 

field GF(2n): 
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∑∑
−

=

−

=

==
1

0

2
1

0

2 ,
n

i
i

n

i
i

ii

bBaA ββ  (2.5)

Multiplying A by B is defined as bellow: 

∑∑∑
−

=

−

=

−

=

==×=
1

0

2
1

0

1

0

22
n

i
i

n

i

n

j
ji

iji

cbaBAC βββ  (2.6)

Let the product of multiplying 
i2β  by 

j2β be: 

{ }1,0|
1

0

222 ∈= ∑
−

=

λβλββ
n

k
ijk

kji

 (2.7)

Substitute equation (2.7) into equation (2.6).  We can get: 

10|
1

0

1

0

−≤≤= ∑∑
−

=

−

=

nkbac
n

i

n

j
jiijkk λ  (2.8)

If GF(2n) and the number of the nonzero terms or ijkλ =1 terms in equation (2.8) equals to 

2n-1, then this normal basis is call the optimal normal basis.  Optimal normal basis leads to 

minimum multiplication complexity and thus efficient hardware implement.  There are many 

types of normal basis.  [2] givens a chart of existing normal basis type with different field 

length n of GF(2n). 
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Table 2.1: Normal Basis Table 

n Normal basis type n Normal basis type 
2 1,2 155 2 
3 2 156 13 
4 1 157 10 
5 2 158 2 
6 2 159 22 
7 4 160 - 
8 - 161 6 
9 2 162 1 
10 1 163 4 

    
 

Of all types, only type 1 and type 2 are optimal normal basis. 

According to equation (2.7), we raise both side to the power of 2-l 

( ) ∑∑
−

=

−

=
−−

−−−
−

===
1

0

2
1

0

2
,,

22222
n

k
ijk

n

k
kljli

lkkljli
l

ji

βλβλββββ  (2.9)

Comparing the coefficient of the 
02β term, we will get: 

1,,0|0,, −≤≤∀= −− nljiljliijl λλ  (2.10)

This implies we can find the value of every ijkλ  by means of 0,, kjki −−λ .  And from 

equation (2.8) utilizing equation (2.10): 

10|
1

0

1

0
0,, −≤≤= ∑∑

−

=

−

=
−− nkbac

n

i

n

j
jikjkik λ  (2.10)

, and by changing the subscripts 
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10|
1

0

1

0
0 −≤≤= ∑∑

−

=

−

=
++ nkbac

n

i

n

j
kjkiijk λ  (2.11)

The above the equation shows the property of normal basis multiplication.  By cycle 

shifting the subscripts of the formula for c0, we can obtain other coordinates of the production.  

We need to construct a table of ijkλ  first before performing normal basis multiplication.  For 

type 1 normal basis and GF(2n), if i and j satisfy one of the following congruence then ijkλ =1: 

2i + 2j ≣ 1 mod n+1 

2i + 2j ≣ 0 mod n+1 

(2.12)

Given type 1 normal basis and GF(24), the table of ijkλ  is constructed bellow following to 

the rules above.  Note that only the k=0 column is needed to be evaluated and the rest of the 

columns could be easily derived from this column by utilizing equation (2.10).  For example: 

λ001=λ330=1, λ011=λ300=0, λ021=λ310=1, and so on. 
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Table 2.2: The multiplication table of type 1 normal basis in GF(24) 

  k 
i j 0 1 2 3
0 0 0 1 0 0
0 1 0 0 0 1
0 2 1 1 1 1
0 3 0 0 1 0
1 0 0 0 0 1
1 1 0 0 1 0
1 2 1 0 0 0
1 3 1 1 1 1
2 0 1 1 1 1
2 1 1 0 0 0
2 2 0 0 0 1
2 3 0 1 0 0
3 0 0 0 1 0
3 1 1 1 1 1
3 2 0 1 0 0
3 3 1 0 0 0

Now we can write the product of the type 1 normal basis multiplication in GF(24) from the 

above table. 

331312023121200 bababababababac ++++++=   

Since type 1 normal basis is optimal normal basis, the number of terms in above equation 

equals to 2*4-1=7. 

And from equation (2.11) 

kkkkkkkkkkkkkkk bababababababac ++++++++++++ ++++++= 331312231212   
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The formula of other coordinates can be derived by cyclic shifting the subscripts of the c0 

formula: 

002023130232311 bababababababac ++++++=  

113130201303022 bababababababac ++++++=  

220201312010133 bababababababac ++++++=  

 

As for other types of normal basis, [2] provides an efficient algorithm for evaluating the 

multiplication product the normal basis.  Where the type of normal basis and the field length 

n of finite field GF(2n) is given as the input data of the algorithm. 

2.2 Elliptic Curve 

 A non-singular elliptic curve over real numbers is described by the following equation: 

y2=x3+ax+b (2.13)

Where a, b are real numbers such that 

0274 23 ≠+ ba  (2.14)

The elliptic curve is singular, if equation (2.14) fails[3].  The following diagram shows an 

example of an elliptic curve where a=b=1.  Note that the diagram is symmetric with respect 

to x-axis. 



 13

 

Figure 2.1: the elliptic curve y2=x3+x+1 

For finite field GF(p), the elliptic curve satisfies the congruence, where a, b∈GF(p): 

y2≡x3+ax2+b(mod p) (2.15)

For finite field GF(2n), the elliptic curve is in a slightly different form as shown below, 

where a, b∈GF(2n): 

y2+xy=x3+ax2+b (2.16)

An abelian group can be defined on the set E of solutions (x, y) to the elliptic curve 

equation plus a point O at infinity.  Now consider the addition law of elliptic curve: 

Given two points P and Q on elliptic curve E, consider the result of P+Q.  First, we 

define L to be the line through P and Q.  The L intersects E at point R’, then we reflect R’ in 
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the x-axis to get R.  We define R to be the result of P+Q, that is, P+Q=R.  An example is 

given below: 

 

Figure 2.2: Point addition, P+Q=R 

Now consider the situation when P=Q, namely, consider the result of 2P.  Since P=Q, 

line L now become a tangent line passing through P.  Similarly, the line L intersects E at point 

R’, then we reflect the x-axis to obtain the result R.  The following diagram shows this 

condition: 

 

Figure 2.3: Point doubling, 2P=R 

The point at infinity O is considered as the identity element: 
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P+O=O+P=P (2.17)

 We consider the case when Q is the reflection of P in the x-axis.  So if we draw a line L 

through P and Q, then line L will be an vertical through P and intersect E at infinity O and we 

can get P+Q=O.  Since O is the identity element, we can consider that Q as the negative of P, 

that is Q=-P.  We can conclude that the negative point of a given point is the reflection of the 

point in the x-axis. 

 

Figure 2.4: Negative Point, P+(-P)=O  

Given a point P∈E over finite field, then E is a finite abelian group.  We can find an 

integer r such that rP=
r

PPP +++ ... =O.  The integer r is called the order of point P. 

Next, I will derive the addition and doubling formula for points on elliptic curve according 

to the addition law mentioned above.  Moreover, a different kind of representation called the 

projective coordinates representation will be introduced. 

Affine Coordinates Representation 

Affine coordinate representation is respect to projective coordinates representation.  

Given an elliptic curve E: y2=x3+ax+b, let’s derive the negative of a point first.  Let P=(x1, 
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y1), the negative of P is simply the corresponding point of the reflected P in the x-axis which is 

(x1, -y1). 

-(x1, y1)=(x1, -y1) (2.18)

We next derive the formula for point addition P+Q=R.  Let P, Q∈E, where P=(x1, y1), 

Q=(x2, y2), R=(x3, y3) and L is the line passing through P and Q represented as 

νλ += xy  (2.19)

, where the slope of L is: 

12

12

xx
yy

−
−

=λ  (2.20)

, and 

2211 xyxy λλν −=−=  (2.21)

L will intersects E at point R’.  Substitute equation (2.19) into the equation for E to find 

the solution of the coordinates, we can get 

baxxx ++=+ 32)( νλ  (2.22)

, we can derive from above 

0)2( 2223 =−+−+− νλνλ bxaxx  (2.23)

We have to solve equation (2.23) for the x-coordinates.  Since x1 and x2 are two roots of 

equation (2.23), the sum of the three roots will equal to 
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2
321 λ=++ xxx   

21
2

3 xxx −−= λ  (2.24)

Since R’ equals to (x3, -y3).  We can derive 

13

13

xx
yy

−
−−

=λ  (2.25)

, or 

1313 )( yxxy −−= λ  (2.26)

For the case when doubling a point, we have to find the slope of the tangent line L to point 

P=(x1, y1).  Let 2P=(x3, y3), using the implicit differentiation of the equation of E 

ax
dx
dyy += 232  (2.27)

So the slope of the tangent line L with equation (2.22) to point P is 

1

2
1

2
3

y
ax +

=λ  
(2.28)

and 

11 xy λν −=  (2.29)

The line will intersects with E at R’=(x3, -y3) and substitute the line equation into E.  

Regarding equation (2.23), the cubic equation has two roots at x1, and one root at x3. So x3 

equals: 
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1
2

3 2xx −= λ  (2.30)

With the same procedure, we can find y3 by equation (2.26). 

Finally, the formula for point addition and point doubling can be summarized as bellow.  

Suppose P=(x1, y1), Q=(x2, y2), P+Q=(x3, y3), elliptic curve with equation (2.13) or (2.15), 

then the formula of point addition: 

12

12

xx
yy

−
−

=λ  

21
2

3 xxx −−= λ  

1313 )( yxxy −−= λ  

(2.31)

Let P=(x1, y1), 2Q=(x3, y3), the formula of point doubling  

1

2
1

2
3

y
ax +

=λ  

1
2

3 2xx −= λ  

1313 )( yxxy −−= λ  

(2.32)

 

When used over finite field GF(2n), the elliptic curve is in the form (2.16).  We can derive 

the formulas for point addition and point addition over finite field GF(2n) in a similar method.  

As in the previous context, we will derive the negation of a point first.  Given a point P=(x1, 

y1), we try to find the representation of –P=(x2, y2). As mentioned above that P+-P=O, we 

draw a vertical line L through P and the line will intersect E at point –P.  The equation of this 

line L is simply 
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x+x1=0 (2.33)

, which implies that x2+x1=0 and the x-coordinate of –P is x1.  Substitute equation (2.33) 

into equation (2.16) in order to find the solution of the y-coordinate of –P.  We will get: 

y2+x1y=x1
3+ax1

2+b (2.34)

This square equation has two solutions and one of them is y1.  The sum of the two 

solutions will equal to the coefficient of the term y.  As the result, 

y1+y2=x1  

, or 

y2=x1 +y1 (2.35)

So for P=(x1, y1), the negation of P over finite field GF(2n) 

-(x1, y1)=(x1, x1+y1) (2.36)

Again, let P, Q∈E, where P=(x1, y1), Q=(x2, y2), P+Q=R=(x3, y3) and L is the line passing 

through P and Q.  L has the equation (2.19), where 

12

12

xx
yy

+
+

=λ  (2.25)

and 

2211 xyxy λλν +=+=  (2.26)

Substitute the equation of L (2.19) into the elliptic curve equation (2.16) 
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baxxxxx ++=+++ 232 )()( νλνλ  (2.27)

, it is the same as 

0)( 223 =+++++ bxxax νλλ  (2.28)

x1 and x2 are two solutions of the cubic equation, we can find x3 from the coefficient of x2 

term 

axxx ++++= 21
2

3 λλ  (2.29)

Then same as before, we use R’=(x3, x3+y3) and P=(x1, y1) to compute the slope 

13

133

xx
yyx

+
++

=λ  (2.30)

Derived from above, 

13133 )( yxxxy +++= λ  (2.31)

Let’s move on to the formulas of doubling a point over GF(2n), using the implicit 

differentiation of the elliptic curve equation (2.16): 

axx
dx
dyxy

dx
dyy 232 2 +=++  (2.32)

Applying the property of GF(2n), the equation is reduced to: 

2x
dx
dyxy =+  (2.33)

Note that if not the xy term in the elliptic curve equation (2.16), the implicit differentiation 

would be meaningless.  This gives one reason why the elliptic curve equation is slightly 
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differently over finite field GF(2n).  Let P=(x1, y1), 2P=(x3, y3) and line L is the tangent line 

to P described by equation (2.19). The slope of the tangent line L would be: 

1

1
1 x

yx +=λ  (2.34)

while 

11 xy λν +=  (2.35)

Following the same procedure, x1 is the two roots of equation (2.29), x3 is the other.  So, 

axx ++=+ λλ2
312   

which 2x1 =0 over finite field GF(2n) 

ax ++= λλ2
3  (2.36)

Finally, y3 is the same as shown in equation (2.31) 

The formulas for point addition and point doubling over finite field GF(2n) are given 

bellow: 

Let P=(x1, y1), Q=(x2, y2), P+Q=(x3, y3), elliptic curve with equation (2.16), then the point 

addition formula: 

12

12

xx
yy

+
+

=λ  

axxx ++++= 21
2

3 λλ  

13133 )( yxxxy +++= λ  

(2.37)
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And the formula of point doubling, where P=(x1, y1), 2P=(x3, y3) 

1

1
1 x

yx +=λ  

ax ++= λλ2
3  

13133 )( yxxxy +++= λ  

(2.38)

 

Projective Coordinates Representation 

Finite field GF(2n) inversion is relatively expensive.  If inversion could be avoided while 

performing point addition or point doubling, then the performance of the elliptic curve 

cryptosystems would be improved.  This is done by using projective coordinates. 

 Points with projective coordinates have three coordinates, for example, a projective point 

P=(X, Y, Z).  An affine point (x, y) corresponds to the projective coordinate point (x, y, 1), 

while a projective point (X, Y, Z) could be converted into an affine point (X/Z, Y/Z2).  

Replacing x= X/Z, y= Y/Z2 into equation (2.4), the resulting projective elliptic curve equation 

would be: 

42232 bZZaXZXXYZY ++=+  (2.39)

The formulas for adding and doubling points on elliptic will be presented here.  Let P=(X1, 

Y1, Z1) , Q=(X2, Y2, Z2), and P+Q=R(X3, Y3, Z3) are points with projective coordinates, then the 

formula for adding points is [4]: 
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(2.40)

When Z2=1, the formula becomes 

,
),(

,
,

,

2
1

2
1

112

1
2
12

CAE
aZCBD

BZC
XZXB

YZYA

⋅=
+⋅=

⋅=
+⋅=
+⋅=
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ZXXF
EDAX
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++=
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(2.41)

Suppose P=(X1, Y1, Z1), 2P=Q= (X2, Y2, Z2), the doubling formula is: 

).(
,

,

4
1

2
1222

4
12

4
1

4
12

2
1

2
12

bZYaZXZbZY
ZbXX

XZZ

++⋅+⋅=

⋅+=

⋅=

 

(2.42)

Comparing with affine coordinates, projective coordinates doubling and adding requires 

more multiplications but no inversion.  The performance analysis with affine coordinates 

doubling and adding is given below: 

 
 
 
 
 
 
 
 
 



 24

Table 2.3: The number of required operations for point doubling 

Operations Affine coordinates Projective coordinates 

Multiplication 2 4 

Squaring 1 5 

Inversion 1 0 

Table 2.4: The number of required operations for point addition 

Operations Affine coordinates Projective coordinates 

Multiplication 2 13 

Squaring 1 6 

Inversion 1 0 

Table 2.5: The number of required operations for point addition when Q= (X2, Y2, 1) 

Operations Affine coordinates Projective coordinates 

Multiplication 2 8 

Squaring 1 5 

Inversion 1 0 

The performance comparison between the two coordinates is determined by the 

computational complexity of the finite field inversion in affine coordinates.  For example, 

given the table 2.3 condition and neglecting the squaring operation, the affine coordinates will 

outperform projective coordinates if the computational complexity of the inversion is less than 

6 multiplications. 
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CHAPTER 3 

Scalar Multiplication Algorithms 

Scalar multiplication, given a point P on elliptic curve and a scalar k find kP, is the mainly 

the Elliptic Curve Cryptosystems all about.  In order to compute scalar multiplication 

efficiently, many algorithms are proposal.  The basic one is the double-and-add algorithm and 

halve-and-add algorithm gives an efficiently way to compute scalar multiplication by acquiring 

point halving.  These two algorithms will be introduced in this chapter.  Besides, we can 

apply add-and-subtract algorithm to these two algorithms to achieve a better performance. 

3.1 Double-and-Add Algorithm 

 The double-and-add algorithm is the basic algorithm for calculating scalar multiplication. 

This algorithm is composed of point doubling and point addition.  Given GF(2n) a base point 

P and a scalar k, the double-and-add algorithm is: 

}
PQQ      

 then1b if   
Q2Q   

{
0 down to 1-n from ifor 

}1,0{   ,2

i

1

0

+=
=

=

=

∈= ∑ −

=

OQ

bbk n

i i
i

i

 

(3.1)
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For example, given P and a scalar k=10=”1010”: 

k=  “1 0 1 0” 

Q= O P 2P 4P+P=5P 10P 

The formulas required for adding points and doubling points in the algorithms is explained 

in chapter 2. 

3.2 Halve-and-Add Algorithm 

 The halve-and-add algorithm[5] is similar to double-and-add algorithm but the point 

doubling step is replaced by point halving.  Next, the procedure of point halving is given. 

Point Halving 

For P=(x1, y1), 2P=(x3, y3), the formula of point doubling is given in equation (2.38) which 

is the same as: 

1

1
1 x

yx +=λ  

ax ++= λλ2
3  

)1(3
2

13 ++= λxxy �  

(3.2)

Point halving is the reverse of point doubling.  Given an input point 2P=(x3, y3) find 

P=(x1, y1).  In order to compute x1, and y1, first we have to solve λ from: 

3
2 xa +=+ λλ  (3.3)

Where this square equation has two solutionsλandλ+1. 
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Solve 

)1(33
2

1
++= λxyx �  (3.4)

for x1.  And finally, calculate y1: 

)( 111 λ+= xxy  (3.5)

The idea of trace plays an important role in deriving the algorithm for point having.  Let 

c∈GF(2n), trace is defined as: 

12 222 ...)(
−

++++=
n

cccccTr  (3.6)

The trace of an element in finite field is either 0 or 1.  Following are some properties of 

trace: let c,d∈GF(2n), 

22 )()()( cTrcTrcTr ==  (3.7)

Trace is linear: 

)()()( dTrcTrdcTr +=+  (3.8)

My implement uses pseudo-random curve over GF(2163) which has the form 

bxxxyyE ++=+ 232:  (3.9)

The coefficient a in equation (2.16) is always equal to 1.  So: 

Tr(a)=1 (3.10)

If (x, y) is a point on elliptic curve (3.9), then: 
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Tr(x)=Tr(a) (3.11)

The following theorem finds the correct solution of equation (3.3) while halving a point: 

Let P=(x1, y1) and 2P=(x3, y3).  

Let λ̂  be a solution to (3.3) and λ̂33 xyt += . 

Suppose that Tr(a)=1. Then λ̂  is the correct solution if and only if 

Tr(t)=0 

(3.12)

We will prove the theorem.  If λ̂  is a correct solution then it will satisfy equation (4.4), 

that is, 

)1ˆ(33
2

1
++= λxyx �  (3.13)

From equation (4.10) and equation (4.11) 

Tr( )1ˆ(33 ++ λxy )=Tr(x1
2)=Tr(x1)=Tr(a)=1 (3.14)

and 

Tr( )1ˆ(33 ++ λxy )= 1)()()ˆ())ˆ(( 333333 +=++=++ tTrxTrxyTrxxyTr λλ  (3.15)

Finally, we can get 

11)( =+tTr , 

Tr(t)=0 
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Else if λ̂  is not a correct solution then the correct solution must be λ̂ +1.  Now λ̂ +1 

will satisfy equation (3.4), substitute λ̂ +1 into equation (3.4) 

)ˆ()11ˆ( 3333
2

1
λλ xyxyx � +=+++=  (3.16)

Similarly, 

Tr(t)=Tr( )ˆ(33 λxy + )=Tr(x1
2)=Tr(x1)=Tr(a)=1 (3.17)

That is, if Tr(t)=1 then the correct solution is λ̂ +1. 

Let the λ-representation of a point 2P=(x3, y3) be (x3, λ3), where λ3=x3+y3/x3.  Let 

the λ-representation of 2P as the input to point halving, then t in equation (3.12) can be 

computed directly from this λ-representation 

λλλλλ ˆ)ˆ()ˆ()ˆ( 33
3

3
3

3

3
333333 xy

x
y

x
x
y

xxxxxt +=+=+++=++=  (3.18)

If Tr(t)=0, λ̂  is the correct answer, from equation (3.13) 

31

3333
2

1
ˆ

xtx

xtxxyx �

+=

+=++= λ
 

(3.19)

If Tr(t)=1, λ̂+1 is the right solution, from equation (3.16) 

tx

txyx �

=

=+=

1

33
2

1
λ̂

 
(3.20)

Next is the full algorithm of point halving.  The input of the algorithm is λ

-representation 2P=(x3,λ3).  The output is the λ-representation of P=(x1,λ1) 
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1. Find a solution λ̂  of 3
2 xa +=+ λλ  

2. Compute )ˆ( 333 λλ ++= xxt  

3. If Tr(t)=0, then λ1= λ̂ , 31 xtx +=  

else λ1= λ̂ +1, tx =1  

(3.21)

Point halving requires a multiplication and three major operations: 

Solving 3
2 xa +=+ λλ  

Computing the trace of t 

Calculating a square root t  or 3xt +  

 

Normal basis is of the form },,...,,{ 222 21

ββββ
−− nn

.  Let c be an element in field GF(2n).  

By equation (2.3): 

ββββ 0
2

1
2

2
2

1 ,...,
21

ccccc
nn

nn ++=
−−

−−  (3.22)

The trace of c is 

0121 ,..., ccccc nn ++++= −−  (3.23)

The square root equals a cyclic shift right one bit, an inverse of squaring. 

ββββ 1
2

2
2

1
2

0 ,...,
21

ccccc
nn

n ++=
−−

−  (3.24)

Solving the Second Degree Equation 
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Now deal with the solutions of the second degree equation in (3.21).  Let c equation 

(3.22), there are two ways to solve a second degree equation as given bellow. 

c=+ λλ2  (3.25)

Let 

βλβλβλβλλ 0
2

1
2

2
2

1 ,...,
21

++=
−−

−−

nn

nn  (3.26)

A solution is given by: 

,00 =λ  ∑
=

=
i

k
ki c

1
λ  for all 11 −≤≤ ni  (3.27)

These operations are expected to be inexpensive relative to normal basis multiplication.  

Or we can solve equation (3.25) by half-trace 

142 222 ...)(
−

+++=
n

cccccH  (3.28)

Substitute equation (3.28) into (3.25) and from equation (2.2) (2.5) 

cctrccccc

cccccccccHcH
nn

nn

+=+++++=

++++++++=+
−

−

)(...

)...()...()()(
2232

22222222

1

14253

 
(3.29)

Utilizing the above equation, we can prove that H( 3xa + ) is a root of equation (3.3).  

Since 

011)()()( 33 =+=+=+ xtratrxatr  (3.30)

As the result, 
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3333
2

3 )()()( xaxaxatrxaHxaH +=+++=+++  (3.31)

Compare the operations of point halving and point doubling in affine and projective 

coordinates. 

Table 3.1: Comparison between halving and doubling in affine and projective coordinates 

Operations Affine coordinates Projective coordinates Halving 

Multiplication 2 4 1 

Squaring 1 5 0 

Inversion 1 0 0 

Solving Second 
Degree Equation 

0 0 1 

Square Root 0 0 1 

Check 0 0 1 

If computation time of 1 second degree equation solving + 1 square root + 1 check is less than 

3 multiplications + 5 squaring, then halving a better performance than point doubling in 

projective coordinates. 

Halve-and-Add Algorithm 

Now we have gone through point halving.  We want to employ it into scalar 

multiplication.  Let GF(2n), given a point P on elliptic curve of odd odder r and a scalar k.  

In order to compute kP, we will prove that[6]: 

For every scalar k, we can find k’ such that 

)(mod
2

1

0
i-1-n

'

rkk
n

i

i∑
−

=

≡  

(3.32)

We will prove this by first calculating 2n-1 multiplied by k modulo r. 
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}1,0{   2)(mod2 '
1

0

'1 ∈= ∑
−

=

−
i

n

i

i
i

n kkrk  (3.33)

Divide both side by 2n-1 gives the result: 

}1,0{   
2

)(mod '
1

0
i-1-n

'

∈= ∑
−

=
i

n

i

i kkrk  3.34)

Next is a left-to-right version of the halve-and-add algorithm, where k is converted to k’ by 

equation (3.33) first.  Given GF(2n), the input is k’ and P while the output is kP. 

}
P/2P   

PQQ      
 then1k if   

{
0 down to 1-n from ifor 

}1,0{   ,2)(mod2

'
i

1

0
''1

=
+=

=

=

∈= ∑ −

=
−

OQ

kkrk n

i i
i

i
n

 

(3.35)

P is in λ-representation (xP, λP) and must transformed into affine representation (xP, yP) 

before added to Q.  Q could have projective coordinates and Q+P is done by (2.41). 

For example, let GF(24) and r=11=”1011”. Given P and a scalar k=10, compute kP.  

First we will convert k using equation (3.33): 

"0011"3)11(mod80)11(mod1023' ===⋅=k   

One is required to compute the value of P/2(mod11) in this example.  We have 2-1(mod11)=6, 

since 6*2(mod11)=12(mod11)=1.  Given any integer x, x/2(mod11)=x*6(mod11).  From 

(3.35) 
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k'=  “0 0 1 1” 

P=  P P/2=6P 6P/2=3P 14P/2=7P 

Q= O O O O+3P=3P 3P+7P=10P 

The result is the same as the one computed from (3.1). 

Another version of the halve-and-add algorithm is a right-to-left method.  Point halving 

occurs on the accumulator Q, hence the projective coordinates is not usable. 

}
PQQ      

 then1k if   

Q/2Q   
{

0 down to 1-n from ifor 

}1,0{   ,2)(mod2

'
i

1

0
''1

+=
=

=

=

∈= ∑ −

=
−

OQ

kkrk n

i i
i

i
n

 

(3.36)

Use the same condition GF(24) and r=11=”1011”. Given P and a scalar k=10, that is, 

k’=”0011”.  Start from right to left 

k'= “0 0 1 1”   

 9P/2=10P  7P/2=9P P/2+P=6P+P=7P O+P=P  O =Q

And the final answer is 10P.  Unlike algorithm (3.35), here only requires one register for Q. 

3.3 Add-and-Subtract Algorithm 
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We can further encode the scalar k or k’ of the halve-and-add algorithm when computing 

kP to reduce the Hamming weight of k or k’, hence reduce the amount of point additions.  

Since point addition is more expensive than point doubling or halving, the performance of 

scalar multiplication is improved.  Add-and-subtract algorithm [2] eliminates the situation of 

continuous 1’s by combinations of additions and subtractions.  Given an n-bit scalar k 

∑
=

=
n

i

i
iek

0
2   }1,0,1{−∈ie  (3.37)

Using add-and-subtract algorithm, we find m: 

Let 0121 ... kkkk nn −−  be the binary representation of k, 

Let 011... hhhh nn −  be the sum of 0121 ... kkkk nn −− + 121 ...kkk nn −−  

Let 011... gggg nn −  equals to 121 ...00 kkk nn −−  

for i from 0 to n 

{ 

if hi=1 and gi=0, then ei=1 

else if hi=0 and gi=1, then ei=-1 

else ei=0 

} 

(3.38)
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Take k=29=”11101” for example. h=”11101”+”1110”=”101011” 

h= “1 0 1 0 1 1” 

g= “0 0 1 1 1 0” 

e= “1 0 0 -1 0 1” 

It’s easy to verify that: 

29143212121 25 =+−=+⋅−⋅=k   

Combine add-and-subtract algorithm with (3.35): 

}
P/2P   

P-QQ      
 then1e if else   

PQQ      
 then1e if   

{
0 down ton  from ifor 

}1,0,1{   ,2                     

}1,0{   ,2)(mod2
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(3.39)

-P is given by (2.36).  Combining add-and-subtract algorithm with (3.1) or (3.36) will do too. 
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CHAPTER 4 

Implementation Results and Comparisons 

My implementation uses pseudo-random curve of the form in normal basis over GF(2163) 

bxxxyy ++=+ 232  (4.1) 

The normal basis is of type 4 which is not optimal normal basis.  The base point P=(Px, Py) 

ββββ 0
2

1
2

161
2

162 ,,...,
161162

xxxxPx +=  (4.2) 

ββββ 0
2

1
2

161
2

162 ,,...,
161162

yyyyPy +=  (4.3) 

Express Px and Py as 163bit numbers 01161162 ,..., xxxx  and 01161162 ,..., yyyy .  Their value in 

hexadecimal equals 

Px=0_bb95_2eb0_8fc0_b1c8_699f_739a_9357_3474_1e04_4460 (4.4) 

Py= 7_f185_6ef0_98cf_adc8_077e_e437_33a7_f113_1e41_ae66 (4.5) 

If P is in λ-representation, then 

Pλ= 3_e6c0_a681_341a_b0a3_6cc5_c338_7bff_ea7e_014f_a6a3 (4.6) 

The value of coefficient b in equation (4.1) is 

b= 6_fcde_3c9e_f967_437b_e459_b1ce_438e_3479_a9e7_d133 (4.7) 

The base point P has order r.  r is a large prime number with value in decimal 



 38

r=5846006549323611672814742442876390689256843201587 (4.8) 

The number of points on elliptic curve is 2r. 

The fundamental element of the entire circuits is the GF(2163) normal basis serial multiplier.  

Let the inputs equal (2.5) and output equals (2.6).  Using the algorithm in [2], derive the 

product. 

...)()( 14511192117211713213010 ++++++++= bbbbabbbbac  (4.9) 

The formulas for other coordinates can be derived from above: 

...)()( 14611293118311813314121 ++++++++= bbbbabbbbac   

...)()( 14711394119411913415232 ++++++++= bbbbabbbbac   

 
 

We can implement this using three register to store input A, B, and output C.  Implement 

equation (4.9) and cyclic shift these three register by one bit at each cycle.  The product is 

generated bit by bit.  The circuit diagram is given bellow: 
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Figure 4.1: Normal Basis Multiplier version 1 

The combinational circuit of the input of c0 is concealed.  Only the idea of connection is 

given.  The latency of this multiplier is 163 cycles and c0 has a larger fain-in.  We can 

modify the above multiplier by adding one term at one cycle[9].  For example: 

)( 117132130112 bbbbacc ++++=   

)( 14711394119423 bbbbacc ++++=   

  

The following is the multiplication cell for adding one term at each cycle: 
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Figure 4.2: Multiplier element of ck 

Modify the original multiplier we’ll get: 

 

Figure 4.3: Normal basis multiplier version 2 
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This is a conceptual diagram showing the difference of wiring.  The fan-in of the output 

register is reduced.  Another benefit of this multiplier is that we could set the register of C to a 

value say D at beginning.  Then the final output will equal A*B+D equivalent to the effect of 

a MAC, multiplication-and-accumulator. 

The solution of the second degree equation is given by equation (3.27).  This can be easily 

implemented using a one bit register and an exclusive-or.  Since the solution is given out 

serially, we can modify the above multiplier by adding each ai term of the product at each 

cycle.  For example, 

( )
( )9211714511121

13201171310

bbbbacc
bbbbacc
++++=

++++=
  

  

Use similar cells in Figure 4.2, the new normal basis multiplier is 

 

Figure 4.4 serial input normal basis multiplier 

Combine the solution circuit with the serial input normal results an efficient implementation 

for point halving. 
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The input of point halving is in λ-representation.  For the implementation of point 

halving, a normal basis multiplier is used.  The second degree equation is solved by half-trace 

as given by equation (3.31).  Trace t is given by exclusive-or every bit of t.  Since only one 

multiplier is required, the over all latency is 163 cycles.  The architecture of point halving is 

given bellow.  Let 2P=(x3, λ3), the output is P=(x1, λ1) 

 

Figure 4.5: Circuit for point halving 

The procedure of point halving is: 
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Figure 4.6: Point halving flow 

The coefficient a of pseudo-random is always equal to one.  One or the multiplication identity 

in normal basis is a number where every bit of it is 1. The right hand side of equation (3.3) 

equals: 

333 1 xxxa =+=+   

That is, exclusive-or each bit of x3 with 1 is the same as inverting each bit. 

In order to implement scalar multiplication efficiently, algorithm (3.39) is chosen. Since 

the point addition in projective coordinates requires no inversion, we let the accumulator Q of 

(3.39) in projective coordinates.  The point addition Q+P or Q-P has Q in projective 

coordinates and P in λ-representation P=(X1,λ1).  From (3.5) we modify formula (2.41) as: 
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(4.10)

My implementation of (2.41) contains three multipliers.  Due to the data dependency, the 

data calculated at each multiplication is arranged as follow with minimum latency.  The data 

dependency is indicated. 

Table 4.1: The data flow of mix-coordinates addition (5.10) 

 

As we can see from the above table, the timing of this mix-coordinates addition equals to 4 

multiplications which is 4*163 cycles. 

The following is the circuit diagram of the mix-coordinates addition.  The multiplier in 

the diagram has three inputs where two are from multiplication and one for accumulation.  

The neg signal is for adding –P to Q.  The ini signal indicates the initial condition when 

O+P=P.  That is, X3=X2, Y3=Y2 or X2+Y2, and Z3=1 
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Figure 4.7: Circuit for mix-coordinates addition 

My proposed design is a scalar multiplication circuit based on algorithm (3.39).  It is 

composed of the point halving circuit and the point adding circuit plus some control signals.  

The inputs are k’ which is derived from k as shown in (3.33) and base point P.  The output is 

kP.  k' is first encoded into e as in (3.39).  From (3.38), the implementation of the encoding 

logic uses two shift register to store g and h.  The shift registers shift one bit every one point 

halving complete.  We observe the msb of the g and h registers to decide whether the input to 

the point addition circuits is P or -P.  Since there are separate registers for the accumulator Q 

and P, the halving circuit and adding circuits can process at the same time.  This makes 

computation more efficient.  When ei is nonzero or the MSB of the g and h registers are 
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different, the halving circuit must hold its output until the adding circuit reads the result.  The 

point addition circuit adds P or –P to the accumulator when ei is 1 or -1.  The control flow of 

the whole circuit is: 

 

Figure 4.8: The control of point halving and projective addition 

 The synthesized result is given bellow.  The cycle time is set to 5ns and the synthesis 

standard library is 0.18μm technology. 
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Table 4.2: The synthesized results 

Circuits Gate Counts 

Multiplier 6961 

Halving 14321 

Addition 45723 

Scalar multiplication 77100 

The average latency of scalar multiplication is about 37000 cycles and frequent 200Mhz.  So 

the throughput is 2*163*200Mhz/37000=1.76Mbit/s 

 The verification is given by an integrated FPGA system called iProve.  This system 

allows displaying the outputs from FPGA on ModelSim directly.  The FPGA chip is Xilinx 

Virtex2: XC2V8000.  The synthesis frequency is set to 90Mhz and the total LUTs is 8815. 

The table bellow lists a comparison of the Elliptic Curve Cryptosystems implementation.  

We can see that our design has about the same throughput as [12] while the area is smaller. 
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Table 4.3: The performance comparison of Elliptic Curve Cryptosystems 

implementations on ASIC 

Authors Huang [10] Okada [11] Bai [12] Daneshbeh [13] Sozzani [14] Proposed

Technology 0.35μm 0.25μm 0.18μm 0.18μm 0.13μm 0.18μm

Field GF(2251) GF(2163) GF(2233) GF(2163) GF(2163) GF(2163)

Gate counts 56K 165K 120K 74K ? 77K 

Clock rate 100Mhz 66Mhz 100Mhz 700Mhz 400Mhz 200Mhz

Latency for 
kP 

(cycles) 

? ? ? 212,552 11,320 37,000 

Processor Y Y N Y Y N 

Algorithm 
for kP 

Montgomery 
(affine) 

? 
Montgomer

y 

Double 
-and 

-Add (serial) 

Montgomery 
(parallel) 

Halve 
-and- 
Add 

Basis Poly Poly Poly Poly Poly Normal 

Throughput 91Kb/s 501Kb/s 1.86Mb/s 1.1Mb/s 12Mb/s 1.76Mb/s

Table 4.4: The performance comparison of Elliptic Curve Cryptosystems 

implementations on FPGA 

Authors 
Orlando & 
Paar[15] 

Gura[16] Lutz[17] Proposed 

Platform 
Xilinx 

XCV400E 
Xilinx 

XCV2000E
Xilinx 

XCV2000E 
Xilinx 

XC2V8000 
Technology 0.18μm 0.18μm 0.18μm 0.15/0.12μm 

Field 2167 2163 2163 2163 
LUTs 3002 19508 10017 8815 
FFs 1769 6442 1930 N/A 

Processor Y Y Y N 
Clock rate 76Mhz 66Mhz 66Mhz 90Mhz 

Algorithm for kP Montgomery Montgomery τ-NAF Halve-and-Add
Basis Poly Poly Poly Normal 

Throughput 1.5Mb/s 2.2Mb/s 4.3Mb/s 792kb/s 
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CHAPTER 5 

Conclusion 

In this paper, an implementation of Elliptic Curve Cryptosystems is shown.  The 

architecture uses point halving to reduce the computation complexity.  Point halving only 

requires one multiplier and some addition circuits.  We can replace double-and-add algorithm 

by halve-and-add algorithms. 

 The normal basis multiplier in the implementation is a serial multiplier.  The projective 

addition circuit contains three multiplier and the timing equals to 4 times the timing of a 

multiplier and no inversion over finite field is required.  The input is encoded as for the use of 

halve-and-add.  We can further reduce the Hamming weight of the input, using 

add-and-subtract algorithm.  The halving circuit and projective addition circuit can work in 

parallel under certain condition when the data have no dependency. 

The implementation is synthesized using synthesis library of 0.18μm technology.  We 

use Xilinx Virtex2 (XC2V8000) to verify the implementation. 
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APPENDIX 

Elliptic Curve Cryptosystems 

In elliptic curve cryptosystems, we need to map a message onto a point on an elliptic curve.  

Then elliptic curve cryptosystems operate on that point to yield a new point that serves as the 

ciphertext.  The idea of the mapping method is the following.  Let equation (2.15) be the 

elliptic curve.  The message m will be assign as the x-coordinates of a point first.  However, 

there is only 1/2 chance that there exist a solution y such that 

)(mod32 pbamxy ++≡  (a.1) 

Therefore, we append a few bits at the end of m, and try every pattern of these bits until there is 

a solution for equation (a.1).  Namely, let K be a large integer so that when trying to map a 

message as a point on elliptic curve the failure rate of 1/2K is low.  Suppose that 

(m+1)K<p (a.2) 

Represent the message m as 

x=mK+j, where 0≤ j<K (a.3) 

For j=0, 1, …, K-1, try to a solution y from (a.1).  If a solution y exists, then message m is 

mapped to Pm=(x, y) and we can stop trying.  Otherwise, increase j by one and use this new x 

to find a solution again.  If we can’t found any solution for j=0 to K-1, then we failed to map 

message m to a point.  Maybe we should pick a larger integer for K and start all over again.  

Since for each j, the probability of finding a solution is 1/2, we have 1/2K chance of failure.  

Finally, the encoded message can be recovered from the point Pm=(x, y) by 
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⎣ ⎦Kxm /=  (a.4) 

For example, let message m=5, p=179 and elliptic curve be 7232 ++= xxy .  Pick K=10, 

so the failure rate is 1/210, which is acceptable.  x=mK+j=50+j, x=50, 51, …, 59.  For x=51 

we get x3+2x+7=121(mod 179), thus y=11.  The message m is mapped to point (51, 11) and 

can be recover by ⎣ ⎦ 510/51 ==m . 

For elliptic curve over GF(2n) of the form (2.16).  The steps of representing message m 

are the same.  Let message m has t-bit, we append u-bit number j to the end of m and t+u≦n.  

The message m will be represented as x=m2u+j.  For j=0, 1, …, 2u-1, try to find a solution y 

from (2.16).  If a solution is found we take Pm=(x, y), else increase j and try again.  Solving 

y from (2.16) given x is explained in [8]. 

Elliptic Curve Cryptosystems rely on the difficulty of solving the discrete logarithm 

problem for elliptic curves, which is described as follow.  Suppose P, Q are two points on 

elliptic curve, find k such that Q=kP[7].   

a.1 Elliptic Curve ElGamal Cryptosystem 

An Elliptic Curve ElGamal Cryptosystem, a public key system, is one popular application 

of elliptic curve cryptography.  One uses public key to encrypt plaintext and use private key 

to decrypt ciphertext.  Let’s take a look at this cryptosystem.  Alice wants to send a message 

to Bob, so Bob chooses an elliptic curve (2.15), where p is a large prime.  He also chooses a 

point P and a scalar k, which is the private key.  He computes 

kPQ =  (a.5) 
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The point Q and P are public keys of Bob.  Alice represents her message as a point x on 

elliptic curve (2.15).  She also chooses a private integer a, and computes.  The add and 

subtracts here are point operations. 

aPy =1  and aQxy +=2  (a.6) 

 

She sends y1 and y2 to Bob.  Bob can decrypt x by calculating 

xkaPakPxkaPaQxkyy =−+=−+=− )(12  (a.7) 

Next is a example of Elliptic Curve ElGamal Cryptosystem.  Let the point P=(4,11) and 

elliptic curve )8831(mod45332 ++≡ xxy .  The message of Alice is represented as point 

Pm=(5, 1743).  She wants to send the message to Bob. 

Bob has a private key k=3 and computes Q=kP=(413, 1808). Q is made public.  Alice 

takes Bob’s public key Q.  She chooses a random number a=8.  She computes y1=aP=(5415, 

6321) and y2=Pm+aQ=(6626,3576) and sends (y1, y2) to Bob.  Bob wants to decrypt (y1, y2).  

Bob first calculates ky1=3(5415, 6321)=(673, 146) and subtracts this from y2 

(6626, 3576)-(673,146)=(6626, 3576)+(673,-146)=(5,1743)  

a.2 Elliptic Curve Diffie-Hellman Key Exchange 

Another useful system is the Elliptic Curve Diffie-Hellman Key Exchange, which can be 

used for key exchange for private key system.  Alice and Bob want to exchange a key.  They 

choose a base point P=(3,5) on an elliptic curve E: )7211(mod720632 ++≡ xxy .  Alice 

chooses a random integer a=12 and bob choose b=23.  The compute aP and bP and make 

them public. 
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aP=(1794,6375) and bP=(3861, 1242)  

Alice take bP and multiply by a to get the key 

a(bP)=12(3861, 1242) =(1472,2098)  

In the same way, Bob takes aP and compute b(aP) 

a(bP)=12(3861, 1242) =(1472,2098)  

Now they have the same key. 

a.3 Elliptic Curve Digital Signature Algorithm 

Signature is the opposite of public key system.  One use the private to sign and others use 

the public key to verify the signature.  Next is the Elliptic Curve Digital Signature Algorithm: 

Let p be a prime and let elliptic curve E defined over GF(p).   

A is a point on E having prime order q and define: 

K=(p, q, E, P, m, Q), where Q=mP 

p, q, E, P and Q are public key and m is the private key 

K=(p, q, E, P, m, Q) and k is a random number, define 

sigK(x, k)=(r, s), 

where 

kP=(u, v) 

r=u mod q, and 

(a.8) 
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s=k-1(SHA-1(x)+mr)mod q 

Verification is given bellow: 

w=s-1modq 

i=wSHA-1(x) mod q 

j=wrmod q 

(u,v)=iP+jQ 

verK(x, (r,s)) is true if and only if 

u mod q= r 

Let E: )11(mod632 ++≡ xxy  and p=11, q=13, P=(2,7), m=7 and Q=(7,2).  Suppose 

message x and SHA-1(x)=4, Alice sign the message with random value k=3.  She computes: 

(u, v)=3(2, 7)=(8, 3) 

r=u mod 13=8, and 

s=3-1(4+7*8)mod 13=7 

(8, 7) is the signature. 

Bob verifies the signature by 

w=7-1 mod 13=2 

i=2*4mod 13=8 

j=2*8mod 13=3 

(u, v)=8P+3Q=(8,3), and 
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u mod 13=8=r. 

Then the signature is verified. 
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