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Design and Implementation for Elliptic Curve
Cryptosystems

Student: Wei-Chun Hsu
Advisor: Hsie-Chia Chang

Institute of Electronics Engineering
National Chiao Tung University

ABSTRACT

Elliptic Curve Cryptosystems encrypts data so that the opponent
eavesdropping over the channel, can’t.get any information. Its operation is
mainly based on the point operations on. elliptic curve over finite field. The
encryption and decryption “utilize  scalar: multiplication. This thesis
demonstrates the implementation-of Elliptic- Curve Cryptosystems using point

halving. This implementation uses normal basis over GF(2'%%). The chosen

elliptic curve is pseudo-random elliptic curve and the input base point is in A

-representation. The input scalar encoded first for halve-and-add algorithm.
We further use the add-and-sub algorithm to reduce the amount of 1’s in the

input scalar. Serial normal basis multiplier is used while the point addition is in
projective coordinates.  The architecture is synthesized using 0.18 um

technology and requires 77K gates. The throughput is 1.76Mb/s. Verify the
implementation with Xilinx Virtex2 (2vV8000) FPGA. The frequency is 90Mhz
and number of LUTS is 8815.
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CHAPTER 1

Introduction

The objective of cryptography is to enable two people to communicate with each other
over an insecure channel such that an opponent can’t steal the information. For private key
system or symmetric key system, the two people share the same key and this key must be kept
secret. Let Alice wants to send information to Bob, which this information is called plaintext.
Alice uses the predetermined key to encrypt the information and then send it to Bob. Bob
receive the resulting ciphertext and use the same key to decrypt the information back.
Advanced Encryption Standard (AES) and Digital Encryption Standard (DES) are private key

systems.

For public key systems or asymmetric key systems, user has two keys one is public key
and one is private key which is-kept: secret.-TIf Alice wants to send a message to Bob, she
takes Bob’s public key and encrypts the message. After Bob receive the encrypted data Alice
sent. He decrypts the message with his own private key. There are two advantages for
public key systems. One of them is the amount of keys. Given a group with many users,
and users communication with each using private key systems. Then one is required to have
the same amount of private keys as the amount of users, since private key can only be share by
two people. In case of public key systems, the public key is broadcast to everyone. So
given a large group users, only two keys need for each user one public and one private. The
other advantage is that private key systems need to establish a secure channel first and send the
private key to the user the other side, so that both sides have the same key. While a totally
safe channel is not possible, private key system requires addition mechanism to exchange key.

The Elliptic Curve Cryptosystems and RSA are public key systems.



1.1 Motivation

As the popularity of Internet and WLAN grows, the demand of information security rises.
Thus, efficient and secure cryptosystems is of great importance. The Elliptic Curve
Cryptosystems, one of the most advanced cryptosystems, is becoming the mainstream security
system in all kinds of application. It is a part of the Digital Signature Standard (DSS)
proposed by the National Institute of Standards and Technology. The Elliptic Curve
Cryptosystems is based on the mathematical operations of elliptic curve. It can achieve high
security level using shorter key respect to RSA cryptosystems. As shown bellow[1], the
163-bit ECC key offers the same level of security as 1024-bit RSA key and AES is compared

with these two cryptosystems.

Table 1.1: NIST guidelines forpublic key sizes for AES

ECC Key Size | RSAKey:Size:| Key Size | AES Key Size
(Bits) (Bits) Ratio (Bits)
163 1024 1:6
256 3072 1:12 128
384 7680 1:20 192
512 15360 1:30 256

In order to speed up the Elliptic Curve Cryptosystem, we proposed an efficient hardware
implement for the elliptic curve cryptosystems. The proposed architecture utilizes the point

halving technique to achieve a better performance.



1.2 Thesis Organization

In chapter 2, the mathematical background of finite field, normal basis, polynomial basis,
and elliptic curves in projective and affine coordinates are introduced. Chapter 3 shows
several algorithms for calculating scalar multiplication, which includes double-and-add
algorithm, halve-and-add algorithm, and add-and-subtract algorithm. The idea of Elliptic
Curve Cryptosystems is introduced in Chapter 4. Chapter 5 contains the implementation
results of the proposed architecture for Elliptic Curve Cryptosystems and comparisons between

other implementations are made. Finally, chapter 6 is the conclusion.



CHAPTER 2

Mathemetical Background

The Elliptic Curve Cryptosystems utilize elliptic curves over finite field, either binary field
GF(2") or prime field GF(p). In this chapter, | will give the mathematical background related
to Elliptic Curve Cryptosystems. | will focus on finite field GF(2"), where two kinds of basis

in this field and each of their basic arithmetic will be introduced.

In the second part of the chapter, elliptic curve will be introduced. Elliptic curve, the
foundation of Elliptic Curve Cryptosystems, will be specified according to different fields and
coordinates. Each different fields and coordinates yields different formulas for the operations
of points on elliptic curve, while.these point eperations are the basis operations of Elliptic

Curve Cryptosystems.

2.1 Finite Field Arithmetic

Polynomial Basis
For finite field GF(2"), the set of polynomial basis is { &, a™ ..., «a, 1}, where «
is the root of the field polynomial. Each element belongs to GF(2") could be represented as a

linear combination of the basis. For instance, let B be an element of GF(2") with polynomial

basis:
Lea"b et b1 (2.1)

, and we can give a binary notation to this element:

B="b b ,.bb,"



For example, given a GF(2%) element
a®+at+a’ +a+1
or
0-a'+1-a°+0-2°+1-a*+0-a*+1-a* +1-a+1-1

, its binary representation is “01010111” where each bit match to the coefficient of each

term.

The arithmetic for elements over finite field with polynomial basis will be introduced in the

following paragraph.

The sum of two elements in the field is simply bitwise exclusive-or of the two elements.
For example, (a®+a*+a? a+1) and (@’+a+1) are elements of GF(2") and in binary

notation we can find the bitwise exclusive=or of these two numbers:
“01010111”¢5*100000117="11010100"
, which means
(a®+a*+a?+a+l)+ (a'+a+l)=(a+a’+a*+a?

In the case of multiplication, the two elements are treated as polynomials and multiplied
first, then module the result by the field polynomial. An example is shown bellow. Let
GF(2% and field polynomial f(a)=a®+a*+a*+a+1 find (a % a*+ a * a +1)

multiply by (a "+ a +1):

(+a* +a’+a+D)(a’ +a+)=a+a+a’ +at+at +a’+at +a’ +1



a®+at+a’+al+at v+’ +at v +1mod(@® + o' + @ +a+1)

=a' +a’®+1
So the multiplication resultis o’ + a® +1.

Squaring is a special case of multiplication when two inputs are the same. For example ,

let B=( & "+ ¢ +1) be an element of GF(2®) and its square
B*=(a '+ a+1)*=(a™*+a®+1)
(o™ a?+)mod(a® +a* +a* + a +1)
=(a*+a’+a)

Observing the above example, note.that'squaring a function has the same result as squaring
each and every term.  As a result; givenia-element B=B( «)eGF(2") and the field polynomial

f( ).

B( @ Y=B(@Amod f( ) (2.2)

Normal Basis

In the normal basis case, the set of the basis is {82, 8> ..., 3%, B} over GF(2") where

S is the root of the field polynomial. Each element in the field could be expressed as the

linear combination of the basis. Let A be an element of GF(2") with normal basis:
A=a,,f7" +a,,p7 ..ap%a,p (2.3)

Similarly, we can express each element of the field as a binary number “an.1an-2...a180”.

Addition in normal basis is the same as polynomial basis. It’s still bitwise exclusive-or of the



two elements. For example, let ( 5%+ 52) where its binary notation is “1010” and ( 5*+ 8%+ 3)

“0111” are two elements of GF(2%), then
“1010”701117="1101"
B+ B+ (B + B+ )= (B + B+ )
In the case of squaring, let A be an elements of GF(2") equation (2.3): then from equation
(2.2)

Al =a_ p” +a ,B" ...ap +a,B (2.4)

and from Fermat’s little theorem:

Given S eGF(2")
ﬂZn :ﬂ (25)
We can derive from equation (2.4)

A’=a_ . B+a ,B% ...ap% +a,p (2.6)
=a,,p" .aft ap va,p

In normal basis, squaring operation is simply one bit cyclic shift of the original data. Let
A="an1an-...a180"" € GF(2"), A*=“a,...a1a0 an1”". This squaring characteristic gives normal
basis an advantage over polynomial basis, because the implement of the normal basis squaring

requires no extra hardware only wiring.

Next we will derive the multiplication of normal basis. Suppose A, B are elements in the

field GF(2"):



A=Sap B=S 04 (25)

1
i=0 i=0

Multiplying A by B is defined as bellow:

C=A><B:§niaibjﬁ2'ﬁzj =niciﬂ2i (2.6)
i=0 j=0 i=0

Let the product of multiplying A2 by A be:

BB = Ezijk B 1201} 2.7)

Substitute equation (2.7) into equation (2.6). We can get:

n-1 n-1
C = D). Ay, [0k <n-1 (2.8)

i=0-j=0

If GF(2") and the number of the nenzero terms or A =1 terms in equation (2.8) equals to

2n-1, then this normal basis is call the optimal normal basis. Optimal normal basis leads to
minimum multiplication complexity and thus efficient hardware implement. There are many
types of normal basis. [2] givens a chart of existing normal basis type with different field

length n of GF(2").



Table 2.1: Normal Basis Table

n Normal basis type n Normal basis type
2 1,2 155 2

3 2 156 13

4 1 157 10

5 2 158 2

6 2 159 22

7 4 160 -

8 - 161 6

9 2 162 1

10 1 163 4

Of all types, only type 1 and type 2 are optimal normal basis.

According to equation (2.7), we raise-both side to-the power of 2

(ﬂZiﬂzj )Zil = ﬂZi_lﬂZH = zﬂ’i—l,j—l,kﬂ?{ = zﬂijkﬁfl

Comparing the coefficient of the ,6’20 term, we will get:

1

This implies we can find the value of every 4, by means of 4, ,,,.

equation (2.8) utilizing equation (2.10):

n-1 n-1

g = Aiajao | VO<i, j,1<n-1

Co=2. D Aiixodibj10<k<n-1

i=0 j=0

, and by changing the subscripts

(2.9)

(2.10)

And from

(2.10)



n-1n-1
C = Zzﬂijoankbﬁk |0<k<n-1 (2.11)

i=0 j=0

The above the equation shows the property of normal basis multiplication. By cycle

shifting the subscripts of the formula for co, we can obtain other coordinates of the production.

We need to construct a table of 4, first before performing normal basis multiplication.  For

type 1 normal basis and GF(2"), if i and j satisfy one of the following congruence then Ay =1

2'+2 = 1modn+1 (2.12)

2'+2 = 0modn+1

Given type 1 normal basis and GF(2?), the table of A 1s constructed bellow following to

the rules above. Note that only the k=0 column.is needed to be evaluated and the rest of the
columns could be easily derived-from this-column by utilizing equation (2.10). For example:

Aoo1= A330=1, Ao11= A300=0, A= A310=1, and soon.

10



Table 2.2: The multiplication table of type 1 normal basis in GF(2*)

W_.N P OW N P OJW NP OJW N PP O|—
el ol feolNoRE _NE N I Nl lieollicl ol BieclNol o
ORr|IF ORI IOCO|I0O|R|P|IO|CO|OCO|OC|FR,|O|FR|F
OO P |IP|OIOCO|OCO(RP]|FP|O|FRP|O]lFR,|IP|O|IO]IDN
OO, |O|O|RP|O|FR|FP|O|IOCO|FRP|O|RP|P|IO|lW

W W W, . WwINdD NN NP PP PO O O O

Now we can write the product of the type 1'normal basis multiplication in GF(2*) from the

above table.

C, = q,b, +a,b, +ab, +a,b, +a,b, +a,b, +a,b,

Since type 1 normal basis is optimal normal basis, the number of terms in above equation

equals to 2*4-1=7.

And from equation (2.11)

Ck = a'k b2+k + al+k b2+k + al+k b3+k + a'2+k bk + a2+k b1+k + a3+k b1+k + a3+kb3+k

11



The formula of other coordinates can be derived by cyclic shifting the subscripts of the ¢

formula:

c, =a,b, +a,b, +a,b, +a;b, +a;b, +a,b, +a,b,
c, = a,b, +ab, +a;b, +a,b, +a,b, +ab, +ab,

C; =azb, +a,b +a,b, +ab, +ab, +a,b, +a,b,

As for other types of normal basis, [2] provides an efficient algorithm for evaluating the
multiplication product the normal basis. Where the type of normal basis and the field length

n of finite field GF(2") is given as the input data of the algorithm.

2.2 Elliptic Curve
A non-singular elliptic curve over real numbers is-described by the following equation:
y2=x+ax+h (2.13)
Where a, b are real numbers such that
4a% +27b% £ 0 (2.14)

The elliptic curve is singular, if equation (2.14) fails[3]. The following diagram shows an
example of an elliptic curve where a=b=1. Note that the diagram is symmetric with respect

to x-axis.

12
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B = 2 0 2 4 i}
X

Figure'2.1{ thé elliptic:.curve y*=x>+x+1

For finite field GF(p), the elliptic curve satisfies the congruence, where a, b eGF(p):

y>=+ax?+b(mod p) (2.15)

For finite field GF(2"), the elliptic curve is in a slightly different form as shown below,

where a, b eGF(2"):

yAHxy=x>+ax*+b (2.16)

An abelian group can be defined on the set E of solutions (x, y) to the elliptic curve

equation plus a point O at infinity. Now consider the addition law of elliptic curve:

Given two points P and Q on elliptic curve E, consider the result of P+Q. First, we

define L to be the line through P and Q. The L intersects E at point R, then we reflect R’ in

13



the x-axis to get R. We define R to be the result of P+Q, that is, P+Q=R. An example is

given below:

o

Figure 2.2: Point addition, P+Q=R

Now consider the situation when P=Q,.namely; consider the result of 2P. Since P=Q,
line L now become a tangent line-passing through P: * Similarly, the line L intersects E at point
R’, then we reflect the x-axis to obtain the-result R. The following diagram shows this

condition:

=g
L]

Figure 2.3: Point doubling, 2P=R

The point at infinity O is considered as the identity element:



P+0=0+P=P (2.17)

We consider the case when Q is the reflection of P in the x-axis. So if we draw a line L
through P and Q, then line L will be an vertical through P and intersect E at infinity O and we
can get P+Q=0. Since O is the identity element, we can consider that Q as the negative of P,
that is Q=-P. We can conclude that the negative point of a given point is the reflection of the

point in the x-axis.

].l

-
o

Figure 2.4: Negative Point, P+(-P)=0

Given a point PeE over finite field, then E is a finite abelian group. We can find an

r

- f—/% - - -
integer r such that rP=P + P +...+ P =0. The integer r is called the order of point P.

Next, | will derive the addition and doubling formula for points on elliptic curve according
to the addition law mentioned above. Moreover, a different kind of representation called the

projective coordinates representation will be introduced.
Affine Coordinates Representation

Affine coordinate representation is respect to projective coordinates representation.

Given an elliptic curve E: y*=x*+ax+b, let’s derive the negative of a point first. Let P=(xi,

15



y1), the negative of P is simply the corresponding point of the reflected P in the x-axis which is

(X1, Y1)

-(X1, y1)= (X1, -y1) (2.18)

We next derive the formula for point addition P+Q=R. Let P, QeE, where P=(xy, Y1),

Q=(x2, ¥2), R=(xs, y3) and L is the line passing through P and Q represented as

y=AX+vVv (2.19)
, Where the slope of L is:
1=Y2 N (2.20)
X, — X,
, and
Vi= Y S AXT=Y - AX, (2.21)

L will intersects E at point R’.  Substitute equation (2.19) into the equation for E to find

the solution of the coordinates, we can get

(AX+v)? =x*+ax+b (2.22)

, we can derive from above

X' —2x*+(@-24v)x+b-v* =0 (2.23)

We have to solve equation (2.23) for the x-coordinates. Since x; and X, are two roots of

equation (2.23), the sum of the three roots will equal to

16



X, + X, + Xy = A

Xo = A =% —X, (2.24)

Since R’ equals to (xs, -y3). We can derive

a=_Ys™ V1 (2.25)
X3 =X,
, or
Y; = Z’(Xl - Xs) -V (2-26)

For the case when doubling a poipt;we have to find the slope of the tangent line L to point

P=(x1, y1). Let2P=(xs, y3), using the implicit differentiation of the equation of E
2yOI—y=3x2 +a (2.27)
dx

So the slope of the tangent line L with equation (2.22) to point P is

3, +a (2.28)
A=
2y,
and
V=Y, —AX (2.29)

The line will intersects with E at R’=(xs, -y3) and substitute the line equation into E.
Regarding equation (2.23), the cubic equation has two roots at x;, and one root at X3. So x3

equals:

17



X, = A —2X, (2.30)

With the same procedure, we can find y; by equation (2.26).

Finally, the formula for point addition and point doubling can be summarized as bellow.
Suppose P=(x1, y1), Q=(x2, y2), P+Q=(xs, y3), elliptic curve with equation (2.13) or (2.15),

then the formula of point addition:

1=Y2 Y (2.31)
Xy =X

2
Xg =A" =X, = X,

Vs =A(XgmXs) — Vs

Let P=(x1, y1), 2Q=(xs, y3), the formula of point doubling

b 3x,” +a (2.32)
2y,
X, = ° —2X,

Y; = Z’(Xl - Xa) -y

When used over finite field GF(2"), the elliptic curve is in the form (2.16). We can derive
the formulas for point addition and point addition over finite field GF(2") in a similar method.
As in the previous context, we will derive the negation of a point first. Given a point P=(x,,
y1), we try to find the representation of —P=(x», y»). As mentioned above that P+-P=0, we
draw a vertical line L through P and the line will intersect E at point —P. The equation of this

line L is simply

18



X+X1=0 (233)

, which implies that x,+x;=0 and the x-coordinate of —P is x;. Substitute equation (2.33)

into equation (2.16) in order to find the solution of the y-coordinate of —-P.  We will get:
yHxay=x.>+ax *+b (2.34)

This square equation has two solutions and one of them is y;. The sum of the two

solutions will equal to the coefficient of the termy. As the result,
y1t+Yy2=X1
, or
Yo=X1 +Vi (2.35)
So for P=(x1, y1), the negation-of P overfinite field GF(2")
-(X1, y1)=(X1, X1 +y1) (2.36)

Again, let P, QeE, where P=(xy, y1), Q=(X2, ¥2), P+Q=R=(xs, y3) and L is the line passing

through P and Q. L has the equation (2.19), where

a=Yet Y (2.25)
X, + X
and
v=y, +AX =Y, +AX, (2.26)

Substitute the equation of L (2.19) into the elliptic curve equation (2.16)

19



(AX+v)* +x(AXx+v)=x*+ax’ +b (2.27)
, it is the same as
X+ +A+a)x" +x+b=0 (2.28)

x1 and x, are two solutions of the cubic equation, we can find x; from the coefficient of x*

term
Xg= A +A+X +X,+a (2.29)

Then same as before, we use R’=(xs, X3+Y3) and P=(x3, y1) to compute the slope

AL XY, (2.30)
x4 +Xy
Derived from above,
Y; = Z(X3 + Xl) X3 +Y, (2-31)

Let’s move on to the formulas of doubling a point over GF(2"), using the implicit

differentiation of the elliptic curve equation (2.16):

2yd—y+y+xd—y:3x2+2ax (2.32)

dx dx

Applying the property of GF(2"), the equation is reduced to:

y+xd—y:x2 (2.33)
dx

Note that if not the xy term in the elliptic curve equation (2.16), the implicit differentiation

would be meaningless. This gives one reason why the elliptic curve equation is slightly
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differently over finite field GF(2"). Let P=(xy, y1), 2P=(Xs, y3) and line L is the tangent line

to P described by equation (2.19). The slope of the tangent line L would be:

A=x + 0 (2.34)
Xl
while
V=Y, +AX (2.35)

Following the same procedure, X; is the two roots of equation (2.29), X3 is the other. So,
2X, + X, = + 1 +a
which 2x; =0 over finite field GE(2")
X, A4 A+ a (2.36)

Finally, ys is the same as shown in equation (2.31)

The formulas for point addition and point doubling over finite field GF(2") are given

bellow:

Let P=(x1, Y1), Q=(x2, y2), P+Q=(xs, y3), elliptic curve with equation (2.16), then the point

addition formula:

a=Yet Y (2.37)
X, + X4

2
Xg=A"+A+X +X,+a

Ys :ﬂ(X3 +X1)+X3 +Y
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And the formula of point doubling, where P=(x1, Y1), 2P=(X3, Y3)

A=y + 0 (2.:38)
Xl

X, =2 +1+a

Ys :ﬂ(X3 +X1)+X3 +Y

Projective Coordinates Representation

Finite field GF(2") inversion is relatively expensive. If inversion could be avoided while
performing point addition or point doubling, then the performance of the elliptic curve

cryptosystems would be improved. This is done by using projective coordinates.

Points with projective coordinates have three coordinates, for example, a projective point
P=(X, Y, Z). An affine point (X, y) corresponds to the projective coordinate point (X, y, 1),
while a projective point (X, Y;=Z) couldrbe-converted into an affine point (X/Z, YIZ?).
Replacing x= X/Z, y= Y/Z?into equation+(2:4); the resulting projective elliptic curve equation

would be:
Y%+ XYZ=X3%Z+aX?Z%+bz* (2.39)

The formulas for adding and doubling points on elliptic will be presented here. Let P=(X,
Y1, Z1) , Q=(Xz, Y2, Z5), and P+Q=R(X3, Y3, Z3) are points with projective coordinates, then the

formula for adding points is [4]:
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A=Y, 7], D=B,+B,, H=C-F, (2.40)
A =Y,-22, E=2,-Z,, X,=C?+H +G,

B, =X,-Z, F=D-E, | =D?-B,-E + X,

B, = X2y, Z,=F? J=D% A +X,,

C=A+A G =D?-(F +aE?), Y,=H-1+2Z,-J.

When Z,=1, the formula becomes

A=Y,-Z2+Y,, Z,=C? (2.41)
B=X, -Z, +X,, X,=A*+D+E,

C=2,-B, F=X,+X,-Z,,

D=B?-(C+az}), G=(X,+Y,)-Z2,

E=A-C, Y,=(E+Z,)-F+G.

Suppose P=(X1, Y1, Z1), 2P=Q=4(X>, Y;, Z), the.doubling formula is:

Z,=22X], (2.42)
X, = X “4b-Z5,
Y, =bZ; - Z; % Xy(@Z,+ Y, +0Z)}).

Comparing with affine coordinates, projective coordinates doubling and adding requires
more multiplications but no inversion. The performance analysis with affine coordinates

doubling and adding is given below:
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Table 2.3: The number of required operations for point doubling

Operations Affine coordinates | Projective coordinates
Multiplication 2 4
Squaring 1 5
Inversion 1 0

Table 2.4: The number of required operations for point addition

Operations Affine coordinates | Projective coordinates

Multiplication 2 13
Squaring 1 6
Inversion 1 0

Table 2.5: The number of required operations for point addition when Q= (Xz, Y2, 1)

Operations Affine coordinates | Projective coordinates

Multiplication 2 8
Squaring 1 5
Inversion 1 0

The performance comparison between the two coordinates is determined by the
computational complexity of the finite field inversion in affine coordinates. For example,
given the table 2.3 condition and neglecting the squaring operation, the affine coordinates will
outperform projective coordinates if the computational complexity of the inversion is less than

6 multiplications.
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CHAPTER 3

Scalar Multiplication Algorithms

Scalar multiplication, given a point P on elliptic curve and a scalar k find kP, is the mainly
the Elliptic Curve Cryptosystems all about. In order to compute scalar multiplication
efficiently, many algorithms are proposal. The basic one is the double-and-add algorithm and
halve-and-add algorithm gives an efficiently way to compute scalar multiplication by acquiring
point halving. These two algorithms will be introduced in this chapter. Besides, we can

apply add-and-subtract algorithm to these two algorithms to achieve a better performance.

3.1 Double-and-Add Algorithm

The double-and-add algorithm;is the basic:algerithm for calculating scalar multiplication.
This algorithm is composed of peint deubling-and point addition. Given GF(2") a base point

P and a scalar k, the double-and-add algorithm:is:

k=>""b2", b {0 (3.1)
Q=0
forifromn-1downtoO

{
Q=2Q
if b, =1then
Q=Q+P
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For example, given P and a scalar k=10=""1010"":
k= “1 0 1 0”
Q= O >P -22P S4P+P=5P  ->10P

The formulas required for adding points and doubling points in the algorithms is explained

in chapter 2.

3.2 Halve-and-Add Algorithm

The halve-and-add algorithm[5] is similar to double-and-add algorithm but the point

doubling step is replaced by point halving. Next, the procedure of point halving is given.

Point Halving

For P=(x1, y1), 2P=(x3, Y3), the formula of point-doubling is given in equation (2.38) which

is the same as:

/1:x1+L 3.2)
Xl
X, =2 +1+a

Vs =X+ X (1+1)

Point halving is the reverse of point doubling. Given an input point 2P=(xs, y3) find

P=(x1, y1). In order to compute xi, and ys, first we have to solve A from:
P +Al=a+X, (3-3)
Where this square equation has two solutions A and A +1.
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Solve
X" =Ys+X;(A+1) (3.4)

for x3.  And finally, calculate y;:
y; =X (X, +4) (3.5)

The idea of trace plays an important role in deriving the algorithm for point having. Let

ceGF(2"), trace is defined as:

Tr(c)=c+c?+c? +..+c” (3.6)

The trace of an element in finite field is either0 or 1. Following are some properties of

trace: let c,d eGF(2"),
Tr(e) =Tr(c*) = Tr(c)* (3.7)
Trace is linear:
Tr(c+d)=Tr(c)+Tr(d) (3.8)
My implement uses pseudo-random curve over GF(2'%%) which has the form
E:y?+xy=x"+x’+b (3.9
The coefficient a in equation (2.16) is always equal to 1.  So:
Tr(a)=1 (3.10)
If (x, y) is a point on elliptic curve (3.9), then:
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Tr(x)=Tr(a) (3.11)
The following theorem finds the correct solution of equation (3.3) while halving a point:
Let P=(x1, y1) and 2P=(X3, Y3). (3.12)
Let A be a solution to (33)and t=y, + x3/{.

Suppose that Tr(a)=1. Then A is the correct solution if and only if
Tr(t)=0

~

We will prove the theorem. If A is a correct solution then it will satisfy equation (4.4),

that is,
X,” = Y+ Xy (A+1) (3.13)
From equation (4.10) and equation.(4.11)
Tr(y, + X;(4 +1))=Tr(x)=Tr(x))=Tr(a)=1 (3.14)
and
Tr(Y, + X, (A +2))=Tr((Ys + X,A) + X;) = Tr(Y, + XoA) + Tr(x,) = Tr(t) +1 (3.15)

Finally, we can get

Tr(t) +1=1,

Tr(t)=0
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Else if 1 is not a correct solution then the correct solution must be A+1. Now A1+1

will satisfy equation (3.4), substitute A +1into equation (3.4)
X" = Yy + Xg(A+1+1) = y, + X, (4) (3.16)
Similarly,
Tr)=Tr(y, + X,(1))=Tr(x?)=Tr(x)=Tr(a)=1 (3.17)

That is, if Tr(t)=1 then the correct solution is A+1.

Let the A -representation of a point 2P=(xs, y3) be (xs, A3), where {3=Xs+ys/x3. Let
the A -representation of 2P as the input to point halving, then t in equation (3.12) can be

computed directly from this A -repréesentation

=X (X + Ay +A) = X% + Xt Bt 2) =, (34 D) =y, + %A (3.18)
X X

3 3

If Tr(t)=0, A is the correct answer, from equation (3.13)

X, "= Y+ XA+ Xy =+ X (3.19)

X, = U+ X,
If Tr(t)=1, A+1isthe right solution, from equation (3.16)

X2 =y, + XA =t (3.20)

Next is the full algorithm of point halving. The input of the algorithm is A

-representation 2P=(xs, 43). The output is the A -representation of P=(xy, A1)
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1.Findasolution 1 of 2 +4=a+x, (3.21)

2. Compute t=X;(X,+ A, + }Z)

3. IFTr()=0, then 2:1=1, X, =~/t+Xx,

else 1,=A+1, X, = Jt

Point halving requires a multiplication and three major operations:
Solving 2%+ =a+ X,

Computing the trace of t

Calculating a square root JE or t+ X,

Normal basis is of the form {2 ;8% ,...8% B}. Letc be an element in field GF(2").

By equation (2.3):
c=c, B2 +c ,B7 ...cfl+c,p (3-22)
The trace of c is
C=C,,;+C, ,+.+C, +C, (3.23)
The square root equals a cyclic shift right one bit, an inverse of squaring.
Je=c¢,p7 +¢,  BY..c,Bt+CB (3:24)

Solving the Second Degree Equation
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Now deal with the solutions of the second degree equation in (3.21). Let ¢ equation

(3.22), there are two ways to solve a second degree equation as given bellow.

P+i=c (3.25)
Let
A=A B+ A B WP+ AP (3.26)
A solution is given by:
A, =0, 4 =kZi=;Ck forall 1<i<n-1 (3.27)

These operations are expected .t0 be inexpensive relative to normal basis multiplication.

Or we can solve equation (3.25) by half-trace

H(cYy=c+c? +c2atc? (3.28)

Substitute equation (3.28) into (3.25) and from equation (2.2) (2.5)

H(c)2+H(C)=(c?+c® +c? +..+c¥)+(c+c? +c2..+c) (3.29)

n-1 n
=c+C°+c%+..+c? +c? =tr(c)+c¢

Utilizing the above equation, we can prove that H(a+ x,) is a root of equation (3.3).

Since
tr(@a+x;) =tr(a)+tr(x;) =1+1=0 (3.30)

As the result,
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H@+x,)2+H(a+x;)=tr@@+x,)+a+x, =a+x, (3.31)

Compare the operations of point halving and point doubling in affine and projective

coordinates.

Table 3.1: Comparison between halving and doubling in affine and projective coordinates

Operations Affine coordinates | Projective coordinates | Halving
Multiplication 2 4 1
Squaring 1 5 0
Inversion 1 0 0
Solving Second
Degree Equation 0 0 !
Square Root 0 0 1
Check 0 0 1

If computation time of 1 second degree equation-solving + 1 square root + 1 check is less than
3 multiplications + 5 squaring, then halving a better performance than point doubling in

projective coordinates.
Halve-and-Add Algorithm

Now we have gone through point halving. We want to employ it into scalar
multiplication. Let GF(2"), given a point P on elliptic curve of odd odder r and a scalar k.

In order to compute kP, we will prove that[6]:

For every scalar k, we can find k” such that (3.32)

n-1

k:
k=) 2n_'1_i (modr)

i=0

We will prove this by first calculating 2"* multiplied by k modulo r.
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n-1

2n—lk(mod r) - Z kil 2! kil 1S {0,1} (333)

i=0

Divide both side by 2"* gives the result:

n—

k(modr) = Z 2':_'1_i k; {01} 3.34)

1
i=0

Next is a left-to-right version of the halve-and-add algorithm, where k is converted to k’ by

equation (3.33) first. Given GF(2"), the input is k’ and P while the output is kP.

2" k(modr) ="k, 2", k' {01} (3.35)
Q=0

forifromn-1ldowntoO
{
if k, =1then
Q=QsP
P=P/2

¥

Pisin A -representation (xp, {p) and must transformed into affine representation (Xp, yp)

before added to Q. Q could have projective coordinates and Q+P is done by (2.41).

For example, let GF(2*) and r=11=""1011". Given P and a scalar k=10, compute kP.

First we will convert k using equation (3.33):
k' =2°-10(mod11) = 80(mod11) = 3 ="0011"

One is required to compute the value of P/2(mod11) in this example. We have 27(mod11)=86,
since 6*2(mod11)=12(mod11)=1. Given any integer X, x/2(mod11l)=x*6(modll). From

(3.35)
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k'= “0 0 1 17
P= P DPR2=6P  >6P/2=3P  >14P/2=7P
Q= 0 90 >0 >0+3P=3P  >3P+7P=10P

The result is the same as the one computed from (3.1).
Another version of the halve-and-add algorithm is a right-to-left method. Point halving

occurs on the accumulator Q, hence the projective coordinates is not usable.

2" k(modr) ="k, 2", k' {01} (3.36)
Q=0

forifromn-1down.to 0

{

Q=0Q/2

if k, =1then

Q=Q+P

Use the same condition GF(2*) and r=11=""1011". Given P and a scalar k=10, that is,
k’="0011". Start from right to left
k': “0 O 1 111
9P/2=10P&  7P/2=9P& P/2+P=6P+P=7P& O+P=P& O =Q

And the final answer is 10P. Unlike algorithm (3.35), here only requires one register for Q.

3.3 Add-and-Subtract Algorithm
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We can further encode the scalar k or k” of the halve-and-add algorithm when computing
kP to reduce the Hamming weight of k or k', hence reduce the amount of point additions.
Since point addition is more expensive than point doubling or halving, the performance of
scalar multiplication is improved. Add-and-subtract algorithm [2] eliminates the situation of

continuous 1’s by combinations of additions and subtractions. Given an n-bit scalar k

k = Zn:ei 2" e e{-103 (3.37)

Using add-and-subtract algorithm, we find m:

Let k,,Kk,,...k;k, be the binary representation of k, (3.38)

Let h h

n' 'n-1-

.hh, bethesumof k .k, ,.KK,+k, K, ,..K
Let 9,9,,--.9,0, equalsto 00k, ,Krsuky

forifromOton
if hj=1 and g;=0, then e¢i=1

else if hj=0 and g;=1, then ej=-1

else ;=0
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Take k=29="11101" for example. h="11101"+"1110"="101011"

h= "1 0 1 0 1 1
g= “0 O 1 1 1 0
e= “1 0 o0 -1 o0 17

It’s easy to verify that:
k=1.2°-1.22+1=32-4+1=29

Combine add-and-subtract algorithm with (3.35):

n- n-1 i '
2"tk(modr) =" k; 2"k, e{0.1}
=Y e2y e<f-101
=0

Q=0
fori fromndown to 0
{
if e, =1then
Q=Q+P
elseif e, =—1then
Q=Q-P
P=P/2
¥

(3.39)

-P is given by (2.36). Combining add-and-subtract algorithm with (3.1) or (3.36) will do too.
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CHAPTER 4

Implementation Results and Comparisons

My implementation uses pseudo-random curve of the form in normal basis over GF(2'%)

yi+xy=x>+x>+b (4.1)

The normal basis is of type 4 which is not optimal normal basis. The base point P=(P, Py)

(4.2)

2162 2161 2
P =X162:B +X161ﬂ ""!Xlﬂ 'Xoﬂ

X

P, = Vi B2 ANBE i Vi B2 Yo B (4.3)

Express Px and Py as 163bit numbers Xe,Xepseeer X, Xor @NA Yy, Vigron Y1 Yo - Their value in

hexadecimal equals

P,=0_bb95 2eb0 8fcO_blc8 699f 739a 9357 3474 1e04 4460 (4.4)
P,=7_f185_6ef0_98cf adc8 077e_e437_33a7_f113 ledl ae66 (4.5)
If Pisin A -representation, then
P.=3 e6c0 a681 341a b0a3 6cc5 c338 7bff ea7e 014f a6a3 (4.6)
The value of coefficient b in equation (4.1) is
(4.7)

b=6 fcde 3c9e f967 437b e459 blce 438e 3479 a%e7 d133

The base point P has order r.  r is a large prime number with value in decimal
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r=5846006549323611672814742442876390689256843201587 (4.8)

The number of points on elliptic curve is 2r.

2163

The fundamental element of the entire circuits is the GF(2™°) normal basis serial multiplier.

Let the inputs equal (2.5) and output equals (2.6). Using the algorithm in [2], derive the

product.

Co =28, (bg +byy +Dy3, +0y57 )+, (byy; +bg, +byy; +0y5) +. (4.9)

The formulas for other coordinates can be derived from above:

Cl = a‘2 (bl + bl4 + bl33 + bllS) + a‘S (bllB + b93 + b112 + b146) ..

C2 = a‘S (b2 + blS + b134 + bllQ) + a'4 (b119 B b94 + b113 + b147) ..

We can implement this using three register to store input A, B, and output C. Implement
equation (4.9) and cyclic shift these three register by one bit at each cycle. The product is

generated bit by bit.  The circuit diagram is given bellow:
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Figure 4.1‘: Nokma\LB}a_tsisMultiplier version 1

The combinational circuit of the inpUI of Go is concealed. Only the idea of connection is
given. The latency of this multiplier is 163 cycles and ¢, has a larger fain-in. We can

modify the above multiplier by adding one term at one cycle[9]. For example:
C,=C+a (bo + bls + b132 + b117)

C; =C, +a, (b119 + b94 + b113 + b147)

The following is the multiplication cell for adding one term at each cycle:
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Modify the original multiplier we’ll get:

Gl S S T e | a1 | Ciep

L Y NA NS

by bigr | Pz

Figure 4.3: Normal basis multiplier version 2
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This is a conceptual diagram showing the difference of wiring. The fan-in of the output
register is reduced. Another benefit of this multiplier is that we could set the register of C to a
value say D at beginning. Then the final output will equal A*B+D equivalent to the effect of

a MAC, multiplication-and-accumulator.

The solution of the second degree equation is given by equation (3.27). This can be easily
implemented using a one bit register and an exclusive-or. Since the solution is given out
serially, we can modify the above multiplier by adding each a; term of the product at each

cycle. For example,

Co=C + a(b13 + b117 + bo + b132)
C, =¢C, + a(blll + b145 + b117 + b92)

Use similar cells in Figure 4.2, the new normal basis multiplier is

alal aZ. .

Lcm C1a1 | 180 Ca | &1 | Co J

Figure 4.4 serial input normal basis multiplier

Combine the solution circuit with the serial input normal results an efficient implementation

for point halving.
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The input of point halving is in A -representation. For the implementation of point
halving, a normal basis multiplier is used. The second degree equation is solved by half-trace
as given by equation (3.31). Trace t is given by exclusive-or every bit of t. Since only one
multiplier is required, the over all latency is 163 cycles. The architecture of point halving is
given bellow. Let2P=(x3, A3), the outputis P=(x1, A1)

%

o
Solve

!

an
\}/
/5

Figure 4.5: Circuit for point halving

The procedure of point halving is:
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solve A" + A =a+x;

t=x,0x; A, +4) F—4

A =A+lx =4ft

Figure 4.6:Poaint halving flow

The coefficient a of pseudo-random is:always equal to-one. One or the multiplication identity
in normal basis is a number where ‘every bit of itis 1. The right hand side of equation (3.3)

equals:

a+X; =1+x; =X,

That is, exclusive-or each bit of x3 with 1 is the same as inverting each bit.

In order to implement scalar multiplication efficiently, algorithm (3.39) is chosen. Since
the point addition in projective coordinates requires no inversion, we let the accumulator Q of
(3.39) in projective coordinates. The point addition Q+P or Q-P has Q in projective

coordinates and P in 1 -representation P=(X3, 41). From (3.5) we modify formula (2.41) as:
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Y, =X,(X,+4,) Z,=C?, (4.10)

=Y, -Z} +Y,, X,=A>+D+E,
B=X,-Z, +X,, F=X,+X,Z,,
c-2,8, G- (X, +V,) 22,
D=B2.(C+az?), Y,=(E+Z,)-F+G.
E=A-C,

My implementation of (2.41) contains three multipliers. Due to the data dependency, the
data calculated at each multiplication is arranged as follow with minimum latency. The data

dependency is indicated.

Table 4.1: The data flow of mix-coordinates addition (5.10)

Muluplicalions Muluplier ] Multiphier 2 Muluplizer 3 Cuatput

1. |-B=X,-Z +X, | T =X,(X, +1)
T

= 3l "
2 E=Z -E L —Ad =Y -Z5+] Z,.=C
o T i = e
= -___'“———-} L= v
3 D=8"-(C+ VW —mE=d-C —F =X+ | X =47+ D+ K,
™ &F_r - A
V. ={(E+Z.}-F+G G=(X,+F)-Z; I

As we can see from the above table, the timing of this mix-coordinates addition equals to 4

multiplications which is 4*163 cycles.

The following is the circuit diagram of the mix-coordinates addition. The multiplier in
the diagram has three inputs where two are from multiplication and one for accumulation.

The neg signal is for adding —P to Q. The ini signal indicates the initial condition when

O+P=P. Thatis, Xs=X,, Y3=Y2 or Xo+Y>, and Zz=1
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Figure 4.7: Circuit for mix-coordinates addition

My proposed design is a scalar multiplication circuit based on algorithm (3.39). It is
composed of the point halving circuit and the point adding circuit plus some control signals.
The inputs are k’ which is derived from k as shown in (3.33) and base point P. The output is
kP. k' is first encoded into e as in (3.39). From (3.38), the implementation of the encoding
logic uses two shift register to store g and h.  The shift registers shift one bit every one point
halving complete. We observe the msb of the g and h registers to decide whether the input to
the point addition circuits is P or -P.  Since there are separate registers for the accumulator Q
and P, the halving circuit and adding circuits can process at the same time. This makes

computation more efficient. When e; is nonzero or the MSB of the g and h registers are
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different, the halving circuit must hold its output until the adding circuit reads the result. The

point addition circuit adds P or —P to the accumulator when e;is 1 or -1.

the whole circuit is:

Mo

Point Halving

@m e—

Yes

Projective Add
btisy="

The control flow of

Projective Add

Figure 4.8: The control of point halving and projective addition

The synthesized result is given bellow. The cycle time is set to 5ns and the synthesis

standard library is 0.18 ;2 m technology.
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Table 4.2: The synthesized results

Circuits Gate Counts
Multiplier 6961
Halving 14321
Addition 45723
Scalar multiplication 77100

The average latency of scalar multiplication is about 37000 cycles and frequent 200Mhz. So

the throughput is 2*163*200Mhz/37000=1.76Mbit/s

The verification is given by an integrated FPGA system called iProve. This system
allows displaying the outputs from FPGA-on-ModelSim directly. The FPGA chip is Xilinx

Virtex2: XC2V8000. The synthesisfrequency:is.set to 90Mhz and the total LUTs is 8815.

The table bellow lists a comparison of the Elliptic Curve Cryptosystems implementation.

We can see that our design has about the same throughput as [12] while the area is smaller.
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Table 4.3: The performance comparison of Elliptic Curve Cryptosystems

implementations on ASIC

Authors Huang [10] | Okada [11] Bai [12] Daneshbeh [13] | Sozzani [14] | Proposed
Technology 0.35um 0.25um 0.18 um 0.18 um 0.13um 0.18um
Field GF(2*Y GF(2'%) GF(2%%) GF(2'%) GF(2'%) GF(2'%)
Gate counts 56K 165K 120K 74K ? 77K
Clock rate 100Mhz 66Mhz 100Mhz 700Mhz 400Mhz 200Mhz
Latency for
kP ? ? ? 212,552 11,320 37,000
(cycles)
Processor Y Y N Y Y N
) Double Halve
Algorithm | Montgomery Montgomer Montgomery
for kP (affine) ? y -and . (parallel) -and-
-Add (serial) Add
Basis Poly Poly Poly Poly Poly Normal
Throughput 91Kb/s 501Kbi/s 1.86Mb/s 1.1Mb/s 12Mb/s 1.76Mb/s
Table 4.4: The performance comparison of Elliptic Curve Cryptosystems
implementations on'FPGA
Authors Orlando & Gura[16] Lutz[17] Proposed
Paar[15]
Xilinx Xilinx Xilinx Xilinx
Platform
XCV400E XCV2000E | XCV2000E XC2Vv8000
Technology 0.18 um 0.18 um 0.18 £ m 0.15/0.12 um
Fleld 2167 2163 2163 2163
LUTs 3002 19508 10017 8815
FFs 1769 6442 1930 N/A
Processor Y Y Y N
Clock rate 76Mhz 66Mhz 66Mhz 90Mhz
Algorithm for kP | Montgomery | Montgomery 7 -NAF Halve-and-Add
Basis Poly Poly Poly Normal
Throughput 1.5Mb/s 2.2Mbl/s 4.3Mbl/s 792kb/s
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CHAPTER 5

Conclusion

In this paper, an implementation of Elliptic Curve Cryptosystems is shown. The
architecture uses point halving to reduce the computation complexity. Point halving only
requires one multiplier and some addition circuits. We can replace double-and-add algorithm

by halve-and-add algorithms.

The normal basis multiplier in the implementation is a serial multiplier. The projective
addition circuit contains three multiplier and the timing equals to 4 times the timing of a
multiplier and no inversion over finite field is required. The input is encoded as for the use of
halve-and-add. = We can further reduce. the ‘Hamming weight of the input, using
add-and-subtract algorithm. The halving circuit and-projective addition circuit can work in

parallel under certain condition when the data'have no-dependency.

The implementation is synthesized using synthesis library of 0.18 ;- m technology. We

use Xilinx Virtex2 (XC2V8000) to verify the implementation.
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APPENDIX

Elliptic Curve Cryptosystems

In elliptic curve cryptosystems, we need to map a message onto a point on an elliptic curve.
Then elliptic curve cryptosystems operate on that point to yield a new point that serves as the
ciphertext. The idea of the mapping method is the following. Let equation (2.15) be the
elliptic curve. The message m will be assign as the x-coordinates of a point first. However,

there is only 1/2 chance that there exist a solution y such that
y2 =% +am + b(mod p) (a.1)

Therefore, we append a few bits at the end of m, and.try every pattern of these bits until there is
a solution for equation (a.1). Namely, let K be a large integer so that when trying to map a

message as a point on elliptic curve the failure rate of /2 is low. Suppose that
(m+1)K<p (a.2)
Represent the message m as
x=mK+j, where 0<j<K (a.3)

For j=0, 1, ..., K-1, try to a solution y from (a.1). If a solution y exists, then message m is
mapped to Ph=(X, y) and we can stop trying. Otherwise, increase j by one and use this new x
to find a solution again. If we can’t found any solution for j=0 to K-1, then we failed to map
message m to a point. Maybe we should pick a larger integer for K and start all over again.
Since for each j, the probability of finding a solution is 1/2, we have 1/2X chance of failure.

Finally, the encoded message can be recovered from the point Ph,=(X, y) by

50



m=|x/K| (a.4)

For example, let message m=5, p=179 and elliptic curve be y*=x*+2x+7. Pick K=10,
so the failure rate is 1/2*°, which is acceptable. x=mK+j=50+j, x=50, 51, ..., 59. For x=51

we get x>+2x+7=121(mod 179), thus y=11. The message m is mapped to point (51, 11) and

can be recover by m=[51/10]=5.

For elliptic curve over GF(2") of the form (2.16). The steps of representing message m
are the same. Let message m has t-bit, we append u-bit number j to the end of m and t+u =n.
The message m will be represented as x=m2"+j. For j=0, 1, ..., 2"-1, try to find a solution y
from (2.16). If a solution is found we take Pn=(X, y), else increase j and try again. Solving

y from (2.16) given x is explained in [8].

Elliptic Curve Cryptosystems rely on the difficulty of solving the discrete logarithm
problem for elliptic curves, which is described as follow. Suppose P, Q are two points on

elliptic curve, find k such that Q=KP[7].

a.1 Elliptic Curve EIGamal Cryptosystem

An Elliptic Curve ElGamal Cryptosystem, a public key system, is one popular application
of elliptic curve cryptography. One uses public key to encrypt plaintext and use private key
to decrypt ciphertext. Let’s take a look at this cryptosystem. Alice wants to send a message
to Bob, so Bob chooses an elliptic curve (2.15), where p is a large prime. He also chooses a

point P and a scalar k, which is the private key. He computes

Q=kP (a.5)
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The point Q and P are public keys of Bob. Alice represents her message as a point x on
elliptic curve (2.15). She also chooses a private integer a, and computes. The add and

subtracts here are point operations.

y,=aP and y, =x+aQ (a.6)

She sends y; and y, to Bob. Bob can decrypt x by calculating
y, —ky, = (x+aQ) —kaP = x + akP — kaP = x (a.7)

Next is a example of Elliptic Curve EIGamal Cryptosystem. Let the point P=(4,11) and
elliptic curve y? = x® +3x+45(mod8831). The message of Alice is represented as point

Pm=(5, 1743). She wants to send the message ta Bob.

Bob has a private key k=3 and computes Q=kP=(413, 1808). Q is made public. Alice
takes Bob’s public key Q. She chooses arandom number a=8. She computes y;=aP=(5415,
6321) and y,=P,+aQ=(6626,3576) and:sends (yi, y-) to Bob. Bob wants to decrypt (yi, Y2).

Bob first calculates ky;=3(5415, 6321)=(673, 146) and subtracts this from y;

(6626, 3576)-(673,146)=(6626, 3576)+(673,-146)=(5,1743)

a.2 Elliptic Curve Diffie-Hellman Key Exchange

Another useful system is the Elliptic Curve Diffie-Hellman Key Exchange, which can be
used for key exchange for private key system. Alice and Bob want to exchange a key. They
choose a base point P=(3,5) on an elliptic curve E: y* = x>+ x+7206(mod7211). Alice
chooses a random integer a=12 and bob choose b=23. The compute aP and bP and make

them public.
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aP=(1794,6375) and bP=(3861, 1242)
Alice take bP and multiply by a to get the key

a(bP)=12(3861, 1242) =(1472,2098)
In the same way, Bob takes aP and compute b(aP)

a(bP)=12(3861, 1242) =(1472,2098)

Now they have the same key.

a.3 Elliptic Curve Digital Signature Algorithm

Signature is the opposite of public keyssystem. One use the private to sign and others use

the public key to verify the signature. Nextis the Elliptic Curve Digital Signature Algorithm:

Let p be a prime and let elliptic curve E defined over GF(p). (a.8)

A'is a point on E having prime order q and define:

K=(p, q, E, P, m, Q), where Q=mP

p, g, E, P and Q are public key and m is the private key
K=(p, g, E, P, m, Q) and k is a random number, define
sigk(x, K)=(r, s),
where
kP=(u, v)

r=umod g, and
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s=k™(SHA-1(x)+mr)mod q

Verification is given bellow:

w=s"modq

I=WSHA-1(x) mod q

j=wrmod q

(uV)=iP+jQ
verg(x, (r,s)) is true if and only if

umodg=r

Let E: y?=x®+x+6(mod1l) and p=11, q=13, P=(2,7), m=7 and Q=(7,2). Suppose

message x and SHA-1(x)=4, Alice sign the message with random value k=3. She computes:

(U, vV)=3(2, 7)=(8,3)
r=u mod 13=8, and
s=31(4+7*8)mod 13=7
(8, 7) is the signature.
Bob verifies the signature by
w=7"mod 13=2
i=2*4mod 13=8
j=2*8mod 13=3

(u, v)=8P+30Q=(8,3), and
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u mod 13=8=r.

Then the signature is verified.

55



BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

“Certicom ECC FAQ?”, http://www.certicom.com/index.php?action=ecc,ecc_faq

IEEE Std 1363-2000, IEEE standard specifications for public-key cryptography, IEEE
Computer Society, August 29, 2000.

Douglas R. Stinson, Cryptography: Theory and Practice - Second edition, Chapman &
Hall/CRC , 2002

J. Lopez and R. Dahab, “Improved algorithms for elliptic curve arithmetic in GF(2n)",
Selected Areas in Cryptography - SAC '98, LNCS 1556, 1999, 201-212.

K. Fong, D. Hankerson, J. Lopez;and A. Menezes. “Field Inversion and Point Halving
Revisited". IEEE Transactions on-Computers, 53(8):1047-1059, August 2004.

E. Knudsen, “Elliptic scalar'multipghlication-using point halving”, Advances in Cryptology
- Asiacrypt '99, LNCS 1716, 1999, 135-149.

W. Trappe and L.C. Washington: Introduction to Cryptography with Coding Theory,
Prentice Hall, 2001.

A. X9.62. Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA), 1998.

Philip H. W. Leong and Ivan K. H. Leung. “A microcoded elliptic curve processor using
FPGA technology”. IEEE Transactions on VLSI Systems, 10(5), October 2002.

Chi Huang, Jimmei Lai, Junyan Ren, and Qianling Zhang, “Scalable Elliptic Curve
Encryption Processor for Portable Application,” 5™ Int. Conf. ASIC, pp. 1312-1316, Oct.
2003.

56



[11] Souichi Okada, Naoya Torii, Kouichi Itoh, and Masahiko Takenaka. “Implementation of
elliptic curve cryptographic coprocessor over GF(2™) on an FPGA.” In Cryptographic
Hardware and Embedded Systems (CHES), pages 25-40. Springer-Verlag, 2000.

[12] Guogiang Bai, Zhun Huang, Hang Yuan, Hongyi Chen, Ming Liu, Gang Chen, Tao Zhou,
and Zhihua Chen. “A high performance VLSI chip of the elliptic curve cryptosystems,”
7" Int. Conf. SICT, pp. 2059-2062, Oct. 2004

[13] A. Daneshbeh, M. Hasan, “Area Efficient High Speed Elliptic Curve Cryptoprocessors
for Random Curves,” Proceedings of ITCC 04, Las Vegas, NE, USA, 2004

[14] F. Sozzani, G. Bertoni, S. Turcato, L. Breveglieri, “A parallelized Design for an Elliptic
Curve Cryptosystem Coprocessor” Proceedings of ITCC 05, 2005.

[15] G. Orlando and C. Paar. “A high-performance reconfigurable elliptic curve processor
for GF(2m).” In Cryptographic Hardware and Embedded Systems (CHES), 2000.

[16] N. Gura, S. C. Shantz, H. Eberle, S..Gupta,.V. Gupta, D. Finchelstein, E. Goupy, and D.
Stebila. “And end-to-end systems approach to.elliptic curve cryptography.” In
Cryptographic Hardware and Embedded Systems (CHES), 2002.

[17] J. Lutz, A. Hasan., “High Performance FPGA based Elliptic Curve Cryptographic
Co-Processor”.  Proceedings of ITCC 04, Las Vegas, NE, USA, 2004

57



