
國立交通大學

電子工程學系電子研究所碩士班

碩 士 論 文

橢圓曲線密碼系統之設計與實現

Design and Implementation for Elliptic Curve
Cryptosystems

研究生:徐維均

指導教授:張錫嘉

中華民國九十四年十月

 ii

橢圓曲線密碼系統之設計與實現

Design and Implementation for Elliptic Curve
Cryptosystems

學生：徐維均 student :Wei-Chun Hsu

指導教授：張錫嘉 Advisor : Hsie-Chia Chang

國立交通大學

電子工程學系電子研究所碩士班

碩士論文

A Thesis
Submitted to Department of Electronics Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

In Partial Fulfillment of the Requirements
For the Degree of Master

In
Electronics Engineering

October 2005
Hsinchu, Taiwan, R.O.C.

 iii

橢圓曲線密碼系統之設計與實現

學生 : 徐維均

指導教授 : 張錫嘉

電子工程學系電子研究所碩士班

摘 要

橢圓曲線密碼系統用來對資料作加密，使得資料在傳輸中不會被竊取。

它主要是根據在有限場中的橢圓曲線上之點的運算，加密與解密都是利用點

的 scalar multiplication。本論文利用 point halving 演算法，來實現橢圓曲線

密碼系統。此實現座落在有限場 GF(2163)上，且利用 normal basis。所使用的

橢圓曲線為 pseudo-random elliptic curve，其輸入之 base point 為λ

-representation，輸入編碼過之 scalar，以為 halve-and-add 演算法所使用。再

利用 add-and-subtract 演算法來進一步減少 1 的個數。所使用的 normal basis

乘法器為序列式乘法器，點之相加則利用 projective coordinates。此架構以

0.18μm 的製程來實現，需 77K 個邏輯閘。根據模擬的結果，throughput 為

1.76Mb/s。也利用 Xilinx Virtex2 (2V8000) 之 FPGA 作驗證。其頻率為

90Mhz，LUT 數目為 8815.

 iv

Design and Implementation for Elliptic Curve
Cryptosystems

Student: Wei-Chun Hsu

Advisor: Hsie-Chia Chang

Institute of Electronics Engineering
National Chiao Tung University

ABSTRACT

Elliptic Curve Cryptosystems encrypts data so that the opponent

eavesdropping over the channel can’t get any information. Its operation is

mainly based on the point operations on elliptic curve over finite field. The

encryption and decryption utilize scalar multiplication. This thesis

demonstrates the implementation of Elliptic Curve Cryptosystems using point

halving. This implementation uses normal basis over GF(2163). The chosen

elliptic curve is pseudo-random elliptic curve and the input base point is in λ

-representation. The input scalar encoded first for halve-and-add algorithm.

We further use the add-and-sub algorithm to reduce the amount of 1’s in the

input scalar. Serial normal basis multiplier is used while the point addition is in

projective coordinates. The architecture is synthesized using 0.18μm

technology and requires 77K gates. The throughput is 1.76Mb/s. Verify the

implementation with Xilinx Virtex2 (2V8000) FPGA. The frequency is 90Mhz

and number of LUTS is 8815.

 v

誌 謝

二年的研究所生活很快就過去了，在這兩年中學到了許多知識以及一些處世的道理。

當然要感謝的人非常多，首先最要感謝的當然是我的指導教授張錫嘉博士，這兩年來他

很有耐心的指導我，不但讓我學到許多 IC 設計的經驗，更亦師亦友的督促我給我鼓勵，

真是有幸能在他的實驗室。再來感謝 oasis 實驗室的同學和學弟，很高興認識你們，你

們在各方面都給予我許多幫助，帶給我充滿快樂與回憶的研究生活，再一次跟每個人說

一聲謝謝。

 vi

CONTENTS

Chapter 1 ...1
Introduction ..1

1.1 Motivation ..2
1.2 Thesis Organization ..3

Chapter 2 ...4
Mathemetical Background..4

2.1 Finite Field Arithmetic..4
2.2 Elliptic Curve..12

Chapter 3 ...25
Scalar Multiplication Algorithms ...25

3.1 Double-and-Add Algorithm..25
3.2 Halve-and-Add Algorithm..26
3.3 Add-and-Subtract Algorithm ..34

Chapter 4 ...37
Implementation Results and Comparisons ...37

Chapter 5 ...49
Conclusion..49

Appendix ...50
Elliptic Curve Cryptosystems...50

a.1 Elliptic Curve ElGamal Cryptosystem ...51
a.2 Elliptic Curve Diffie-Hellman Key Exchange..52
a.3 Elliptic Curve Digital Signature Algorithm..53

BIBLIOGRAPHY...56

 vii

List of Figures
Figure 2.1: the elliptic curve y2=x3+x+1..13
Figure 2.2: Point addition, P+Q=R ..14
Figure 2.3: Point doubling, 2P=R ..14
Figure 2.4: Negative Point, P+(-P)=O...15
Figure 4.1: Normal Basis Multiplier version 1...39
Figure 4.2: Multiplier element of ck ...40
Figure 4.3: Normal basis multiplier version 2..40
Figure 4.4: Circuit for point halving...42
Figure 4.5: Point halving flow..43
Figure 4.6: Circuit for mix-coordinates addition..45
Figure 4.7: The control of point halving and projective addition...46

 viii

List of Tables
Table 1.1: NIST guidelines for public key sizes for AES...2
Table 2.1: Normal Basis Table..9
Table 2.2: The multiplication table of type 1 normal basis in GF(24) 11
Table 2.3: The number of required operations for point doubling ...24
Table 2.4: The number of required operations for point addition...24
Table 2.5: The number of required operations for point addition when Q= (X2, Y2, 1)24
Table 3.1: Comparison between halving and doubling in affine and projective coordinates...32
Table 4.1: The data flow of mix-coordinates addition (5.10) ...44
Table 4.2: The synthesized results ..47
Table 4.3: The performance comparison of Elliptic Curve Cryptosystems implementations on

ASIC ...48
Table 4.4: The performance comparison of Elliptic Curve Cryptosystems implementations on

FPGA..48

 1

CHAPTER 1

Introduction

The objective of cryptography is to enable two people to communicate with each other

over an insecure channel such that an opponent can’t steal the information. For private key

system or symmetric key system, the two people share the same key and this key must be kept

secret. Let Alice wants to send information to Bob, which this information is called plaintext.

Alice uses the predetermined key to encrypt the information and then send it to Bob. Bob

receive the resulting ciphertext and use the same key to decrypt the information back.

Advanced Encryption Standard (AES) and Digital Encryption Standard (DES) are private key

systems.

For public key systems or asymmetric key systems, user has two keys one is public key

and one is private key which is kept secret. If Alice wants to send a message to Bob, she

takes Bob’s public key and encrypts the message. After Bob receive the encrypted data Alice

sent. He decrypts the message with his own private key. There are two advantages for

public key systems. One of them is the amount of keys. Given a group with many users,

and users communication with each using private key systems. Then one is required to have

the same amount of private keys as the amount of users, since private key can only be share by

two people. In case of public key systems, the public key is broadcast to everyone. So

given a large group users, only two keys need for each user one public and one private. The

other advantage is that private key systems need to establish a secure channel first and send the

private key to the user the other side, so that both sides have the same key. While a totally

safe channel is not possible, private key system requires addition mechanism to exchange key.

The Elliptic Curve Cryptosystems and RSA are public key systems.

 2

1.1 Motivation

As the popularity of Internet and WLAN grows, the demand of information security rises.

Thus, efficient and secure cryptosystems is of great importance. The Elliptic Curve

Cryptosystems, one of the most advanced cryptosystems, is becoming the mainstream security

system in all kinds of application. It is a part of the Digital Signature Standard (DSS)

proposed by the National Institute of Standards and Technology. The Elliptic Curve

Cryptosystems is based on the mathematical operations of elliptic curve. It can achieve high

security level using shorter key respect to RSA cryptosystems. As shown bellow[1], the

163-bit ECC key offers the same level of security as 1024-bit RSA key and AES is compared

with these two cryptosystems.

Table 1.1: NIST guidelines for public key sizes for AES

ECC Key Size

(Bits)

RSA Key Size

(Bits)

Key Size

Ratio

AES Key Size

(Bits)

163 1024 1:6

256 3072 1:12 128

384 7680 1:20 192

512 15360 1:30 256

In order to speed up the Elliptic Curve Cryptosystem, we proposed an efficient hardware

implement for the elliptic curve cryptosystems. The proposed architecture utilizes the point

halving technique to achieve a better performance.

 3

1.2 Thesis Organization

In chapter 2, the mathematical background of finite field, normal basis, polynomial basis,

and elliptic curves in projective and affine coordinates are introduced. Chapter 3 shows

several algorithms for calculating scalar multiplication, which includes double-and-add

algorithm, halve-and-add algorithm, and add-and-subtract algorithm. The idea of Elliptic

Curve Cryptosystems is introduced in Chapter 4. Chapter 5 contains the implementation

results of the proposed architecture for Elliptic Curve Cryptosystems and comparisons between

other implementations are made. Finally, chapter 6 is the conclusion.

 4

CHAPTER 2

Mathemetical Background

The Elliptic Curve Cryptosystems utilize elliptic curves over finite field, either binary field

GF(2n) or prime field GF(p). In this chapter, I will give the mathematical background related

to Elliptic Curve Cryptosystems. I will focus on finite field GF(2n), where two kinds of basis

in this field and each of their basic arithmetic will be introduced.

In the second part of the chapter, elliptic curve will be introduced. Elliptic curve, the

foundation of Elliptic Curve Cryptosystems, will be specified according to different fields and

coordinates. Each different fields and coordinates yields different formulas for the operations

of points on elliptic curve, while these point operations are the basis operations of Elliptic

Curve Cryptosystems.

2.1 Finite Field Arithmetic

Polynomial Basis

 For finite field GF(2n), the set of polynomial basis is {αn-1, αn-2, …, α, 1}, where α

is the root of the field polynomial. Each element belongs to GF(2n) could be represented as a

linear combination of the basis. For instance, let B be an element of GF(2n) with polynomial

basis:

1,..., 0
2

1
2

2
1

1 ⋅+⋅⋅+⋅= −
−

−
− bbbbB n

n
n

n ααα (2.1)

, and we can give a binary notation to this element:

"..." 0121 bbbbB nn −−=

 5

For example, given a GF(28) element

1246 ++++ αααα

or

111101010 234567 ⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅ ααααααα

, its binary representation is “01010111” where each bit match to the coefficient of each

term.

The arithmetic for elements over finite field with polynomial basis will be introduced in the

following paragraph.

The sum of two elements in the field is simply bitwise exclusive-or of the two elements.

For example, (α6+α4+α2+α+1) and (α7+α+1) are elements of GF(2n) and in binary

notation we can find the bitwise exclusive-or of these two numbers:

“01010111”♁“10000011”=”11010100”

, which means

(α6+α4+α2+α+1)+ (α7+α+1) =(α7+α6+α4+α2)

In the case of multiplication, the two elements are treated as polynomials and multiplied

first, then module the result by the field polynomial. An example is shown bellow. Let

GF(28) and field polynomial 1)(348 ++++= αααααf find (α 6+α 4+α 2+α +1)

multiply by (α7+α+1):

1)1)(1(34568911137246 ++++++++=++++++ αααααααααααααα

 6

1
)1mod(1

67

3483456891113

++=

++++++++++++

αα

αααααααααααα

So the multiplication result is 167 ++αα .

 Squaring is a special case of multiplication when two inputs are the same. For example ,

let B=(α7+α+1) be an element of GF(28) and its square

B2=(α7+α+1)2 =(α14+α2+1)

(α14+α2+1)mod)1(348 ++++ αααα

=(α4+α2+α)

Observing the above example, note that squaring a function has the same result as squaring

each and every term. As a result, given a element B=B(α)∈GF(2n) and the field polynomial

f(α).

B(α)2=B(α2)mod f(α) (2.2)

Normal Basis

 In the normal basis case, the set of the basis is },,...,,{ 222 21

ββββ
−− nn

 over GF(2n) where

β is the root of the field polynomial. Each element in the field could be expressed as the

linear combination of the basis. Let A be an element of GF(2n) with normal basis:

ββββ 0
2

1
2

2
2

1 ,,...,
21

aaaaA
nn

nn

−−

−− += (2.3)

 Similarly, we can express each element of the field as a binary number “an-1an-2…a1a0”.

Addition in normal basis is the same as polynomial basis. It’s still bitwise exclusive-or of the

 7

two elements. For example, let (β8+β2) where its binary notation is “1010” and (β4+β2+β)

“0111” are two elements of GF(24), then

“1010”♁”0111”=”1101”

)()() (482428 ββββββββ ++=++++

 In the case of squaring, let A be an elements of GF(2n) equation (2.3): then from equation

(2.2)

2
0

2
1

2
2

2
1

2 21

,..., ββββ aaaaA
nn

nn ++=
−

−− (2.4)

and from Fermat’s little theorem:

Given β∈GF(2n)

ββ =
n2 (2.5)

We can derive from equation (2.4)

ββββ

ββββ

1
2

0
2

1
2

2

2
0

2
1

2
21

2

,,...,

,...,
21

21

−−

−−

+=

++=
−

−

nn

nn

aaaa

aaaaA
n

n

(2.6)

In normal basis, squaring operation is simply one bit cyclic shift of the original data. Let

A=“an-1an-2…a1a0”∈ GF(2n), A2=“an-2…a1a0 an-1”. This squaring characteristic gives normal

basis an advantage over polynomial basis, because the implement of the normal basis squaring

requires no extra hardware only wiring.

Next we will derive the multiplication of normal basis. Suppose A, B are elements in the

field GF(2n):

 8

∑∑
−

=

−

=

==
1

0

2
1

0

2 ,
n

i
i

n

i
i

ii

bBaA ββ (2.5)

Multiplying A by B is defined as bellow:

∑∑∑
−

=

−

=

−

=

==×=
1

0

2
1

0

1

0

22
n

i
i

n

i

n

j
ji

iji

cbaBAC βββ (2.6)

Let the product of multiplying
i2β by

j2β be:

{ }1,0|
1

0

222 ∈= ∑
−

=

λβλββ
n

k
ijk

kji

 (2.7)

Substitute equation (2.7) into equation (2.6). We can get:

10|
1

0

1

0

−≤≤= ∑∑
−

=

−

=

nkbac
n

i

n

j
jiijkk λ (2.8)

If GF(2n) and the number of the nonzero terms or ijkλ =1 terms in equation (2.8) equals to

2n-1, then this normal basis is call the optimal normal basis. Optimal normal basis leads to

minimum multiplication complexity and thus efficient hardware implement. There are many

types of normal basis. [2] givens a chart of existing normal basis type with different field

length n of GF(2n).

 9

Table 2.1: Normal Basis Table

n Normal basis type n Normal basis type
2 1,2 155 2
3 2 156 13
4 1 157 10
5 2 158 2
6 2 159 22
7 4 160 -
8 - 161 6
9 2 162 1
10 1 163 4

Of all types, only type 1 and type 2 are optimal normal basis.

According to equation (2.7), we raise both side to the power of 2-l

() ∑∑
−

=

−

=
−−

−−−
−

===
1

0

2
1

0

2
,,

22222
n

k
ijk

n

k
kljli

lkkljli
l

ji

βλβλββββ (2.9)

Comparing the coefficient of the
02β term, we will get:

1,,0|0,, −≤≤∀= −− nljiljliijl λλ (2.10)

This implies we can find the value of every ijkλ by means of 0,, kjki −−λ . And from

equation (2.8) utilizing equation (2.10):

10|
1

0

1

0
0,, −≤≤= ∑∑

−

=

−

=
−− nkbac

n

i

n

j
jikjkik λ (2.10)

, and by changing the subscripts

 10

10|
1

0

1

0
0 −≤≤= ∑∑

−

=

−

=
++ nkbac

n

i

n

j
kjkiijk λ (2.11)

The above the equation shows the property of normal basis multiplication. By cycle

shifting the subscripts of the formula for c0, we can obtain other coordinates of the production.

We need to construct a table of ijkλ first before performing normal basis multiplication. For

type 1 normal basis and GF(2n), if i and j satisfy one of the following congruence then ijkλ =1:

2i + 2j ≣ 1 mod n+1

2i + 2j ≣ 0 mod n+1

(2.12)

Given type 1 normal basis and GF(24), the table of ijkλ is constructed bellow following to

the rules above. Note that only the k=0 column is needed to be evaluated and the rest of the

columns could be easily derived from this column by utilizing equation (2.10). For example:

λ001=λ330=1, λ011=λ300=0, λ021=λ310=1, and so on.

 11

Table 2.2: The multiplication table of type 1 normal basis in GF(24)

 k
i j 0 1 2 3
0 0 0 1 0 0
0 1 0 0 0 1
0 2 1 1 1 1
0 3 0 0 1 0
1 0 0 0 0 1
1 1 0 0 1 0
1 2 1 0 0 0
1 3 1 1 1 1
2 0 1 1 1 1
2 1 1 0 0 0
2 2 0 0 0 1
2 3 0 1 0 0
3 0 0 0 1 0
3 1 1 1 1 1
3 2 0 1 0 0
3 3 1 0 0 0

Now we can write the product of the type 1 normal basis multiplication in GF(24) from the

above table.

331312023121200 bababababababac ++++++=

Since type 1 normal basis is optimal normal basis, the number of terms in above equation

equals to 2*4-1=7.

And from equation (2.11)

kkkkkkkkkkkkkkk bababababababac ++++++++++++ ++++++= 331312231212

 12

The formula of other coordinates can be derived by cyclic shifting the subscripts of the c0

formula:

002023130232311 bababababababac ++++++=

113130201303022 bababababababac ++++++=

220201312010133 bababababababac ++++++=

As for other types of normal basis, [2] provides an efficient algorithm for evaluating the

multiplication product the normal basis. Where the type of normal basis and the field length

n of finite field GF(2n) is given as the input data of the algorithm.

2.2 Elliptic Curve

 A non-singular elliptic curve over real numbers is described by the following equation:

y2=x3+ax+b (2.13)

Where a, b are real numbers such that

0274 23 ≠+ ba (2.14)

The elliptic curve is singular, if equation (2.14) fails[3]. The following diagram shows an

example of an elliptic curve where a=b=1. Note that the diagram is symmetric with respect

to x-axis.

 13

Figure 2.1: the elliptic curve y2=x3+x+1

For finite field GF(p), the elliptic curve satisfies the congruence, where a, b∈GF(p):

y2≡x3+ax2+b(mod p) (2.15)

For finite field GF(2n), the elliptic curve is in a slightly different form as shown below,

where a, b∈GF(2n):

y2+xy=x3+ax2+b (2.16)

An abelian group can be defined on the set E of solutions (x, y) to the elliptic curve

equation plus a point O at infinity. Now consider the addition law of elliptic curve:

Given two points P and Q on elliptic curve E, consider the result of P+Q. First, we

define L to be the line through P and Q. The L intersects E at point R’, then we reflect R’ in

 14

the x-axis to get R. We define R to be the result of P+Q, that is, P+Q=R. An example is

given below:

Figure 2.2: Point addition, P+Q=R

Now consider the situation when P=Q, namely, consider the result of 2P. Since P=Q,

line L now become a tangent line passing through P. Similarly, the line L intersects E at point

R’, then we reflect the x-axis to obtain the result R. The following diagram shows this

condition:

Figure 2.3: Point doubling, 2P=R

The point at infinity O is considered as the identity element:

 15

P+O=O+P=P (2.17)

 We consider the case when Q is the reflection of P in the x-axis. So if we draw a line L

through P and Q, then line L will be an vertical through P and intersect E at infinity O and we

can get P+Q=O. Since O is the identity element, we can consider that Q as the negative of P,

that is Q=-P. We can conclude that the negative point of a given point is the reflection of the

point in the x-axis.

Figure 2.4: Negative Point, P+(-P)=O

Given a point P∈E over finite field, then E is a finite abelian group. We can find an

integer r such that rP=
r

PPP +++ ... =O. The integer r is called the order of point P.

Next, I will derive the addition and doubling formula for points on elliptic curve according

to the addition law mentioned above. Moreover, a different kind of representation called the

projective coordinates representation will be introduced.

Affine Coordinates Representation

Affine coordinate representation is respect to projective coordinates representation.

Given an elliptic curve E: y2=x3+ax+b, let’s derive the negative of a point first. Let P=(x1,

 16

y1), the negative of P is simply the corresponding point of the reflected P in the x-axis which is

(x1, -y1).

-(x1, y1)=(x1, -y1) (2.18)

We next derive the formula for point addition P+Q=R. Let P, Q∈E, where P=(x1, y1),

Q=(x2, y2), R=(x3, y3) and L is the line passing through P and Q represented as

νλ += xy (2.19)

, where the slope of L is:

12

12

xx
yy

−
−

=λ (2.20)

, and

2211 xyxy λλν −=−= (2.21)

L will intersects E at point R’. Substitute equation (2.19) into the equation for E to find

the solution of the coordinates, we can get

baxxx ++=+ 32)(νλ (2.22)

, we can derive from above

0)2(2223 =−+−+− νλνλ bxaxx (2.23)

We have to solve equation (2.23) for the x-coordinates. Since x1 and x2 are two roots of

equation (2.23), the sum of the three roots will equal to

 17

2
321 λ=++ xxx

21
2

3 xxx −−= λ (2.24)

Since R’ equals to (x3, -y3). We can derive

13

13

xx
yy

−
−−

=λ (2.25)

, or

1313)(yxxy −−= λ (2.26)

For the case when doubling a point, we have to find the slope of the tangent line L to point

P=(x1, y1). Let 2P=(x3, y3), using the implicit differentiation of the equation of E

ax
dx
dyy += 232 (2.27)

So the slope of the tangent line L with equation (2.22) to point P is

1

2
1

2
3

y
ax +

=λ
(2.28)

and

11 xy λν −= (2.29)

The line will intersects with E at R’=(x3, -y3) and substitute the line equation into E.

Regarding equation (2.23), the cubic equation has two roots at x1, and one root at x3. So x3

equals:

 18

1
2

3 2xx −= λ (2.30)

With the same procedure, we can find y3 by equation (2.26).

Finally, the formula for point addition and point doubling can be summarized as bellow.

Suppose P=(x1, y1), Q=(x2, y2), P+Q=(x3, y3), elliptic curve with equation (2.13) or (2.15),

then the formula of point addition:

12

12

xx
yy

−
−

=λ

21
2

3 xxx −−= λ

1313)(yxxy −−= λ

(2.31)

Let P=(x1, y1), 2Q=(x3, y3), the formula of point doubling

1

2
1

2
3

y
ax +

=λ

1
2

3 2xx −= λ

1313)(yxxy −−= λ

(2.32)

When used over finite field GF(2n), the elliptic curve is in the form (2.16). We can derive

the formulas for point addition and point addition over finite field GF(2n) in a similar method.

As in the previous context, we will derive the negation of a point first. Given a point P=(x1,

y1), we try to find the representation of –P=(x2, y2). As mentioned above that P+-P=O, we

draw a vertical line L through P and the line will intersect E at point –P. The equation of this

line L is simply

 19

x+x1=0 (2.33)

, which implies that x2+x1=0 and the x-coordinate of –P is x1. Substitute equation (2.33)

into equation (2.16) in order to find the solution of the y-coordinate of –P. We will get:

y2+x1y=x1
3+ax1

2+b (2.34)

This square equation has two solutions and one of them is y1. The sum of the two

solutions will equal to the coefficient of the term y. As the result,

y1+y2=x1

, or

y2=x1 +y1 (2.35)

So for P=(x1, y1), the negation of P over finite field GF(2n)

-(x1, y1)=(x1, x1+y1) (2.36)

Again, let P, Q∈E, where P=(x1, y1), Q=(x2, y2), P+Q=R=(x3, y3) and L is the line passing

through P and Q. L has the equation (2.19), where

12

12

xx
yy

+
+

=λ (2.25)

and

2211 xyxy λλν +=+= (2.26)

Substitute the equation of L (2.19) into the elliptic curve equation (2.16)

 20

baxxxxx ++=+++ 232)()(νλνλ (2.27)

, it is the same as

0)(223 =+++++ bxxax νλλ (2.28)

x1 and x2 are two solutions of the cubic equation, we can find x3 from the coefficient of x2

term

axxx ++++= 21
2

3 λλ (2.29)

Then same as before, we use R’=(x3, x3+y3) and P=(x1, y1) to compute the slope

13

133

xx
yyx

+
++

=λ (2.30)

Derived from above,

13133)(yxxxy +++= λ (2.31)

Let’s move on to the formulas of doubling a point over GF(2n), using the implicit

differentiation of the elliptic curve equation (2.16):

axx
dx
dyxy

dx
dyy 232 2 +=++ (2.32)

Applying the property of GF(2n), the equation is reduced to:

2x
dx
dyxy =+ (2.33)

Note that if not the xy term in the elliptic curve equation (2.16), the implicit differentiation

would be meaningless. This gives one reason why the elliptic curve equation is slightly

 21

differently over finite field GF(2n). Let P=(x1, y1), 2P=(x3, y3) and line L is the tangent line

to P described by equation (2.19). The slope of the tangent line L would be:

1

1
1 x

yx +=λ (2.34)

while

11 xy λν += (2.35)

Following the same procedure, x1 is the two roots of equation (2.29), x3 is the other. So,

axx ++=+ λλ2
312

which 2x1 =0 over finite field GF(2n)

ax ++= λλ2
3 (2.36)

Finally, y3 is the same as shown in equation (2.31)

The formulas for point addition and point doubling over finite field GF(2n) are given

bellow:

Let P=(x1, y1), Q=(x2, y2), P+Q=(x3, y3), elliptic curve with equation (2.16), then the point

addition formula:

12

12

xx
yy

+
+

=λ

axxx ++++= 21
2

3 λλ

13133)(yxxxy +++= λ

(2.37)

 22

And the formula of point doubling, where P=(x1, y1), 2P=(x3, y3)

1

1
1 x

yx +=λ

ax ++= λλ2
3

13133)(yxxxy +++= λ

(2.38)

Projective Coordinates Representation

Finite field GF(2n) inversion is relatively expensive. If inversion could be avoided while

performing point addition or point doubling, then the performance of the elliptic curve

cryptosystems would be improved. This is done by using projective coordinates.

 Points with projective coordinates have three coordinates, for example, a projective point

P=(X, Y, Z). An affine point (x, y) corresponds to the projective coordinate point (x, y, 1),

while a projective point (X, Y, Z) could be converted into an affine point (X/Z, Y/Z2).

Replacing x= X/Z, y= Y/Z2 into equation (2.4), the resulting projective elliptic curve equation

would be:

42232 bZZaXZXXYZY ++=+ (2.39)

The formulas for adding and doubling points on elliptic will be presented here. Let P=(X1,

Y1, Z1) , Q=(X2, Y2, Z2), and P+Q=R(X3, Y3, Z3) are points with projective coordinates, then the

formula for adding points is [4]:

 23

,21

212

121

2
212

2
121

,
,
,

,

AAC
ZXB
ZXB

ZYA

ZYA

+=
⋅=
⋅=
⋅=

⋅=

),(

,
,

,
,

22

2
3

21

21

aEFDG

FZ
EDF
ZZE
BBD

+⋅=

=

⋅=
⋅=
+=

.
,

,

,
,

33

31
2

31
2

2
3

JZIHY
XADJ

XEBDI

GHCX
FCH

⋅+⋅=
+⋅=

+⋅⋅=

++=

⋅=

(2.40)

When Z2=1, the formula becomes

,
),(

,
,

,

2
1

2
1

112

1
2
12

CAE
aZCBD

BZC
XZXB

YZYA

⋅=
+⋅=

⋅=
+⋅=
+⋅=

.)(
,)(

,
,

,

33

2
322

323

2
3

2
3

GFZEY
ZYXG

ZXXF
EDAX

CZ

+⋅+=
⋅+=

⋅+=
++=

=

(2.41)

Suppose P=(X1, Y1, Z1), 2P=Q= (X2, Y2, Z2), the doubling formula is:

).(
,

,

4
1

2
1222

4
12

4
1

4
12

2
1

2
12

bZYaZXZbZY
ZbXX

XZZ

++⋅+⋅=

⋅+=

⋅=

(2.42)

Comparing with affine coordinates, projective coordinates doubling and adding requires

more multiplications but no inversion. The performance analysis with affine coordinates

doubling and adding is given below:

 24

Table 2.3: The number of required operations for point doubling

Operations Affine coordinates Projective coordinates

Multiplication 2 4

Squaring 1 5

Inversion 1 0

Table 2.4: The number of required operations for point addition

Operations Affine coordinates Projective coordinates

Multiplication 2 13

Squaring 1 6

Inversion 1 0

Table 2.5: The number of required operations for point addition when Q= (X2, Y2, 1)

Operations Affine coordinates Projective coordinates

Multiplication 2 8

Squaring 1 5

Inversion 1 0

The performance comparison between the two coordinates is determined by the

computational complexity of the finite field inversion in affine coordinates. For example,

given the table 2.3 condition and neglecting the squaring operation, the affine coordinates will

outperform projective coordinates if the computational complexity of the inversion is less than

6 multiplications.

 25

CHAPTER 3

Scalar Multiplication Algorithms

Scalar multiplication, given a point P on elliptic curve and a scalar k find kP, is the mainly

the Elliptic Curve Cryptosystems all about. In order to compute scalar multiplication

efficiently, many algorithms are proposal. The basic one is the double-and-add algorithm and

halve-and-add algorithm gives an efficiently way to compute scalar multiplication by acquiring

point halving. These two algorithms will be introduced in this chapter. Besides, we can

apply add-and-subtract algorithm to these two algorithms to achieve a better performance.

3.1 Double-and-Add Algorithm

 The double-and-add algorithm is the basic algorithm for calculating scalar multiplication.

This algorithm is composed of point doubling and point addition. Given GF(2n) a base point

P and a scalar k, the double-and-add algorithm is:

}
PQQ

 then1b if
Q2Q

{
0 down to 1-n from ifor

}1,0{ ,2

i

1

0

+=
=

=

=

∈= ∑ −

=

OQ

bbk n

i i
i

i

(3.1)

 26

For example, given P and a scalar k=10=”1010”:

k= “1 0 1 0”

Q= O P 2P 4P+P=5P 10P

The formulas required for adding points and doubling points in the algorithms is explained

in chapter 2.

3.2 Halve-and-Add Algorithm

 The halve-and-add algorithm[5] is similar to double-and-add algorithm but the point

doubling step is replaced by point halving. Next, the procedure of point halving is given.

Point Halving

For P=(x1, y1), 2P=(x3, y3), the formula of point doubling is given in equation (2.38) which

is the same as:

1

1
1 x

yx +=λ

ax ++= λλ2
3

)1(3
2

13 ++= λxxy �

(3.2)

Point halving is the reverse of point doubling. Given an input point 2P=(x3, y3) find

P=(x1, y1). In order to compute x1, and y1, first we have to solve λ from:

3
2 xa +=+ λλ (3.3)

Where this square equation has two solutionsλandλ+1.

 27

Solve

)1(33
2

1
++= λxyx � (3.4)

for x1. And finally, calculate y1:

)(111 λ+= xxy (3.5)

The idea of trace plays an important role in deriving the algorithm for point having. Let

c∈GF(2n), trace is defined as:

12 222 ...)(
−

++++=
n

cccccTr (3.6)

The trace of an element in finite field is either 0 or 1. Following are some properties of

trace: let c,d∈GF(2n),

22)()()(cTrcTrcTr == (3.7)

Trace is linear:

)()()(dTrcTrdcTr +=+ (3.8)

My implement uses pseudo-random curve over GF(2163) which has the form

bxxxyyE ++=+ 232: (3.9)

The coefficient a in equation (2.16) is always equal to 1. So:

Tr(a)=1 (3.10)

If (x, y) is a point on elliptic curve (3.9), then:

 28

Tr(x)=Tr(a) (3.11)

The following theorem finds the correct solution of equation (3.3) while halving a point:

Let P=(x1, y1) and 2P=(x3, y3).

Let λ̂ be a solution to (3.3) and λ̂33 xyt += .

Suppose that Tr(a)=1. Then λ̂ is the correct solution if and only if

Tr(t)=0

(3.12)

We will prove the theorem. If λ̂ is a correct solution then it will satisfy equation (4.4),

that is,

)1ˆ(33
2

1
++= λxyx � (3.13)

From equation (4.10) and equation (4.11)

Tr()1ˆ(33 ++ λxy)=Tr(x1
2)=Tr(x1)=Tr(a)=1 (3.14)

and

Tr()1ˆ(33 ++ λxy)= 1)()()ˆ())ˆ((333333 +=++=++ tTrxTrxyTrxxyTr λλ (3.15)

Finally, we can get

11)(=+tTr ,

Tr(t)=0

 29

Else if λ̂ is not a correct solution then the correct solution must be λ̂ +1. Now λ̂ +1

will satisfy equation (3.4), substitute λ̂ +1 into equation (3.4)

)ˆ()11ˆ(3333
2

1
λλ xyxyx � +=+++= (3.16)

Similarly,

Tr(t)=Tr()ˆ(33 λxy +)=Tr(x1
2)=Tr(x1)=Tr(a)=1 (3.17)

That is, if Tr(t)=1 then the correct solution is λ̂ +1.

Let the λ-representation of a point 2P=(x3, y3) be (x3, λ3), where λ3=x3+y3/x3. Let

the λ-representation of 2P as the input to point halving, then t in equation (3.12) can be

computed directly from this λ-representation

λλλλλ ˆ)ˆ()ˆ()ˆ(33
3

3
3

3

3
333333 xy

x
y

x
x
y

xxxxxt +=+=+++=++= (3.18)

If Tr(t)=0, λ̂ is the correct answer, from equation (3.13)

31

3333
2

1
ˆ

xtx

xtxxyx �

+=

+=++= λ

(3.19)

If Tr(t)=1, λ̂+1 is the right solution, from equation (3.16)

tx

txyx �

=

=+=

1

33
2

1
λ̂

(3.20)

Next is the full algorithm of point halving. The input of the algorithm is λ

-representation 2P=(x3,λ3). The output is the λ-representation of P=(x1,λ1)

 30

1. Find a solution λ̂ of 3
2 xa +=+ λλ

2. Compute)ˆ(333 λλ ++= xxt

3. If Tr(t)=0, then λ1= λ̂ , 31 xtx +=

else λ1= λ̂ +1, tx =1

(3.21)

Point halving requires a multiplication and three major operations:

Solving 3
2 xa +=+ λλ

Computing the trace of t

Calculating a square root t or 3xt +

Normal basis is of the form },,...,,{ 222 21

ββββ
−− nn

. Let c be an element in field GF(2n).

By equation (2.3):

ββββ 0
2

1
2

2
2

1 ,...,
21

ccccc
nn

nn ++=
−−

−− (3.22)

The trace of c is

0121 ,..., ccccc nn ++++= −− (3.23)

The square root equals a cyclic shift right one bit, an inverse of squaring.

ββββ 1
2

2
2

1
2

0 ,...,
21

ccccc
nn

n ++=
−−

− (3.24)

Solving the Second Degree Equation

 31

Now deal with the solutions of the second degree equation in (3.21). Let c equation

(3.22), there are two ways to solve a second degree equation as given bellow.

c=+ λλ2 (3.25)

Let

βλβλβλβλλ 0
2

1
2

2
2

1 ,...,
21

++=
−−

−−

nn

nn (3.26)

A solution is given by:

,00 =λ ∑
=

=
i

k
ki c

1
λ for all 11 −≤≤ ni (3.27)

These operations are expected to be inexpensive relative to normal basis multiplication.

Or we can solve equation (3.25) by half-trace

142 222 ...)(
−

+++=
n

cccccH (3.28)

Substitute equation (3.28) into (3.25) and from equation (2.2) (2.5)

cctrccccc

cccccccccHcH
nn

nn

+=+++++=

++++++++=+
−

−

)(...

)...()...()()(
2232

22222222

1

14253

(3.29)

Utilizing the above equation, we can prove that H(3xa +) is a root of equation (3.3).

Since

011)()()(33 =+=+=+ xtratrxatr (3.30)

As the result,

 32

3333
2

3)()()(xaxaxatrxaHxaH +=+++=+++ (3.31)

Compare the operations of point halving and point doubling in affine and projective

coordinates.

Table 3.1: Comparison between halving and doubling in affine and projective coordinates

Operations Affine coordinates Projective coordinates Halving

Multiplication 2 4 1

Squaring 1 5 0

Inversion 1 0 0

Solving Second
Degree Equation

0 0 1

Square Root 0 0 1

Check 0 0 1

If computation time of 1 second degree equation solving + 1 square root + 1 check is less than

3 multiplications + 5 squaring, then halving a better performance than point doubling in

projective coordinates.

Halve-and-Add Algorithm

Now we have gone through point halving. We want to employ it into scalar

multiplication. Let GF(2n), given a point P on elliptic curve of odd odder r and a scalar k.

In order to compute kP, we will prove that[6]:

For every scalar k, we can find k’ such that

)(mod
2

1

0
i-1-n

'

rkk
n

i

i∑
−

=

≡

(3.32)

We will prove this by first calculating 2n-1 multiplied by k modulo r.

 33

}1,0{ 2)(mod2 '
1

0

'1 ∈= ∑
−

=

−
i

n

i

i
i

n kkrk (3.33)

Divide both side by 2n-1 gives the result:

}1,0{
2

)(mod '
1

0
i-1-n

'

∈= ∑
−

=
i

n

i

i kkrk 3.34)

Next is a left-to-right version of the halve-and-add algorithm, where k is converted to k’ by

equation (3.33) first. Given GF(2n), the input is k’ and P while the output is kP.

}
P/2P

PQQ
 then1k if

{
0 down to 1-n from ifor

}1,0{ ,2)(mod2

'
i

1

0
''1

=
+=

=

=

∈= ∑ −

=
−

OQ

kkrk n

i i
i

i
n

(3.35)

P is in λ-representation (xP, λP) and must transformed into affine representation (xP, yP)

before added to Q. Q could have projective coordinates and Q+P is done by (2.41).

For example, let GF(24) and r=11=”1011”. Given P and a scalar k=10, compute kP.

First we will convert k using equation (3.33):

"0011"3)11(mod80)11(mod1023' ===⋅=k

One is required to compute the value of P/2(mod11) in this example. We have 2-1(mod11)=6,

since 6*2(mod11)=12(mod11)=1. Given any integer x, x/2(mod11)=x*6(mod11). From

(3.35)

 34

k'= “0 0 1 1”

P= P P/2=6P 6P/2=3P 14P/2=7P

Q= O O O O+3P=3P 3P+7P=10P

The result is the same as the one computed from (3.1).

Another version of the halve-and-add algorithm is a right-to-left method. Point halving

occurs on the accumulator Q, hence the projective coordinates is not usable.

}
PQQ

 then1k if

Q/2Q
{

0 down to 1-n from ifor

}1,0{ ,2)(mod2

'
i

1

0
''1

+=
=

=

=

∈= ∑ −

=
−

OQ

kkrk n

i i
i

i
n

(3.36)

Use the same condition GF(24) and r=11=”1011”. Given P and a scalar k=10, that is,

k’=”0011”. Start from right to left

k'= “0 0 1 1”

 9P/2=10P 7P/2=9P P/2+P=6P+P=7P O+P=P O =Q

And the final answer is 10P. Unlike algorithm (3.35), here only requires one register for Q.

3.3 Add-and-Subtract Algorithm

 35

We can further encode the scalar k or k’ of the halve-and-add algorithm when computing

kP to reduce the Hamming weight of k or k’, hence reduce the amount of point additions.

Since point addition is more expensive than point doubling or halving, the performance of

scalar multiplication is improved. Add-and-subtract algorithm [2] eliminates the situation of

continuous 1’s by combinations of additions and subtractions. Given an n-bit scalar k

∑
=

=
n

i

i
iek

0
2 }1,0,1{−∈ie (3.37)

Using add-and-subtract algorithm, we find m:

Let 0121 ... kkkk nn −− be the binary representation of k,

Let 011... hhhh nn − be the sum of 0121 ... kkkk nn −− + 121 ...kkk nn −−

Let 011... gggg nn − equals to 121 ...00 kkk nn −−

for i from 0 to n

{

if hi=1 and gi=0, then ei=1

else if hi=0 and gi=1, then ei=-1

else ei=0

}

(3.38)

 36

Take k=29=”11101” for example. h=”11101”+”1110”=”101011”

h= “1 0 1 0 1 1”

g= “0 0 1 1 1 0”

e= “1 0 0 -1 0 1”

It’s easy to verify that:

29143212121 25 =+−=+⋅−⋅=k

Combine add-and-subtract algorithm with (3.35):

}
P/2P

P-QQ
 then1e if else

PQQ
 then1e if

{
0 down ton from ifor

}1,0,1{ ,2

}1,0{ ,2)(mod2

i

i

0

1

0
''1

=
=

−=
+=

=

=

−∈=

∈=

∑

∑

=

−

=
−

OQ

ee

kkrk

i

n

i

i
i

n

i i
i

i
n

(3.39)

-P is given by (2.36). Combining add-and-subtract algorithm with (3.1) or (3.36) will do too.

 37

CHAPTER 4

Implementation Results and Comparisons

My implementation uses pseudo-random curve of the form in normal basis over GF(2163)

bxxxyy ++=+ 232 (4.1)

The normal basis is of type 4 which is not optimal normal basis. The base point P=(Px, Py)

ββββ 0
2

1
2

161
2

162 ,,...,
161162

xxxxPx += (4.2)

ββββ 0
2

1
2

161
2

162 ,,...,
161162

yyyyPy += (4.3)

Express Px and Py as 163bit numbers 01161162 ,..., xxxx and 01161162 ,..., yyyy . Their value in

hexadecimal equals

Px=0_bb95_2eb0_8fc0_b1c8_699f_739a_9357_3474_1e04_4460 (4.4)

Py= 7_f185_6ef0_98cf_adc8_077e_e437_33a7_f113_1e41_ae66 (4.5)

If P is in λ-representation, then

Pλ= 3_e6c0_a681_341a_b0a3_6cc5_c338_7bff_ea7e_014f_a6a3 (4.6)

The value of coefficient b in equation (4.1) is

b= 6_fcde_3c9e_f967_437b_e459_b1ce_438e_3479_a9e7_d133 (4.7)

The base point P has order r. r is a large prime number with value in decimal

 38

r=5846006549323611672814742442876390689256843201587 (4.8)

The number of points on elliptic curve is 2r.

The fundamental element of the entire circuits is the GF(2163) normal basis serial multiplier.

Let the inputs equal (2.5) and output equals (2.6). Using the algorithm in [2], derive the

product.

...)()(14511192117211713213010 ++++++++= bbbbabbbbac (4.9)

The formulas for other coordinates can be derived from above:

...)()(14611293118311813314121 ++++++++= bbbbabbbbac

...)()(14711394119411913415232 ++++++++= bbbbabbbbac

We can implement this using three register to store input A, B, and output C. Implement

equation (4.9) and cyclic shift these three register by one bit at each cycle. The product is

generated bit by bit. The circuit diagram is given bellow:

 39

Figure 4.1: Normal Basis Multiplier version 1

The combinational circuit of the input of c0 is concealed. Only the idea of connection is

given. The latency of this multiplier is 163 cycles and c0 has a larger fain-in. We can

modify the above multiplier by adding one term at one cycle[9]. For example:

)(117132130112 bbbbacc ++++=

)(14711394119423 bbbbacc ++++=

The following is the multiplication cell for adding one term at each cycle:

 40

Figure 4.2: Multiplier element of ck

Modify the original multiplier we’ll get:

Figure 4.3: Normal basis multiplier version 2

 41

This is a conceptual diagram showing the difference of wiring. The fan-in of the output

register is reduced. Another benefit of this multiplier is that we could set the register of C to a

value say D at beginning. Then the final output will equal A*B+D equivalent to the effect of

a MAC, multiplication-and-accumulator.

The solution of the second degree equation is given by equation (3.27). This can be easily

implemented using a one bit register and an exclusive-or. Since the solution is given out

serially, we can modify the above multiplier by adding each ai term of the product at each

cycle. For example,

()
()9211714511121

13201171310

bbbbacc
bbbbacc
++++=

++++=

Use similar cells in Figure 4.2, the new normal basis multiplier is

Figure 4.4 serial input normal basis multiplier

Combine the solution circuit with the serial input normal results an efficient implementation

for point halving.

 42

The input of point halving is in λ-representation. For the implementation of point

halving, a normal basis multiplier is used. The second degree equation is solved by half-trace

as given by equation (3.31). Trace t is given by exclusive-or every bit of t. Since only one

multiplier is required, the over all latency is 163 cycles. The architecture of point halving is

given bellow. Let 2P=(x3, λ3), the output is P=(x1, λ1)

Figure 4.5: Circuit for point halving

The procedure of point halving is:

 43

Figure 4.6: Point halving flow

The coefficient a of pseudo-random is always equal to one. One or the multiplication identity

in normal basis is a number where every bit of it is 1. The right hand side of equation (3.3)

equals:

333 1 xxxa =+=+

That is, exclusive-or each bit of x3 with 1 is the same as inverting each bit.

In order to implement scalar multiplication efficiently, algorithm (3.39) is chosen. Since

the point addition in projective coordinates requires no inversion, we let the accumulator Q of

(3.39) in projective coordinates. The point addition Q+P or Q-P has Q in projective

coordinates and P in λ-representation P=(X1,λ1). From (3.5) we modify formula (2.41) as:

 44

,
),(

,
,

,

)(

2
1

2
1

112

1
2

12

2222

CAE
aZCBD

BZC
XZXB

YZYA

XXY

⋅=
+⋅=

⋅=
+⋅=
+⋅=

+= λ

.)(
,)(

,
,

,

33

2
322

323

2
3

2
3

GFZEY
ZYXG

ZXXF
EDAX

CZ

+⋅+=
⋅+=

⋅+=
++=

=

(4.10)

My implementation of (2.41) contains three multipliers. Due to the data dependency, the

data calculated at each multiplication is arranged as follow with minimum latency. The data

dependency is indicated.

Table 4.1: The data flow of mix-coordinates addition (5.10)

As we can see from the above table, the timing of this mix-coordinates addition equals to 4

multiplications which is 4*163 cycles.

The following is the circuit diagram of the mix-coordinates addition. The multiplier in

the diagram has three inputs where two are from multiplication and one for accumulation.

The neg signal is for adding –P to Q. The ini signal indicates the initial condition when

O+P=P. That is, X3=X2, Y3=Y2 or X2+Y2, and Z3=1

 45

Figure 4.7: Circuit for mix-coordinates addition

My proposed design is a scalar multiplication circuit based on algorithm (3.39). It is

composed of the point halving circuit and the point adding circuit plus some control signals.

The inputs are k’ which is derived from k as shown in (3.33) and base point P. The output is

kP. k' is first encoded into e as in (3.39). From (3.38), the implementation of the encoding

logic uses two shift register to store g and h. The shift registers shift one bit every one point

halving complete. We observe the msb of the g and h registers to decide whether the input to

the point addition circuits is P or -P. Since there are separate registers for the accumulator Q

and P, the halving circuit and adding circuits can process at the same time. This makes

computation more efficient. When ei is nonzero or the MSB of the g and h registers are

 46

different, the halving circuit must hold its output until the adding circuit reads the result. The

point addition circuit adds P or –P to the accumulator when ei is 1 or -1. The control flow of

the whole circuit is:

Figure 4.8: The control of point halving and projective addition

 The synthesized result is given bellow. The cycle time is set to 5ns and the synthesis

standard library is 0.18μm technology.

 47

Table 4.2: The synthesized results

Circuits Gate Counts

Multiplier 6961

Halving 14321

Addition 45723

Scalar multiplication 77100

The average latency of scalar multiplication is about 37000 cycles and frequent 200Mhz. So

the throughput is 2*163*200Mhz/37000=1.76Mbit/s

 The verification is given by an integrated FPGA system called iProve. This system

allows displaying the outputs from FPGA on ModelSim directly. The FPGA chip is Xilinx

Virtex2: XC2V8000. The synthesis frequency is set to 90Mhz and the total LUTs is 8815.

The table bellow lists a comparison of the Elliptic Curve Cryptosystems implementation.

We can see that our design has about the same throughput as [12] while the area is smaller.

 48

Table 4.3: The performance comparison of Elliptic Curve Cryptosystems

implementations on ASIC

Authors Huang [10] Okada [11] Bai [12] Daneshbeh [13] Sozzani [14] Proposed

Technology 0.35μm 0.25μm 0.18μm 0.18μm 0.13μm 0.18μm

Field GF(2251) GF(2163) GF(2233) GF(2163) GF(2163) GF(2163)

Gate counts 56K 165K 120K 74K ? 77K

Clock rate 100Mhz 66Mhz 100Mhz 700Mhz 400Mhz 200Mhz

Latency for
kP

(cycles)

? ? ? 212,552 11,320 37,000

Processor Y Y N Y Y N

Algorithm
for kP

Montgomery
(affine)

?
Montgomer

y

Double
-and

-Add (serial)

Montgomery
(parallel)

Halve
-and-
Add

Basis Poly Poly Poly Poly Poly Normal

Throughput 91Kb/s 501Kb/s 1.86Mb/s 1.1Mb/s 12Mb/s 1.76Mb/s

Table 4.4: The performance comparison of Elliptic Curve Cryptosystems

implementations on FPGA

Authors
Orlando &
Paar[15]

Gura[16] Lutz[17] Proposed

Platform
Xilinx

XCV400E
Xilinx

XCV2000E
Xilinx

XCV2000E
Xilinx

XC2V8000
Technology 0.18μm 0.18μm 0.18μm 0.15/0.12μm

Field 2167 2163 2163 2163
LUTs 3002 19508 10017 8815
FFs 1769 6442 1930 N/A

Processor Y Y Y N
Clock rate 76Mhz 66Mhz 66Mhz 90Mhz

Algorithm for kP Montgomery Montgomery τ-NAF Halve-and-Add
Basis Poly Poly Poly Normal

Throughput 1.5Mb/s 2.2Mb/s 4.3Mb/s 792kb/s

 49

CHAPTER 5

Conclusion

In this paper, an implementation of Elliptic Curve Cryptosystems is shown. The

architecture uses point halving to reduce the computation complexity. Point halving only

requires one multiplier and some addition circuits. We can replace double-and-add algorithm

by halve-and-add algorithms.

 The normal basis multiplier in the implementation is a serial multiplier. The projective

addition circuit contains three multiplier and the timing equals to 4 times the timing of a

multiplier and no inversion over finite field is required. The input is encoded as for the use of

halve-and-add. We can further reduce the Hamming weight of the input, using

add-and-subtract algorithm. The halving circuit and projective addition circuit can work in

parallel under certain condition when the data have no dependency.

The implementation is synthesized using synthesis library of 0.18μm technology. We

use Xilinx Virtex2 (XC2V8000) to verify the implementation.

 50

APPENDIX

Elliptic Curve Cryptosystems

In elliptic curve cryptosystems, we need to map a message onto a point on an elliptic curve.

Then elliptic curve cryptosystems operate on that point to yield a new point that serves as the

ciphertext. The idea of the mapping method is the following. Let equation (2.15) be the

elliptic curve. The message m will be assign as the x-coordinates of a point first. However,

there is only 1/2 chance that there exist a solution y such that

)(mod32 pbamxy ++≡ (a.1)

Therefore, we append a few bits at the end of m, and try every pattern of these bits until there is

a solution for equation (a.1). Namely, let K be a large integer so that when trying to map a

message as a point on elliptic curve the failure rate of 1/2K is low. Suppose that

(m+1)K<p (a.2)

Represent the message m as

x=mK+j, where 0≤ j<K (a.3)

For j=0, 1, …, K-1, try to a solution y from (a.1). If a solution y exists, then message m is

mapped to Pm=(x, y) and we can stop trying. Otherwise, increase j by one and use this new x

to find a solution again. If we can’t found any solution for j=0 to K-1, then we failed to map

message m to a point. Maybe we should pick a larger integer for K and start all over again.

Since for each j, the probability of finding a solution is 1/2, we have 1/2K chance of failure.

Finally, the encoded message can be recovered from the point Pm=(x, y) by

 51

⎣ ⎦Kxm /= (a.4)

For example, let message m=5, p=179 and elliptic curve be 7232 ++= xxy . Pick K=10,

so the failure rate is 1/210, which is acceptable. x=mK+j=50+j, x=50, 51, …, 59. For x=51

we get x3+2x+7=121(mod 179), thus y=11. The message m is mapped to point (51, 11) and

can be recover by ⎣ ⎦ 510/51 ==m .

For elliptic curve over GF(2n) of the form (2.16). The steps of representing message m

are the same. Let message m has t-bit, we append u-bit number j to the end of m and t+u≦n.

The message m will be represented as x=m2u+j. For j=0, 1, …, 2u-1, try to find a solution y

from (2.16). If a solution is found we take Pm=(x, y), else increase j and try again. Solving

y from (2.16) given x is explained in [8].

Elliptic Curve Cryptosystems rely on the difficulty of solving the discrete logarithm

problem for elliptic curves, which is described as follow. Suppose P, Q are two points on

elliptic curve, find k such that Q=kP[7].

a.1 Elliptic Curve ElGamal Cryptosystem

An Elliptic Curve ElGamal Cryptosystem, a public key system, is one popular application

of elliptic curve cryptography. One uses public key to encrypt plaintext and use private key

to decrypt ciphertext. Let’s take a look at this cryptosystem. Alice wants to send a message

to Bob, so Bob chooses an elliptic curve (2.15), where p is a large prime. He also chooses a

point P and a scalar k, which is the private key. He computes

kPQ = (a.5)

 52

The point Q and P are public keys of Bob. Alice represents her message as a point x on

elliptic curve (2.15). She also chooses a private integer a, and computes. The add and

subtracts here are point operations.

aPy =1 and aQxy +=2 (a.6)

She sends y1 and y2 to Bob. Bob can decrypt x by calculating

xkaPakPxkaPaQxkyy =−+=−+=−)(12 (a.7)

Next is a example of Elliptic Curve ElGamal Cryptosystem. Let the point P=(4,11) and

elliptic curve)8831(mod45332 ++≡ xxy . The message of Alice is represented as point

Pm=(5, 1743). She wants to send the message to Bob.

Bob has a private key k=3 and computes Q=kP=(413, 1808). Q is made public. Alice

takes Bob’s public key Q. She chooses a random number a=8. She computes y1=aP=(5415,

6321) and y2=Pm+aQ=(6626,3576) and sends (y1, y2) to Bob. Bob wants to decrypt (y1, y2).

Bob first calculates ky1=3(5415, 6321)=(673, 146) and subtracts this from y2

(6626, 3576)-(673,146)=(6626, 3576)+(673,-146)=(5,1743)

a.2 Elliptic Curve Diffie-Hellman Key Exchange

Another useful system is the Elliptic Curve Diffie-Hellman Key Exchange, which can be

used for key exchange for private key system. Alice and Bob want to exchange a key. They

choose a base point P=(3,5) on an elliptic curve E:)7211(mod720632 ++≡ xxy . Alice

chooses a random integer a=12 and bob choose b=23. The compute aP and bP and make

them public.

 53

aP=(1794,6375) and bP=(3861, 1242)

Alice take bP and multiply by a to get the key

a(bP)=12(3861, 1242) =(1472,2098)

In the same way, Bob takes aP and compute b(aP)

a(bP)=12(3861, 1242) =(1472,2098)

Now they have the same key.

a.3 Elliptic Curve Digital Signature Algorithm

Signature is the opposite of public key system. One use the private to sign and others use

the public key to verify the signature. Next is the Elliptic Curve Digital Signature Algorithm:

Let p be a prime and let elliptic curve E defined over GF(p).

A is a point on E having prime order q and define:

K=(p, q, E, P, m, Q), where Q=mP

p, q, E, P and Q are public key and m is the private key

K=(p, q, E, P, m, Q) and k is a random number, define

sigK(x, k)=(r, s),

where

kP=(u, v)

r=u mod q, and

(a.8)

 54

s=k-1(SHA-1(x)+mr)mod q

Verification is given bellow:

w=s-1modq

i=wSHA-1(x) mod q

j=wrmod q

(u,v)=iP+jQ

verK(x, (r,s)) is true if and only if

u mod q= r

Let E:)11(mod632 ++≡ xxy and p=11, q=13, P=(2,7), m=7 and Q=(7,2). Suppose

message x and SHA-1(x)=4, Alice sign the message with random value k=3. She computes:

(u, v)=3(2, 7)=(8, 3)

r=u mod 13=8, and

s=3-1(4+7*8)mod 13=7

(8, 7) is the signature.

Bob verifies the signature by

w=7-1 mod 13=2

i=2*4mod 13=8

j=2*8mod 13=3

(u, v)=8P+3Q=(8,3), and

 55

u mod 13=8=r.

Then the signature is verified.

 56

BIBLIOGRAPHY

[1] “Certicom ECC FAQ”, http://www.certicom.com/index.php?action=ecc,ecc_faq

[2] IEEE Std 1363-2000, IEEE standard specifications for public-key cryptography, IEEE
Computer Society, August 29, 2000.

[3] Douglas R. Stinson, Cryptography: Theory and Practice - Second edition, Chapman &
Hall/CRC , 2002

[4] J. Lopez and R. Dahab, “Improved algorithms for elliptic curve arithmetic in GF(2n)",
Selected Areas in Cryptography - SAC '98, LNCS 1556, 1999, 201-212.

[5] K. Fong, D. Hankerson, J. Lopez, and A. Menezes. “Field Inversion and Point Halving
Revisited". IEEE Transactions on Computers, 53(8):1047-1059, August 2004.

[6] E. Knudsen, “Elliptic scalar multiplication using point halving", Advances in Cryptology
- Asiacrypt '99, LNCS 1716, 1999, 135-149.

[7] W. Trappe and L.C. Washington: Introduction to Cryptography with Coding Theory,
Prentice Hall, 2001.

[8] A. X9.62. Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA), 1998.

[9] Philip H. W. Leong and Ivan K. H. Leung. “A microcoded elliptic curve processor using
FPGA technology”. IEEE Transactions on VLSI Systems, 10(5), October 2002.

[10] Chi Huang, Jimmei Lai, Junyan Ren, and Qianling Zhang, “Scalable Elliptic Curve
Encryption Processor for Portable Application,” 5th Int. Conf. ASIC, pp. 1312-1316, Oct.
2003.

 57

[11] Souichi Okada, Naoya Torii, Kouichi Itoh, and Masahiko Takenaka. “Implementation of
elliptic curve cryptographic coprocessor over GF(2m) on an FPGA.” In Cryptographic
Hardware and Embedded Systems (CHES), pages 25–40. Springer-Verlag, 2000.

[12] Guoqiang Bai, Zhun Huang, Hang Yuan, Hongyi Chen, Ming Liu, Gang Chen, Tao Zhou,
and Zhihua Chen. “A high performance VLSI chip of the elliptic curve cryptosystems,”
7th Int. Conf. SICT, pp. 2059-2062, Oct. 2004

[13] A. Daneshbeh, M. Hasan, “Area Efficient High Speed Elliptic Curve Cryptoprocessors
for Random Curves,” Proceedings of ITCC 04, Las Vegas, NE, USA, 2004

[14] F. Sozzani, G. Bertoni, S. Turcato, L. Breveglieri, “A parallelized Design for an Elliptic
Curve Cryptosystem Coprocessor” Proceedings of ITCC 05, 2005.

[15] G. Orlando and C. Paar. “A high-performance reconfigurable elliptic curve processor
for GF(2m).” In Cryptographic Hardware and Embedded Systems (CHES), 2000.

[16] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy, and D.
Stebila. “And end-to-end systems approach to elliptic curve cryptography.” In
Cryptographic Hardware and Embedded Systems (CHES), 2002.

[17] J. Lutz, A. Hasan., “High Performance FPGA based Elliptic Curve Cryptographic
Co-Processor”. Proceedings of ITCC 04, Las Vegas, NE, USA, 2004

