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Chapter 4 H.264 Decoder 

Implementation and Optimization  

 
In this chapter, we will describe an H.264 baseline decoder implementation and 

optimization on DSP. We will describe how to optimize C/C++ code based on DSP 

architecture and how to optimize the H.264 baseline decoder based on VP3. 

 

4.1 Profile of H.264 decoder on DSP 
We do some modification on the H.264 decoder C source code, and then 

implement this code on DSP. After profiling this code by TI CCS profiler, we 

optimize the most computationally heavy parts of these modified codes. We choose 

QCIF as our test format. The test sequence is the “foreman” sequence and the length 

of this sequence is 10 frames with 5 Intra periods. Fig 4-1 shows the program flow of 

the H.264 decoder reference software in version JM 7.3.  

 

 

Fig 4-1 Decoder program flow 

 

Table 4-1 shows the clock cycle of the most complex functions. Fig 4-2 shows the 

clock cycle distribution of these functions without optimization. We find that the 

“decode_one_macroblock” and “read_one_macroblock” require 54% and 28% of 

Decode_frame_slice Read_new_slice Decode_one_frame 
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the total clock cycle. Hence we focus on the optimization of these two functions first.  

 

Table 4-1 Clock cycle of the most complexity function 

QP28/Foreman Clock Cycle Percent (%) NO. of 

Execution 

decode_one_macroblock 501835424 54 990 

read_one_macroblock 259499384 28 990 

decblock_frame 32848668 4 10 

Total 926511674 100 1 
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Fig 4-2 Distribution of clock cycle of each function 

 

“Decode_one_macroblock” is the function that performs motion compensation or 

intra prediction. This function contains several sub function. We will describe each 

function as follows.  

“get_block”: Get motion compensated block. 

“itrans”: Inverse Discrete Cosine Transform. 

“intrapred”: Makes and returns 4×4 blocks with all 5 intra prediction modes 

“intrapred_chroma”: Makes and returns 4×4 chroma blocks 
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“intrapred_luma 16X16” :  Makes and returns16×16 Luma blocks 

Table 4-2 shows the sub function and their clock cycles.  

Table 4-2 Profile of the H.264 Decoder : decode_one_macroblock 

QP28/Foreman Clock Cycle Percent (%) NO. of  

Execution 

Get_Block 273905340 55 12656 

Itrans 95182560 19 23760 

Intrapred 14240186 3 2992 

Intrapred_Chroma 3423458 0.7 398 

Intrapred_Luma16X16 230483 0.04 12 

Total 501835424 100 990 

   

“Read_one_macroblock” is the function used for Entropy decoding. We describe this 

function below.  

“ReadCBPandCoeffsFromNAL”: Get coded block patterns and coefficients from the 

NAL 

“ReadMotionInfoFromNAL”: Get motion information from NAL. 

“Read_ipred_modes”: Get intra prediction mode.  

Table 4-3 shows the sub-functions of “read_one_macroblock” and their clock cycles.  

Table 4-3 Profile of the H.264 Decoder : read_one_macroblock 

QP28/Foreman Clock Cycle Percent (%) NO. of  

Execution 

ReadCBPandCoeffsFromNAL 230096749 89 752
ReadMotionInfoFromNAL  11071392 4.3 553
Read_ipred_modes  6447989 2.5 752
Total 259499384 100 990

   

4.2 Optimize C/C++ Code 
In this section, we will describe several methods that we can use to optimize our 

C/C++ code.  
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4.2.1 Setting of CCS Compiler 

Code Composer Studio (CCS) is a useful GUI tool that helps us to develop DSP 

codes. CCS can compile the C codes and assembles them it into the COFF file format.  

to generate assembly codes efficiently. Table 4-4 shows the compiler options for 

improving performance whereas Table 4-5 shoes those options that had better be 

avoided.  

Table 4-4  Compiler options for performance [16] 
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Table 4-5 Compiler options that had better be avoided [16] 

 
4.2.2 Software Pipelining 

Software pipelining is a technique used to schedule instructions in loop so that 

multiple iterations of the loop can be executed in parallel. Software pipelining is to 

implements parallel instructions, fills delay slots with useful instructions, unrolls 

loops and maximizes the usage of functional units. This technique is a useful way to 

improve performance. When the compiler options –o2 or –o3 are used, the compiler 

will gather information from the program for the optimization process. As more 

information is gathered, better results may be obtained. Listed below are some kinds 

of information that can be provided by the programmer to help the optimization 

process.  

Trip Count 
A trip count is the number of loop iterations that need to be executed. If the compiler 

can guarantee that at least n loops will be executed, then n is the known minimum trip 

count. The programmer can use the MUST_ITERATE pragma to provide this 

information to compiler. It can reduce code size by preventing the generation of 

redundant loops. If the programmer can provide the trip count information to compiler, 

the compiler can generate faster and more compact code. The syntax of the of the 

MUST-ITERATE pragma is :  
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#pragma MUST_ITERATE (min, max, multiple); 
The arguments min and max are programmer-guaranteed minimum and maximum trip 

counts. The trip count is the number of times a loop iterates. The trip count of the loop 

must be evenly divisible by the “multiple”.  

Loop Unrolling 
Another way to improve the performance is to unroll the loop. Loop unrolling is to 

expand small loops so that every iterations of the loop appear in your codes. This 

optimization will increase the number of instructions available for parallel computing. 

There are three ways loop unrolling can be performed: 

1. The compiler may unroll the loop automatically. 

2. Programmer can unroll the loop using the UNROLL pragma 

3. Programmer can unroll the C/C++ code by himself.  

The syntax of the UNROLL pragma is : 

#pragma UNROLL ( n ); 
Software pipelining can improve the performance significantly. However, the 

compiler will not perform software pipelining whenever any of the following 

conditions happens: [16] 

1. If a register value lives too long, the code is not software-pipelined. 

2. If the loop has complex condition codes within the body that require more than 

five condition registers, the loop is not software pipelined. 

3. Although a software-pipelined loop can contain intrinsics, it cannot contain 

function calls, including codes that calls the run-time support routines.  

4. The loop contains conditional breaks. 

5. In a nested loops, the innermost loop is the only one that can be 

software-pipelined.  

 

4.2.3 Using Intrinsics 

The C6000 compiler provides intrinsics, which are special functions that map 

directly to inlined C64x instructions, to optimize C/C++ code efficiently. The intrinsic 
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functions are optimized codes based on the knowledge and techniques of DSP 

architechture. They can be recognized by the TI CCS compiler only. The intrinsic 

functions are specified with a leading underscore ( _ ). Fig 4-3 shows a parts of the 

intrinsic function for C6000 series DSP.  

 
Fig 4-3 Intrinsic functions of the TI C6000 series DSP (part.) [11] 

4.2.4 Packed data Processing 

The C64x DSP is a 32-bit fixed-point processor, which is for 32-bit data 

operation. In order to maximize data throughput, it is prefer to use single load or store 

to access multiple data values consecutively located in memory. For example, if we 

can place four 8-bit data or two 16-bite data in a 32-bit register, we can do more than 

one operation in one cycle. This process can improve the code efficiency and 

performance significantly.  

 

4.2.5 Memory Usage Strategy  

As mentioned in Section 3.2.2, the size of the internal memory of C64X is 256K 

bytes. However, when developing the codes, the program may require lager memory 

size than the internal memory. When decoding one frame, we cannot load all data into 

the internal memory and some of this data will be access many times. For this reason, 

data which are accessed less frequently will be put into the external memory while 

others remain in the internal memory. We can use the pragma DATA_SECTION to 

allocate more importance data into the internal memory. The DATA_SECTION 
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pragma is useful if you have data objects that you want to link into an area separate 

from the .bss section. This directive is illustrated in the following example. 

    #pragma DATA_SECTION (buf,”Tao_sect.”);  
    Int buf[100]; 
where “buf” is the buffer we declared in your C/C++ program, “Tao_sect.” is the 

section name which can be allocated into the desired memory section in the CMD file. 

 The above pragma is for data allocation. There is another pragma 

CODE_SECTION that can allocate the program code section into the desired memory. 

The CODE_SECTION pragma is useful if you want to link some code objects into an 

area separate from the .text section. The syntax of the CODE_SECTION pragma is 

expressed as: 

  #pragma CODE_SECTION (text,”Tao_sect.”);  
    Void text( ){ 
  /*foo code*/ 

} 
where “text” is the function name, “Tao_sect.” is the section name which can be 

allocated into the desired memory section in the CMD file. 

4.2.6 Optimization Results  

In this section, we compare the optimized functions with the original ones. In the 

reference software of the H.264 decoder, there are three major functions: 

read_one_macroblock, decode_one_macroblock, and decblock_frame. Table 4-6 

shows the optimization results of some major functions. From these results, we find 

that the most dominating function has changes. Before optimization, the most 

time-consuming function is “decode_one_macroblock”. After the optimization, 

“read_one_macroblock” becomes the most dominating function. We also show in 

Table 4.7 ~Table 4.10 the code size and clock cycles of the sub-functions in some 

major functions.   
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Table 4-6 clock cycle of the H.264 decoder 

 

 

Table 4-7 clock cycle of the H.264 decoder : decode_one_macroblock 

QP28/Foreman  Non-optimized 

(cycle) 

Optimized  

(cycle) 

Ratio  

Get_Block 273905340 21645906 12.7 

Itrans 95182560 8458560 11.2 

Intrapred 14240186 8913111 1.6 

Intrapred_Chroma 3423458 1640386 2.1 

Intrapred_Luma16X16 230483 93745 2.5 

    

Table 4-8 code size of the H.264 decoder :decode_one_macroblock 

QP28/Foreman Non-optimized 

(code size) 

Optimized  

(code size) 

Ratio  

Get_Block 7752 3861 2.1 

Itrans 1700 356 4.8 

Intrapred 9276 5688 1.6 

Intrapred_Chroma 11055 1825 6.1 

Intrapred_Luma16X16 31429 4733 6.6 

    

 

 

 

 

QP28/Foreman Non-optimized Optimized  Ratio  

decode_one_macroblock 501835424 72023154 6.96 

read_one_macroblock 259499384 195424945 1.32 

decblock_frame 32848668 13003263 2.5 

Total 926511674 377102400 2.5 
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Table 4-9 clock cycle of the H.264 decoder: read_one_macroblock 

QP28/Foreman Non-optimized 

(cycle) 

Optimized  

(cycle) 

Ratio  

ReadCBPandCoeffsFromNAL 230096749 180026051 1.28 
ReadMotionInfoFromNAL  11071392 6422894 1.7 
Read_ipred_modes  6447989 3778452 1.7 

    

Table 4-10 code size of the H.264 decoder: read_one_macroblock 

QP28/Foreman Non-optimized 

(code size) 

Optimized  

(code size) 

Ratio  

ReadCBPandCoeffsFromNAL 41107 17194 2.4 
ReadMotionInfoFromNAL  10966 13660 0.8 
Read_ipred_modes  1808 2840 0.6 

    

4.3 Implementation On DSP 
In this section, we implement H.264 decoder on VP3. We’ll first implement the 

H.264 over a single DSP. Then, due to the fact that VP3 possesses 8 DSPs, we also 

practice the implementation  H.264 on two DSPs as parallel operation. The 

implementation details and experiment results are described as follow.  

 

4.3.1 Over a Single DSP 

In this section, we implement an H.264 decoder on one DSP. Fig 4-5 shows the 

system flowchart and communication interface between the host and the DSP. There 

is a buffer for receiving bitstream data sent from host. We design a mechanism to 

avoid buffer overflow or underflow. This mechanism contains two parts. The first part 

is that when the buffer pointer points to the center of the buffer that means the upper 

side of the buffer has been used and we can refresh this region. Hence, DSP will send 

an interruption to host. When host receive the interruption, it will send bitstream in 
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the size of half of the buffer size to the upper side of DSP buffer. The second part is 

that when the buffer pointer points to the end of the buffer that means the lower side 

of the buffer has been used. DSP also send an interrupt to host. When host receive 

interruption, it will send bitstream to the lower side of the DSP buffer. After one cycle, 

this buffer is replaced by the new data bitstream and we can avoid any overflow or 

underflow during decoding processing. In the following, we describe the system flow 

chart step by step.  

 

STEP.1 The host downloads program to the DSP and The program starts. 

STEP.2 The host sends a video bitstream to the DSP n the size of half the DSP buffer 

and the DSP starts to decode. 

STEP.3 The host waits for the information that indicates the completion of decoding 

or the request of new data. 

STEP.4 The DSP will check the buffer status. If the buffer is OK, then go Step 5, 

otherwise, send interruption to the host torequir new bitstream. Then go to 

Step 5.   

STEP.5 When the DSP completely decodes one frame complete, it sends an 

interruption to the host. Then, the host will require frame datafrom the DSP 

and output as a file.  

STEP.6 If all the bitstreams are decoded, end. Otherwise go back to Step 3. 

 

4.3.1.1 Experiment Results of the Whole System 
In this section, we consider the overall performance of the completely 

implemented H.264 decoder on one DSP. The decoding speed of the system depends 

on the quantization parameter. The test sequence is the QCIF “foreman” sequence 

with 30 frames. When the quantization parameter increases, the bitstream size 

increases. Furthermore, the entropy decoding speed depends on the bitstream size. 

Table 4-11 shows the relation between clock cycle and bitstream size (quantization 

parameter). When QP increases, the bitstream size decreases.The decoding time of the 

function “decode_one_macroblock” is about the same, while the decoding time of the 
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function “read_one_macroblock” is decreasing. Fig 4-4 shows relationship between 

the number of clock cycles and QP. Table 4-12 shows the overall decoding speed over 

a single DSP.  

 

Table 4-11 Relation between bitstream size and function 

 Clock cycle 

QP 
Decode_one_macroblock Read_one_macroblock Total  

Bitstream size 

(KB)

16 71885638 809615734 1005066498 43.2 

20 71586198 524753243 713835469 25.8 

24 71933634 324011601 508493796 15.1 

28 72023154 195424945 377102400 9 

32 73186106 134907576 316306899 5.63 

35 73572604 107611246 288909132 4.1 

40 71416524 73115402 252126190 2.56 

42 66334579 64882945 238980866 2.18 
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Fig 4-4 clock cycle of different QP 
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Table 4-12 overall speed using optimization and no optimization 

 

 Average QCIF frame per second 

QP 
Non-optimized

Optimized with software pipelini
ng 

Ratio
 

16 0.55 1.5 2.7 

20 0.8 1.7 2.3 

24 1.2 2.1 1.8 

28 1.5 2.3 1.6 

32 1.7 2.5 1.5 

35 1.8 2.5 1.5 

40 1.9 2.6 1.5 

42 2 2.7 1.4 
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Fig 4-5 Flowchart for implementation over a single DSP 
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4.3.2 Over Two DSP’s 

In this section, we implement H.264 decoder on two DSPs. Considering the 

computation complexity and resource dependency, we implement entropy decoding 

on DSP 1 otherwise on DSP2. Fig 4-6 shows the system flow chart. We also employ 

the mechanism as described in section 4.2.1 to avoid buffer overflow or underflow. 

We describe the flow chart step by step.  

STEP.1 The host downloads the program to DSP1 and DSP2. Then, the program 

starts. 

STEP.2 The host sends a video bitstream in the size of half of the buffer size to DSP1 

STEP.3 DSP1 starts to read NALU.  

STEP.4 Check the buffer status. If the buffer status is OK, go to Step 5, otherwise, 

DSP1 send an interruption to the host to requir a new bitstream and then go 

to Step 5.  

STEP.5 Entropy decoding. 

STEP.6 Send the decoded data from DSP1 to DSP2. 

STEP.7 DSP2 decodes one macroblock. If the current macroblock is at the end of 

frame, then DSP2 sends an interruption to the host otherwise return to step 6. 

STEP.8 The host requires frame data from DSP2.  

STEP.9 If the bitstream ends, decoding is over otherwise go to Step 3. 

 

4.3.2.1 Experiment results of the whole system 
 In this section, we discuss the overall performance of the implemented H.264 

decoder on two DSPs. Table 4-13 shows the overall decoding speed. After 

optimization, the frame rate can achieve 11~15 frames per second. There is a 

significant improvement in speed if compared with the implementation over a single 

DSP. The reason is that when we implement H.264 decoder on two DSPs, we can 

separate the code size and resources into two DSPs. Hence the codes and the 

important data can be put into the internal memory and the decoding speed increase 

significantly.  
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Table 4-13 Overall speed with optimization and without optimization 

 

 Average QCIF frame per second 

QP 
Non-optimized

Optimized with software pipelini
ng 

Ratio
 

16 6.8 12 1.76 

20 6.9 12 1.73 

24 7 12.8 1.85 

28 7.1 12.5 1.82 

32 7.3 13.5 1.88 

35 7.4 13.6 1.88 

40 7.7 13.8 1.82 

42 8.1 14.3 1.76 
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Fig 4-6 Flowchart for implementation over two DSP’s 

 
 
 
 
 
 


