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Transmit Equal Gain Precoding in
Rayleigh Fading Channels

Shang-Ho Tsai

Abstract—Precoding with limited feedback information can achieve
satisfactory performance while the amount of feedback information is
kept small. In this paper, we analyze the theoretical performance of equal
gain precoder and find that its performance is at most 1.049 dB worse than
the optimal precoder no matter how the number of transmit antennas
increases. Moreover, we analyze the performance degradation of the
equal gain precoder due to scalar quantization theoretically. The result
shows that 23 bits per transmit antenna (excluding the first antenna) can
achieve 0.5-0.25-dB performance gap compared with the same scheme
without quantization. Furthermore, we found that the equal gain precoder
in general can achieve comparable performance with the Grassmannian
precoder in the same moderate feedback bits. Simulation results are
provided to corroborate the theoretical results.

Index Terms—Beamforming, equal gain precoding, limited feedback,
MIMO, precoding, scalar quantization.

1. INTRODUCTION

MIMO techniques are widely used in current wireless communica-
tion standards such as IEEE 802.11n and IEEE 802.16. Among the
MIMO skills, precoding/beamforming can provide full diversity order
and additional precoding gain. Such nice properties can greatly im-
prove system performance.

If complete channel formation is known to the transmitter, we can
jointly design precoders and decoders by optimizing several parameters
such as MMSE, maximizing information rate, or maximizing SNR (see
[2], [11], and [13]). Although such precoding schemes can achieve op-
timal performance using different design criterion, the hardware com-
plexity and the amount of feedback information are high.

To overcome the drawbacks of the optimal precoders, research has
been directed to the precoding schemes with limited feedback recently.
The precoder design with the channel mean and the covariance matrix
available at the transmitter was studied in [8] and [15] from the view
point of channel capacity. In [6], the precoding schemes that achieve
the minimum outage probability was studied. Examples of codebook
construction were also given. In [3], equal gain precoders with different
combining methods were shown to achieve full diversity order. In [4],
Grassmannian precoding was proposed. The Grassmannian precoder
has been shown to have good performance in practical communica-
tion systems. The Grassmannian precoding was extended to space—time
block code by the same authors in [5]. In [7], the authors analyzed the
capacity loss of equal gain precoder due to both vector and scalar quan-
tization. An optimal bit allocation for equal gain precoder with scalar
quantization was proposed in [19].

In this paper, we analyze the theoretical performance of the equal
gain precoder in multiple-input single-output (MISO) channel environ-
ments and found several interesting results as follows.

First, the bit error probability (BEP) performance gap between
the equal gain precoder and the optimal precoder varies from 0.5 to
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1.049 dB as the number of transmit antennas grows from 2 to infinity.
This is interesting since the performance of equal gain precoder is at
most 1.049 dB worse than the optimal precoder, no matter how the
number of transmit antennas increases.

Second, we analyze the performance loss due to scalar quantization
for the equal gain precoder theoretically. We found that in the interested
range of the number of transmit antennas, e.g., four antennas with RF
(radio frequency) for Wi-Fi and Wi-MAX in current standards, perfor-
mance loss is within 0.5 dB by using six total feedback bits in the scalar
quantized equal gain precoder.

Finally, we found from simulation results that the scalar quantized
equal gain precoder can achieve comparable performance with the
Grassmannian precoder in the same moderate number of feedback
bits. This result shows several advantages of the equal gain precoder.
First, the codeword determination of the equal gain precoder is simple,
since in MISO channel environments the optimal solution for the
equal gain precoder is actually the channel vector. Hence, there is
no need to perform exhaustive search to determine the codeword as
Grassmannian does. Second, for the equal gain precoder, when the
feedback bits are less than two per transmit antenna, there is no need
to perform multiplications in the transmitter side since the codeword
elements in this case are £1 or %j. Please note that for small size
Grassmannian precoder, operation without multiplications is also
possible. Third, the equal gain precoder can be easily extended to
arbitrary transmit antenna number since it does not need to construct
the codebook in advance.

Notations: E{x} is the expectation of z. A* and A" are the con-
jugate and transpose of A, respectively. Alis the conjugate-transpose
of A. R{x} denotes the real part of variable . o2 is the variance of .

II. SYSTEM MODEL AND PERFORMANCE ANALYSIS

Let the number of transmit antennas be N;. First, one symbol x is
sent to V¢ branches and each symbol in different branch is multiplied
by a different phase rotation, i.e., ¢?% /\/N;. After the precoding, the
symbol vector to be transmitted is s = (s1 2 - - - sNt)t = 1/mpw,
where p is a N; x 1 vector and its ith element is ¢’% . Then, s is
transmitted to the channel. At the receive, the received symbol 7 is
r = h's+n, where h is a N; x 1 channel vector and its ith coefficient
is h;, and n is a noise scalar. To achieve the best performance, we use
MRC [3] in the receiver and this leads to

z=p'hr = yr + p*h*n D

1
van
where v = p'h*h'p is a gain effect (including diversity gain and
precoding gain) due to the precoding.

Now, we analyze the average SNR performance and it terms out that
this average SNR performance is highly correlated to the bit error prob-
ability performance (see [1] and [4]). From (1), for a given channel re-
alization (channel is deterministic), the instantaneous SNR of the equal
gain precoder is

2
) Oz

T NioZ’

From (2), for a given channel realization and o2 / o2, the instanta-
neous SNR is determined by ~. Let us look at v more detailed. From
(1) and due to phase mismatch, v can be upper bounded by

Ny Ny Ny Ny
2 (050, 2
v = E |hi]” + E hihje?%i—0 < |hi]” + g |hih;|.
i=1 i j#i i=1 i=1,j#i

3
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Let the phase of h; be ¢;. The equality of (3) holds when (6; — 6;) =
—(¢; — ¢:). It is intuitive to choose

6:=—6i, 1<i<N. “)

Using the solution in (4), all the transmit antennas require to multiply
individual phases. However, we notice that multiplying an extra arbi-
trary phase rotation in both the transmitter and the receiver sides simul-
taneously does not change ~. In this case, the equality also holds when
#;, =0ifi=1; 6; = —(¢i — ¢1) otherwise. ()
From (5), we do not need to perform precoding for the first transmit
antenna and thus the feedback information can be reduced. The above
results were also shown in [3] and [19].
From (2) and (3), for a specified ai/ o2, the average SNR can be
upper bounded by

2
[ 2 T *
En{pc} < —5 (En {|h:]*} + (Ne = DEn {|RIR5]}) . (6)

Without losing the generality, let us assume that both the real part and
the imaginary part of ; have unit variance. In this case, Ep {|hi |2} =
o7 = 2. Next, let us see how to obtain Ey, |2} h;|}.

Lemma 1: Assume that h; is complex Gaussian with zero mean and
unit variance in both the real part and the imaginary part. The proba-
bility density function (PDF) of |k} k| is given by

fn(z) = % (K, (2) + Ka(2)) = Ky (2) )

where I, () is the modified Bessel function of the second kind.
Proof: Following the conditions for h;, the cumulative distribu-
tion function (CDF) of |k} hj| is Fu(x) = 1 — 2K (x) (see [16]).
From [17], we have 0K, (2)/0x = —1/2(K,—1(z)+ Koy (2)).
Thus, using the fact that fun(z) = dFn(x)/dx, we can obtain (7). ®
Lemma 2: Assume that h; is complex Gaussian with zero mean and
unit variance in both the real part and the imaginary part. The mean of
the random variable |k} h;| can be calculated as

En {|hih;|} = 1.5708. ®)
Proof: From Lemma 1, we have

En {|hIh,]} = /

J—o0

oo

2 fn(x)de
= [T ket [ K
= /0 5 Vo(x)dx /0 > Lo(a)da
- /QC oIy (2)da 9)
0

where we have used the fact that K, (x) = 0, for z < 0. According to
[18], we have [~ «® 'K, (2)de = 2° T (a —v/2)T (a + v/2),
where T'(z) is the gamma function. Hence, from (9), we can have (8).
u
Please note that without using the PDF of |h] 1|, we can still derive
En {|h;h;|} as follows: Since h; and h; are independent, we have
En {[h77;1} = En {[hi[} En {|h;]} = (En{|hi[})* = /2, where
we have used the property that the expectation of the Rayleigh random
variable is /7 /2[14, pp. 279-280].
Theorem 1: Let the channel coefficient i; be complex Gaussian with
zero mean. Without quantization, the SNR gap of the optimal precoder
and the equal gain precoder in a MISO channel is given by

Eh {,00} _ [Vt
En{pc} 0.7854N, + 0.2416

(10)
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Fig. 1. Average SNR of the optimal and the equal gain precoders, where (a) is
without taking dB and (b) is taking dB.

Proof: In the MISO case, the optimal precoder is actually h¥. Its
average SNR can be shown to be

o: < N
En{ro} =S En Solnil? =N 5En {In:}. @b
n 1:1 n

To have a fair comparison, we also assume that the channel coefficients
in the optimal precoder have unit variance in both the real and the imag-
inary parts. Thus, En {|h:|*} = 2. From (11), we have En {p,} =
ol / 022 N;. From (6) and (8), for the equal gain precoder without quan-
tization, we have

2
x

En{pc} = 5 (2+ (N = 11.5708).

n

(12)

Hence, we can obtain the result in (10). It is worth to emphasize that
since this is a fair comparison for the two precoders, there is no need
to constrain the variance of A; in Theorem 1. |

Please note that En {p. } can also be directly derived from [19, Eq.
(29)], without obtaining the PDF of |A; h;|. From Theorem 1, when
N¢ > 1, the ratio approximates 1/0.7854 = 1.049 (dB), which is a
constant performance gap. This is an interesting result because it means
that the performance loss due to the use of phase alone is at most around
1 dB, despite the increase of the transmit antennas.

1) Example 2: Constant Performance Gap Between the Optimal
and the Equal Gain Precoders: Let h; be complex Gaussian with unit
variance in both the real and the imaginary parts. The average SNR
of both the optimal and the equal gain precoders as a function of the
number of transmit antennas are shown in Fig. 1. We observe that when
N; = 4, the two precoders have performance gap around 0.75 dB and
approximate to 1.049 dB when N; > 8. These results show that there
may be no need to use complicated precoding schemes such as the op-
timal precoder if we are capable to sacrifice around 1-dB performance.
Take IEEE 802.11n and IEEE 802.16e-2005 for instance, the antenna
number (with RF) is at most four in these standards. Under such situa-
tions, the performance loss is at most 0.75 dB.

III. SCALAR QUANTIZATION

Let us consider the scalar quantization effect for the equal gain pre-
coder. Since we assume the channel coefficients are complex Gaussian,
the phase is uniformly distributed in [—7 7]. In this case, let us use
equal space quantization and quantize the phase to the closet avail-
able value. For instance, if the bit number, b, to represent the phase
per transmit antenna is 2, the available values can be 0, w/2, ™ or
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—m /2. Please note that with scalar quantization, the total required bits
is b(N; — 1). For vector quantization, it does not have such limitation
and it considers the optimal solution for a given bit budget, e.g., [5]
and [7].

Now consider how the quantization effect will deteriorate the av-
erage SNR. Let 6, be the quantized phase. From (3), the average SNR
due to scalar quantization is given by

Eh{pe} =— ([Eh{|hl| } + cllEh{ﬂ?{hfhjefaj}}
+ c2 Eh{?)?{hfh,jej(éf*éi) }})

1)/1\/'[ and co = ( t = 1)( t = 2)/Ni In

13)

where ¢; = 2(1\’3 bl

addition, the reason that we separate the terms for i = 1 and i #
1 is because §1 = 0 from (5). Define the quantization error of the
phase as ¢; = g, — 6,. Since 6; = —(¢: — ¢1) according to (5), we
have §; = —(¢; — ¢1) + €. Assuming that the quantization error of

the phase is independent of channel (see [9]) and using the fact that
hih;e™7(%37%) is real, we can rewritten (13) as

Eh{ﬁc} = Z—z ([Eh{|hz'|2} + CllEh{|hThj|}|Eh{ cos (e]')}

et o).

Lemma 3: Assume that the phase is uniformly distributed in [—7 7].
Let the number of bits to represent the phase per transmit antenna (ex-
cluding the first antenna) be b. Using equal space quantization, we have

the following result
2% 27
1—c — .
= (- ()

Proof: Let us use €; to denote the phase error of the ith transmit
antenna. According to [12], if the phase is uniformly distributed in
[~ 7], the phase error ¢; is uniformly distributed in [—7/2° 7/2°].
Now let us find the distribution of €; — €;. From [10], the distribution
of —¢; is still uniformly distributed in [—7/2° 7/2°]. It is known that
the PDF of the random variable z = « + y, where « and y are inde-
pendent, can be obtained by convoluting fx () with fy(y)[10]. Thus,
the distribution of €; — €; = €; + (—¢;) is the linear convolution of
the two identical PDFs with uniformly distribution in [—m/2° 7/2°].
Hence, letting z = ¢, — ¢; the PDF of z can be shown to be

(14)

En {cos(e; — )} = (15)

[}

2b b
e T
fa(2) = —%z—l—%, 0<z§§—§f (16)
0. otherwise.

From (16), we know that f,(z) cos(z) is an even function According
to [10], we have the property: E {g(x)} = [7_ g(x) fx(2)dz, where
g(z) is function of =. Thus, we have

2b/2n

En {cos (¢, — )} = / fa(2) cos(z)d=
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Using integration by part: [ zcos(z)dz = zsin(z) + cos(z) + C.
Thus, we can rewrite (17) as
27 /20
. (18)
0

[Eh{ cos (€; — ez)}
Manipulating (18), we can obtain the result in (15). |
Similarly, the expectation value of cos (¢;) can be calculated as

T
— sin (Zb)

Assume £; is complex Gaussian with zero mean and unit variance in
the real and imaginary parts. Using (14), (19), and Lemma 3, we have

27 /20 b

2% :
_2< —FQ sin(z)+cos(z)) + 5 sin(z)

0

/20 N ob
En {cos(e;)} = / ros(f)z—de _ 2

—x/2b 27 T

19)

207 (Ne—1)2°

E n NCV -
nipet = o} N, T

(25111 (;b) + %(M ~2) <1 — cos @—f)))) . (0)

Moreover, from Theorem 1, we know En {pe}. Hence, we have the
following theorem.

Theorem 2: For the equal gain precoder (with solution 6; given in
(5)) in a MISO channel with complex Gaussian distribution, the SNR
degradation due to scalar quantization is given by (21), shown at the
bottom of the page.

The above result is obtained by setting ¢; according to (5), i.e., §1 =
0 and there is no information feedback for 64 . It is interesting to ask:
When we feed back bits for 6, , will the performance due to scalar quan-
tization improve? To answer this question, let §; be set according to (4).
From (3), we have

IEh{ﬁe} =

(1 + 0.7854

7 (eIl )+ v - 1)
X En {sn{h;v“h/]-c—f(“‘)f‘f"” } }lEh {c’(‘j“") })

— Z_o ([Eh{|h,;|2} + (N = 1)
-e})

X Eh{|h:hj|}lEh{ cos (
Using (14), (22), and Lemma 3, we can calculate E {p. }. Hence, we
have the following corollary.
Corollary: For the equal gain precoder (with solution #; given in
(4)) in a MISO channel with complex Gaussian random distribution,
the SNR degradation due to equal scalar quantization is given by

E{p.} _
E{p.}

(22)

24 1.5708(Ny — 1)
24+ 1.5708(N; — 1) (1 — Cos(—g))

(23)

225 °
272

1) Example 3: Scalar Quantization for Equal Gain Precoder (The-
oretical Result): Let us see the quantization effect for #; = 0 first.

20/ , Using (21), we plot the performance loss due to quantization in Fig. 2.
-9 2m/2 22b B b os(2)d 17 We see that for NV, = 2, 3 and 4, the performance loss for b = 2 is less
B A T 4n2” + 20 cos(z)dz. (17) than 0.5 dB. Moreover, for N; < 16, the performance loss for b = 3
En{p.} _ 0.7854N, + 0. 2146 @1

En {ﬁe} 140. 1854(Vt UZb (28111( )—l— Nt —2) (1—C0S(Z"')))
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Fig. 2. The gap of average SNR between the equal gain precoders with and
without quantization.
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Fig. 3. Comparison of SNR degradation due to quantization for §; = 0 and
01 = ¢1.

is less than 0.25 dB. These theoretical results can provide useful de-
sign references to determine b for the equal gain precoder with scalar
quantization.

Next, let us answer the question: will the performance improve by
using §; = ¢;, i.e., extra feedback in #, . Fig. 3 shows the performance
loss due to quantization for §; = 0 and #; = ¢ according to (21) and
(23), respectively. It is interesting to note that the performance with
extra feedback for #; is worse than that without extra feedback. The
reason is explained as follows: the two solutions in (4) and (5) are ac-
tually equivalent without quantization. However, with quantization, we
need to quantize #; as well in (4). This demands extra bits to represent
6 . If we have infinite bits to represent ¢, the two solutions would lead
to the same performance. However, with limited feedback, solution in
(4) is worse than that in (5). Please note that if we consider the optimal
bit allocation for scalar quantization to each antenna as in [19], more
bit budget will lead to better performance.

IV. SIMULATION RESULT

The simulation is conducted using the following parameters: The
channel is quasi-stationary and the channel coefficients are i.i.d. com-
plex Gaussian random variables with zero mean and unit variance. The
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Fig. 4. Performance comparison of the optimal precoder and the equal gain
precoder without quantization.
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Fig. 5. Scalar quantization effect of the equal gain precoders.

modulation level is 16-QAM. More than 60 000 channel realizations
are used. We use the solution in (5). For description convenience, we
let b be the number of bits to represent the phase of each transmit an-
tenna (except the first antenna) for the equal gain precoder. We let B be
the number of total feedback bits. Thus, we have the relationship that
B = (N¢ — 1)b for the equal gain precoder.

1) Example 4: Comparison of the Optimal and the Equal Gain Pre-
coders: To see the best performance that the optimal and the equal
gain precoders can achieve, we do not quantize the precoding vectors
p in this example. Fig. 4 shows the bit error probability (BEP) perfor-
mance of these two precoders without quantization. We observe that the
optimal precoder outperforms the equal gain precoder around 0.5 dB
when N¢ = 2. When Ny = 8§, the gap is around 0.9 dB and when
N; > 16, the gap is around 1 dB. This result shows that the perfor-
mance gap between the optimal and the equal gain precoders is around
1 dB, which corroborates the theoretical result in Theorem 1.

2) Example 5: Quantization Effect of the Equal Gain Precoder:
Fig. 5 shows the BEP performance of the equal gain precoder due to
quantization effect. We observe several interesting results: First, as /Vy
increases, b needs to be increased to achieve comparable performance
without quantization. For instance, when N; = 2, b = 2 can achieve
comparable performance with its corresponding performance without
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Fig. 6. Performance comparison for STBC, equal gain (EG), Grassmannian
(GS) and antenna selection (AS) precoders.

1072

DRODRHODHO++ X +%
N
s
m
(o]
w
2

1073 4x 1: EG (9 bit)

-G -16x 1: EG (15 bit
—% —16x 1: EG (30 bit|
-A -16x 1: EG (45 bit

AL
\

Bit error probability

107

5 10

EJ/N,

Fig. 7. Performance comparison for the (EG) precoder, and the Grassmannian
(GS) precoder.

quantization, but when N, = 8, b = 3 is required to achieve compa-
rable performance. Moreover, we found the performance gap with and
without quantization in general matches the results in Theorem 2 (also
see Fig. 2). The exception is when N; = 4 and 8 with b = 1, where the
assumption that the quantization error and the precoding coefficients
are independent may no longer be valid.

3) Example 6: Comparison of Various Precoders With Quantiza-
tion Effect: We compare the performance of the equal gain precoder,
the Grassmannian precoder [3] and the antenna selection precoder. The
performance comparison is shown in Fig. 6. For fair comparison, total
required bits are shown for all precoders. To evaluate the performance
improvement due to precoding, we also include the 2 x 1 STBC per-
formance as shown in the solid-square curve. From the figure, we see
that the three precoders have the same diversity gain and hence their
slopes are the same. However, the Grassmannian and the equal gain
precoders can achieve a better performance than the antenna selection
precoder. Moreover, we see in this simulation case that with the same
required total bits B, the equal gain precoder can achieve comparable
performance with the Grassmannian precoder (less than 0.2-dB perfor-
mance gap).

To have a more detailed comparison between the Grassmannian and
the equal gain precoders, let us use all available Grassmannian code-
words found in http://cobweb.ecn.purdue.edu/~djlove/grass. The per-
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formance curves for these two precoders are shown in Fig. 7. We see
that for b = 1,i.e., B = N; — 1, the equal gain precoder seems not
perform well when N; > 2. For instance, when N: = 3 and b = 1,
i.e., B = 2, the performance gap between these two precoders is up to
2.5 dB (see star and circle curves). However, as b > 2, the equal gain
precoder improves rapidly and can achieve comparable performance
with Grassmannian. Although for & = 1 the equal gain precoder may
not achieve comparable performance with the Grassmannian in some
cases, it has several advantages as we mentioned in the introduction.
Moreover, the equal gain precoder can be easily extended to arbitrary
number of transmit antennas (see curves for Ny = 16), where con-
structing the codebook of the Grassmannian precoder may not be easy
in this case [4].
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