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Abstract—This paper presents a universal architecture for
Reed–Solomon (RS) error-and-erasure decoder. In comparison
with other reconfigurable RS decoders, our universal approach
based on Montgomery multiplication algorithm can support
not only arbitrary block length but various finite-field degree
within different irreducible polynomials. Moreover, the decoder
design also features the constant multipliers in the universal syn-
drome calculator and Chien search block, as well as an on-the-fly
inversion table for calculating error or errata values. After imple-
mented with 0.18- m 1P6M technology, the proposed universal
RS decoder correcting up to 16 errors can be measured to reach a
maximum 1.28 Gb/s data rate at 160 MHz. The total gates count
is around 46.4 K with 1.21 mm� silicon area, and the average core
power consumption is 68.1 mW.

Index Terms—Error-and-erasure correction, Montgomery mul-
tiplication, Reed–Solomon (RS) code, universal architecture.

I. INTRODUCTION

T HE Reed–Solomon (RS) code is well acceptable in many
storage and digital communication systems for its excel-

lent burst error correction capability. An RS code con-
tains message symbols and parity-check symbols and
is capable of correcting up to erroneous
symbols. Each symbol over indicates a -bit data. As
shown in Fig. 1, RS decoders usually consist of a syndrome cal-
culator, a key equation solver, a Chien search block, and an er-
rata value evaluator. While correcting both errors and erasures,
the RS decoder requires an erasure generator, Forney syndrome
calculator, and a polynomial multiplier, which are also illus-
trated in Fig. 1 as dotted blocks. Note that errata represents ei-
ther error or erasure during transmission in a noisy channel.

For error-only correction, the key equation shown in Fig. 1 is
defined as

(1)

where is syndrome polynomial, is error-locator poly-
nomial, and is error-evaluator polynomial [1]. For cor-
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Fig. 1. Block diagram of the RS decoder. The dotted blocks are required for
correcting both errors and erasures.

recting both errors and erasures, the key equation should be
modified to

(2)

where indi-
cates erasure-locator polynomial with erasure information

, and is errata-evaluator polynomial.
To perform RS error-and-erasure decoding procedure ef-
ficiently, Forney syndrome polynomial and errata-locator
polynomial are exploited and denoted as and

, respectively [2].
Although dedicated RS decoder designs have been reported

as high-speed or low-power approaches recently [3]–[6], there
has been little discussion on RS decoders with configurability or
programmability [7]. Nevertheless, more and more communica-
tion and storage systems provide different design parameters to
meet specific performance requirements. Table I lists several ap-
plications for RS codes with different code rates and
definitions. For packet loss protection of multicasting or broad-
casting communications, RS codes are utilized as a block era-
sure coding scheme and specified in DVB-H applications. Thus,
it will be much complicated if all dedicated RS decoders are im-
plemented within a single chip.

In this paper, a cost-effective RS decoder that meets various
system specifications is proposed. The proposed universal
RS decoder can manipulate different code rates and block
lengths defined in arbitrary . The difficulty for the
universal architecture is to provide finite-field operations in
various field degree over different irreducible or primitive
polynomials. As to our knowledge, only the software approach
was proposed to support various field degree by using pro-
grammable digital signal processor [14]. Actually, the universal
finite-field multiplier (FFM) can be achieved by Montgomery
multiplication algorithm because of the modulo operation with
configurable polynomials [15]. To efficiently accommodate
different irreducible polynomials, the universal FFM derived
from Montgomery multiplications is proposed in Section II.

1549-8328/$26.00 © 2009 IEEE



CHANG et al.: UNIVERSAL VLSI ARCHITECTURE FOR RS ERROR-AND-ERASURE DECODERS 1961

TABLE I
RS CODE SPECIFICATIONS IN VARIOUS APPLICATIONS

Then, the universal RS decoder over is de-
scribed in Section III. The design example which supports

for error-only or for error-and-erasure
correcting and arbitrary irreducible polynomials with
is provided as well. Section IV shows the corresponding chip
implementation and measurement results. Finally, Section V
gives the conclusion.

II. UNIVERSAL FFM

With polynomial representation, the modular multiplication
of and in can be expressed as

(3)

Note that is also an element of , and is an
irreducible polynomial over with degree . The Mont-
gomery product can be defined as

(4)

where for , and then
is a constant element in . Since is

irreducible, we find that and are relatively prime, and a
polynomial is existed to satisfy the following property:

(5)

From (5), the polynomial can be obtained by using
Euclidean algorithm [16]. The Montgomery product in (4) can
be determined by

(6)

(7)

As compared with the modulo operation in (4), the mod-
ular and division operations in (6) and (7) are much simple due
to . To be further partitioned into a series of operations
for less complexity, the polynomial representation of (4) can be
decomposed as the following iterative form:

(8)

(9)

Similar to the derivation of (6) and (7), the Montgomery
product can be obtained by the following iterative compu-
tations:

• Initial conditions

• Iterations from to

(10)

(11)

After iterations, will be equal to . Since is ir-
reducible and all elements are represented in binary digit over

, the term in (10) indicating the multiplicative
inverse of modulo is always equal to 1 and can be elim-
inated. Thus, the result will be the constant term of

. For the iteration number varied with the field degree ,
we define a constant integer with and let

. The modified computation process with the
fixed iteration number can be shown as follows:

• Initial conditions

• Iterations from to

for (12)

(13)

(14)

The final result is

(15)

Here we set for to ensure correct operations
and denote in (14) as a constant term of . For any irre-
ducible polynomial with degree , the Montgomery
product (15) can be completed within modular-free iterations
of (12)–(14). However, there is still a factor involved
in the product in contrast with the original result . In order
to remove this factor, one additional Montgomery multiplica-
tion

(16)

is applied with to obtain the original product .
In many applications, this additional product correction of (16)
is required only after a series of Montgomery multiplications.

Fig. 2 illustrates an example of Montgomery multiplier struc-
ture with , in which any irreducible polynomial over

with can be performed. The inputs , and
can be represented
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Fig. 2. Montgomery multiplier structure for ���� � with� � �.

As derived in (15), the result will be

III. UNIVERSAL RS DECODER ARCHITECTURE

As shown in Fig. 1, the syndrome calculator generates
with syndromes from the received polynomial .

If there is erasure information, the Forney syndrome cal-
culator will deliver Forney syndrome polynomial and
erasure-locator polynomial . From or , the key
equation solver evaluates both and by using either
Berlekamp–Massey [17], [18] or Euclidean algorithm [6], [19].
Then the errata-locator polynomial can be
calculated. After the Chien search block identifies error or era-
sure locations, the errata value evaluator computes error values
for error-only decoding or errata values for error-and-erasure
decoding. There is also a first-in and first-out (FIFO) memory
storing the received vector . All correctable errors can be
corrected by adding with corresponding error or errata

values. Based on our approach, the constant FFMs are also
necessary to be universal in computing syndromes and error
(or errata) values, which will be discussed in Section III-A,
III-C, and III-D. Furthermore, an area-efficient key equation
solver using the decomposed Berlekamp–Massey architecture
is introduced in Section III-B.

A. Syndrome Calculator

The syndrome calculator computes syndromes that can be
expressed as

(17)

(18)

(19)

where is the primitive element of . The con-
ventional syndrome calculator for can be constructed in
Fig. 3, which consists of a register, a finite-field adder, and
a constant -FFM. For the universal syndrome calculator
with Montgomery multiplications, the constant input of the

-FFM should be instead of . However, the term
varies with the irreducible polynomial , and the

modified syndrome computation should be proposed for the
constant Montgomery multiplication [20]. We first rewrite (19)
as follows:

(20)

Then, the received symbol can be denoted by ,
and (20) can also be represented as

(21)

Recalling the Montgomery multiplication defined in (15), the
term can be taken as a constant input if , regardless
of different . It is also clear that while ,
and the constant multiplier can be eliminated. Once is larger
than , the calculation of can be processed through the con-
ditions in (22), shown at the bottom of the page. To facilitate
the key equation solver, the syndrome should be modified to

. Fig. 4 illustrates the proposed syndrome calculator
for and . Although there are at most 16 syndromes

...
...

(22)
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Fig. 3. Syndrome calculator for � .

should be computed, only 8 syndrome cells are
constructed. Based on (22), we can express as follows:

(23)

For the case of and , the re-
ceived symbol should be multiplied by factors and

, respectively. As shown in Fig. 4, two factor genera-
tors ( and ) are allocated to produce the scaling factors
with Montgomery multipliers. Since counts from to
0, the scaling factor and can be obtained by
sequentially multiplying and with the ini-
tial value and . As described in (21), the constant
input of the -FFM in Fig. 4(b) is .

Although the syndrome calculator in Fig. 4 is proposed for
, it can be extended to handle syndrome calculation for

larger . Assuming the case of , the first 16 syndromes
can be computed from the same configuration, and

other syndromes can also be calculated by

(24)

In (24), the constant Montgomery multiplication remains the
same as compared with (23). The only difference is the scaling
factors, and , which can be generated by mod-
ifying and as well. In , the input and the initial
value becomes and , whereas the input be-
comes with the initial value . Because there are
only 16 computation cells in Fig. 4, it will double the calculation
time to complete 32 syndromes. Generally, the tradeoff between
the number of syndrome cells and the computation time should
depend on system specifications.

The erasure information should be generated for
solving the key equation. Similar to , we also modify
the erasure information as . Fig. 5 illustrates the
erasure generator with a constant -FFM, where the register
initially contains and sequentially multiplies by .
The register content will be the erasure value whenever the era-
sure flag (see Fig. 1) is activated according to the received data.
Due to , the term is the constant input of
the -FFM in Fig. 5.

Fig. 4. (a) Syndrome calculator with � � � and � � �. (b) Syndrome cell ��
for � � � � �. (c) Syndrome cell �� .

B. Key Equation Solver

The algorithm in solving key equation (1) or (2) can be either
Berlekamp–Massey algorithm or Euclidean algorithm. Since
Berlekamp–Massey algorithm has fixed iterations, it is much
regular and suitable for our universal RS decoder. Moreover, the
inversionless architecture is also applied to avoid the finite-field
division [5], [21]. As reported in [22], those computations of
Forney syndrome polynomial and errata-locator polynomial can
be combined with Berlekamp–Massey algorithm. From the syn-
drome polynomial, ,
the inversionless Berlekamp–Massey algorithm with erasure
information can be proposed as follows:

• Initial conditions:

• Iterations from to :

(25)

When , the erasure-locator polynomial is obtained
by . Before we start to calculate the er-
rata-locator polynomial, several initial conditions should
be modified as

, and .
• Iterations from to :

(26)

(27)
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Fig. 5. Erasure generator corresponds to the received sequence � .

If or

Otherwise

If there are erasures and errors, the errata-locator polynomial
will be finally obtained by

(28)

According to the key equation, all coefficients of the errata-
evaluator polynomial can be derived as

for (29)

Since we apply the Montgomery multiplication to all FFM
computations, each input containing an additional factor will
produce the product that also carries with the same factor .
Thus, the erasure-locator polynomial can be obtained as
by (25). The final result of (26) will be ,
where is ineffective for searching roots of . It
is also clear that the same errata value will be evaluated since
the errata-evaluator polynomial has the same
factor (23).

Based on the decomposed architecture in [5], the key equation
solver with only three Montgomery multipliers is demonstrated
in Fig. 6. There are two memory buffers denoted by buffer- and
buffer- for storing and . Due to the unifor-
mity of (25) and (26), this architecture can be configured to not
only calculate the erasure-locator polynomial but perform the
inversionless Berlekamp–Massey algorithm. For , it
is in polynomial expansion mode that calculates the erasure-lo-
cator polynomial with and in (25). After

iterations, the result will be stored in both buffer- and
buffer- , which are ready for the following Berlekamp–Massey
algorithm. As the syndrome polynomial is available, (26)
and (27) will be executed from to , and finally
will be in buffer- . Notice that the same computational struc-
ture in Fig. 6 can also calculate the errata-evaluator polynomial

according to [29], which is quite similar to the discrepancy
evaluation in (27). We let and . The coefficient

from buffer- will be multiplied by , and the product
will be accumulated to be . Furthermore, the polynomial ex-

Fig. 6. Key equation solver to perform inversionless Berlekamp–Massey
algorithm.

pansion in (25) can work in parallel with syndrome calculator
because it is independent of the syndromes , leading to less
decoding latency.

C. Chien Search

After the key equation solver, Chien search opera-
tions are used to repeatedly check or not for

. The calculation of Chien search
can be represented as

for (30)

which is similar to the syndrome calculation (19). The constant
multiplier can be used after modifying (30) to

(31)

(32)

Note that all the coefficients of in (32) except are
divided into groups and if

. The term can be represented as a
constant Montgomery multiplication because .
With and , the Chien search structure with two
groups of 8 Chien search cells is presented in
Fig. 7. Based on (32), the th Chien search cell, , uses a
constant multiplier in which the constant input is . From
Fig. 7, the polynomial is defined to be with zero
coefficients in the even degree terms, and the output
will be determined for calculating errata values. In addition, the
value is equal to because
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Fig. 7. (a) Chien search module with � � � and � � ��. (b) Chien cell �� .

(33)

D. Errata Value Evaluator

In order to comply the data from Chien search, the errata
value derived from Forney algorithm is modified as

(34)

where indicates the th root of . The corresponding
architecture to calculate the term with and

is shown in Fig. 8, where the cell is identical to the
th Chien search cell. The difference is the initial value being

instead of in Fig. 7(a). The divider performs the fi-
nite-field division by using a Montgomery multiplier and an in-
version table. To satisfy different finite-field definitions in the
universal architecture, an on-the-fly inversion table is realized
with a RAM. As shown in Fig. 9, each value will be
written to the address as counting counts from 0 to .
Note that the on-the-fly inversion table can be created in parallel
with the syndrome calculation.

IV. CHIP IMPLEMENTATION

Based on Montgomery multiplication algorithm, Fig. 10
shows the universal RS decoder over with
an on-the-fly inversion table. The related interface of control
signals with arbitrary , , and the irreducible
polynomial are ignored for simplification. The dual-bank
static RAM (SRAM) of 1 K-byte is embedded to buffer 4
received codewords. In the syndrome calculator, there are 16

Fig. 8. Error value evaluator with � � � and � � ��.

Fig. 9. Finite-field divider with on-the-fly inversion table.

TABLE II
UNIVERSAL RS DECODER CHIP SUMMARY

syndrome cells that concurrently compute syndrome values. To
support the case of with error-and-erasure corrections,
16 syndrome cells are sufficient. However, they can support
the case of with error-only corrections. According to
(23) and (24), can be calculated from the received
codeword that is written into the FIFO memory as well, and

are subsequently obtained from the same codeword
read from the FIFO memory. The erasure generator produces
the erasure information according to the erasure
flag. Based on the inversionless Berlekamp–Massey algorithm,
we implement the key equation solver to determine the era-
sure-locator polynomial , the errata-locator polynomial

, and the errata-evaluator polynomial . As shown
in Fig. 6, only three Montgomery multipliers are required in
our decomposed architecture. In the Chien search block, the
architecture in Fig. 7 not only checks roots of but also
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TABLE III
COMPARISON AMONG RS DECODERS

Fig. 10. Universal RS decoder architecture to correct both errors and erasures.

Fig. 11. 0.18-�m universal RS decoder chip photo.

generates for errata value evaluation. Finally, the
errata value according to (34) will be calculated.

The universal RS decoder is implemented with the stan-
dard 0.18- m 1P6M CMOS technology and measured to
achieve the maximum 160 MHz clock rate at the supply
voltage 1.62–1.98 V. The die photo and the chip sum-
mary are shown in Fig. 11 and Table II. If the chip works
in the mode, the maximum measured throughput is
8 bits 160 MHz 1.28 Gb/s with 68.1-mW core power con-
sumption. Compared with other approaches listed in Table III,
the proposed design has more flexibility while achieving high
decoding throughput. Notice that the decoder in [24] applies
the serial architecture to realize the universality with the limited

throughput. The gates count of the present decoder is also com-
parable with other fixed or configurable RS decoders.

V. CONCLUSION

We present the universal RS architecture for error-and-era-
sure decoding. The proposed architecture can accommodate
variable codeword length and correctable errors, as well as arbi-
trary finite-field degrees and different irreducible polynomials.
Without extra FFMs, the proposed decomposed architecture
can support error-and-erasure corrections. In summary, the
universal RS decoder is both flexible and cost-efficient as well.

ACKNOWLEDGMENT

The authors appreciate National Chip Implementation Center
for chip measurement assistance.

REFERENCES

[1] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-
Hill, 1968.

[2] G. D. Forney Jr., “On decoding BCH codes,” IEEE Trans. Inf. Theory,
vol. IT-11, no. 5, pp. 549–557, Oct. 1965.

[3] L. Song, M. L. Yu, and M. S. Shaffer, “A 10 Gb/s and 40 Gb/s forward-
error-correction device for optical communications,” IEEE J. Solid-
State Circuits, vol. 37, no. 11, pp. 1565–1573, Nov. 2002.

[4] T. K. Truong, J. H. Jeng, and K. C. Hung, “Inversionless decoding
of both errors and erasures of Reed-Solomon code,” IEEE Trans.
Commun., vol. 46, pp. 973–976, Aug. 1998.

[5] H. C. Chang, C. B. Shung, and C. Y. Lee, “A Reed-Solomon product-
code (RS-PC) decoder chip for DVD applications,” IEEE J. Solid-State
Circuits, vol. 36, no. 2, pp. 229–237, Feb. 2001.

[6] H.-C. Chang, C.-C. Chung, C.-C. Lin, and C.-Y. Lee, “A 300 mhz
Reed-Solomon decoder chip using inversionless decomposed architec-
ture for euclidean algorithm,” in 28th Eur. Solid-State Circuits Conf.
(ESSCIRC), Florence, Italy, 2002, pp. 519–522.

[7] H.-Y. Hsu, J.-C. Yeo, and A.-Y. Wu, “Multi-symbol-sliced dynami-
cally reconfigurable Reed-Solomon decoder design based on unified
finite-field processing element,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 5, pp. 489–500, May 2006.

[8] Digital Video Broadcasting (DVB); Framing Structure, Channel
Coding and Modulation for Digital Terrestrial Television, ETSI Std.
EN 300 744, 1998, Rev. 1.1.2.

[9] Digital Video Broadcasting (DVB); Framing Structure, Channel
Coding and Modulation for 11/12 GHz Satellite Services, ETSI Std.
EN 300 421, 1997, Rev. 1.1.2.

[10] Digital Video Broadcasting (DVB); DVB Specification for Data Broad-
casting, ETSI Std. EN 301 192, 2008, Rev. 1.4.2.

[11] Digital Multiprogramme Systems for Television Sound and Data Ser-
vices for Cable Distribution, ITU-T Std. J.83, 1997.

[12] Forward Error Correction for Submarine Systems, ITU-T Std. G.975,
2000.



CHANG et al.: UNIVERSAL VLSI ARCHITECTURE FOR RS ERROR-AND-ERASURE DECODERS 1967

[13] T. Tanzawa, T. Tanaka, K. Takeuchi, R. Shirota, S. Aritome, H. Watan-
abe, G. Hemink, K. Shimizu, S. Sato, Y. Takeuchi, and K. Ohuchi, “A
compact on-chip ECC for low cost flash memories,” IEEE J. Solid-
State Circuits, vol. 32, no. 5, pp. 662–669, May 1997.

[14] L. Song, K. K. Parhi, I. Kuroda, and T. Nishitani, “Hardware/software
codesign of finite field datapath for low energy Reed-Solomon codecs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 4, pp.
160–172, Apr. 2000.

[15] C.-C. Lin, F.-K. Chang, H.-C. Chang, and C.-Y. Lee, “A universal
VLSI architecture for bit-parallel computation in ���� �,” in Proc.
IEEE Asia-Pacific Conf. Circuits Syst., Dec. 2004, pp. 229–232.

[16] R. J. McEliece, Finite Field for Computer Scientists and Engineers.
Boston, MA: Kluwer, 1987.

[17] E. Berlekamp, “On decoding binary Bose-Chaudhuri-Hocquenghem
codes,” IEEE Trans. Inf. Theory, vol. IT-11, pp. 577–579, Oct. 1965.

[18] J. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hoc-
quenghem codes,” IEEE Trans. Inf. Theory, vol. IT-11, pp. 580–585,
Oct. 1965.

[19] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding Goppa codes,” Inf. Contr., vol.
27, pp. 87–99, 1975.

[20] F.-K. Chang, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Universal archi-
tectures for Reed-Solomon error-and-erasure decoder,” in Proc. IEEE
Asia Solid State Circuits Conf. (ASSCC), Nov. 2005, pp. 125–128.

[21] H. Burton, “Inversionless decoding of binary BCH codes,” IEEE Trans.
Inf. Theory, vol. IT-17, pp. 464–466, Jul. 1971.

[22] J. H. Jeng and T. K. Truong, “On decoding of both errors and erasures
of a Reed-Solomon code using an inverse-free Berlekamp-Massey al-
gorithm,” IEEE Trans. Commun., vol. 47, no. 10, pp. 1488–1494, Oct.
1999.

[23] H. C. Chang, “Research on Reed-Solomon decoder-design and imple-
mentation,” Ph.D. dissertation, National Chiao Tung Univ., Hsinchu,
Taiwan, 2002.

[24] J. C. Huang, C. M. Wu, M. D. Shieh, and C. H. Wu, “An area-efficient
versatile Reed-Solomon decoder for ADSL,” in IEEE Int. Symp. Cir-
cuits Syst. (ISCAS), June 1999, pp. 517–520.

[25] M.-D. Shieh, Y.-K. Lu, S.-M. Chung, and J.-H. Chen, “Design and
implementation of efficient Reed-Solomon decoders for multi-mode
applications,” in IEEE Int. Symp. Circuits Syst. (ISCAS), May 2006,
pp. 289–292.

Hsie-Chia Chang (S’01–M’03) received the B.S.
and M.S., and the Ph.D. degrees in electronics
engineering from the National Chiao-Tung Univer-
sity, Hsinchu, Taiwan, in 1995, 1997, and 2002,
respectively.

From 2002 to 2003, he was with OSP/DE1 in Me-
diaTek Corp., working in the area of decoding archi-
tectures for Combo single chip. In February 2003, he
joined the faculty of the Electronics Engineering De-
partment, National Chiao-Tung University, where he
is currently an Associate Professor. His research in-

terests include algorithms and VLSI architectures in signal processing, espe-
cially for error control codes and crypto-systems. Recently, he also committed
himself to joint source/channel coding schemes and multi-Gb/s chip implemen-
tation for wireless communications.

Chien-Ching Lin received the B.S. degree in
electrical engineering from the National Tsing Hua
University, Hsinchu, Taiwan, in 2001, and the Ph.D.
degree in electronics engineering from the National
Chiao-Tung University, Hsinchu, Taiwan, in 2006.

From 2007 to 2008, he was a Post-Doctoral
researcher in the Department of Electronics Engi-
neering, National Chiao-Tung University, Hsinchu,
Taiwan. In February 2008, he joined Ambarella
Taiwan Ltd., Hsinchu, Taiwan, where he is currently
an Engineer working on the design of multimedia

systems. His recent research interests include coding theory, VLSI architectures
and integrated circuit design for communications, and signal processing.

Fu-Ke Chang received the B.S. degree from the
Department of Electronics Engineering, National
Cheng Kung University, Tainan, Taiwan, and the
Master’s degree from the Department of Electronics
Engineering, National Chiao-Tung University,
Hsinchu, Taiwan, in 2003 and 2005, respectively.

He is currently working for HIMAX Inc., Hsinchu,
Taiwan, for three years. His recent research interests
include error control code algorithm and architecture
and TFT-LCD driver implementation.

Chen-Yi Lee (S’89–M’90) received the B.S. degree
from the National Chiao-Tung University, Hsinchu,
Taiwan, in 1982, and the M.S. and Ph.D. degrees
from Katholieke Universiteit Leuven (KUL),
Leuven, Belgium, in 1986 and 1990, respectively, all
in electrical engineering.

From 1986 to 1990, he was with IMEC/VSDM,
working in the area of architecture synthesis for dig-
ital signal processor (DSP). From 2000 to 2003, he
served as the Director of Chip Implementation Center
(CIC), an organization for IC design promotion in

Taiwan. In February 1991, he joined the faculty of the Electronics Engineering
Department, National Chiao-Tung University, where he is currently a Professor
and Department Chair. His recent research interests include VLSI algorithms
and architectures for high-throughput DSP applications. He is also active in
various aspects of short-range wireless communications, system-on-chip design
technology, very low power designs, and multimedia signal processing.

Dr. Lee was the former IEEE CAS Taipei Chapter Chair from 2000 to 2001,
the SIP task leader of National SoC Research Program from 2003 to 2005, and
the microelectronics program coordinator of Engineering Division under Na-
tional Science Council of Taiwan from 2003 to 2005.


