~ > %\ ~)
B = 2 i < E
T EE L T TR AL

AL~
IEEE 802.16a ~ FFEF1 0 A4 2 28K T (7
BTk sz B B AT Bk F e L

DSP Software Implementation and Integration of

IEEE 802.16a TDD OFDMA Downlink Transceiver System

IEEE 802.16a ~ FFEF1 i+ 2 A #F 5 €845 (7

Bk 2 B MRS B R MBS

DSP Software Implementation and Integration of IEEE 802.16a

TDD OFDMA Downlink Transceiver System

Student: Yu-Sheng Chen

Advisor: Dr. David W. Lin

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science
in
Electronics Engineering
June 2005
Hsinchu, Taiwan, Republic of China

PER R, e £

IEEE 802.16a ~ FFEF1 i+ 2 A #F 5 €845 (7

BTk sz B B AT Bkl F e B L

N hgtihe P 4 2 IEEES02.16a AL & 2 A S E iR T FilL
GFe BT iAE T BT ASLASE R BF S s b EY R
R BACH b sl 0 A RN WY T g R E AR S B S R
B~ thdee F B ERRAMNMEAE T BSE ELE T o T ERHBEME B R
(symbol) B 4 B ~ 47 5 th #5 fo 7 AL 4= (frame) 2= & B o 24 g * 48+ R B (TI)
ATl el B AT R o R B edk (7T 5 % Innovative Integration 2 7 #]
% % Quixote F1cPCI + -

#2344 & R ¥ 16 =~ (bit)h 2h(fixed point) 5t kA o A ;ﬁ-g BB AT
3 %ns% k. fe(coding style) 2 2 C6416 # £ B § chadg £ ks iB 4258 34 {7 chic o
FRH A £ RPN FEFTEEY PR RGOL R E Ao gt oh s AR A
TROA B - B ORAF R TIRH AR N2 R EGREORA A
Boo AP R F R 8 SR B g ¥k Lfm—,i#ﬂ 7 ay R 2 3

ERTE et A S -

DSP Software Implementation and Integration
of IEEE 802.16a TDD OFDMA Downlink

Transceiver System

Student: Yu-Sheng Chen Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

Abstract
This thesis presents an implementation of, IEEE 802.16a TDD OFDMA DL

transceiver system, which includes the implementation of transmitter, synchronizer,
channel estimator, and other receiver, functions on the DSP baseboard and channel
simulator, which simulates multipath.fading, AWGN and frequency offset, on host PC.
The DL synchronization includes the estimations of symbol timing, frequency offset,
and frame lock status. The implementation employs Texas Instruments’
TMS320C6416 DSP chip housed on Innovative Integration’s Quixote cPCI card.

The program is mainly implemented by 16-bit fixed point data format.
Performances of the programs are analyzed and improved by changing the coding
style and applying intrinsic function of C6416 DSP. The execution performances are
compared to the real-time requirement. Besides, we also implement a host graphical
interface which can monitor the synchronization and channel estimation results on the
screen. We find that we may need to separate the functions into multi-DSPs to achieve

the real-time of the overall system.

i EH R LA FRahE AP E NI Y EALY R
g F L EEE Bt

LI S

Ay
BREF EAERFHF S S B EATY AR Y K
Tl G AR R 4 R A ey R RS R L R

B A gy

7o SRR B R R T

APy AROEY R VEHE LTIEL L kX

B3 HRF S EZRUE RO RHME Y AT S FIETE RS g

¥

Bois o AR R HARE PR}

+x_ZF
By R B A b o R B e A R T AR}
AR

Table of Contents

Table of Contents

List of Tables

List of Figures

1

2

3

Introduction

IEEE 802.16a Transmission Techniques

2.1 Overview of the IEEE 802.16a TDD OEDMA Downlink System [3]
2.1.1 Transceiver System/Structure (2] =.
2.1.2 Downlink CarrferjAllocation™ (3] ~. %
2.1.3 OFDMA TDD:Frame Structure 35
2.1.4 Modulation [3]= & LS A0 . o Lo

2.2 Approach to Downlink Synchronizatien:"
2.2.1 Downlink Synchronization Requirements
2.2.2 Procedure of Initial Downlink Synchronization
2.2.3 Normal Synchronization

2.3 Sparse DFT
2.3.1 Pruning Algorithm
2.3.2 Transform Decomposition [11]
2.3.3 Transform Decomposition with Filtering Approach [11]
2.3.4 Complexity Analysis
2.3.5 Discussiono

Introduction to the DSP Implementation Platform

3.1 The Quixote Baseboard [15]

3.2 Quixote’s Transfer Mechanisms [15]
3.2.1 DSP Streaming Interface
3.2.2 CPU Busmastering Interface
3.2.3 Packetized Message Interface.

3.3 The TMS320C6416 DSP Chip [23] . .+« oo oo
3.3.1 TMS320C6416 Features
3.3.2 Central Processing Unit Features [20]

v

iv

vi

vil

3.3.3 Cache Memory Architecture Overview [19] 48

3.4 TI's Code Development Environment [16], [26] 48
3.5 Code Development Flow [21] 52
3.5.1 Compilier Optimization Options [21] 54
DSP Implementation 57
4.1 System Structure 57
4.1.1 Memory Arrangement 58
4.1.2 Fixed-Point Data Formats 58
4.2 System Performance L. 61
4.2.1 Execution Cycles of the Original Programs 61
4.2.2 Efficiency Enhancement 65
4.3 Overall Performance, 80
4.4 Graphical User Interface, 83
Conclusion and Future Work 86
5.1 Conclusion 86
5.2 Potential Future Work . . . _o 88

List of Tables

2.1
2.2
2.3

3.1
3.2

3.3

4.1
4.2

4.3

4.4
4.5

4.6

4.7

4.8
4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2

System Parameters Used in Our Study 6
OFDMA Carrier Allocation 7
Possible Pilot Structures in Frame Synchronization 21
Message Packet Formatting (from [15]) 41
Execution Stage Length Description for Each Instruction Type (from

20]) .« o 46
Functional Units and Operations Performed (from [20]) 47
System Memory Arrangementysisss.. - 58
Performance Comparision-of Frequeney Lock Between Floating-Point

and Fixed-Point Implementation (from [2}) 60
Performance Comparision-of Frame Lock Between Floating-Point and

Fixed-Point Implementation (from [2]) . = 61
Characteristics of the ETSI“Vehicular A” Channel Environment [14] 62

Relations Between Speed and Maximum Doppler Shift at Carrier Fre-

quency 6 GHz and Subcarrier Spa¢ing 5.58 kHz 62
Profile of the Original 802.16a DL Transmitter Function Blocks (based
on [2]) ..o 64
Profile of the Original 802.16a DL Receiver Function Blocks (based
on [2]). . . 65

Comparison of the Modulation Function Before and After Optimization 67
Comparison of Framing/De-framing Functions Before and After Op-

timization 71
Comparison of Performance of FF'T Functions in DSPLIB for N = 2048 74
Comparison of Computational Complexity of Different FFT Algorithms 78

Comparison of FFT/IFFT Before and After Optimization 78
Simulation Data for SRRC_downsample 80
Performance Improvement of SRRC_downsample by Using Intrinsics . 81
Optimized Profile of the 802.16a DL Transmitter Function Blocks . . 82
Optimized Profile of the 802.16a DL Receiver Function Blocks 82
Detailed Information of Synchronization Function 83
Improvement After Modifications 87
Execution Time of the DL Receiver 87

vi

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9
2.10
2.11

2.12
2.13
2.14

2.15
2.16
2.17

2.18

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

DL transmitter structure (from [1]). 4
DL receiver structure (modified from [1]).. 5
[lustration of carrier usage in OFDMA DL (from [1]).. 6
Pilot allocation in the OFDMA DL (from [3]). 8
Frame structure of the TDD OFDMA system (from [3]). 10
QPSK, 16-QAM and 64-QAM constellations (from [3]). 12
Pseudo Random Binary Sequence (PRBS) generator for pilot modu-

altion (from [3]). 13
Structure of the symbol time and frequency estimator (from [1]). . . . 17
DL/UL symbol identification (from2}). 19
State diagram of the frame synehronizer’.. 20
Multiple FFTs are needed for a consecutive range of sample locations

to ensure finding the true symbol start time. (a) Symbol location de-
tected in stage I, wheréthe gray region is the useful samples which are
applied FFT. (b), (c) Leftmost and tightmost ranges of correlation,

respectively. (From [1].) "l ot o o 000 0o 22
Normal synchronization operations. 23
Length 16 pruned FFT for a subset of output points (from [11]). . . . 24
Block diagram of the transform decomposition method of DFT for a

subset of outputs (from [11]). oL 27
Flow graph of first order network to compute (2.3.10) (from [11]). . . 28

Flow graph of second order network to compute (2.3.14) (from [11]). . 29
Number of multiplications needed for transform decomposition when

P =512, e 32
Number of multiplications needed for transform decomposition when

P=1024 . ..o 33
Picture of the Quixote card [15]. 36
Block diagram of Quixote (from [23]). 37
DSP streaming mode (from [15]). 39
The message system (from [15]). 41
Block diagram of TMS320C6416 DSP (from [20]). 44
Pipeline phases of TMS320C6416 DSP (from [20]). 45
TMS320C64x CPU data path (from [20]). 49
C64x cache memory architecture (from [19]). 50
Code development flow for TI C6000 DSP (from [21}).. 53

vil

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16
4.17
4.18
4.19

System integration structure. Lo
Fixed-point data formats used in the transmitter.
Fixed-point data formats used in the receiver (based on [2]).
Allocation of bursts in a frame.
A part of the original modulation program.
A part of the modified program in the modulation function.
The other part of the modified program in the modulation function. .
Compiler feedback of the modulation4 function.
Kernel of the assembly code of the modulation4 function.
Original C code of the de-framing function.
Revised C code of the de-framing function.
Software pipelining information of the revised code for the de-framing
function.
Kernel of the assembly code of the revised de-framing function.
Kernel of the assembly code of the original de-framing function.
[FFT implementation using FFT function.
A part of the assembly code in DSP_16x16r.
Using intrinsics in SRRC filter.
Host PC graphical interfacef™s ="l
Verification structure of:the DL transceiver system.

viii

Chapter 1

Introduction

In recent years there has been increasing interest in wireless technologies for sub-
scriber access. For some years much interest has been devoted to fixed wireless
access. To provide a standardized approach, the IEEE 802 committee set up the
802.16 working group in 1999 to develop broadband wireless access standards [24].

The TEEE 802.16 standards are concerned with the air interface between a sub-
scriber’s transceiver station and a base transceiver station. One IEEE 802.16 Task
Group [24] developed the IEEE.Standard 802.16a that amends IEEE Std 802.16-
2001 by enhancing the medium access ‘control (MAC) layer and providing additional
physical layer specifications in support of broadband wireless access at frequencies
2-11 GHz. After 802.16-2001, a new IEEE Std 802.16-2004 (also called 802.16) has
been published and the IEEE 802.16e is near completion. In the physical layer of

the 802.16, the main differences between 802.16 and 802.16a are as follows:
e The preamble allocation of the TDD (time division duplexing) frame structure.
e The usage of subchannels in the symbol structure.

e Forward error correction code.

Details can be found in [3] and [4]. The IEEE 802.16e adds mobile extension to the
802.16 standard.

In this thesis, we consider the DSP software implementation of IEEE 802.16a
downlink system. The reason that we consider the now defunct IEEE 802.16a rather
than the current IEEE 802.16-2004 is because this project was started three years
ago. We will consider newer 802.16 standards in the future. The synchronization
techniques are modified from [2]. The implementation employs Texas Instrument’s
TMS320C6416 digital signal processor (DSP) housed on Innovative integration’s
Quixote c¢PCI card.

This thesis is organized as follows. In chapter 2, we introduce the 802.16a down-
link system specification and the synchronization techniques. Chapter 3 introduces
the Quixote baseboard and the TMS320C6416 DSP chip, as well as the program
development environment and the host-target communication mechanism. In chap-
ter 4, we describe the DSP implementation and:examine the program efficiency. We
also introduce the user interface to control program execution and display numer-
ical results results. Finally, chapter & gives the conclusions and points out some

potential future work.

Chapter 2

IEEE 802.16a Transmission
Techniques

The TEEE 802.16a specification enhances the medium access control layer of the
IEEE 802.16-2001 standard and its operating frequencies are between 2 to 11 GHz.
There are three physical layer modes in 802.16a: SCa (single carrier a), OFDM
(orthogonal frequency-division-multiplexing). and OFDMA (orthogonal frequency-
division multiple access). We consider OFDMA, as it is a technology of considerable
research potential.

In this chapter, we first introduce the OFDMA specifications in 802.16a and then
explain the approaches we take to implement the transceiver system. Finally , we
introduce the sparse DFT algorithms and discuss the reason that we do not adopt

the transform decomposition method.

2.1 Overview of the IEEE 802.16a TDD OFDMA
Downlink System [3]

Before a detailed introduction to IEEE 802.16a standard, we explain some frequently
used terms first. The direction of transmission from the base station (BS) the sub-

scriber station (SS) is called downlink (DL), and the opposite direction from SS to

parameters: No_OFDM_symbol/ No_subchannel/
OFDM_symbol_offset/ Subchannel _offset

DL_MAP,UL_MAP +
pilot (preamble) modulation
i add virtual carriers -
burst 1 data e ;Irllgciction 157/52 (pa\gdizg zerols)
——{smanttr | e 88, -
burst n data burst n
not addressed in the
present study
interpol ator N
IS : LPF DA _|Tx
FET | okt prefix |- ‘ ta %’ (SRRCfilter) | | filter| | RF|
| . (AWGN)
" (fadding channel)

Fig. 2.1: DL transmitter structure (from [1]).

BS is called uplink (UL). The medium access control layer is used to provide the
system grant /request access and the_link of,data between the upper layer and the
lower layer (i.e., physical layer). The physical layer (PHY) handles the data trans-
mission and may include use of-multiple transmission technologies, each appropriate

to a particular frequency range.and application.

2.1.1 Transceiver System Structure [2]

The structure of the DL transmitter is shown in Fig. 2.1. The data bursts are
fed into the FEC (forward error correction) encoder. Then we apply modulation
and framing. Gray-mapped QPSK and 16-QAM are required to be supported in
modulation, whereas the support of 64-QAM is optional. The framing is used to
arrange the coded data, MAPs, pilots and preamble according to the specified frame
structure and carrier allocation. After framing, the data are fed into IFFT with
some null carriers (guard band) to obtain the time domain signal through IFFT.
The result from IFFT is output sequentially to the pulse shaping filter. As the ideal
lowpass interpolation filter cannot be implemented exactly, the square root raised

cosine filter is used instead. The impulse response of the filter is given by

]

Fractional Integer
not addressed in frequency frequency
the present study sync syne

[

. Guard -
Rx AD LPF Symbol time . SP [-
— " RF [™filter[T (SRRC filter) 4’@’ syne [mmterval == o5 FFT | Frame |
removal = Sync
DL_frame_prefix
DL_MAP
L '
v Channel |—w| P/S | Data Data FEC Data
estimation | | | 1702 ™| deframing | " |demodulation| | decoder De-scrambler ¢
b

Fig. 2.2: DL receiver structure (modified from [1]).

sin(w ! (1—a)>+4a ! cos<7r . (1+a)>

Tsample Tsample Tsample

e e 7

Tsample Tsu.mple

SRRC(t) =

where « is the roll-off factor. “The D/Aand RF parts are not addressed in the

present study.

Fig. 2.2 shows the downlink receiver structure: The receiver is in some sense the
reverse of the transmitter, except for the synchronizer and the channel estimator.
The synchronizer is a major focus in this thesis, and it will be discussed in more

detail later.

2.1.2 Downlink Carrier Allocation [3]

In the 802.16a OFDMA system, there are 2048 carriers per symbol. The carriers are
divided into three groups: pilot carriers for synchronization and channel estimation
purposes, data carriers for data transmission, and null carriers that are used for
guard band and the DC carrier which transmits nothing at all. And the system

parameters employed in this study are shown in Table 2.1.

As we can see in Fig. 2.3, there are 1702 used subcarriers, composed of 1536 data

carriers and 166 pilot carriers. The remaining subcarriers are unused subcarriers as

5

Table 2.1: System Parameters Used in Our Study

Number of carriers (N) 2048
Center frequency 6 GHz
Uplink / Downlink bandwidth (BW) 10 MHz
Carrier spacing (Af) 5.58 kHz
Sampling frequency (fs) 11.43 MHz
OFDM symbol time (T5) 201.6 psec (2304 samples)
Useful time (7}) 179.2 psec (2048 samples)
Cyclic prefix time (7}) 22.4 psec (256 samples)

32 datacarriers (no pilots in the group)

N

\ + LT Al A A
Guard band 1 DC carrier 1 ‘ || Guard band
< : | ‘ ! : |
Groupl Group2 Group48
The 1702 used carriers = 1536 data carriers + 166 pilot carriers
A subchannel 2

? pilot 4 subchannel 1 ;

Fig. 2.3: Ilustration of carrier usage in OFDMA DL (from [1]).

Table 2.2: OFDMA Carrier Allocation

Parameter DL Value

Number of DC carriers 1
Number of guard carriers, left 173
Number of guard carriers, right 172
Nused, number of used carriers 1702
Total number of carriers 2048
NuarLocPilots 142

Number of fixed-location pilots 32

Number of variable-location pilots which 8

coincide with fixed-location pilots

Total number of pilots 166
Number of data carriers 1536
Nsubchannels 32

Ngubcarriers PEr subchannel 48
Number of data carriers per subchannel 48

guard bands distributed on thesedge of the symbol: and one DC carrier right in the
middle of the OFDMA symbol. In the downlink, the pilot subcarriers are allocated
first, and then the remainders of the used-earriers-are divided into 32 subchannels,
each subchannel consisting of 48 data carriers. The pilot locations change with time
according to some permutation formula which will be described below. Table 2.2

shows the OFDMA downlink carrier allocation.

There are variable location pilot carriers and fixed-location pilot carriers. The
carrier indices of the fixed-location pilots never change. The variable location pilots
shift their locations every symbol periodically every 4 symbols, according to the
formula varLocPilot, = 3L + 12P,, where varLocPilot; is the carrier index of a
variable location pilot, L periodically takes the values 0,2,1,3, cyclically over the

symbols, and P, = {0,1,2,3,...,141}. The detailed illustration is given in Fig. 2.4.

After mapping the pilot carriers, we should also map the data carriers to the

correct positions. Note that since the variable location pilots change their locations

carrier index
I

symbol j
v !IIIHIHIII T I]]]]]]]I!
0 |I2 :|4 N seet -1

n+l =2 ! aa s !
I | |

0 6 18 30 N -1

w2 v I IIIH---[D]]IUI!
0 3 (]

[
3 27 N s =1
ER !llll\ll TR T o e M]J
[[
0 g 71 Nyeed -1

w4 1-=~!IIIHIIHIIIIIIIIHI|H||||II||H---[I]]]II]I!
0 12 24

¥ \ l

time

Allocation Kev: I:I Variable Location Pilot I Fixed-location Pilot I:l Data

Fig. 2.4: Pilot allocation in the OFDMA DL (from [3]).

with symbols, the locations of the data carriers change also.
The exact partitioning into subchannels is done according to the formula below,

called a permutation formula:

caTTiGT(TL, 8) = Nsubchannels “n A+ {ps [and(Nsubchannels)]

+IDC6” : CBZZ[(n + 1)/NSUbChannels]}mOd(Nsubchannels)

where

e carrier(n,s) is the carrier index of carrier n in subchannels,

s is the index number of a subchannel, from the set [0, 1, » Nsubchannets — 1],

n is the carrier-in-subchannel index from the set [0, 1, Ngybchanners — 1],

® Nyubchannels 18 the number of the sunchannels,

ps|j] is the series obtained by rotating PermutationBase cyclically to the left

s times,

ceil]] is the function that rounds its argument up to the next integer,

I D,y is a positive integer assigned by MAC to identify this particular BS, and

® X,uod(k) is the remainder of quotient X/k.

The following text in this section is mainly taken from [3], [2] and [1].

2.1.3 OFDMA TDD Frame Structure [3]

According to IEEE 802.16a, the duplexing method in the 2-11 GHz band shall be
either FDD (frequency division duplexing) or TDD (time division duplexing) in
licensed band and TDD in license-exempt bands. We consider the TDD mode in
this thesis. The advantage of using TDD is that we have flexibility to control the
DL and UL traffic ratio.

OFDMA symbol number t

-
ALy k2 k3 d RS kb KET g RS A‘-‘JIk-Ililk-Illk-I_‘- s RIF.Sd B
o 1D Frome Prefin | 5 JL e Prefi
! =
2] 2 | UL burst#]
2 ot =
] DL-MAP DL burst #3 B | DL-MAP
o] ==
g'] I
£ 87 .L— T ot 4
Zlie] uL-Map DL burst #1 g I UL burst 2
= b ol UL-MAP
AbE |
5 };— DL burst #4 |
£ 164
=17 [
o REE 7] |
19 =Y : ,
21: DL burst #2 ot #5 % | VL burst 73 DL burst #1
227 . burst #2 DL burst #5 5
23]]
24.]
25 |
2?: 1 DL burst #2
#a— Ranging subchannel
-t -

DI TTG Ul RTG

Fig. 2.5: Frame structure,of the TDD.OFDMA system (from [3]).

The frame structure of TDD OEDMA is as shown in Fig. 2.5. The data are
segmented into blocks for FEC (forward error correction) coding. Each FEC block
spans one OFDMA subchannel in the subchannel axis and three OFDMA symbols
in the time axis. A frame consists of one DL subframe and one UL subframe. The
duration of a frame can run from 2 to 20 ms and is specified by the frame duration
code. A subframe contains several transmission bursts, which are composed of
multiple FEC blocks. In each subframe, the TTG (Tx/Rx transition gap) and RTG
(Rx/Tx transition gap) are inserted between the downlink and uplink transmissions
at the end of each frame respectively to allow the BS and SS to turn around. TTG
and RTG shall be at least 5 us and an integer multiple of four samples in duration.

For the DL, the transmitted data from the BS should contain the control message

and system parameters, so that the subscribers can know when and how to receive
and transmit their data. The burst profile is used to define the parameters such as

modulation type, forward error correction type, preamble length, guard times, etc.

10

The first FEC block of each frame is the DL_Frame_Prefix that is always transmitted
in the most robust burst profile, QPSK-1/2. The DL_Frame_Prefix contains the
parameters of the FCH (Frame Control Header) which includes the DL-MAPs, UL-
MAPs and may additional DCD (Downlink Channel Descriptor) and UCD (Uplink
Channel Descriptor) messages. The DL-MAP/UL-MAP messages define the access
to the DL/UL information, including the burst profiles and the distributions of the
subchannels and time axes of the bursts. The DCD and UCD shall be transmitted
by the BS at a periodic interval to define the characteristics of DL and UL physical
channels. The pilots of the first OFDM symbols is the DL preamble in the sense
that they indicate where the OFDMA frame starts. Note that the DL preamble is
not composed of an all-pilot symbol, so no additional OFDM symbol is transmitted.
As a result, the number of OFDMssymbols of'the DL is 3NV, where N is a positive
integer. And the number of ULzOFDM symbols is:3/N + 1, including one preamble

and subsequent data symbols.

2.1.4 Modulation [3]

There are three types of information to be modulated: data, pilot, and preamble.
The modulation of pilot and preamble will be explained in detail for they are useful

in synchronization.

Data Modulation

The data modulation in 802.16a is shown in Fig. 2.6. The data bits are entered
serially to the constellation mapper. Gray-mapped QPSK and 16-QAM must be

supported, whereas the support of 64-QAM is optional.
Pilot Modulation

Pilot carriers shall be inserted into each data burst in order to constitute the symbol

and they shall be modulated according to their carrier locations within the OFDMA

11

J3
b.b Qc=1/.J10
1~0 A
01 = . 3 . .
(o[] . 1+ .
-
-3 -1 1 3 I
10 = . 1 . .
11 . . 3 . .
Y
11 10 00 01 by,

bEblbO
011

010 =
000 »

001 =

|
il

101 »
100 o
110 »

111 =
111

110

100

101

001

000

010

Fig. 2.6: QPSK, 16-QAM and 64-QAM constellations (from [3]).

symbol. The PRBS generator is-used to produce a sequence, wy, where k corresponds
to the carrier index. The value of the pilot modulation on carrier £ is then derived
from wy,. The polynomial for the PRBS generator'is X! +X° +1, as Fig. 2.7 shows.

The initialization vector of the PRBS in the DL transmission is [11111111111]
except for the OFDMA DL PHY preamble. For the UL, the initialization vector of
the PRBS is [10101010101]. The PRBS shall be initialized so that its first output
bit coincides with the first usable carrier. A new value shall be generated by the
PRBS on every usable carrier. Each pilot shall be transmitted with a boost of 2.5

dB over the average power of each data tone. The pilot carriers shall be modulated

according to the following formulas:

Re{cy} =

Preamble Modulation

The first three symbols of a frame serve as the OFDMA DL preamble. For the DL

preamble, the initialization vector of the pilot modulation PRBS is [01010101010].

(

W oo

N |

12

—wg), Im{c,} =0.

msh Isb

Initialization DL: 1 1 1 I R A
Sequences UL:1 0 1 0 1 0 1 0 1 0 1

L1213 (4 (5|67 ([8]9(10]11

Fig. 2.7: Pseudo Random Binary Sequence (PRBS) generator for pilot modualtion
(from [3]).

Hence, the preamble and other symbols may have the same pilot locations, but they
can be recognized by different modulation values. The pilots shall be boosted and

shall be modulated according te the following formulas:

Re{cyfi=), Imfc,} = 0.

w | oo
NSNS

(

For the UL preamble, all the used carriers are pilots. The initial vector of the
PRBS is the same as the normal UL pilot modulation. The pilots shall not be

boosted and is modulated as

Re {er} = 2(% —wy), Im{ex} = 0.

2.2 Approach to Downlink Synchronization

Synchronization errors in OFDM can cause intersymbol and intercarrier interference.
Accurate demodulation and detection of an OFDM signal requires carrier orthog-
onality. One way to suppress these interferences in OFDM systems is to track the
carrier frequency of the received signal and the start time of each OFDM symbol. A
blind joint maximum likelihood estimator of symbol time and carrier frequency off-

set for OFDM symbols using cyclic prefix is presented in [7]. The estimator exploits

13

the redundancy introduced by the prefix and is independent of how the subscribers
are modulated. Therefore, it does not require extra pilot information to complete

the timing and fractional frequency synchronization.

Variations of carrier oscillator, sample clocks or the symbol time affect the or-
thogonality of the OFDM system. In this thesis, we do not consider sample clock
synchronization. The sample clocks of the users and the base station are assumed to
be fully synchronized. The timing requirement is relaxed by using cyclic prefix (CP).
If the time offset is smaller than the length of the guard interval minus the length of
the channel impulse response, then the orthogonality among carriers is maintained.
In this case, the time offset will appear as a phase shift of the demodulated data
symbols across the carriers but will not result in intersymbol interference (ISI) or
intercarrier interference (ICI).

In practical OFDM systemsy frequency offsets due to oscillator mismatch usually
exist between transmitters and receivers. Each subcarriers can be assumed equally
affected by a center carrier frequency shift, because the system bandwidth is small
compared to the center carrier frequency. "The frequency offset has three effects:
reducing the amplitude of the FFT output, introducing ICI from other carriers, and

introducing a common phase rotation of the subcarriers [9].

2.2.1 Downlink Synchronization Requirements

The DL synchronization can be divided into two conditions. One is for the estab-
lishment of the initial connection, called the initial synchronization. The other is
the tracking of the synchronization, called the normal synchronization. The main
reason to have a different normal synchronization than initial synchronization is to
reduce the computational complexity in normal operation. In fact, we use a sim-
plified version of the initial synchronization procedure for normal synchronization

(tracking) purpose.

14

If a subscriber wants to join the transmission network for the first time, it has no
idea about the timing of the network and the frequency offset with the BS. In this
case, after detecting the symbol start time, frequency estimation and correction is
needed. According to 802.16a, the center frequency of the SS shall be synchronized
to the BS with a tolerance of maximum 2% of the inter-carrier spacing. Then,
the SS has to check that the received OFDM symbol is from the BS or from other
SSs. If the symbol is from the BS, further check is required to know whether this
symbol is the start of a frame. After initial synchronization, the subscriber is able
to extract the transmission parameters from the DL_MAPs and UL_MAPs. With
these parameters, the SS can roughly predict the next symbol and frame start times,
so normal timing synchronization can be simplified. The frequency offset is tracked
during normal operation. If the OFEDM symbel start time is out of the predicted
range, re-initial synchronizationis needed.

There are three kinds of useable information for synchronization: guard interval,
pilot carriers (including preamble), "and the guard bands. We employ the method
proposed in [1] and divide the initial DLisynchronization into 4 stages. In the first
two stages, the OFDM symbol start time and the fractional frequency offset are
detected using the guard interval. The third stage exploits the guard bands to cor-
rect integer frequency offset. Then, the final stage checks the pilot and preamble
information to determine when a frame starts. For normal synchronization, only
two stages are needed, where stage I is the same as that in initial DL synchroniza-
tion and stage II is used to track the frequency. More detailed description of the

synchronization technique is given below.

15

2.2.2 Procedure of Initial Downlink Synchronization

2.2.2.1 Stage I: Symbol Timing Synchronization

In [1], two methods of symbol timing estimation have been considered, both using
the cyclic prefix: ML estimation and CP correlation. The method of ML estimation
is proposed in [7], which uses the maximum likelihood criterion to estimate time
and frequency offsets. Under the assumption that the received samples are jointly

Gaussian, the estimated symbol time offset 0 is given by

0 = arg max {|T(0)| — p®(0)}, (2.2.1)

where

0+L—1
L) = > r(k)r(k+N), (2.2.2)
k=0
oLt

Z B Rl r(k + V)|, (2.2.3)
and p = S]S\,%il with SNR being the signal-te-noise ratio. It is a one-shot estimator

in the sense that the estimates are based on the observation of one OFDM symbol.
To roduce the complexity, the CP correlation method uses only the correlation part
to estimate the symbol time, ignoring the part that compensates for the difference
in energy in the correlated samples. As the samples of different OFDM symbols are
uncorrelated, the peak of the sliding sum of r(k)r*(k + N) would occur when the
samples r(#),--- ,r(0 + N + L — 1) are all within the same OFDM symbol. Then,

the symbol time offset estimator becomes

0+L—1
> (k) (k+ N)‘ : (2.2.4)

f = arg max
k=0

A comparison of the complexity difference between the two methods is given in [2].
For further reduction of the CP correlation complexity, we can compute the CP

correlation at sample time 6 by (2.2.2), then the CP correlation at sample time 6+1

16

sliding sum
"(length=L A = argmax-—§
=CP legnth !

r(k+2048)

Y

X
Dealy 2048) A - venl=3

samples Y

Y

Fig. 2.8: Structure of the symbol time and frequency estimator (from [1]).

is given by
0+L
r@+1) = > r(k)r(k+N)

k=0+1
= I'(0) —r(k)r*(k+ N)+r(@+ L)r* (6 + L+ N). (2.2.5)
Reference [1] shows that althoughtthe’ performance of ML estimator algorithm
is better than that of CP correlation algorithm in AWGN channels, neither algo-
rithm can estimate the exact symbol time at 100% accuracy. In addition, for fading
multipath channels the CP correlation algorithm/can outperform the ML estimator
algorithm. To estimate the exact symbeol-time; both algorithms should be assisted
by other means to find the symbol time more accurately. Here pilot correlation is
used as the auxiliary operation, which is combined in stage IV with frame synchro-
nization. Since the complexity of ML estimation is much higher than that of CP
correlation, but the benefit is questionable [1], [2], we use CP correlation to estimate

the symbol time in stage I. The algorithm structure is as shown in Fig. 2.8.

2.2.2.2 Stage II: Fractional Frequency Synchronization

The ML estimator of the fractional frequency offset € is given by [7], [8]

1 R
¢= /T
€= 5-ZI(0),

whose structure is already shown in Fig. 2.8. It is easy to understand why e can

be estimated by this method. The frequency offset € results in an exponential

17

modulation in the time domain, in that the received samples are multiplied by

{1, IR, eI } In AWGN channel, the received sample in the guard time is

and the sample in the last part of the useful time is

. 2me(k+N)

r(k+N)=s(k+N)e= v +n(k+ N),

where s(k) is the transmitted signal, N is the FFT size, and n(k) is the noise. Then

the multiplication of (k) and r*(k + N) yields

.27 (e+N)

r(k)r*(k+ N) = s(k)s*(k+ N)e™?7~ ¥ + noise.

.27 (e) . . .
Note that e 7%~ is the common factorsof all the pairwise sample products for

r(k) in the guard interval. Henee, the $um of these products should reduce the
noise effect. The frequency offset e can be éstimated by the phase of the sum of
r(k)r*(k+ N) taken at the syniboel start position.' Note that the phase contribution
of any integer frequency offset is an integer.times 2. Thus this estimator is merely

able to detect fractional frequency offset.

2.2.2.3 Stage III: Integer Frequency Synchronization

The integer frequency synchronization stage is performed after FFT by utilizing the
guard band and two fixed pilot carriers which are at the edge of the used carriers to
correct the frequency offset. There are two reasons to using the guard band to do
integer frequency synchronization. First, guard carriers suffer less degradation from
by ICI than pilot carriers. Secondly, the complexity of using the guard carriers is

much less than that using the pilot carriers as no multiplication is required.

The first step in integer frequency offset estimation is for SS to check whether
the received OFDM symbol is from the BS rather than another SS. In 802.16a [3],

the definition of the guard bands and pilots are different for DL and UL. The indices

18

TL /DL symbol identification

UL OFDM Symbol

L AT
£ o

DL OFDM Symhbol

LA AT

Integer freq shaft

o
&

B

&
=

F 3

P
»

Fig. 2.9: DL/UL symbol identification (from [2]).

of the DL guard carriers are from =1024 to —852 and from 852 to 1023, while for
UL they are from —1024 to —849 and from 849 to 1023. A threshold can be set and
if any of the carriers {—849, —850, —851, 849, 850, 851} is larger than the threshold,

the SS will regard the symbol as a DL symbol, as shown in Fig. 2.9.

For the DL, the standard defines that carriers —851 and 851 are fixed location
pilots which are modulated to i% in amplitude. If there is no integer frequency
offset, the FFT outputs of all the guard carriers will be small. So, all the guard
carriers are checked to see if any of them exceeds the threshold. The direction of
checking is from 1023 to 852, and then from —1024 to —852. If a carrier k is detected
to be larger than the threshold, the +851st fixed pilots are assumed to have shifted
k — 851 carrier spacings due to the frequency offset. Thus the checking is stopped
and the frequency is corrected by k — 851 carrier spacings.

In a fading channel, ICI may cause serious distortion. Thus, if the £851st pilots

19

Initial synchronization Normal synchronization

YES

Normal
synchronization
fail

To— —~. NO \
—_ YES ety COUDLET +1
counter < 6
YES in one DL subframe
Initial

synchronization
succeed

YES

Fig. 2.10: State‘diagram of the frame synchronizer.

are distorted to be less than the threéhold, the‘frequency offset will not be detected
by the method. An additional check‘is added to see whether both of the +851st
pilot carriers are larger than the threshold. After these three checks, the integer
synchronization finishes. The threshold is chosen to be 0.55 in our simulation. This

value is derived from the simulation results in [1].

2.2.2.4 Stage IV: Frame Synchronization

In stage I, the OFDMA symbol start time have been roughly estimated, but the
SS has to know exactly where the frame starts. The frame start time estimation
proposed in [1] uses the pilot correlation method. In the 802.16a standard [3], the
varible location pilots change their locations from symbol to symbol depending on
the symbol index L. The modulation of pilots is decided by the PRBS generator,

and the initialization vector of the PRBS generator is different in the preamble

20

symbol than in a non-preamble symbol. Therefore, there are 7 possible kinds of
pilot structure as shown in Table 2.3. If the received symbol has the same pilot
locations and the same initial vector of modulation PRBS with the reference data,
the correlation of them will be larger than the other 6 cases. A frame is determined
to start if there are three successive DL symbols with the maximum correlation

corresponding to the preamble.

Table 2.3: Possible Pilot Structures in Frame Synchronization

’ DL preamble ‘ DL normal symbol ‘

L =0, PRBS =01010101010 | L =0, PRBS = 11111111111
L =2 PRBS =01010101010 | L =2, PRBS = 11111111111
L =1, PRBS =01010101010 | L =1, PRBS = 11111111111
L =3, PRBS = 11111111111

The proposed frame synchronization algorithm is illustrated in Fig. 2.10. In
order to build connection, we have.to'find the starting point of a frame in initial
synchronization. After finding the third preamble’symbol, we can turn the operation
to normal synchronization as shown in Fig. 2.10. The method presented in [2]
declares frame synchronization failure when there is one unexpected symbol in pilot
correlation. But we find that one unexpected symbol does not mean that it cannot
find correct pilot correlation in the next symbol. So we modify the method to
declaring frame synchronization failure with the detection of 6 unexpected symbols
within one DL subframe.

From [2], because of the use of pilot correlation, we may need to do FFT at each
sample location for a range of 65 samples (from —32 to +32, as shown in Fig. 2.11(b)
and (c) [1]) in order not to miss the true symbol start time. In order to reduce the
computational complexity, the conventional FFT is only applied at location —32.
At the subsequent sample locations, the FFT may be computed recursively as

-2k

Xo(k) = [Xn-1(k) —xp_n + 5] &N (2.2.6)

21

1)
X

(@ | x(* | X(k+N) |'
| X |
| (cp) |

® [1

© |

detected symbol corresponding
start time detected useful time

Fig. 2.11: Multiple FFTs are needed for a consecutive range of sample locations to
ensure finding the true symbol start time. (a) Symbol location detected in stage I,
where the gray region is the useful samples which are applied FET. (b), (¢) Leftmost
and rightmost ranges of correlation, respeetively. (From [1].)

where N is the FF'T size, k is the carrier index, n is sample number, and z,, is the

new sample location.

2.2.3 Normal Synchronization

After initial synchronization, the SS can find the frame duration from the frame
duration code in the MAPs. Thus the next frame start time can be predicted
and there is no need to do complicated initial synchronization again. The timing
synchronization stage should still be used to track the exact symbol time, because
the received symbol time may shift with time due to channel variation and sampling
clock offset. The CP correlation can estimate the rough symbol time. In normal
synchronization, pilot correlation can still help to find a new accurate symbol time.

As shown in Fig. 2.12, we track the symbol timing and frequency offset in stages
I and II respectively. And we use pilot correlation to search for a more accurate
symbol time and frame start time with a smaller search range. The simulation in [1]

sets the search range in initial synchronization to £32 samples around the estimated

22

Stage | Stage 11 Stage IV

— gel » Fractional » Pilot correlation —

Symbol timing o
frequency & frame timing

Fig. 2.12: Normal synchronization operations.

symbol time from CP correlation. For normal synchronization, the range is reduced
to within +5 samples. In this thesis, we set the normal synchronization’s pilot search
range to 16 samples to get more reliable symbol timing estimates.

Concerning carrier frequencyssynchronization; according to 802.16a, the SS shall
track the frequency changes and shall defer any transmission if synchronization is
lost. Small frequency changes can be tracked by the fractional frequency part (stage
IT) of initial or normal synchronization: If by any chance a larger frequency variation
occurs, we may detect it by monitoring the received guard carriers and then try to

correct it.

2.3 Sparse DFT

In some multiple access communications systems, transmitter and receivers may
have different cost and capacity requirements. For instance, in a downlink scenario,
one transmitter sends the same composite signal to multiple receivers. Each receiver
may only be interested in a small fraction of the transmitted data. The transmitter
may have high cost, provided the receivers have low cost.

Partial transforms offer the possibility of cost reductions in OFDM systems. In

this section, we will introduce two kinds of methods. One is called the pruning

23

wﬂ

x[7]
w:><w‘

x[15]

Fig. 2.13: Length 16 pruned EET for a subset of output points (from [11]).

algorithm and the other is called the transform decomposition [11] algorithm. The

following introduction is mainly taken from [11].

2.3.1 Pruning Algorithm

The pruning method is first devised by Markel [12]. Pruning is a modification of
the standard one-butterfly radix-2 FFT. Fig. 2.13 shows how this pruning scheme
works. Assuming that X (0) and X (1) are of interest, only the solid edges in the flow
graph need to be computed, while the grey edges can be “pruned” away. By also shift
twiddle factor in the program it is possible to get a band that does not start at X (0),
but can start anywhere. Multiplying all the twiddle factors by Wy, the L output
values will be X (J), X (J+1),..., X (J+L—1), instead of X (0), X(1),..., X(L—1).

24

To compute L out of N DFT points, the regular pruning program requires

2N L
#MULPRUNE = 2NL10g2 LJ + 2N — 4L + m
real multiplications and
3NL
ADD =3N|log, L| + 3N — 6L + —
PRUNE | logy L] + + [Tog, L]

real additions. More discussion about pruning algorithm can be found in [11].
The pruning algorithm can only compute consecutive output points. It can-
not compute the output points with random indices. For this reason, the pruning

algorithm is not suitable for 802.16a implementation.

2.3.2 Transform Decomposition [11]

A method, transform decomposition, for computirig only a subset of output points
will now be introduced. It is shown to be more efficient and more flexible than the

pruning algorithm. We know that the/DET is designed as

N—1

X(k) =Y z(m)Wy (2.3.1)

n=0
where £k =0,1,..., N — 1. Assume that only L output points are needed and that
there exists a P such that P divides N and define) = N/P. Using the variable
substitution

n = Qny + ny (2.3.2)

where ny = 0,1,...,P—1,and np = 0,1,...,Q — 1. We can rewrite the DFT as

follows:

Q-1 P-1

X(k) = 2(mQ + ng)W m@tn)k (2.3.3)
na=0n1=0
Q-1

2(n1Q + ng) WM =k>r ek (2.3.4)

I
MH

0

3
IV
Il
o
3

1

25

where <> p denotes reduction modulo P, and k takes on any L consecutive values
between 0 and N — 1. Breaking this up into two equations

Q-1
X(k) = Xn,(< k>p)Wih (2.3.5)

no=0
where

P-1

Xo(j) =) a(mQ+ ng)WpY (2.3.6)

n1=0

= Y @, (n) WY (2.3.7)

where j = 0,1,...,P — 1. and z,5 = x(mQ + n2). The sum in (2.3.7) can be
recognized as a length P DFT, and it can be computed efficiently using any FFT
algorithm. This is a great advantage of the transform decomposition method.
Inspecting (2.3.7), it can be=seen that the sequence over which the DFT has to
be computed is two dimensional and hence depends on ny. Thus a DFT has to
be computed for each different walue of ‘ny;~and hence there are () such length P
DFTs. The output of the DFTs are recombined using (2.3.5) which can be computed
directly using) complex multiplications and) — 1 complex additions per output
point or a total of QL complex multiplications, each requiring 4 real multiplications
and 2 real additions, and L(Q—1) complex additions, each requiring 2 real additions.
The advantage of the transform decomposition is that we can compute any output
point with index & in (2.3.5), which can prove that the transform decomposition
algorithm is more flexible than pruning algorithm. Fig.2.14 shows how this method

works to compute the first L out of N DFT points.

2.3.3 Transform Decomposition with Filtering Approach [11]

It is possible to lower the number of operations required to compute (2.3.5) even

further using a technique similar to Goertzel algorithm [13]. To see this, rewrite

26

x(0) %o © X, X(0)
x(1) % ® X ® X()
x(2) i
x(3) xy (P-1) X, (P-1) WN X(L-1)
% © g @ mnly L
%, &) X, ®) oot
x P-1) X, (P-1) .
NQ-I)*
Xy @ X1 O
X1 k) Xo1 ®
X(N'l) 10_1 (P'I) xq-l @‘l :’
———— — —
Input mapping g;j:gm-P Recombination

Fig. 2.14: Block diagram of the transform decomposition method of DFT for
subset of outputs (from [11]).

27

Xgl(kp]

¥

Fig. 2.15: Flow graph of first order network to compute (2.3.10) (from [11]).

(2.3.5) as follows:

Q-1
X(k) = > Xpplsihk>p)(Wh)™ (2.3.8)

no=0
Q-1
= N Xo miilskep(Wh)9 ! (2.3.9)

m=0
with the variable substitution m = @ =75 =1. Now define

7j—1

(i) =D Xg-ma(< k >p)(WE) ™ (2.3.10)

m=0

from which we can find X (k) as

X(k) = ye(i)lj=q- (2.3.11)

Equation (2.3.10) can be recognized as a shifted cyclic convolution between the
sequence Xg_;_1(< k >p) and (W¥)7~! in the variable j and hence yx(j) can be
viewed as the output of a system with impulse response (W%)7~ driven by the input
Xo—j_1(< k >p).

Fig. 2.15 shows a flow graph that implements (2.3.10), but a quick analysis will
show that this implementation requires 4 real multiplications per iteration assuming
the input is complex, and hence requires the same amount of operations as a direct

implementation of (2.3.5).

28

X 1[{kde)

\

Y

L~
i 21y
& moqlg) . p— %@
Al P | A
) My

Fig. 2.16: Flow graph of second order network to compute (2.3.14) (from [11]).

The transfer function of the system in Fig. 2.5 is

=l

e 7

(2.3.12)

which can be rewritten as

B 21— 27 TR
() = G e (2.3.13)

—1(1 — -1 —k
_ = = Wy') (2.3.14)

1 —2cos (3E)z=1 + 272

This last equation can be implemented using the flow graph in Fig. 2.16. Assume
that the input is complex. Then each iteration only takes two real multiplications
since the multiplication by —1 need not be counted. This is half of what was
needed in the first order case. Because we are only interested in y;(Q), but not the
intermediate values, it can be seen that the zero of the system is only needed once.

The derivations of (2.3.10) and (2.3.11) are not based on the actual values of
the indices of the computed output values, i.e., does not rely on the specified values
of k. Unlike the standard FFTs, efficient computation of (2.3.10) and (2.3.11) by

the flow graph in Fig. 2.16 does not depend on combining computations for several

29

different output points (several different k). Hence the number of output points to
be computed can be any length L subset of the N possible output points. This is
a very powerful result that shows that transform decomposition is not just more
efficient than pruning, but also more flexible. Where pruning restricts you to L
subsequent output values, transform decomposition allows any length L subset to

be computed.

2.3.4 Complexity Analysis

For the transform decomposition method, the computational complexity is discussed

n [11]. Given that N is a power of two, then we need
N
#MULrp = Nlogy, P — 3N +4(L + 1); — 4L (2.3.15)
real multiplications and
N
#ADDrp = 3N logy P —3N + 4(L + 1)F —4L (2.3.16)

real additions.

The computational complexity for transform decomposition with filtering is
N
#MULTD—FILT = NlOggp—3N+2(L+2)F+2L (2317)
real multiplications and
N

real additions.
It still needs to be determined what values to use for the factor P. For most
applications the number of output points L is given and the optimum P has to be

found. To minimize the total number of operations, P should be chosen as
PTOTfMINfTD = [Q(L + 1) loge 2]close (2319)

30

for the transform decomposition method, where [|05 indicates closest power of
two. Unfortunately, the problem is nonlinear, and hence it is not “closest” in any
easily determined sense, so both the larger and smaller possible values of P should
be examined. If instead the lowest possible of multiplications is required, P should

be chosen as

PMUL—MIN—TD = [4<L + 1) lOge 2]01056- (2320)

The lower number of multiplications may be more useful for us because the multi-
plication operations are fewer than addition operations.

For transform decomposition with filtering method, the P can be chosen as

log, 2 log, 2

\/(i)2+6LN+8N—(Ny

Pror—miN-tp-rirr = | 5 Jctose (2.3.21)
to minimize the total number of:operations;.and
Pyur—-min—rp—gree= [2(L + 2) log, 2]ose (2.3.22)

to minimize the number of multiplications. Hence if the total number of operations
is to be minimized, P should be chosen slightly larger than L, while if the number of
multiplications is to be minimized, P should be chosen about three times the size of
L (from the simulation results in [11]). This result will become the major reason that
we do not adopt the transform decomposition algorithm for our implementation.

There is more discussion about these methods in [11].

2.3.5 Discussion

Because the TMS320C6416 DSP chip can perform 6 additions but only 2 multipli-
cations at the same time, we consider the multiplication complexity in this section.

In downlink transmission, the carriers we need to use are 166 pilot carriers plus
user data carriers. So the output points we need to compute are L = 166 + 48 X k,

where k£ is the number of subchannels assigned to the users (SSs).

31

x 10* for P=512
1.85 T

T
—— split-radix 2/4
O Transform Decomposition
% Transform Decomposition with filtering | |

18

o

1.7 B

c
2
© o
L 1.65F B
=3 ¥
=]
=
T 1.6 o q
& *
**
155 o « :
151 * B
1.45& B
1.4 1 1 1 1 1
1 2 3 4 5 6 7

k (number of subchannels)

Fig. 2.17: Number of multiplications meeded for. transform decomposition when
P =512.

From the simulation results in [11}; the value'of P should be chosen about three
times the size of L to minimize the number of multiplications, so the only proper
values of P are 512 and 1024. For these vales of P, the numbers of subchannel
which can be assigned to the SSs are bounded by [(512—166)/48| = 7 and [(1024 —
166)/48| = 17 respectively.

Figs. 2.17 and 2.18 show the number of multiplications needed at P = 512 and
1024 respectively. In these figures, we also show the multiplication complexity of
split-radix 2/4 algorithm which is one of the most efficient algorithms for complete-
points FFT.

For P = 512, we can find that if the number of subchannels used is larger
than 4 or 5, we would be better off using the split-radix algorithm to compute all
the points. For P = 1024, it is more efficient using the transform decomposition

algorithm when k£ < 7. Further, the filtering approach performance is even worse

32

x 10* for P=1024
21 T T

2k —— split-radix 2/4 * 4
O Transform Decomposition
* - Transform Decomposition with filtering *
*
19 * R
- *
2
§ *
s * o °
g 1.8 * o B
3 * o °
14
#* * o

=

~
T
@]

161 * o i

15 I I I I I
0 2 4 6 8 10 12 14 16 18

k (number of subchannels)

Fig. 2.18: Number of multiplicationsyneeded for transform decomposition when
P =1024.

than transform decomposition. Aegcording to our observation, it results from that
the filter taps are left to 2 when P = 1024, so we cannot obtain enough advantage
from the computation of the poles of (2.3.14) while we have to pay the computation
of the zero.

Based on the above, we decide not to adopt the transform decomposition algo-
rithm in our implementation of 802.16a DL transmission. In the 802.16a specifica-
tion [3], we may assign all the subchannels to one SS. Besides, Texas Instruments
provides high performance FFT functions in their DSPLIB [22]. The analysis of
TT's FFT functions is given in chapter 4.

As a final remark, we note that we have only discussed the “many to few” case
of transform decomposition algorithm above, which means that the number of FFT
output points L is smaller than the number of FFT input points N. The case of

“few to many” can be applied to the uplink transmission of 802.16a. We refer to

33

[11] for details of the methods.

34

Chapter 3

Introduction to the DSP
Implementation Platform

We introduced the 802.16a DL transmission system in the last chapter. In this work,
we conduct a DSP (digital signal processor) implementation of a DL transmitter-
receiver pair. This chapter intreduces the Quixote DSP-FPGA baseboard made
by Innovative Integration (II) and the on-board DSP which is Texas Instruments’
TMS320C6416. Our discussion-will conéentrate on the DSP chip and the associated
system development environment<because our implementation is purely software on

the DSP.

3.1 The Quixote Baseboard [15]

The DSP-FPGA embedded card used in our implementation is Innovative Inte-
gration’s Quixote baseboard, which is illustrated in Fig. 3.1. Quixote is one of
Innovative Integration’s Velocia-family baseboards for various applications requir-
ing high-speed computation. Fig. 3.2 shows a block diagram of the Quixote board.
It combines a 600 MHz C6416 32-bit fixed-point DSP with a Virtex-II FPGA, and
system-level peripherals. The FPGAs on our boards are six-million-gate version. The
TI C6416 DSP operating at 600 MHz offers a processing power of 4800 MIPS. Some

detailed features of the board are as follows:

35

 Quixote

Fig. 3.1: Picture of the Quixote card [15].

TMS 320C6416 processor running at frequency up to 600 MHz.

Onboard 32 MB SDRAM for, DSP chips enhanced cache controllers, 64 DMA

channels, 3 McBSP synchronlzed $er}a1 ports and two 32 bits timers.

A 32/64 bits PCI bus host 1nterface Wlth dlrect host memory access capability

for busmastering data between the card and the memory.

2 input, 2 output A/D and D/A conversion, 14 bit, DC to 105 MHz.

3.2 Quixote’s Transfer Mechanisms [15]

Many applications in DSP baseboard may involve communication with the host
CPU in some manner. They may have to interact with a host program during the

lifetime of the program. Some examples are:
e Passing parameters to the program at start time.
e Receiving progress information and results from the application.

e Passing updated parameters during the run time of the program, such as the

frequency and amplitude of a wave to be produced on the target.

36

DA data to
converters

Analog rigger
it

PLL Clock {out)

(=] - ZBT SBSRAM ZBT SESRAM SORAM
O Ext Glock (in} 4 Mbyte s 4 Mbyte s 32MB
= Ext Trigger
O 1w FIFD 32K/chanmal TMS320C6416 DSP
O— Analog 110 P Each direction 1GHz
©— iva 105 M55 Virtex Il FPGA
©—fann 14-il
W § pols lers e
@ G2V 2000 £4-bit/100MHz
8 i aor
MA-50 DHgital 1T WMcBSPs {2
L TimerTrinaens AC2y 6000 100Mbos gach oBSPS (1
4
PMC Sit l Fe
: - P s
& I " 16:0il/1 GOMHz Pel
Bz E E
AL exch denction | = |2
Timebass
1108 Bz St
PCI Streantin w
B
-
r Pl —_ S3MH:
Bridge .~
StarFabrio /B
-
FPGA XC2V
C——————% . t
il e em— [p— PCMB217 PLIGA/G6 PXI Triggers Quixote Block Diagram
{C:&rllf;n: fi:;? Mode Cantral FiFD Switched Fabric PICMG 2.0

Gonverer ¢
Timirg

Triggering

258464 bil
FiFo

Conirol Stalis |

Titgrruptis)
DBH?

Fig. 3.2: Block diagram of Quixote (from [23]).

ToiFrom G416
ERMIER, Inferiat

37

e Receiving alert information from the target.

e Receiving snapshots of data from the target.

Sending a sample waveform to be generated to the target.

Receiving full rate data.

Sending data to be streamed at full rate.

There are three transfer methods on Quixote, which are DSP streaming interface,
CPU busmastering interface, and packetized message interface. The following text

is mainly taken from [15].

3.2.1 DSP Streaming Interface

The DSP streaming interface is continuoussblock -based streaming transfer. It is
designed for non-stop operation such'as-A/D-and / D/A.

The DSP streaming interface<is:bi-directional. Two stream can run simultane-
ously, one running from the analog peripherals through the DSP into the application.
This is called the “incoming stream.” The other stream runs out of the analog pe-
ripherals. This is the “outgoing stream.” The mechanism is shown in Fig. 3.3. In
both cases, the DSP needs to act as a mediator, since there is no direct access to
analog peripherals from the host. This arrangement allows the DSP to process the

streams as they move from the application to the hardware.

3.2.2 CPU Busmastering Interface

This method of target-to-host communication is on the Velocia baseboards only. The
TT 64x baseboard is capable of using PCI busmastering to move data between target
and host memories. This additional busmaster channel can be used to transfer data

between host and target applications.

38

DSP Baseboard

Peripheral I/O
(Analog, Digital)
Hardware

DSP

PCI Bus to
Application

Fig. 3.3: DSP streaming miede (from [15]).

The CPU busmastering interface is packet based-transfers which transfer discrete
blocks between source and destination: Fach data buffer is transferred completely to
the destination in a single operation. The data buffers transferred can be of different
sizes. Each requested buffer is interrogated for its size and fully transmitted. At
the destination, the destination buffer is re-sized to allow the incoming data to fit.
Reallocating buffers can take some time, for best performance buffers should be
pre-sized to be large enough for the largest transfer expected.

CPU busmastering uses a simple blocking interface for its sending and receiving
functions. The sending function will not return until the transfer has completed and
the buffer is ready for reuse. Similarly, the receiving function waits until data have
arrived from the data source and transferred into the data buffer before returning.

Since the transfer functions are blocking, they are best avoided in the main user
interface thread of a Windows application. The GUI will appear to be frozen until

the transfer has completed. For best results, the data transfer function should be

39

placed in separate threads in target and host applications. In fact, each direction
of transfer should have its own thread, so that the two directions of transfer can
interleave as much as possible.

The CPU busmastering interface allows separate channels of data between the
target and the host. Using separate channels allows multiple, independent data
streams to be maintained between the target and host. At present, only a single
channel is supported. The largest transfer allowed is half of the total size of the
DMA buffer allocated by the INF file (a kind of files used for software/firmware
installation in windows system) when the driver is installed. Half of the memory is
dedicated to each direction. The default buffer size in the INF is 0x200000 bytes,

so the maximum transfer block is 1 MB.

3.2.3 Packetized Message Interface

In addition to the busmastering streaming interface; the DSP and host have a lower
bandwidth (limited to about 56 kB/sec) communications link for sending commands
or out-of-band information between target and host. Software is provided to build a
packet-based message system between the target and host software. These packets
can provide a simple yet powerful means of sending commands and information
across the link between the two processes.

As shown in Fig. 3.4, the message system’s arrangement provides one bi-directional
link between the target and the host. The “CIIMessage” and “IImessage” are host
and target side message objects declarations respectively. The detailed contents of
the packet formatting are shown in Table 3.1. The “ClIbaseboard::OnMessage” and
“Unsolicited Message Handler” are the messages handler used to handle the mes-
sage when messages are received for host and target sides respectively. The “Post”
function is just used for sending the message out.

In this study, we use the methods of CPU busmastering and message interface for

40

_____________ e e
|
|

I
Target Application !

L e e e e

Unsolicited Message
Handler

M csshging
Sysfem
1

_lIBaseboard::OnMessage
Event Handler

Fig. 3.4: The'message system (from [15]).

Table 3.1: Message Packet Formatting (from [15])

’ Function Name \ Property

Channel Message Channel

TypeCode Message or Command type

Messageld Message counter or other user data

IsReplyExpected | Set if reply is needed. Free for use in application

Data] | Access the data region as 32-bit integers (index 0-13)
AsFloat] | Access the data region as floating point data (index 0-13)
Asshort] | Access the data region as 16-bit integers (index 0-27)
AsChar] | Access the data region as 8-bit characters (index 0-55)

41

communication between the host and the target. The CPU busmastering interface
provides higher bandwidth for data transmission. But the disadvantage is that only
one channel is supported. Packetized message interface supports sixteen channels

in each direction. But the bandwidth is limited to 56 kB /sec.

3.3 The TMS320C6416 DSP Chip [23]

The following text is mainly taken from references [2] and [23].

3.3.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation on
the TMS320C6000 DSP platform. The TMS320C64x device is based on the second-
generation high-performance, very-long-instruction-word (VLIW) architecture de-
veloped by TI. The C6416 deviee has two high-performance embedded coprocessors,
Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that
can significantly speed up channel-decoding'operations on-chip, but we do not make
use of these coprocessors now.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 func-
tion units. These 8 function units contain two multipliers and six ALUs. Features

of C6000 devices includes :

e Advanced VLIW CPU with eight functional units, including two multipliers

and six arithmetic units:

— Executes up to eight instructions per cycle.

— Allows designers to develop highly effective RISC-like code for fast devel-

opment time.

e Instruction packing:

42

— Gives code size equivalence for eight instructions executed serially or in

parallel.

— Reduces code size, program fetches, and power consumption.
Conditional execution of all instructions:

— Reduces costly branching.

— Increases parallelism for higher sustained performance.
Efficient code execution on independent functional units:

— Efficient C compiler on DSP benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/32-bit data support,providing efficient: memory support for a variety of

applications.
40-bit arithmetic options add extra precision for applications requiring it.
Saturation and normalization provide support for key arithmetic operations.

Field manipulation and instruction extract, set, clear, and bit counting support

common operation found in control and data manipulation applications.

The C64x additional features include:

e Each multiplier can perform two 16x16 bits or four 8 x8 bits multiplies every

clock cycle.

e Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

e Support for non-aligned 32-bit (word) and 64-bit (double word) memory ac-

cesses.

43

CH2x/CB4x/CETx device

Program cache/program memory
32-bit address

256-bit data
CB2x/CB4x/CBTx CPU
Power Program fetch
down Instruction dispatch (See Note) anf[rol
registers
Instruction decode g
Data path A Data path B
| DMA, EMIF : : : Ct}nt_rol
| Registeriea | | Registeries | logic
-+ » Test
Emulation
{.L1] s1] wmi] .01} [D2 M| sa] L2] ————"
x x P
Additional
peripherals:
Data cache/data memory T_”T‘ersi
32-bit address Serlztfﬂf 5,
8-, 16-, 32-bit data (64-bit data, CB4x only) '

Fig. 3.5: Block diagram of TMS320C6416 DSP (from [20]).

e Special communication-specific instructions have been added to address com-

mon operations in error-correcting codes.

e Bit count and rotate hardware extends support for bit-level algorithms.

3.3.2 Central Processing Unit Features [20]

The block diagram of C6416 DSP is shown in Fig. 3.5. The DSP contains: program
fetch unit, instruction dispatch unit, instruction decode unit, two data paths which
each has four functional units, 64/32-bit registers, control registers, control logic,

and logic for test, emulation, and logic.

44

4—— Fetch ——— w4 Decode pd————— Execute ——p

PG Ps | PW | PR DF | DC E1 E2 E3 E4 Eb

Fig. 3.6: Pipeline phases of TMS320C6416 DSP (from [20]).

The TMS320C64x DSP pipeline provides flexibility to simplify programming and
improve performance. The pipeline can dispatch eight parallel instructions every
cycle. The following two factors provide this flexibility: Control of the pipeline is
simplified by eliminating pipeline interlocks, and the other is increasing pipelining
to eliminate traditional architectural bottlenecks in program fetch, data access, and
multiply operations. This provides single cycle throughput.

The pipeline phases are diyvided into |three stages: fetch, decode, and execute.
All instructions in the C62x/C64x instruction set-flow through the fetch, decode,
and execute stages of the pipeline,. The fetch stage of the pipeline has four phases
for all instructions, and the decode stage has two phases for all instructions. The
execute stage of the pipeline requires a varying number of phases, depending on the
type of instruction. The stages of the C62x/C64x pipeline are shown in Fig. 3.6.

Reference [20] contains detailed information regarding the fetch and decode
phases. The pipeline operation of the C62x/C64x instructions can be categorized
into seven instruction types. Six of these are shown in Table 3.2, which gives a
mapping of operations occurring in each execution phase for the different instruc-
tion types. The delay slots associated with each instruction type are listed in the
bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot
is a CPU cycle that occurs after the first execution phase (E1) of an instruction.

Results from instructions with delay slots are not available until the end of the last

45

Table 3.2: Execution Stage Length Description for Each Instruction Type (from
[20])

Instruction Type

16 X 16 Single Ceé4dx
. Multiply/ Multiply
Single Cyel St Load B h
ngle Lyele Cé4x .M Unit ore Extensions °a rane
Non-Multiply
Execution E1 Compute Read operands Compute Reads oper- Compute Target-
phases result and start address ands and address code
and write to computations start com- in PGT
register putations
E2 Compute result Send ad- Send ad-
and write to dress and dress to
register data to memary
memory
E3 Access Access
memory memaory
E4 Write results Send data
to register back to CPU
E5 Write data
into register
Delay 0 1 ot 3 4t 5%

slots

delay slot. For example, a multiply instruction has one delay slot, which means
that one CPU cycle elapses before the results of the multiply are available for use
by a subsequent instruction. However, results are available from other instructions
finishing execution during the same CPU cycle in which the multiply is in a delay
slot.

The eight functional units in the C6000 data paths can be divided into two groups
of four; each functional unit in one data path is almost identical to the corresponding
unit in the other data path. The functional units are described in Table 3.3.

Besides being able to perform 32-bit operations, the C64x also contains many 8-
bit to 16-bit extensions to the instruction set. For example, the MPY U4 instruction

performs four 8x8 unsigned multiplies with a single instruction on a .M unit. The

46

Table 3.3: Functional Units and Operations Performed (from [20])

Function Unit

\ Operations

L unit (L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

.S unit (.S1, .S2)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant-generation

Register-transfers to/from control register file (.S2 only)
Byte shifts

Data packing/unpacking

Dual 16-bit: compare operations

Quad 8-bit compare-operations

Dual 16-bit shift operations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations and rotation

Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation

32-bit logical operations

47

ADD4 instruction performs four 8-bit additions with a single instruction on a .L
unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double
word (64-bit) operands. Each functional unit has its own 32-bit write port into
a general-purpose register file (see Fig. 3.7). All units ending in 1 (for example,
1) write to register file A, and all units ending in 2 write to register file B. Each
functional unit has two 32-bit read ports for source operands srcl and src2. Four
units (.L1, .12, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes,
as well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit
write port, when performing 32-bit operations all eight units can be used in parallel

every cycle.

3.3.3 Cache Memory -Architecture Overview [19]

The C64x memory architecture consists of a two-level internal cache-based memory
architecture plus external memory.. Level 1 cache is split into program (L1P) and
data (L1D) cache. The C64x memory architecture is shown in Fig. 3.8. On C64x
devices, each L1 cache is 16 kB. All caches and data paths are automatically managed
by cache controller. Level 1 cache is accessed by the CPU without stalls. Level 2
cache is configurable and can be split into L2 SRAM (addressable on-chip memory)
and L2 cache for caching external memory locations. On a C6416 DSP, the size of
L2 cache is 1 MB, and the external memory on Quixote baseboard is 32 MB. More

detailed introduction to the cache system can be found in [19].

3.4 TI’s Code Development Environment [16], [26]

TT provides a useful GUI development interface to DSP users for developing and

debugging their projects: Code Composer Studio (CCS). The CCS development

48

32 MSB

srct

11 s

dst
long dst
fong s

L

STib o "
3ZLSE

STla

F

7

Data path A

22 MEB

fong sro

tg 1

oo

fong dst

dst
e

51

¥

src2

[y

M1 srof

long dst
ds

src2

e [

ry

ATIAT

LD1b -

- ¥
LD1a = LSB,

DAl

DaZ

INE
LDza —22L58

D1 s

y¥rYry

Register
file &
{AD-A31)

2x

.02 srof

F

LDt — 22 MSB

Data path B

srod

M2 sl

dst
lang dsf

L J

A

F 3

LR

srod

srct

.52 dst

long dst
fong sy

A

k4

MNotes for .M unit:

1. long dstis 32 MSB
2 dstis 32 L5B

long sro|
long dst
dst

L2

srod

&rcd

t\m—o “_1.

oo

3

k|

Yy

JaVa

Register
filz B
(BOI-2231)

L 4

Control Registar

Fig. 3.7: TMS320C64x CPU data path (from [20]).

49

[Addressable memory

[Cache memory CB4x CPU
== [ata path managed
by cache controller
256 bit 1 2 x 64 bit
L1P L1P Write
16K bytes| |16K bytes buffer
L1 cache
256 bit 1 1 256 bit
| L2sram | [L2cache |

On-chip L2 memory

[64 bit

External memory

Fig. 3.8: C64x cache memory architecture (from [19]).

tools are a key element of the DSP [software and development tools from Texas In-
struments. The fully integrated development environment includes real-time analy-
sis capabilities, easy to use debuggery, C/C++ dompiler, assembler, linker, editor,

visual project manager, simulators; XIDS560 and XDS510 emulation drivers and

DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

e Simulators for full devices, CPU only and CPU plus memory for optimal per-

formance.

e Integrated visual project manager with source control interface, multi-project

support and the ability to handle thousands of project files.

e Source code debugger common interface for both simulator and emulator tar-

gets:

— C/C++/assembly language support.

— Simple breakpoints.

30

— Advanced watch window.

— Symbol browser.
e DSP/BIOS host tooling support (configure, real-time analysis and debug).
e Data transfer for real time data exchange between host and target.
e Profiler to understand code performance.

CCS also delivers foundation software consisting of:
e DSP/BIOS kernel for the TMS320C6000 DSPs:

— Pre-emptive multi-threading.
— Interthread communication.

— Interupt Handling.
e TMS320 DSP Algorithm ‘Standard-te-enable software reuse.

e Chip Support Libraries (CSL) toisimplify device configuration. CSL provides

C-program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The DSP Library includes
many C-callable, assembly-optimized, general-purpose signal-processing and
image/video processing routines. These routines are typically used in com-
putationally intensive real-time applications where optimal execution speed is

critical.

TT also supports some optimized DSP functions for the TMS320C64x devices:
the TMS320C64x digital signal processor library (DSPLIB). The routines included

in the DSP library are organized into seven groups:

e Adaptive filtering.

51

Correlation.

o FFT.

Filtering and convolution.

e Math.

Matrix functions.

e Miscellaneous.

In this study, we use the FFT and IFFT functions from this library.

3.5 Code Development Flow [21]

The recommended code development flow involves utilizing the C6000 code gener-
ation tools to aid in optimization rather than forcing the programmer to code by
hand in assembly. These advantages allow the compiler to do all the laborious work
of instruction selection, parallelizing, pipelining, and register allocation. These fea-
tures simplify the maintenance of the code, as everything resides in a C framework
that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases
described in Fig. 3.9. The tutorial section of the Programmers Guide [21] focuses on
phases 1-2 and the Guide also instructs the programmer when to go to the tuning
stage of phase 3. What is learned is the importance of giving the compiler enough
information to fully maximize its potential. An added advantage is that this compiler
provides direct feedback on the entire programmers high MIPS areas (loops). Based
on this feedback, there are some very simple steps the programmer can take to pass
complete and better information to the compiler allowing the programmer a quicker
start in maximizing compiler performance. The following items list the goal for each

phase in the 3-phase software development flow shown in Fig. 3.9.

52

Phase 1:
Develop C Code

Write C code

¥

Compile

¥

Frofile

No

Complete)

Phase 2:
Refine C Code

Refine C code

v

Compile

Y

Profile

Yes
optimization?,

Complete)

Phase 3:
Write Linear
Assembly

Write linear assembly

y
Assembly optimize
¥
Frofile
No
Yes

(Complete)

Fig. 3.9: Code development flow for TI C6000 DSP (from [21]).

53

e Developing C code (phase 1) without any knowledge of the C6000. Use the
C6000 profiling tools to identify any inefficient areas that we might have in

the C code. To improve the performance of the code, proceed to phase 2.

e Use techniques described in [21] to improve the C code. Use the C6000 profiling
tools to check its performance. If the code is still not as efficient as we would

like it to be, proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear

assembly. We can use the assembly optimizer to optimize this code.

TT provides high performance C program optimization tools, and they do not
suggest the programmer to code by hand in assembly. In this thesis, the development
flow is stopped at phase 2. We donet optimize the code by writing linear assembly.
Coding the program in high leyel language' keeps the flexibility of porting to other

platforms.

3.5.1 Compilier Optimization Options [21]

The compiler supports several options to optimize the code. The compiler options
can be used to optimize code size or execution performance. Our primary concern
in this work is the execution performance. Hence we do not care very much about
the code size (at least in this work). The easiest way to invoke optimization is to use
the cl6x shell program, specifying the -on option on the cl6x command line, where
n denotes the level of optimization (0, 1, 2, 3) which controls the type and degree

of optimization:
e -00:

— Performs control-flow-graph simplification.

— Allocates variables to registers.

o4

— Performs loop rotation.
— Eliminates unused code.
— Simplifies expressions and statements.

— Expands calls to functions declared inline.
e -0l. Peforms all -0o0 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local common expressions.
e -02. Performs all -0l optimizations, and:

— Performs software pipelining,

— Performs loop optimizations.

— Eliminates global common subexpréssions.

— Eliminates global unused assignments.

— Converts array references in loops to incremented pointer form.

— Performs loop unrolling.
e -03. Performs all -02 optimizations, and:

— Removes all functions that are never called.
— Simplifies functions with return values that are never used.
— Inlines calls to small functions.

— Reorders function declarations so that the attributes of called functions

are known when the caller is optimized.

— Propagates arguments into function bodies when all calls pass the same

value in the same argument position.

35

— Identifies file-level variable characteristics.

The -02 is the defaule if -0 is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the
-03 option. With program-level optimization, all of the source files are compiled into
one intermediate file called a module. The module moves through the optimization
and code generation passes of the compiler. Because the compiler can see the entire
program, it performs several optimizations that are rarely applied during file-level

optimization:

e If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead of the

argument.

e If a return value of a function is never used,.the compiler deletes the return

code in the function.

e If a function is not called directly.or indirectly, the compiler removes the

function.

When program-level optimization is selected in the Code Composer Studio, options
that have been selected to be file-specific are ignored. The program level optimiza-
tion is the highest level optimization option. We use this option to optimize our

code.

56

Chapter 4

DSP Implementation

In this chapter, we discuss how we implement the DL transmission system on the
Quixote baseboard based on the synchronization programs developed in [2] and the
channel estimation programs developed in [6].

First, we introduce how we organize the system on the DSP and determine the

fixed-point data formats employed. Then we discuss the system performance.

4.1 System Structure

The 802.16a DL system that we implement includes the transmitter and the receiver
on the DSP and a channel simulator on the host PC, as shown in Fig. 4.1. The trans-
mitter does data modulation, framing, IFFT, up-samping and SRRC filtering. The
channel simulator can simulate multipath fading, AWGN, and frequency offset. The
receiver contains synchronizer, channel estimator, de-modulation and de-framing.
The reason why we put the channel simulator on the host PC is because it is com-
putationally very expensive.

First, the transmitter generates one symbol worth of transmitted signal and
transfers it to the host as one block. After the host PC has received 16 blocks (i.e., 16
symbols per frame), it applies the channeling effect. After the simulated multipath

fading and AWGN effect, we send the signal back to the DSP into the receiver and

57

Table 4.1: System Memory Arrangement

Total Size | Used for Cache | Used for Memory
L1 Cache 32 KBytes 32 KBytes None
L2 Cache 1 MBytes 256 KBytes 400 KBytes
External Memory | 32 MBytes None 16.14 MBytes

perform synchronization, channel estimation and other receiver function.

The program controller is the host PC program. We develop our system based on
the examples “CpulnRate” and “CpuOutRate” provided by Inovative Integration.
The simple examples use the CPU busmastering interface and the message system
for communication between the host and the DSP. As described in the last chapter,
we use CPU busmastering interface for data exchanges and packetized message

interface for debugging and controlling message ‘exchanges.

4.1.1 Memory Arrangement

As introduced in section 3.3.3, the DSPchip and the baseboard contain a two-level
cache and one external memory. Table 4.1 describes the usages of the cache and the
memory. Level 1 cache consists of program and data cache and it is used for cache
purpose only. Level 2 cache is split into cache and on-chip memory areas. There are
256 kB of the level 2 cache reserved for the cache system and 400 kB are used by
our DL system. The external memory is used for memory only and a total of 16.14

MB are used in our system.

4.1.2 Fixed-Point Data Formats

In this section, we introduce the fixed-point data formats used in the implemented
system. As shown in Fig. 4.2, the transmitted source data are generated randomly

and fed into the modulator. The output format of the modulator is Q1.14 because

38

Target DSP

Host PC
Transmitter

| e e |
[. R — .
: | ¢ Random generated data B |
L T |
o 1 !
I | |
I | Data modulation & Framing |
b |
Lo y |
L IFFT |
| . .
L v |
| . .
| ! Add CP !
| |
| ¢ i
: | Up-sampling & SRRC filtering |

[
L l |
Channel Simulator - — == _I —_—————— I
mmm— I Block Based Transfer :
.-,_.’ '__\- et 4 — o —— — — —— —r — :

K . N
; | Multipath channel ‘ "\

K Receiver
_- 7 T T T TiBiock ﬁseﬁraﬁfeﬂ

SRREC filtering & Down-sampling

'

Synchronization

v

Channel estimation

\J
De-framing & De-modulation

Fig. 4.1: System integration structure.

39

Table 4.2: Performance Comparision of Frequency Lock Between Floating-Point and
Fixed-Point Implementation (from [2])

Doppler shift Lock fail rate Average lock symbol number

faTy Floating-point | Fixed-point | Floating-point | Fixed-point
0 0 0 2.99 2.98
0.0224 0 0 2.66 2.69
0.0448 0 0 2.36 2.39
0.0672 0 0 2.30 2.32
0.0896 0 0 2.61 2.57
0.112 0 0 3.23 3.42
0.134 0 0 5.15 5.14

Source e » Modulation Eﬁt IFFT Q15 T4 SRRC R

Fig. 4.2: Fixed-point data formats used in the transmitter.

the pilots may have values of j:%. And the format after the IFFT is Q.15. Fig. 4.3
shows the formats used in the receiver. Almost everywhere from SRRC output
to the FFT input uses the format Q.15 except where dealing with the frequency
offset. The format after FFT is Q5.10 because the multipath fading channel may
cause gains to the modulated data. In the channel estimator, we could find out the
channel response and then compensate for it, so the format is changed back to Q1.14
for de-framing and de-modulation. From [2], we can get the performance differences
of the synchronization between floating-point and fixed-point data type, as shown
in Tables 4.2 and 4.3. We can find that the Q.15 format fixed-point computation is

precise enough for the synchronization process.

60

Table 4.3: Performance Comparision of Frame Lock Between Floating-Point and
Fixed-Point Implementation (from [2])

Doppler shift Lock fail rate Average lock frame number

faT, Floating-point | Fixed-point | Floating-point | Fixed-point
0 0.001 0.001 1.00 1.00
0.0224 0.057 0.074 1.98 1.94
0.0448 0.008 0.100 1.26 1.24
0.0672 0.027 0.032 1.65 1.70
0.0896 0.136 0.140 2.59 2.59
0.112 0.107 0.135 2.14 2.19
0.134 0.063 0.069 1.50 1.47

4.2 System Performance

In our simulation, we allocate 5 bursts;(users) in the downlink part of one 802.16a
frame. Source data are generatedirandomlyyand ate modulated into 64-QAM. There
are 12 OFDMA symbols in one DL subframe and 4 OFDMA symbols in each UL
subframe. The TTG and RTG are 136 samples. The frame structure and the bursts
allocation are shown in Fig. 4.4. The frame isrepeated several times in transmission.
The above are arbitrary choices of parameter for purposes of system design. The
programs are quite general and can use other sets of parameters.

We employ the multipath ETSI “Vehicular A” channel model [1]. Information
about this channel model is given in Table 4.4. And the maximum Doppler shifts of

our simulation are shown in Table 4.5 for several speeds between 0 and 120 km/hr.

4.2.1 Execution Cycles of the Original Programs

In our system, one symbol duration is 201.6 us and there are 2304 samples in a
symbol. The clock frequency of the DSP is 600 MHz. The execution clock cy-
cles are 120960 in a symbol duration and average to 52.5 in a sample duration.

For real-time operation, therefore, everything must complete in 120960 cycles per

61

Table 4.4: Characteristics of the ETSI “Vehicular A” Channel Environment [14]

tap | relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) | (dB) (normal scale) (normalized)
1 0 0 0 0 1.0000 0.4850
2 310 14 4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 1090 50 12 -10.0 0.1000 0.0485
5 1730 79 20 -15.0 0.0316 0.0153
6 | 2510 115 29 -20.0 0.0100 0.0049

Table 4.5: Relations Between Speed and Maximum Doppler Shift at Carrier Fre-
quency 6 GHz and Subcarrier Spacing 5.58 kHz

| Speed (km/hr) | Doppler shift (Hz) | fJT, |

0 0 0

20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896
100 556 0.112
120 557 0.134

62

—» FFT |

Q15 H
I
I
Pilot | _______ I .10
Correlation
SRRC output
Q.15 o QIS — Q15 Inteser
=~ X +Data]@—/ A nieger frequency L Channel
'_“ | | offset Estimation Estimator
[Ql16.15
Y | Q1.14
CP | Peak
Correlation Q.15 Detection
De-framing
Phase 1.14
* Detection QL. l .
De- Binary
Q 16.15 modulation
Q.15 Q16.15
-EXPC) [

Fig. 4.3: Fixed-point data formats usedsin the receiver (based on [2]).

symbol or 52.5 cycles per sample unless“multiple.DSPs are used. In the following
analysis in this chapter, we define a ‘metric called “multiples of real-time” which

means that how many DSP processors we need to finish the function in time.

Practical Avg. Execution Cycles per Sample
Computation Capacity of Real_Time per Sample’

Multiples of Real-Time =

The original program cycles information based on [2] is shown in Tables 4.6 and
4.7. Each time when the modulation/de-modulation functions are performed, they
generate 1536 data samples, so we can divide the average cycles per symbol by
1536 to get average cycles per sample. With the same reason, we divide 1702 for
framing/de-framing functions, 2048 for FFT/IFFT functions and 2304 for the others
functions to get the average cycles per sample. And we use the average cycles per
sample to calculate the multiples of real-time. The statistics illustrated in the tables
are from [2] with some modifications which drop out uses of “fread” and “fwrite”

functions.

63

OFDMA symbol number

Yy~

0|1|2 3|4|5|6|7|8|9‘10|11
43
& g FCH DL Burst #1
=
[¥]
Z
g
2| @
| B &
g 5§ DL Burst #2 DL Burst #4
= -—1.-8
2
& —
2%
- 8 DL Burst #3 DL Burst 5
— o
v
- > -
DL UL
TTG RTG

Fig. 4.4: Allocation of bursts in a frame.

We can find that some funetions are particularly time-consuming. In next sec-

tion, we will introduce some techniques to accelerate the programs.

Table 4.6: Profile of the Original 802.16a DL Transmitter Function Blocks (based

on [2])
Code Size | Avg. Cycles per Symbol / #Samples per Symbol | Multiples of
(Bytes) = Avg. Cycles per Sample Real-Time
Modulation 544 188973/1536 = 123.02 2.34
Framing 2464 187916/1702 = 110.40 2.10
IFFT 964 35728/2048 = 17.44 0.332
Tx_SRRC Afilter 1624 6199452/2304 = 2690.73 51.28

64

Table 4.7: Profile of the Original 802.16a DL Receiver Function Blocks (based on [2]).

Code Multiples
Size | Avg. Cycles per Symbol / #Samples per Symbol of
(Bytes) = Avg. Cycles per Sample Real-Time
SRRC_downsample 348 520704/2304 = 226 4.30
CP _correlation 1320 232704/2304 = 101 1.92
initial _freq_sync 300 66816,/2304 = 29 0.55
integer_freq_sync 932 96768/2304 = 42 0.8
pilot_corre 2824 539136/2304 = 234 4.456
sync 784 1290240/2304 = 560 10.66
FFT 276 32256/2048 = 15.75 0.26
de_framing 1064 833350/1702 = 489.62 9.32
de_modulation 3544 125326/1536 = 81.59 1.55

4.2.2 Efficiency Enhancement
4.2.2.1 Modulation Functions

In this section, we will describe theitechnigues used to improve the performance of
the modulation function. Fig. 4.5shews a part of the original modulation program
and we see that some “if” and “else” statements are used to check the modulation
type inside the outer “for” loop. This is inefficient because we do not change the
modulation type within one data block. In addition, the compiler cannot do software
pipelining for this kind of coding style. Because the modulation can only have three
types (QPSK, 16QAM, and 64QAM), we separate their handling into three sub-
functions, as shown in Figs. 4.6 and 4.7. Table 4.8 compares the execution cycles
before and after modification. The compiler optimization information is shown in

Fig. 4.8 and Fig. 4.9 is a main section of the assembly code of the modulation

function together with the corresponding C code.

65

1 forij=0:j<{ecoded block =size/3):j++)

2
3

WD o1 v n W

10
11
1z
12
14
iR
le
17
12
13
z0
Z1
EE
jic]
z4
25
bl 1
z7
zg
Z9
=0
2l
2Z
33
24
2k
26
37
a8
23
40
41
4z
42
14
45
L1
47
42
43
=]

datain=({unsigned int) (input[3+*3j]):
datain=(datain<<8) " (unzigned int) (input[3*j+1]):
datain=(datain<<8) " (unzigned int) (input[3*3+2]):
datain=datain<<5;

if (coding wodul==0 || coding modul==1]

{

}

for(i=0;i<24;i+4)

{

temwp= (unsigned char) [(datain & (0xCO000000)) => 31 1:
switch(tewmp)

{

case 0O:
Io=1:
break:
case 1:
Io=-1;
break:

}

out [Datalndex] =cd4*I0;
Datalndex++;

i

else if({coding wodul==2 || coding modul==3]

{

for(i=0:;i<lZ;i++)

{

temwmp= (unsigned char) | (datain& (0xZ0000000)) >> 30):
switch(temp)

{

case O:
Io=1;
break:;
case 1:
I0=3:
break:
case 2:
I0=-1:
break:
case 3:
Io=-3:
break:

i

datain<<=2;

out [Datalndex]=cl8+%I0;
Datalndex++;

Fig. 4.5: A part of the original modulation program.

66

4 void modulation{unsigned char *input,int coding mwodul, int coded block size,FIZED *out)
I

& if (coding modul==0 || coding modul==1)

7 t B B

=] modulationd (input, coding modul, coded block size,out);
9 1 N N N

10

11 else if(coding wodul==2Z || coding modul==3)

1z ¢ - -

13 modulationlé (input, codinhg mwodul, coded hlock size,out):;
14 1 - - -

15

18 elze if{coding modul==4 || coding modul==5)

17 ¢ - -

1s modulationtd [input, coding modul, coded block size,out):;
19 1 - - -

Z0 }

21

22 void modulationd (unsigned char *input,int coding modul, int coded block size,FIXED *out)
23 | - - -

74

z5 FIXED QAM4[z2]={11585,-11585};

Z6

z7 coded block size=coded block size/3:

78 - - - -

z9

30 Datalndex=0;

21

2z for(j=0;j<(coded block =size/3);i++)

33 i - -

a4 datain={unsigned int) (input[3*3]):

35 datain=(datain<<8) " (unzigned int) (inpuc[3*3j+1]11):

2E datain=(datain<<8) " (unzigned int) (input[3*3+2]11):

37 datain=datain<<i;

38

29

40 forii=0;i<24;i++)

41 {

4z temp=({unsigned char) [(datain & (0xCO000000%) == 31):
43 out [Datalndex] =QAM4 [temp] ;

44 datain<<=1;

45 Iatalndex++:

46 }

47 }

48)

49

Fig. 4.6: A part of the modified program in the modulation function.

Table 4.8: Comparison of the Modulation Function Before and After Optimization

Original Code Revised Code Improvement
Cycles/Symbol ‘ Cycles/Sample | Cycles/Symbol ‘ Cycles/Sample
| 188973 | 123.02 | 8310 | 5.41 | 95.60% |

67

1
z
3

W -] mon e

10
11
1z
1z
14
1kt
16
17
13
13
z0
z1
ZE
Z23
z4
z5
Z8
z7
z8
z9
=0
21
3E
o3
=4
35
=1
a7
=8
29
40
4l
4z
43
4
45
£
47
48
43
EOD

void modulationlé {unsigned char *input,int coding modul, int coded block size,FIZED *out)
{

short i,13r

unsigned int datain;

unsigned char temp;

int Datalndex;

FIXED QAMI1E[4]={5181,15543,-5151,-15543};

coded_blnck_size=cnded_hlnck_size*2f3;

Datalndex=0;

for (j=0;j<(coded block =size/3):j++)

1 datain=(unsigned int) (input[3*3]):
datain=(datain<<8) " (unzigned int) (inpuc[3*3j+1]11):
datain=(datain<<8) " (unzigned int) (inpuc[3*3+2]11):
datain=datain<<i;

forii=0;i<12;i++)
{
temp=(unsigned char) ((dataing (0xC0000000)) == 30);
out [Datalndex] =CAN1&6[temp] ;
datain<d<=2;
Iatalndex++;

i
void modulationtd (unsigned char *input,int coding modul, int coded block size,FIEZED *out)
{

short i,a:

unsigned int datain;

unsigned char temp;

int Datalndex;

FIZED QaMe4[5]={7584,25258,12640,17695,-7584,-2528,-12640,-17696} ;

Datalndex=0;

for(j=D;j<(coded_blnck_sizefS];j++]

{
datain= (unsigned int) (input[3*3])
datain=(datain<<d)* (unsigned int) (input[3*3+1]):
datain=(datain<<d)* (unsigned int) (input[3*3+2]):
datain=datain<<5;

for(i=0:;1<8;1i++)
{
temp=(unsigned char) { (datainé& (0xE0O0O0OOQCQY)) => 29);
out [Datalndex] =0LAM6d [tewmp]
datain<<=3;
Iatalndex++:

+

Fig. 4.7: The other part of the modified program in the modulation function.

68

i —— J— *

SOFTWARE PIPELINE INFORMATION

H Loop source line @ 57
H Loop opening hrace source line : 58
H Loop closing brace source line H ¥}
H Loop Unroll Multiple D 2x
; Enown Minimwum Trip Count H
H Enown Maximum Trip Count @ 12
H Enown Max Trip Count Factor @ 12
; Loop Carried Dependency Bound(*] : 2
H Unpartitioned Resource Bound : 3
Partitioned Resource Boundi(®*) HE}

FEesource Partition:
A-=zide BE-=zide

units u} u]

units 3F

units

units

cross paths

.T address paths

Long read paths

Long write paths

Logical ops (.L3)

Addition ops [.L3D)

Bound({.L .5 .LS)

Bound(.L .3 .D .L3 .L3D)

[

&+

MDD
=

[.L or .5 unit)
(L or .3 or .DI unit)

W W00 0NN O W

LEU S P o o S S A
=+

=+

SGearching for software pipeline schedule at ...
ii = 3 Schedule found with 5 iterations in parallel

Fig. 4.8: Compiler feedback of the modulation4 function.

4.2.2.2 Framing and De-framing Functions

In Table 4.7, the execution cycles‘of framing/de-framing seem extraordinarily large.
In this section, we analyze the reasons of the inefficiency of the original code and
find ways of improvement through loop unrolling and software pipelining by the
compiler.

First, we introduce the original code of de-framing function and propose a better
coding style. As shown in Fig. 4.10, the problem of the original code consists in the
waste of cycles in the large number of “or” operations in the “if” statement in every
iteration, as shown in the circle denoted “part 1.” The same problem exists in the
framing function. The proposed C code uses simple skills to prevent this waste of
cycles and does away with the modulo operation, as shown in the “part 17 code in
Fig. 4.11.

Another modification of the de-framing function is done to “part 2” in Fig. 4.10

and results “part 2”7 in Fig. 4.11. We just remove the variable “carrier_n_s” by

69

T

7083 &7 | forii=0:i<z4;i++) C code

B =
7055

7086 MUK .1 Ox3, A1 ; init prolog collapse predicate
087 | | SUE D2 BG, 4, Ed

7088 | | AND L1 2, L5, 43 |60 (F) <0, 1
083 | | SHRET LS2X L3,29,B5 60| (F) <0,1x ™
080 | | SHL .81 13,2, 44 : |81] (P} <0,1> *
7081

B H *
7063 L9 ; PIPED LOCP KERMEL

7064 .line 28

TOEE j——m————mmm e =T —————
70es ;0 597 tewp=(unsigned char) { (datain & (0xCOO0000O)) »=> 31);
?Ué?; a0 | Dut[patalndex]=QAH4[temp]: C code
7065 ;61 | datain<<=1;

70637 62 | Datalndex++;

L e
7071

07z [A2] SUE L1 LZ,1,42 <0, 11

7073 || [!A1] STH LD2T2 B7, *++E4 (1) : |60 <0, 11>

7074 || [AO] BDEC .81 L9, 40 ;|83 <1,8>

7075 || [AZ] LDH .D1T1 *A5, L6 : |80| <2,5>

7076 | | ADD .82 g, 3P, E6 ;|80 <3,2>

077 || AND Lz Z,B5,E5 P80 <3, 2>

7078

7073 [&1] SUE D1 L1,1,A1 : o<0, 12

7080 || ['A1] STH LD2T1 L, *+E% (2] ;|60 <0,12%

7081 | | ADD .L1X g,3F, A3 ;|60 <3,3x

7082 | | ADD LS2X EG, L3, Ba ;|60 <3,3x

083 | | SHET .31 L4,30,45 : |60 <4,0>

7054

7085 .line 33

7088

027 ADD .D1X L3,B5, LS |60 <3, 4>

708g | | LDH .D2T2 *B6, B7 : |80 <3,4>

7089 | | AND L1 2,L5,43 : |60 <4,1>

7030 | | SHL .31 14,2, 44 ;|61 <4,1>
7031 | | SHRT 823 L4,29,E5 ;|60 <4,1> *
709z

A F - *
7034 L10: ; PIFED LOOFP EFILOG

7035

7095 ADD .31 3,47, 47 : |64

7057 | | STH LD2TZ BE7, "++E4 (4] : |60] (E) <2,1l»
7098 | | LDH .D1T1 *L5, LA : |60] (E) <4,5>
7053 | | SUE .52 EQ, 1, B0 : |64

7100

7101 [EO] EMOE .52 L7,1 : |64

7102 | | STH .D2T1 A6, *+E4(2) : |80| (E) <2,12>

Fig. 4.9: Kernel of the assembly code of the modulation4 function.

70

Table 4.9: Comparison of Framing/De-framing Functions Before and After Opti-
mization

Original Code Revised Code Improvement
Cycles per | Cycles per | Cycles per | Cycles per
Symbol Sample Symbol Sample

framing 187916 110.40 25676 15.08 86.34%
de-framing | 833350 489.62 7373 4.33 99.11%

replacing it with a look-up table, which is the framing/de-framing indexing number.

As illustrated in Table. 4.9, we can get huge improvement after the modifications.
This is because the original C code cannot result in software pipelining and loop
unrolling with the use of large numbers of “if;” “else,” and “or” operations. We
can get detailed information about how the compiler is able to optimize the code
from the CCS compiler feedback informatien shown in Fig. 4.12. We find that
the software pipelining is 6 stagestdeep from the sentence “Schedule found with 6
iterations in parallel.” Fig. 4.13-is the kernel.of the-assembly code of the de-framing
function, where the corresponding.C.code is-also illustrated. We can compare the
kernels of the assembly code before and after revision. The assembly code for the
original program is shown in Fig. 4.14 and we can see that it cannot be software

pipelined, so the assembly programs are very inefficient.

4.2.2.3 FFT and IFFT Functions

The FFT/IFFT functions we use are from TIT’s DSPLIB [22]. The original programs
[2] have used FFT/IFFT functions that employ 32-bit operations. Because the
C6416 DSP chip could perform four 16-bit multiplication operations but only two
32-bit multiplication operations during one cycle, it is more efficient if we could
use 16-bit multiplications. The Table 4.10 compares the performance of the FFT
functions provided in the DSPLIB.

DSP _fft32x32 is the complex mixed radix 32x32-bit FFT with rounding, while

71

4void de_ framing (FIZED *fft in, int IDcell, int *symbol, FIZED *symbol out){
E

&
7

W

54}

short s,n,k;
int carrier;
int CAarrier_n_s;
int L:
int iz
int carrier map[1536];

unsigned char perbhase[32]={3,18,2,5,16,10,11,15,26,22,6,9,27,20,25,1,29
,7,21,5,28,31,23,17,4,24,0,13,12,19,14,30};

if (*symbol$4==0) L=0:
elzse if(*symbolid==1) L=2:
else if (*symbolid==2) L=1;
else L=3;

[*aymwbhol) ++;

carrier=o; f/Find the data location indices

for (4=0:41i<dl:; i++) {
if((i==0) || (1==32) || (1i==Z261) || (1==330) || (i==342)~_¢/ these are pilots location indices
|1 {i==351) || (i==522) || (i= 5353||(1==545]
|| ti==851)| [i==?DS]|| [1==7Zg) || (i==758)
|1 {1==722) | | (1==849) || (1==855] | | (i==918)

[] (i==1017)] (i==1143) || (i==1155} || (i==1158)
|1 (i==1185) || (i==1206) || (i==1260} || (i==1407)

[] (i==1419) || (i==1428) || (i==1461} || (i==1530)

[] (i==1545) || (i==1572)1 || (i==1701} || {(i-3*L+12)15%12==M

-

elze |
carrier map[carrier] = i;
carrier++:

Part |

i=0;
for (3=0,k=0;3<32;3++) A4 framing
i ffgrinder num of a subchannel

for (n=0; n<WNsubcarrier: n++, k++)

{

calocualate the index

_n s=Nsubchannels*n+(perkase[(n+tps*s) % (Msubchannels)]
+IDeell* (unsigned shorticeil(((float) (n+l)/ (floatc)Naubchannels)))% (Nsubchann

0l out[k*Z]=fft_in[ecarrier map[carrier n =s]*Z]:
symbo T2+1]=fft_ in[carrier map[carrier n s] *2+1];
i++;

Part 2

Fig. 4.10: Original C code of the de-framing function.

72

zff The modified C code of de-framing function

4woid de framwming (FIZED *ffr in, int IDecell, int *sywbol, FIXED *symbol out)d

3 short =,n,k:

& int carrier:

7 int L:

2 int i

3 int carrier map[1536];

10 char data local[l70Z]:

11 int fixed pilot([32]={0,39,261,330,342,351,522,636,645,651,708,726,756,792,549
1z ,855,918,1017,1143, 1155, 1158, 1185, 1206, 1260, 1407, 1419, 1425, 1461, 1530, 1545
1z S1872, 1701 ;

14

1t if (Foymhol:4==0) L=0;

15 else if(*symbolid==1) L=2;

17 else if(*symbol%d4==2) L=1:

13 else L=3;

13 (Fsymbol) ++:;

20

z1 for 0 i<1702; i+4) 4/ Initialize
2z data locali]=0;

=

for (i=0;i<32; i++)
data losa[fixed pilot[ill=1:

Find fixed-pilot location

for (i=3*L:;i<1702;1i=1i+12)
data_local[i]=1:

Find wariable-pilot location

carrier=0;
for (i=0;1<1702: i+4) 4/ find the data carrier indices
i

if (data_local[i]==0)

i

carrier map[carrier] = i;
carrier++;

Part 1

41 i=0:
4z for (2=0,k=0:2<32;s++) /4 framing
43 { f/srindex num of a subchannel
dd for (n=0;n<Nsubcarrier;n++, K++)
45 { symbol out[k*2]=fft_ i arrier map[carrier n 3 table[iThrZ]:
4& symbol out[k*2+1]=£ft in[carrier map[carrier n s table[i][*2+1];
47 ittt

Fig. 4.11: Revised C code of the de-framing function.

73

27170 ;

27198 ;
271839 :

1i = 1 Schedule found with 6 iterations in parallel

*
27171 ¢ ¥ SOFTWARE PIPELINE INFORMATICON
27172 ;
E7L73 ;% Loop source line : 45
27174 ; Loop opening brace source line i 46
27178 ;¥ Loop closing bhrace source line 52
E7L7E ;¥ Enown Miniwum Trip Count o170z
27177 5 ¥ Enown Maximuan Trip Count o170z
E7178 » % Enown Max Trip Count Factor 1702
27179 ;¥ Loop Carried Dependency Bound(*) @ 1
E7Ll80 ;% Unpartitioned Resource Bound H!
Z71EL ;% Partitioned Resource Bound(®*) 1
27182 ;¥ Fesource Partition:
E7183 ;¥ bA-side E-szide
27184 ;¥ L units u] a
E718E ;% .53 units 1+ [u]
27186 ;% LD units 1+ 1=
27187 ;¥ .M units u] a
z71E5 ;¥ .X cross paths u] [u]
E7183 ;¥ .T address paths 1+ 1*
Z7190 ;% Long read paths u] [u]
27191 ;% Long write paths u] a
27192 ;¥ Logical ops [.L3) u] [u] («L or .8 unit)
27193 ;7 Addition ops [.LSD) 1 1 [.L or .5 or .D unit)
27194 ;¥ Bound({.L .3 .L3) 1% a
27185 ; * Eound{.L .3 .D .L3 .L3D) i# i*
E7LRE ;%
27197 ;% Searching for software pipeline schedules at ...
*
*

Fig. 4.12: Software pipelining information of the revised code for the de-framing
function.

Table 4.10: Comparison of Performanceof FET Functions in DSPLIB for N = 2048

Code Size | Execution Cycles | -~ "Minimum Cycles | Efficiency
(Bytes) peét: Symbol Needed per Symbol
DSP _ft32x32 932 28811 11351 39.39%
DSP _ifft32x32 932 28811 11351 39.39%
DSP _ftt16x16r 868 15510 11351 73.18%

inverse FFT of the same type is DSP_ifft32x32. DSP_16x16r is the complex mixed
radix 16x16-bit FFT with rounding. TI DSPLIB does not provide functions for
16-bit IFFT, so we have to do IFFT using the 16-bit FFT function. As shown in
Fig. 4.15, we just need to do conjugation before and after FFT. More detailed usage
of these functions can be found in [22].

Table 4.11 compares the computational complexity of different FFT algorithms.
The mixed radix FFT needs 19974 real multiplications and 68102 real additions

theoretically in our application which uses 2048-point FFT /IFFT. So the absolutely

74

z7z86 ; 45 | for(i=0;i<1702;i++) C code

EPEET = == -

Z7ZEB

27253 ADD Dz §,5P,E64 HEE S

z7280 | | ZEROD .8z ES : |45]

z7zel || [A1] EDEC 51 Li14z, 41 ;|52 (P) <4,0x

ETEEZ | | ADD L1 1,43,43 ;|52 (P} <4,0> * Define a twin register
27ZE3 || LDE .D1T1 F+A3[L4], A0 ; (P) <4,0-

27264

27265 ;¥% ——— _ e *
z7z266 L1428 : ; PIPEL-LOOFP EERMEL

27267 .line 35

ZT268 J—— e —— -

Z7ZE9 477 if{data_locali]==0)

272707 49 | carrier map[carrier] = 1i; C code

27271 p—_ 50 | carrier++;

ZT272 | ——— = - o

27273 .line 41

27274 f—————— - -

27275 ; 73| i=0:

ZT276 }—————— - -

Z7E77

27278 ADD .32 1,E5,EB5 ;|52 <0,5

27273 || [!AO] STW .D2TZ BS, "Ed++ : 49| <0,5x

27280 || [A1] EDEC .51 L14z, 41 ;|52 <50

27281 | | ADD L1 1,43, 43 ; |52| «<5,0> * Define a twin register
27222 || LDE .D1T1 F+A3[L4], A0 ;<50 "

27283

Z7E84 ;FF ——— - e *
27285 L1435 : ; PIPED LOOFP EPILOG

27286

z7287 ity LD1E EB10, 45

z7zEs | | ZEROD .8z B9 EEY

27289 | | MVEL .51 _carrier n s _table, id

27290 || ADD L2 1,B5,BS : |52| (E) «1,5» *

27291 || ['AD] STW .D2TZ BS, *Ba++ : |49] (E) <1,5» *

Z729Z

27293 MUEH .31 _carrier_n = _table, i4

272394 | | ADD .52 1,B5,E5 ;olsz| (E) <z,5> ¢

27235 || [!AO] STW .D2TZ BS, "Ed++ : 49| (E) <2,5» *

snsas

Fig. 4.13: Kernel of the assembly code of the revised de-framing function.

75

21637

21698 »
21699 ;

1700 ¢

21701 ;

eLroz ; C code
21703 ;

21704 »

21705 ;

Z1706 »

21707 ;

Z1708

21709 ; *
1710 ;% HGOFTWLRE PIPELINE INFORMATION cannot perform softvare
217l % Dizqualified loop: Loop contains control code pipe]ining
L A s e e e e *
21713 LE&

21714 line 28

ZL7LE e

EL716 : 39 | el=se |

R R et

21718 CHMPEQ LL2X A9,EBl6, B4 ro138]

217139 CHPEQ L1 49,0, 45 ;o |38]

Z17z0

21721 CHPEQ L1 AD, A30, AS ;o 138]

z1722 | | OR .D1X B4, L5, 46 r o138

21723

Z17Z24 OR .D1 AS, b6, A5 ro138]

21725 | | CHPEQ L2X AS,B20,EBS ;o 138]

Z1726

21727 CHPEQ L1 AD,AlG, AB ;o 138]

E17z8 | | CHMPEQ LL2X A9, EB15, B4 ro138]

z17z8

21720 OR LD2XE B4, L5, B4 ;138]

z173l OF. .D2X Le, B4, B4 ;o138

21732 OR LDz ES,EB4,B4 ;138]

Z1733 CHPEQ L1 AD, B17, A5 ; 138]

21724

Z1735 CHPEQ L1 AD, R1T, A5 ; 138]

21736 | | OR .D1X A5, B4, A6 : 138

Z1737

21738 CHMPEQ .L1 AS, B19, L6 ;138]

21739 | | OR .D1 L5, L6, A5 ;138

21740

z1741 OR .01 A6, A5, A5 ; 138]

21742 | | CHMPEQ LLE2XE AD,EB7,ES ;o 138]

21743

21744 CHMPEQ .L1 AD, B20, L6 ;o 138]

Z1745 | | CHPEQ JLEXE A9, EB6,EB4 ; 138]

Z1746

z1747 OR LDEXE B4, L5,EB4 ;o 138]

21748 OR LD2XE L6, E4,EB4 ;o 138]

z174% OR .Da ES, B4, B4 ;o 138]

Fig. 4.14: Kernel of the assembly code of the original de-framing function.

76

IFFT

/—\

— Conjugate —= Dsp fftl6xl6r == Conjugate =

Fig. 4.15: IFFT implementation using FFT function.

minimum number of execution cycles is max{19974/2,68102/6} = 11351 for the 32-
bit FFT/IFFT operation and max{19974/4,68102/6} = 11351 for the 16-bit FFT.
Practically, as shown in Table 4.10,3+DSP fft32x32 and DSP_ifft32x32 need 28811
clock cycles and DSP_16x16r needs 15510 elock cyeles, so the efficiencies are 39.39%

and 73.18%, respectively, where the efficiency is defined as

Minimum-Cycles Needed

Efficiency = Practical Execution Cycles’

which indicates how well the compiler schedules the assembly code.
Fig. 4.16 shows the core loop in DSP _fft16x16r. The assembly code shown in the
figure uses “_dotp2” and “.dotpn2” instructions to compute intermediate results.

For example, the following code:

x2[11] = (sil0 * yt1.0 + col0 * xt1_.0 + 0x8000) > 16
x2[114+1] = (col0 * yt1.0 - sil0 * xt1.0 + 0x8000) > 16
x2[1142] = (sill * yt1_1 4 coll * xt1_1 4+ 0x8000) > 16

x2[1143] = (coll * yt1.1 - sill * xt1_-1 + 0x8000) > 16
is mapped to the assembly code below:

DOTP2 M2 Bxt0.0_yt0.0, B_co20si20, Bx11.0 ;
DOTPN2 .M2 B.yt0.0xt0.0, B.co20si20, Bx 111 :

77

Table 4.11: Comparison of Computational Complexity of Different FF'T Algorithms

’ Complexity \ No. of Real Multiplications \ No. of Real Additions ‘
Radix-2 FFT ZNlog, N — 7N 48 2Nlog, N —IN +38
Radix-4 FFT %Nlog2 N —-3N +3 %’]\Hog2 N —-3N +3
Radix-8 FFT %N(log2 N—-3)+4 %Nlog2 N — %N +4

Split-radix-4/2 FFT Nlogy, N —3N +4 3Nlog, N — 3N +4
Simplified FFT AN 6N

Table 4.12: Comparison of FFT/IFFT Before and After Optimization

Original Code Revised Code Improvement

Cycles per | Cycles per | Cycles per | Cycles per
Symbol Sample Symbol Sample

FFT 32256 15.75 17046 8.32 47.17%
IFFT 35728 17.44 24360 11.89 31.82%

DOTP2 M2 Bixt0_I yt0. L' Bico2lsi2l, Bxl11.2;
DOTPN2 M2 Byt0.1xt01, -B_cod1si2l, Bx11.3;

as indicated by the ovals in Fig. 4.16:

By this modification, the execution cycles of the IFFT and FFT functions in Ta-
bles 4.6 and 4.7 become 24360/2048 = 11.89 (cycles/sample) and 17046,/2048 = 8.32
(cycles/sample) respectively, as shown in Table 4.12. The DSP_fft16x16 function is
used inside the FFT/IFFT function. The excess clock cycles of FFT/IFFT over
the DSP _fft16x16r cycle counts are from the data movement inside our FFT/IFFT

functions.

4.2.2.4 SRRC Filter

The C6000 compiler provides intrinsics, which are special functions that map directly
to inlined C62x/C64x/C67x instructions, to optimize the C/C++ code quickly. The
intrinsic functions, which T1I provides, provide an another method for optimizing the

program at C level. Detailed introduction to the intrinsic functions can be found in

78

406G
4087
402
4032
4070
4071
407z
4073
4074
407&
407&
4077
4078
4079
4080
4081
4082z
40832
4084
408kt
408s
40a7
4082
4082
4050
4091
409z
4093
4094
4095
4095
4037
405z
4052
4100
4101
410z
4103z
4104
410k%
4106
4107
4108
4109
4110
4111
411z
411z

BDEC .51 LOOP_Y, A :[28,1]
I ADD . A_rnd, e hx_h2_ :[18,2]
I DOTPZ M2 B_xt0 0 _yt0 0, E eoz0_siz0, B_x_ll;g:::::::zizglzrb
[1['h_ifi] ZERO .L B ;T 8,31
[['h _ifi]ADD .52 B_x, B_fft jmp, B x ;[8,31
I MVD JM1X B x, Ax ;08,31
I ADDZ .D2X B x1z 3 x1Z 2, A xh2 3 xhZ 2, B xh2l 1 xh20 1;[&,3]
[1['& pO]STDW .DIT1 A xhZ 3 2:h xhZ 1 O, ®h % [A 11] ;[28,1]
LOOF_Y5:

['A pD]STDW .D1Tz B _xl2_3 2:B_xl1z 1 0, ®h % [A_12] ;[29,1]
I PACKHZ .LZ B _x 11 3, B x 11 2, B_xl1 3 2 ;019,21
I LDD .8z E rad, B % 12 0 Ex 12 0 s[19,2]
I DTPNZ . M2 BE_ytD 0 xt0 0, B coz0 si20, BZleliE:::::::ZIEEzgrza
I DOTPZ - hRti—tyti-i, A eetl-silil; A g T119,2]
I PACKLHZ .51 b x121 0 x120_0,4 x121 0 %120 0, A %120 0 _x121 0;[9,3]
I SUBZ .L1X A x 1 x 0, B %11 1 x11 0, & x11 0 x10 0 ;[9,3]
I ADDZ .D2X B xl1 3 x11 2, & x 3 x 2, B_xhi 1 xh0 1 ;[9,3]
LOOP_Y6:

ADD .D2 E_rnd, B x 12 1, B x 1z 1 ;20,21
I DOTPNZ .M2X B co3l si3l, A yez 1wtz 1, B x 12 3 ;20,21
I DOTPNZ M1 A oytl 1 xtl 1, 4 coll sild, A x hi 3 ;120,21
I STDW .D1Tz B x 3 _x 2:B_x 1 x O, *4_x_[0] ;120,21
I SUBZ .51 A x11 0 _x10 0, 4 x120 0 x121 0, A yel O xt2 0 ;[10,3]
I ADDZ .L1 A xl1l 0 x10 0, 4 %120 0 x121 0, A ytZ 0 xtl 0 ;[10,3]
I SUBZ .52 B _xhi 1 xh0 1, B_xh21 1 xh20 1, B_yeO 1 xt0 1 ;[10,3]
I ADD .L2 B_x, 8, B_x ;010,31
;LOOP_¥7:

ADD .L2 B_rnd, B_x_12_2, B_x 12 2 :[21,2]
I VD s —— :[21,2]
I DOTPNZ . M2 BE_ytO 1 xt0 1, B cozl siZi, B_x_li:;i;;:;::zfzi;EIE
I PACKLEZ - Fyei—tetd 1, B ye0- i wed B woo L yeO T ;[11,3]
I PACKLHZ .L1 L ytl O xt2 O, A4 yt2 0 xtl O, A xtZ 0 yt2 0 ;[11,3]
I PACKLHZ .51 L ytz 0 xtl O, A ytl O xt2z O, A xtl 0 ytl 0 ;[11,3]
I SUBZ .D1X A xh2z 3 xhZ 2, B x1z 3 x1z 2z, A xl21 1 x120 1;[11,3]
I LDDW .D2T1 +B x[B h2l, A xhZ 3 xh2 2:L xhZ 1 xhZ O ;01,4
; LOOP_¥8:

[& pO]SUE .L1 i_po, 1, A_po :

I ADD E_rnd B—Li—6 BorcH0 :[22,2]
I DOTPZ . M2 B_xt0 1 yt0 1, B coZl sizl, B_x 11 2 :[1z,3
I ROTL . hwti B yti O —6; Ayt O ®EI O ;[1Z,3]
I PACKLHZ .51 b %121 1 x120_1,4 %121 1 %120 1, A %120 1 x121 _1;[12,3]
I SUBZ 01X A x 3 x 2, B %11 3 x11 2, A x11 1 x10 1 ;[12,3]
I ADDZ 52X B xl1 1 x11 0, &x 1 x0, B_xhl 0_xh0 0 ;[12,3]
I LDDW .D2Tz *E_x[B_12], B %1z 3 x12 2:B x12 1 x1Z D ;0 2,4]

Fig. 4.16: A part of the assembly code in DSP_16x16r.

79

Table 4.13: Simulation Data for SRRC_downsample
Inclusive | Exclusive
Cycles Cycles

’ SRRC_downsample ‘ 226 ‘ 140 ‘

[21].

In Table 4.7, the reason for the inefficiency in the SRRC_downsample function
is the data movement for the SRRC filter buffer, as shown in Fig. 4.17. We can
get proof from the simulation data shown in Table 4.13, where the inclusive cycles
are the cycle count for the entire SRRC_downsample function and the exclusive
cycles are the cycle count other than the cycles for the functions called inside the
SRRC_downsample function. In oursptogram, the function called does the SRRC
filtering and the exclusive cycles are-just for datasmovement in the data buffer, so
the multiples of real-time for filtering is (226—140)/52.5 = 1.63.

By using intrinsics, we can-accelerate the speed of data movement. As shown
in Fig. 4.17, the function “_amemd87 and+“-amemd8_const” are intrinsic functions
that provide aligned loads and stores of 8 bytes to memory in single instruction. So
we can perform four 16-bit load and store within one instruction. The speedup
of the SRRC_downsample function is shown in Table 4.14. Here, we find the
Tx_SRRC filter has obtained huge improvement in performance. The reason is not
only due to the use of intrinsics but also because the better coding style by remov-
ing of conditionals like the method to improve the framing function as introduced

before. More detailed analyses can be found in [5].

4.3 Overall Performance

First, we show the overall system performance after optimization in Tables 4.15 and

4.16 including channel estimation. More detailed introduction about the channel

80

z /7 Original program in SERC_downsample I

3 //====s=========s==s====s=ss=sssssSsssossssososmssssssosmsmmmmm=soy)

4 for (j=56;3>3:31--)

&

SRRC_buffer real[j]=3RRC_buffer real[]-4]:

7 SRRC buffer imag[j]=3RRC buffer imagl[iji-4]:

g} - - - -

2
10
11 f/=====s===============s=s=ss=ssss=sssmssssssssssossssmsosmsmss=s)
1z /4 Modification with Intrinsic function i
13 f/=====s===========s==s=ss=ssss=sssssssmssssssssssossssmsmsmsos=s)
14 for (j=53:3>3:9=7-4)
15§
18 _amemdd [&35RRC_buffer real[]])=_amemds_const (&3RRC_buffer reall[j-4]):
17 _amewdS (€3RRC_buffer imagl[j])=_ amwewdS const (&3RRC_buffer imag[i-41):
12}

Fig. 4.17: Using intrinsiesdin SRRC filter.

Table 4.14: Performance Improvement of SRRC_downsample by Using Intrinsics

Original Code Revised Code Improvement
Cycles Cycles Cycles Cycles
per Symbol | per Sample | per Symbol | per Sample
Tx_SRRC filter 6199452 2690.73 72166 31.32 98.83%
SRRC_downsample 520704 226 288000 125 44.69%

81

Table 4.15: Optimized Profile of the 802.16a DL Transmitter Function Blocks

Code Optimized Original Multiples
Size Cycle Count Cycle Count of
(Bytes) | per Symbol \ per Sample | per Symbol \ per Sample | Real-Time
Modulation 544 8310 5.41 188973 123.02 0.10
Framing 3032 25676 15.08 187916 110.40 0.28
IFFT 1420 24360 11.89 35728 17.44 0.22
Tx_SRRC filter | 3728 72166 31.32 6199452 2690.73 0.59
Table 4.16: Optimized Profile of the 802.16a DL Receiver Function Blocks
Code Optimized Original Multiples
Size Cycle Count Cycle Count of
(Bytes) | per Symbol | per Sample | per Symbol | per Sample | Real-Time
SRRC_downsample 348 288000 125 520704 226 2.38
sync 820 1234944 536 1290240 560 10.2
FFT 412 17046 8.32 32256 15.75 0.15
channel estimation 2964 240780 141.46 none none 2.65
de_framing 2236 7373 4:33 833350 489.62 0.08
de_modulation 3544 125326 81.59 125326 81.59 1.55

estimation function can be found in'[6zzwhere the method of channel estimation
that we have used in this work is “2D-interpolation.”

We can find that most of the functions have better performance than before.
We have introduced the techniques for improvement of the framing/de-framing,
FFT/IFFT, modulation/de-modulation and SRRC filter functions before. In the
synchronization function, the improvement just comes from better setup of the sim-
ulator compiler. From the detail information shown in Table 4.17, we find that
the pilot correlation function dominates the computational complexity. This is be-
cause the need of several times of FFT computation inside the pilot correlation
function. Many optimization techniques used in the synchronization function have

been discussed in [2], which includes use of shift-FFT, intrinsics, circular buffer, loop

unrolling, and skipping of the function execution when it is unnecessary.

82

Table 4.17: Detailed Information of Synchronization Function

Code Size Average Multiples of
sync Execution Real-Time
Cycles/Sample
CP _correlation 712 76 1.44
Integer_freq_sync 1448 28 0.53
pilot_corre 3288 204 3.88

4.4 Graphical User Interface

In our implementation of the DSP program, we also implement a host PC graph-
ical interface to control the running of the DSP program and show the results of
the synchronization and channel estimation immediately. The program of the GUI
interface is from [25]. We upload,the DSP program first, and then start running
the program. As shown in Fig.4.18, we éan input the SNR and speed (km/hr) first
and show the timing synchronization offset, frequency offset, frame synchronization
status, and estimated channel résponse on the graphical interface.

The architecture we adopted is shown'in Fig. 4.19 which comes from the orig-
inal structure in Fig. 4.1 besides the addition of one more block transfer to the
host of the results. The contents of the added block buffer are the synchronization
and channel estimation information like estimated timing, frequency offset, frame
synchronization, and estimated channel response. Because the channel simulator is
placed allocated in the host PC side, we can change the channel simulator function
easily. In our implementation, we can have noiseless channel, multipath channel,
AWGN channel and multipath fading channel, and we can also add frequency off-

set.

83

& Downlink Transceiver System - hosi conirollex

Coff File...

Speed
o

U Tiginlnad

Hoise SNR

ransfer

T

Tramster Off

0.0 kbps

0 Blocks Sent

02 03 04 05 06 07 08 0842

0.1

frequency offst- «
4

L £

x

] response -

channel

T0 00 20 #0900 m..a‘ [|

07 0F 03% |

3 04 05 06

01 02 0

07 08 08%2 |

08

035

0l 02 03 04

G0 90 F0 £0 00 £0 PO 90° 80 |

01 80 90 #0 E

000 0 ¥

I added fading to multipath channel

[~ added frequency offset

[~ AWGH channel

[~ Multipath channel

Host PC graphical interface.

Fig. 4.18

84

Host PC Target DSP

|
|
1
1
|
1
1
1 e,
! —
: '/-.J \x‘
! Tx
| e
I _________________ e
I l
1
\ Buffer Y
1
| One OFDMA frame data
| (16 symbols & TTG RTG)
............. ; |
v | 16 blocks
."l * I 1_ e —
/' Channel ! |
. i 1
Sl]IllllﬂtOl' ,f'r : One block per transmission
S _—— ==
— U S
1 L .
: - ."\\
| Rx
I /J
| -
: e -
Verification of synchronization _ | _ [_ _ _ _ _ _
[i |
| i N, I
| i i P |
| TN 1 Prepare verification data block |
|/ L : |
|| Graphical ‘]‘ : |
|\ interface |, | I
I\ / : |
| N~ | |
| i |
| | I
___________ _——_—— — — — — — — — — — — — —.
1
|
|
!

Fig. 4.19: Verification structure of the DL transceiver system.

85

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we considered implementation of a 802.16a DL transceiver system on
DSP platform, including transmitter, channel simulator, synchronizer and channel
estimator. The overall TDD @FDMA DLIsystem supports QPSK, 16QAM and
64QAM three kinds of modulation‘schemess The implementation was based on the
simulation results from [1] and programs from [2] and [6].

Synchronization was divided into four stages, which were symbol time synchro-
nization, fractional frequency synchronization, integer frequency synchronization
and frame synchronization. The introduction about synchronization was introduced
in chapter 2. Data type of the overall system was chosen as 16-bit, which was
the most efficient use of 16-bit multiplication for the DSP chip. We modified the
inefficient function with better coding style to improve computational complexity
such as framing/de-framing functions and used intrinsics to provide faster memory’s
load/store for SRRC functions. We also replaced original 32-bit FFT/IFFT by 16-
bit FFT/IFFT, which was from TI’s DSPLIB, to increase computational efficiency.

More techniques used in synchronization can be found in [2].

86

Table 5.1: Improvement After Modifications

’ \ Improvement ‘
modulation 95.60%
framing 86.34%
IFFT 47.17%
FFT 31.82%
de-framing 99.11%

Table 5.2: Execution Time of the DL Receiver

Practical Execution Time | Real Time Requirement
(second/frame) (second/frame)
without optimization option 0.7 0.0032256
with optimization option 0.11 0.0032256

After optimizations, the performance of - modulation function was increased 95.60%,
framing was increased 86.34%, de-framing was incréased 99.11%, FFT function was
increased 47.17%, IFFT function was increased.31.82%, Tx_SRRC filter function
was increased 98.83%, SRRC_downsampple function was increased 44.69%, as shown
in Table 5.1. Except for synchronization, SRRC_downsample, channel estimation,
and de-modulation functions, other functions were all satisfied the real-time require-
ments.

Besides, we also calculate the execution time of the receiver from the host, as
shown in Table. 5.2. The execution time we estimated is from the host side clock
timer. It is not the real timer on the DSP environment, but can be a reference time
to the program flow. The symbol duration is 201.6us per symbol, so the real time
requirement is 201.6*16us per frame. If we do not open the compiler optimization
option, the execution of the program is quite slow, which is almost 0.7/0.0032256 =
217 times of the real time requirement. After opening the optimization option, it is

0.11/0.0032256 = 34 times of the real time requirement.

87

5.2 Potential Future Work

In this thesis, our main goal is implement the DL system on the DSP platform. And
we have been optimized the inefficient functions, but the synchronization function
is still complex. The bottleneck of synchronization function is the pilot correlation.
This is because that we have to do 65 times of FF'T in initial synchronization or 33
times of FFT in tracking mode. Although the shift-FFT[2] have been used to reduce
the computational complexity, the computation of FFT is still a huge loading in
synchronization. Besides complexity, we still find that the pilot correlation function
may search the wrong symbol time even without adding noise and channel. If
we will modify the synchronization algorithm, we suggest that we can modify the
frame synchronization algorithm first for this reason. In IEEE Std 802.16-2004, the
preamble is allocated in front of the Dlysubframe and it may help us to improve
frame synchronization algorithin.

To fulfill the real time requirement; we-can-stillmake more effort on the program.
We may notice the coding style to prevent the waste of the computation unnecessary
or use intrinsics to accelerate the program. One another way is skipping a function
call when it is idle operation. But we may notice that if we adopt this method, it
may make lots of conditionals in the program and then make the compiler hard to
do the optimization. The tradeoff should be estimated carefully.

In our DSP program, we do not implement FEC encoder/decoder yet. We can

find the associated reference in [5].

88

Bibliography

[1]

M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a
TDD OFDMA: transmission filtering and synchronization,” M.S. thesis, De-

partment of Electronics Engineering, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C., June 2003.

T.-S. Chiang, “Study and DSP implementation of IEEE 802.16a TDD OFDM
downlink synchronization,” M.S. thesis; Department of Electronics Engineering,

National Chiao Tung University, Hsinchu, Taiwan, R.O.C., July 2004.

[EEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Net-
works — Part 16: Awr Interface for Fized Broadband Wireless Access Systems
— Amendment 2: Medium Access Control Modifications and Additional Phys-
ical Layer Specifications for 2-11GHz. New York: IEEE, Apr. 1, 2003.

IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Net-
works — Part 16: Air Interface for Fixed Broadband Wireless Access Systems.
New York: TEEE, Oct. 1, 2004.

C.-C. Tung, “IEEE 802.16a OFDMA TDD uplink transceiver tystem integra-
tion and optimization on DSP platform,” M.S. thesis, Department of Electronics
Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June
2005.

89

[6]

[12]

[13]

[14]

R.-C. Chen, “Techniques for and DSP software implementation of IEEE 802.16a
TDD OFDMA downlink pilot-aided channel estimation,” M.S. thesis, Depart-
ment of Electronics Engineering, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C., Juue 2005.

J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM
systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805, July
1997.

J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M.
Arenas, P. Odling, C. Ostberg, M. Wahlqvist, and S. K. Wilson, “A time and
frequency synchronization scheme for multiuser OFDM,” [EFEE J. Select. Areas
Commun., vol. 17, pp. 1900-1914s:Nov.-1999.

P. H. Moose, “A technique for orthogenal:frequency-division multiplexing fre-
quency offset correction,”“IFEFE Trans. Commun., vol. 42, no. 10, pp. 2908—
2914, Oct. 1994.

C. D. Murphy, “Low-complexity FFT structure for OFDM transceivers,” IFEE

Trans. Commun., vol. 50, no. 12, pp. 1878-1881, Dec. 2002.

H. V. Sorenson, C. S. Burrus, “Efficient computation of the DFT with only a
subset of input or output points,” IEEE Trans. Signal Processing, vol. 41, no.

3, pp. 1184-1200, Mar. 1993.

J. D. Markel, “FFT pruning,” IEEE Trans. Audio Electroacoust., vol. AU-19,
no. 4, pp. 305-311, Dec. 1971.

G. Goertzel, “An algorithm for the evaluation of finite trigonometric series,”

Amer. Math. Monthly, vol. 65, no. 1, pp. 34-35, Jan. 1958.

ETSI SMG, “Overall requirements on the radio interface(s) of the UMTS,”

Technical Report ETR/SMG-21.02, v.3.0.0., ETSI, Valbonne, France, 1997.

90

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Innovative Integration, Quizote User’s Manual, June 2004.

Texas Instruments, Code Composer Studio User’s Guide. Literature number

SPRU328B, Feb. 2000.

Texas Instruments, TMS320C64x Technical Owverview. Literature number

SPRU395B, Jan. 2001.

Texas Instruments, TMS320C6000 DSP Peripherals Qverviews Reference
Guide. Literature number SPRU190F, Apr. 2004.

Texas Instruments, TMS320C6000 DSP Cache User’s Guide. Literature num-
ber SPRUG56A, May 2003.

Texas Instruments, TMS320C6000°CPU and Instruction Set. Literature num-
ber SPRU189F, Oct. 2000

Texas Instruments, TMS320C6000-Programmer’s Guide. Literature number

SPRU198G, Oct. 2002.

Texas Instruments, TMS320C64x DSP Library Programmer’s Reference. Liter-
ature number SPRU565B, Oct. 2003.

Innovative Integration, Quizote Data Sheet, http://www.innovative-

dsp.com/support /datasheets/quixote.pdf.

I[EEE 802.16 Working Group, [EFEE 802.16 Working Group Website,
http://www.ieee802.0rg/16/.

The Code Project, The Code Project Website,

http://www.codeproject.com/miscctrl/graph2d.asp.

Texas Instruments, TMS320C6000 Code Composer Studio Getting Started
Guide. Literature number SPRU509D, Aug. 2003.

91

%%*%@ﬁ%%ﬁ’%@QZEﬁH&%%QwAﬁaélﬁg

%

s XA aL»angﬁélﬁpiﬁﬁﬁﬁg’%%@943

™

PR B ke Ep L TIEEE 802.16a 4 PPl it 2 A 4F %

sk

2

o Ll
H 4‘5!
7 i

RET B) A B A B R o L

e
®

e

EEEECL TR

92

	封面.pdf
	A Thesis

	摘要.pdf
	Department of Electronics Engineering

	Thesis.pdf
	自傳.pdf

