
國 立 交 通 大 學
 電子工程學系 電子研究所碩士班

碩士論文

IEEE 802.16a 分時雙工正交分頻多重進接下行

傳收系統之數位訊號處理器軟體實現與整合

DSP Software Implementation and Integration of

IEEE 802.16a TDD OFDMA Downlink Transceiver System

研究生: 陳昱昇

 指導教授: 林大衛 博士

 中華民國九十四年六月

IEEE 802.16a 分時雙工正交分頻多重進接下行

傳收系統之數位訊號處理器軟體實現與整合

DSP Software Implementation and Integration of IEEE 802.16a

TDD OFDMA Downlink Transceiver System

研究生: 陳昱昇 Student: Yu-Sheng Chen

指導教授: 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of Requirements

for the Degree of
Master of Science

in
Electronics Engineering

June 2005
Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

IEEE 802.16a 分時雙工正交分頻多重進接下行

傳收系統之數位訊號處理器軟體實現與整合

研究生: 陳昱昇 指導教授:林大衛 博士

國立交通大學電子工程學系 電子研究所碩士班

摘要

我們在此論文中介紹 IEEE 802.16a 分時雙工正交分頻多重進接之下行傳收

系統。 傳收系統包含了在數位訊號處理器上實現發射端、同步裝置、通道狀態

估測器和其他接收端功能，以及在電腦主機上實作通道模擬器來模擬多路徑衰

減、外加白色高斯雜訊以及頻率偏移等通道效應。下行同步技術包含了符元

(symbol)開始時間、頻率偏移和資料訊框(frame)之估測。我們使用德州儀器(TI)

所製造的數位訊號處理器。此處理器的操作平台為 Innovative Integration 公司製

名為 Quixote 的 cPCI 卡。

 程式主要都是用 16 位元(bit)的定點(fixed point)格式來完成。我們藉著改變程

式編碼的風格(coding style)以及 C6416 本身具有的指令來改進程式執行的效能，

並把執行效能拿來跟能否達到即時運算的要求做比較以及分析。此外，我們還在

電腦主機上做了一個用來在螢幕上監控同步裝置以及通道狀態估測器的圖形介

面。 我們發現若要整個系統都達到即時運算的要求就需要把各個功能都分割到

多顆數位訊號處理器上來實現。

i

DSP Software Implementation and Integration

of IEEE 802.16a TDD OFDMA Downlink

Transceiver System

Student: Yu-Sheng Chen Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

This thesis presents an implementation of IEEE 802.16a TDD OFDMA DL

transceiver system, which includes the implementation of transmitter, synchronizer,

channel estimator, and other receiver functions on the DSP baseboard and channel

simulator, which simulates multipath fading, AWGN and frequency offset, on host PC.

The DL synchronization includes the estimations of symbol timing, frequency offset,

and frame lock status. The implementation employs Texas Instruments’

TMS320C6416 DSP chip housed on Innovative Integration’s Quixote cPCI card.

The program is mainly implemented by 16-bit fixed point data format.

Performances of the programs are analyzed and improved by changing the coding

style and applying intrinsic function of C6416 DSP. The execution performances are

compared to the real-time requirement. Besides, we also implement a host graphical

interface which can monitor the synchronization and channel estimation results on the

screen. We find that we may need to separate the functions into multi-DSPs to achieve

the real-time of the overall system.

ii

誌謝

誠摯的感謝我的指導老師林大衛博士這兩年多來的指導，老師對我

的指導不僅僅只是在學識的指導，在研究方法以及學習態度上，給我

的獲益更是難以估計。在通訊領域知識的學習上，林老師給我的只是

個開頭，讓我知道還有許許多多的方向值得去研究。我感到非常榮幸

可以成為林老師的學生誠摯的感謝我的指導老師林大衛博士，由衷的

感謝老師的指導。

另外，我還要感謝這個像個大家庭似的實驗室，實驗室豐富的資源

讓我們有最佳的學習環境，感謝博士班學長崑健、俊榮在學習過程中

給予的許多建議以及幫助，感謝景中、汝芩、志凱、鎮宇等同學彼此

間的砥礪以及幫助，有大家一起努力才有這篇論文。

最後，我要感謝我最愛的家人，有你們長久來一直對我的支持是我

學習、成長最大的動力，有你們一路陪伴和幫助讓我在求學過程沒有

後顧之憂。

iii

Table of Contents

Table of Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 IEEE 802.16a Transmission Techniques 3

2.1 Overview of the IEEE 802.16a TDD OFDMA Downlink System [3] . 3

2.1.1 Transceiver System Structure [2] 4

2.1.2 Downlink Carrier Allocation [3] 5

2.1.3 OFDMA TDD Frame Structure [3] 9

2.1.4 Modulation [3] . 11

2.2 Approach to Downlink Synchronization 13

2.2.1 Downlink Synchronization Requirements 14

2.2.2 Procedure of Initial Downlink Synchronization 16

2.2.3 Normal Synchronization . 22

2.3 Sparse DFT . 23

2.3.1 Pruning Algorithm . 24

2.3.2 Transform Decomposition [11] 25

2.3.3 Transform Decomposition with Filtering Approach [11] 26

2.3.4 Complexity Analysis . 30

2.3.5 Discussion . 31

3 Introduction to the DSP Implementation Platform 35

3.1 The Quixote Baseboard [15] . 35

3.2 Quixote’s Transfer Mechanisms [15] 36

3.2.1 DSP Streaming Interface . 38

3.2.2 CPU Busmastering Interface 38

3.2.3 Packetized Message Interface 40

3.3 The TMS320C6416 DSP Chip [23] 42

3.3.1 TMS320C6416 Features . 42

3.3.2 Central Processing Unit Features [20] 44

iv

3.3.3 Cache Memory Architecture Overview [19] 48

3.4 TI’s Code Development Environment [16], [26] 48

3.5 Code Development Flow [21] . 52

3.5.1 Compilier Optimization Options [21] 54

4 DSP Implementation 57

4.1 System Structure . 57

4.1.1 Memory Arrangement . 58

4.1.2 Fixed-Point Data Formats . 58

4.2 System Performance . 61

4.2.1 Execution Cycles of the Original Programs 61

4.2.2 Efficiency Enhancement . 65

4.3 Overall Performance . 80

4.4 Graphical User Interface . 83

5 Conclusion and Future Work 86

5.1 Conclusion . 86

5.2 Potential Future Work . 88

v

List of Tables

2.1 System Parameters Used in Our Study 6
2.2 OFDMA Carrier Allocation . 7
2.3 Possible Pilot Structures in Frame Synchronization 21

3.1 Message Packet Formatting (from [15]) 41
3.2 Execution Stage Length Description for Each Instruction Type (from

[20]) . 46
3.3 Functional Units and Operations Performed (from [20]) 47

4.1 System Memory Arrangement . 58
4.2 Performance Comparision of Frequency Lock Between Floating-Point

and Fixed-Point Implementation (from [2]) 60
4.3 Performance Comparision of Frame Lock Between Floating-Point and

Fixed-Point Implementation (from [2]) 61
4.4 Characteristics of the ETSI “Vehicular A” Channel Environment [14] 62
4.5 Relations Between Speed and Maximum Doppler Shift at Carrier Fre-

quency 6 GHz and Subcarrier Spacing 5.58 kHz 62
4.6 Profile of the Original 802.16a DL Transmitter Function Blocks (based

on [2]) . 64
4.7 Profile of the Original 802.16a DL Receiver Function Blocks (based

on [2]). 65
4.8 Comparison of the Modulation Function Before and After Optimization 67
4.9 Comparison of Framing/De-framing Functions Before and After Op-

timization . 71
4.10 Comparison of Performance of FFT Functions in DSPLIB for N = 2048 74
4.11 Comparison of Computational Complexity of Different FFT Algorithms 78
4.12 Comparison of FFT/IFFT Before and After Optimization 78
4.13 Simulation Data for SRRC downsample 80
4.14 Performance Improvement of SRRC downsample by Using Intrinsics . 81
4.15 Optimized Profile of the 802.16a DL Transmitter Function Blocks . . 82
4.16 Optimized Profile of the 802.16a DL Receiver Function Blocks 82
4.17 Detailed Information of Synchronization Function 83

5.1 Improvement After Modifications . 87
5.2 Execution Time of the DL Receiver 87

vi

List of Figures

2.1 DL transmitter structure (from [1]). 4
2.2 DL receiver structure (modified from [1]). 5
2.3 Illustration of carrier usage in OFDMA DL (from [1]). 6
2.4 Pilot allocation in the OFDMA DL (from [3]). 8
2.5 Frame structure of the TDD OFDMA system (from [3]). 10
2.6 QPSK, 16-QAM and 64-QAM constellations (from [3]). 12
2.7 Pseudo Random Binary Sequence (PRBS) generator for pilot modu-

altion (from [3]). 13
2.8 Structure of the symbol time and frequency estimator (from [1]). . . . 17
2.9 DL/UL symbol identification (from [2]). 19
2.10 State diagram of the frame synchronizer. 20
2.11 Multiple FFTs are needed for a consecutive range of sample locations

to ensure finding the true symbol start time. (a) Symbol location de-
tected in stage I, where the gray region is the useful samples which are
applied FFT. (b), (c) Leftmost and rightmost ranges of correlation,
respectively. (From [1].) . 22

2.12 Normal synchronization operations. 23
2.13 Length 16 pruned FFT for a subset of output points (from [11]). . . . 24
2.14 Block diagram of the transform decomposition method of DFT for a

subset of outputs (from [11]). 27
2.15 Flow graph of first order network to compute (2.3.10) (from [11]). . . 28
2.16 Flow graph of second order network to compute (2.3.14) (from [11]). . 29
2.17 Number of multiplications needed for transform decomposition when

P = 512. 32
2.18 Number of multiplications needed for transform decomposition when

P = 1024. 33

3.1 Picture of the Quixote card [15]. 36
3.2 Block diagram of Quixote (from [23]). 37
3.3 DSP streaming mode (from [15]). 39
3.4 The message system (from [15]). 41
3.5 Block diagram of TMS320C6416 DSP (from [20]). 44
3.6 Pipeline phases of TMS320C6416 DSP (from [20]). 45
3.7 TMS320C64x CPU data path (from [20]). 49
3.8 C64x cache memory architecture (from [19]). 50
3.9 Code development flow for TI C6000 DSP (from [21]). 53

vii

4.1 System integration structure. 59
4.2 Fixed-point data formats used in the transmitter. 60
4.3 Fixed-point data formats used in the receiver (based on [2]). 63
4.4 Allocation of bursts in a frame. 64
4.5 A part of the original modulation program. 66
4.6 A part of the modified program in the modulation function. 67
4.7 The other part of the modified program in the modulation function. . 68
4.8 Compiler feedback of the modulation4 function. 69
4.9 Kernel of the assembly code of the modulation4 function. 70
4.10 Original C code of the de-framing function. 72
4.11 Revised C code of the de-framing function. 73
4.12 Software pipelining information of the revised code for the de-framing

function. 74
4.13 Kernel of the assembly code of the revised de-framing function. . . . 75
4.14 Kernel of the assembly code of the original de-framing function. . . . 76
4.15 IFFT implementation using FFT function. 77
4.16 A part of the assembly code in DSP 16x16r. 79
4.17 Using intrinsics in SRRC filter. 81
4.18 Host PC graphical interface. 84
4.19 Verification structure of the DL transceiver system. 85

viii

Chapter 1

Introduction

In recent years there has been increasing interest in wireless technologies for sub-

scriber access. For some years much interest has been devoted to fixed wireless

access. To provide a standardized approach, the IEEE 802 committee set up the

802.16 working group in 1999 to develop broadband wireless access standards [24].

The IEEE 802.16 standards are concerned with the air interface between a sub-

scriber’s transceiver station and a base transceiver station. One IEEE 802.16 Task

Group [24] developed the IEEE Standard 802.16a that amends IEEE Std 802.16-

2001 by enhancing the medium access control (MAC) layer and providing additional

physical layer specifications in support of broadband wireless access at frequencies

2–11 GHz. After 802.16-2001, a new IEEE Std 802.16-2004 (also called 802.16) has

been published and the IEEE 802.16e is near completion. In the physical layer of

the 802.16, the main differences between 802.16 and 802.16a are as follows:

• The preamble allocation of the TDD (time division duplexing) frame structure.

• The usage of subchannels in the symbol structure.

• Forward error correction code.

Details can be found in [3] and [4]. The IEEE 802.16e adds mobile extension to the

802.16 standard.

1

In this thesis, we consider the DSP software implementation of IEEE 802.16a

downlink system. The reason that we consider the now defunct IEEE 802.16a rather

than the current IEEE 802.16-2004 is because this project was started three years

ago. We will consider newer 802.16 standards in the future. The synchronization

techniques are modified from [2]. The implementation employs Texas Instrument’s

TMS320C6416 digital signal processor (DSP) housed on Innovative integration’s

Quixote cPCI card.

This thesis is organized as follows. In chapter 2, we introduce the 802.16a down-

link system specification and the synchronization techniques. Chapter 3 introduces

the Quixote baseboard and the TMS320C6416 DSP chip, as well as the program

development environment and the host-target communication mechanism. In chap-

ter 4, we describe the DSP implementation and examine the program efficiency. We

also introduce the user interface to control program execution and display numer-

ical results results. Finally, chapter 5 gives the conclusions and points out some

potential future work.

2

Chapter 2

IEEE 802.16a Transmission
Techniques

The IEEE 802.16a specification enhances the medium access control layer of the

IEEE 802.16-2001 standard and its operating frequencies are between 2 to 11 GHz.

There are three physical layer modes in 802.16a: SCa (single carrier a), OFDM

(orthogonal frequency-division multiplexing), and OFDMA (orthogonal frequency-

division multiple access). We consider OFDMA, as it is a technology of considerable

research potential.

In this chapter, we first introduce the OFDMA specifications in 802.16a and then

explain the approaches we take to implement the transceiver system. Finally , we

introduce the sparse DFT algorithms and discuss the reason that we do not adopt

the transform decomposition method.

2.1 Overview of the IEEE 802.16a TDD OFDMA

Downlink System [3]

Before a detailed introduction to IEEE 802.16a standard, we explain some frequently

used terms first. The direction of transmission from the base station (BS) the sub-

scriber station (SS) is called downlink (DL), and the opposite direction from SS to

3

modulation

carrier allocation
Framing &

parameters: No_OFDM_symbol/ No_subchannel/
OFDM_symbol_offset/ Subchannel_offset

LPF
(SRRC filter)

scrambler FEC modulation
data 1702

S/P add virtual carriers
(padding zeros)burst 1

burst n

channel
D/A
filter RF

Tx

pilot (preamble)

DL_MAP,UL_MAP

interpolator

4

burst n data

burst 1 data

2048
P/SIFFT add prefix

(fadding channel)
(AWGN)

not addressed in the
present study

Fig. 2.1: DL transmitter structure (from [1]).

BS is called uplink (UL). The medium access control layer is used to provide the

system grant/request access and the link of data between the upper layer and the

lower layer (i.e., physical layer). The physical layer (PHY) handles the data trans-

mission and may include use of multiple transmission technologies, each appropriate

to a particular frequency range and application.

2.1.1 Transceiver System Structure [2]

The structure of the DL transmitter is shown in Fig. 2.1. The data bursts are

fed into the FEC (forward error correction) encoder. Then we apply modulation

and framing. Gray-mapped QPSK and 16-QAM are required to be supported in

modulation, whereas the support of 64-QAM is optional. The framing is used to

arrange the coded data, MAPs, pilots and preamble according to the specified frame

structure and carrier allocation. After framing, the data are fed into IFFT with

some null carriers (guard band) to obtain the time domain signal through IFFT.

The result from IFFT is output sequentially to the pulse shaping filter. As the ideal

lowpass interpolation filter cannot be implemented exactly, the square root raised

cosine filter is used instead. The impulse response of the filter is given by

4

Fig. 2.2: DL receiver structure (modified from [1]).

SRRC(t) =
sin

(
π t

Tsample
(1− α)

)
+ 4α t

Tsample
cos

(
π t

Tsample
(1 + α)

)

π t
Tsample

(
1− (4α t

Tsample
)2

) ,

where α is the roll-off factor. The D/A and RF parts are not addressed in the

present study.

Fig. 2.2 shows the downlink receiver structure. The receiver is in some sense the

reverse of the transmitter, except for the synchronizer and the channel estimator.

The synchronizer is a major focus in this thesis, and it will be discussed in more

detail later.

2.1.2 Downlink Carrier Allocation [3]

In the 802.16a OFDMA system, there are 2048 carriers per symbol. The carriers are

divided into three groups: pilot carriers for synchronization and channel estimation

purposes, data carriers for data transmission, and null carriers that are used for

guard band and the DC carrier which transmits nothing at all. And the system

parameters employed in this study are shown in Table 2.1.

As we can see in Fig. 2.3, there are 1702 used subcarriers, composed of 1536 data

carriers and 166 pilot carriers. The remaining subcarriers are unused subcarriers as

5

Table 2.1: System Parameters Used in Our Study

Number of carriers (N) 2048
Center frequency 6 GHz

Uplink / Downlink bandwidth (BW) 10 MHz
Carrier spacing (∆f) 5.58 kHz

Sampling frequency (fs) 11.43 MHz
OFDM symbol time (Ts) 201.6 µ sec (2304 samples)

Useful time (Tb) 179.2 µ sec (2048 samples)
Cyclic prefix time (Tg) 22.4 µ sec (256 samples)

Group 1 Group 2 Group48

The 1702 used carriers = 1536 data carriers + 166 pilot carriers

32 data carriers (no pilots in the group)

pilot subchannel 1 subchannel 2

Guard bandGuard band DC carrier

Fig. 2.3: Illustration of carrier usage in OFDMA DL (from [1]).

6

Table 2.2: OFDMA Carrier Allocation

Parameter DL Value
Number of DC carriers 1

Number of guard carriers, left 173
Number of guard carriers, right 172
Nused, number of used carriers 1702

Total number of carriers 2048
NvarLocP ilots 142

Number of fixed-location pilots 32
Number of variable-location pilots which 8

coincide with fixed-location pilots
Total number of pilots 166

Number of data carriers 1536
Nsubchannels 32

Nsubcarriers per subchannel 48
Number of data carriers per subchannel 48

guard bands distributed on the edge of the symbol, and one DC carrier right in the

middle of the OFDMA symbol. In the downlink, the pilot subcarriers are allocated

first, and then the remainders of the used carriers are divided into 32 subchannels,

each subchannel consisting of 48 data carriers. The pilot locations change with time

according to some permutation formula which will be described below. Table 2.2

shows the OFDMA downlink carrier allocation.

There are variable location pilot carriers and fixed-location pilot carriers. The

carrier indices of the fixed-location pilots never change. The variable location pilots

shift their locations every symbol periodically every 4 symbols, according to the

formula varLocP ilotk = 3L + 12Pk, where varLocP ilotk is the carrier index of a

variable location pilot, L periodically takes the values 0,2,1,3, cyclically over the

symbols, and Pk = {0, 1, 2, 3, . . . , 141}. The detailed illustration is given in Fig. 2.4.

After mapping the pilot carriers, we should also map the data carriers to the

correct positions. Note that since the variable location pilots change their locations

7

Fig. 2.4: Pilot allocation in the OFDMA DL (from [3]).

8

with symbols, the locations of the data carriers change also.

The exact partitioning into subchannels is done according to the formula below,

called a permutation formula:

carrier(n, s) = Nsubchannels · n + {ps[nmod(Nsubchannels)]

+IDcell · ceil[(n + 1)/Nsubchannels]}mod(Nsubchannels)

where

• carrier(n, s) is the carrier index of carrier n in subchannels,

• s is the index number of a subchannel, from the set [0, 1,, Nsubchannels−1],

• n is the carrier-in-subchannel index from the set [0, 1,Nsubchannels − 1],

• Nsubchannels is the number of the sunchannels,

• ps[j] is the series obtained by rotating PermutationBase cyclically to the left

s times,

• ceil[] is the function that rounds its argument up to the next integer,

• IDcell is a positive integer assigned by MAC to identify this particular BS, and

• Xmod(k) is the remainder of quotient X/k.

The following text in this section is mainly taken from [3], [2] and [1].

2.1.3 OFDMA TDD Frame Structure [3]

According to IEEE 802.16a, the duplexing method in the 2–11 GHz band shall be

either FDD (frequency division duplexing) or TDD (time division duplexing) in

licensed band and TDD in license-exempt bands. We consider the TDD mode in

this thesis. The advantage of using TDD is that we have flexibility to control the

DL and UL traffic ratio.

9

Fig. 2.5: Frame structure of the TDD OFDMA system (from [3]).

The frame structure of TDD OFDMA is as shown in Fig. 2.5. The data are

segmented into blocks for FEC (forward error correction) coding. Each FEC block

spans one OFDMA subchannel in the subchannel axis and three OFDMA symbols

in the time axis. A frame consists of one DL subframe and one UL subframe. The

duration of a frame can run from 2 to 20 ms and is specified by the frame duration

code. A subframe contains several transmission bursts, which are composed of

multiple FEC blocks. In each subframe, the TTG (Tx/Rx transition gap) and RTG

(Rx/Tx transition gap) are inserted between the downlink and uplink transmissions

at the end of each frame respectively to allow the BS and SS to turn around. TTG

and RTG shall be at least 5 µs and an integer multiple of four samples in duration.

For the DL, the transmitted data from the BS should contain the control message

and system parameters, so that the subscribers can know when and how to receive

and transmit their data. The burst profile is used to define the parameters such as

modulation type, forward error correction type, preamble length, guard times, etc.

10

The first FEC block of each frame is the DL Frame Prefix that is always transmitted

in the most robust burst profile, QPSK-1/2. The DL Frame Prefix contains the

parameters of the FCH (Frame Control Header) which includes the DL-MAPs, UL-

MAPs and may additional DCD (Downlink Channel Descriptor) and UCD (Uplink

Channel Descriptor) messages. The DL-MAP/UL-MAP messages define the access

to the DL/UL information, including the burst profiles and the distributions of the

subchannels and time axes of the bursts. The DCD and UCD shall be transmitted

by the BS at a periodic interval to define the characteristics of DL and UL physical

channels. The pilots of the first OFDM symbols is the DL preamble in the sense

that they indicate where the OFDMA frame starts. Note that the DL preamble is

not composed of an all-pilot symbol, so no additional OFDM symbol is transmitted.

As a result, the number of OFDM symbols of the DL is 3N , where N is a positive

integer. And the number of UL OFDM symbols is 3N + 1, including one preamble

and subsequent data symbols.

2.1.4 Modulation [3]

There are three types of information to be modulated: data, pilot, and preamble.

The modulation of pilot and preamble will be explained in detail for they are useful

in synchronization.

Data Modulation

The data modulation in 802.16a is shown in Fig. 2.6. The data bits are entered

serially to the constellation mapper. Gray-mapped QPSK and 16-QAM must be

supported, whereas the support of 64-QAM is optional.

Pilot Modulation

Pilot carriers shall be inserted into each data burst in order to constitute the symbol

and they shall be modulated according to their carrier locations within the OFDMA

11

Fig. 2.6: QPSK, 16-QAM and 64-QAM constellations (from [3]).

symbol. The PRBS generator is used to produce a sequence, wk, where k corresponds

to the carrier index. The value of the pilot modulation on carrier k is then derived

from wk. The polynomial for the PRBS generator is X11 +X9 +1, as Fig. 2.7 shows.

The initialization vector of the PRBS in the DL transmission is [11111111111]

except for the OFDMA DL PHY preamble. For the UL, the initialization vector of

the PRBS is [10101010101]. The PRBS shall be initialized so that its first output

bit coincides with the first usable carrier. A new value shall be generated by the

PRBS on every usable carrier. Each pilot shall be transmitted with a boost of 2.5

dB over the average power of each data tone. The pilot carriers shall be modulated

according to the following formulas:

Re {ck} =
8

3
(
1

2
− wk), Im {ck} = 0.

Preamble Modulation

The first three symbols of a frame serve as the OFDMA DL preamble. For the DL

preamble, the initialization vector of the pilot modulation PRBS is [01010101010].

12

Fig. 2.7: Pseudo Random Binary Sequence (PRBS) generator for pilot modualtion
(from [3]).

Hence, the preamble and other symbols may have the same pilot locations, but they

can be recognized by different modulation values. The pilots shall be boosted and

shall be modulated according to the following formulas:

Re {ck} =
8

3
(
1

2
− wk), Im {ck} = 0.

For the UL preamble, all the used carriers are pilots. The initial vector of the

PRBS is the same as the normal UL pilot modulation. The pilots shall not be

boosted and is modulated as

Re {ck} = 2(
1

2
− wk), Im {ck} = 0.

2.2 Approach to Downlink Synchronization

Synchronization errors in OFDM can cause intersymbol and intercarrier interference.

Accurate demodulation and detection of an OFDM signal requires carrier orthog-

onality. One way to suppress these interferences in OFDM systems is to track the

carrier frequency of the received signal and the start time of each OFDM symbol. A

blind joint maximum likelihood estimator of symbol time and carrier frequency off-

set for OFDM symbols using cyclic prefix is presented in [7]. The estimator exploits

13

the redundancy introduced by the prefix and is independent of how the subscribers

are modulated. Therefore, it does not require extra pilot information to complete

the timing and fractional frequency synchronization.

Variations of carrier oscillator, sample clocks or the symbol time affect the or-

thogonality of the OFDM system. In this thesis, we do not consider sample clock

synchronization. The sample clocks of the users and the base station are assumed to

be fully synchronized. The timing requirement is relaxed by using cyclic prefix (CP).

If the time offset is smaller than the length of the guard interval minus the length of

the channel impulse response, then the orthogonality among carriers is maintained.

In this case, the time offset will appear as a phase shift of the demodulated data

symbols across the carriers but will not result in intersymbol interference (ISI) or

intercarrier interference (ICI).

In practical OFDM systems, frequency offsets due to oscillator mismatch usually

exist between transmitters and receivers. Each subcarriers can be assumed equally

affected by a center carrier frequency shift, because the system bandwidth is small

compared to the center carrier frequency. The frequency offset has three effects:

reducing the amplitude of the FFT output, introducing ICI from other carriers, and

introducing a common phase rotation of the subcarriers [9].

2.2.1 Downlink Synchronization Requirements

The DL synchronization can be divided into two conditions. One is for the estab-

lishment of the initial connection, called the initial synchronization. The other is

the tracking of the synchronization, called the normal synchronization. The main

reason to have a different normal synchronization than initial synchronization is to

reduce the computational complexity in normal operation. In fact, we use a sim-

plified version of the initial synchronization procedure for normal synchronization

(tracking) purpose.

14

If a subscriber wants to join the transmission network for the first time, it has no

idea about the timing of the network and the frequency offset with the BS. In this

case, after detecting the symbol start time, frequency estimation and correction is

needed. According to 802.16a, the center frequency of the SS shall be synchronized

to the BS with a tolerance of maximum 2% of the inter-carrier spacing. Then,

the SS has to check that the received OFDM symbol is from the BS or from other

SSs. If the symbol is from the BS, further check is required to know whether this

symbol is the start of a frame. After initial synchronization, the subscriber is able

to extract the transmission parameters from the DL MAPs and UL MAPs. With

these parameters, the SS can roughly predict the next symbol and frame start times,

so normal timing synchronization can be simplified. The frequency offset is tracked

during normal operation. If the OFDM symbol start time is out of the predicted

range, re-initial synchronization is needed.

There are three kinds of useable information for synchronization: guard interval,

pilot carriers (including preamble), and the guard bands. We employ the method

proposed in [1] and divide the initial DL synchronization into 4 stages. In the first

two stages, the OFDM symbol start time and the fractional frequency offset are

detected using the guard interval. The third stage exploits the guard bands to cor-

rect integer frequency offset. Then, the final stage checks the pilot and preamble

information to determine when a frame starts. For normal synchronization, only

two stages are needed, where stage I is the same as that in initial DL synchroniza-

tion and stage II is used to track the frequency. More detailed description of the

synchronization technique is given below.

15

2.2.2 Procedure of Initial Downlink Synchronization

2.2.2.1 Stage I: Symbol Timing Synchronization

In [1], two methods of symbol timing estimation have been considered, both using

the cyclic prefix: ML estimation and CP correlation. The method of ML estimation

is proposed in [7], which uses the maximum likelihood criterion to estimate time

and frequency offsets. Under the assumption that the received samples are jointly

Gaussian, the estimated symbol time offset θ̂ is given by

θ̂ = arg max {|Γ(θ)| − ρΦ(θ)} , (2.2.1)

where

Γ(θ) =
θ+L−1∑

k=θ

r(k)r∗(k + N), (2.2.2)

Φ(θ) =
1

2

θ+L−1∑

k=θ

|r(k)|2 + |r(k + N)|2 , (2.2.3)

and ρ = SNR
SNR+1

with SNR being the signal to noise ratio. It is a one-shot estimator

in the sense that the estimates are based on the observation of one OFDM symbol.

To roduce the complexity, the CP correlation method uses only the correlation part

to estimate the symbol time, ignoring the part that compensates for the difference

in energy in the correlated samples. As the samples of different OFDM symbols are

uncorrelated, the peak of the sliding sum of r(k)r∗(k + N) would occur when the

samples r(θ), · · · , r(θ + N + L − 1) are all within the same OFDM symbol. Then,

the symbol time offset estimator becomes

θ̂ = arg max

∣∣∣∣∣
θ+L−1∑

k=θ

r(k)r∗(k + N)

∣∣∣∣∣ . (2.2.4)

A comparison of the complexity difference between the two methods is given in [2].

For further reduction of the CP correlation complexity, we can compute the CP

correlation at sample time θ by (2.2.2), then the CP correlation at sample time θ+1

16

samples
Dealy 2048

(.)* (length=L
 =CP legnth)

sliding sum
| . | argmax

− 1/(2) π

r(k+2048)

r(k)
ε

θ

Fig. 2.8: Structure of the symbol time and frequency estimator (from [1]).

is given by

Γ(θ + 1) =
θ+L∑

k=θ+1

r(k)r∗(k + N)

= Γ(θ)− r(k)r∗(k + N) + r(θ + L)r∗(θ + L + N). (2.2.5)

Reference [1] shows that although the performance of ML estimator algorithm

is better than that of CP correlation algorithm in AWGN channels, neither algo-

rithm can estimate the exact symbol time at 100% accuracy. In addition, for fading

multipath channels the CP correlation algorithm can outperform the ML estimator

algorithm. To estimate the exact symbol time, both algorithms should be assisted

by other means to find the symbol time more accurately. Here pilot correlation is

used as the auxiliary operation, which is combined in stage IV with frame synchro-

nization. Since the complexity of ML estimation is much higher than that of CP

correlation, but the benefit is questionable [1], [2], we use CP correlation to estimate

the symbol time in stage I. The algorithm structure is as shown in Fig. 2.8.

2.2.2.2 Stage II: Fractional Frequency Synchronization

The ML estimator of the fractional frequency offset ε̂ is given by [7], [8]

ε̂ =
−1

2π
∠Γ(θ̂),

whose structure is already shown in Fig. 2.8. It is easy to understand why ε can

be estimated by this method. The frequency offset ε results in an exponential

17

modulation in the time domain, in that the received samples are multiplied by
{

1, ej 2πε
N , ej 2πε2

N , ...
}

. In AWGN channel, the received sample in the guard time is

r(k) = s(k)ej 2πεk
N + n(k),

and the sample in the last part of the useful time is

r(k + N) = s(k + N)ej
2πε(k+N)

N + n(k + N),

where s(k) is the transmitted signal, N is the FFT size, and n(k) is the noise. Then

the multiplication of r(k) and r∗(k + N) yields

r(k)r∗(k + N) = s(k)s∗(k + N)e−j
2π(ε+N)

N + noise.

Note that e−j
2π(ε+N)

N is the common factor of all the pairwise sample products for

r(k) in the guard interval. Hence the sum of these products should reduce the

noise effect. The frequency offset ε can be estimated by the phase of the sum of

r(k)r∗(k + N) taken at the symbol start position. Note that the phase contribution

of any integer frequency offset is an integer times 2π. Thus this estimator is merely

able to detect fractional frequency offset.

2.2.2.3 Stage III: Integer Frequency Synchronization

The integer frequency synchronization stage is performed after FFT by utilizing the

guard band and two fixed pilot carriers which are at the edge of the used carriers to

correct the frequency offset. There are two reasons to using the guard band to do

integer frequency synchronization. First, guard carriers suffer less degradation from

by ICI than pilot carriers. Secondly, the complexity of using the guard carriers is

much less than that using the pilot carriers as no multiplication is required.

The first step in integer frequency offset estimation is for SS to check whether

the received OFDM symbol is from the BS rather than another SS. In 802.16a [3],

the definition of the guard bands and pilots are different for DL and UL. The indices

18

Fig. 2.9: DL/UL symbol identification (from [2]).

of the DL guard carriers are from −1024 to −852 and from 852 to 1023, while for

UL they are from −1024 to −849 and from 849 to 1023. A threshold can be set and

if any of the carriers {−849,−850,−851, 849, 850, 851} is larger than the threshold,

the SS will regard the symbol as a DL symbol, as shown in Fig. 2.9.

For the DL, the standard defines that carriers −851 and 851 are fixed location

pilots which are modulated to ±4
3

in amplitude. If there is no integer frequency

offset, the FFT outputs of all the guard carriers will be small. So, all the guard

carriers are checked to see if any of them exceeds the threshold. The direction of

checking is from 1023 to 852, and then from −1024 to −852. If a carrier k is detected

to be larger than the threshold, the ±851st fixed pilots are assumed to have shifted

k − 851 carrier spacings due to the frequency offset. Thus the checking is stopped

and the frequency is corrected by k − 851 carrier spacings.

In a fading channel, ICI may cause serious distortion. Thus, if the ±851st pilots

19

Fig. 2.10: State diagram of the frame synchronizer.

are distorted to be less than the threshold, the frequency offset will not be detected

by the method. An additional check is added to see whether both of the ±851st

pilot carriers are larger than the threshold. After these three checks, the integer

synchronization finishes. The threshold is chosen to be 0.55 in our simulation. This

value is derived from the simulation results in [1].

2.2.2.4 Stage IV: Frame Synchronization

In stage I, the OFDMA symbol start time have been roughly estimated, but the

SS has to know exactly where the frame starts. The frame start time estimation

proposed in [1] uses the pilot correlation method. In the 802.16a standard [3], the

varible location pilots change their locations from symbol to symbol depending on

the symbol index L. The modulation of pilots is decided by the PRBS generator,

and the initialization vector of the PRBS generator is different in the preamble

20

symbol than in a non-preamble symbol. Therefore, there are 7 possible kinds of

pilot structure as shown in Table 2.3. If the received symbol has the same pilot

locations and the same initial vector of modulation PRBS with the reference data,

the correlation of them will be larger than the other 6 cases. A frame is determined

to start if there are three successive DL symbols with the maximum correlation

corresponding to the preamble.

Table 2.3: Possible Pilot Structures in Frame Synchronization

DL preamble DL normal symbol

L = 0, PRBS = 01010101010 L = 0, PRBS = 11111111111
L = 2, PRBS = 01010101010 L = 2, PRBS = 11111111111
L = 1, PRBS = 01010101010 L = 1, PRBS = 11111111111

L = 3, PRBS = 11111111111

The proposed frame synchronization algorithm is illustrated in Fig. 2.10. In

order to build connection, we have to find the starting point of a frame in initial

synchronization. After finding the third preamble symbol, we can turn the operation

to normal synchronization as shown in Fig. 2.10. The method presented in [2]

declares frame synchronization failure when there is one unexpected symbol in pilot

correlation. But we find that one unexpected symbol does not mean that it cannot

find correct pilot correlation in the next symbol. So we modify the method to

declaring frame synchronization failure with the detection of 6 unexpected symbols

within one DL subframe.

From [2], because of the use of pilot correlation, we may need to do FFT at each

sample location for a range of 65 samples (from −32 to +32, as shown in Fig. 2.11(b)

and (c) [1]) in order not to miss the true symbol start time. In order to reduce the

computational complexity, the conventional FFT is only applied at location −32.

At the subsequent sample locations, the FFT may be computed recursively as

Xn(k) = [Xn−1(k)− xn−N + xn] ej 2πk
N (2.2.6)

21

x

x

(1)

(cp)

x(k+N)(a)

(b)

(c)

x(k)*

detected symbol
start time

corresponding
detected useful time

Fig. 2.11: Multiple FFTs are needed for a consecutive range of sample locations to
ensure finding the true symbol start time. (a) Symbol location detected in stage I,
where the gray region is the useful samples which are applied FFT. (b), (c) Leftmost
and rightmost ranges of correlation, respectively. (From [1].)

where N is the FFT size, k is the carrier index, n is sample number, and xn is the

new sample location.

2.2.3 Normal Synchronization

After initial synchronization, the SS can find the frame duration from the frame

duration code in the MAPs. Thus the next frame start time can be predicted

and there is no need to do complicated initial synchronization again. The timing

synchronization stage should still be used to track the exact symbol time, because

the received symbol time may shift with time due to channel variation and sampling

clock offset. The CP correlation can estimate the rough symbol time. In normal

synchronization, pilot correlation can still help to find a new accurate symbol time.

As shown in Fig. 2.12, we track the symbol timing and frequency offset in stages

I and II respectively. And we use pilot correlation to search for a more accurate

symbol time and frame start time with a smaller search range. The simulation in [1]

sets the search range in initial synchronization to ±32 samples around the estimated

22

Fig. 2.12: Normal synchronization operations.

symbol time from CP correlation. For normal synchronization, the range is reduced

to within ±5 samples. In this thesis, we set the normal synchronization’s pilot search

range to ±16 samples to get more reliable symbol timing estimates.

Concerning carrier frequency synchronization, according to 802.16a, the SS shall

track the frequency changes and shall defer any transmission if synchronization is

lost. Small frequency changes can be tracked by the fractional frequency part (stage

II) of initial or normal synchronization. If by any chance a larger frequency variation

occurs, we may detect it by monitoring the received guard carriers and then try to

correct it.

2.3 Sparse DFT

In some multiple access communications systems, transmitter and receivers may

have different cost and capacity requirements. For instance, in a downlink scenario,

one transmitter sends the same composite signal to multiple receivers. Each receiver

may only be interested in a small fraction of the transmitted data. The transmitter

may have high cost, provided the receivers have low cost.

Partial transforms offer the possibility of cost reductions in OFDM systems. In

this section, we will introduce two kinds of methods. One is called the pruning

23

Fig. 2.13: Length 16 pruned FFT for a subset of output points (from [11]).

algorithm and the other is called the transform decomposition [11] algorithm. The

following introduction is mainly taken from [11].

2.3.1 Pruning Algorithm

The pruning method is first devised by Markel [12]. Pruning is a modification of

the standard one-butterfly radix-2 FFT. Fig. 2.13 shows how this pruning scheme

works. Assuming that X(0) and X(1) are of interest, only the solid edges in the flow

graph need to be computed, while the grey edges can be “pruned” away. By also shift

twiddle factor in the program it is possible to get a band that does not start at X(0),

but can start anywhere. Multiplying all the twiddle factors by W J
N , the L output

values will be X(J), X(J +1), . . . , X(J +L−1), instead of X(0), X(1), . . . , X(L−1).

24

To compute L out of N DFT points, the regular pruning program requires

#MULPRUNE = 2Nb log2 Lc+ 2N − 4L +
2NL

2b log2 Lc

real multiplications and

#ADDPRUNE = 3Nb log2 Lc+ 3N − 6L +
3NL

b log2 Lc

real additions. More discussion about pruning algorithm can be found in [11].

The pruning algorithm can only compute consecutive output points. It can-

not compute the output points with random indices. For this reason, the pruning

algorithm is not suitable for 802.16a implementation.

2.3.2 Transform Decomposition [11]

A method, transform decomposition, for computing only a subset of output points

will now be introduced. It is shown to be more efficient and more flexible than the

pruning algorithm. We know that the DFT is designed as

X(k) =
N−1∑
n=0

x(n)W nk
N (2.3.1)

where k = 0, 1, . . . , N − 1. Assume that only L output points are needed and that

there exists a P such that P divides N and define Q = N/P . Using the variable

substitution

n = Qn1 + n2 (2.3.2)

where n1 = 0, 1, . . . , P − 1, and n2 = 0, 1, . . . , Q − 1. We can rewrite the DFT as

follows:

X(k) =

Q−1∑
n2=0

P−1∑
n1=0

x(n1Q + n2)W
(n1Q+n2)k
N (2.3.3)

=

Q−1∑
n2=0

[
P−1∑
n1=0

x(n1Q + n2)W
n1<k>P]W n2k

N (2.3.4)

25

where <>P denotes reduction modulo P , and k takes on any L consecutive values

between 0 and N − 1. Breaking this up into two equations

X(k) =

Q−1∑
n2=0

Xn2(< k >P)W n2k
N (2.3.5)

where

Xn2(j) =
P−1∑
n1=0

x(n1Q + n2)W
n1j
P (2.3.6)

=
P−1∑
n1=0

xn2(n1)W
n1j
P (2.3.7)

where j = 0, 1, . . . , P − 1. and xn2 = x(n1Q + n2). The sum in (2.3.7) can be

recognized as a length P DFT, and it can be computed efficiently using any FFT

algorithm. This is a great advantage of the transform decomposition method.

Inspecting (2.3.7), it can be seen that the sequence over which the DFT has to

be computed is two dimensional and hence depends on n2. Thus a DFT has to

be computed for each different value of n2, and hence there are Q such length P

DFTs. The output of the DFTs are recombined using (2.3.5) which can be computed

directly using Q complex multiplications and Q − 1 complex additions per output

point or a total of QL complex multiplications, each requiring 4 real multiplications

and 2 real additions, and L(Q−1) complex additions, each requiring 2 real additions.

The advantage of the transform decomposition is that we can compute any output

point with index k in (2.3.5), which can prove that the transform decomposition

algorithm is more flexible than pruning algorithm. Fig.2.14 shows how this method

works to compute the first L out of N DFT points.

2.3.3 Transform Decomposition with Filtering Approach [11]

It is possible to lower the number of operations required to compute (2.3.5) even

further using a technique similar to Goertzel algorithm [13]. To see this, rewrite

26

Fig. 2.14: Block diagram of the transform decomposition method of DFT for a
subset of outputs (from [11]).

27

Fig. 2.15: Flow graph of first order network to compute (2.3.10) (from [11]).

(2.3.5) as follows:

X(k) =

Q−1∑
n2=0

Xn2(< k >P)(W k
N)n2 (2.3.8)

=

Q−1∑
m=0

XQ−m−1(< k >P)(W k
N)Q−m−1 (2.3.9)

with the variable substitution m = Q− n2 − 1. Now define

yk(j) =

j−1∑
m=0

XQ−m−1(< k >P)(W k
N)j−m−1 (2.3.10)

from which we can find X(k) as

X(k) = yk(j)|j=Q. (2.3.11)

Equation (2.3.10) can be recognized as a shifted cyclic convolution between the

sequence XQ−j−1(< k >P) and (W k
N)j−1 in the variable j and hence yk(j) can be

viewed as the output of a system with impulse response (W k
N)j−1 driven by the input

XQ−j−1(< k >P).

Fig. 2.15 shows a flow graph that implements (2.3.10), but a quick analysis will

show that this implementation requires 4 real multiplications per iteration assuming

the input is complex, and hence requires the same amount of operations as a direct

implementation of (2.3.5).

28

Fig. 2.16: Flow graph of second order network to compute (2.3.14) (from [11]).

The transfer function of the system in Fig. 2.15 is

Hk(z) =
z−1

1− z−1W k
N

(2.3.12)

which can be rewritten as

Hk(z) =
z−1(1− z−1W−k

N)

(1− z−1W k
N)(1− z−1W−k

N)
(2.3.13)

=
z−1(1− z−1W−k

N)

1− 2 cos (2πk
N

)z−1 + z−2
. (2.3.14)

This last equation can be implemented using the flow graph in Fig. 2.16. Assume

that the input is complex. Then each iteration only takes two real multiplications

since the multiplication by −1 need not be counted. This is half of what was

needed in the first order case. Because we are only interested in yk(Q), but not the

intermediate values, it can be seen that the zero of the system is only needed once.

The derivations of (2.3.10) and (2.3.11) are not based on the actual values of

the indices of the computed output values, i.e., does not rely on the specified values

of k. Unlike the standard FFTs, efficient computation of (2.3.10) and (2.3.11) by

the flow graph in Fig. 2.16 does not depend on combining computations for several

29

different output points (several different k). Hence the number of output points to

be computed can be any length L subset of the N possible output points. This is

a very powerful result that shows that transform decomposition is not just more

efficient than pruning, but also more flexible. Where pruning restricts you to L

subsequent output values, transform decomposition allows any length L subset to

be computed.

2.3.4 Complexity Analysis

For the transform decomposition method, the computational complexity is discussed

in [11]. Given that N is a power of two, then we need

#MULTD = N log2 P − 3N + 4(L + 1)
N

P
− 4L (2.3.15)

real multiplications and

#ADDTD = 3N log2 P − 3N + 4(L + 1)
N

P
− 4L (2.3.16)

real additions.

The computational complexity for transform decomposition with filtering is

#MULTD−FILT = N log2 P − 3N + 2(L + 2)
N

P
+ 2L (2.3.17)

real multiplications and

#ADDTD−FILT = 3N log2 P − 3N + 4(L + 1)
N

P
− 4L + 4P (2.3.18)

real additions.

It still needs to be determined what values to use for the factor P . For most

applications the number of output points L is given and the optimum P has to be

found. To minimize the total number of operations, P should be chosen as

PTOT−MIN−TD = [2(L + 1) loge 2]close (2.3.19)

30

for the transform decomposition method, where []close indicates closest power of

two. Unfortunately, the problem is nonlinear, and hence it is not “closest” in any

easily determined sense, so both the larger and smaller possible values of P should

be examined. If instead the lowest possible of multiplications is required, P should

be chosen as

PMUL−MIN−TD = [4(L + 1) loge 2]close. (2.3.20)

The lower number of multiplications may be more useful for us because the multi-

plication operations are fewer than addition operations.

For transform decomposition with filtering method, the P can be chosen as

PTOT−MIN−TD−FILT = [

√
(N

loge 2
)2 + 6LN + 8N − (N

loge 2
)

2
]close (2.3.21)

to minimize the total number of operations, and

PMUL−MIN−TD−FILT = [2(L + 2) loge 2]close (2.3.22)

to minimize the number of multiplications. Hence if the total number of operations

is to be minimized, P should be chosen slightly larger than L, while if the number of

multiplications is to be minimized, P should be chosen about three times the size of

L (from the simulation results in [11]). This result will become the major reason that

we do not adopt the transform decomposition algorithm for our implementation.

There is more discussion about these methods in [11].

2.3.5 Discussion

Because the TMS320C6416 DSP chip can perform 6 additions but only 2 multipli-

cations at the same time, we consider the multiplication complexity in this section.

In downlink transmission, the carriers we need to use are 166 pilot carriers plus

user data carriers. So the output points we need to compute are L = 166 + 48× k,

where k is the number of subchannels assigned to the users (SSs).

31

1 2 3 4 5 6 7
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
x 10

4

k (number of subchannels)

R

ea
l M

ul
tip

lic
at

io
n

for P=512

split−radix 2/4
Transform Decomposition
Transform Decomposition with filtering

Fig. 2.17: Number of multiplications needed for transform decomposition when
P = 512.

From the simulation results in [11], the value of P should be chosen about three

times the size of L to minimize the number of multiplications, so the only proper

values of P are 512 and 1024. For these vales of P , the numbers of subchannel

which can be assigned to the SSs are bounded by b(512−166)/48c = 7 and b(1024−
166)/48c = 17 respectively.

Figs. 2.17 and 2.18 show the number of multiplications needed at P = 512 and

1024 respectively. In these figures, we also show the multiplication complexity of

split-radix 2/4 algorithm which is one of the most efficient algorithms for complete-

points FFT.

For P = 512, we can find that if the number of subchannels used is larger

than 4 or 5, we would be better off using the split-radix algorithm to compute all

the points. For P = 1024, it is more efficient using the transform decomposition

algorithm when k ≤ 7. Further, the filtering approach performance is even worse

32

0 2 4 6 8 10 12 14 16 18
1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

4

k (number of subchannels)

R

ea
l M

ul
tip

lic
at

io
n

for P=1024

split−radix 2/4
Transform Decomposition
Transform Decomposition with filtering

Fig. 2.18: Number of multiplications needed for transform decomposition when
P = 1024.

than transform decomposition. According to our observation, it results from that

the filter taps are left to 2 when P = 1024, so we cannot obtain enough advantage

from the computation of the poles of (2.3.14) while we have to pay the computation

of the zero.

Based on the above, we decide not to adopt the transform decomposition algo-

rithm in our implementation of 802.16a DL transmission. In the 802.16a specifica-

tion [3], we may assign all the subchannels to one SS. Besides, Texas Instruments

provides high performance FFT functions in their DSPLIB [22]. The analysis of

TI’s FFT functions is given in chapter 4.

As a final remark, we note that we have only discussed the “many to few” case

of transform decomposition algorithm above, which means that the number of FFT

output points L is smaller than the number of FFT input points N . The case of

“few to many” can be applied to the uplink transmission of 802.16a. We refer to

33

[11] for details of the methods.

34

Chapter 3

Introduction to the DSP
Implementation Platform

We introduced the 802.16a DL transmission system in the last chapter. In this work,

we conduct a DSP (digital signal processor) implementation of a DL transmitter-

receiver pair. This chapter introduces the Quixote DSP-FPGA baseboard made

by Innovative Integration (II) and the on-board DSP which is Texas Instruments’

TMS320C6416. Our discussion will concentrate on the DSP chip and the associated

system development environment because our implementation is purely software on

the DSP.

3.1 The Quixote Baseboard [15]

The DSP-FPGA embedded card used in our implementation is Innovative Inte-

gration’s Quixote baseboard, which is illustrated in Fig. 3.1. Quixote is one of

Innovative Integration’s Velocia-family baseboards for various applications requir-

ing high-speed computation. Fig. 3.2 shows a block diagram of the Quixote board.

It combines a 600 MHz C6416 32-bit fixed-point DSP with a Virtex-II FPGA, and

system-level peripherals.The FPGAs on our boards are six-million-gate version. The

TI C6416 DSP operating at 600 MHz offers a processing power of 4800 MIPS. Some

detailed features of the board are as follows:

35

Fig. 3.1: Picture of the Quixote card [15].

• TMS 320C6416 processor running at frequency up to 600 MHz.

• Onboard 32 MB SDRAM for DSP chip, enhanced cache controllers, 64 DMA

channels, 3 McBSP synchronized serial ports and two 32 bits timers.

• A 32/64 bits PCI bus host interface with direct host memory access capability

for busmastering data between the card and the memory.

• 2 input, 2 output A/D and D/A conversion, 14 bit, DC to 105 MHz.

3.2 Quixote’s Transfer Mechanisms [15]

Many applications in DSP baseboard may involve communication with the host

CPU in some manner. They may have to interact with a host program during the

lifetime of the program. Some examples are:

• Passing parameters to the program at start time.

• Receiving progress information and results from the application.

• Passing updated parameters during the run time of the program, such as the

frequency and amplitude of a wave to be produced on the target.

36

Fig. 3.2: Block diagram of Quixote (from [23]).

37

• Receiving alert information from the target.

• Receiving snapshots of data from the target.

• Sending a sample waveform to be generated to the target.

• Receiving full rate data.

• Sending data to be streamed at full rate.

There are three transfer methods on Quixote, which are DSP streaming interface,

CPU busmastering interface, and packetized message interface. The following text

is mainly taken from [15].

3.2.1 DSP Streaming Interface

The DSP streaming interface is continuous block based streaming transfer. It is

designed for non-stop operation such as A/D and D/A.

The DSP streaming interface is bi-directional. Two stream can run simultane-

ously, one running from the analog peripherals through the DSP into the application.

This is called the “incoming stream.” The other stream runs out of the analog pe-

ripherals. This is the “outgoing stream.” The mechanism is shown in Fig. 3.3. In

both cases, the DSP needs to act as a mediator, since there is no direct access to

analog peripherals from the host. This arrangement allows the DSP to process the

streams as they move from the application to the hardware.

3.2.2 CPU Busmastering Interface

This method of target-to-host communication is on the Velocia baseboards only. The

TI 64x baseboard is capable of using PCI busmastering to move data between target

and host memories. This additional busmaster channel can be used to transfer data

between host and target applications.

38

Fig. 3.3: DSP streaming mode (from [15]).

The CPU busmastering interface is packet based transfers which transfer discrete

blocks between source and destination. Each data buffer is transferred completely to

the destination in a single operation. The data buffers transferred can be of different

sizes. Each requested buffer is interrogated for its size and fully transmitted. At

the destination, the destination buffer is re-sized to allow the incoming data to fit.

Reallocating buffers can take some time, for best performance buffers should be

pre-sized to be large enough for the largest transfer expected.

CPU busmastering uses a simple blocking interface for its sending and receiving

functions. The sending function will not return until the transfer has completed and

the buffer is ready for reuse. Similarly, the receiving function waits until data have

arrived from the data source and transferred into the data buffer before returning.

Since the transfer functions are blocking, they are best avoided in the main user

interface thread of a Windows application. The GUI will appear to be frozen until

the transfer has completed. For best results, the data transfer function should be

39

placed in separate threads in target and host applications. In fact, each direction

of transfer should have its own thread, so that the two directions of transfer can

interleave as much as possible.

The CPU busmastering interface allows separate channels of data between the

target and the host. Using separate channels allows multiple, independent data

streams to be maintained between the target and host. At present, only a single

channel is supported. The largest transfer allowed is half of the total size of the

DMA buffer allocated by the INF file (a kind of files used for software/firmware

installation in windows system) when the driver is installed. Half of the memory is

dedicated to each direction. The default buffer size in the INF is 0x200000 bytes,

so the maximum transfer block is 1 MB.

3.2.3 Packetized Message Interface

In addition to the busmastering streaming interface, the DSP and host have a lower

bandwidth (limited to about 56 kB/sec) communications link for sending commands

or out-of-band information between target and host. Software is provided to build a

packet-based message system between the target and host software. These packets

can provide a simple yet powerful means of sending commands and information

across the link between the two processes.

As shown in Fig. 3.4, the message system’s arrangement provides one bi-directional

link between the target and the host. The “CIIMessage” and “IImessage” are host

and target side message objects declarations respectively. The detailed contents of

the packet formatting are shown in Table 3.1. The “CIIbaseboard::OnMessage” and

“Unsolicited Message Handler” are the messages handler used to handle the mes-

sage when messages are received for host and target sides respectively. The “Post”

function is just used for sending the message out.

In this study, we use the methods of CPU busmastering and message interface for

40

Fig. 3.4: The message system (from [15]).

Table 3.1: Message Packet Formatting (from [15])
Function Name Property

Channel Message Channel
TypeCode Message or Command type
MessageId Message counter or other user data
IsReplyExpected Set if reply is needed. Free for use in application

Data[] Access the data region as 32-bit integers (index 0–13)
AsFloat[] Access the data region as floating point data (index 0–13)
Asshort[] Access the data region as 16-bit integers (index 0–27)
AsChar[] Access the data region as 8-bit characters (index 0–55)

41

communication between the host and the target. The CPU busmastering interface

provides higher bandwidth for data transmission. But the disadvantage is that only

one channel is supported. Packetized message interface supports sixteen channels

in each direction. But the bandwidth is limited to 56 kB/sec.

3.3 The TMS320C6416 DSP Chip [23]

The following text is mainly taken from references [2] and [23].

3.3.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation on

the TMS320C6000 DSP platform. The TMS320C64x device is based on the second-

generation high-performance, very-long-instruction-word (VLIW) architecture de-

veloped by TI. The C6416 device has two high-performance embedded coprocessors,

Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that

can significantly speed up channel-decoding operations on-chip, but we do not make

use of these coprocessors now.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 func-

tion units. These 8 function units contain two multipliers and six ALUs. Features

of C6000 devices includes :

• Advanced VLIW CPU with eight functional units, including two multipliers

and six arithmetic units:

– Executes up to eight instructions per cycle.

– Allows designers to develop highly effective RISC-like code for fast devel-

opment time.

• Instruction packing:

42

– Gives code size equivalence for eight instructions executed serially or in

parallel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/32-bit data support, providing efficient memory support for a variety of

applications.

• 40-bit arithmetic options add extra precision for applications requiring it.

• Saturation and normalization provide support for key arithmetic operations.

• Field manipulation and instruction extract, set, clear, and bit counting support

common operation found in control and data manipulation applications.

The C64x additional features include:

• Each multiplier can perform two 16×16 bits or four 8×8 bits multiplies every

clock cycle.

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory ac-

cesses.

43

Fig. 3.5: Block diagram of TMS320C6416 DSP (from [20]).

• Special communication-specific instructions have been added to address com-

mon operations in error-correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.

3.3.2 Central Processing Unit Features [20]

The block diagram of C6416 DSP is shown in Fig. 3.5. The DSP contains: program

fetch unit, instruction dispatch unit, instruction decode unit, two data paths which

each has four functional units, 64/32-bit registers, control registers, control logic,

and logic for test, emulation, and logic.

44

Fig. 3.6: Pipeline phases of TMS320C6416 DSP (from [20]).

The TMS320C64x DSP pipeline provides flexibility to simplify programming and

improve performance. The pipeline can dispatch eight parallel instructions every

cycle. The following two factors provide this flexibility: Control of the pipeline is

simplified by eliminating pipeline interlocks, and the other is increasing pipelining

to eliminate traditional architectural bottlenecks in program fetch, data access, and

multiply operations. This provides single cycle throughput.

The pipeline phases are divided into three stages: fetch, decode, and execute.

All instructions in the C62x/C64x instruction set flow through the fetch, decode,

and execute stages of the pipeline. The fetch stage of the pipeline has four phases

for all instructions, and the decode stage has two phases for all instructions. The

execute stage of the pipeline requires a varying number of phases, depending on the

type of instruction. The stages of the C62x/C64x pipeline are shown in Fig. 3.6.

Reference [20] contains detailed information regarding the fetch and decode

phases. The pipeline operation of the C62x/C64x instructions can be categorized

into seven instruction types. Six of these are shown in Table 3.2, which gives a

mapping of operations occurring in each execution phase for the different instruc-

tion types. The delay slots associated with each instruction type are listed in the

bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot

is a CPU cycle that occurs after the first execution phase (E1) of an instruction.

Results from instructions with delay slots are not available until the end of the last

45

Table 3.2: Execution Stage Length Description for Each Instruction Type (from
[20])

delay slot. For example, a multiply instruction has one delay slot, which means

that one CPU cycle elapses before the results of the multiply are available for use

by a subsequent instruction. However, results are available from other instructions

finishing execution during the same CPU cycle in which the multiply is in a delay

slot.

The eight functional units in the C6000 data paths can be divided into two groups

of four; each functional unit in one data path is almost identical to the corresponding

unit in the other data path. The functional units are described in Table 3.3.

Besides being able to perform 32-bit operations, the C64x also contains many 8-

bit to 16-bit extensions to the instruction set. For example, the MPYU4 instruction

performs four 8×8 unsigned multiplies with a single instruction on a .M unit. The

46

Table 3.3: Functional Units and Operations Performed (from [20])

Function Unit Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations and rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant
Load and store non-aligned words and double words
5-bit constant generation
32-bit logical operations

47

ADD4 instruction performs four 8-bit additions with a single instruction on a .L

unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double

word (64-bit) operands. Each functional unit has its own 32-bit write port into

a general-purpose register file (see Fig. 3.7). All units ending in 1 (for example,

.L1) write to register file A, and all units ending in 2 write to register file B. Each

functional unit has two 32-bit read ports for source operands src1 and src2. Four

units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes,

as well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit

write port, when performing 32-bit operations all eight units can be used in parallel

every cycle.

3.3.3 Cache Memory Architecture Overview [19]

The C64x memory architecture consists of a two-level internal cache-based memory

architecture plus external memory. Level 1 cache is split into program (L1P) and

data (L1D) cache. The C64x memory architecture is shown in Fig. 3.8. On C64x

devices, each L1 cache is 16 kB. All caches and data paths are automatically managed

by cache controller. Level 1 cache is accessed by the CPU without stalls. Level 2

cache is configurable and can be split into L2 SRAM (addressable on-chip memory)

and L2 cache for caching external memory locations. On a C6416 DSP, the size of

L2 cache is 1 MB, and the external memory on Quixote baseboard is 32 MB. More

detailed introduction to the cache system can be found in [19].

3.4 TI’s Code Development Environment [16], [26]

TI provides a useful GUI development interface to DSP users for developing and

debugging their projects: Code Composer Studio (CCS). The CCS development

48

Fig. 3.7: TMS320C64x CPU data path (from [20]).

49

Fig. 3.8: C64x cache memory architecture (from [19]).

tools are a key element of the DSP software and development tools from Texas In-

struments. The fully integrated development environment includes real-time analy-

sis capabilities, easy to use debugger, C/C++ compiler, assembler, linker, editor,

visual project manager, simulators, XDS560 and XDS510 emulation drivers and

DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

• Simulators for full devices, CPU only and CPU plus memory for optimal per-

formance.

• Integrated visual project manager with source control interface, multi-project

support and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator tar-

gets:

– C/C++/assembly language support.

– Simple breakpoints.

50

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debug).

• Data transfer for real time data exchange between host and target.

• Profiler to understand code performance.

CCS also delivers foundation software consisting of:

• DSP/BIOS kernel for the TMS320C6000 DSPs:

– Pre-emptive multi-threading.

– Interthread communication.

– Interupt Handling.

• TMS320 DSP Algorithm Standard to enable software reuse.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides

C-program functions to configure and control on-chip peripherals.

• DSP libraries for optimum DSP functionality. The DSP Library includes

many C-callable, assembly-optimized, general-purpose signal-processing and

image/video processing routines. These routines are typically used in com-

putationally intensive real-time applications where optimal execution speed is

critical.

TI also supports some optimized DSP functions for the TMS320C64x devices:

the TMS320C64x digital signal processor library (DSPLIB). The routines included

in the DSP library are organized into seven groups:

• Adaptive filtering.

51

• Correlation.

• FFT.

• Filtering and convolution.

• Math.

• Matrix functions.

• Miscellaneous.

In this study, we use the FFT and IFFT functions from this library.

3.5 Code Development Flow [21]

The recommended code development flow involves utilizing the C6000 code gener-

ation tools to aid in optimization rather than forcing the programmer to code by

hand in assembly. These advantages allow the compiler to do all the laborious work

of instruction selection, parallelizing, pipelining, and register allocation. These fea-

tures simplify the maintenance of the code, as everything resides in a C framework

that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases

described in Fig. 3.9. The tutorial section of the Programmers Guide [21] focuses on

phases 1–2 and the Guide also instructs the programmer when to go to the tuning

stage of phase 3. What is learned is the importance of giving the compiler enough

information to fully maximize its potential. An added advantage is that this compiler

provides direct feedback on the entire programmers high MIPS areas (loops). Based

on this feedback, there are some very simple steps the programmer can take to pass

complete and better information to the compiler allowing the programmer a quicker

start in maximizing compiler performance. The following items list the goal for each

phase in the 3-phase software development flow shown in Fig. 3.9.

52

Fig. 3.9: Code development flow for TI C6000 DSP (from [21]).

53

• Developing C code (phase 1) without any knowledge of the C6000. Use the

C6000 profiling tools to identify any inefficient areas that we might have in

the C code. To improve the performance of the code, proceed to phase 2.

• Use techniques described in [21] to improve the C code. Use the C6000 profiling

tools to check its performance. If the code is still not as efficient as we would

like it to be, proceed to phase 3.

• Extract the time-critical areas from the C code and rewrite the code in linear

assembly. We can use the assembly optimizer to optimize this code.

TI provides high performance C program optimization tools, and they do not

suggest the programmer to code by hand in assembly. In this thesis, the development

flow is stopped at phase 2. We do not optimize the code by writing linear assembly.

Coding the program in high level language keeps the flexibility of porting to other

platforms.

3.5.1 Compilier Optimization Options [21]

The compiler supports several options to optimize the code. The compiler options

can be used to optimize code size or execution performance. Our primary concern

in this work is the execution performance. Hence we do not care very much about

the code size (at least in this work). The easiest way to invoke optimization is to use

the cl6x shell program, specifying the -on option on the cl6x command line, where

n denotes the level of optimization (0, 1, 2, 3) which controls the type and degree

of optimization:

• -o0:

– Performs control-flow-graph simplification.

– Allocates variables to registers.

54

– Performs loop rotation.

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

• -o1. Peforms all -o0 optimization, and:

– Performs local copy/constant propagation.

– Removes unused assignments.

– Eliminates local common expressions.

• -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

• -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.

– Simplifies functions with return values that are never used.

– Inlines calls to small functions.

– Reorders function declarations so that the attributes of called functions

are known when the caller is optimized.

– Propagates arguments into function bodies when all calls pass the same

value in the same argument position.

55

– Identifies file-level variable characteristics.

The -o2 is the defaule if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the

-o3 option. With program-level optimization, all of the source files are compiled into

one intermediate file called a module. The module moves through the optimization

and code generation passes of the compiler. Because the compiler can see the entire

program, it performs several optimizations that are rarely applied during file-level

optimization:

• If a particular argument in a function always has the same value, the com-

piler replaces the argument with the value and passes the value instead of the

argument.

• If a return value of a function is never used, the compiler deletes the return

code in the function.

• If a function is not called directly or indirectly, the compiler removes the

function.

When program-level optimization is selected in the Code Composer Studio, options

that have been selected to be file-specific are ignored. The program level optimiza-

tion is the highest level optimization option. We use this option to optimize our

code.

56

Chapter 4

DSP Implementation

In this chapter, we discuss how we implement the DL transmission system on the

Quixote baseboard based on the synchronization programs developed in [2] and the

channel estimation programs developed in [6].

First, we introduce how we organize the system on the DSP and determine the

fixed-point data formats employed. Then we discuss the system performance.

4.1 System Structure

The 802.16a DL system that we implement includes the transmitter and the receiver

on the DSP and a channel simulator on the host PC, as shown in Fig. 4.1. The trans-

mitter does data modulation, framing, IFFT, up-samping and SRRC filtering. The

channel simulator can simulate multipath fading, AWGN, and frequency offset. The

receiver contains synchronizer, channel estimator, de-modulation and de-framing.

The reason why we put the channel simulator on the host PC is because it is com-

putationally very expensive.

First, the transmitter generates one symbol worth of transmitted signal and

transfers it to the host as one block. After the host PC has received 16 blocks (i.e., 16

symbols per frame), it applies the channeling effect. After the simulated multipath

fading and AWGN effect, we send the signal back to the DSP into the receiver and

57

Table 4.1: System Memory Arrangement

Total Size Used for Cache Used for Memory
L1 Cache 32 KBytes 32 KBytes None
L2 Cache 1 MBytes 256 KBytes 400 KBytes

External Memory 32 MBytes None 16.14 MBytes

perform synchronization, channel estimation and other receiver function.

The program controller is the host PC program. We develop our system based on

the examples “CpuInRate” and “CpuOutRate” provided by Inovative Integration.

The simple examples use the CPU busmastering interface and the message system

for communication between the host and the DSP. As described in the last chapter,

we use CPU busmastering interface for data exchanges and packetized message

interface for debugging and controlling message exchanges.

4.1.1 Memory Arrangement

As introduced in section 3.3.3, the DSP chip and the baseboard contain a two-level

cache and one external memory. Table 4.1 describes the usages of the cache and the

memory. Level 1 cache consists of program and data cache and it is used for cache

purpose only. Level 2 cache is split into cache and on-chip memory areas. There are

256 kB of the level 2 cache reserved for the cache system and 400 kB are used by

our DL system. The external memory is used for memory only and a total of 16.14

MB are used in our system.

4.1.2 Fixed-Point Data Formats

In this section, we introduce the fixed-point data formats used in the implemented

system. As shown in Fig. 4.2, the transmitted source data are generated randomly

and fed into the modulator. The output format of the modulator is Q1.14 because

58

Fig. 4.1: System integration structure.

59

Table 4.2: Performance Comparision of Frequency Lock Between Floating-Point and
Fixed-Point Implementation (from [2])

Doppler shift Lock fail rate Average lock symbol number
fdTs Floating-point Fixed-point Floating-point Fixed-point

0 0 0 2.99 2.98
0.0224 0 0 2.66 2.69
0.0448 0 0 2.36 2.39
0.0672 0 0 2.30 2.32
0.0896 0 0 2.61 2.57
0.112 0 0 3.23 3.42
0.134 0 0 5.15 5.14

Fig. 4.2: Fixed-point data formats used in the transmitter.

the pilots may have values of ±4
3
. And the format after the IFFT is Q.15. Fig. 4.3

shows the formats used in the receiver. Almost everywhere from SRRC output

to the FFT input uses the format Q.15 except where dealing with the frequency

offset. The format after FFT is Q5.10 because the multipath fading channel may

cause gains to the modulated data. In the channel estimator, we could find out the

channel response and then compensate for it, so the format is changed back to Q1.14

for de-framing and de-modulation. From [2], we can get the performance differences

of the synchronization between floating-point and fixed-point data type, as shown

in Tables 4.2 and 4.3. We can find that the Q.15 format fixed-point computation is

precise enough for the synchronization process.

60

Table 4.3: Performance Comparision of Frame Lock Between Floating-Point and
Fixed-Point Implementation (from [2])

Doppler shift Lock fail rate Average lock frame number
fdTs Floating-point Fixed-point Floating-point Fixed-point

0 0.001 0.001 1.00 1.00
0.0224 0.057 0.074 1.98 1.94
0.0448 0.008 0.100 1.26 1.24
0.0672 0.027 0.032 1.65 1.70
0.0896 0.136 0.140 2.59 2.59
0.112 0.107 0.135 2.14 2.19
0.134 0.063 0.069 1.50 1.47

4.2 System Performance

In our simulation, we allocate 5 bursts (users) in the downlink part of one 802.16a

frame. Source data are generated randomly, and are modulated into 64-QAM. There

are 12 OFDMA symbols in one DL subframe and 4 OFDMA symbols in each UL

subframe. The TTG and RTG are 136 samples. The frame structure and the bursts

allocation are shown in Fig. 4.4. The frame is repeated several times in transmission.

The above are arbitrary choices of parameter for purposes of system design. The

programs are quite general and can use other sets of parameters.

We employ the multipath ETSI “Vehicular A” channel model [1]. Information

about this channel model is given in Table 4.4. And the maximum Doppler shifts of

our simulation are shown in Table 4.5 for several speeds between 0 and 120 km/hr.

4.2.1 Execution Cycles of the Original Programs

In our system, one symbol duration is 201.6 µs and there are 2304 samples in a

symbol. The clock frequency of the DSP is 600 MHz. The execution clock cy-

cles are 120960 in a symbol duration and average to 52.5 in a sample duration.

For real-time operation, therefore, everything must complete in 120960 cycles per

61

Table 4.4: Characteristics of the ETSI “Vehicular A” Channel Environment [14]

tap relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) (dB) (normal scale) (normalized)

1 0 0 0 0 1.0000 0.4850
2 310 14 4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 1090 50 12 -10.0 0.1000 0.0485
5 1730 79 20 -15.0 0.0316 0.0153
6 2510 115 29 -20.0 0.0100 0.0049

Table 4.5: Relations Between Speed and Maximum Doppler Shift at Carrier Fre-
quency 6 GHz and Subcarrier Spacing 5.58 kHz

Speed (km/hr) Doppler shift (Hz) fdTs

0 0 0
20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896
100 556 0.112
120 557 0.134

62

Fig. 4.3: Fixed-point data formats used in the receiver (based on [2]).

symbol or 52.5 cycles per sample unless multiple DSPs are used. In the following

analysis in this chapter, we define a metric called “multiples of real-time” which

means that how many DSP processors we need to finish the function in time.

Multiples of Real-Time =
Practical Avg. Execution Cycles per Sample

Computation Capacity of Real Time per Sample
.

The original program cycles information based on [2] is shown in Tables 4.6 and

4.7. Each time when the modulation/de-modulation functions are performed, they

generate 1536 data samples, so we can divide the average cycles per symbol by

1536 to get average cycles per sample. With the same reason, we divide 1702 for

framing/de-framing functions, 2048 for FFT/IFFT functions and 2304 for the others

functions to get the average cycles per sample. And we use the average cycles per

sample to calculate the multiples of real-time. The statistics illustrated in the tables

are from [2] with some modifications which drop out uses of “fread” and “fwrite”

functions.

63

Fig. 4.4: Allocation of bursts in a frame.

We can find that some functions are particularly time-consuming. In next sec-

tion, we will introduce some techniques to accelerate the programs.

Table 4.6: Profile of the Original 802.16a DL Transmitter Function Blocks (based
on [2])

Code Size Avg. Cycles per Symbol / #Samples per Symbol Multiples of
(Bytes) = Avg. Cycles per Sample Real-Time

Modulation 544 188973/1536 = 123.02 2.34
Framing 2464 187916/1702 = 110.40 2.10
IFFT 964 35728/2048 = 17.44 0.332

Tx SRRC filter 1624 6199452/2304 = 2690.73 51.28

64

Table 4.7: Profile of the Original 802.16a DL Receiver Function Blocks (based on [2]).

Code Multiples
Size Avg. Cycles per Symbol / #Samples per Symbol of

(Bytes) = Avg. Cycles per Sample Real-Time

SRRC downsample 348 520704/2304 = 226 4.30
CP correlation 1320 232704/2304 = 101 1.92
initial freq sync 300 66816/2304 = 29 0.55
integer freq sync 932 96768/2304 = 42 0.8

pilot corre 2824 539136/2304 = 234 4.456
sync 784 1290240/2304 = 560 10.66
FFT 276 32256/2048 = 15.75 0.26

de framing 1064 833350/1702 = 489.62 9.32
de modulation 3544 125326/1536 = 81.59 1.55

4.2.2 Efficiency Enhancement

4.2.2.1 Modulation Functions

In this section, we will describe the techniques used to improve the performance of

the modulation function. Fig. 4.5 shows a part of the original modulation program

and we see that some “if” and “else” statements are used to check the modulation

type inside the outer “for” loop. This is inefficient because we do not change the

modulation type within one data block. In addition, the compiler cannot do software

pipelining for this kind of coding style. Because the modulation can only have three

types (QPSK, 16QAM, and 64QAM), we separate their handling into three sub-

functions, as shown in Figs. 4.6 and 4.7. Table 4.8 compares the execution cycles

before and after modification. The compiler optimization information is shown in

Fig. 4.8 and Fig. 4.9 is a main section of the assembly code of the modulation

function together with the corresponding C code.

65

Fig. 4.5: A part of the original modulation program.

66

Fig. 4.6: A part of the modified program in the modulation function.

Table 4.8: Comparison of the Modulation Function Before and After Optimization

Original Code Revised Code Improvement
Cycles/Symbol Cycles/Sample Cycles/Symbol Cycles/Sample

188973 123.02 8310 5.41 95.60%

67

Fig. 4.7: The other part of the modified program in the modulation function.

68

Fig. 4.8: Compiler feedback of the modulation4 function.

4.2.2.2 Framing and De-framing Functions

In Table 4.7, the execution cycles of framing/de-framing seem extraordinarily large.

In this section, we analyze the reasons of the inefficiency of the original code and

find ways of improvement through loop unrolling and software pipelining by the

compiler.

First, we introduce the original code of de-framing function and propose a better

coding style. As shown in Fig. 4.10, the problem of the original code consists in the

waste of cycles in the large number of “or” operations in the “if” statement in every

iteration, as shown in the circle denoted “part 1.” The same problem exists in the

framing function. The proposed C code uses simple skills to prevent this waste of

cycles and does away with the modulo operation, as shown in the “part 1” code in

Fig. 4.11.

Another modification of the de-framing function is done to “part 2” in Fig. 4.10

and results “part 2” in Fig. 4.11. We just remove the variable “carrier n s” by

69

Fig. 4.9: Kernel of the assembly code of the modulation4 function.

70

Table 4.9: Comparison of Framing/De-framing Functions Before and After Opti-
mization

Original Code Revised Code Improvement
Cycles per Cycles per Cycles per Cycles per
Symbol Sample Symbol Sample

framing 187916 110.40 25676 15.08 86.34%
de-framing 833350 489.62 7373 4.33 99.11%

replacing it with a look-up table, which is the framing/de-framing indexing number.

As illustrated in Table. 4.9, we can get huge improvement after the modifications.

This is because the original C code cannot result in software pipelining and loop

unrolling with the use of large numbers of “if,” “else,” and “or” operations. We

can get detailed information about how the compiler is able to optimize the code

from the CCS compiler feedback information shown in Fig. 4.12. We find that

the software pipelining is 6 stages deep from the sentence “Schedule found with 6

iterations in parallel.” Fig. 4.13 is the kernel of the assembly code of the de-framing

function, where the corresponding C code is also illustrated. We can compare the

kernels of the assembly code before and after revision. The assembly code for the

original program is shown in Fig. 4.14 and we can see that it cannot be software

pipelined, so the assembly programs are very inefficient.

4.2.2.3 FFT and IFFT Functions

The FFT/IFFT functions we use are from TI’s DSPLIB [22]. The original programs

[2] have used FFT/IFFT functions that employ 32-bit operations. Because the

C6416 DSP chip could perform four 16-bit multiplication operations but only two

32-bit multiplication operations during one cycle, it is more efficient if we could

use 16-bit multiplications. The Table 4.10 compares the performance of the FFT

functions provided in the DSPLIB.

DSP fft32x32 is the complex mixed radix 32×32-bit FFT with rounding, while

71

Fig. 4.10: Original C code of the de-framing function.

72

Fig. 4.11: Revised C code of the de-framing function.

73

Fig. 4.12: Software pipelining information of the revised code for the de-framing
function.

Table 4.10: Comparison of Performance of FFT Functions in DSPLIB for N = 2048
Code Size Execution Cycles Minimum Cycles Efficiency
(Bytes) per Symbol Needed per Symbol

DSP fft32x32 932 28811 11351 39.39%
DSP ifft32x32 932 28811 11351 39.39%
DSP fft16x16r 868 15510 11351 73.18%

inverse FFT of the same type is DSP ifft32x32. DSP 16x16r is the complex mixed

radix 16×16-bit FFT with rounding. TI DSPLIB does not provide functions for

16-bit IFFT, so we have to do IFFT using the 16-bit FFT function. As shown in

Fig. 4.15, we just need to do conjugation before and after FFT. More detailed usage

of these functions can be found in [22].

Table 4.11 compares the computational complexity of different FFT algorithms.

The mixed radix FFT needs 19974 real multiplications and 68102 real additions

theoretically in our application which uses 2048-point FFT/IFFT. So the absolutely

74

Fig. 4.13: Kernel of the assembly code of the revised de-framing function.

75

Fig. 4.14: Kernel of the assembly code of the original de-framing function.

76

Fig. 4.15: IFFT implementation using FFT function.

minimum number of execution cycles is max{19974/2, 68102/6} = 11351 for the 32-

bit FFT/IFFT operation and max{19974/4, 68102/6} = 11351 for the 16-bit FFT.

Practically, as shown in Table 4.10, DSP fft32x32 and DSP ifft32x32 need 28811

clock cycles and DSP 16x16r needs 15510 clock cycles, so the efficiencies are 39.39%

and 73.18%, respectively, where the efficiency is defined as

Efficiency =
Minimum Cycles Needed

Practical Execution Cycles
,

which indicates how well the compiler schedules the assembly code.

Fig. 4.16 shows the core loop in DSP fft16x16r. The assembly code shown in the

figure uses “ dotp2” and “ dotpn2” instructions to compute intermediate results.

For example, the following code:

x2[l1] = (si10 * yt1 0 + co10 * xt1 0 + 0x8000) À 16

x2[l1+1] = (co10 * yt1 0 - si10 * xt1 0 + 0x8000) À 16

x2[l1+2] = (si11 * yt1 1 + co11 * xt1 1 + 0x8000) À 16

x2[l1+3] = (co11 * yt1 1 - si11 * xt1 1 + 0x8000) À 16

is mapped to the assembly code below:

DOTP2 .M2 B xt0 0 yt0 0, B co20 si20, B x l1 0 ;

DOTPN2 .M2 B yt0 0 xt0 0, B co20 si20, B x l1 1 ;

77

Table 4.11: Comparison of Computational Complexity of Different FFT Algorithms
Complexity No. of Real Multiplications No. of Real Additions

Radix-2 FFT 2
3
N log2 N − 7

2
N + 8 5

2
N log2 N − 7

2
N + 8

Radix-4 FFT 9
8
N log2 N − 3N + 3 25

8
N log2 N − 3N + 3

Radix-8 FFT 25
24

N(log2 N − 3) + 4 73
24

N log2 N − 25
8
N + 4

Split-radix-4/2 FFT N log2 N − 3N + 4 3N log2 N − 3N + 4
Simplified FFT 4N 6N

Table 4.12: Comparison of FFT/IFFT Before and After Optimization
Original Code Revised Code Improvement

Cycles per Cycles per Cycles per Cycles per
Symbol Sample Symbol Sample

FFT 32256 15.75 17046 8.32 47.17%
IFFT 35728 17.44 24360 11.89 31.82%

DOTP2 .M2 B xt0 1 yt0 1, B co21 si21, B x l1 2 ;

DOTPN2 .M2 B yt0 1 xt0 1, B co21 si21, B x l1 3 ;

as indicated by the ovals in Fig. 4.16.

By this modification, the execution cycles of the IFFT and FFT functions in Ta-

bles 4.6 and 4.7 become 24360/2048 = 11.89 (cycles/sample) and 17046/2048 = 8.32

(cycles/sample) respectively, as shown in Table 4.12. The DSP fft16x16 function is

used inside the FFT/IFFT function. The excess clock cycles of FFT/IFFT over

the DSP fft16x16r cycle counts are from the data movement inside our FFT/IFFT

functions.

4.2.2.4 SRRC Filter

The C6000 compiler provides intrinsics, which are special functions that map directly

to inlined C62x/C64x/C67x instructions, to optimize the C/C++ code quickly. The

intrinsic functions, which TI provides, provide an another method for optimizing the

program at C level. Detailed introduction to the intrinsic functions can be found in

78

Fig. 4.16: A part of the assembly code in DSP 16x16r.

79

Table 4.13: Simulation Data for SRRC downsample
Inclusive Exclusive
Cycles Cycles

SRRC downsample 226 140

[21].

In Table 4.7, the reason for the inefficiency in the SRRC downsample function

is the data movement for the SRRC filter buffer, as shown in Fig. 4.17. We can

get proof from the simulation data shown in Table 4.13, where the inclusive cycles

are the cycle count for the entire SRRC downsample function and the exclusive

cycles are the cycle count other than the cycles for the functions called inside the

SRRC downsample function. In our program, the function called does the SRRC

filtering and the exclusive cycles are just for data movement in the data buffer, so

the multiples of real-time for filtering is (226−140)/52.5 = 1.63.

By using intrinsics, we can accelerate the speed of data movement. As shown

in Fig. 4.17, the function “ amemd8” and “ amemd8 const” are intrinsic functions

that provide aligned loads and stores of 8 bytes to memory in single instruction. So

we can perform four 16-bit load and store within one instruction. The speedup

of the SRRC downsample function is shown in Table 4.14. Here, we find the

Tx SRRC filter has obtained huge improvement in performance. The reason is not

only due to the use of intrinsics but also because the better coding style by remov-

ing of conditionals like the method to improve the framing function as introduced

before. More detailed analyses can be found in [5].

4.3 Overall Performance

First, we show the overall system performance after optimization in Tables 4.15 and

4.16 including channel estimation. More detailed introduction about the channel

80

Fig. 4.17: Using intrinsics in SRRC filter.

Table 4.14: Performance Improvement of SRRC downsample by Using Intrinsics

Original Code Revised Code Improvement
Cycles Cycles Cycles Cycles

per Symbol per Sample per Symbol per Sample

Tx SRRC filter 6199452 2690.73 72166 31.32 98.83%
SRRC downsample 520704 226 288000 125 44.69%

81

Table 4.15: Optimized Profile of the 802.16a DL Transmitter Function Blocks

Code Optimized Original Multiples
Size Cycle Count Cycle Count of

(Bytes) per Symbol per Sample per Symbol per Sample Real-Time

Modulation 544 8310 5.41 188973 123.02 0.10
Framing 3032 25676 15.08 187916 110.40 0.28
IFFT 1420 24360 11.89 35728 17.44 0.22

Tx SRRC filter 3728 72166 31.32 6199452 2690.73 0.59

Table 4.16: Optimized Profile of the 802.16a DL Receiver Function Blocks
Code Optimized Original Multiples
Size Cycle Count Cycle Count of

(Bytes) per Symbol per Sample per Symbol per Sample Real-Time

SRRC downsample 348 288000 125 520704 226 2.38
sync 820 1234944 536 1290240 560 10.2
FFT 412 17046 8.32 32256 15.75 0.15

channel estimation 2964 240780 141.46 none none 2.65
de framing 2236 7373 4.33 833350 489.62 0.08

de modulation 3544 125326 81.59 125326 81.59 1.55

estimation function can be found in [6], where the method of channel estimation

that we have used in this work is “2D-interpolation.”

We can find that most of the functions have better performance than before.

We have introduced the techniques for improvement of the framing/de-framing,

FFT/IFFT, modulation/de-modulation and SRRC filter functions before. In the

synchronization function, the improvement just comes from better setup of the sim-

ulator compiler. From the detail information shown in Table 4.17, we find that

the pilot correlation function dominates the computational complexity. This is be-

cause the need of several times of FFT computation inside the pilot correlation

function. Many optimization techniques used in the synchronization function have

been discussed in [2], which includes use of shift-FFT, intrinsics, circular buffer, loop

unrolling, and skipping of the function execution when it is unnecessary.

82

Table 4.17: Detailed Information of Synchronization Function
Code Size Average Multiples of

sync Execution Real-Time
Cycles/Sample

CP correlation 712 76 1.44
Integer freq sync 1448 28 0.53

pilot corre 3288 204 3.88

4.4 Graphical User Interface

In our implementation of the DSP program, we also implement a host PC graph-

ical interface to control the running of the DSP program and show the results of

the synchronization and channel estimation immediately. The program of the GUI

interface is from [25]. We upload the DSP program first, and then start running

the program. As shown in Fig. 4.18, we can input the SNR and speed (km/hr) first

and show the timing synchronization offset, frequency offset, frame synchronization

status, and estimated channel response on the graphical interface.

The architecture we adopted is shown in Fig. 4.19 which comes from the orig-

inal structure in Fig. 4.1 besides the addition of one more block transfer to the

host of the results. The contents of the added block buffer are the synchronization

and channel estimation information like estimated timing, frequency offset, frame

synchronization, and estimated channel response. Because the channel simulator is

placed allocated in the host PC side, we can change the channel simulator function

easily. In our implementation, we can have noiseless channel, multipath channel,

AWGN channel and multipath fading channel, and we can also add frequency off-

set.

83

Fig. 4.18: Host PC graphical interface.

84

Fig. 4.19: Verification structure of the DL transceiver system.

85

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we considered implementation of a 802.16a DL transceiver system on

DSP platform, including transmitter, channel simulator, synchronizer and channel

estimator. The overall TDD OFDMA DL system supports QPSK, 16QAM and

64QAM three kinds of modulation schemes. The implementation was based on the

simulation results from [1] and programs from [2] and [6].

Synchronization was divided into four stages, which were symbol time synchro-

nization, fractional frequency synchronization, integer frequency synchronization

and frame synchronization. The introduction about synchronization was introduced

in chapter 2. Data type of the overall system was chosen as 16-bit, which was

the most efficient use of 16-bit multiplication for the DSP chip. We modified the

inefficient function with better coding style to improve computational complexity

such as framing/de-framing functions and used intrinsics to provide faster memory’s

load/store for SRRC functions. We also replaced original 32-bit FFT/IFFT by 16-

bit FFT/IFFT, which was from TI’s DSPLIB, to increase computational efficiency.

More techniques used in synchronization can be found in [2].

86

Table 5.1: Improvement After Modifications
Improvement

modulation 95.60%
framing 86.34%
IFFT 47.17%
FFT 31.82%

de-framing 99.11%

Table 5.2: Execution Time of the DL Receiver

Practical Execution Time Real Time Requirement
(second/frame) (second/frame)

without optimization option 0.7 0.0032256
with optimization option 0.11 0.0032256

After optimizations, the performance of modulation function was increased 95.60%,

framing was increased 86.34%, de-framing was increased 99.11%, FFT function was

increased 47.17%, IFFT function was increased 31.82%, Tx SRRC filter function

was increased 98.83%, SRRC downsampple function was increased 44.69%, as shown

in Table 5.1. Except for synchronization, SRRC downsample, channel estimation,

and de-modulation functions, other functions were all satisfied the real-time require-

ments.

Besides, we also calculate the execution time of the receiver from the host, as

shown in Table. 5.2. The execution time we estimated is from the host side clock

timer. It is not the real timer on the DSP environment, but can be a reference time

to the program flow. The symbol duration is 201.6µs per symbol, so the real time

requirement is 201.6*16µs per frame. If we do not open the compiler optimization

option, the execution of the program is quite slow, which is almost 0.7/0.0032256 =

217 times of the real time requirement. After opening the optimization option, it is

0.11/0.0032256 = 34 times of the real time requirement.

87

5.2 Potential Future Work

In this thesis, our main goal is implement the DL system on the DSP platform. And

we have been optimized the inefficient functions, but the synchronization function

is still complex. The bottleneck of synchronization function is the pilot correlation.

This is because that we have to do 65 times of FFT in initial synchronization or 33

times of FFT in tracking mode. Although the shift-FFT[2] have been used to reduce

the computational complexity, the computation of FFT is still a huge loading in

synchronization. Besides complexity, we still find that the pilot correlation function

may search the wrong symbol time even without adding noise and channel. If

we will modify the synchronization algorithm, we suggest that we can modify the

frame synchronization algorithm first for this reason. In IEEE Std 802.16-2004, the

preamble is allocated in front of the DL subframe and it may help us to improve

frame synchronization algorithm.

To fulfill the real time requirement, we can still make more effort on the program.

We may notice the coding style to prevent the waste of the computation unnecessary

or use intrinsics to accelerate the program. One another way is skipping a function

call when it is idle operation. But we may notice that if we adopt this method, it

may make lots of conditionals in the program and then make the compiler hard to

do the optimization. The tradeoff should be estimated carefully.

In our DSP program, we do not implement FEC encoder/decoder yet. We can

find the associated reference in [5].

88

Bibliography

[1] M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a

TDD OFDMA: transmission filtering and synchronization,” M.S. thesis, De-

partment of Electronics Engineering, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C., June 2003.

[2] T.-S. Chiang, “Study and DSP implementation of IEEE 802.16a TDD OFDM

downlink synchronization,” M.S. thesis, Department of Electronics Engineering,

National Chiao Tung University, Hsinchu, Taiwan, R.O.C., July 2004.

[3] IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Net-

works — Part 16: Air Interface for Fixed Broadband Wireless Access Systems

— Amendment 2: Medium Access Control Modifications and Additional Phys-

ical Layer Specifications for 2–11GHz. New York: IEEE, Apr. 1, 2003.

[4] IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Net-

works — Part 16: Air Interface for Fixed Broadband Wireless Access Systems.

New York: IEEE, Oct. 1, 2004.

[5] C.-C. Tung, “IEEE 802.16a OFDMA TDD uplink transceiver tystem integra-

tion and optimization on DSP platform,” M.S. thesis, Department of Electronics

Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June

2005.

89

[6] R.-C. Chen, “Techniques for and DSP software implementation of IEEE 802.16a

TDD OFDMA downlink pilot-aided channel estimation,” M.S. thesis, Depart-

ment of Electronics Engineering, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C., Juue 2005.

[7] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM

systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800–1805, July

1997.

[8] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M.

Arenas, P. Odling, C. Ostberg, M. Wahlqvist, and S. K. Wilson, “A time and

frequency synchronization scheme for multiuser OFDM,” IEEE J. Select. Areas

Commun., vol. 17, pp. 1900–1914, Nov. 1999.

[9] P. H. Moose, “A technique for orthogonal frequency-division multiplexing fre-

quency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908–

2914, Oct. 1994.

[10] C. D. Murphy, “Low-complexity FFT structure for OFDM transceivers,” IEEE

Trans. Commun., vol. 50, no. 12, pp. 1878–1881, Dec. 2002.

[11] H. V. Sorenson, C. S. Burrus, “Efficient computation of the DFT with only a

subset of input or output points,” IEEE Trans. Signal Processing, vol. 41, no.

3, pp. 1184–1200, Mar. 1993.

[12] J. D. Markel, “FFT pruning,” IEEE Trans. Audio Electroacoust., vol. AU-19,

no. 4, pp. 305–311, Dec. 1971.

[13] G. Goertzel, “An algorithm for the evaluation of finite trigonometric series,”

Amer. Math. Monthly, vol. 65, no. 1, pp. 34–35, Jan. 1958.

[14] ETSI SMG, “Overall requirements on the radio interface(s) of the UMTS,”

Technical Report ETR/SMG-21.02, v.3.0.0., ETSI, Valbonne, France, 1997.

90

[15] Innovative Integration, Quixote User’s Manual, June 2004.

[16] Texas Instruments, Code Composer Studio User’s Guide. Literature number

SPRU328B, Feb. 2000.

[17] Texas Instruments, TMS320C64x Technical Overview. Literature number

SPRU395B, Jan. 2001.

[18] Texas Instruments, TMS320C6000 DSP Peripherals Overviews Reference

Guide. Literature number SPRU190F, Apr. 2004.

[19] Texas Instruments, TMS320C6000 DSP Cache User’s Guide. Literature num-

ber SPRU656A, May 2003.

[20] Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature num-

ber SPRU189F, Oct. 2000.

[21] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct. 2002.

[22] Texas Instruments, TMS320C64x DSP Library Programmer’s Reference. Liter-

ature number SPRU565B, Oct. 2003.

[23] Innovative Integration, Quixote Data Sheet, http://www.innovative-

dsp.com/support/datasheets/quixote.pdf.

[24] IEEE 802.16 Working Group, IEEE 802.16 Working Group Website,

http://www.ieee802.org/16/.

[25] The Code Project, The Code Project Website,

http://www.codeproject.com/miscctrl/graph2d.asp.

[26] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started

Guide. Literature number SPRU509D, Aug. 2003.

91

自傳

 陳昱昇，男，民國七十年一月二十五日出生於台灣省桃園縣。高中

就讀於桃園武陵高中，民國 92 年六月畢業於交通大學電子工程學

系，並於九月進入交通大學電子工程研究所繼續就讀，於民國 94 年

取得碩士學位，論文題目為:『IEEE 802.16a 分時雙工正交分頻多重

進接下行傳收系統之數位訊號處理器軟體實現與整合』，是有關無線

通訊領域的相關研究。

92

	封面.pdf
	A Thesis

	摘要.pdf
	Department of Electronics Engineering

	Thesis.pdf
	自傳.pdf

