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ABSTRACT

Positron emission tomography (PET) can provide in vivo, quantitative and
functional information for the diagnosis of functional diseases; however, PET image
quality is highly dependent on a reconstruction algorithm. Iterative algorithms, such
as the maximum likelihood expectation-maximization (MLEM) algorithm, are rapidly
becoming the standards for image reconstruction in emission tomography. The
conventional MLEM algorithm utilized the Poisson model, which is no longer valid
for delay-subtraction after random correction. This study was undertaken to overcome
this problem. The MLEM algorithm:is adopted and modified to reconstruct microPET
images with random correction from thesjoint Poisson model of prompt and delay
sinograms; this reconstruction method is-called:PDEM. The proposed joint Poisson
model preserves Poisson propérties without increasing the variances of estimates
associated with random correction. The coefficients of variation (CV) and full width
at half-maximum (FWHM) values ‘were—utilized to compare the quality of
reconstructed microPET images  of* physical. phantoms acquired by filtered
backprojection (FBP), ordered subsets.expectation-maximization (OSEM) and PDEM
approaches. Experimental and simulated ‘results demonstrated that the proposed
PDEM method yielded better image quality results than the FBP and OSEM
approaches.

The segmentation of 3D microPET image is one of the most important issues in
tracing and recognizing the gene activity in vivo. In order to discover and recover the
activity of gene expression, reconstruction techniques with higher precision and fewer
artifacts are necessary. To improve the resolution on microPET images, the PDEM
method is applied. In addition, the advanced statistical technique based on the mixture
model is developed to segment the reconstructed images. In this study, the new
proposed method is evaluated with simulation and empirical studies. The performance
shows that the proposed method is promising in practice.

The segmentation of cDNA microarray spots is essential in analyzing the intensities
of microarray images for biological and medical investigations. In this work, the
nonparametric method of kernel density estimation is applied to segment two-channel
cDNA microarray images. This approach successfully groups pixels into foreground
and background. The segmentation performance of this model is tested and evaluated
by sixteen microarrays. Specifically, spike genes with various levels of contents are
spotted in a microarray to examine and evaluate the accuracy of the segmentation
results. Duplicated design is implemented to evaluate the accuracy of the model.
Swapped experiments of microarray dyes are also implemented. Results of this study
demonstrate that this method can cluster pixels and estimate statistics regarding spots
with high accuracy.
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Table Contents
Table 2.3.4-1: One set of eight spike genes with target contents and ratios in real
microarrays.

Table 2.3.4-2: Another set of eight spike genes with target contents and ratios in real
microarrays.

Table 3.2.2-1: Average and standard deviation (in mm) of 28 FWHMs for horizontal
and vertical line profiles measured for comparing the spatial resolutions of PDEM,
OSEM and FBP. Those values are measured at the 31% slice.

Table 3.2.2-2: A circular ROI with a radius of 9 pixels to the center of the uniform
phantom was utilized to compare noise levels between the PDEM, FBP and OSEM.
Those values were measured at the 40" reconstructed slice.

Table 3.3.2-1: Comparisons of the clustering results by K-means and GMM in Fig.
3.3.2-1A.

Table 3.3.3-1: The FWHMs and SNRS of segmented. results by GMM are better than
those by K-means in Fig. 3.3.3-5.

Table 4.2-1: The comparisons of SSEs are obtained for different methods based on
spike genes. Array 1s is that obtained by swapping the dyes of Array 1. Relative
improvement is specified by (GenePix-Method)/GenePix as a percentage.

Table 4.2-2: The comparisons of SSREs are obtained for different methods based on
spike genes.. Array 1s is that obtained by swapping the dyes of Array 1. Relative
improvement is specified by (GenePix-Method)/GenePix as the percentage.

Table 4.3-1: Used spots excluding spike spots and bad spots in each array are listed
and “x2” means two duplicates on every array.



Figure Contents
Fig. 2.2.1-1. An example shows the procedure to decide the number of clusters and
initialized values in the EM algorithm of GMM. There are two peaks from the

estimated densities of f(y) . Hence, the number of clusters in GMM will be two and

initialized values will be computed from the above equations.

Fig. 3.1-1: The microPET R4 scanner in Taipei Veterans General Hospital is
displayed.

Fig. 3.1-2: Two images of microPET sinograms from physical experiments of six
point sources are displayed. In every sonogram, the horizontal axis represents the
ordering of line of responses (LORSs) and the vertical axis represents different angles
from 0 degree to 180 degree. The pixel intensity in the sinogram records total gamma
rays detected in a scanning time window.

Fig. 3.1-3: The above data matrices are' used:for reconstruction by the PDEM and
segmentation by the GMM.

Fig. 3.1-4 The above data matrices are used for reconstruction by the FBP and OSEM
with random pre-correction.

Fig. 3.2.1-1. The modified Shepp-Logan head image was used for simulation studies.
The line profiles of PDEM were less noisy than those of FBP and OSEM. The PDEM
technique reconstructed better images than the FBP and OSEM did with 5%, 10% and
30% random noise. All images were rescaled using their own maximum values.

Fig. 3.2.2-1. The 31% slice of the 28 line-source phantom reconstructed using the three
methods are displayed. Both FBP and OSEM are reconstruction methods built into the
microPET R4 system. All images were rescaled using their own maximum values.
The images are shown in the rectangular window. Table 3.2.2-1 presents the
comparisons of their FWHMs.

Fig. 3.2.2-2. The reconstructed 40" slice from a uniform phantom was used to
investigate noise level generated by the three approaches. The white line indicates the
position of the investigated line profile. All images were rescaled using their own
maximum values. The images are shown in the rectangular window with enlarged
central parts. Table 3.2.2-2 presents the comparisons of their CVs.
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Fig. 3.2.3-1: Sagittal (top) and coronal (middle) images of the first mouse image
reconstructed by PDEM (left), FBP (middle) and OSEM (right). The images
reconstructed by PDEM have less noise than those reconstructed using FBP and
OSEM with comparison by line profiles. The images are shown in the rectangular
window with enlarged central parts.

Fig. 3.2.3-2. Coronal and sagittal images of the second mouse image reconstructed
using PDEM (left), FBP (middle) and OSEM (right). The images reconstructed by
PDEM have less noise than those reconstructed by FBP and OSEM, as shown in the
respective line profile near the heart. The images are shown in the rectangular window
with enlarged central parts.

Fig. 3.3.1-1. The flow chart of 3D segmentation is plotted.

Figure 3.3.1-2: 3D microPET images for 63 slices are illustrated. Every image has the
pixels size of 128 by 128.

Fig. 3.3.2-1. A) Simulation image of five clusters isdisplayed. B) Adding 50% noise
into panel A. C) Clustering results using GMM. D) Kernel density curve using C with
values of high and low peaks. Four peaks are identified on the density curve. Hence,
the number of groups is set as four.

Fig. 3.3.2-2. Target ROIs are marked.

Fig. 3.3.2-3. The results of A) by K-means and B) by GMM clustering are shown.

Fig. 3.3.2-4. Simulated volume data including slice 1 and 2 are marked as A and B. C
and D are reconstructed images after added 50% noise ratio to A and B. E and F are
segmented results without slice normalization. G and H are segmented results with
slice normalization. 1 is the estimated kernel density curve of simulated volume data
after slice normalization.

Fig.3.3.3-1. The estimated kernel density curve using the rat volume data of 10 slices
is shown with values of high and low peaks. There are four peaks. Hence, the number
of groups is set as four. Values of peaks are applied to compute the starting values in
EM algorithm.
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Fig. 3.3.3-2. The reconstructed rat images are shown from the 51% (top-left) to the 60"
(bottom -right) slice.

Fig. 3.3.3-3. The results of segmentation by the GMM are shown from the 51%
(top-left) to the 60™ (bottom -right) slice.
Fig. 3.3.3-4. The results of segmentation by the K-means are shown from the 51%
(top-left) to the 60™ (bottom -right) slice.

Fig. 3.3.3-5. The horizontal line profile of the 60" slice of Fig. 3.3.3-2 is shown with
FWHMs. The FWHMs of region 1, 2, 3 and 4 are 3.75, 3.40, 4.14 and 4.45 pixels
respectively. The top part shows the location of this line profile in the MLEM
reconstruction image and the segmentation by GMM and K-means.

Fig. 4.1-1: An example of microarray image with 32 blocks, 22 columns and 22 rows.
One block is enlarged and eight spike genes are numbered.

Fig. 4.1-2: Typical segmentation of. .two Spotrsimages by the irregular segmentation
method of GenePix 6.0. Parts a)«and b) present the original images of Cy5 and Cy3
dyes. Parts c) and d) present the segmented region-on the images of Cy5 and Cy3
dyes.

Fig. 4.1-3: Two estimated density curves for spot of Cy5 (a) and Cy3 (b) dyes. Both
Cy3 and Cy5 images have two intensity distributions for background and foreground
pixels. The local minimum is used to be cutting point for segmenting spot pixels.

Fig. 4.3-1: Top row shows four methods to evaluate duplicated spots for 3™ (red) and
swapped 3" (blue) arrays. The x-axis and y-axis represent average and difference
between duplicated spots. Bottom row shows four methods to evaluate swapped
arrays (3", 3"s). The x-axis and y-axis represent summation and difference between
swapped arrays.

Figure 4.3-2 shows the concordance correlation coefficients, Pearson’s correlations
and standard deviations between replicates gene expression of sixteen arrays and eight
swapped arrays.

Fig. 4.3-2: Top and down figure are concordance correlations, Pearson’s correlations
and standard deviations between duplicated spots of sixteen arrays and between

swapped arrays of eight arrays using the GKDE, KDE, GMM and GenePix 6.

viii



Fig. B-1: The illustration of HWHM is shown.

Fig. B-2: The true, random, and scatter coincidence events are illustrated.




1. Introduction

The techniques of microPET and microarray are two of the most powerful

modalities in the study of molecular gene therapy and gene expression profiles in this

century.

The high spatial resolution and sensitivity of microPET make it an ideal modality

for in vivo gene imaging. Those images can be employed to monitor the effects of

gene therapy inside animal bodies. Recent study [1] shows that the technique of

microPET has been developed to trace the gene expression in vivo. Hence, it is very

important to enhance the reconstruction and analysis techniques with better precision

and fewer artifacts so that the genuine gene expression inside biological objects can

be recovered. High-quality image reconstruction is essential in establishing a solid

basis for quantitative study of microPET images [2-3].

The conventional methods built-in microPET software (microPET manager V1.6.4),

filter backpropagation (FBP) [4] and ordered subsets expectation-maximization

approach (OSEM) [5], are used to reconstruct microPET images after applying the

Fourier rebinning (FORE) algorithm [6] and random pre-correction. However, the

FBP is unable to model the randomness of PET. As the FBP was developed for

transmission tomography, it is not accurate when applied to emission tomography

which contains randomness in PET. Hence, the FBP reconstruction of microPET



image is typically noisy and inaccurate. Meanwhile, the OSEM can reconstruct more

accurate images than the FBP does, but it is basically driven from the inaccurate

Poisson model using random pre-correction (that is, applying subtraction on two

random variables from two independent Poisson distributions).

On the contrary, iterative algorithms, such as the maximum likelihood

expectation-maximization (MLEM) algorithm, are rapidly becoming the standards for

image reconstruction in emission tomography. The MLEM reconstruction and related

improvements have also been reported in literature [7-10, 14, 16-17, 21-24].

Statistical analysis that supports .positron emission tomography (PET) has been

discussed as well [9]. The MLEM approach can model randomness in emission

tomography with the asymptotic  efficiency by applying the row operation and

monotonic convergence using the EM algorithm. Furthermore, the EM algorithm can

be parallelizable for 3D PET image reconstruction [10].

The generation of quantitative PET images requires that the effects of random

coincidences and coincidence efficiencies are corrected [11-12]. One random

correction approach applies single count rates to a prompt sinogram [13]. This

approach is generally based on geometric and physical characteristics. However, this

approach makes many assumptions for approximations that can decrease the accuracy

of random correction below that obtained using methods that utilize both prompt and



delay sinograms. An alternate approach applies random pre-correction to sinograms

by subtracting the delay sinogram from a prompt sinogram before the processing of

images reconstruction. The random pre-correction using various approximations has

been applied to correct random (or accidental) coincidental events [14-15]. Different

methods have been developed to approximate the distribution of random

pre-correction [16-18]. However, random pre-correction increases the variances of

estimates [17, 19]. Since the distribution of random pre-correction is no longer

Poisson-distributed, the shifted Poisson methods and saddle-point (SD) approximation

have been generated to enhance approximation. [20]. This study proposes a joint

Poisson model of prompt and delay sinograms for random correction with the MLEM

reconstruction without using approximations nor:increasing variances. This approach

is named PDEM. Simulations, physical phantoms and real Mouse studies of the

PDEM method using the microPET R4 system were performed. This study analyzed

and assessed the reconstruction of 2D data obtained from 3D sinograms after applying

the FORE method to verify the proposed approach. The PDEM method can also be

utilized in future studies reconstructing 3D images.

Once microPET images have been reconstructed using PDEM, the next step is to

segment those regions of interest (ROI) from the reconstructed images. The FBP

reconstruction has been applied in tomography due to its power of fast computation.



Wong et al. [26-28] used the method of FBP reconstruction and K-means clustering

with Akaike information criterion (AIC) [25] to segment PET images. However, the

FBP method is not accurate for reconstructing microPET images. Hence, the PDEM is

applied to reconstruct microPET images more accurately instead of the FBP in this

study. Due to the variability of variances among different segments of microPET

images, we will consider the Gaussian mixture model (GMM) instead of K-means

clustering [28-30]. Furthermore, the numbers of cluster and their initialized values

used in GMM are determined by the kernel density estimation (KDE).

Similar methods can be adapti to segment. spotted microarray images. The

microarray is a high throughput technique for exploring the expression profiles for

thousands of genes during the studies of genomics in biology and medicine. Although

high-density oligonucleotide arrays are currently available, custom-made or spotted

cDNA microarrays have also been used, because of their favorable cost, ease of

preparation and ease of analysis in the design of co-hybridization experiments [32].

Studies of the functionality of genes in this new era of post-genomics are important

[33]. Analyzing the microarray images with high accuracy is essential to measure the

gene expression profiles. Advanced analysis for selecting significant genes, clustering,

classification, and network reconstruction of gene expression profiles can proceed on

a solid foundation following complete accurate measurements [34-35].



The cDNA images, in general, tend to be very noisy. Therefore, various approaches

have been proposed to improve the calibration of scanning efficiencies, the alignment

and detection of spotting errors, the denoising of background noise from images, the

marking of dust, gridding, moving, hybridization and other artifacts [34, 36-37].

Different methods have been proposed for segmenting cDNA microarray images in

literature. Markov Random Field (MRF) modeling has been proposed to segment

spots in microarray images [32]. This MRF-based approach relies on the prior

assumption of class labeling of all pixels [38] and it has a high computational cost.

The alternative approach of region-growing approach relies on the selection of initial

seeds that influence its performance [39]. the other approach of Gaussian mixture

model (GMM) generally assuméd normality When-it is applied to this segmentation

problem [40]. Accordingly, this study is motivated by the need to investigate the

segmentation of cDNA microarray images using the nonparametric method of kernel

density estimation (KDE) that does not require the assumption of normality.

In this investigation, the KDE is utilized to classify pixels in a spot into background

and foreground that use the estimated density to find the cut-off value. Meanwhile,

the approach of initial segmentation using GMM and fine tuning using KDE is

proposed to detect feasible boundary between foreground and background in spots.

This approach is named GKDE (that is, GMM + KDE). Empirical studies are



conducted on real microarray data that involve 256 spike genes with known contents.

The segmentation results obtained by the KDE are compared with those obtained

using the adaptive irregular segmentation method used in the current version of

GenePix Pro software 6.0 (at http://www.moleculardevices.com/pages/software/

gn_genepix_pro.html, with the accompanying User’s Manual).

Microarrays with various sources and experimental designs are needed to monitor

the variations of gene expressions. Spike spots of the corresponding spike mRNAs

with a range of concentrations are used to monitor the variability of fluorescence

intensities and determine the consistency of hybridization among arrays. The spike

spots also reveal the variations of pins in an array. Duplicated spots within each array

are used to assay the hybridization process of the-arrays. Swapped experiments are

also used to assay the labeling efficiency of Cy3 and Cy5 fluorescence dyes.

In this application, real microarray images with (1) spike spots with various ratios

of Cy5 to Cy3 intensities, (2) duplicated spots in an array and (3) the swapping of

microarray experiments, are applied to evaluate the performance and accuracy of the

segmentation method.


http://www.moleculardevices.com/pages/software/%20gn_genepix_pro.html
http://www.moleculardevices.com/pages/software/%20gn_genepix_pro.html

2. Methodologies
This chapter begins with the introduction of algorithms and methods used for
reconstruction and segmentation accordingly. Section 2.1 introduces the proposed
PDEM approach to reconstruct microPET images with random correction. Section 2.2
shows the GMM applied to segment 3D microPET images by the automatic
determination of the number of clusters and initialized values by KDE. Section 2.3
presents the GKDE approach that is applied to segment spotted cDNA microarrays.
2.1 Reconstruction with Random Correction for MicroPET Images
A new approach is proposed to reconstruct microPET images with random
correction by the joint Poisson model of prompt and delay sinograms. We will assume
that the data in prompt and delay“sinograms' follow two independent Poisson
distributions that are labeled as (1) and (2).
n; (d) ~ Poisson (A4 (d)), (D
n,(d) ~ Poisson (/f; (d)), (2)
where A'(d) = 4,(d)+ Z,(d) = Y P(b,d)A,(b)+ A,(d), b indicates the b" pixel of a
b
target image with size B = 128x128 in which b=1,2, ..., B, and d indicates the 4" LOR
with total numbers D = 96x84 in which d=1,2,...,D. The term n;(d) is the number
of coincidental events in the prompt sinogram at the @™ projection line of response

(LOR), which is formed by two detectors with the Poisson mean, 2 (d); n),(d) is the



number of random coincidental events in the delay sinogram with the Poisson
mean A, (d) ; P(b,d) is the system probability matrix from the 5™ pixel to the " LOR.
Parameters of A, (b) and A,(d)are unknown and must be estimated. Parameter
A+ (b) represents the intensities of true coincidental events. Appendix (A3) lists the
log-likelihood of observed data in the prompt and delay sinograms. Since the
maximum likelihood estimate (MLE) is difficult to find by maximizing Egs. (1) and
(2) numerically, the EM algorithm [30-31] can be utilized (as the details in Appendix).

Equations (3) and (4) are the i™ iteration steps of the PDEM.

K= D) SR ()
> P, ) Y g dy ) + £ (@)
OB 1S +ny(d) |, @)

D pb DALY FL (d)
b'=1
where i=1,2,......1 is the number of iterations.

The MLEM algorithm of joint the prompt and delay sinograms is described as

follows and such a scheme is called PDEM reconstruction.

Algorithm for PDEM reconstruction:
Step 1: Set the initial parameters (i=0) using the FBP, the method of moments
estimate (MME) or alternative approaches.

Step 2: The iteration number is increased by 1 (that is, 7 is replaced by i+/). Update

8



the parameters by applying Egs. (3) and (4).
Step 3: If [, (A(b), A (d))~1, (A (b),A"(d)) < tolerance (that is, the difference of
log-likelihoods among new and old estimates is smaller than for a tolerance

level), then the iteration is terminated; otherwise, go to Step 2.

This method preserves Poisson properties and update estimates iteratively. In this
study, P(b,d) was computed from LORs and the locations of pixels based on the
geometric characteristics of the microPET R4, including number of detectors, image
size, field of view (FOV), ring diameter, and number of angular views. The matrix
size of one slice is 96x84. There are 96 angular views and 84 LORs for each angular
view during image scanning. Furtheérmore, ¢ach P(b,d) can be identified from its
detector pairs of LOR and image pixel location. Therefore, the PDEM reconstructs the
sinogram after the step that sinograms are rebinned by the FORE approach in the
microPET system.

2.2 Segmentation of 3D MicroPET Images

This section briefly introduces the segmentation algorithm of 3D microPET image.
Several pre-processing steps are used before the GMM algorithm is applied to
segment 3D microPET image. The number of clusters to be used in GMM and the

initialized values of each cluster are needed in applying the GMM method. Hence, the



nonparametric method of KDE is employed to estimate the density curve of image
intensities. The numbers of cluster (k) can be determined by searching the number of
local maximum points from the estimated density curve. In addition, the initialized
values of parameters for the normal distributions in k clusters can be determined from
the data consequently.
2.2.1 Determination of the Cluster Number for GMM

The kernel density estimation (KDE) [41] will be applied to determine the
number of clusters used in GMM. From the estimated density curve, those high and
low peaks could be used to estimate the means and standard deviations of Gaussian
distributions in clusters. It is based on the empirical rule that the range of x4 + 30
covers most of observations from a normal distribution. Hence, the initialized values
of GMM are determined by applying this empirical rule (as illustrated in Fig. 2.2.1-1).
This approach can automatically decide the cluster number and starting values of
parameters in the EM algorithm of GMM. This is a simple and computation

efficiently method. The details are reported in the following algorithm.

1, =yl

70 6, =(y2-y1)/3.

i, =y3,

2. y3 vd G, =(y4-13)/3.

10



Fig. 2.2.1-1. An example shows the procedure to decide the number of clusters and
initialized values in the EM algorithm of GMM. There are two peaks from the

estimated densities of f () . Hence, the number of clusters in GMM will be two

and initialized values will be computed from the above equations.

Algorithm of KDE for Determining the Number of Clusters

A Gaussian kernel function is used to estimate the density of data as in Eq. (5),

f)== Z\/—he xp(—-(20y? /2), &)
where x; is the i sample, yjis the ™ grid point, / is a bandwidth using in the Gaussian
kernel to estimate a probability density function, # is the sample size, and j =1, 2, ...,
128.
Step 1: Input data X = {x,,x,,- 3%, } .
Step 2: Find 128 grid points using equally spaced as Eq. (6):
Y, = Min(X) + j(Max(X)— Min(X))/m. (6)
Step 3: Calculate the data-driven bandwidth for KDE as Eq. (7):
h= O.9Min{Std,]Q—R}n‘”5 (7)
1.34
where Std is the standard deviation of X and /QR is the interquartile rang of X
[44].
Step 4: Calculate the KDE using Eq. (5).
Step 5: Determine the number of clusters by counting the number of local maximum.

The high and low peaks of estimated density can be used to estimate the means and

11



standard deviations of Gaussian distributions in clusters like the illustration in Fig.

2.2.1-1.

2.2.2 Gaussian Mixture Model (GMM)

For the study of a set of 3D images from microPET, /,,. represents the intensity at
the xyz" voxel. The range of the position xy in one slice has the size of 128x128 and
the number of slices z has the size of 10 in this study. Since the variance scale in
different segments of 3D images may be different, we consider Gaussian mixture
model with different parameters of means and variances in various clusters [28-29].

We will suppose that the image data /,,. follow a mixture of K distributions with the

mixing probability 7 such that

K
Z/{k=1,and0£7rkSlforallk=1,2,---,K. (8)

k=1

That is, the probability density function of I, is
K
f([xyz;®) = Zﬂkf;( (Ixyz; 0[{ )) (9)
k=1
where fi(l,.,0i) refers to the probability density function in the K™ cluster with
parameter 6. All parameters are collected to form a parameter vector
® = (7, Tg,0,,., 0;). The MLE of every parameter is usually difficult to
obtain directly by numerical methods. Alternatively, the EM algorithm can be applied

to find the MLE iteratively [28-29]. Firstly, we introduce an index function as follows,
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1, if 7, comesfrom k" normaldistributn;
xyzk = . (1 0)
0,otherwise.
Let Cy. = (Cyz1, ..., Cyzx) denote the unobserved index vector and {/., Cy.} form

the complete data for applying the EM algorithm. Given C,., the conditional density
of . becomes
K
f(]xyz | nyz) = Z nyzkﬂ-kf}c (Ixyz; Hk ) (1 1)
k=1
The EM algorithm finds MLE of parameters with the constraint of Eq. (8) by the

following iterative procedure:

Id . Id
7[150 )f;c (Ixy27 9150 ))

xyzk = K (ol o ] (12)
Z”j S5l 05 )
j=1
(new) 1 <
T new) _ = a)x L ve 13
k N x;] yzk, ( )
N
Z a)xyzk ’ ]xyz
(new) xyz=1
= ) 14
lllk N . ”/Enew) ( )
N (new)\2
wayzk ) (])cyz - luknew )
o = 2= (15)

N X ﬂ_linew)

The Gaussian distribution for the ™ cluster is listed below,

fu(x:0) = f.(x; 1, 0,) = (Qmo?) 2 exg{—%(x—,uk)z /o,fj. (16)

The resulting EM algorithm for GMM is described as follows.
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EM Algorithm for GMM

Step 1: Set the initial parameters & .

Step 2: Update the parameters by using Egs. (12) - (15).

Step 3: If Ly(@"" ) —1;, (@“?) < tolerance (that is, the difference of log-likelihoods
among new and old estimates is smaller than for a tolerance level), then the
iteration stops. Otherwise, go to Step 2 with the old values of parameters

replaced by the new values.

2.2.3 Slice Normalization

The intensity heterogeneity- i slices of  mictoPET images comes from the
differences in emission activities and reconstruction processes. The heterogeneity
between slices will affect the accuracy of the segmentation of 3D images. Hence, slice
normalization is needed before 3D segmentation to adjust image levels between slices.

We will use the slice normalization defined in Eq. (17),

new

I, —Min,
we =4 —, 17
i Max_ — Min,_ {1n

where 77" is the new intensity after slice normalization, /. is the original
intensity at xyz" voxel, Min_ is the minimum value of the z" slice, Max, is the
maximum value of the z" slice, and a is a nonzero constant for the range of adjusted

image level.
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2.3 Segmentation of Microarray Images

This section discusses three segmentation algorithms for spotted microarrays.

Empirical evaluation of the performance for segmentation methods will use different

criteria based on target ratios of spike genes, duplicate spots in a microarray image,

and swapped microarray images Cy3 and Cy5 dyes. In this study, the aim is to

segment pixels into foreground or background. Hence, there are two clusters used for

the segmentation of the pixel intensities in a spot. Besides the GMM with EM

algorithm, we will propose the KDE and GMM incorporated the KDE (GKDE) to

segment spotted microarray image in this study.

2.3.1 Kernel Density Estimation (KDE)

The KDE with automatic bandwidth selection {41] is used to estimate the density

function of pixel intensities for each spot. The Gaussian kernel function and 128 grid

points are used for the KDE for each spot as Eq. (5) in section 2.2.1. The details are

reported in the following algorithm.

Algorithm for Segmenting One Spot by KDE
Step 1: Input data X = {x,,x,,---,x,} .

Step 2: Find 128 grid points that are equally spaced as Eq. (6).

Step 3: Calculate the data-driven bandwidth for KDE as Eq. (7).
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Step 4: Calculate the KDE using Eq. (5).
Step 5: Search the cut-off point (CP) that is the first local minimum of the KDE at yj*
and let CP = yj*.

Step 6: Segment the pixel x, into foreground ifx;, > CP, else into background.

2.3.2 Gaussian Mixture Model (GMM)
The GMM assumes that the distribution of foreground intensities is a Gaussian
distribution f;(44,0,) with mean z, and variance o’ ; while the distribution of

background intensities is another.Gaussian distribution f,(4,,0,) with mean z,

and variance o, . Hence, the diStribution of the intensity at every pixel x; 1in a spot
can be modeled as a mixture of two Gautssian distributions as Eq. (18).
S(58) =2 /1065 14,00+ 70, £33 1,03 )i =1, (18)

2
where £ (x;p0,02) = oxp(C )y 10 g—tx 4 0P m=1,2} and
\/27r0'j, 20,

,1s the mixing (or prior) probability for the foreground and the background

m

constrained by 0<7z, <1 and = +7,=1. The foreground intensities typically

include those of the signals and noise. Therefore, the mean foreground intensity

usually exceeds the mean background intensity. Accordingly, the condition z, > u,

is considered in this study, which is also commonly used in the literature of normal

mixtures [28]. The log-likelihood of the observed data in the model of two mixtures is
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Eq. (19).
n 2
log(L(#|x)) = log(D 7, 1, (X 4,,:5,,)). (19)
i=1 m=1
To estimate the above parameters, the EM algorithm can be applied [26]. The

segmentation algorithm of one spot using the GMM is listed below.

Algorithm for Segmenting One Spot by GMM

Step 1: Input initial parameters: £ = 0 and¢™ = {z*, u'" 2" m=1,2.}. In this
study, the initial parameters are set as follows. Initial x; and yu» are set to the
first and third quartiles of pixel intensities.in one spot. Initial ¢; and o, are the
standard deviations of the ‘pixel intensities below the first quartile and above

than the third quartile, respectively. Tnitial 7 and 7, values are set to 0.5.

k 2k
(k)_ ( )f;11(x19/’lt§1 )’ ( ))
2

k k k
Zﬂ.l( )fl(xluu() ())

Step 2: Calculate 7,

Step 3: Calculate new estimates of

¢(k+1) _ {ﬂ(kﬂ),lu’(nkﬂ)’ 2(k+1)’m =12

m

k k k+1)\2
. ZT( X, ZT()(x — ke

— (k) _i=1 —
-\ Tim’l ,M—I,Z. .

Rz zf(k) Zf(k)

Step 4: Iflog(L(¢“™" | x)) —log(L(#™ | x)) < tolerance and the tolerance is set to 10

here, then the iteration 1is terminated. Otherwise, k € k+1,

P« "D = {7 U 520D gy = 1,21, and the iteration goes to Step 2.

>1%m
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Step 5: Segment the pixel x, into foreground or background according to the

maximum of posterior probabilities with the final values of the parameters,

(k+1) L (kD) (kD)
k) T S (X, 505, )

im 2
k+1 . k+1 2(k+1
DI ICETAN A
I=1

2.3.3 GMM Incorporated with KDE (GKDE)

We can combine the methods of GMM and KDE, which will be abbreviated as
GKDE. The GMM can provide the initial segmentation and the KDE can further
improve the segmentation by relaxing the assumption of normality in the GMM. Once
the foreground and background.are found using GMM, the KDE can be applied to
find their estimated densities. Then, a-cut-off-point for segmentation of pixels in a
spot into two clusters is determinate by the cut-off point that has the near equality of

two estimated densities. The details are reported below.

Algorithm for Segmenting One Spot by GKDE

Step 1: Segment a spot initially using the GMM algorithm in Section 2.3.2.

Step 2: Estimate the kernel densities for foreground ( f ;) and background ( f‘ )
following the steps in Egs. (5) — (7).

Step 3: Find a cut-off point (CP) that has the near equality of f , and f o

Step 4: Segment a spot as follows.
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{ foreground, if x,>CP;
X e

background, elsewhere.

2.3.4 Empirical Evaluation of the Performance for Segmentation Methods

Spike genes (or spots) with known contents on microarrays are used in the
empirical studies. The target ratios of spike genes thus represent the gold standard for
evaluating the accuracy of segmentation methods investigated in this study. The sum
of squared relative error (SSRE) and the sum of squared error (SSE) are used to

evaluate accuracy according to Egs. (20) and (21):

A 2
M B | T & T
SSRE=Y"%" {%} | (20)
b=1 bi

J=l

M B ]
SSE=Y" 2 (1), ~ 1)) 1)

j=1 b=l

where fj’b is the feature estimated from the ratio of means between Cy3 and CyS5
arrays for the /” spike gene in the " block, and T; is target ratio of the ;™" spike gene.
The number of blocks is B = 32 and the number of spike genes is M = 8. The
smallness of SSRE and SSE indicate the closeness to target ratios. Table 2.3.4-1 and

2.3.4-2 present those two types of spike genes with various target contents and ratios

used in this study.
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Table 2.3.4-1: One set of eight spike genes with target contents and ratios in real

microarrays.

Spike Gene 1 2 3 4 5 6 7 8
Target Content

50:500  10:100 50:250 20:100 200:500 40:100 200:200 20:20
(Cy5: Cy3)
Target Ratio

1:10 1:10 1:5 1:5 1:2.5 1:2.5 1:1 1:1
(Cy5: Cy3)

Table 2.3.4-2: Another set of eight spike genes with target contents and ratios in real

microarrays.

Spike Gene 1 2 3 4 5 6 7 8

Target Content
(Cy5: Cy3)

20:100  50:250  20:100  50:250  20:100 50:250  20:100  50:250

Target Ratio
(Cy5: Cy3)

For those two types of spike genes, four sets of microarrays are produced and each
set of microarrays consists of one pair of two dye-swapped microarrays. Therefore,
each type of spike gene is associated with eight microarrays, of which a total of 16
microarrays are tested herein.

The Pearson and concordance correlation coefficient [46] of two random variables
Y; and Y, is shown as Eq. (22) and (23):

p= Lo h) (22)

9
\ 910y,

_ 2Cov(Y,,Y,)
~ Var(Y,)+Var(Y,)+(E(Y,) - E(Y,))*

p. (23)
These correlations are used in this study to measure the reproducibility among the

expression of every gene and that of its duplicated spot using the log ratios of means

in Cy5 to Cy3 dyes from one microarray image, which is expected to be close to 1.
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These correlation coefficients of the swapped microarrays are also considered to

evaluate the performance with reference to selected features with high log ratios of

means in Cy5 to Cy3 dyes. As the dyes of Cy3 and Cy5 in the swapped arrays are

exchanged, the negative correlation coefficient is obtained from the features of the

swapped arrays and is expected to be close to -1.
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3. Applications on MicroPET Images

This chapter explains the reconstruction and segmentation methods applied to
microPET images. The FBP and OSEM are available methods of the built-in software
of microPET manager V1.6.4 associated with the scanner to reconstruct microPET
image. From our evaluation, the PDEM will demonstrate more accurate and less noisy
reconstruction images than the FBP and OSEM. Moreover, the microPET manager
V1.6.4 does not have any segmentation method for 3D images. Section 3.3 will
present the GMM algorithm to segment 3D microPET images obtained from PDEM.
3.1 The MicroPET Scanner

The microPET R4 scanner in Taipei Veterans General Hospital is shown in Figure
3.1-1. The configuration of this “mictoPET R4 has 32 rings, 6144 detectors, 7.3 cm
field-of-view (FOV), and spatial resolution of 1.85 mm in the center. It can collect
both prompt and delay sinograms. Transaxial projection bin size was 1.213 mm, and
axial slice thickness was 1.2115 mm. Coincidence timing window was set at 6x10”
seconds. The lower and upper level energy thresholds were 350 and 750 keV,
respectively. Span of the data set was 3 (Appendix B.5), and maximum ring difference
(MRD) of the data set was 31 (Appendix B.6). The target images were reconstructed

using 128x128 pixels.
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Fig. 3.1-1: The microPET R4 scanner in Taipei Veterans General Hospital is
displayed.

A sinogram uses the polar coordinate system to store the response of a projection
line (or a line of response, LOR) ata épeciﬁé orientation with a radial distance from

the FOV central axis as displayéd inFigure §.1-2. |

Horizontal experiment Sinogram - Oblique experiment Sinogram

. r Experiment 2

Fig. 3.1-2: Two images of microPET sinograms from physical experiments of six

point sources are displayed. In every sonogram, the horizontal axis represents the
ordering of line of responses (LORs) and the vertical axis represents different angles
from O degree to 180 degree. The pixel intensity in the sinogram records total

gamma rays detected in a scanning time window.
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During scan acquisition, raw data are stored in sinograms, which are then used to
reconstruct images. The prompt sinogram records coincidence events when two
detectors receive two gamma rays within a specific time window (e.g., 6x10” second).
The coincidence events in prompt sinograms include true, random, and scatter
coincidence events. The delay sinogram records coincidence events when two
detectors receive two gamma rays outside another specific time window (e.g.,
3x6x10” second). The coincidence events in delay sinograms can be used to estimate
random coincidence events.

The data matrices are described,as follows (as in Fig. 3.1-3 and 3.1-4). First, list
mode data were histogramed into the 3D data ‘with a span of 3 and MRD of 31, which
are sized 2x703x96x84 (that isy 2 sinograms of prompt and delay windows %703
slices x 96 angular views x 84 projection lines (LORs) as in Fig. 3.1-3) and stored as
floating type data. The second data were obtained using random pre-correction and
were sized 1x703x96x84 (as in Fig. 3.1-4). These 3D data were rebinned into 2D
sinograms using the FORE method with dead time and decay corrections. The
attenuation, normalization, scattering, and arc corrections were not performed for
simplicity as this study only focused on evaluation of random correction. These
further corrections for PDEM reconstruction will need more investigation in future

studies.
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Two matrices were constructed using the software embedded in microPET R4 (that
is, microPET manager V1.6.4). The first matrix was 2x63x96x84 (that is, 2 sinograms
of prompt and delay windows x 63 slices x 96 angular views x 84 projection lines
(LORs) as in Fig. 3.1-3) and stored as floating type data. This matrix was
reconstructed using the PDEM. The PDEM was compared with the built-in
reconstruction schemes, such as 2D FBP and OSEM methods, in the microPET R4
system. The second matrix was obtained using the FORE and on-line random
pre-corrected data (as in Fig. 3.1-4). The 2D OSEM, using 16 subsets with four
iterations, and the 2D FBP, usingiramp ﬁltefing, were applied to reconstruct the
microPET images for comparison'with the ‘PDEM‘ results. The reconstructed images

were not smoothened.

Sinograms Used 3D Images

Raw Sinograms for Reconstruction for Segmentation

84 LORs

il e >

128 pixels

\  Delay
Ioe
sinograms

- 2x63slices.. ...

\ Delay
sinograms |

)
2
8
0
g
*
o

Fig. 3.1-3: The above data matrices are used for reconstruction by the PDEM and

segmentation by the GMM.
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Raw Sinograms True Sinograms  Trye Sinograms 3D Images
After Random After FORE

Pre-correction

Fig. 3.1-4 The above data matrices are used for reconstruction by the FBP and

OSEM with random pre-correction,

3.2 Reconstruction with Randqm Correction

This section shows the reconstruction results' obtained from the PDEM, FBP and
OSEM on simulation, phantoms, and real mouse microPET data.
3.2.1 Simulation Study

This study utilized the modified Shepp-Logan’s head phantom as the simulated
object to assess and compare the reconstruction images using the PDEM, FORE+FBP,
and FORE+OSEM. We assumed that the simulated diameter of a ring was 28.28 mm
and the FOV diameter was 20 mm. Target image was 128x128 pixels (20x20 mm?)
and rescaled intensity was < 100. For each pixel intensity, (4,(b)) was simulated

and then input into A (d). Then, /f: (d) 1is set to the multiplication of a given noise
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ratio to A, (d). At the end, n; and n, can be simulated using the Poisson
distribution with parameters A, (d) and ﬂ; (d) as in Egs. (1) and (2). Total counts
(sum of prompt and delayed counts) were 276794, 316383 and 342407 with 5%, 10%
and 30% noise levels, respectively, for the three slices simulated. The prompt and
delayed sinograms had the same matrix size of 96x84 (that is, 96 angular views x 84
projection lines (LORs)) with floating type data. Three random noise ratios of random
to true coincidence counts, 5%, 10% and 30% were simulated. The quality of images
obtained using the PDEM, FBP and OSEM were compared (Fig. 3.2.1-1). The

simulated results demonstrate that the 'q.uality of images reconstructed by the PDEM is

superior to that of images reconstructed by thé¢ FORE+FBP and FORE+OSEM.

P

5% noise 10% noise  30% noise Line proflles

Target image

Simulated

"1 \MW
|l

Fig. 3.2.1-1. The modified Shepp-Logan head image was used for simulation
studies. The line profiles of PDEM were less noisy than those of FBP and OSEM.
The PDEM technique reconstructed better images than the FBP and OSEM did

with 5%, 10% and 30% random noise. All images were rescaled using their own

maximum values.
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3.2.2 Phantom Study

The first physical phantom was 28 homogenous line-sources with an outer diameter

of 1.27 mm for each line. This phantom was utilized to assess the performance and

accuracy of reconstruction quality between the FBP, OSEM and PDEM (as in Fig.

3.2.2-1). The spatial resolution was measured using the FWHMs from vertical and

horizontal line profiles (in Table 3.2.2-1). The average and standard deviation of

FWHMs in reconstruction images using the PDEM were smaller than those obtained

by the FBP and OSEM.

FORE+PDEM FORE+FBP FORE+OSEM

Fig. 3.2.2-1. The 31 slice of the 28 line-source phantom reconstructed using the
three methods are displayed. Both FBP and OSEM are reconstruction methods
built into the microPET R4 system. All images were rescaled using their own
maximum values. The images are shown in the rectangular window. Table
3.2.2-1 presents the comparisons of their FWHMs.

Table 3.2.2-1: Average and standard deviation (in mm) of 28 FWHMs for horizontal
and vertical line profiles measured for comparing the spatial resolutions of PDEM,
OSEM and FBP. Those values are measured at the 31 slice.

Horizontal profile Vertical profile

Methods Average Standard deviation Average Standard deviation
PDEM 1.779 0.324 1.790 0.311
OSEM 1.890 0.527 1.863 0.548
FBP 3.641 0.595 3.663 0.624
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The second phantom was a uniform cylinder of 7.6 cm high with an inner radius of
20 mm. This phantom was also utilized to compare image quality obtained using the
FBP, OSEM and PDEM. Imaging scan time was 1200 s using the microPET R4 after
injection of 276 puCi F-18 FDG. Three reconstruction techniques were applied to
reconstruct the 40" slice (in Fig. 3.2.2-2). Reconstruction images were presented with
the associated central line profiles. Reconstruction images obtaining using the PDEM
had better quality than those generated by the FBP and OSEM on their line profiles. A
circular region of interest (ROI) was employed to measure the noise level for the
different reconstruction methods. The lowest value for coefficient of variation (CV),
which is the ratio of standard deviation to mean, was obtained by using the PDEM

reconstruction (in Table 3.2.2-2).

FORB+PDEM

FORE+FBP

FORE+OSEM

1500
1200
900
600
300
0

1

3

PDEM

61

91

121

1500
1200
900
600
300
0

1

31

61

91

121

1500
1200
a00
600
300

3l a1 91 121

Fig. 3.2.2-2. The reconstructed 40™ slice from a uniform phantom was used to

investigate noise level generated by the three approaches. The white line indicates

the position of the investigated line profile. All images were rescaled using their own

maximum values. The images are shown in the rectangular window with enlarged

central parts. Table 3.2.2-2 presents the comparisons of their CVs.
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Table 3.2.2-2: A circular ROI with a radius of 9 pixels to the center of the uniform
phantom was utilized to compare noise levels between the PDEM, FBP and OSEM.

Those values were measured at the 40" reconstructed slice.

PDEM FBP OSEM
Average 1146.51 1107.66 1105.36
Standard deviation 36.26 46.82 65.56
Coefficient of variation (%) 3.16 4.23 5.93

The PDEM reconstructed better quality images with lower noise levels than the

reconstructed approaches built into the microPET R4 system during investigations of

line and uniform phantoms. Notably, in all reconstruction processing, there was no

attenuation, scatter, normalization, or arc correction. However, dead time and decay

correction were applied when rebinning3D sinograms into 2D data.

3.2.3 Real Mouse Study

The PDEM method was applied to'teal data for small mice to compare the quality

of reconstructed images with those reconstructed using the FBP and OSEM. These

two real normal mice weighed 20 g. Imaging scan time was 600 second using the

microPET R4 following an injection of 0.226 puCi F-18 FDG for the first mouse and

an injection of 240.5 puCi F-18 FDG for the second mouse. The first mouse was

utilized to investigate reconstruction performance under a weak amount of F-18 FDG

activity. The second mouse was used to investigate image quality under a normal

amount of F-18 FDG.
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All 63 slices after the FORE were reconstructed using the PDEM, FBP and OSEM.
Figures 3.2.3-1 and 3.2.3-2 present coronal and sagittal images of the two mice
reconstructed by the PDEM. These images are less noisy and have clearer boundaries
than those reconstructed by the FBP and OSEM. These results demonstrate that the
PDEM reconstructed images with better contrast and clearer boundaries than those

reconstructed with the FBP and OSEM.

-. -.I

255

-I

255 255

212
170
127

35

L4
42 . 42 -I . | 42 .
, s 1 1
Fig. 3.2.3-1: Sagittal (top) and coronal (middle) images of the first mouse image
reconstructed by PDEM (left), FBP (middle) and OSEM (right). The images

reconstructed by PDEM have less noise than those reconstructed using FBP and

OSEM with comparison by line profiles. The images are shown in the rectangular

window with enlarged central parts.
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Fig. 3.2.3-2. Coronal and sagittal images of the second mouse image reconstructed
using PDEM (left), FBP (middle')" and OSEM' (rfght) The images reconstructed by
PDEM have less noise than those reconstructed by F.BP and OSEM, as shown in the

respective line profile near the heart The 1mages. are shown in the rectangular

window with enlarged central parts ik “856

3.3 Segmentation of 3D MicroPET Images

This section introduces the use of GMM to segment 3D microPET images from the
reconstruction images by the PDEM.
3.3.1 3D Images

Figure 3.1-3 shows the data matrices used for reconstruction and segemtation.
There are 703 sinograms obtained by the 3D microPET with span 3 and MRD 31. We
applied the FORE on prompt and delay sinograms to obtain 63 sinograms. Each 2D

sinogram was reconstructed by the PDEM. In this study, each slice has the size of 96
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X 84 and each reconstructed images has the size of 128 x 128. A matrix with the

dimension of 63 X 128 X 128 was used for segmentation by the GMM and K-means

algorithms. The analysis flow chart to segment 3D images is displayed in Fig. 3.3.1-1.

»|  Smoothing in

2Xx703 sinograms )
l each slice
A 4
Obtain 2X63 sinograms Segmentation by
by the FORE K-means and GMM
A A 4
Reconstruction 3D segmented
by the PDEM images

Fig. 3.3.1-1. The flow chart.of 3D segmentation is plotted.

The PDEM is the reconstruction process of microPET images. The GMM or

K-means are applied algorithms for segmentation. The phantoms for simulation

studies are displayed as Fig. 3.3.1-2. There are 63 reconstructed slices with the size of

128 x 128.
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Slice 1

Slice 63

Figure 3.3.1-2: 3D microPET images for 63 slices are illustrated. Every image
has the pixels size of 128 by 128.

3.3.2 Simulation Study

The simulated phantom study with1457932, total counts is displayed in Figure

3.3.2-1. This simulated study is‘focused on testing and evaluating the performance of

GMM. Figure 3.3.2-1A shows target image with five ROIs. Figure 3.3.2-1B displays

target image with 50% noise added. Figure 3.3.2-1C presents the clustering results by

GMM. The number of clusters is decided by the KDE and is shown in Figure

3.3.2-1D. There are four local high peaks that are regarded as the means of four

clusters.
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Fig. 3.3.2-1. A) Simulation image of five clusters is displayed. B) Adding 50% noise
into panel A. C) Clustering results using GMM. D) Kernel density curve using C
with values of high and low peaks. Four peaks are identified on the density curve.

Hence, the number of groups is set as . fout.

Figure 3.3.2-1 shows the indices of ROIs by-the GMM. Figure 3.3.2-3 presents the

accuracy comparison between the ‘simulated results obtained from K-means and

GMM.
A B
Fig. 3.3.2-2. Target ROls are Fig. 3.3.2-3. The results of A) by K-means and
marked. B) by GMM clustering are shown.

It is observed that the GMM has a clearer segmentation result than the K-means

method. Results of ROIs are shown in details in Table 3.3.2-1. The total accuracy of

GMM is 92.1% and that of K-means is 66.6%.
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Table 3.3.2-1: Comparisons of the clustering results by K-means and GMM in Fig.
3.3.2-1A.

True Pixel | Exact Counts Accuracy (%)
Count |K-means|GMM K-means| GMM
ROI'1 6604 4128 |6206| 62.5% | 94.0%

ROI #

ROI 2 702 488 522 | 69.5% | 74.4%
ROI 3 748 700 745 | 93.6% | 99.6%
ROI 4 350 280 | 285 | 80.0% | 81.4%
ROI'5 88 58 59 | 65.9% | 67.0%

Total 8492 5654 | 7817 | 66.6% | 92.1%

Another simulated volume data based on the modified Shepp-Logan's head
phantom image is shown in Figure 3.3.2-4A and 3.3.2-4B. Fifty percentage of noise
ratio to phantom images are added. In order to- compare the effects of variation
between slices, different image levels and-shapes of ROIs are considered in slice 1
and 2. First, we use the MLEM reconstruction, the'result is shown in Figure 3.3.2-4C
and 3.3.2-4D. Meanwhile, the GMM is also applied to segment two images without
slice normalization as shown in Figure 3.3.2-4E and 3.3.2-4F. It is observed that the
boundaries of ROIs are difficult to distinguish. Therefore, slice normalization is
applied to the volume data and then the GMM is used to segment images as shown in
Figure 3.3.2-4G and 3.3.2-4H. The boundaries of these segmentations become clearer
after slice normalization. Figure 3.3.2-41 plots the estimated kernel density curve of

volume data for finding the number of clusters and initialized values.
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Fig. 3.3.2-4. Simulated volume data including slice 1 and 2 are marked as A and B.
C and D are reconstructed images after'added 50%:noise ratio to A and B. E and F
are segmented results without slice normalization. G and H are segmented results
with slice normalization. | is the estimated ketnel density curve of simulated volume

data after slice normalization.

For these simulation cases, the performance and accuracy using GMM is better
than those of using K-means. The KDE is adopted to decide the number of clusters
and the starting values of parameters in the EM algorithm. The slice normalization is
necessary when the GMM is applied to segment volume data in this study.

3.3.3 Real Mouse Study
The empirical data of a big mouse injected by F-18 isotope scanning is collected

from the microPET R4 system. The acquired configurations are listed as below.
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Scanner energy is between 350 and 750 keV with the total scanning of 3600 s. There
are 32 rings in microPET R4 system. File format of histogram data is stored by 2
bytes for each voxel. Ten slices (from the 51 to the 60™ slice) of the volume data are
used for investigation and evaluation.

Figure 3.3.3-1 shows the estimated kernel density curve of volume data. Based on
this KDE, four groups are determined by local high peaks and their starting values are

obtained for applying the EM algorithm.
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Fig.3.3.3-1. The estimated kernel ‘density curve using the rat volume data of 10
slices is shown with values of high and low peaks. There are four peaks. Hence, the
number of groups is set as four. Values of peaks are applied to compute the starting

values in EM algorithm.

Figure 3.3.3-2 shows the reconstructed rat images by MLEM from the 51% to the
60" slice. Besides, Figure 3.3.3-3 and 3.3.3-4 show the segmentation results by GMM
and K-means respectively. The detail segmentation from GMM is shown with the
comparison to Figure 3.3.3-5. The uptake areas can be segmented by GMM from 59™
and 60" images. In addition, it can segment small areas with high gene expression
when compared to K-means. On the contrary, the K-means method segments big areas

and ignores small uptake areas.
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For this real mouse study by microPET, the GMM leads to more detail
segmentation results than the K-means method does. The GMM also has better
performance than K-means. The full width half maximum (FWHM) is usually used to
evaluate performance of segmented results. The horizontal line profile near the center
of the 60" slice is used to investigate the performance between GMM and K-means.
Figure 3.3.3-5 is plotted with four regions in this line profile and their FWHMs for

Fig. 3.3.3-2.

Fig. 3.3.3-2. The reconstructed rat images are shown from the 51% (top-left) to the
60™ (bottom -right) slice.



Fig. 3.3.3-3. The results of segmentation by the GMM are shown from the 51%
(top-left) to the 60" (bottom -right) slice.

Fig. 3.3.3-4. The results of segméntation by the K-means are shown from the 51%
(top-left) to the 60™ (bottom -right) slice.
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Fig. 3.3.3-5. The horizontal line profile of the 60™ slice of Fig. 3.3.3-2 is shown
with FWHMSs. The FWHMs of region 1, 2, 3 and 4 are 3.75, 3.40, 4.14 and 4.45
pixels respectively. The top part shows the location of this line profile in the

MLEM reconstruction image and the segmentation by GMM and K-means.

40



Table 3.3.3-1 shows that the FWHMSs of segmented results by GMM are closer to

target FWHMs than those by K-means. Meanwhile, the signal to noise ratio (SNR)

defined by the ratio of mean value to standard deviation is used to compare the

segmentation performance between GMM and K-means. The SNRs of four regions of

GMM are higher than those of K-means.

Table 3.3.3-1: The FWHMSs and SNRs of segmented results by GMM are better than
those by K-means in Fig. 3.3.3-5.

Pixel of Signal to Noise
i FWHM of .
Region . Boundary Ratio (SNR)
Region

GMM|K-means| GMM | K-means

1 3.75 4 7 9.83 6.82

2 3.40 4 6 8.64 6.23

3 4.14 S 7 4.05 2.13

4 4.45 5 7 3.15 2.13
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4. Applications on Microarray Images

This chapter investigates the applications of segmentation methods on spotted
microarray images. The GMM and KDE are both employed to segment spotted
images. Furthermore, we combine GMM and KDE to form a new method, GKDE, to
segment spots. The GKDE can keep advantages of KDE and refining the final results
from the GMM. We will compare and evaluate the performance of three methods
together with the adaptive irregular segmentation method in GenePix 6 based on spike
genes, duplicated genes, and swapped arrays in real microarray data.
4.1 The Spotted Microarray Image

These 16 real microarray images used herein are-obtained by swapping Cy3 and
Cy5 dyes. Each array has 32 blocks, 15488 spots-with 7744 genes. Two replicated
spots are designed in one array, of which the upper 16 blocks are duplicated as the
lower 16 blocks in Fig. 4.1-1. Meanwhile, eight spike genes are designed in each
block to evaluate the performance and accuracy of segmentation methods as shown in

Fig. 4.1-1.
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Fig. 4.1-1: An example of microarray image with 32 blocks, 22 columns and 22

rows. One block is enlarged and eight spike genes are numbered.

A typical spot diameter on each microarray in'this study is approximately 160 um.
Sixteen microarray experiments-were conducted in Genomic Medicine Research Core
Laboratory of Chang Gung Memerial Hospital, Taiwan. The details of the microarray
experiment procedure and probe information are available on the webpage of the
laboratory,

http://www.cgmh.org.tw/intr/intr2/c32a0/chinese/corelab_intro/genetics/files/030ctCl

one_information_F.zip,

http://www.cgmh.org.tw/intr/intr2/c32a0/chinese/corelab_intro/genetics/filess MIAME

%20(GMRCL%20Human%207K) ver0l.zip, and in [42]. These eight pairs of

swapped microarrays were used for cancer research. Some of the results have been

published [43]. Figure 4.1-2 presents one of the results by the adaptive irregular
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segmentation in GenePix 6.0 for spot images of Cy3 and Cy5 dyes. The segmentation

region may be inaccurate, leading to an over- or under- estimation of the statistics on

spot intensities.

Fig. 4.1-2: Typical segmentation of two spot images by the irregular segmentation
method of GenePix 6.0. Parts a) and:b) present the original images of Cy5 and Cy3
dyes. Parts c) and d) present the segmented region on the images of Cy5 and Cy3
dyes.

Figure 4.1-3 plots the estimated kernel density curves from spot images of Cy3 and

Cy5s dyes using the R 2.4.0 software [41,

http://finzi.psych.upenn.edu/R/library/stats/html/density.html and

http://www.r-project.org/]. These estimated densities typically have two distributions

in the foreground and background regions.
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Fig. 4.1-3: Two estimated density curves for spot of Cy5 (a) and Cy3 (b) dyes. Both
Cy3 and Cy5 images have two intensity distributions for background and foreground

pixels. The local minimum is used to be cutting point for segmenting spot pixels.

4.2 Evaluation from Spike Genes

There are 256 spike genes on any array with different known Cy3 and CyS5 ratios.

Those spike genes are used to.detect performance of GKDE, KDE, GMM and

GenePix 6. Fig. 4.1-1 presents the locations and numbers of spike spots in one

example of cDNA microarray images. Table 4.2-1 and 4.2-2 shows that all of the

SSREs and the SSEs obtained from KDE are smaller than those obtained by the

irregular segmentation method in GenePix 6.0, according to a test based on 16 real

microarray cDNA images.

The relative improvements of these two segmentation methods are defined as the

percentages of the evaluation values in (GenePix-Methods)/GenePix. Since the first

eight arrays are produced according to Table 2.3.4-1 that have varying target ratios,
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the relative improvements measured by SSRE and SSE are different according to Eqgs.
(20) and (21). The last eight arrays are produced according to Table 2.3.4-2 that has a
constant ratio, the relative improvements measured by SSRE and SSE are the same
according to Egs. (20) and (21). Table 4.2-1 and 4.2-2 shows that the average relative
improvements of GKDE, KDE and GMM associated with the irregular segmentation
method in GenePix 6.0 for SSRE and SSE are at the level of (23.5%, 20.9%), (10.5%,
9.2%), and (23.2%, 20.9%). These results reveal that the features estimated by GKDE,
KDE and GMM are closer to the designed target ratios for the spike genes than those

obtained by the irregular segmentation method i GenePix 6.0.

Table 4.2-1: The comparisons of SSEs aré obtained: for different methods based on
spike genes. Array ls is that obtained by Swapping the dyes of Array 1. Relative

improvement is specified by (GenePix-Method)/GenePix as a percentage.

Sum of Square of Errors Relative improvement
Array GKDE KDE GMM GenePix GKDE KDE GMM
1 160.4 180.2 160.6  185.6 13.57 2.87 13.44
Is 1163 1342 117.1 146.3 20.49 8.21 19.96
2 136.7 1456 1369  153.1 10.71 4.90 10.56
2s  729.0 878.6 7299  904.5 19.40 2.86 19.30
3 1344 148.6 1353 158.5 15.21 6.23 14.60
3s  405.8 5349 406.1 691.0 41.28  22.58 41.23
4 51.7 683 52.2 83.4 37.98 18.10 37.42
4s  300.0 308.9 3003 @ 318.1 5.69 291 5.62
5 231.6  258.8 2325 276.2 16.14 6.29 15.82
55 2373 299.6 237.6  349.7 32.15 14.32 32.06
6 140.7 1662 1414 1722 18.32 3.49 17.89
6s 1465 1733 1474 1859 21.18 6.81 20.71
7 1275 1572 1284 1759 27.51 10.65 27.01
7s 67.3 79.0  68.3 122.4 4498 35.41 44.22
8 133.5 148.6 133.8 177.9 24.94 16.46 24.79
8 1074 137.7 108.3 145.9 26.42 5.63 25.78
Average Relative Performance 23.50 10.48 23.15
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Table 4.2-2: The comparisons of SSREs are obtained for different methods based on
spike genes.. Array 1s is that obtained by swapping the dyes of Array 1. Relative
improvement is specified by (GenePix-Method)/GenePix as the percentage.

Sum of Square of Relative Errors Relative improvement
Array GKDE KDE GMM GenePix GKDE KDE GMM
1 8755.8 9624.5 8756.1 9739.2 10.10 1.18 10.09
Is 6146.4 7106.5 61472 76629  19.79 7.26 19.78
2 67682 72272 67684 76042  10.99 4.96 10.99
2s  25079.2 26518.8 25080.1 27604.5  9.15 3.93 9.14
3 6873.6 75959 6874.5 79689  13.75 4.68 13.73

3s 9923.7 11503.9 9924.0 12979.6 23.54 11.37 23.54
4 2640.0 36459 26404 42304 37.60 13.82 37.58
4s  16359.1 16560.6 16359.3 16621.4  1.58 0.37 1.58
5 5811.8 64704 5812.6 6905.1 15.83 6.29 15.82
55 59393 7490.2 5939.6 87425 32.06 1432 32.06
6 35279 41553 35353 4305.7 18.07 3.49 17.89
6s 3684.6 4331.5 3685.4+14648:, 20.73 6.81 20.71
7 3208.8 3929.1 3209.7 4397.2  27.03 10.65 27.01
7s 17055 19759 1706.4 3059.2 - 4425 3541 44.22
8 3344.0 3714.8 33442 4446.6 - 2480 16.46 24.79
8 2707.0 3443.1 2708.0. 36486 2581 5.63 25.78
Average Relative Performance 20.94 9.16 20.92

4.3 Evaluation from Duplicated Genes and Swapped Arrays

Table 4.3-1 shows the numbers of used spots excluding spike spots and bad spots in

each array and its swapped array.
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Table 4.3-1: Used spots excluding spike spots and bad spots in each array are listed

and “x2” means two duplicates on every array.

Array Used Spots Call Rate %
1, 1s 7281x2 94.02%
2,2s 7306x2 94.34%
3,3s 7253%x2 93.66%
4, 4s 7292x2 94.16%
5,5s 7292x2 94.16%
6, 6s 7347x2 94.87%
7,7s 7085x2 91.49%
8, 8s 7280x2 94.01%

The bad spots are defined by negative values of foreground minus background

mean provided from GenePix 6.0. Those genes are used to investigate performance of

GKDE, KDE, and GMM. Figure 4.3+1 shows agreement scatter plots of two replicates

gene expression and swapped;arrays-using GKDE, KDE, GMM and Genepix 6

respectively. The KDE has less outliers than the GKDE, GMM and GenePix 6. In

addition, the GKDE and GMM have less outliers than the GnenePix 6.
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Fig. 4.3-1: Top row shows four methods to evaluate duplicated spots for 31
(red) and swapped 31 (blue) arrays. The x-axis and y-axis represent average
and difference between duplicated spots. Bottom row shows four methods to
evaluate swapped arrays (3“‘, 31 s). The x-axis and y-axis represent summation

and difference between swapped arrays.

Figure 4.3-2 shows the concordance correlation coefficients, Pearson’s correlations
and standard deviations between replicates gene expression of sixteen arrays and eight

swapped arrays.
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Evaluation on swapped arrays
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Fig. 4.3-2: Top and down figure are concordance correlations, Pearson’s
correlations and standard deviations between duplicated spots of sixteen arrays

and between swapped arrays of eight arrays using the GKDE, KDE, GMM and
GenePix 6.

The KDE has produced higher correlation and lower standard deviation than those
by other methods tested on sixteen arrays with duplicated genes. And the same results
as tested on swapped arrays, the KDE has provided lower standard deviation and
higher correlation between tested eight swapped arrays. In addition, the GKDE and

GMM both have higher correlations and lower standard deviations that the GenePix 6.
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5. Discussion and Conclusion

The proposed PDEM algorithm for microPET reconstruction with random

correction is demonstrated to produce less noise level, high spatial resolution, and

clear boundary of image than those of FORE+OSEM and FORE+FBP from the

comparison studies of simulation, phantoms, and real mouse microPET data.

Meanwhile, the PDEM method reconstructs images with lower CVs and smaller

FWHMs than those generated by methods built into the microPET R4. In addition, the

PDEM method has the same advantages as the MLEM method in PET

reconstruction—namely, row operation, linear complexity, monotonic convergence,

non-negativity and parallelizability.

We have applied the GMM to segment 3D microPET images after the PDEM

reconstruction. The GMM can model the segments of 3D microPET images with

different distribution parameters. On the other hand, the K-means method proposed in

literatures for segmentation microPET images assumed a constant variance for all

clusters. Hence, the GMM approach is more flexible and accurate to model and

segment microPET 3D images than K-means. The GMM proposed in this study can

also perform the segmentation automatically through the initial estimated from the

KDE method. On the other side, the seeding region growing methods proposed in

literature for the segmentation of PET images, initial seeds were crucial to perform
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images segmentation. The number of clusters was determined by a subjective choice

or sequentially searching including the K-means method. When the activities of

various clusters have different patterns, the slice normalization approach incorporated

with GMM is useful to segment 3D images. For further investigation, it will be of

great interest to further evaluate the qualitative and quantitative performance by more

phantom and empirical studies with the comparisons to judgments from medical

experts.

The GMM and KDE methods are also applied to spotted microarray images. The

effect of expression profiling on prognostic and predictive testing for cancer has been

recently discussed [47]. However, the low reproducibility of microarray experiments

[48, 49] impedes the scheduler from using a microarray to prognose and predict the

outcome of cancer. We combine GMM and KDE methods to segment spotted cDNA

images. The GKDE was expected to fine tune the GMM and to determine a suitable

cutting point for clustering foreground and background using the KDE. The GKDE,

KDE and GMM methods can improve the reproducibility in duplicated spots, in

swapped arrays and the spike gene spots. This will be useful for the advanced

utilization of microarrays in biology and medicine.

In this study, the GKDE, KDE and GMM were applied to segment cDNA

microarray images and the evaluation of performances was conducted. First, the spike
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genes with known contents were designed on real microarrays, the criteria of SSRE

and SSE measure the accuracy and performance. The GKDE, KDE and GMM more

accurately estimate the features of spots than the adaptive region growing

segmentation method in GenePix 6.0 does. Secondly, duplicated spots are utilized to

examine expression variation on a microarray image. The KDE also has a better

average relative performance, as measured by the concordance correlation coefficients,

Pearson’s correlation coefficients and standard deviations of expression values of

duplicated spots. Finally, swapped microarray experiments were conducted to study

the variation among dyes. The correlation coefficients measure the linear relationship

for the selected spots with significantly differentially expressed levels. Again, the

KDE is more accurate, when tested on'cight pairs of real swapped cDNA microarray

images.

Sixteen real microarray cDNA images were used to determine the accuracy and

performance, by comparison with the adaptive irregular segmentation method in

GenePix 6.0. The ratio of means is used to estimate features in segmented spots.

Other statistics could be studied. Other methods for segmenting images can be studied

further [50-52].

The GKDE, KDE and GMM programs were run in under one thousand seconds to

test one real cDNA microarray image on a personal computer with Intel CPU 2.6 GHz
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and 2GB RAM. Especially, the KDE algorithm has model free, computational

efficiency and improved performance for segmenting cDNA microarray images used

for biology and medicine. The method of GKDE also have similar advantages.
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6. Future Works

The fully 3D reconstruction algorithms for microPET could be developed in the

future. The PDEM is basically used to reconstruct 2D images now. The PDEM can

not be applied to reconstruct fully 3D microPET images due to the difficulty of

computing and calculus transmission probability matrix for 3D microPET data, P(b,d).

Once new methods are developed to solve the problem of computing P(b,d), the

PDEM is expected to reconstruct 3D microPET images more accurately in the future.

This method can also be utilized in future works to reconstruct clinical PET images

based on the same physical principle of data acquisition and mathematical models.

Meanwhile, attenuation, normalization, -Scattering, and partial volume effects

corrections can be considered toreconstruct mictoPET images. It is expected that the

more useful correction or normalization methods added to reconstruction algorithms

will yield more accurate and less noise images in the future.

The stopping criterion of the EM algorithm can be also studied in the future. We

can consider K-fold cross-validation and other possible methods. That is, the iteration

will stop when the minimum predicted sum of square is reached by cross-validation.

This can provide an objective method to decide the stopping criterion from data

automatically. Because the EM algorithm has slow convergence rates, different

methods have been proposed in literature to accelerate the EM algorithm [53]. Hence,
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we can further evaluate improvements of the EM algorithm in future studies. For

instance, we can consider the lazy EM algorithm [54], parallel EM algorithm [55],

and related methods [56-57].

We have proposed new segmentation methods by the GMM with the KDE to

improve the segmentation of 3D microPET and spotted microarray images. Automatic

search of the number of clusters and initialized values can be determined by the KDE.

Alternative methods for the searching of the number of clusters and initialized values

from data can be investigated in the future.

Spatial information can be integtated to improve segmentation. For instance, we

can select connected regions for foreground to remove isolated pixels. Other methods

for segmentation of images can be “further investigated and compared in future

studies.
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9. Appendix

A: PDEM Algorithm
The observed data of prompt and delay sinograms are assumed to follow two
independent Poisson distributions in (A1) and (A2),
n; (d) ~ Poisson (1 (d)), (A1)
n,(d) ~ Poisson (A,(d)), (A2)

where 2'(d)= 7, (d)+ Z.(d)= Y P(b,d)2,(b)+ 2, (d), b=12,...,B, and d=12,....D.
b

Then, the incomplete log-likelihood of the prompt and delay sinograms are as follows,

(A (b). 4 (d)) = 2{—2@5 @)=Y Pld)2, ()
d=1 b=1 (A3)

(&) ln(/?,:(d)+iP(b,d)it () +n(d)In(A’ (d))}.

b=1

Firstly, the observed data, n,(d)-and n, (d);-are treated as incomplete data. One
possible model of complete data for the EM algorithm is given by (A4) and (A5):
n; (b,d) ~ Poisson(p(b,d)A, (b)), (A4)
n,(d) ~ Poisson(4,(d)), (A5)
where np (b,d) is the number of emissions at the b™ pixel detected by the d™ tube;
n,(d) is the number of random (or accidental) coincidence events detected by the d"
tube in the delay window; np (b,d)and n,(d) are assumed to be statistically
independent; n; (d) =ZB:n; (b,d)+n,(d). According to models (A4) and (AS5), the
P=
log-likelihood function of complete data is
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L(4,(b), £,(d))
=22 n, (b,d)In(P(b,d)2,(b)) - P(b,d)2,(b)} (A6)

+ 2 {ng(d)In(4,(d)) = 4,(d)}.
d
The E-step computes the conditional expectation of the log-likelihood of complete
data, given the observed incomplete data and old parameter values. In this study, A

is initialized by the FBP and A is initialized by the method of moments,

n, = Zn; (d)/D. This E-step will generate a function of new parameter values of
d

Aand 2, where i is the number of iterations, and the formula is given in (A7):
O (b), A, (d) | 27 (b), 47 (d)) = E[L(Z, (), A, (d)) | mmg, 7 (B), A (d)]. (A7)
The M-step determines the A and 4. values that maximize (A7) which can be

achieved by setting the first derivatives-to zero. This step will yield the solutions

given in (A8) and (A9):

27N (b) i n,(d)p(b,d) (AS)

ZP(bd d= Zp(b’ AT (DY + AT 1(d)

A (b) =

] n (VA (d) *
“d)=~| - rnl(d)|. (A9)
213 p A7 (B + A7 (d)
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B: Terminology

1.

Concordance correlation coefficient (p.) is used to detect the departure to 45°
line.

Filtered back-projection (FBP) is an algorithm that is commonly used in
transmission tomography.

Full width at half-maximum (FWHM) is a simple and well-defined
measurement that is used to evaluate the quality of images obtained under

different collection environments (as shown in Fig. B-1).

Fig. B-1: The illustration of HWHM is shown.

True, random and scatter coincidence events:

True events are two gamma rays detected within a specific time window by the

PET scanner (in Fig. B-2).

Random events are two different single rays detected within a specific time

window by the PET scanner (in Fig. B-2).
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Scatter events are caused by two gamma rays deflected before reaching the

detectors but detected within a specific time window by the PET scanner (in Fig.

B-2).

Coincidence Event

Coincidence Event

Fig. B-2: The true, randoni, and sc?tter épincidence events are illustrated.

5. Span SE——
Span specifies how many a&jﬁéént LORs ‘sh(;uld be grouped together into the
same axial angle (theta), where theta is defined to be the angle between the axial
and transaxial axes. Choosing a larger span will not “throw away” data, but will
reduce the size of the sinogram since there are fewer theta angles in the final
sinogram. Of course, this comes at the price of degrading the axial resolution. The
minimum span is 3 and the maximum is 63.

6. Ring difference

Ring difference specifies how many crystal rings away the rebinning algorithm

should look for a coincidence event. For example, microPET® systems have 32
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crystal rings, and therefore the maximum ring difference is 31, and if we specify a

ring difference of 31, this means that coincidences that occur between crystal ring

1 and crystal ring 32 (ring difference = 32 — 1) will be included in the sinogram, as

well as all possible combinations of crystal rings. A ring difference of 3 means that

coincidences between crystal ring 16 and crystal rings 13, 14, 15, 16, 17, 18 and

19 will be included, but not coincidences between crystal rings 16 and 12, for

example. The minimum allowed ring difference is 1 resulting in a reconstructed

image always containing 63 planes instead of 32 (a ring difference of 0 would be

needed to only have 32 planes)aNot using the maximum allowed ring difference

means that not all of the data will be used(i.e. data will be “thrown” away).
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