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摘 要       

正子斷層掃描影像(PET)針對功能性疾病診斷提供非侵入式且可量化等資訊；

然而PET影像品質與使用的重建演算法有很高的相依性。屬疊代法之最大概似期

望最大法(MLEEM)正快速成為PET影像重建的標準方法。常見的MLEM演算法對

於隨機事件修正是採用二個Poisson分配相減(即: Prompt與delay資料相減)，此方

法將失去Poisson分配的特性。我們將提出可行的演算法解決此一問題。利用聯

合Poisson分配(即聯合Prompt與delay)做隨機事件修正並同時重建PET影像，稱之

為PDEM演算法；不僅保持了Poisson分配特性而且不會增加估計隨機事件修正後

的變異。利用模擬、實驗假體以及實際老鼠等資料，採用變異係數和半高全寬值

比較FBP, OSEM以及PDEM之影像重建品質。經由PDEM所得的影像品質均優於

FBP或OSEM。 

三維microPET影像能對體內基因反應之追蹤與辨認提供重要的訊息。為了能

調查或了解基因表現情形，發展低雜訊且高精確度的重建方法有其必要性。因採

用PDEM演算法重建影像接著將利用統計混合模型切割影像。在這研究中，模擬

與實際老鼠資料評估所提之方法，結果顯示是所提出的方法具有合理且正確性。 

   另一應用是對微陣列針狀基因影像之切割；該影像能提生物醫學之基因資

訊。在這一應用使用高斯混合模型以及無母數的核密度估計等方法用來切割雙色

微陣列針狀基因影像。 16 片雙色基因影像設計嵌入已知濃度之 spike spots、重

複 Spots 以及染劑互換等實驗，將用以驗證與評估所提方法之有效性與正確性；

結果顯示所提之方法不僅能有效切割 Spots 同時對 Spots 的估計具有高準確性。 
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ABSTRACT 

 
Positron emission tomography (PET) can provide in vivo, quantitative and 

functional information for the diagnosis of functional diseases; however, PET image 
quality is highly dependent on a reconstruction algorithm. Iterative algorithms, such 
as the maximum likelihood expectation-maximization (MLEM) algorithm, are rapidly 
becoming the standards for image reconstruction in emission tomography. The 
conventional MLEM algorithm utilized the Poisson model, which is no longer valid 
for delay-subtraction after random correction. This study was undertaken to overcome 
this problem. The MLEM algorithm is adopted and modified to reconstruct microPET 
images with random correction from the joint Poisson model of prompt and delay 
sinograms; this reconstruction method is called PDEM. The proposed joint Poisson 
model preserves Poisson properties without increasing the variances of estimates 
associated with random correction. The coefficients of variation (CV) and full width 
at half-maximum (FWHM) values were utilized to compare the quality of 
reconstructed microPET images of physical phantoms acquired by filtered 
backprojection (FBP), ordered subsets expectation-maximization (OSEM) and PDEM 
approaches. Experimental and simulated results demonstrated that the proposed 
PDEM method yielded better image quality results than the FBP and OSEM 
approaches. 

The segmentation of 3D microPET image is one of the most important issues in 
tracing and recognizing the gene activity in vivo. In order to discover and recover the 
activity of gene expression, reconstruction techniques with higher precision and fewer 
artifacts are necessary. To improve the resolution on microPET images, the PDEM 
method is applied. In addition, the advanced statistical technique based on the mixture 
model is developed to segment the reconstructed images. In this study, the new 
proposed method is evaluated with simulation and empirical studies. The performance 
shows that the proposed method is promising in practice. 

The segmentation of cDNA microarray spots is essential in analyzing the intensities 
of microarray images for biological and medical investigations. In this work, the 
nonparametric method of kernel density estimation is applied to segment two-channel 
cDNA microarray images. This approach successfully groups pixels into foreground 
and background. The segmentation performance of this model is tested and evaluated 
by sixteen microarrays. Specifically, spike genes with various levels of contents are 
spotted in a microarray to examine and evaluate the accuracy of the segmentation 
results. Duplicated design is implemented to evaluate the accuracy of the model. 
Swapped experiments of microarray dyes are also implemented. Results of this study 
demonstrate that this method can cluster pixels and estimate statistics regarding spots 
with high accuracy. 
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1. Introduction 

The techniques of microPET and microarray are two of the most powerful 

modalities in the study of molecular gene therapy and gene expression profiles in this 

century.  

The high spatial resolution and sensitivity of microPET make it an ideal modality 

for in vivo gene imaging. Those images can be employed to monitor the effects of 

gene therapy inside animal bodies. Recent study [1] shows that the technique of 

microPET has been developed to trace the gene expression in vivo. Hence, it is very 

important to enhance the reconstruction and analysis techniques with better precision 

and fewer artifacts so that the genuine gene expression inside biological objects can 

be recovered. High-quality image reconstruction is essential in establishing a solid 

basis for quantitative study of microPET images [2-3].  

The conventional methods built-in microPET software (microPET manager V1.6.4), 

filter backpropagation (FBP) [4] and ordered subsets expectation-maximization  

approach (OSEM) [5], are used to reconstruct microPET images after applying the 

Fourier rebinning (FORE) algorithm [6] and random pre-correction. However, the 

FBP is unable to model the randomness of PET. As the FBP was developed for 

transmission tomography, it is not accurate when applied to emission tomography 

which contains randomness in PET. Hence, the FBP reconstruction of microPET 
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image is typically noisy and inaccurate. Meanwhile, the OSEM can reconstruct more 

accurate images than the FBP does, but it is basically driven from the inaccurate 

Poisson model using random pre-correction (that is, applying subtraction on two 

random variables from two independent Poisson distributions).  

On the contrary, iterative algorithms, such as the maximum likelihood 

expectation-maximization (MLEM) algorithm, are rapidly becoming the standards for 

image reconstruction in emission tomography. The MLEM reconstruction and related 

improvements have also been reported in literature [7-10, 14, 16-17, 21-24]. 

Statistical analysis that supports positron emission tomography (PET) has been 

discussed as well [9]. The MLEM approach can model randomness in emission 

tomography with the asymptotic efficiency by applying the row operation and 

monotonic convergence using the EM algorithm. Furthermore, the EM algorithm can 

be parallelizable for 3D PET image reconstruction [10].  

The generation of quantitative PET images requires that the effects of random 

coincidences and coincidence efficiencies are corrected [11-12]. One random 

correction approach applies single count rates to a prompt sinogram [13]. This 

approach is generally based on geometric and physical characteristics. However, this 

approach makes many assumptions for approximations that can decrease the accuracy 

of random correction below that obtained using methods that utilize both prompt and 
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delay sinograms. An alternate approach applies random pre-correction to sinograms 

by subtracting the delay sinogram from a prompt sinogram before the processing of 

images reconstruction. The random pre-correction using various approximations has 

been applied to correct random (or accidental) coincidental events [14-15]. Different 

methods have been developed to approximate the distribution of random 

pre-correction [16-18]. However, random pre-correction increases the variances of 

estimates [17, 19]. Since the distribution of random pre-correction is no longer 

Poisson-distributed, the shifted Poisson methods and saddle-point (SD) approximation 

have been generated to enhance approximation [20]. This study proposes a joint 

Poisson model of prompt and delay sinograms for random correction with the MLEM 

reconstruction without using approximations nor increasing variances. This approach 

is named PDEM. Simulations, physical phantoms and real Mouse studies of the 

PDEM method using the microPET R4 system were performed. This study analyzed 

and assessed the reconstruction of 2D data obtained from 3D sinograms after applying 

the FORE method to verify the proposed approach. The PDEM method can also be 

utilized in future studies reconstructing 3D images. 

Once microPET images have been reconstructed using PDEM, the next step is to 

segment those regions of interest (ROI) from the reconstructed images. The FBP 

reconstruction has been applied in tomography due to its power of fast computation. 
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Wong et al. [26-28] used the method of FBP reconstruction and K-means clustering 

with Akaike information criterion (AIC) [25] to segment PET images. However, the 

FBP method is not accurate for reconstructing microPET images. Hence, the PDEM is 

applied to reconstruct microPET images more accurately instead of the FBP in this 

study. Due to the variability of variances among different segments of microPET 

images, we will consider the Gaussian mixture model (GMM) instead of K-means 

clustering [28-30]. Furthermore, the numbers of cluster and their initialized values 

used in GMM are determined by the kernel density estimation (KDE).  

Similar methods can be adapt to segment spotted microarray images. The 

microarray is a high throughput technique for exploring the expression profiles for 

thousands of genes during the studies of genomics in biology and medicine. Although 

high-density oligonucleotide arrays are currently available, custom-made or spotted 

cDNA microarrays have also been used, because of their favorable cost, ease of 

preparation and ease of analysis in the design of co-hybridization experiments [32]. 

Studies of the functionality of genes in this new era of post-genomics are important 

[33]. Analyzing the microarray images with high accuracy is essential to measure the 

gene expression profiles. Advanced analysis for selecting significant genes, clustering, 

classification, and network reconstruction of gene expression profiles can proceed on 

a solid foundation following complete accurate measurements [34-35].  
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The cDNA images, in general, tend to be very noisy. Therefore, various approaches 

have been proposed to improve the calibration of scanning efficiencies, the alignment 

and detection of spotting errors, the denoising of background noise from images, the 

marking of dust, gridding, moving, hybridization and other artifacts [34, 36-37]. 

Different methods have been proposed for segmenting cDNA microarray images in 

literature. Markov Random Field (MRF) modeling has been proposed to segment 

spots in microarray images [32]. This MRF-based approach relies on the prior 

assumption of class labeling of all pixels [38] and it has a high computational cost. 

The alternative approach of region-growing approach relies on the selection of initial 

seeds that influence its performance [39]. the other approach of Gaussian mixture 

model (GMM) generally assumed normality when it is applied to this segmentation 

problem [40]. Accordingly, this study is motivated by the need to investigate the 

segmentation of cDNA microarray images using the nonparametric method of kernel 

density estimation (KDE) that does not require the assumption of normality.  

In this investigation, the KDE is utilized to classify pixels in a spot into background 

and foreground that use the estimated density to find the cut-off value. Meanwhile, 

the approach of initial segmentation using GMM and fine tuning using KDE is 

proposed to detect feasible boundary between foreground and background in spots. 

This approach is named GKDE (that is, GMM + KDE). Empirical studies are 
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conducted on real microarray data that involve 256 spike genes with known contents. 

The segmentation results obtained by the KDE are compared with those obtained 

using the adaptive irregular segmentation method used in the current version of 

GenePix Pro software 6.0 (at http://www.moleculardevices.com/pages/software/ 

gn_genepix_pro.html, with the accompanying User’s Manual). 

Microarrays with various sources and experimental designs are needed to monitor 

the variations of gene expressions. Spike spots of the corresponding spike mRNAs 

with a range of concentrations are used to monitor the variability of fluorescence 

intensities and determine the consistency of hybridization among arrays. The spike 

spots also reveal the variations of pins in an array. Duplicated spots within each array 

are used to assay the hybridization process of the arrays. Swapped experiments are 

also used to assay the labeling efficiency of Cy3 and Cy5 fluorescence dyes.  

In this application, real microarray images with (1) spike spots with various ratios 

of Cy5 to Cy3 intensities, (2) duplicated spots in an array and (3) the swapping of 

microarray experiments, are applied to evaluate the performance and accuracy of the 

segmentation method. 
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2. Methodologies 

This chapter begins with the introduction of algorithms and methods used for 

reconstruction and segmentation accordingly. Section 2.1 introduces the proposed 

PDEM approach to reconstruct microPET images with random correction. Section 2.2 

shows the GMM applied to segment 3D microPET images by the automatic 

determination of the number of clusters and initialized values by KDE. Section 2.3 

presents the GKDE approach that is applied to segment spotted cDNA microarrays. 

2.1 Reconstruction with Random Correction for MicroPET Images 

A new approach is proposed to reconstruct microPET images with random 

correction by the joint Poisson model of prompt and delay sinograms. We will assume 

that the data in prompt and delay sinograms follow two independent Poisson 

distributions that are labeled as (1) and (2). 

)),((~)( ** dPoissondn p λ                      (1) 

)),((~)( ** dPoissondn rd λ                  (2) 

where  b indicates the b),()(),()()()( **** dbdbPddd r
b

trt λλλλλ +=+= ∑ th pixel of a 

target image with size B = 128x128 in which b=1,2,…,B, and d indicates the dth LOR 

with total numbers D = 96x84 in which d=1,2,…,D. The term )(* dn p  is the number 

of coincidental events in the prompt sinogram at the dth projection line of response 

(LOR), which is formed by two detectors with the Poisson mean, ; )(* dλ )(* dnd  is the 
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number of random coincidental events in the delay sinogram with the Poisson 

mean ; P(b,d) is the system probability matrix from the b)(* drλ
th pixel to the dth LOR. 

Parameters of )(btλ  and )(* drλ are unknown and must be estimated. Parameter 

)(btλ  represents the intensities of true coincidental events. Appendix (A3) lists the 

log-likelihood of observed data in the prompt and delay sinograms. Since the 

maximum likelihood estimate (MLE) is difficult to find by maximizing Eqs. (1) and 

(2) numerically, the EM algorithm [30-31] can be utilized (as the details in Appendix). 

Equations (3) and (4) are the ith iteration steps of the PDEM.  
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where i=1,2,……I, is the number of iterations. 

The MLEM algorithm of joint the prompt and delay sinograms is described as 

follows and such a scheme is called PDEM reconstruction.   

 

Algorithm for PDEM reconstruction: 

Step 1: Set the initial parameters (i=0) using the FBP, the method of moments 

estimate (MME) or alternative approaches.  

Step 2: The iteration number is increased by 1 (that is, i is replaced by i+1). Update 
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the parameters by applying Eqs. (3) and (4). 

Step 3: If  (that is, the difference of 

log-likelihoods among new and old estimates is smaller than for a tolerance 

level), then the iteration is terminated; otherwise, go to Step 2. 

tolerancedbldbl i
r

i
tin

i
r

i
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This method preserves Poisson properties and update estimates iteratively. In this 

study, P(b,d) was computed from LORs and the locations of pixels based on the 

geometric characteristics of the microPET R4, including number of detectors, image 

size, field of view (FOV), ring diameter, and number of angular views. The matrix 

size of one slice is 96×84. There are 96 angular views and 84 LORs for each angular 

view during image scanning. Furthermore, each P(b,d) can be identified from its 

detector pairs of LOR and image pixel location. Therefore, the PDEM reconstructs the 

sinogram after the step that sinograms are rebinned by the FORE approach in the 

microPET system. 

2.2 Segmentation of 3D MicroPET Images 

This section briefly introduces the segmentation algorithm of 3D microPET image. 

Several pre-processing steps are used before the GMM algorithm is applied to 

segment 3D microPET image. The number of clusters to be used in GMM and the 

initialized values of each cluster are needed in applying the GMM method. Hence, the 
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nonparametric method of KDE is employed to estimate the density curve of image 

intensities. The numbers of cluster (k) can be determined by searching the number of 

local maximum points from the estimated density curve. In addition, the initialized 

values of parameters for the normal distributions in k clusters can be determined from 

the data consequently.  

2.2.1 Determination of the Cluster Number for GMM 

The kernel density estimation (KDE) [41] will be applied to determine the 

number of clusters used in GMM. From the estimated density curve, those high and 

low peaks could be used to estimate the means and standard deviations of Gaussian 

distributions in clusters. It is based on the empirical rule that the range of σμ 3±  

covers most of observations from a normal distribution. Hence, the initialized values 

of GMM are determined by applying this empirical rule (as illustrated in Fig. 2.2.1-1). 

This approach can automatically decide the cluster number and starting values of 

parameters in the EM algorithm of GMM. This is a simple and computation 

efficiently method. The details are reported in the following algorithm. 
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Fig. 2.2.1-1. An example shows the procedure to decide the number of clusters and 
initialized values in the EM algorithm of GMM. There are two peaks from the 

estimated densities of . Hence, the number of clusters in GMM will be two 

and initialized values will be computed from the above equations. 

)(ˆ yf

 

Algorithm of KDE for Determining the Number of Clusters 

A Gaussian kernel function is used to estimate the density of data as in Eq. (5), 

,)2/)(exp(
2
11)(ˆ

1

2∑
=

−
−=

n

i

ij
j h

xy
hn

yf
π

                    (5) 

where xi is the ith sample, yj is the jth grid point, h is a bandwidth using in the Gaussian 

kernel to estimate a probability density function, n is the sample size, and j = 1, 2, …, 

128. 

Step 1: Input data . },,,{ 11 nxxxX L=

Step 2: Find 128 grid points using equally spaced as Eq. (6): 

. /))()(()( mXMinXMaxjXMiny j −+=                      (6) 

Step 3: Calculate the data-driven bandwidth for KDE as Eq. (7): 

  }
34.1

,{9.0 5/1−= nIQRStdMinh                               (7) 

      where Std is the standard deviation of X and IQR is the interquartile rang of X 

[44]. 

Step 4: Calculate the KDE using Eq. (5).  

Step 5: Determine the number of clusters by counting the number of local maximum. 

The high and low peaks of estimated density can be used to estimate the means and 
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standard deviations of Gaussian distributions in clusters like the illustration in Fig. 

2.2.1-1. 

 

2.2.2 Gaussian Mixture Model (GMM) 

For the study of a set of 3D images from microPET, Ixyz represents the intensity at 

the xyzth voxel. The range of the position xy in one slice has the size of 128x128 and 

the number of slices z has the size of 10 in this study. Since the variance scale in 

different segments of 3D images may be different, we consider Gaussian mixture 

model with different parameters of means and variances in various clusters [28-29]. 

We will suppose that the image data Ixyz follow a mixture of K distributions with the 

mixing probability πk such that  

∑
=

=≤≤=
K

k
kk Kk

1
.,,2,1 allfor  10 and ,1 Lππ                (8) 

That is, the probability density function of Ixyz is 

,);();(
1
∑
=

=Φ
K

k
kxyzkkxyz IfIf θπ                           (9) 

where fk(Ixyz,θk) refers to the probability density function in the kth cluster with 

parameter θk. All parameters are collected to form a parameter vector 

).,...,,,...,( 11 KK θθππ=Φ The MLE of every parameter is usually difficult to 

obtain directly by numerical methods. Alternatively, the EM algorithm can be applied 

to find the MLE iteratively [28-29]. Firstly, we introduce an index function as follows, 
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Let Cxyz = (Cxyz1, …, CxyzK) denote the unobserved index vector and {Ixyz, Cxyz} form 

the complete data for applying the EM algorithm. Given Cxyz, the conditional density 

of Ixyz becomes  
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1
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kxyzkkxyzkxyzxyz IfCCIf θπ                      (11) 

The EM algorithm finds MLE of parameters with the constraint of Eq. (8) by the 

following iterative procedure: 
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The Gaussian distribution for the kth cluster is listed below,  

./)(
2
1exp)2(),;();( 222

1
2 ⎟
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⎛ −−==

−

kkkkkkkk xxfxf σμπσσμθ      (16) 

The resulting EM algorithm for GMM is described as follows. 
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EM Algorithm for GMM 

Step 1: Set the initial parameters Φ (old).  

Step 2: Update the parameters by using Eqs. (12) - (15). 

Step 3: If lin(Φ(new) ) –lin (Φ(old)) < tolerance (that is, the difference of log-likelihoods 

among new and old estimates is smaller than for a tolerance level), then the 

iteration stops. Otherwise, go to Step 2 with the old values of parameters 

replaced by the new values.  

 

2.2.3 Slice Normalization 

The intensity heterogeneity in slices of microPET images comes from the 

differences in emission activities and reconstruction processes. The heterogeneity 

between slices will affect the accuracy of the segmentation of 3D images. Hence, slice 

normalization is needed before 3D segmentation to adjust image levels between slices. 

We will use the slice normalization defined in Eq. (17),  

zz

zxyznew
xyz MinMax

MinI
aI

−

−
= ,                            (17) 

where  is the new intensity after slice normalization,  is the original 

intensity at xyz

new
xyzI xyzI

th voxel,  is the minimum value of the zz zMin th slice,  is the 

maximum value of the z

Max

th slice, and a is a nonzero constant for the range of adjusted 

image level. 
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2.3 Segmentation of Microarray Images 

This section discusses three segmentation algorithms for spotted microarrays. 

Empirical evaluation of the performance for segmentation methods will use different 

criteria based on target ratios of spike genes, duplicate spots in a microarray image, 

and swapped microarray images Cy3 and Cy5 dyes. In this study, the aim is to 

segment pixels into foreground or background. Hence, there are two clusters used for 

the segmentation of the pixel intensities in a spot. Besides the GMM with EM 

algorithm, we will propose the KDE and GMM incorporated the KDE (GKDE) to 

segment spotted microarray image in this study.  

2.3.1 Kernel Density Estimation (KDE) 

The KDE with automatic bandwidth selection [41] is used to estimate the density 

function of pixel intensities for each spot. The Gaussian kernel function and 128 grid 

points are used for the KDE for each spot as Eq. (5) in section 2.2.1. The details are 

reported in the following algorithm. 

 

Algorithm for Segmenting One Spot by KDE   

Step 1: Input data . },,,{ 11 nxxxX L=

Step 2: Find 128 grid points that are equally spaced as Eq. (6).   

Step 3: Calculate the data-driven bandwidth for KDE as Eq. (7). 
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Step 4: Calculate the KDE using Eq. (5).  

Step 5: Search the cut-off point (CP) that is the first local minimum of the KDE at yj
* 

and let CP = yj
*. 

Step 6: Segment the pixel ix into foreground if ix CP> , else into background. 

 

2.3.2 Gaussian Mixture Model (GMM) 

The GMM assumes that the distribution of foreground intensities is a Gaussian 

distribution  with mean),( 2
111 σμf 1μ  and variance ; while the distribution of 

background intensities is another Gaussian distribution  with mean

2
1σ

),( 2
222 σμf 2μ  

and variance . Hence, the distribution of the intensity at every pixel  in a spot 

can be modeled as a mixture of two Gaussian distributions as Eq. (18).  

2
2σ jx

2 2
1 1 1 1 2 2 2 2( ; ) ( ; , ) ( ; , ), 1,..., ,i i if x f x f x iφ π μ σ π μ σ= + = n                (18) 

where
2

2
22

( )1( ; , ) exp( ), 1,2,
22
i m

m i m m
mm

xf x mμμ σ
σπσ

− −
= = 2{ , , , 1, 2}m m m mφ π μ σ= =  and 

mπ  is the mixing (or prior) probability for the foreground and the background 

constrained by 0 1mπ≤ ≤  and 121 =+ππ . The foreground intensities typically 

include those of the signals and noise. Therefore, the mean foreground intensity 

usually exceeds the mean background intensity. Accordingly, the condition 21 μμ ≥  

is considered in this study, which is also commonly used in the literature of normal 

mixtures [28]. The log-likelihood of the observed data in the model of two mixtures is 
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Eq. (19). 
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1 1
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n
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= =

= ∑ ∑ σ

}

.                     (19) 

To estimate the above parameters, the EM algorithm can be applied [26]. The 

segmentation algorithm of one spot using the GMM is listed below. 

 

Algorithm for Segmenting One Spot by GMM   

Step 1: Input initial parameters: k = 0 and . In this 

study, the initial parameters are set as follows. Initial μ

( ) ( ) ( ) 2( ){ , , , 1, 2.k k k k
m m m mφ π μ σ= =

1 and μ2 are set to the 

first and third quartiles of pixel intensities in one spot. Initial σ1 and σ2 are the 

standard deviations of the pixel intensities below the first quartile and above 

than the third quartile, respectively. Initial π1 and π2 values are set to 0.5.  
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Step 4: If ( 1) ( )log( ( | )) log( ( | ))k kL x L x toleranceφ φ+ − <  and the tolerance is set to 10-2 

here, then the iteration is terminated. Otherwise, k  k+1, 

, and the iteration goes to Step 2. ( ) ( 1) ( 1) ( 1) 2( 1){ , , , 1,k k k k k
m m m mφ φ π μ σ+ + + +← = = 2}
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Step 5: Segment the pixel ix  into foreground or background according to the 

maximum of posterior probabilities with the final values of the parameters, 

=( 1)k
imτ

+
( 1) ( 1) 2( 1)

2
( 1) ( 1) 2( 1)

1

( ; , )

( ; , )

k k k
m m i m m

k k
l l i l l

l

f x

f x

π μ σ

π μ σ

+ +

+ +

=
∑ k

+

+

. 

 

2.3.3 GMM Incorporated with KDE (GKDE) 

We can combine the methods of GMM and KDE, which will be abbreviated as 

GKDE. The GMM can provide the initial segmentation and the KDE can further 

improve the segmentation by relaxing the assumption of normality in the GMM. Once 

the foreground and background are found using GMM, the KDE can be applied to 

find their estimated densities. Then, a cut-off point for segmentation of pixels in a 

spot into two clusters is determinate by the cut-off point that has the near equality of 

two estimated densities. The details are reported below.  

 

Algorithm for Segmenting One Spot by GKDE 

Step 1: Segment a spot initially using the GMM algorithm in Section 2.3.2. 

Step 2: Estimate the kernel densities for foreground ( ) and background ( ) 

following the steps in Eqs. (5) – (7). 

ff̂ gf̂

Step 3: Find a cut-off point (CP) that has the near equality of  and . ff̂ gf̂

Step 4: Segment a spot as follows. 
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2.3.4 Empirical Evaluation of the Performance for Segmentation Methods 

Spike genes (or spots) with known contents on microarrays are used in the 

empirical studies. The target ratios of spike genes thus represent the gold standard for 

evaluating the accuracy of segmentation methods investigated in this study. The sum 

of squared relative error (SSRE) and the sum of squared error (SSE) are used to 

evaluate accuracy according to Eqs. (20) and (21):  

∑∑
= = ⎪⎭
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                                (20) 

∑∑
= =

−=
M

j

B

b
jbj TTSSE

1 1

2
, ,)ˆ(                                    (21) 

where  is the feature estimated from the ratio of means between Cy3 and Cy5 

arrays for the j

bjT ,
ˆ

th spike gene in the bth block, and Tj is target ratio of the jth spike gene. 

The number of blocks is B = 32 and the number of spike genes is M = 8. The 

smallness of SSRE and SSE indicate the closeness to target ratios. Table 2.3.4-1 and 

2.3.4-2 present those two types of spike genes with various target contents and ratios 

used in this study.  
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Table 2.3.4-1: One set of eight spike genes with target contents and ratios in real 
microarrays. 

Spike Gene 1 2 3 4 5 6 7 8 

Target Content  

(Cy5: Cy3) 
50:500 10:100 50:250 20:100 200:500 40:100 200:200 20:20

Target Ratio  
1:10 1:10 1:5 1:5 1:2.5 1:2.5 1:1 1:1 

(Cy5: Cy3) 

 

Table 2.3.4-2: Another set of eight spike genes with target contents and ratios in real 
microarrays. 

Spike Gene 1 2 3 4 5 6 7 8 

Target Content 
20 0 50: 0 20: 0 50: 0 20 0 50 0 20 0 50: 0

(Cy5: Cy3) 
:10 25 10 25 :10 :25 :10 25

Target Ratio  

(Cy5: Cy3) 
1:5 1:5 1:5 1:5 1:5 1:5 1:5 1:5 

For those tw sets of microarrays are produced and each 

set of microarrays consists of one pair of two dye-swapped microarrays. Therefore, 

each type of spike gene is associated with eight microarrays, of which a total of 16 

microarrays are tested herein. 

  The Pearson and concordance correlation coefficient [46] of two random variables 

Y1 and Y2 is shown as Eq. (22) and (23): 

o types of spike genes, four 

,),( 21 YYCovρ =                                        (22) 
21 YYσσ

1 2
2

2 1 2

.
( ) ( ( ) ( ))ar Y E Y E Y+ −

                   (23) 
1

2 ( , )
( )c

Cov Y Y
Var Y V

ρ =
+

easure the reproducibility among the 

ing the log ratios of means 

in Cy5 to Cy3 dyes from one microarray image, which is expected to be close to 1.  

These correlations are used in this study to m

expression of every gene and that of its duplicated spot us
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These correlation coefficients of the swapped microarrays are also considered to 

evaluate the performance with reference to selected features with high log ratios of 

means in Cy5 to Cy3 dyes. As the dyes of Cy3 and Cy5 in the swapped arrays are 

exchanged, the negative correlation coefficient is obtained from the features of the 

swapped arrays and is expected to be close to -1. 
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3. Applications on MicroPET Images 

This chapter explains the reconstruction and segmentation methods applied to 

microPET images. The FBP and OSEM are available methods of the built-in software 

of microPET manager V1.6.4 associated with the scanner to reconstruct microPET 

image. From our evaluation, the PDEM will demonstrate more accurate and less noisy 

reconstruction images than the FBP and OSEM. Moreover, the microPET manager 

V1.6.4 does not have any segmentation method for 3D images. Section 3.3 will 

present the GMM algorithm to segment 3D microPET images obtained from PDEM.  

3.1 The MicroPET Scanner 

The microPET R4 scanner in Taipei Veterans General Hospital is shown in Figure 

3.1-1. The configuration of this microPET R4 has 32 rings, 6144 detectors, 7.3 cm 

field-of-view (FOV), and spatial resolution of 1.85 mm in the center. It can collect 

both prompt and delay sinograms. Transaxial projection bin size was 1.213 mm, and 

axial slice thickness was 1.2115 mm. Coincidence timing window was set at 6×10-9 

seconds. The lower and upper level energy thresholds were 350 and 750 keV, 

respectively. Span of the data set was 3 (Appendix B.5), and maximum ring difference 

(MRD) of the data set was 31 (Appendix B.6). The target images were reconstructed 

using 128×128 pixels. 
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Fig. 3.1-1:  The microPET R4 scanner in Taipei Veterans General Hospital is 
displayed. 

 

A sinogram uses the polar coordinate system to store the response of a projection 

line (or a line of response, LOR) at a specific orientation with a radial distance from 

the FOV central axis as displayed in Figure 3.1-2.  

 

Horizontal experiment Sinogram Oblique experiment Sinogram 

Fig. 3.1-2: Two images of microPET sinograms from physical experiments of six 
point sources are displayed. In every sonogram, the horizontal axis represents the 
ordering of line of responses (LORs) and the vertical axis represents different angles 
from 0 degree to 180 degree. The pixel intensity in the sinogram records total 
gamma rays detected in a scanning time window. 
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During scan acquisition, raw data are stored in sinograms, which are then used to 

reconstruct images. The prompt sinogram records coincidence events when two 

detectors receive two gamma rays within a specific time window (e.g., 6×10-9 second). 

The coincidence events in prompt sinograms include true, random, and scatter 

coincidence events. The delay sinogram records coincidence events when two 

detectors receive two gamma rays outside another specific time window (e.g., 

3×6×10-9 second). The coincidence events in delay sinograms can be used to estimate 

random coincidence events. 

The data matrices are described as follows (as in Fig. 3.1-3 and 3.1-4). First, list 

mode data were histogramed into the 3D data with a span of 3 and MRD of 31, which 

are sized 2×703×96×84 (that is, 2 sinograms of prompt and delay windows ×703 

slices × 96 angular views × 84 projection lines (LORs) as in Fig. 3.1-3) and stored as 

floating type data. The second data were obtained using random pre-correction and 

were sized 1×703×96×84 (as in Fig. 3.1-4). These 3D data were rebinned into 2D 

sinograms using the FORE method with dead time and decay corrections. The 

attenuation, normalization, scattering, and arc corrections were not performed for 

simplicity as this study only focused on evaluation of random correction. These 

further corrections for PDEM reconstruction will need more investigation in future 

studies. 
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Two matrices were constructed using the software embedded in microPET R4 (that 

is, microPET manager V1.6.4). The first matrix was 2×63×96×84 (that is, 2 sinograms 

of prompt and delay windows × 63 slices × 96 angular views × 84 projection lines 

(LORs) as in Fig. 3.1-3) and stored as floating type data. This matrix was 

reconstructed using the PDEM. The PDEM was compared with the built-in 

reconstruction schemes, such as 2D FBP and OSEM methods, in the microPET R4 

system. The second matrix was obtained using the FORE and on-line random 

pre-corrected data (as in Fig. 3.1-4). The 2D OSEM, using 16 subsets with four 

iterations, and the 2D FBP, using ramp filtering, were applied to reconstruct the 

microPET images for comparison with the PDEM results. The reconstructed images 

were not smoothened. 

Fig. 3.1-3: The above data matrices are used for reconstruction by the PDEM and 
segmentation by the GMM. 
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Fig. 3.1-4 The above data matrices are used for reconstruction by the FBP and 
OSEM with random pre-correction. 

 

3.2 Reconstruction with Random Correction 

This section shows the reconstruction results obtained from the PDEM, FBP and 

OSEM on simulation, phantoms, and real mouse microPET data.  

3.2.1 Simulation Study 

This study utilized the modified Shepp-Logan’s head phantom as the simulated 

object to assess and compare the reconstruction images using the PDEM, FORE+FBP, 

and FORE+OSEM. We assumed that the simulated diameter of a ring was 28.28 mm 

and the FOV diameter was 20 mm. Target image was 128×128 pixels (20×20 mm2) 

and rescaled intensity was  100. For each pixel intensity, (≤ )(btλ ) was simulated 

and then input into )(* dλt . Then, )(* drλ  is set to the multiplication of a given noise 
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ratio to )(* dtλ . At the end, *
pn and *

dn  can be simulated using the Poisson 

distribution with parameters )(* dtλ  and )(* drλ  as in Eqs. (1) and (2). Total counts 

(sum of prompt and delayed counts) were 276794, 316383 and 342407 with 5%, 10% 

and 30% noise levels, respectively, for the three slices simulated. The prompt and 

delayed sinograms had the same matrix size of 96×84 (that is, 96 angular views × 84 

projection lines (LORs)) with floating type data. Three random noise ratios of random 

to true coincidence counts, 5%, 10% and 30% were simulated. The quality of images 

obtained using the PDEM, FBP and OSEM were compared (Fig. 3.2.1-1). The 

simulated results demonstrate that the quality of images reconstructed by the PDEM is 

superior to that of images reconstructed by the FORE+FBP and FORE+OSEM.   

Fig. 3.2.1-1. The modified Shepp-Logan head image was used for simulation 
studies. The line profiles of PDEM were less noisy than those of FBP and OSEM. 
The PDEM technique reconstructed better images than the FBP and OSEM did 
with 5%, 10% and 30% random noise. All images were rescaled using their own 
maximum values. 
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3.2.2 Phantom Study 

The first physical phantom was 28 homogenous line-sources with an outer diameter 

of 1.27 mm for each line. This phantom was utilized to assess the performance and 

accuracy of reconstruction quality between the FBP, OSEM and PDEM (as in Fig. 

3.2.2-1). The spatial resolution was measured using the FWHMs from vertical and 

horizontal line profiles (in Table 3.2.2-1). The average and standard deviation of 

FWHMs in reconstruction images using the PDEM were smaller than those obtained 

by the FBP and OSEM.  

 
Fig. 3.2.2-1. The 31st slice of the 28 line-source phantom reconstructed using the 
three methods are displayed. Both FBP and OSEM are reconstruction methods 
built into the microPET R4 system. All images were rescaled using their own 
maximum values. The images are shown in the rectangular window. Table 
3.2.2-1 presents the comparisons of their FWHMs.   

 

Table 3.2.2-1: Average and standard deviation (in mm) of 28 FWHMs for horizontal 
and vertical line profiles measured for comparing the spatial resolutions of PDEM, 
OSEM and FBP. Those values are measured at the 31st slice. 

 Horizontal profile Vertical profile 
Methods Average Standard deviation Average Standard deviation 
PDEM 1.779  0.324  1.790 0.311  
OSEM 1.890  0.527  1.863 0.548  
FBP 3.641  0.595  3.663 0.624  
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  The second phantom was a uniform cylinder of 7.6 cm high with an inner radius of 

20 mm. This phantom was also utilized to compare image quality obtained using the 

FBP, OSEM and PDEM. Imaging scan time was 1200 s using the microPET R4 after 

injection of 276 μCi F-18 FDG. Three reconstruction techniques were applied to 

reconstruct the 40th slice (in Fig. 3.2.2-2). Reconstruction images were presented with 

the associated central line profiles. Reconstruction images obtaining using the PDEM 

had better quality than those generated by the FBP and OSEM on their line profiles. A 

circular region of interest (ROI) was employed to measure the noise level for the 

different reconstruction methods. The lowest value for coefficient of variation (CV), 

which is the ratio of standard deviation to mean, was obtained by using the PDEM 

reconstruction (in Table 3.2.2-2).   

 
Fig. 3.2.2-2. The reconstructed 40th slice from a uniform phantom was used to 
investigate noise level generated by the three approaches. The white line indicates 
the position of the investigated line profile. All images were rescaled using their own 
maximum values. The images are shown in the rectangular window with enlarged 
central parts. Table 3.2.2-2 presents the comparisons of their CVs. 
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Table 3.2.2-2: A circular ROI with a radius of 9 pixels to the center of the uniform 
phantom was utilized to compare noise levels between the PDEM, FBP and OSEM. 
Those values were measured at the 40th reconstructed slice. 

  PDEM FBP OSEM 
Average 1146.51 1107.66 1105.36 
Standard deviation 36.26 46.82 65.56 
Coefficient of variation (%) 3.16 4.23 5.93 

 

The PDEM reconstructed better quality images with lower noise levels than the 

reconstructed approaches built into the microPET R4 system during investigations of 

line and uniform phantoms. Notably, in all reconstruction processing, there was no 

attenuation, scatter, normalization, or arc correction. However, dead time and decay 

correction were applied when rebinning 3D sinograms into 2D data. 

3.2.3 Real Mouse Study 

The PDEM method was applied to real data for small mice to compare the quality 

of reconstructed images with those reconstructed using the FBP and OSEM. These 

two real normal mice weighed 20 g. Imaging scan time was 600 second using the 

microPET R4 following an injection of 0.226 μCi F-18 FDG for the first mouse and 

an injection of 240.5 μCi F-18 FDG for the second mouse. The first mouse was 

utilized to investigate reconstruction performance under a weak amount of F-18 FDG 

activity. The second mouse was used to investigate image quality under a normal 

amount of F-18 FDG.  
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All 63 slices after the FORE were reconstructed using the PDEM, FBP and OSEM. 

Figures 3.2.3-1 and 3.2.3-2 present coronal and sagittal images of the two mice 

reconstructed by the PDEM. These images are less noisy and have clearer boundaries 

than those reconstructed by the FBP and OSEM. These results demonstrate that the 

PDEM reconstructed images with better contrast and clearer boundaries than those 

reconstructed with the FBP and OSEM. 

 

Fig. 3.2.3-1: Sagittal (top) and coronal (middle) images of the first mouse image 
reconstructed by PDEM (left), FBP (middle) and OSEM (right). The images 
reconstructed by PDEM have less noise than those reconstructed using FBP and 
OSEM with comparison by line profiles. The images are shown in the rectangular 
window with enlarged central parts. 
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Fig. 3.2.3-2. Coronal and sagittal images of the second mouse image reconstructed 
using PDEM (left), FBP (middle) and OSEM (right). The images reconstructed by 
PDEM have less noise than those reconstructed by FBP and OSEM, as shown in the 
respective line profile near the heart. The images are shown in the rectangular 
window with enlarged central parts. 

 

3.3 Segmentation of 3D MicroPET Images 

This section introduces the use of GMM to segment 3D microPET images from the 

reconstruction images by the PDEM. 

3.3.1 3D Images 

Figure 3.1-3 shows the data matrices used for reconstruction and segemtation. 

There are 703 sinograms obtained by the 3D microPET with span 3 and MRD 31. We 

applied the FORE on prompt and delay sinograms to obtain 63 sinograms. Each 2D 

sinogram was reconstructed by the PDEM. In this study, each slice has the size of 96 
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x 84 and each reconstructed images has the size of 128 x 128. A matrix with the 

dimension of 63 x 128 x 128 was used for segmentation by the GMM and K-means 

algorithms. The analysis flow chart to segment 3D images is displayed in Fig. 3.3.1-1.  

 

 

 

The PDEM is the reconstruction process of microPET images. The GMM or 

K-means are applied algorithms for segmentation. The phantoms for simulation 

studies are displayed as Fig. 3.3.1-2. There are 63 reconstructed slices with the size of 

128 x 128. 

 

 

2x703 sinograms 

Obtain 2x63 sinograms 
by the FORE 

Reconstruction 
by the PDEM 

Smoothing in 
each slice 

Segmentation by 
K-means and GMM

3D segmented 
images 

Fig. 3.3.1-1. The flow chart of 3D segmentation is plotted. 
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Slice 1

 
……. ……. 

Slice 63

 
Figure 3.3.1-2: 3D microPET images for 63 slices are illustrated. Every image 
has the pixels size of 128 by 128. 

  

3.3.2 Simulation Study 

The simulated phantom study with 457932 total counts is displayed in Figure 

3.3.2-1. This simulated study is focused on testing and evaluating the performance of 

GMM. Figure 3.3.2-1A shows target image with five ROIs. Figure 3.3.2-1B displays 

target image with 50% noise added. Figure 3.3.2-1C presents the clustering results by 

GMM. The number of clusters is decided by the KDE and is shown in Figure 

3.3.2-1D. There are four local high peaks that are regarded as the means of four 

clusters.  
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Fig. 3.3.2-1. A) Simulation image of five clusters is displayed. B) Adding 50% noise 
into panel A. C) Clustering results using GMM. D) Kernel density curve using C 
with values of high and low peaks. Four peaks are identified on the density curve. 
Hence, the number of groups is set as four.  

 

Figure 3.3.2-1 shows the indices of ROIs by the GMM. Figure 3.3.2-3 presents the 

accuracy comparison between the simulated results obtained from K-means and 

GMM.  

 
Fig. 3.3.2-2. Target ROIs are 
marked. 

Fig. 3.3.2-3. The results of A) by K-means and 
B) by GMM clustering are shown. 

 

It is observed that the GMM has a clearer segmentation result than the K-means 

method. Results of ROIs are shown in details in Table 3.3.2-1. The total accuracy of 

GMM is 92.1% and that of K-means is 66.6%.  
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Table 3.3.2-1: Comparisons of the clustering results by K-means and GMM in Fig. 
3.3.2-1A. 

Exact Counts Accuracy (%) 
ROI # 

True Pixel 
Count K-means GMM K-means GMM 

ROI 1 6604 4128 6206 62.5% 94.0% 
ROI 2 702 488 522 69.5% 74.4% 
ROI 3 748 700 745 93.6% 99.6% 
ROI 4 350  280 285 80.0% 81.4% 
ROI 5 88 58 59 65.9% 67.0% 
Total 8492 5654 7817 66.6% 92.1% 

 

Another simulated volume data based on the modified Shepp-Logan's head 

phantom image is shown in Figure 3.3.2-4A and 3.3.2-4B. Fifty percentage of noise 

ratio to phantom images are added. In order to compare the effects of variation 

between slices, different image levels and shapes of ROIs are considered in slice 1 

and 2. First, we use the MLEM reconstruction, the result is shown in Figure 3.3.2-4C 

and 3.3.2-4D. Meanwhile, the GMM is also applied to segment two images without 

slice normalization as shown in Figure 3.3.2-4E and 3.3.2-4F. It is observed that the 

boundaries of ROIs are difficult to distinguish. Therefore, slice normalization is 

applied to the volume data and then the GMM is used to segment images as shown in 

Figure 3.3.2-4G and 3.3.2-4H. The boundaries of these segmentations become clearer 

after slice normalization. Figure 3.3.2-4I plots the estimated kernel density curve of 

volume data for finding the number of clusters and initialized values. 
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Fig. 3.3.2-4. Simulated volume data including slice 1 and 2 are marked as A and B. 
C and D are reconstructed images after added 50% noise ratio to A and B. E and F 
are segmented results without slice normalization. G and H are segmented results 
with slice normalization. I is the estimated kernel density curve of simulated volume 
data after slice normalization. 

 

For these simulation cases, the performance and accuracy using GMM is better 

than those of using K-means. The KDE is adopted to decide the number of clusters 

and the starting values of parameters in the EM algorithm. The slice normalization is 

necessary when the GMM is applied to segment volume data in this study. 

3.3.3 Real Mouse Study 

The empirical data of a big mouse injected by F-18 isotope scanning is collected 

from the microPET R4 system. The acquired configurations are listed as below. 
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Scanner energy is between 350 and 750 keV with the total scanning of 3600 s. There 

are 32 rings in microPET R4 system. File format of histogram data is stored by 2 

bytes for each voxel. Ten slices (from the 51st to the 60th slice) of the volume data are 

used for investigation and evaluation. 

Figure 3.3.3-1 shows the estimated kernel density curve of volume data. Based on 

this KDE, four groups are determined by local high peaks and their starting values are 

obtained for applying the EM algorithm.  

 
Fig.3.3.3-1. The estimated kernel density curve using the rat volume data of 10 
slices is shown with values of high and low peaks. There are four peaks. Hence, the 
number of groups is set as four. Values of peaks are applied to compute the starting 
values in EM algorithm. 

Figure 3.3.3-2 shows the reconstructed rat images by MLEM from the 51st to the 

60th slice. Besides, Figure 3.3.3-3 and 3.3.3-4 show the segmentation results by GMM 

and K-means respectively. The detail segmentation from GMM is shown with the 

comparison to Figure 3.3.3-5. The uptake areas can be segmented by GMM from 59th 

and 60th images. In addition, it can segment small areas with high gene expression 

when compared to K-means. On the contrary, the K-means method segments big areas 

and ignores small uptake areas.  
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For this real mouse study by microPET, the GMM leads to more detail 

segmentation results than the K-means method does. The GMM also has better 

performance than K-means. The full width half maximum (FWHM) is usually used to 

evaluate performance of segmented results. The horizontal line profile near the center 

of the 60th slice is used to investigate the performance between GMM and K-means. 

Figure 3.3.3-5 is plotted with four regions in this line profile and their FWHMs for 

Fig. 3.3.3-2.  

 

    

    

Fig. 3.3.3-2. The reconstructed rat images are shown from the 51st (top-left) to the 
60th (bottom -right) slice. 
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Fig. 3.3.3-3. The results of segmentation by the GMM are shown from the 51st 
(top-left) to the 60th (bottom -right) slice. 

 

     

     

Fig. 3.3.3-4. The results of segmentation by the K-means are shown from the 51st 
(top-left) to the 60th (bottom -right) slice. 

 

Fig. 3.3.3-5. The horizontal line profile of the 60th slice of Fig. 3.3.3-2 is shown 
with FWHMs. The FWHMs of region 1, 2, 3 and 4 are 3.75, 3.40, 4.14 and 4.45 
pixels respectively. The top part shows the location of this line profile in the 
MLEM reconstruction image and the segmentation by GMM and K-means. 
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Table 3.3.3-1 shows that the FWHMs of segmented results by GMM are closer to 

target FWHMs than those by K-means. Meanwhile, the signal to noise ratio (SNR) 

defined by the ratio of mean value to standard deviation is used to compare the 

segmentation performance between GMM and K-means. The SNRs of four regions of 

GMM are higher than those of K-means. 

 

Table 3.3.3-1: The FWHMs and SNRs of segmented results by GMM are better than 
those by K-means in Fig. 3.3.3-5. 

Pixel of 
Boundary 

Signal to Noise 
Ratio (SNR) Region 

FWHM of 
Region 

GMM K-means GMM K-means 
1 3.75 4 7 9.83 6.82  
2 3.40 4 6 8.64 6.23  
3 4.14 5 7 4.05 2.13  
4 4.45 5 7 3.15 2.13  
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4. Applications on Microarray Images 

This chapter investigates the applications of segmentation methods on spotted 

microarray images. The GMM and KDE are both employed to segment spotted 

images. Furthermore, we combine GMM and KDE to form a new method, GKDE, to 

segment spots. The GKDE can keep advantages of KDE and refining the final results 

from the GMM. We will compare and evaluate the performance of three methods 

together with the adaptive irregular segmentation method in GenePix 6 based on spike 

genes, duplicated genes, and swapped arrays in real microarray data.  

4.1 The Spotted Microarray Image 

These 16 real microarray images used herein are obtained by swapping Cy3 and 

Cy5 dyes. Each array has 32 blocks, 15488 spots with 7744 genes. Two replicated 

spots are designed in one array, of which the upper 16 blocks are duplicated as the 

lower 16 blocks in Fig. 4.1-1. Meanwhile, eight spike genes are designed in each 

block to evaluate the performance and accuracy of segmentation methods as shown in 

Fig. 4.1-1. 
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Fig. 4.1-1: An example of microarray image with 32 blocks, 22 columns and 22 
rows. One block is enlarged and eight spike genes are numbered. 

 

A typical spot diameter on each microarray in this study is approximately 160 µm. 

Sixteen microarray experiments were conducted in Genomic Medicine Research Core 

Laboratory of Chang Gung Memorial Hospital, Taiwan. The details of the microarray 

experiment procedure and probe information are available on the webpage of the 

laboratory, 

http://www.cgmh.org.tw/intr/intr2/c32a0/chinese/corelab_intro/genetics/files/03OctCl

one_information_F.zip ,   

http://www.cgmh.org.tw/intr/intr2/c32a0/chinese/corelab_intro/genetics/files/MIAME

%20(GMRCL%20Human%207K)_ver01.zip, and in [42]. These eight pairs of 

swapped microarrays were used for cancer research. Some of the results have been 

published [43]. Figure 4.1-2 presents one of the results by the adaptive irregular 
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segmentation in GenePix 6.0 for spot images of Cy3 and Cy5 dyes. The segmentation 

region may be inaccurate, leading to an over- or under- estimation of the statistics on 

spot intensities. 

 

 
Fig. 4.1-2: Typical segmentation of two spot images by the irregular segmentation 
method of GenePix 6.0. Parts a) and b) present the original images of Cy5 and Cy3 
dyes. Parts c) and d) present the segmented region on the images of Cy5 and Cy3 
dyes. 

 

Figure 4.1-3 plots the estimated kernel density curves from spot images of Cy3 and 

Cy5 dyes using the R 2.4.0 software [41, 

http://finzi.psych.upenn.edu/R/library/stats/html/density.html and 

http://www.r-project.org/]. These estimated densities typically have two distributions 

in the foreground and background regions. 
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Fig. 4.1-3: Two estimated density curves for spot of Cy5 (a) and Cy3 (b) dyes. Both 
Cy3 and Cy5 images have two intensity distributions for background and foreground 
pixels. The local minimum is used to be cutting point for segmenting spot pixels. 

 

4.2 Evaluation from Spike Genes 

There are 256 spike genes on any array with different known Cy3 and Cy5 ratios. 

Those spike genes are used to detect performance of GKDE, KDE, GMM and 

GenePix 6. Fig. 4.1-1 presents the locations and numbers of spike spots in one 

example of cDNA microarray images. Table 4.2-1 and 4.2-2 shows that all of the 

SSREs and the SSEs obtained from KDE are smaller than those obtained by the 

irregular segmentation method in GenePix 6.0, according to a test based on 16 real 

microarray cDNA images.  

The relative improvements of these two segmentation methods are defined as the 

percentages of the evaluation values in (GenePix-Methods)/GenePix. Since the first 

eight arrays are produced according to Table 2.3.4-1 that have varying target ratios, 
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the relative improvements measured by SSRE and SSE are different according to Eqs. 

(20) and (21). The last eight arrays are produced according to Table 2.3.4-2 that has a 

constant ratio, the relative improvements measured by SSRE and SSE are the same 

according to Eqs. (20) and (21). Table 4.2-1 and 4.2-2 shows that the average relative 

improvements of GKDE, KDE and GMM associated with the irregular segmentation 

method in GenePix 6.0 for SSRE and SSE are at the level of (23.5%, 20.9%), (10.5%, 

9.2%), and (23.2%, 20.9%). These results reveal that the features estimated by GKDE, 

KDE and GMM are closer to the designed target ratios for the spike genes than those 

obtained by the irregular segmentation method in GenePix 6.0. 

 
Table 4.2-1: The comparisons of SSEs are obtained for different methods based on 
spike genes. Array 1s is that obtained by swapping the dyes of Array 1. Relative 
improvement is specified by (GenePix-Method)/GenePix as a percentage. 

Sum of Square of Errors Relative improvement 
Array GKDE KDE GMM GenePix GKDE KDE GMM 

1 160.4  180.2  160.6 185.6 13.57 2.87  13.44  
1s 116.3  134.2  117.1 146.3 20.49 8.21  19.96  
2 136.7  145.6  136.9 153.1 10.71 4.90  10.56  
2s 729.0  878.6  729.9 904.5 19.40 2.86  19.30  
3 134.4  148.6  135.3 158.5 15.21 6.23  14.60  
3s 405.8  534.9  406.1 691.0 41.28 22.58 41.23  
4 51.7 68.3  52.2 83.4  37.98 18.10 37.42  
4s 300.0  308.9  300.3 318.1 5.69 2.91  5.62  
5 231.6  258.8  232.5 276.2 16.14 6.29  15.82  
5s 237.3  299.6  237.6 349.7 32.15 14.32 32.06  
6 140.7  166.2  141.4 172.2 18.32 3.49  17.89  
6s 146.5  173.3  147.4 185.9 21.18 6.81  20.71  
7 127.5  157.2  128.4 175.9 27.51 10.65 27.01  
7s 67.3 79.0  68.3 122.4 44.98 35.41 44.22  
8 133.5  148.6  133.8 177.9 24.94 16.46 24.79  
8s 107.4  137.7  108.3 145.9 26.42 5.63  25.78  

Average Relative Performance 23.50 10.48 23.15  
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Table 4.2-2: The comparisons of SSREs are obtained for different methods based on 
spike genes.. Array 1s is that obtained by swapping the dyes of Array 1. Relative 
improvement is specified by (GenePix-Method)/GenePix as the percentage. 

Sum of Square of Relative Errors Relative improvement 
Array GKDE KDE GMM GenePix GKDE KDE GMM 

1 8755.8 9624.5 8756.1 9739.2 10.10 1.18  10.09  
1s 6146.4 7106.5 6147.2 7662.9 19.79 7.26  19.78  
2 6768.2 7227.2 6768.4 7604.2 10.99 4.96  10.99  
2s 25079.2 26518.8 25080.1 27604.5 9.15 3.93  9.14  
3 6873.6 7595.9 6874.5 7968.9 13.75 4.68  13.73  
3s 9923.7 11503.9 9924.0 12979.6 23.54 11.37 23.54  
4 2640.0 3645.9 2640.4 4230.4 37.60 13.82 37.58  
4s 16359.1 16560.6 16359.3 16621.4 1.58 0.37  1.58  
5 5811.8 6470.4 5812.6 6905.1 15.83 6.29  15.82  
5s 5939.3 7490.2 5939.6 8742.5 32.06 14.32 32.06  
6 3527.9 4155.3 3535.3 4305.7 18.07 3.49  17.89  
6s 3684.6 4331.5 3685.4 4648.1 20.73 6.81  20.71  
7 3208.8 3929.1 3209.7 4397.2 27.03 10.65 27.01  
7s 1705.5 1975.9 1706.4 3059.2 44.25 35.41 44.22  
8 3344.0 3714.8 3344.2 4446.6 24.80 16.46 24.79  
8s 2707.0 3443.1 2708.0 3648.6 25.81 5.63  25.78  

Average Relative Performance 20.94 9.16  20.92  

 

4.3 Evaluation from Duplicated Genes and Swapped Arrays 

Table 4.3-1 shows the numbers of used spots excluding spike spots and bad spots in 

each array and its swapped array.  
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Table 4.3-1: Used spots excluding spike spots and bad spots in each array are listed 
and “x2” means two duplicates on every array. 

Array Used Spots Call Rate % 
1, 1s 7281x2 94.02% 
2, 2s 7306x2 94.34% 
3, 3s 7253x2 93.66% 
4, 4s 7292x2 94.16% 
5, 5s 7292x2 94.16% 
6, 6s 7347x2 94.87% 
7, 7s 7085x2 91.49% 
8, 8s 7280x2 94.01% 

 

The bad spots are defined by negative values of foreground minus background 

mean provided from GenePix 6.0. Those genes are used to investigate performance of 

GKDE, KDE, and GMM. Figure 4.3-1 shows agreement scatter plots of two replicates 

gene expression and swapped arrays using GKDE, KDE, GMM and Genepix 6 

respectively. The KDE has less outliers than the GKDE, GMM and GenePix 6. In 

addition, the GKDE and GMM have less outliers than the GnenePix 6.  
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Fig. 4.3-1: Top row shows four methods to evaluate duplicated spots for 3rd 
(red) and swapped 3rd (blue) arrays. The x-axis and y-axis represent average 
and difference between duplicated spots. Bottom row shows four methods to 
evaluate swapped arrays (3rd, 3rd s). The x-axis and y-axis represent summation 
and difference between swapped arrays.  

 

Figure 4.3-2 shows the concordance correlation coefficients, Pearson’s correlations 

and standard deviations between replicates gene expression of sixteen arrays and eight 

swapped arrays.  
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Fig. 4.3-2: Top and down figure are concordance correlations, Pearson’s 
correlations and standard deviations between duplicated spots of sixteen arrays 
and between swapped arrays of eight arrays using the GKDE, KDE, GMM and 
GenePix 6.  

The KDE has produced higher correlation and lower standard deviation than those 

by other methods tested on sixteen arrays with duplicated genes. And the same results 

as tested on swapped arrays, the KDE has provided lower standard deviation and 

higher correlation between tested eight swapped arrays. In addition, the GKDE and 

GMM both have higher correlations and lower standard deviations that the GenePix 6. 
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5. Discussion and Conclusion 

The proposed PDEM algorithm for microPET reconstruction with random 

correction is demonstrated to produce less noise level, high spatial resolution, and 

clear boundary of image than those of FORE+OSEM and FORE+FBP from the 

comparison studies of simulation, phantoms, and real mouse microPET data. 

Meanwhile, the PDEM method reconstructs images with lower CVs and smaller 

FWHMs than those generated by methods built into the microPET R4. In addition, the 

PDEM method has the same advantages as the MLEM method in PET 

reconstruction—namely, row operation, linear complexity, monotonic convergence, 

non-negativity and parallelizability.  

We have applied the GMM to segment 3D microPET images after the PDEM 

reconstruction. The GMM can model the segments of 3D microPET images with 

different distribution parameters. On the other hand, the K-means method proposed in 

literatures for segmentation microPET images assumed a constant variance for all 

clusters. Hence, the GMM approach is more flexible and accurate to model and 

segment microPET 3D images than K-means. The GMM proposed in this study can 

also perform the segmentation automatically through the initial estimated from the 

KDE method. On the other side, the seeding region growing methods proposed in 

literature for the segmentation of PET images, initial seeds were crucial to perform 
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images segmentation. The number of clusters was determined by a subjective choice 

or sequentially searching including the K-means method. When the activities of 

various clusters have different patterns, the slice normalization approach incorporated 

with GMM is useful to segment 3D images. For further investigation, it will be of 

great interest to further evaluate the qualitative and quantitative performance by more 

phantom and empirical studies with the comparisons to judgments from medical 

experts. 

The GMM and KDE methods are also applied to spotted microarray images. The 

effect of expression profiling on prognostic and predictive testing for cancer has been 

recently discussed [47]. However, the low reproducibility of microarray experiments 

[48, 49] impedes the scheduler from using a microarray to prognose and predict the 

outcome of cancer. We combine GMM and KDE methods to segment spotted cDNA 

images. The GKDE was expected to fine tune the GMM and to determine a suitable 

cutting point for clustering foreground and background using the KDE. The GKDE, 

KDE and GMM methods can improve the reproducibility in duplicated spots, in 

swapped arrays and the spike gene spots. This will be useful for the advanced 

utilization of microarrays in biology and medicine. 

In this study, the GKDE, KDE and GMM were applied to segment cDNA 

microarray images and the evaluation of performances was conducted. First, the spike 
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genes with known contents were designed on real microarrays, the criteria of SSRE 

and SSE measure the accuracy and performance. The GKDE, KDE and GMM more 

accurately estimate the features of spots than the adaptive region growing 

segmentation method in GenePix 6.0 does. Secondly, duplicated spots are utilized to 

examine expression variation on a microarray image. The KDE also has a better 

average relative performance, as measured by the concordance correlation coefficients, 

Pearson’s correlation coefficients and standard deviations of expression values of 

duplicated spots. Finally, swapped microarray experiments were conducted to study 

the variation among dyes. The correlation coefficients measure the linear relationship 

for the selected spots with significantly differentially expressed levels. Again, the 

KDE is more accurate, when tested on eight pairs of real swapped cDNA microarray 

images.  

Sixteen real microarray cDNA images were used to determine the accuracy and 

performance, by comparison with the adaptive irregular segmentation method in 

GenePix 6.0. The ratio of means is used to estimate features in segmented spots. 

Other statistics could be studied. Other methods for segmenting images can be studied 

further [50-52].  

The GKDE, KDE and GMM programs were run in under one thousand seconds to 

test one real cDNA microarray image on a personal computer with Intel CPU 2.6 GHz 
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and 2GB RAM. Especially, the KDE algorithm has model free, computational 

efficiency and improved performance for segmenting cDNA microarray images used 

for biology and medicine. The method of GKDE also have similar advantages. 
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6. Future Works 

The fully 3D reconstruction algorithms for microPET could be developed in the 

future. The PDEM is basically used to reconstruct 2D images now. The PDEM can 

not be applied to reconstruct fully 3D microPET images due to the difficulty of 

computing and calculus transmission probability matrix for 3D microPET data, P(b,d). 

Once new methods are developed to solve the problem of computing P(b,d), the 

PDEM is expected to reconstruct 3D microPET images more accurately in the future. 

This method can also be utilized in future works to reconstruct clinical PET images 

based on the same physical principle of data acquisition and mathematical models. 

Meanwhile, attenuation, normalization, scattering, and partial volume effects 

corrections can be considered to reconstruct microPET images. It is expected that the 

more useful correction or normalization methods added to reconstruction algorithms 

will yield more accurate and less noise images in the future. 

The stopping criterion of the EM algorithm can be also studied in the future. We 

can consider K-fold cross-validation and other possible methods. That is, the iteration 

will stop when the minimum predicted sum of square is reached by cross-validation. 

This can provide an objective method to decide the stopping criterion from data 

automatically. Because the EM algorithm has slow convergence rates, different 

methods have been proposed in literature to accelerate the EM algorithm [53]. Hence, 
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we can further evaluate improvements of the EM algorithm in future studies. For 

instance, we can consider the lazy EM algorithm [54], parallel EM algorithm [55], 

and related methods [56-57]. 

We have proposed new segmentation methods by the GMM with the KDE to 

improve the segmentation of 3D microPET and spotted microarray images. Automatic 

search of the number of clusters and initialized values can be determined by the KDE. 

Alternative methods for the searching of the number of clusters and initialized values 

from data can be investigated in the future.  

Spatial information can be integrated to improve segmentation. For instance, we 

can select connected regions for foreground to remove isolated pixels. Other methods 

for segmentation of images can be further investigated and compared in future 

studies. 
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9. Appendix 

A: PDEM Algorithm 

The observed data of prompt and delay sinograms are assumed to follow two 

independent Poisson distributions in (A1) and (A2),  

)),((~)( ** dPoissondnp λ                  (A1) 

)),((~)( ** dPoissondn rd λ                (A2) 

where  b=1,2,…,B, and d=1,2,…,D. 

Then, the incomplete log-likelihood of the prompt and delay sinograms are as follows, 
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Firstly, the observed data, ( )*
pn d  and ( )*

dn d , are treated as incomplete data. One 

possible model of complete data for the EM algorithm is given by (A4) and (A5): 

))(),((~),(* bdbpPoissondbn tp λ ,        (A4) 

))((~)( ** dPoissondn rd λ ,         (A5) 

where  is the number of emissions at the b),(* dbn p
th pixel detected by the dth tube; 

 is the number of random (or accidental) coincidence events detected by the d)(* dnd
th 

tube in the delay window; and  are assumed to be statistically 

independent; . According to models (A4) and (A5), the 

log-likelihood function of complete data is  
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The E-step computes the conditional expectation of the log-likelihood of complete 

data, given the observed incomplete data and old parameter values. In this study,  

is initialized by the FBP and is initialized by the method of moments, 

0
tλ

0*
rλ

Ddnn
d

dd /)(** ∑= . This E-step will generate a function of new parameter values of 

and , where i is the number of iterations, and the formula is given in (A7): i
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The M-step determines the  and  values that maximize (A7) which can be 

achieved by setting the first derivatives to zero. This step will yield the solutions 

given in (A8) and (A9): 
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B: Terminology 

1. Concordance correlation coefficient (ρc) is used to detect the departure to 450 

line.  

2. Filtered back-projection (FBP) is an algorithm that is commonly used in 

transmission tomography. 

3. Full width at half-maximum (FWHM) is a simple and well-defined 

measurement that is used to evaluate the quality of images obtained under 

different collection environments (as shown in Fig. B-1). 

 

Fig. B-1: The illustration of HWHM is shown. 

4. True, random and scatter coincidence events: 

True events are two gamma rays detected within a specific time window by the 

PET scanner (in Fig. B-2).  

Random events are two different single rays detected within a specific time 

window by the PET scanner (in Fig. B-2).  
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Scatter events are caused by two gamma rays deflected before reaching the 

detectors but detected within a specific time window by the PET scanner (in Fig. 

B-2).  

 

Fig. B-2: The true, random, and scatter coincidence events are illustrated. 

5. Span 

Span specifies how many adjacent LORs should be grouped together into the 

same axial angle (theta), where theta is defined to be the angle between the axial 

and transaxial axes. Choosing a larger span will not “throw away” data, but will 

reduce the size of the sinogram since there are fewer theta angles in the final 

sinogram. Of course, this comes at the price of degrading the axial resolution. The 

minimum span is 3 and the maximum is 63. 

6. Ring difference 

Ring difference specifies how many crystal rings away the rebinning algorithm 

should look for a coincidence event. For example, microPET® systems have 32 
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crystal rings, and therefore the maximum ring difference is 31, and if we specify a 

ring difference of 31, this means that coincidences that occur between crystal ring 

1 and crystal ring 32 (ring difference = 32 – 1) will be included in the sinogram, as 

well as all possible combinations of crystal rings. A ring difference of 3 means that 

coincidences between crystal ring 16 and crystal rings 13, 14, 15, 16, 17, 18 and 

19 will be included, but not coincidences between crystal rings 16 and 12, for 

example. The minimum allowed ring difference is 1 resulting in a reconstructed 

image always containing 63 planes instead of 32 (a ring difference of 0 would be 

needed to only have 32 planes). Not using the maximum allowed ring difference 

means that not all of the data will be used (i.e. data will be “thrown” away). 
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