
國 立 交 通 大 學 
 

電子工程學系 電子研究所碩士班 

碩 士 論 文 
 
 
 

採用以 MPEG-4 物件形式視訊編碼之視訊會議

傳送端之整合 
 
 
 

Integration of Videoconference Transmitter with MPEG-4 

Object-based Video Encoding 
 

 
 
 

研 究 生：蔡鎮宇 

指導教授：林大衛 博士 

 

中 華 民 國 九 十 四 年 六 月 



採用以 MPEG-4 物件形式視訊編碼之視訊會議

傳送端之整合 
 

Integration of Videoconference Transmitter with MPEG-4 

Object-based Video Encoding 
 
 

研 究 生：蔡鎮宇                   Student: Chen-Yu Tsai 
 

指導教授：林大衛 博士              Advisor: Dr. David W. Lin 
 

國 立 交 通 大 學 

電子工程學系      電子研究所碩士班 

碩 士 論 文 
 

A Thesis 
Submitted to Institute of Electronics 

College of Electrical Engineering and Computer Science 
National Chiao Tung University 

in Partial Fulfillment of Requirements 
for the Degree of 
Master of Science 

in 
Electronics Engineering 

June 2005 
Hsinchu, Taiwan, Republic of China 

 

中華民國九十四年六月 
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研究生：蔡鎮宇          指導教授：林大衛教授 

 

國立交通大學 電子工程系 電子研究所碩士班 

 

摘要 

 
 在本篇論文中，我們設計並實現一個在個人電腦上的物件形式視訊會議傳送

端。並將此系統用來組成一個在個人電腦上的多點視訊會議系統。採用物件形式

視訊編碼的最主要理由是為了節省資料量。 

 此傳送端的架構是由擷取、前置處理、MPEG-4 編碼器、即時傳輸規約(RTP)
所組成。在影像擷取的控制上，我們引用了 VfW 的模組來達成；而在聲音擷取

的控制上，我們則是引用了 MCI 模組來達成。 

 我們在前置處理時則能得到影像切割畫面。這一級的基本概念是將畫面與其

相對應的背景相減以得到移動的物件。首先，我們估計攝影機的雜訊，並且把此

結果拿來當做往後參數調整的參考。為了消除因為物體內部的平坦區域所造成的

錯誤背景，首先，我們先取得一個初步的背景。接著，我們利用影像變化加上填

補及收縮的技巧來取得一個粗略的物件輪廓，並利用此資訊來修正初步的背景。 

 接下來，我們使用一公開的程式 Microsoft MPEG-4 Software 加以修改以完

成編碼與解碼系統。希望能有高速的硬體及有效率的軟體，我們採用了平行處理

方式，而用 Intel 的 MMX 指令集來實現此方法。 

 希望我們所採用的網路傳輸協定的主要目的是為了實現多點即時系統，但我

們仍能控制所傳送的封包，首先，採用了媒體傳送整合框架，雖然它隸屬於

MPEG-4 規格的一部份，但並沒有被完善發展。所以我們改採用即時傳輸規約來

滿足我們的需求。 

 最後，在配備 Intel Centrino Pentium M 1.5 GHz cpu 及 512 MB DDR RAM 之

個人電腦及 Microsoft Windows XP Professional 作業系統下的測試結果，我們所

傳送的影像平均每秒 10.7 張。 
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Abstract 

We consider the design and implementation of an object-based videoconference 

transmitter on personal computer (PC). The purpose is to support multi-point virtual 

conferencing. The main reason that we introduce object-based video encoder into 

video conference is saving data amount. 

The structure of the transmitter system consists of capture, pre-processing, 

MPEG-4 encoder, RTP (Real-time Transport Protocol). The video capture process is 

aided by the VfW (Video for Windows package), and the audio capture process is 

aided by MCI (Media Control Interface) library. 

We get the segmented image in the pre-processing stage. The basic idea of the 

stage is a background subtraction technique. First, we estimate the camera noise and 

the result is used to decide the thresholds. Due to the problem of flat inner regions, we 

use short-term background to obtain an initial background which usually includes 

many flat inner regions at first. Second, a temporary foreground mask is obtained to 

remove the flat inner regions in the short-term background.  

Next, we use the public-domain software, Microsoft MPEG-4 software, to 

establish an MPEG-4 coding and decoding system. Hope to use 

 ii



high-processing-speed hardware and effective software to achieve real-time MPEG-4 

encoder, we introduce parallel processing which we implied with Intel’s MMX 

technology into this software. 

Hope to use network protocol which goal is to realize multi-point real-time 

system, but we could still control the package we delivery. First, we choose DMIF, 

Delivery Multi-media Integration Framework, which is belonged to MPEG-4 format, 

as the protocol. However, the algorithm of DMIF isn’t developed well and is almost 

given up in MPEG-4 conference. Hence we choose RTP, Real-time Transport 

Protocol to satisfy the need.  

Finally, the average frame rate we deliver is 10.7 frames per second on our test 

system. The test system is based on Intel Centrino Pentium M 1.5GHz, 512 MB DDR 

RAM and Microsoft Windows XP Professional Version 2002. 
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Chapter 1

Introduction

We consider the design and implementation of an object-based videoconference

transmitter on personal computer (PC). The purpose is to support multi-point vir-

tual conferencing. A companion thesis [1] describes the receiver.

To support object-based video composition in the receiver, we first apply video

segmentation to obtain the foreground (the conferee image). Then we send the

segmented image into the MPEG-4 video encoder, and send the compressed data to

the network later. The video segmentation algorithm is a modified version of that

in [2], which uses a background subtraction technique. The details are reviewed and

discussed in chapter 2.

The MPEG-4 standard addresses the generic coding of audio-visual objects. It

consists of six basic parts. They are systems, visual, audio, conformance testing,

reference software, and DMIF (Delivery Multi-media Integration Framework). We

employ the MPEG-4 video encoder in this study because of its object-based cod-

ing functionality, the high compression ability and the availability of an optimized

software [3].

Originally, we hoped that we could use DMIF as the network interface. Unfortu-

nately, the support of DMIF is questionable over the last few years and the available

software is difficult to use. Hence we turn to the RTP, Real-time Transport Protocol,

as the network protocol. RTP is constructed on the basis of UDP, User Datagram
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Protocol, which is part of the TCP/IP suite. However, it also provides error detec-

tion ability, so we could detect and correct errors, unlike UDP which provides no

reliability measures.

In the receiver end of the videoconference system, after receiving the data from

network, we use MPEG-4 video decoder to decode the signal, and compose the scene

using all the received videos [1].

What we discuss above is the video part of videoconference system. The audio

part is processed similarly. We encode it with the MPEG-4 audio encoder, and send

the compressed data using RTP. At the receiver, we may decode all received audio

signals and form a composite.

The general scheme at the transmitter side considered in this thesis for video-

conference contains the following steps: capture, pre-processing, MPEG-4 encoder,

and RTP, as shown in Fig. 1.1.

Video Capture

Audio Capture

MPEG-4
Video

Encoder

Segmentation

wav file

foreground

RTP

cmp file

aac fileMPEG-4
Audio

Encoder

Internet

Fig. 1.1: A basic videoconference system.

1. Capture: We use a camera device to capture video, and MCI (Media Control

Interface) to get audio input, both in real-time.

2. Pre-processing: With the real-time video we get from the first step, we ap-

ply segmentation to the video. The basic idea of the system is a background

2



subtraction technique. Then the moving objects of current frame can be ob-

tained by extracting the region different between the current frame and back-

ground [2]. The background is obtained by gathering the stationary regions

during the process of segmentation.

3. MPEG-4 encoders: We consider the optimized implementation of the MPEG-

4 video encoder in software on Intel MMX processor [3]. The implementation

on the code from Microsoft MPEG-4 Visual Reference Software, which is a

public source for MPEG-4 encoding and decoding. We use faac software for

audio encoding [34].

4. RTP: Real-time Transport Protocol (RTP) provides end-to-end network trans-

port functions suitable for applications transmitting real-time data. RTP does

not address resource reservation and does not guarantee quality-of-service for

real-time services. The data transport is augmented by a control protocol

(RTCP) to allow monitoring of the data delivery in a manner scalable to large

multicast networks, and to provide minimal control and identification func-

tionality. RTP and RTCP are designed to be independent of the underlying

transport and network layers. The protocol supports the use of RTP-level

translators and mixers [5].

This thesis is organized as follows. Chapter 2 is an overview of the video segmen-

tation. Chapter 3 introduces the MPEG-4 encoders. Chapter 4 describes the RTP.

Chapter 5 considers the integration of the video conference. Experimental results

of the implemented system are described in Chapter 6. Finally, Chapter 7 contains

the conclusion.

3



Chapter 2

The Video Segmentation
Algorithm

2.1 Video Segmentation Overview

Our video segmentation method is based on [2]. It is a background subtraction-

based scheme. The block diagram is shown in Fig. 2.1. To start, we estimate the

camera noise and some thresholds are decided according to the estimated camera

noise. We use a “temporary foreground mask” and “short-term background” to

generate a stationary background buffer. The object mask of each frame can be

obtained by finding the difference between the current frame and the stationary

background buffer. If scene change occurs, we may apply global motion estimation

to generate a panorama background buffer and recover the stationary background

buffer.

2.2 Two-Stage Noise Estimation

2.2.1 Influence of Noise

In this system, the image is captured by camera and then we get the initial image

from the output of camera. In the process of capturing, the image may suffer from
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Fig. 2.1: Structure of the video segmentation algorithm (from[2]).
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Fig. 2.2: A frame difference map of the Akiyo sequence (from[2]).

Fig. 2.3: A frame difference map of the Mother-and-Daughter sequence (from[2]).

camera noise and therefore the stationary background usually shows some difference

in successive frames. In general, larger camera noise makes good segmentation more

difficult to achieve. For example, when change detection-based technique [6] is

applied, the frame difference map of a sequence with larger noise (e.g., Fig. 2.2)

includes more background pixels than one with smaller noise (e.g., Fig. 2.3). It is

apparent that the former needs more processing to obtain a more accurate object

mask.
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2.2.2 Motivation of Noise Estimation

In the various steps of the segmentation algorithm, we use some thresholds or pa-

rameters to make decisions and the thresholds are usually adjusted to counter the

influence of noise. We can adjust those parameters manually, but this is inconvenient

since we have to tune them for different situations and it usually needs some experi-

ence. In order to reduce the complexity of threshold decision, these parameters are

adjusted based on the estimated camera noise level.

2.2.3 Camera Noise Model

We assume that the difference dk of stationary pixels between successive frames

obeys a zero mean Gaussian distribution N(0, σ) with variance σ2, that is,

p(dk|H0) =
1√

2πσ2
exp{− d2

k

2σ2
}

where H0 denotes the null hypothesis, i.e., the hypothesis that there is no change

at pixel k. As in [6], assume that the camera noise is uncorrelated between different

frames. Then the variance σ2 is equal to twice the variance of the assumed Gaussian

camera noise distribution.

2.2.4 Procedure for Noise Estimation

In order to estimate the variance σ2, the sample space should include those pixels

belonging to stationary background and exclude pixels belonging to moving objects.

Our idea to discriminate the two kinds of pixel is based on the observations illus-

trated in Fig. 2.4 for a particular scene. The lighter pixels which represent larger

differences are usually lumped together or are distributed like a strip when they

are introduced by moving objects. On the other hand, the larger frame differences

caused by camera noise are usually randomly distributed. Hence we reject the pixels
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Fig. 2.4: A frame difference map in the Mother-and-Daughter sequence (from[2]).

Fig. 2.5: Four masks for directional sums (from[2]).

whose neighbors have larger frame differences from the sample space during noise

estimation.

We use similar masks of [7] to find out those pixels that belong to moving objects.

For each pixel, we consider the four directional sums in the frame difference map as

shown in Fig. 2.5. If one of the four directional sums is larger than certain threshold,

we assume that the pixel belongs to a moving object.

The problem now is how we choose the threshold. Up to the present, we can only

calculate the variance σ2
G of the frame difference of the entire frame, and therefore

it is natural that we initially adjust the threshold based on σ2
G. If one of the four

directional sums of a pixel is larger than ασ2
G, where α is some suitable constant,
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Fig. 2.6: Mother-and-Daughter sequence (from[2]).

Fig. 2.7: Claire sequence (from[2]).

the pixel is classified to the group of pixels influenced by moving objects. After we

remove those pixels influenced by moving objects, the remaining pixels are used to

estimate σ2. In order to verify the performance of the method, the author of [2]

first manually chooses the pixels belonging to stationary background to estimate

the variance σ2. In Figs. 2.6 and 2.7, the white areas are chosen to estimate σ2 and

the estimation result is regarded as exact. As we can see in Figs. 2.8 and 2.9, this

method can effectively remove most pixels influenced by moving objects.

It is obvious that the results in Figs. 2.8 and 2.9 are still influenced by moving

objects, because we adjust the threshold based on variance σ2
G of entire frame which
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Fig. 2.8: Noise estimation of Mother-and-Daughter sequence (from[2]).

Fig. 2.9: Noise estimation of Claire sequence (from[2]).
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Fig. 2.10: Noise estimation of the Mother-and-Daughter sequence for the two-stage
method (from[2]).

has high relationship with moving objects. In order to reduce this problem, the

author of [2] considers a two-stage noise estimation method. In the first stage, he

uses ασ2
G as the threshold and get the variance σ2

1 of stage one. In the second stage,

he uses βσ2
1 as the threshold and then he can obtain the final result σ2

2 of stage two.

The final result is shown in Figs. 2.10 and 2.11. It can be seen that the result of the

two-stage method is closer to the exact value.

2.3 Temporary Foreground Mask

Next, we generate a temporary foreground mask and the mask is used in the sta-

tionary background buffer, scene change, and global motion estimation. In this

stage, we use change detection-based technique to obtain a rough mask. The major

advantage of this technique is that the frame difference can be obtained easily and

fast. In contrast, many more accurate object boundary identification methods are

more complex and time-consuming [8], [6]. In our algorithm, we only need to get
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Fig. 2.11: Noise estimation of the Claire sequence for the two-stage method (from[2]).

a rough mask at this stage, and therefore those time-consuming methods are not

needed, favoring the speed of the whole system.

2.3.1 Getting the Initial Object Mask

At first, we use a 3× 3 window to calculate the mean of squared frame difference at

each pixel. If the result is larger than threshold, the pixel is classifed as in a moving

object. On the other hand, a pixel is classified as background when the result is

smaller than threshold. The threshold here is adjusted based on the camera noise,

that is, γσ2. An example of thresholded frame difference map is shown in Fig. 2.12.

In the second step, we use the fill-in technique proposed in [8] to get a rough mask.

At first it assigns the pixels between the first and last white points in each row of

Fig. 2.12 to white points. This procedure is then repeated for each column and once

more for each row. The step-by-step results are shown in Figs. 2.13, 2.14, and 2.15,

respectively.
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Fig. 2.12: Thresholded frame difference map of Claire sequence (from [2]).

Fig. 2.13: Fill-in for each row (from [2]).

Fig. 2.14: Fill-in for each column (from [2]).
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Fig. 2.15: Second fill-in for each row (from [2]).

Fig. 2.16: Initial object mask of Mother-and-Daughter sequence (from [2]).

2.3.2 Refining the Initial Object Mask

Frequently, a rough mask obtained as in the previous section is enough for the

following stages while it may need more improvement in some cases. In Fig. 2.16,

for instance, there are two persons sitting side by side. Since the fill-in technique

always marks the region between the left and right boundaries, the background

between the two persons is always filled in. Although this problem can be mitigated

in the following stages, it will be very helpful if the mask here is more accurate.

In this stage, we use the edge information to correct the initial mask and the

Canny operator proposed in [9] is adopted to get edge information. The operator

performs a gradient operation on the image by convolving it with a gaussian filter
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Fig. 2.17: Edge map of Mother-and-Daughter sequence(from [2]).

and then nonmaximum suppression is applied to thin the edge. In the last step, the

thresholding operation with hysteresis is used to find and link edges. The thresh-

olding operation employs two thresholds: high-threshold and low-threshold. Pixels

whose gradients are larger than the high-threshold are regarded as edges and pix-

els whose gradients are smaller than the low-threshold are regarded as non-edges.

Pixels whose gradient are between the high-threshold and the low-threshold need to

check their neighbors. If one of its neighbors is regarded as an edge pixel, then it is

classified into edge. The edge map after applying the Canny operator is illustrated

in Fig. 2.17 for the Mother-and-Daughter sequence. The related code of Canny

operator is obtained from [10].

We refine the initial object mask by shrinking the initial mask to fit the edge

map. The initial mask, edge map and shrunk mask are shown in Figs. 2.16, 2.17

and 2.18, respectively, for the Mother-and-Daughter sequence. We can see that

the edge map includes many background edges and those background edges usually

interfere with the final result. To reduce the influence of the background edges, we

use a buffer to store them. When a position of the edge map always has an edge, we

assume that there is a background edge at the position. The result after removing

the background edges is shown in Fig. 2.19 and the final object mask is shown in
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Fig. 2.18: Refined mask of Mother-and-Daughter sequence (from [2]).

Fig. 2.19: Edge map after removing background edges in Mother-and-Daughter
sequence (from [2]).

Fig. 2.20. Comparing Figs. 2.16 and 2.20, we can see that the remaining background

due to background edges can be effectively removed.

2.4 Short-Term Background Estimation

The simplest way to judge whether a pixel is background is to check the frame differ-

ence at this location. Since the moving objects will cause a larger frame difference,

we can assume that a pixel belongs to background when the frame difference at this

location is very small from start to finish. For real-time application, we cannot wait

until the whole sequence is collected before making a decision. Hence we regard a
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Fig. 2.20: Final object mask of Mother-and-Daughter sequence (from [2]).

pixel as background when its frame difference is small for some consecutive frames.

The major disadvantage of this method is that it is easier to make a wrong deci-

sion when the time of observation is not long enough and therefore the obtained

background here is not reliable at some pixels.

We consider using six consecutive frames fk(i) (1 ≤ k ≤ 6) as the observation

window in time and a 3× 3 spatial window is used to calculate the frame difference

dm(i) = f6(i) − fm (1 ≤ m ≤ 5) for each location i in a frame. For every location

i, we calculate the mean and the variance of dm(i) (1 ≤ m ≤ 5). If the variance is

smaller than a threshold, it means the changes over the six frames are small and we

can regard the pixel at location i of the sixth frame as background. The threshold

here is also based on camera noise, that is, λσ2. The result is shown in Fig. 2.21 for

the earlier example.

2.5 Construction of Stationary Background Buffer

In this stage, the information from short-term background estimation and temporary

foreground is considered to generate the stationary background buffer.

Most of wrong decisions in the short-term are due to flat inner regions as shown

in Fig. 2.22. If an object has a large flat inner region, the overlap between successive
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Fig. 2.21: Result of short-term background estimation (from [2]).

Fig. 2.22: The influence of flat inner region (from [2]).

moving objects is still stationary and is easily regarded as background. In order to

reduce the influence of flat inner regions, we use the temporary foreground mask to

weight every pixel before we put the short-term background into the final background

buffer.

A weighting mask is shown in Fig. 2.23, where the black region represents reliable

background and is given higher weight while the white region represents objects and

is given zero weight. If a pixel is inside a gray region, it means the pixel is regarded

as background in the short-term background and its location is inside the temporary

foreground mask, it is easier to suffer from the flat inner region problem and we give it
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Fig. 2.23: The weighting mask of Mother-and-Daughter sequence (from [2]).

Fig. 2.24: Final background buffer after observing 280 frames (from [2]).

lower weighting. We accumulate the weighting for every pixel position and the short-

term background is put into the stationary background buffer when the accumulated

weighting meets a threshold. The lower-weighted points can still become background

when these points are always regarded as short-term background for a longer time,

to reduce wrong decisions due to flat inner region. The final background buffer after

280 frames are observed is shown in Fig. 2.24.
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2.6 Background Subtraction

The final object mask is obtained by finding difference between the current frame and

the stationary background buffer. For a better result, both difference in luminance

and difference in chromanace between the two frames are considered. In general,

the background of the current frame may suffer from light change and shadow and

the stationary background may contain some wrongly identified background pixels.

Therefore, using subtraction between the current frame and the background may

still leave some background pixels in the segmented foreground and there may be

small holes in the segmented foreground. For this reason, we have to remove small

regions after subtraction. There are two steps to remove the small regions. First,

remove the small regions outside the object mask. Second, remove the small regions

inside the object mask. In the first step, we check the connected length of object

mask for each row and remove pixels whose connected length is less than a threshold.

Then, the processing in used for each column. After we remove the regions outside

object mask, we have to fill in the wrongly identified object pixels which usually

looks like a hole inside object mask and the method is similar to the first step.

An example of the current frame and background is shown in Figs. 2.25 and 2.26.

The result after subtraction and thresholding is shown in Fig. 2.27. The final result

with small regions removed is shown in Fig. 2.28.

2.7 Experimental Performance and Analysis

We conduct experiments using a laptop computer equipped with Intel Centrino

Pentium M 1.5 GHz processor and 512 MB DDR RAM. The relative computing

time of every module is shown in Fig. 2.29. We use VTune software, which is

developed by Intel to analyze the performance of software, to get the result. The

higher time-consuming modules are stationary background buffer and small region
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Fig. 2.25: Frame 255 of mother and daughter sequence (from[2]).

Fig. 2.26: Stationary background buffer (from[2]).

Fig. 2.27: Mask after subtraction and thresholding (from[2]).
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Fig. 2.28: Final object mask (from[2]).

removal.

However, under the algorithm stated above, we find that for some yet unidentified

reasons the algorithm fails easily in certain particular conditions, such as when there

is a lattice background. Fig. 2.30 gives such an example. There is no foreground

in this scene. However, from Fig. 2.30, we see that the algorithm would view the

lattice part of the bag as foreground. No matter we look at the temp foreground or

the temp background, the result is the same.

Besides, we find that sometimes the algorithm works well under some conditions,

but sometimes it does not work well. Sometimes the algorithm even views whole

scene as the foreground. After examining the algorithm carefully, we realize the

key issue lies in the threshold. Two-stage noise estimation can yield more accurate

noise variance, but sometimes it also causes problem. We may need to adjust the

coefficients every time. If the coefficients are set improperly, then the segmentation

would not perform well.

We turn the two stage noise estimation to one noise stage estimation to rectify

the problem. The noise variance estimation is more rough, but on the average, the

performance is better if we do not adjust the parameter every time. Hence we leave

the option for the user to choose one stage noise estimation or two stage estimation.
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Fig. 2.29: Performance analysis of segmentation system.

Fig. 2.30: Performance of segmentation algorithm under lattice background. Top
left: input; top right: segmented foreground; bottom left: segmented background;
bottom right: processing statistics.
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2.8 The Modified the Video Segmentation Sys-

tem

2.8.1 Introduction

Fig. 2.31 shows a simplified version of the segmentation algorithm shown in Fig. 2.1.

We have made three major modifications as follows.

The first is the noise estimation stage. We modify it to have only one stage

rather than the original two stages as described above. Second, we just use the Y

pixels component to do video segmentation system, eliminating the use of U and V

components. The third is about the user interface. We only show the original video

in the system and eliminate the other windows. The goal of the first part is to make

the system more robust. The goal of the other two is mainly to optimize the speed.

2.8.2 Modified Noise Estimation Stage

Recall that the performance of two-stage noise estimation is better than one-stage,

but we leave the choice open to the users for reason of robustness. Note that we

should raise the threshold when there is more noise in the video and lower the

threshold otherwise.

In Fig. 2.32, we catch the scene of our lab as the input to collect the data. From

Fig. 2.32, we find an interesting fact that, in this particular case, most of the time

the sectional rate of processing using two noise stages is higher than using one noise

stage. (The sectional processing rate in the average processing speed of video frames

over 10-frame sections.) This is because the video environment is not suitable for

two noise stages. Therefore, the two stages method can not get a more accurate

background, and the segmentation system may not work.

From section 130 to 160, we see that the section rate of processing of two stage

24



Frame i

Frame
Buffer

Frame
Difference

Camera
Noise

Estimation

Short-term
Background
Estimation

Fill-in

Weighting

Stationary
Background

Buffer

Background
Subtraction

Object mask

Fig. 2.31: The block diagram of the segmentation system.
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Fig. 2.32: The sectional processing rate of noise estimation

noise is lower than one stage. We note that this is because the video is stationary

in this interface. Hence the segmentation system using two noise stages starts to

work, but the total complexity is higher than one noise stage. Overall, the sectional

rates of processing of these two alternatives are quite close in this case.

2.8.3 Using Only Y Component in Segmentation

These seems to be a bug in the original video segmentation program. After padding

from YUV420 to YUV444, the U and V components are not used, even in noise

estimation, the computation of temporal foreground, the computation of temporal

background, the fill-in function, and the obtainment of the weighting index from the

above two temporal masks.

However, the U and V components are used again to get the final image mask

which is the final step in the video segmentation program. We consider it a bug

because the program computes the noise variance and views it as the base for the
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threshold without including U and V components. In other words, we do not use

the information of U and V components in the most important factor — the noise

variance.

Now we focus on the final image mask function. Fig. 2.33 shows the related

code. In it, msey, mseu and msev are the absolute differences between the im-

age pixel value and the final background mask pixel value. IMAGE RATIO Y and

IMAGE RATIO UV are the thresholds we could compute as we get the noise vari-

ance. If the identification number of some pixel in the background mask is 255 (the

statement: if(backFINALid[index] == 255)), that means we consider the pixel as

the background in the final background mask. The program re-confirms that this

pixel is in the background if the error is small (by the statement: if(msey < IM-

AGE RATIO Y)&&(mseu < IMAGE RATIO UV)&&(msev < IMAGE RATIO UV))).

Thus this algorithm keeps a background pixel in the background buffer if the value

does not change sharply when a new frame comes in.

Note that the final background mask OM FinalImage is determined by the Y,

U, and V components (through msey, mseu, and msev). U and V components are

both determined by IMAGE RATIO UV, which is obtained through noise variance

analysis, though we get the noise variance only through the Y component. Hence

we remove “(mseu < IMAGE RATIO UV)&&(msev < IMAGE RATIO UV)” in

Fig. 2.33. The side effect is that we can also eliminate the padding method and

speed up the video segmentation program.

2.8.4 Modified User Interface

Fig. 2.34 shows the original interface of the video segmentation system. Besides the

preview of input video, it also shows the object mask and the stationary background

buffer. The display of the object mask and the stationary background buffer much

uses the SetPixel function. It consumes much computing resource. Hence we allow
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void  ImageMask( unsigned char  *OM_FinalImage, unsigned char  *backFINALid,
unsigned char  *ref6, unsigned char  *Utmp,unsigned char *Vtmp,
unsigned char *backFINAL, unsigned char *backFINALu, unsigned char

                            *backFINALv, int IMAGE_RATIO_Y, int IMAGE_RATIO_UV)
{

int uv1,uv2;
int width = 352 ;
int msey,mseu,msev ;
int index ;
//using 3x3 block as basic block

for(uv1=1;uv1<287;uv1++)
        {

for(uv2=1 ;uv2<351;uv2++)
{
  msey = 0 ;
  mseu = 0 ;
  msev = 0 ;

  index = uv1*352+uv2;

if(backFINALid[index] == 255)
  {
       msey = abs(ref6[index]-backFINAL[index] );
       mseu = abs(Utmp[index]-backFINALu[index]) ;
       msev = abs(Vtmp[index]-backFINALv[index]) ;

if((msey < IMAGE_RATIO_Y) &&(mseu < IMAGE_RATIO_UV)&&(msev < IMAGE_RATIO_UV))
{   //background

OM_FinalImage[index]  = 255 ;
}

}
}

}
}

Fig. 2.33: Related code of final image mask function.

Fig. 2.34: The entire application interface of video segmentation system (from [2]).

28



Table 2.1: Simulation Result about Windows

Function Final background Final foreground Total software
window window

Clockticks 885 1063 6351

the user to remove the displaying of the object mask and the stationary background

buffer.

2.8.5 Performance of Modified Interface

Fig. 2.35 shows the performance with the modified user interface in debug mode. The

mean sectional rate of processing of the original model is 5.088fps, and the variance

is 0.041072; the mean sectional rate of processing with elimination of one window

(final background window) is 6.183, and the variance is 0.03503; the mean sectional

rate of processing with elimination of two windows is 7.568, and the variance is

0.02526. Compared with the original model, the efficiency of eliminating one window

is enhanced by (6.183− 5.088)/5.088 = 21.5%, and that of eliminating two windows

is (7.568 − 5.088)/5.088 = 38.9%. Table 2.1 shows the separate window clockticks

and the total segmentation system clockticks, where 1 clocktick represents 1ms.

Fig. 2.36 shows the result under the release mode. The mean sectional rate

of processing of the original model is 5.6133fps, and the variance is 0.011315; the

mean sectional rate of processing with eliminating one windows (final background

window) is 7.4793, and the variance is 0.04000; the mean sectional rate of processing

with eliminating two windows is 9.9567, and the variance is 0.041706. Therefore the

efficiency of eliminating one window is enhanced by (7.4793 − 5.6133)/5.6133 =

33.2%; the efficiency of eliminating two windows by (9.9567 − 5.6133)/5.6133 =

77.4%.
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Fig. 2.35: Performance with modified user interface in debug mode.

Fig. 2.36: Performance with modified user interface in release mode.
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Chapter 3

Overview of MPEG-4

3.1 Introduction

MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts

Group), the committee that also developed the well known MPEG-1 and MPEG-2

standards. MPEG-4 is a newer standard started in 1994, with the mandate to stan-

dardize algorithms for audio-visual coding in multimedia applications. MPEG-4,

formally designated “ISO/IEC 14496,” was finalized in October 1998 and became

an International Standard in the first months of 1999. The fully backward compat-

ible extensions under the title of MPEG-4 Version 2 were frozen at the end of 1999,

to acquire the formal International Standard status early in 2000. Several extensions

were added since and work on some specific items is still in progress [11]. MPEG-4

builds on the proven success of three fields:

• digital television,

• interactive graphics applications (synthetic content), and

• interactive multimedia (World Wide Web, distribution of and access to con-

tent).
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3.2 Organization of the MPEG-4 Standard

The MPEG-4 standard addresses the generic coding of audio-visual objects, as il-

lustrated in Fig. 3.1. It (ISO/IEC 14496) consists of the following basic parts. The

following text is mainly taken from [12], [11].

Fig. 3.1: A high level view of an MPEG-4 terminal (from[13]).

1. ISO/IEC 14496-1: Systems

The MPEG-4 Systems specification defines architecture and tools to create

audio-visual scenes from individual objects. A major tool for MPEG-4 systems

is scene description. The MPEG-4 scene description, a totally new component

in the MPEG specifications, is based on VRML (virtual reality modeling lan-

guage) and specifies the spatial-temporal composition of objects in a scene.
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The scene description is at the core of the systems specification, and allows

easy creation of compelling audio-visual content.

2. ISO/IEC 14496-2: Visual

The MPEG-4 visual specification defines the main video codec. It consists of

natural, arbitrary shape and synthetic video coding.

For natural video coding, the main video coding tools are still texture coding,

similarly to MPEG-1 and MPEG-2. For intra coding, the MPEG-4 visual spec-

ification uses DCT, IDCT, intra prediction, quantization and de-quantization

to reduce spatial redundancy. For inter coding, the MPEG-4 visual specifi-

cation uses motion estimation and motion compensation to reduce temporal

redundancy. In visual coding, the major difference from MPEG-1 and MPEG-

2 is object coding. In MPEG-4, each picture is considered as consisting of

objects, since some MPEG-4 functionalities require access not only to entire

pictures but also to objects.

For synthetic video coding, in MPEG-4, mesh-based representation is useful.

MPEG-4 includes a tool for triangular mesh-based representation of general

objects.

3. ISO/IEC 14496-3: Audio

ISO/IEC 14496-3 (MPEG-4 Audio) is a new kind of audio standard that in-

tegrates many different types of audio coding: natural sound with synthetic

sound, low bit-rate delivery with high-quality delivery, speech with music,

complex sound tracks with simple ones, and traditional content with inter-

active and virtual-reality content. MPEG-4, unlike previous audio standards

created by ISO/IEC and other groups, does not target at a single application

such as real-time telephony or high-quality audio compression. MPEG-4 Au-

dio is a rather generic standard that applies to applications requiring the use
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of advanced sound compression, synthesis, manipulation, or playback. The

subparts specify state-of-the-art coding tools in several domains. However,

MPEG-4 Audio is more than just the sum of its parts. As the tools described

are integrated with the rest of the MPEG-4 standard, new possibilities for

object-based audio coding, interactive presentation, dynamic sound tracks,

and other sorts of new media, are enabled.

4. ISO/IEC 14496-4: Conformance Testing

This part of ISO/IEC 14496 specifies how tests can be designed to verify

whether bitstreams and decoders meet requirements specified in parts 1, 2, and

3 of ISO/IEC 14496. In this part of ISO/IEC 14496, encoders are not addressed

specifically. An encoder may be said to be an ISO/IEC 14496 encoder if it

generates bitstreams compliant with the syntactic and semantic bitstreams

requirements specified in parts 1, 2 and 3 of ISO/IEC 14496.

5. ISO/IEC 14496-5: Reference Software

Reference software is normative in the sense that any conforming implemen-

tation of the software, taking the same conforming bitstreams, using the same

output file format, will output the same file. Complying ISO/IEC 14496 im-

plementations are not expected to follow the algorithms or the programming

techniques used by the reference software. Although the decoding software

is considered normative, it cannot add anything to the technical description

included in parts 1, 2, 3 and 6 of ISO/IEC 14496.

6. ISO/IEC 14496-6: DMIF

DMIF, or Delivery Multi-media Integration Framework, is an interface between

the application and the transport, which enables the MPEG-4 application

developer to stop worrying about the transport. A single application can run

on different transport layers when supported by the right DMIF instantiation.
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Fig. 3.2: DMIF communication architecture (from [30]).

MPEG-4 DMIF supports the following functionalities:

• A transparent MPEG-4 DMIF-application interface irrespective of whether

the peer is a remote interactive peer, broadcast or local storage media.

• Control of the establishment of FlexMux channels.

• Use of homogeneous networks between interactive peers: IP, ATM, mo-

bile, PSTN, Narrowband ISDN.

• Support for mobile networks, developed together with ITU-T.

• User commands with acknowledgment messages.

• Management of MPEG-4 Sync Layer information.

Fig. 3.2 introduces the architecture of DMIF communication, and Fig. 3.3 in-

troduces the overall MPEG-4 streaming system with DMIF inside. However, the

available software has not been developed well. For example, the publicly available

IM1 software is not easy to use. Further, the activities in DMIF have waned in

recent years.
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Fig. 3.3: MPEG-4 streaming system architecture (from [30]).

Originally we would like to use DMIF as the network interface because the goal

of DMIF is for object-based transmission. However, because of the above reasons

we decide to turn to RTP for the network interface.

3.3 MPEG-4 Audio Coding Overview (from [29])

MPEG-4 is based on the notion that the audio part of the audiovisual scene presented

at the receiver is composed of one or more so-called audio objects. Different audio

compression tools (codecs) are available to enable an efficiently coded representa-

tion of the audio objects in a scene. Natural audio objects, such as recorded speech

and music, can be coded at bitrates typically ranging from 2 kbit/s (for narrow-

band speech) to 64 kbit/s/ch (for CD quality music) using parametric speech coding

(HVXC), CELPbased speech coding, parametric audio coding (HILN) or transform-

based general audio coding (AAC, TwinVQ). The natural audio and speech coding
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Fig. 3.4: Block diagram of a complete MPEG4 Audio decoder (from [29]).

tools support bitrate scalability, also known as embedded coding. In addition, the

parametric coding tools also provide speed and pitch change functionality in the de-

coder. Synthetic audio objects can be represented using a TextToSpeech Interface

(TTSI) or the Structured Audio (SA) synthesis tools. Other uses of the SA tools

are adding effects, like reverberation, and mixing different audio objects to compose

the final “audio scene” that is presented to the listener.

Fig. 3.4 shows the block diagram of a complete MPEG-4 Audio decoder. It

includes the decoding tools for the audio objects defined in Part 3 (Audio) of the

MPEG-4 Standard as well as bitstream demultiplexing and scene composition de-

fined in the Systems part.

The information needed to decode an audio object at the decoder is conveyed by

means of a so-called elementary stream (ES), as shown in Fig. 3.5 In case of bitrate

scalable configurations, a base-layer ES and one or more enhancement-layers ES(s)

are used. The initial ES Descriptor contains an AudioSpecificConfig element, which
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Fig. 3.5: MPEG4 Elementary Stream (ES) conveying an audio object (from [29]).

carries the audio object type (AOT) and further information required to instantiate

the required audio decoder. Using the ES ID, the ES Descriptor points to the stream

of the actual compressed audio data, which is a sequence of socalled access units

(AU), i.e., decodable bitstream frames.

3.4 MPEG-4 Video Coding Overview (from [14])

3.4.1 Structure of Video Data

An input video sequence can be defined as a sequence of related snapshots or pic-

tures, separated in time. Many of MPEG-4 functionalities require access not only

to entire sequence of pictures, but to an entire object, and further, not only to in-

dividual pictures, but also to temporal instances of these objects within a picture.

Fig. 3.6 shows the organization of coded MPEG-4 Video in a top-down hierarchical

structure.

• VideoSession (VS): A Video session is the highest syntactic structure of the

coded visual bitstream and simply consists of an ordered collection of video
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Fig. 3.6: Logical structure of coded video data (from [15]).

I−frame I−frameB−frame P−frameP−frame

Fig. 3.7: Types of VOP.
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objects. The complete MPEG-4 scene which may contain any 2-D or 3-D

natural or synthetic objects.

• VideoObject (VO): A Video object (2D + time) represents a complete scene

or a portion of a scene with a semantic. In the simplest case this can be a

rectangular frame, or it can be an arbitrarily shaped object corresponding to

a physical object or background of the scene.

• VideoObjectLayer (VOL): Each video object can be encoded in scalable (multi-

layer) or non-scalable form (single layer), depending on the application, rep-

resented by VOL. The VOL provides support for scalable coding. A video

object can be encoded using spatial or temporal scalability, going from coarse

to fine resolution.

• GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional

entities. The GOV groups together video object planes. GOVs can provide

points in the bitstream where video object planes are encoded independently

from each other, and can thus provide random access points into the bitstream.

• VideoObjectPlane (VOP): A VOP is a time sample of a video object. Figure

3.7 shows three of the four types of VOP that use different coding methods:

1. An Intra-coded (I) VOP is coded using information only from itself.

2. A Predictive-coded (P) VOP is a VOP which is coded using motion com-

pensated prediction from a past reference VOP.

3. A Bidirectionally predictive-coded (B) VOP is a VOP which is coded

using motion compensated prediction from a past and/or future reference

VOP(s).

4. A Sprite (S) VOP is a VOP for a sprite object or a VOP which is coded
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Fig. 3.8: High level structure of VO based encoder (from [13]).

using prediction based on global motion compensation from a past refer-

ence VOP.

3.5 MPEG-4 Video Texture Coding (from [13],

[16] and [15])

Fig. 3.8 shows a high level logical structure of a VO based encoder. Fig. 3.9 presents

the internal structure of the VO encoder. The main components are VO seg-

menter/formatter, VO encoders, system multiplexer/demultiplexer, VO decoders

and VO compositor.

3.5.1 VOP Formation

After segmentation, the video object shape information is obtained. The shape

information is hereafter referred to as alpha plane. There are two kinds of alpha

plane. One is binary alpha plane which contains two kinds of data. The value 255

is assigned to pixels belonging to the objects and 0 is assigned to pixels outside the

objects. The other one is grey scale alpha plane which is used for hybrid (of natural

and synthetic) scenes generated by blue screen composition and is represented by
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Fig. 3.9: Detailed structure of VO encoder (from [13]).

an 8-bit component.

The alpha plane is used to form a VOP. For the binary alpha plane, a rectangular

bounding box enclosing the shape to be coded is formed such that its horizontal and

vertical dimensions are extended to multiples of 16 pixels (MB size). For efficient

coding, it is important to minimize the number of macroblocks contained in the

bounding box.

3.5.2 Shape Coding

After VOP formation, the alpha plane of VOP will be coded prior to coding motion

vector and texture based on the VOP image bounding box. Binary alpha planes

are encoded by modified context-based arithmetic encoding (CAE) while grey scale

alpha planes are encoded by motion compensated DCT similar to texture coding.

An alpha plane is also bounded by an extended rectangular bounding box. The

bounded alpha plane is partitioned into blocks of 16×16 samples (hereafter referred

to as alpha blocks) and the encoding/decoding process is done per alpha block.
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3.5.3 Motion Coder

There are four types of VOPs (see Fig. 3.7 and associated discussion) that use

different coding methods. Motion coding is necessary only for P-VOP and B-VOP

to reduce temporal redundancy. The motion coder consists of a motion estimator,

motion compensator, previous/next VOPs store and motion vector (MV) predictor

and coder. In order to perform motion prediction on a per VOP basis, the motion

estimation of the blocks on the VOP borders has to be modified from block matching

to polygon matching.

3.5.4 Texture Coder

The texture information of a video object plane is present in the luminance Y and two

chrominance components Cb and Cr of the video signal. In the case of an I-VOP, the

texture information resides directly in the luminance and chrominance components.

In the case of motion compensated VOPs the texture information represents the

residual error remaining after motion-compensated prediction. The texture coder

includes padding process (if needed), 8×8 block based DCT, quantization, coefficient

prediction, coefficient scan and variable length coding.

3.6 MPEG-4 Video Encoder Optimization for In-

tel’s MMX Technology

3.6.1 Overview of Intel’s MMX Technology (from [17], [18]

and [19])

The multimedia extensions (MMX) for the Intel Architecture (IA) were designed

to enhance performance of advanced media and communication applications. The

MMX technology introduces new general-purpose instructions. These instructions
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Fig. 3.10: MMX packed data types (from [17]).

operate in parallel on multiple data elements packed into 64-bit quantities. These

instructions accelerate the performance of applications with compute-intensive al-

gorithms that perform localized, recurring operations on small native data.

The MMX technology uses the single instruction, multiple data (SIMD) tech-

nique. This technique speeds up software performance by processing multiple data

elements in parallel, using a single instruction. The MMX technology supports paral-

lel operations on byte, word, and doubleword data elements, and the new quadword

(64-bit) integer data type.

The MMX technology defines a simple and flexible SIMD execution model to

handle 64-bit packed integer data. This model adds the following new features to

the IA: New data types, MMX registers and enhanced instruction set.

MMX Data Types

The MMX technology introduced the following four new 64-bit data types as illus-

trated in Fig. 3.10:

• Packed byte: 8 bytes packed into one 64-bits quantity.
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• Packed word: 4 words packed into one 64-bits quantity.

• Packed doubleword: 2 doubleword packed into one 64-bits quantity.

• Packed quadword: One 64-bits quantity.

The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB),

and bit 63 is the most significant bit (MSB). The low-order bits are the lower part

of the data element and the high-order bits are the upper part of the data element.

Bytes in a multi-byte format have consecutive memory addresses. The ordering is

little endian. That is, the bytes with lower addresses are less significant than the

bytes with higher addresses.

MMX Registers

The MMX register set consists of eight 64-bit registers as shown in Fig. 3.11, which

are used to perform calculations on the MMX packed data but cannot be used to

address memory. Values in MMX registers have the same format as a 64-bit quantity

in memory. These registers are aliased to the floating-point registers. The MMX

instructions access the MMX registers directly using the register names MM0 to

MM7.

3.6.2 Introduction to the MMX Instruction Set

This section provides an overview of MMX instruction groups. Detailed informa-

tion can be found in [19]. The MMX instructions are grouped into the following

categories:

• Data transfer

• Arithmetic

• Comparison
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Fig. 3.11: MMX register set.

• Conversion

• Unpacking

• Logical

• Shift

• Empty MMX state instruction (EMMS)

Table 3.1 gives a summary of the instructions in the MMX instruction set.

Data Transfer Instructions

We can transfer 32-bit or 64-bit data from memory to MMX registers and visa versa,

or from integer registers to MMX registers and visa versa by a single instruction.

We can transfer 32-bit data by MOVD and 64-bit data by MOVQ.

Arithmetic

The arithmetic instructions perform addition, subtraction, multiplication, and multiply-

add operation on packed data types. For example, PADDB, PADDSB and PAD-

DUSB instructions add signed or unsigned packed byte integers in wraparound
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Table 3.1: MMX Instruction Set Summary [3].

Category Wraparound Signed Usinged
Saturation Saturation

32-bit Transfers 64-bit Transfers
Data Transfer
Register to Register MOVD MOVQ
Load from Memory MOVD MOVQ
Store to Memory MOVD MOVQ
Arithmetic
Addition PADDB, PADDW, PADDSB, PADDUSB

PADDD PADDSW PADDUSW
Subtraction PSUBB, PSUBW, PSUBSB, PSUBUSB,

PSUBD PSUBSW PSUBUSW
Multiplication PMULL, PMULH
Multiply and Add PMADD
Comparison
Compare for Equal PCMPEQB,

PCMPEQW,
PCMPEQD

Compare for PCMPGTPB,
Greater Than PCMPGTPW,

PCMPGTPD
Conversion
Pack PACKSSWB, PACKUSWB

PACKSSDW
Unpack
Unpack High PUNPCKHBW,

PUNPCKHWD,
PUNPCKHDQ

Unpack Low PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQ
Packed Full 64-bit

Logocal
And PAND
And Not PANDN
Or POR
Exclusive OR PXOP
Shift
Shift Left Logical PSLLW, PSLLD PSLLQ
Shift Right Logical PSRLW, PSRLD PSRLQ
Shift Right Arithmetic PSRAW, PSRAD
Empty MMX State EMMX
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Fig. 3.12: PACKSSDW instruction operation using 64-bit operands ([19]).

mode, signed packed byte integers in signed saturation mode, unsigned packed byte

integers in unsigned saturation mode, respectively.

Comparison Instructions

The comparison instructions compare the packed data in the source and destination

operands for equal to or greater than. These instructions generate a mask of ones

or zeros which are written to the destination operand.

Conversion Instructions

The conversion instructions perform conversions between the packed data types.

For example, PACKSSDW instruction converts packed signed doubleword integers

into packed signed word integers, using saturation to handle overflow conditions as

shown in Fig. 3.12 for an example of the packing operation.

Unpack Instructions

The unpack instructions unpack bytes, words, or doublewords from the high- or

low-order elements of the source and destination operands and interleave them in

destination operand. By placing all 0s in the source operand, these instruction

can be used to convert byte integers to word integers, word integers to doubleword

integers, or doubleword integers to quadword integers.
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Logical Instructions

The logical instructions perform bitwise logical operations on 64-bit quantities. For

example, we can generate a zero register in MM0 by using “PXOR mm0, mm0.”

Shift Instructions

The shift instructions have two types: logical shift and arithmetic shift. Logical

shift instructions perform a logical left or right shift of the data elements and fill

the empty high or low order bit position with zeros. Arithmetic shift instructions

perform an arithmetic right shift, copying the sign bit for each data elements into

empty bit positions on the upper end of each data elements.

EMMS Instructions

The EMMS instruction empties the MMX state. This instruction must be used to

clear the MMX state at the end of an MMX routine before calling other routines

that can execute floating-point instructions.

EMMS Instructions

The EMMS instruction empties the MMX state. This instruction must be used to

clear the MMX state at the end of an MMX routine before calling other routines

that can execute floating-point instructions.

3.6.3 SSE and SSE2, Later Extensions of MMX Technology

(from [3])

The streaming SIMD extensions (SSE) were introduced into IA-32 architecture in

the Pentium III processor family and the stream SIMD extensions 2 (SSE2) were

introduced into IA-32 architecture in the Pentium 4 and Intel Xeon processor.
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Overview of SSE Extensions

The SSE extensions extend the SIMD execution model, by adding facilities for han-

dling packed or scalar single-precision floating-point values contained in 128-bit reg-

isters. The SSE extension add the following features to the IA-32 architecture.

• Eight 128-bit data registers, call the XMM registers named by XMM0 to

XMM7.

• The 32-bit MXCSR register, which provides control and status bits for oper-

ations performed on the XMM registers.

• The 128-bit packed single-precision floating-point data (four IEEE single-

precision floating-point values packed into a double quadword).

• Instructions that perform SIMD operation on single-precision floating-point

values and that extend the SIMD operations that can be performed on integers:

– 128-bit packed and scalar single-precision floating-point instructions that

operate on operands located in XMM registers.

– 64-bit SIMD integer instructions that support additional operations on

packed integer operands located in the MMX registers.

• Instructions that save and restore the state of MXCSR register.

• Instruction that support explicit prefetching of data, control of the cacheability

of data, and control the ordering of store operations.

• Extensions to the CPUID instruction.

SSE Programming Environment

Figure 3.13 shows the execution environment for the SSE extensions. All SSE in-

structions operate on the XMM registers and/or memory as follows:
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Fig. 3.13: SSE execution environment (from [18]).

• XMM registers: These eight registers are used to operate on packed or scalar

single-precision floating-point data. The scalar operations are performed on

individual single-precision floating-point values stored in low doubleword of an

XMM register.

• MXCSR register: This 32-bit register provides status and control bits used in

SIMD floating-point operations.

• MMX registers: This portion is the same as MMX.

• General-purpose registers: This portion is the same as MMX.

• EFLAGS register: This 32-bit register is used to record results of some compare

operations.

SSE Instruction Set

The SSE instructions are divided into four functional groups

• Packed and scalar single-precision floating instructions.
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• 64-bit SIMD integer instructions

• State management instructions

• Cacheablility control, prefetch, and memory ordering instructions.

The instructions we used are 64-bit SIMD integer instructions for example, PSADBW.

Detailed information on SSE instructions can be found in [18]

Overview of SSE2 Extensions

The SSE2 extensions use the same SIMD execution model that is used with the MMX

technology and SSE extensions. The SSE2 extensions add the following features to

the IA-32 architecture.

• Five data types:

– 128-bit packed double-precision floating-point (two IEEE Standard 754

double-precision floating-point values packed into a double quadword).

– 128-bit packed byte integers.

– 128-bit packed word integers.

– 128-bit packed doubleword integers.

– 128-bit packed quadword integers.

– Instructions that support explicit prefetching of data, control of the

cacheability of data, and control the ordering of store operations.

• Instructions to support the additional data type and extend existing SIMD

integer operations:

– Packed and scalar double-precision floating-point instructions.

– Additional 64-bit and 128-bit SIMD integer instructions.
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– 128-bit versions of SIMD integer instructions introduced with MMX tech-

nology and the SSE extensions.

– Additional cacheability-control and instruction-ordering instructions.

The SSE2 program environment is same as SSE and no new registers are defined

with the SSE2 extensions.

SSE2 Instruction Set

The SSE2 instructions are divided into four functional qroups

• Packed and scalar double-precision floating instructions.

• 64-bit SIMD and 128-bit SIMD integer instructions

• 128-bit extensions of SIMD integer instructions introduced with the MMX

technology and the SSE extensions

• Cacheablility-control and instruction-ordering instructions.

The instructions we used are 128-bit SIMD integer instructions. All of the 64-bit

SIMD integer instructions introduced with the MMX technology and the SSE ex-

tensions have been extended with the SSE2 extensions to operate on 128-bit packed

integer operands located in the XMM registers. For example, where the 64-bit ver-

sion of PADDB instruction operates on 8 packed bytes, the 128-bit version has been

extended to operate on 16 packed bytes. Detailed information on SSE2 instructions

can be found in [18].

53



3.7 Microsoft MPEG-4 Visual Reference Software

(from [31])

The Microsoft MPEG-4 Video Reference Software is a public source for encoding and

decoding video sequence using the MPEG-4 compression format. The C++ code of

this reference software is provided in three executables. Theses are encoder.exe, de-

coder.exe and converpar.exe. The convertpar.exe is a utility program for upgrading

from old to new parameter files.

The source files and directories are arranged as shown in Table 3.2, and Table

3.3 indicates which tools are supported in this software. The funtionalities defined

by this reference software conforms to main and simple scalable profiles of MPEG-4.

Not all the functionalities of MPEG-4 are present, only natural video is covered.

System layer functionality and 3D/SNHC parts are not included. We employ an

optimized version of this software in our system [3].

3.8 Code Acceleration of MPEG-4 Encoder

Several methods are exploved in [3] to accelerate the encoder. One of them is to

use the MMX technology to modify the most computation-intensive operations of

the encoder while the other is at the algorithm level, modifying the video coding

algorithm for decreasing of complexity.

3.8.1 Example of Optimization

Fig. 3.14 shows that the most computation is spent on functions relating to motion

estimation. The major functions of motion estimation are summarized in Table 3.4

and we also show the percentage complexity of each function with respect to the

encoder and to the motion estimation. Therefore, we take blkmatch16 optimization
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Table 3.2: Source Files and Directories Arrangement of MPEG-4 Video Reference
Software (from [31])

Encoder
\app\encoder\encoder.dsp Encoder project file
\app\encoder\encoder.cpp Encoder main()
\sys Common files
\sys\encoder Encoder specific
\tools
\type Common types
\vtc Wavelet code
Decoder
\app\decoder\decoder.dsp Decoder project file
\app\decoder\decoder.cpp Decoder main()
\sys Common files
\sys\decoder Decoder specific
\tools
\type Common types
\vtc Wavelet code
Paremeter File Conversion Utility
\app\convertpar\convertpar.dsp Convertpar project file
\app\convertpar\convertpar.cpp Convertpar main()

as the example [3].

Optimization of blkmatch16

The blkmatch16 function finds the best matched MB in the previous reconstructed

VOP and is applied to MBs which are totally in VOP. The search method in the

original reference software is spiral full search. The hotspots of blkmatch16 are

shown in Fig. 3.15.

As we can see, the most complexity is to calculate SAD (sum of absolute differ-

ences) at integer pixel displacements. The modified code that uses MMX instruc-

tions for the SAD kernel is shown in Fig. 3.16.

The major instruction used is “psadbw.” The psadbw instruction computes

the absolute differences of 8 unsigned byte integers using 64-bit operands. These 8

differences are then summed to produce an unsigned word integer result that is stored
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Table 3.3: Funtionalities of the Microsoft MPEG-4 Video Reference Software
(from [31])

Tool Version Comments
Basic 1 Supported
(I-VOP, P-VOP, AC/DC Prediction, 4MV, Un-
resticted MV)
B-VOP 1 Supported. No MPEG rate con-

trol.
P-VOP with OBMC 1 Supported
Method 1, Method 2 Quantisation 1 Supported
Error Resilience 1 Syntax only.No recovery from er-

ror supported.
Short Header (H.263 emulation) 1 Decode only.
Binary Shape (progressive) 1 Supported. No automatic VOP

generation.
Grayscale Shape 1 Supported
Interlace 1 Supported
N-Bit 1 Supported
Sprite 1 Supported. No warping parame-

ter estimation.
Still Texture 1 Supported
Dynamic Resolution Conversion 2 Supported
NEWPRED 2 Upstream signaling is simulated

not implemented.
Global Motion Compensation 2 Supported
Quarter-pel Motion Compensation 2 Supported
SA-DCT 2 Supported
Error Resilience for Still Texture Coding 2 Supported
Wavelet Tiling 2 Supported
Object Based Spatial Scalability (Base) 2 Supported
Object Based Spatial Scalability (Enhancement) 2 Supported
Multiple Auxiliary Components 2 Supported
Complexity Estimation Support 2 Bitstream syntax supported

only.

Table 3.4: Major Functions of Motion Estimation (from [3])

Functions Execution Time Rate w.r.t. whole encoder Execution Time Rate w.r.t. ME
blkmatch16 64.66% 69.04%
blkmatch16WithShape 23.88% 25.50%
blkmatchForShape 4.07% 4.34%
blockmatch8 0.22% 0.23%
blockmatch8WithShape 0.03% 0.03%
Others 0.79% 0.85%
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Fig. 3.14: Breakdown of execution time in Microsoft MPEG-4 Visual Reference
Software (from [3]).

Hotspots code segment of blkmatch16 Clockticks Events per VOP 

for (iy = 0; iy < MB_SIZE; iy++){                           

 for (ix = 0; ix < (MB_SIZE; ix++) 

  mbDiff += abs (ppxlcTmpC [ix] - ppxlcRefMB [ix]); 

 if (mbDiff >= iMinSAD)                              

  goto NEXT_POSITION; // skip the current position 

 ppxlcRefMB += m_iFrameWidthY;                     

 ppxlcTmpC += MB_SIZE;                            

}               

17,665,616 

354,874,222 

624,059,434 

63,822,424 

 

14,245,596 

11,929,677 

 
Fig. 3.15: Code segment of hotspots of blkmatch16 (from [3]).
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for (iy = 0; iy < 4; iy++){
__asm
{

pxor mm6, mm6;
pxor mm7, mm7;
mov edx, ppxlcRefMB;
mov ebx, ppxlcTmpC;
movq mm1,[edx];    // read 1st 8 pixels of reference block
movq mm2,[edx+8];  // read next 8 pixels of reference block
psadbw  mm1, [ebx]; // calculate SAD of pairs of 1st 8 pixels
psadbw  mm2, [ebx+8]; // calculate SAD of pairs of next 8 pixels
paddw   mm6, mm1; // add to buffer for final SAD
paddw   mm7, mm2; // add to buffer for final SAD
mov eax, dword ptr [iFrameWidthY] // Calculate SAD of next row
movq mm1, [edx][eax];
movq mm2, 8[edx][eax];
psadbw mm1, [ebx+16];
psadbw mm2, [ebx+24];
paddw   mm6, mm1;
paddw   mm7, mm2;
mov eax, dword ptr [iFrameWidthYx2]; // Calculate SAD of 3rd row
movq mm1, [edx][eax];
movq mm2, 8[edx][eax];
psadbw mm1, [ebx+32];
psadbw mm2, [ebx+40];
paddw   mm6, mm1;
paddw   mm7, mm2;
mov eax, dword ptr [iFrameWidthYx3]; // Calculate SAD of 4th row
movq mm1, [edx][eax];
movq mm2, 8[edx][eax];
psadbw mm1, [ebx+48];
psadbw mm2, [ebx+56];
paddw   mm6, mm1;
paddw   mm7, mm2;
paddd   mm7, mm6; // Calculate the SAD of 4 rows
movd    eax, mm7;
add     eax, dword ptr [mbDiff]
mov     dword ptr [mbDiff], eax
emms

}
if (mbDiff >= iMinSAD)

goto NEXT_POSITION; // skip the current position
ppxlcRefMB += iFrameWidthYx4;
ppxlcTmpC += iMB_SIZEx4;

}

Fig. 3.16: Revised code segment of SAD kernel of integer pixel motion search
(from [3]).
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in the destination operand. The original C++ code contains a premature breakout

mechanism that saves iterations loop by comparing the SAD value accumulated after

each row with the current minimum SAD value. According to [20], this premature

breakout mechanism will decrease the efficiency. But experiment reported in [3]

shows that if we comment out this mechanism the efficiency will be a little lower

than we keep it and unroll the loop four times so that each loop iteration calculates

the SAD for 4 rows of the macroblock.

3.9 Conclusion in Optimization

The results after optimization are shown in Figs 3.17 and 3.18 for motion estimation

and other encoder blocks respectively.

The clockticks per VOP for motion estimation is reduced from 2,553M to 203M,

29M, 27M and 24M for full search, 2D logarithmic search, new diamond search and

diamond search, respectively.

The clockticks per VOP for VOP formation is reduced from 29.8M clockticks to

7.6M clockticks which is 74.5% reduction. The clockticks per VOP for DCT/IDCT

is reduced from 22.9M clockticks to 16.7M clockticks which is 27.07% reduction.

The clockticks per VOP for motion compensation is reduced from 16.6M clockticks

to 9.8M clockticks which is 40.9% reduction. The clockticks for quantization and

inverse quantisation is reduced from 9.3M clockticks to 8.6M clockticks which is

7.5% reduction.
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Fig. 3.17: Comparison between original reference software and optimized code in
execution time for motion estimation (from [3]).
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Table 3.5: Clockticks Complexity Analysis of MPEG-4 Encoder

Function Clockticks Ratio in total system (%)
whole system 50097 100
apply (belonged to CBlockDCT) 3411 7
blkmatchForShape 2230 5
quantizeInterDCTcoefMPEG 1934 4
biInterpolateY 1418 3
blkmatch16WithShape 1353 3
blockmatch8 1166 3

3.10 Performance Analysis of MPEG-4 Encoder

for Videoconference

Because we use binary shape coding in our videoconference system, the complexity

breakdown is a little different from the above. Fig. 3.19 illustrates this statistics.

We see that the complexity relatively evenly distribute over many functions. There

is no major bottleneck in the MPEG-4 encoder. However, since MPEG-4 video

encoding occupies a significant proportion of the computational complexity of the

overall videoconference system, we check to see whether additional optimization can

be performed.

Unfortunately, using VTune to track the encoder, we find that the most time-

consuming parts are already optimized by using MMX assembly code. In other

parts of the MPEG-4 encoder, the time-consuming instructions not yet optimized

are almost assign instructions. The optimization of these parts are left to potential

future work. Table 3.5 illustrates the clockticks-based complexity analysis, where 1

clockticks represents 1ms of execution time. We catch the scene of our lab as the

input to collect the data and there are totally 830 frames in this simulation.
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Fig. 3.19: Complexity breakdown of MPEG-4 video encoder in video conference
system.
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Chapter 4

Overview of RTP

4.1 Introduction (from [5])

The real-time transport protocol (RTP) provides end-to-end delivery services for

data with real-time characteristics, such as interactive audio and video. Those

services include payload type identification, sequence numbering, timestamping and

delivery monitoring. Applications typically run RTP on top of UDP to make use

of its multiplexing and checksum services; both protocols contribute parts of the

transport protocol functionality. However, RTP may be used with other suitable

underlying network or transport protocols. RTP supports data transfer to multiple

destinations using multicast distribution if provided by the underlying network.

RTP consists of two closely-linked parts:

• the real-time transport protocol (RTP), to carry data that has real-time prop-

erties; and

• the RTP control protocol (RTCP), to monitor the quality of service and to

convey information about the participants in an on-going session. The latter

aspect of RTCP may be sufficient for “loosely controlled” sessions, i.e., where

there is no explicit membership control and set-up, but it is not necessarily

intended to support all of an applications control communication requirements.
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4.2 Definitions in RTP (from [5])

• RTP payload: The data transported by RTP in a packet, for example audio

samples or compressed video data.

• RTP packet: A data packet consisting of the fixed RTP header, a possibly

empty list of contributing sources, and the payload data. Some underlying

protocols may require an encapsulation of the RTP packet to be defined. Typ-

ically one packet of the underlying protocol contains a single RTP packet,

but several RTP packets may be contained if permitted by the encapsulation

method.

• RTCP packet: A control packet consisting of a fixed header part similar to

that of RTP data packets, followed by structured elements that vary depend-

ing upon the RTCP packet type. Typically, multiple RTCP packets are sent

together as a compound RTCP packet in a single packet of the underlying

protocol; this is enabled by the length field in the fixed header of each RTCP

packet.

• Port: The “abstraction that transport protocols use to distinguish among

multiple destinations within a given host computer. TCP/IP protocols identify

ports using small positive integers [21].” The transport selectors (TSEL) used

by the OSI transport layer are equivalent to ports. RTP depends upon the

lower-layer protocol to provide some mechanism such as ports to multiplex the

RTP and RTCP packets of a session.

• Transport address: The combination of a network address and port that iden-

tifies a transport-level endpoint, for example an IP address and a UDP port.

Packets are transmitted from a source transport address to a destination trans-

port address.
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• RTP session: The association among a set of participants communicating with

RTP. For each participant, the session is defined by a particular pair of des-

tination transport addresses (one network address plus a port pair for RTP

and RTCP). The destination transport address pair may be common for all

participants, as in the case of IP multicast, or may be different for each, as

in the case of individual unicast network addresses plus a common port pair.

In a multimedia session, each medium is carried in a separate RTP session

with its own RTCP packets. The multiple RTP sessions are distinguished by

different port number pairs and/or different multicast addresses.

• Synchronization source (SSRC): The source of a stream of RTP packets, iden-

tified by a 32-bit numeric SSRC identifier carried in the RTP header so as not

to be dependent upon the network address. All packets from a synchronization

source form part of the same timing and sequence number space, so a receiver

groups packets by synchronization source for playback.

• Contributing source (CSRC): A source of a stream of RTP packets that has

contributed to the combined stream produced by an RTP mixer (see below).

The mixer inserts a list of the SSRC identifiers of the sources that contributed

to the generation of a particular packet into the RTP header of that packet.

This list is called the CSRC list. An example application is audio conferencing

where a mixer indicates all the talkers whose speech was combined to produce

the outgoing packet, allowing the receiver to indicate the current talker, even

though all the audio packets contain the same SSRC identifier (that of the

mixer).

• End system: An application that generates the content to be sent in RTP

packets and/or consumes the content of received RTP packets. An end system

can act as one or more synchronization sources in a particular RTP session,
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but typically only one.

• Mixer: An intermediate system that receives RTP packets from one or more

sources, possibly changes the data format, combines the packets in some man-

ner and then forwards a new RTP packet. Since the timing among multiple

input sources will not generally be synchronized, the mixer will make timing

adjustments among the streams and generate its own timing for the combined

stream. Thus, all data packets originating from a mixer will be identified as

having the mixer as their synchronization source.

• Translator: An intermediate system that forwards RTP packets with their syn-

chronization source identifier intact. Examples of translators include devices

that convert encodings without mixing, replicators from multicast to unicast,

and applicationlevel filters in firewalls.

• Monitor: An application that receives RTCP packets sent by participants in

an RTP session, in particular the reception reports, and estimates the current

quality of service for distribution monitoring, fault diagnosis and long-term

statistics. The monitor function is likely to be built into the application(s)

participating in the session, but may also be a separate application that does

not otherwise participate and does not send or receive the RTP data packets.

These are called third party monitors.

• Non-RTP means: Protocols and mechanisms that may be needed in addition

to RTP to provide a usable service. In particular, for multimedia conferences, a

conference control application may distribute multicast addresses and keys for

encryption, negotiate the encryption algorithm to be used, and define dynamic

mappings between RTP payload type values and the payload formats they

represent for formats that do not have a predefined payload type value.
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4.3 RTP Fixed Header Fields (from [5])

Fig. 4.1: RTP header (from[5]).

Fig. 4.1 shows the RTP header format. The first twelve octets are present in

every RTP packet, while the list of CSRC identifiers is present only when inserted

by a mixer. The fields have the following meaning:

• Version (V): 2 bits

This field identifies the version of RTP. The version defined by the specification

we took is two[5]. (The value 1 is used by the first draft version of RTP and

the value 0 is used by the protocol initially implemented in the “vat” audio

tool.)

• Padding (P): 1 bit

If the padding bit is set, the packet contains one or more additional padding

octets at the end which are not part of the payload.

• Extension (X): 1 bit

If the extension bit is set, the fixed header is followed by exactly one header

extension.
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• CSRC count (CC): 4 bits

The CSRC count contains the number of CSRC identifiers that follow the fixed

header.

• Marker (M): 1 bit

The interpretation of the marker is defined by a profile. It is intended to allow

significant events such as frame boundaries to be marked in the packet stream.

• Payload type (PT): 7 bits

This field identifies the format of the RTP payload and determines its inter-

pretation by the application.

• Sequence number: 16 bits

The sequence number increments by one for each RTP data packet sent, and

may be used by the receiver to detect packet loss and to restore packet se-

quence. Techniques for choosing unpredictable numbers are discussed in [22].

• Timestamp: 32 bits

The timestamp reflects the sampling instant of the first octet in the RTP data

packet. The sampling instant must be derived from a clock that increments

monotonically and linearly in time to allow synchronization and jitter calcu-

lations.

• SSRC: 32 bits

The SSRC field identifies the synchronization source. This identifier is chosen

randomly, with the intent that no two synchronization sources within the same

RTP session will have the same SSRC identifier.

• CSRC list: 0 to 15 items, 32 bits each

The CSRC list identifies the contributing sources for the payload contained in

this packet. The number of identifiers is given by the CC field. If there are
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more than 15 contributing sources, only 15 may be identified. CSRC identifiers

are inserted by mixers, using the SSRC identifiers of contributing sources.

4.4 RTP Control Protocol – RTCP (from [5])

The RTP control protocol (RTCP) is based on the periodic transmission of control

packets to all participants in the session, using the same distribution mechanism as

the data packets. The underlying protocol must provide multiplexing of the data

and control packets, for example using separate port numbers with UDP. RTCP

performs four functions:

1. The primary function is to provide feedback on the quality of the data dis-

tribution. This is an integral part of the RTPs role as a transport protocol

and is related to the flow and congestion control functions of other transport

protocols.

2. RTCP carries a persistent transport-level identifier for an RTP source called

the canonical name or CNAME. Since the SSRC identifier may change if a

conflict is discovered or a program is restarted, receivers require the CNAME to

keep track of each participant. Receivers also require the CNAME to associate

multiple data streams from a given participant in a set of related RTP sessions,

for example to synchronize audio and video.

3. The first two functions require that all participants send RTCP packets, there-

fore the rate must be controlled in order for RTP to scale up to a large number

of participants. By having each participant send its control packets to all the

others, each can independently observe the number of participants. This num-

ber is used to calculate the rate at which the packets are sent.

4. A fourth, optional function is to convey minimal session control information,
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for example participant identification to be displayed in the user interface. This

is most likely to be useful in ”loosely controlled” sessions where participants

enter and leave without membership control or parameter negotiation. RTCP

serves as a convenient channel to reach all the participants, but it is not

necessarily expected to support all the control communication requirements

of an application.

Functions 1–3 are mandatory when RTP is used in the IP multicast environment,

and are recommended for all environments. RTP application designers are advised

to avoid mechanisms that can only work in unicast mode and will not scale to larger

numbers.

4.4.1 RTCP Packet Format

We introduce several RTCP packet types that carry a variety of control information:

• SR: Sender report, for transmission and reception statistics from participants

that are active senders.

• RR: Receiver report, for reception statistics from participants that are not

active senders.

• SDES: Source description items, including CNAME.

• BYE: Indicates end of participation.

• APP: Application specific functions.

Each RTCP packet begins with a fixed part similar to that of RTP data packets,

followed by structured elements that may be of variable length according to the

packet type but always end on a 32-bit boundary. The alignment requirement and

a length field in the fixed part are included to make RTCP packets “stackable.”

70



Multiple RTCP packets may be concatenated without any intervening separators

to form a compound RTCP packet that is sent in a single packet of the lower layer

protocol, for example UDP. There is no explicit count of individual RTCP packets

in the compound packet since the lower layer protocols are expected to provide an

overall length to determine the end of the compound packet.

Each individual RTCP packet in the compound packet may be processed inde-

pendently with no requirements upon the order or combination of packets. However,

in order to perform the functions of the protocol, the following constraints are im-

posed:

• Reception statistics (in SR or RR) should be sent as often as bandwidth

constraints will allow to maximize the resolution of the statistics, therefore

each periodically transmitted compound RTCP packet should include a re-

port packet

• New receivers need to receive the CNAME for a source as soon as possible to

identify the source and to begin associating media for purposes such as lip-

sync, so each compound RTCP packet should also include the SDES CNAME.

• The number of packet types that may appear first in the compound packet

should be limited to increase the number of constant bits in the first word and

the probability of successfully validating RTCP packets against misaddressed

RTP data packets or other unrelated packets.

Thus, all RTCP packets must be sent in a compound packet of at least two

individual packets, with the following format recommended: Encryption prefix. If

and only if the compound packet is to be encrypted, it is prefixed by a random

32-bit quantity redrawn for every compound packet transmitted.

• SR or RR: The first RTCP packet in the compound packet must always be a

report packet to facilitate header validation. This is true even if no data has
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been sent nor received, in which case an empty RR is sent, and even if the

only other RTCP packet in the compound packet is a BYE.

• Additional RRs: If the number of sources for which reception statistics are

being reported exceeds 31, the number that will fit into one SR or RR packet,

then additional RR packets should follow the initial report packet.

• SDES: An SDES packet containing a CNAME item must be included in each

compound RTCP packet. Other source description items may optionally be

included if required by a particular application, subject to bandwidth con-

straints.

• BYE or APP: Other RTCP packet types, including those yet to be defined,

may follow in any order, except that BYE should be the last packet sent with

a given SSRC/CSRC. Packet types may appear more than once.

It is advisable for translators and mixers to combine individual RTCP packets

from the multiple sources they are forwarding into one compound packet whenever

feasible in order to amortize the packet overhead. An example RTCP compound

packet as might be produced by a mixer is shown in Fig. 4.2 If the overall length

of a compound packet would exceed the maximum transmission unit (MTU) of the

network path, it may be segmented into multiple shorter compound packets to be

transmitted in separate packets of the underlying protocol. Note that each of the

compound packets must begin with an SR or RR packet.

An implementation may ignore incoming RTCP packets with types unknown to

it. Additional RTCP packet types may be registered with the Internet Assigned

Numbers Authority (IANA).
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Fig. 4.2: Example of an RTCP compound packet (from [5]).

4.5 Introduction to the JRTPLib Software (from [32])

The JRTPLib software is a public source, and an object-oriented library written

in C++ which aims to help developers in using the Real-time Transport Protocol

(RTP). This library is developed within JThread library, which is a public source,

too. JThread contains only two classes, namely JThread and JMutex. JThread

represents a thread and JMutex a mutex. The thread class only contains very basic

functions, such as to start or kill a thread. The goal of JThread is to make use of

threads easy on different platforms, like MS-Windows or Unix platform [33].

The goal of JRTP library is to make user send and receive data using RTP

without worrying about SSRC collisions, scheduling and transmitting RTCP data.

The user only needs to provide the library with the payload data to be send and

the library gives the user access to incoming RTP and RTCP data. Table 4.1 shows

the class and the simple descriptions below, and [32] show the more detail list.
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Table 4.1: JRTPLib Classes

Class name Descriptions
RTPLibraryVersion show the version of JRTP library.
RTPTime This class is used to specify wallclock time, delay intervals

...etc.
RTPRandom The RTPRandom class can be used to generate random

numbers.
RTCPSDESInfo The class is a container for RTCP SDES information.
RTPTransmitter The abstract class specifies the interface for actual trans-

mission components.
RTPUDPv4Transmitter Inherit the RTPTransmitter interface and implements a

transmission component which user UDP over IPv4 to
send and receive RTP and RTCP data.

RTPUDPv6Transmitter Inherit the RTPTransmitter interface and implements a
transmission component which user UDP over IPv6 to
send and receive RTP and RTCP data.

RTPTransmissionParams An abstract class which will have a specific implementa-
tion for a specific knod of transmission component.

RTPUDPv4TransmissionParams Represents the parameters used by the UDP over IPv4
transmission component.

RTPUDPv6TransmissionParams Represents the parameters used by the UDP over IPv6
transmission component.

RTPTransmissionInfo An abstract class which will have a specific implementa-
tion for a specific kind of transmission component.

RTPUDPv4TransmissionInfo Give some additional information about the UDP over
IPv4 transmission component.

RTPUDPv6TransmissionInfo Give some additional information about the UDP over
IPv6 transmission component.

RTPAddress An abstract class which is used to specify destinations,
multicast groups etc.

RTPIPv4Address This class is used by the UDP over IPv4 transmission
component.

RTPIPv6Address This class is used by the UDP over IPv6 transmission
component.

RTPRawPacket Be used by the transmission component to store the in-
coming RTP and RTCP data in.

RTPPacket Be used to parse a RTPRawPacket instance if it represents
RTP data.

RTCPCompoundPacket Describe an RTCP compound packet.
RTCPPacket A base class for specific types of RTCP packets.
RTCPSRPacket Describe an RTCP sender report packet.
RTCPRRPacket Describe an RTCP receiver report packet.
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RTCPSDESPacket Describe an RTCP SDES packet.
RTCPAPPPacket Describe an RTCP APP packet.
RTCPUnknownPacket The class does not have any extra member functions be-

sides the ones it inherited.
RTCPCompoundPacketBuilder Be used to construct an RTCP compound packet.
RTPSources Represent a table in which imformation about the partic-

ipating sources is kept.
RTPSourceData Contain all information about a member of the session
RTPPacketBuilder This class can be used to build RTP packets and is a bit

more high-level than the RTPPacket class.
RTCPPacketBuilder Be used to build RTCP compound packets. This class is

more high-level than the RTCPCOmpoundPacketBuilder
class.

RTPCollisionList Represent a list of address from which SSRC collisions
were detected.

RTCPScheduler Determine when RTCP compound packets should be sent.
RTCPSchedulerParams Describe the parameters to be used by the scheduler.
RTPSessionParams Describe the parameters for to be used by an RTPSession

instance.
RTPSession Handle the RTCP part completely internally and make

user focus on sending and receiving the actual data.

4.6 Construction of RTP Connection

Before using RTP on the network, we should clean up and set up the network in-

terface, as illustrated in Fig. 4.3. One has to create an RTPSession object first.

The constructor of the RTPSession class takes a parameter of type RTPTransmit-

ter::Transmission Protocol which defaults to RTPTransmitter::IPv4UDPProto. This

means that the UDP over IPv4 transmission component will be used. Hence we cre-

ate an RTPSessionParams object and an RTPUDPv4TransmissionParams object at

the same time as shown in Fig. 4.4.

Now we list and interpret the instructions in Figs. 4.3 and 4.4 below [32]:

• WSADATA wsaData: The WSADATA structure is used to store Windows

Sockets initialization information.

• WORD wVersionRequested = MAKEWORD(2,2): The MAKEWORD macro
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creates a WORD value by concatenating the specified values. The first para-

meter 2 represents we specify the low-order byte 2, and the second parameter

2 represents we specify the high-order byte 2, too. This instruction is to suit

the parameter of the next instruction, WSAStartup.

• WSAStartup(wVersionRequested, &wsaData): The WSAStartup function ini-

tiates use of WS2 32.DLL by a process. In this condition, it means the appli-

cation supports only version 2.2 of Windows sockets.

• RTPSessionParams sessParams: Create an object that describes the parame-

ters to be used by an RTPSession instance.

• sessParams.SetOwnTimestampUnit(1.0 / 1.0): Set the timestamp unit for our

own data. The timestamp unit is defined as a time interval in seconds divided

by the number of samples in that interval.

• sessParams.SetUsePollThread(1): The syntax of this instruction is “int Se-

tUsePollThread(bool usethread).” If usethread is true, the session will use a

poll thread to automatically process incoming data and to send RTCP packets

when nece ssary.

• sessParams.SetMaximumPacketSize(MAX PACKET SIZE): Set the maximum

allowed packet size for the session.

• RTPUDPv4TransmissionParams transParams: The RTPTransmissionParams

class represents the parameters used by the UDP over IPv4 transmission com-

ponent.

Fig. 4.5 shows how we construct an RTP session. Before we consider the RT-

PUDPv4TransmissionParams object as the factor of RTPSession object, we should

be careful of the bounded ports which are used by other programs. Therefore we
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void  network_initialize()
{

//MUST call WSAStartup() to use WS2_32.DLL
WSADATA wsaData;
WORD wVersionRequested = MAKEWORD( 2, 2 );
WSAStartup(wVersionRequested, &wsaData); //WSACleanup called in OnDestroy

}

Fig. 4.3: Related code of network initialization.

RTPSessionParams sessParams;
sessParams.SetOwnTimestampUnit(1.0 / 1.0);
sessParams.SetUsePollThread(1); //background thread to call virtual callbacks - set by

 default, but just to be sure
sessParams.SetMaximumPacketSize(MAX_PACKET_SIZE);
                                                       //setup transmission parameters
RTPUDPv4TransmissionParams transParams;

Fig. 4.4: Related code of RTP parameters construction.

write a while loop to help find out the available port-base automatically. After set-

ting up the port-base, we can add the destination IP into the RTPSession object.

Then we can use the RTPSession object to send the data by using the “rtpSes-

sion.SendPacket” function.

int status;
do{

transParams.SetPortbase(SERVER_PORT);
status = rtpSession.Create(sessParams, &transParams);
SERVER_PORT += 2;

}while (status<0);

unsigned long  intIP = inet_addr(MCAST_IP);
_ASSERT(intIP != INADDR_NONE);
intIP = ntohl(intIP); //put in host byte order
RTPIPv4Address rtpAddr(intIP, MCAST_PORT);
status = rtpSession.AddDestination(rtpAddr);

Fig. 4.5: Related code of RTPSession construction.
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Chapter 5

Integration of Videoconference
Transmitter

5.1 Introduction

Fig. 5.1 shows the thread view of the overall system. We have introduced the video

segmentation, the MPEG-4 encoder, and the RTP protocol before. Now we need to

integrate them with some additional functions such as video and audio capture and

the AAC encoder. Besides, we also should modify the inputs and outputs of the

functions stated above from files to memories, speed them up, and do some other

trivia.

5.2 Video Capture

5.2.1 Video for Windows

In this system, the input image is captured by a digital camera. To control the

operation of capturing, a standard video capturing method, named VfW (abbrevi-

ation of Video for Windows), in the Microsoft OS is adopted. Video for Windows

version 1.0 was released in November 1992 for the Windows 3.1 operating system

and was optimized for capturing movies to disk [23]. This SDK provides applica-

tions with a simple, message-based interface to access video and waveform-audio

78



WinMain

Video
Capture

Audio
Capture

Segmentation

MPEG-4
Video

Encoder

MPEG-4
Audio

Encoder

RTP RTP

Network

Thread View

Fig. 5.1: Thread view of the overall system.
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Fig. 5.2: AVI header (from[2]).

acquisition hardware and to control the process of streaming video capture to disk.

Besides, VfW helps with connectivity to device driver and retrieve the capability

and information of it.

5.2.2 AVI Format

In VfW, AVI is the mostly used format. The captured raw frame is embedded in an

AVI file which can be extracted for segmentation input.

AVI stands for Audio-Video Interleaved. Fig. 5.2 shows the hierarchical struc-

ture. Refer to header file (vfw.h in Visual C++) for complete information about

parsing AVI file. To extract video data, we use a file parser that simply locate ��db

and copy suitable length of data following that.

5.2.3 Implementation of Capture

The implementation of capture is aided by a free application called AVICap from [24].

It contains three steps:

1. Create capture handle:

An AVICap capture window handles the details of streaming audio and video

capture to AVI files and it provides a flexible interface for applications. The

video capture can be added to application by the code shown in Fig. 5.3.
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• capCreateCapturewindow: The capCreateCaptureWindow function cre-

ates a capture window. The syntax is shown below:

HWND VFWAPI capCreateCaptureWindow(

LPCSTR lpszWindowName,

DWORD dwStyle,

int x,

int y,

int nWidth,

int nHeight,

HWND hWnd,

int nID);

In the above, lpszWindowName represents the the name used for the

capture window. dwStyle represents Window styles used for the capture

window. Here we assign the window as a child window and is visible

initially. x and y represent the x and y coordinates of the upper left

corner of the capture window. nWidth and nHeight represent the width

and the height of the capture window. hWnd represents the handle to

the window. Finally, nID represents the window identifier.

• capDriverConnect(hwndC,0): The capDriverConnect macro connects a

capture window to a capture driver.

• capDriverGetCaps(hwndC, &caps, sizeof(caps)): The capDriverGetCaps

macro returns the hardware capabilities of the capture driver currently

connected to a capture window. caps here is a pointer to the CAP-

DRIVERCAPS structure to contain the hardware capabilities.

2. Parameter modification:

After initializing driver window handler, some fundamental parameters should
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Fig. 5.3: Related code for creating a capture window.

Fig. 5.4: Related code for parameter modification.

be confirmed to ensure captured data fit system requirement, such as the code

shown in Fig. 5.4.

• capPreviewRate(hwndC,30): The capPreviewRate macro sets the frame

display rate in preview mode. We set the frame display rate to 30 here.

• capPreview(hwndC,TRUE): The capPreview macro enables or disables

preview mode. In preview mode, frames are transferred from the capture

hardware to system memory and then displayed in the capture window.

3. Capture operation:

In this step, we start to capture image from digital camera and the related

code is shown in Fig. 5.5. Here, the captured image in AVI format is stored

in a buffer and then the required video data are extracted from the buffer.

Finally, the extracted data are sent to the module doing video segmentation.

5.2.4 Modified Video Capture Process

The general method of video capture supplied by VFW is simple, but the principle

of it is not suitable for real-time video capture. AVICap, by default, routes video

and audio stream data from a capture window to a file named CAPTURE.AVI in
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Fig. 5.5: Related code for capture operation.

the root directory of the current drive. However, what we want is to get the video

stream from memory directly. Therefore, the speed of video capture would be higher

because of reduced operations [25]. Fig. 5.6 gives a simple diagram illustrating the

two ways of doing video capture.

We could use capture services without writing the data to a disk file by using

the WM CAP SEQUENCE NOFILE message (or the capCaptureSequenceNoFile

macro). However, this message is useful only in conjunction with callback functions

that allow the application to use the video and audio data directly. Callback func-

tion interacts with the running thread. Besides, it would catch the data from the

running thread. We could use multi-thread to replace the functionality of the call-

back function, but the capture thread here only allows the callback function. This

is because the priority of capture thread is highest. Hence we cannot run another

thread when running the capture thread. Figs. 5.8 and 5.9 show the declaration of

callback function.

Before using the callback function, we should use

WM CAP SET CALLBACK VIDEOSTREAM message or capSetCallbackOnVideoStream

macro to set the callback function in the application. The prototype of

WM CAP SET CALLBACK VIDEOSTREAM is shown in Fig. 5.9. AVICap calls

this procedure during streaming capture when a video buffer is filled. fpProc is the

pointer to the video-stream callback function. Specify NULL for this parameter to
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Fig. 5.6: Simple diagram explaining two ways of video capture.

disable a previously installed video-stream callback function. The message would

return TRUE if successful or FALSE if streaming capture or a single-frame capture

session is in progress.

However, what we want to keep in mind is that:

• The capture window calls the callback function before writing the captured

frame to disk. This allows applications to modify the frame if desired. If a

video stream callback function is used for streaming capture, the procedure

must be installed before starting the capture session and it must remain en-

abled for the duration of the session. It can be disabled after streaming capture

ends.

• We could view the process of video capture as a thread of the program. How-

ever, unfortunately, the priority of the thread about video capture without

writing into disk is the highest of everything! It is quite different compared
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capCaptureSequenceNoFile(hwndC);
//Capture Without Using Disk Storage
capSetCallbackOnVideoStream(hwndC,videohanlder);
//Set a callback function

Fig. 5.7: Related code for video capture without writing the data to a disk file.

LRESULT CALLBACK videohanlder(HWND
window,LPVIDEOHDR videohdr){
return 0;
}
//Declaration of callback function.

Fig. 5.8: Related code of declaration of callback function.

with the general video capture program. The priority of the general video cap-

ture program is not higher than the main SDK function. Hence we could still

receive another message during capturing video. Contrarily, the main SDK

function could not receive any message during capturing video without writ-

ing into disk. That means we cannot adjust the parameter, such as the thread

and the noise estimation stage option when running the capture process.

5.3 Audio Capturing

5.3.1 The WAV Format

The WAV format is the most common format used in capturing audio. MCI (Media

Control Interface) supplies three methods to capture audio. Besides the lowest-level

method, the other two methods would capture the audio stream and generate it as

a .wav file. Hence we use Table 5.1 to introduce the format of the .wav file [26].

• ChunkID: Contains the letters “RIFF” in ASCII form.

WM_CAP_SET_CALLBACK_VIDEOSTREAM
wParam = (WPARAM) 0;
lParam = (LPARAM) (LPVOID) (fpProc);

Fig. 5.9: Related code of prototype of set callback function.
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Table 5.1: .WAV File Format

Offset Size Name
0 4 “ChunkID”
4 4 “ChunkSize”
8 4 “Format”
12 4 “Subchunk1ID”
16 4 “Subchunk1Size”
20 2 “AudioFormat”
22 2 “NumChannels”
24 4 “SampleRate”
28 4 “ByteRate”
32 2 “BlockAlign”
34 2 “BitsPerSample”
36 4 “Subchunk2ID”
40 4 “Subchunk2Size”
44 * “Data”

• ChunkSize: 36 + SubChunk2Size, or more precisely: 4 + (8 + SubChunk1Size)

+ (8 + SubChunk2Size). This is the size of the rest of the chunk following

this number. This is the size of the entire file in bytes minus 8 bytes for the

two fields not included in this count: ChunkID and ChunkSize.

• Format: Contains the letters “WAVE.”

The “WAVE” format consists of two subchunks: “fmt” and “data”; the “fmt”

subchunk describes the sound data’s format.

• Subchunk1ID: Contains the letters “fmt”.

• Subchunk1Size: 16 for PCM. This is the size of the rest of the subchunk which

follows this number.

• AudioFormat: PCM = 1 (i.e., linear quantization). Values other than 1 indi-

cate some form of compression.

• NumChannels: Mono = 1, Stereo = 2, etc.
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//audio declaration
MCI_GENERIC_PARMS
mciGeneric;
MCI_OPEN_PARMS    mciOpen;
MCI_RECORD_PARMS
mciRecord;
MCI_SAVE_PARMS    mciSave;

Fig. 5.10: Related code of audio declaration.

• SampleRate: 8000, 44100, etc.

• ByteRate: = SampleRate ∗ NumChannels ∗ BitsPerSample/8.

• BlockAlign: = NumChannels ∗ BitsPerSample/8.

• BitsPerSample: 8 bits = 8, 16 bits = 16, etc.

The “data” subchunk contains the size of the data and the actual sound.

• Subchunk2ID: Contains the letters “data”.

• Subchunk2Size: = NumSamples ∗ NumChannels ∗ BitsPerSample/8

• Data: The actual sound data.

5.3.2 Implementation of Audio Capture

Fig. 5.10 introduces the declaration of the audio MCI class; Fig. 5.11 introduces the

record of audio stream; and Fig. 5.12 introduces the saving of audio stream.

• MCI GENERIC PARMS mciGeneric: The structure contains the handle of

the window that receives notification messages.

• MCI OPEN PARMS mciOpen: The structure contains information for the

MCI OPEN command. The MCI OPEN command means that we initialize a

device or file. The structure of MCI OPEN PARMS is shown below:
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//Open waveform audio
mciOpen.dwCallback = 0;
mciOpen.wDeviceID = 0;
mciOpen.lpstrDeviceType = TEXT ("waveaudio");
mciOpen.lpstrElementName = TEXT ("");
mciOpen.lpstrAlias = NULL;
dwError = mciSendCommand (0, MCI_OPEN, MCI_WAIT | MCI_OPEN_TYPE |
MCI_OPEN_ELEMENT, (DWORD) (LPMCI_OPEN_PARMS) &mciOpen);

//Save the Device ID
wDeviceID = mciOpen.wDeviceID ;

//Begin recording
mciRecord.dwCallback = (DWORD) hwnd;
mciRecord.dwFrom = 0;
mciRecord.dwTo = 0;
mciSendCommand
(wDeviceID,MCI_RECORD,MCI_NOTIFY,(DWORD)(LPMCI_RECORD_PARMS) &mciRecord);

Fig. 5.11: Related code of audio record.

//Stop recording
mciGeneric.dwCallback = 0;

mciSendCommand (wDeviceID, MCI_STOP , MCI_WAIT, (DWORD) (LPMCI_GENERIC_PARMS)
&mciGeneric);

//Save the file
mciSave.dwCallback = 0;
mciSave.lpfilename = szFileName;

mciSendCommand (wDeviceID, MCI_SAVE, MCI_WAIT | MCI_SAVE_FILE, (DWORD)
(LPMCI_SAVE_PARMS) &mciSave);

//Close the waveform device
mciSendCommand (wDeviceID, MCI_CLOSE, MCI_WAIT, (DWORD) (LPMCI_GENERIC_PARMS)
&mciGeneric);

Fig. 5.12: Related code of audio saving.
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typedef struct{
DWORD PTR dwCallback;

MCIDEVICEID wDeviceID;

LPCSTR lpstrDeviceType;

LPCSTR lpstrElementName;

LPCSTR lpstrAlias;

}MCI OPEN PARMS;

In the above, dwCallback represents the low-order word specifies a window

handle used for the MCI NOTIFY flag, wDeviceID represents the identifier

returned to application, lpstrDeviceType represents the name or the constant

identifier of the device type, lpstrElementName represents the device element

(often a path), and lpstrAlias represents the optional device alias.

• MCI RECORD PARMS mciRecord: The structure contains positioning in-

formation for the MCI RECORD command. The MCI RECORD command

means that we start recording from the current position or from one specified

location to another specified location. The structure of MCI RECORD PARMS

is shown below:

typedef struct {
DWORD PTR dwCallback;

DWORD dwFrom;

DWORD dwTo;

} MCI RECORD PARMS;

In the above, dwCallback represents the low-order word specifies a window

handle used for the MCI NOTIFY flag, dwFrom represents the position to

play from, and dwTo represents the position to play to.

• MCI SAVE PARMS mciSave: The structure contains the filename information
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for the MCI SAVE command. The MCI SAVE command saves the current

data of MCI RECORD from memory into file. The structure of MCI SAVE PARMS

is shown below:

typedef struct {
DWORD PTR dwCallback;

LPCSTR lpfilename;

} MCI SAVE PARMS;

In the above, dwCallback represents the low-order word specifies a window

handle used for the MCI NOTIFY flag, and lpfilename represents the name of

the file to save.

• mciSendCommand: The most important MCI function that we use is mciSend-

Command. The structure of mciSendCommand is “MCIERROR mciSend-

Command(MCIDEVICEID IDDevice, UINT uMsg, DWORD fdwCommand,

DWORD PTR dwParam );” The first parameter, IDDevice, is the device iden-

tifier of the MCI device that is to receive the command message. The second

parameter, uMsg, is the command message. The third parameter, fdwCom-

mand, is the flags for the command message. The fourth parameter, dwParam,

is a pointer to a structure that contains parameters for the command message.

The function would return zero if successful or an error otherwise. The low-

order word of the returned DWORD value contains the error return value. If

the error is device-specific, the high-order word of the return value is the driver

identifier; otherwise, the high-order word is zero.

• mciGetErrorString: Another important Mci function is mciGetErrorString.

The mciGetErrorString function retrieves a string that describes the specified

MCI error code. The prototype of mciGetErrorString is “BOOL mciGetEr-

rorString(DWORD fdwError, LPTSTR lpszErrorText, UINT cchErrorText);”
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fdwError is the error code returned by the mciSendCommand or mciSend-

String function. lpszErrorText is the pointer to a buffer that receives a null-

terminated string describing the specified error. Finally, cchErrorText is the

length of the buffer, in characters, pointed to by the lpszErrorText parameter.

The function would return TRUE if successful or FALSE if the error code is

not known.

5.4 Modification of the Video Segmentation Method

5.4.1 Optimization with MMX Instructions

The video segmentation system is not the bottleneck of the whole videoconference

system (we would discuss the performance of the whole videoconference system

in the next chapter.). Hence we do not have too much needs to optimize video

segmentation, but we still try to find the most significant function of the video

segmentation system we get and optimize it.

From VTune, We could get the code sections that is the bottleneck of the video

segmentation system. It is shown in Fig. 5.13. The function deals with the conflict

of the temporal foreground and the temporal background. When one mask views a

pixel as foreground but the other views it as background, the mask to propagate is

set to 128, the medium value.

After optimization, we get the modified function in Fig. 5.14. The algorithm is

introduced as follows. First, we make all the bytes in register mm0 0, and all the

bytes in register mm1 1. Registers mm0 and mm1 are the criterion of the mask

backID[ ] and mask[ ]. In the same way, we define all the bytes of the register result

128 and view the register result as the criterion of 128. Next, we move the data of

backID[ ] and mask[ ] to mm2 and mm3 respectively. Then we could compare mm2

with mm0 and set the byte of mm0 is 1 if the byte of mm2 is 0; we also compare mm3
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//*************************************
// COMBINE BACKGROUND and FOREGROUND
//*************************************

for( uv1=0;uv1<frame_size;uv1++)
{

if((backID[uv1]==0)&&(mask[uv1]==255))
{    backID[uv1]=128 ;   } //partial wrong back

}

Fig. 5.13: Section of code that we would like to optimize with MMX.

with mm1 and set the byte of mm1 is 1 if the byte of mm3 is 0. Next, we compare

mm0 with mm1 and set the byte of mm0 is 1 if the byte of mm0 and mm1 is equal. In

the step, we could imply the function “(backID[uv1]==0)&&(mask[uv1]==255).”

Third, we use the function “pand” to AND all the bytes in mm0 and mm4. That

means that if elements in backID[ ] and mask[ ] are 0 and 255 at the same time,

the element in mm0 would be set to 128. However, if the elements in backID[ ] and

mask[ ] aren’t 0 and 255 in the same time, the element in mm0 would be set to 0.

Finally, we add the byte of mm0 to the byte mm2 which means backID[ ]. That

means that if the element in the backID[ ] is conflict with the element in the mask[

], it would be set to 128. If not, nothing happens in the backID[ ].

In the program, the most MMX instruction we used is “pcmpeqb mm, mm/m64.”

The last letter “b” just means that we use byte-based operations in the register. The

instructor means we compare packed byte in MMX register/memory with packed

byte in MMX register for equality. Fig. 5.15 shows an example using word-based

operations.

With the same idea, “pxor mm, mm/m64” means we XOR 64 bits from MMX

register/memory to MMX register; “pand mm, mm/m64” means we AND 64 bits

from MMX register/memory to MMX register; “paddusb mm, mm/m64” means we

add unsigned packed byte from MMX register/memory to unsigned packed byte in

MMX register and saturate; “movq mm(mm/64), mm/64(mm)” means we move 64

bits from MMX register/memory to MMX register or vice versa [28].
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DWORD64 result =    0x8080808080808080;
for(uv1=0;uv1<frame_size;uv1+=8)
{

__asm
{

pusha
mov eax,backID
mov ebx,mask
add eax,uv1
add ebx,uv1
pxor mm0,mm0  //backIDstd
pcmpeqd mm1,mm1  //maskstd
movq mm4, result

movq mm2,[eax]
movq mm3,[ebx]
pcmpeqb mm0,mm2
pcmpeqb mm1,mm3
pcmpeqb mm0,mm1

pand mm0,mm4
paddusb mm2,mm0
movq [eax],mm2

popa
emms

  }
}

Fig. 5.14: Code in Fig. 5.13 after optimization using MMX instructions.

Fig. 5.15: Example of pcmpeqw instruction.
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5.5 Integration with the MPEG-4 Video Encoder

into the System

The edition of Microsoft MPEG-4 visual reference software we get was already rea-

sonably optimized [3]. Hence we need to change the input and output of the software

from files to segmentation output and RTP input, respectively.

5.5.1 Modification of Input to the MPEG-4 Video Encoder

Initially, because of the need of videoconference, we choose the “Binary Shape Ob-

ject Coding” mode. Binary shape coding compresses a binary mask that defines a

foreground video video object. There are two modes to binary shape coding. In the

first, the mask shape is compressed on its own, with no other data present. This

is shape-only mode. In the second, the video object texture (YUV data) is also

compressed.

To use binary shape coding, it is necessary to supply a texture file (“.yuv” file)

and a segmentation mask file (“.seg” file). This is true even if shape-only mode is

used; the texture file is read, but the information is ignored. Two ways of encoding

binary shape sequences are possible. In the first, a segmentation file is created

which contains a binary mask, with either 0 (background) or 255 (mask) for each

pixel. A number of these files can then be used to specify each object in the same

sequence. The second method of encoding binary shape sequences is to have a

common segmentation file that contains all the segmentation information.

For the need of the video conference system, we choose the non-shape-only mode

and encode with a common segmentation file.
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 Prediction types:
 0:     Enhn    P   P   ...
         Base  I   P   P ...
 1:     Enhn    B B   B B   ...
         Base  I        P        P ...
 2:     Enhn    P    B    B   ...
         Base  I    B    P    B ...

Fig. 5.16: Prediction types in a VOP.

In the program, the input/output processes are included in the class “CSessio-

nEncoder.” The data loading is mainly processed in the function “Bool CSessio-

nEncoder:loadData (UInt iFrame, FILE* pfYuvSrc, FILE* pfSegSrc, FILE** pp-

fAuxSrc, PixelC pxlcObjColor, CVOPU8YUVBA* pvopcDst, CRct& rctOrg, const

VOLMode& volmd).” To facilitate memory based operation, we change the call se-

quence to “Bool CSessionEncoder::loadData (UInt iFrame, FILE* pfYuvSrc, FILE*

pfSegSrc, FILE** ppfAuxSrc, PixelC pxlcObjColor,

CVOPU8YUVBA* pvopcDst, CRct& rctOrg, const VOLMode& volmd ,unsigned

char* buff,unsigned char* seg buff,long int &count,long int &seg count).” The dif-

ference between these is that the parameters of the later function increase to include

buff, seg buff, and seg count, where buff is the pointer to the memory we put the

image data, seg buff is the pointer to the memory we put the final image mask, and

seg count is an integer which helps us count the segmentation frame number.

In addition, we need to take care of the issue of frame sequencing. Fig. 3.7 shows

a VOP sequence of “I P B P ...” in the base layer, and “P B B ...” in the enhance

layer. Some other choices are shown in Fig. 5.16. We could assign the prediction

types into the parameter file to the MPEG-4 encoder. The MPEG-4 encoder always

reads I-frame at first, P-frame in the next, and B-frame in the last. That means

the input of video stream would not be sequential, and we should adjust it when we

change file-based input to memory-based input.
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initVOEncoder (rgpvoenc, iVO, rgpostrmTrace);
rgpostrm [BASE_LAYER]->write (rgpvoenc [BASE_LAYER]->pOutStream ()->str (),

rgpvoenc [BASE_LAYER]->pOutStream ()->pcount ());
                                                         //VO and VOL header

Fig. 5.17: Related code of output of VO and VOL header.

rgpostrm [BASE_LAYER]->write (rgpvoenc [BASE_LAYER]->pOutStream ()->str (),
 rgpvoenc [BASE_LAYER]->pOutStream ()->pcount ());
//write sprite unit

Fig. 5.18: Related code of output of MPEG-4 video encoder.

5.5.2 Modification of the Output to the MPEG-4 Video En-

coder

The MPEG-4 video encoder would generate VO and VOL header in the beginning

based on the parameter the user types in. The generater of VO and VOL header

is included in the function “initVOEncoder” which is in “CSessionEncoder,” too.

Fig. 5.17 shows the related code of VO and VOL header. All the output header in-

formation, including data and length, is put in CVideoObjectEncoder::pOutStream.

Figs. 5.18 and 5.19 show the related code of compressed data output for the

modes we choose to use. Unlike VO and VOL header, the compressed data would

be output to the .cmp file. Fig. 5.18 describe the write sprite unit, and would be

called one time, following the VO and VOL header. Fig. 5.19 is called every time

when MPEG-4 encoder compress one VOP inside. We could easily change the goal of

rgpostrm to put the data in the memory or could directly consider the pOutStream

()->str () as what we want.

rgpostrm [iLayer]->write (rgpvoenc [iLayer]->pOutStream ()->str (),
rgpvoenc [iLayer]->pOutStream ()->pcount ());

Fig. 5.19: Related code of output of MPEG-4 video encoder.
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5.6 Integration with the MPEG-4 Audio Encoder

MCI deals with the most audio capture problems and what we do about audio

capture is just to get the .wav file. We can not modify the software from file-based

output to memory-based output. Hence we could just only send the .wav file to faac

software, which the MPEG-4 audio encoder we get also owns file-based input. It is

a quite simple process, so we do not describe deeply.

97



Chapter 6

Experimental Results

In this chapter, we show the performance of the whole videoconference system, and

also show the performance of the components, in particular video capture and video

segmentation.

6.1 Performance of Video Capture

As discussed in the last chapter, AVICap, by default, routes video and audio stream

data from a capture window to a file named CAPTURE.AVI in the root directory

of the current drive. If we would like to use the data, we must to get the data from

the CAPTURE.AVI file (Fig. 5.6). Now we discuss the performance of the original

and the modified method.

Fig. 6.1 shows the performance of different situations. First, we focus on the

original model and the modified model. These two curves are obtained using the

same platform (AMD Athlon XP 3200+, 2.21 GHz, 480 MB RAM). The average of

the original model is 10.93367fps, and the variance is 0.440914. The average of the

modified model is 30.01967, and the variance is 2.040659. From Fig. 6.1, though the

variance of the modified model is bigger, the stability is acceptable. Note that the

average efficiency is increased to about 300%!

Now we turn to the modified model and the modified model on another computer.
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Fig. 6.1: Performance of video capture.

This other computer is Intel Centrino Pentium M 1.5 GHz, with 512 MB DDR RAM.

The average is 30.045fps which is a little higher, and the variance is 2.664964, which

is also a litter higher. Because the two computers are quite different, we suspect that

the limit to the video capture frame rate is bounded by the web camera (capture

device).

Fig. 6.2 shows the results using two different web cameras. Web camera 1 is

Logitech’s QuickCam Pro4000, and web camera 2 is Logitech’s QuickCam Express.

Computer 1 is AMD Athlon XP 3200+, 2.21GHz, 480 MB RAM, and computer 2

is Intel Centrino Pentium M 1.5GHz, 512 MB DDR RAM. We see that the factor

impacting frame rate does not reside in the personal computer, but in the capture

device.

Because the bottleneck of video capture depends on the capture device, but not

the software or the personal computer, Hence we can not use VTune to analyze the

clockticks to do in-deep research.
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Fig. 6.2: Using different web camera on different computers.

6.2 Performance of Video Segmentation System

Fig. 6.3 shows the simulation result with and without use of MMX instructions. The

simulation is run using the original video capture model, in the hope that it will

not have significant impact on the relative reult. Table 6.1 shows the result we get

from VTune software, where 1 clocktick represents 1ms in execution time. The data

of Table 6.1 comes from the data without MMX instructions in Fig. 6.3. Fig. 6.4

illustrates the relative computing time of the modules use of MMX instructions.

Table 6.2 gives us the clockticks analysis. We catch the scene of our lab as the input

to collect the data and there are totally 480 frames in this simulation.

We find the mean sectional rate of processing without MMX code is 7.523103

and the variance is 0.018376; the mean sectional rate of processing with MMX code

is 8.132414 and the variance is 0.11366. The sectional rate of processing efficiency is

enhanced by (8.132414 − 7.523103)/7.523103 = 8%. It seems quite low comparing

with MPEG-4 video encoder optimization using MMX. There are two main reasons:
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Fig. 6.3: Comparison between use and not use of MMX instructions.

Table 6.1: Simulation Result of Optimization

Function Original code Modified code Total software Speedup
clockticks clockticks clockticks

Combine background and foreground 497 84 8040 593.25%

1. The video segmentation system does not have a few critical bottlenecks. From

VTune software, we could find that the clockticks of all major functions are

almost about 400 to 500 with the total clockticks being 8040. Most of them

are due to assign functions, such as int x = 300, bool y = true, etc. It takes

effort to optimize these functions and we leave it to potential future work.

2. We have not used the capture with modified method yet. This could impact

the simulation results deeply. We will consider this issue in the whole system

performance analysis.

101



Fig. 6.4: Pie chart when using MMX code.

Table 6.2: Clockticks Analysis with Use of MMX Instructions

Function Clockticks Ratio(%)
whole system 8040 100
DelReigon 2295 29
Stationary background buffer 1162 14
ImageMask 981 12
Fill 908 11
Int NoiseEstimate 538 7
TmpBack 451 6
background subtraction 450 6
Temporary foreground 195 2
short-term background 96 1
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6.3 Overall System Performance

Now we turn to the overall videoconference system, which include all the modified

methods and the audio encoder system. Fig. 6.5 shows the complexity breakdown

we get with the VTune software; Fig. 6.6 shows the sectional rate of processing of

the system. The mean sectional rate of processing is 10.69767fps, and the variance is

0.054012. Table 6.3 shows the clockticks analysis. We catch the scene of our lab as

the input to collect the data and there are totally 710 frames in this simulation. We

divide the functions into MPEG-4 video encoder, MPEG-4 audio encoder, capture,

segmentation, RTP, and C++ library. Obviously, we can see one thing from the

above data: MPEG-4 audio encoder, capture, and RTP occupy only a little time in

the whole program.

Tables 6.4 and 6.5 shows more details about the MPEG-4 audio encoder and

the RTP of the overall system. We catch the scene of our lab as the input to

collect the data and there are totally 4150 frames in this simulation. However, as

we stated before, because video and audio capture functions are bounded by the

capture device, we cannot get the clockticks information.

Compared with the video segmentation system, we are surprised that the sec-

tional rate of processing would still maintain at 10.7 even though we add many

functions inside, such as audio capture, audio encoder, video encoder, and RTP

functions. We could ascribe it mainly to the modified video capture method. With

so many functions inside the system, the sectional rate of processing finally is not

bounded by the capture device, but by the MPEG-4 video encoder instead.

We could realize it more clearly from Figs. 6.7 and 6.8. Table 6.6 shows the

clockticks analysis. We catch the scene of our lab as the input to collect the data

and there are totally 3640 frames in this simulation. Without the MPEG-4 video

encoder inside, the sectional rate of processing seems to be bounded still by the

video capture device. Hence we could affirm the whole bottleneck of the video
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Fig. 6.5: Complexity breakdown of overall system.

conference is the MPEG-4 video encoder. Unfortunately, from Fig. 6.5, there are not

clearly identifiable bottleneck functions inside the MPEG-4 video encoder. Continue

optimization of the MPEG-4 video encoder is left to potential future work.
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Fig. 6.6: Whole system sectional rate of processing analysis.

Table 6.3: Clockticks Analysis of Overall System

Function classification Clockticks Ratio(%)
whole system 47385 100
DelReigon segmentation 3637 8
apply MPEG-4 video encoder 3411 7
videohandler segmentation 3088 7
blkmatchForShape MPEG-4 video encoder 2230 5
quantizeInterDCTcoefMPEG MPEG-4 video encoder 1934 4
abs C++ library 1685 4
memset C++ library 1552 3
bilnterpolateY MPEG-4 video encoder 1418 3
ImageMask segmentation 1369 3
blkmatch16WithShape MPEG-4 video encoder 1353 3
Fill segmentation 1311 3
memcpy C++ library 1282 3
blockmatch8 MPEG-4 video encoder 1166 3
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Table 6.4: Clockticks Analysis of Overall System about MPEG-4 Audio Encoder

Function Clockticks Ratio(%)
whole system 582,545 100
faacEncEncode 232 0.04
uc2s array 45 0.01
sf read short 1 0
pcm read uc2s 1 0
faacmain 0 0
faacEncOpen 0 0
read fmt chunk 0 0
psf sprintf 0 0
wav close 0 0

Table 6.5: Clockticks Analysis of Overall System about RTP

Function Clockticks Ratio(%)
whole system 582,545 100
PollSocket 54 0.01
CalculateDeterminist 0 0
FillInSDES 0 0
GetRTCPPort NBO 0 0

Fig. 6.7: Whole system performance analysis without MPEG-4 video encoder inside.
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Fig. 6.8: Whole system sectional rate of processing analysis without MPEG-4 video
encoder inside.

Table 6.6: Clockticks Analysis of Overall System Without MPEG-4 Encoder

Function classification Clockticks Ratio(%)
whole system 47244 100
DelReigon segmentation 5379 11
videohandler segmentation 3088 7
ImageMask segmentation 2416 5
Fill segmentation 2329 5
abs C++ library 1852 4
Int NoiseEstimate1 segmentation 1486 3
TmpBack segmentation 1349 3
memcpy C++ library 1275 3
memset C++ library 880 2
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Chapter 7

Conclusion and Future Work

We developed and implemented of an video conference system on personal computer.

We use the function supplied by SDK library to capture video and audio stream.

Using video segmentation to take the foreground and compressed the data in MPEG-

4 video encoder. In the audio aspect, we just send the audio stream into MPEG-4

audio encoder. Finally, delivering the compressed data in the network through RTP.

Getting video capture, the video segmentation system, and the optimized MPEG-

4 video encoder, we modified the video capture not to write directly into virtual disk

but memory instead. Speeding up the video segmentation by modify the noise stage

estimation, correct a bug about U and V components, cancel the residual interface,

and speed it up with MMX instructions. We also modify the input and output of

MPEG-4 video encoder to make it suitable for video conference system. Besides,

we integrate some new system into the video conference, such as audio capture,

MPEG-4 audio encoder, and RTP programs.

Doing the job of integration, we also should do the setting of environment.

Changing the C program file into C++ program file, and integrating the library

of visual 6.0 edition into the visual .NET edition. Moreover, combining the Intel

compiler into .NET edition, too.

For quality improvement we can do some improvements for the main projects,

in the future.
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1. Speeding up the frame rate.

Though we spend many time into speeding up, the frame rate, about 10, is still

not satisfied. After analyzing the whole video conference system, we know the

bottleneck is MPEG-4 video encoder. There’s two ways to go. One is keeping

optimizing and the other is to change another edition or using other encoder.

2. Making the segmentation system more suitable

The segmentation system we get sometimes doesn’t work well. For example,

when we take something with lattice as the view. The segmentation system

would always consider it as the foreground. We should add more function to

avoid these condition.

3. Promoting the stability.

The program isn’t very stable, especially when we communicate the decoder.

We should add sleep instruction then the decoder could receive the data and

decoder it. If not, the decoder receive nothing from the network. Besides,

when the decoder interrupts, sometimes the encoder would interrupts, too. I

think we should try to correct these bugs.

4. Promoting the compatibility of the environment.

The compatibility of the environment isn’t very good, too. Give an example

involve Intel compiler. Every time when we open an project, we would change

change condition of the item “EnableWPO” of Intel Specific(R) account. This

is because the compatibility between .NET and Intel compiler isn’t perfect

enough. We should think another method to integrate environment to approve

the condition.
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