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Design of Self-Compensation Fixed-Width
Multiplier and Its Applications

Student: Hong-An Huang
Advisor: Hsie-Chia Chang

Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis introduces a self-compensation: method for fixed-width multiplier which
receives two n-bit inputs and produces/an‘n-bit.product. The truncated part that produces the
carry-out bit is replaced with carry-estimation equations. In order to reduce the truncation
errors, different input-width multipliers will correspond to different carry-estimation
equations. Simulation results show that our self-compensation method can lead to 85%
reduction of truncation errors while compared with direct-truncated multipliers, as well as
40% reduction in area of a multiplier while compared with traditional Booth multipliers. In
contrast with the 128-FFT using direct-truncated multipliers, our 128-FFT approach has 10dB

SQNR improvement and only 2% circuit penalty.
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Chapter 1 Introduction

1.1 Motivation

In many DSP applications, the multiplication operations have the fixed-width property.
That is, the outputs and the inputs data have the same bit widths. For example, if an n-bit
integer multiplicand is multiplied by an n-bit decimal, it will produce a 2n-bit product which
is composed of n-bit integer and n-bit decimal. In order to reduce the hardware complexity,
the n-bit decimal is usually truncated. Fig 1-1 shows the 8-bit Booth multiplier. Assume that,
the two inputs of this multiplier is 8-bit integer, A (a7 ~ ap), and 8-bit decimal, B (b7 ~ by). For
fixed-width multiplications, the 8. least-significant bits (LSBs) of the product, p; ~ po, is
usually truncated.

al ao ad ad a3 a2 al a0

X b7 b6 b5 b4 B3 b2 bl b0

PO_8!P0_7 PO_6 P05 PO4 PO_3 PO_2 PO_1 POO

P18 P17 P16 ,P1.5 Pl_4 P1.3 P1.2 PI_1 P10 n{)
P28 P27 P26 P25 P2_4iP2_3 P22 P21 P20 nl
P38 P37 P36 P3_5 P34 P33 P3_2iP3_1 P3_0 n2
n3

pls pl4 pl3 pl2 pll pl0 p9 p8 ' p7 p6& p5 p4d p3 p2 pl  po0

Fig 1-1: 8-bit Booth multiplier
In order to reduce the area of multiplications, we can directly truncate the 8 least-significant
columns of the partial products in Fig 1-1. By the direct-truncated method, the significant
truncation errors will be introduced since the carry from the 8 least-significant columns to the

9 column is omitted. Thus, the error-compensation bias should be employed to decrease the
S1-



truncation errors.

In this thesis, the low-error area-efficient fixed-width multiplier based on Booth multiplier
is proposed. The error-compensation bias of proposed approach is produced by the
carry-estimation equations. The equations are adapted for different input width “n”. And these
equations can be analyzed by few full adders. Thus, the area penalty caused by
error-compensation is very small. By simulation results, the proposed fixed-width multiplier
can not only reduce the truncation errors of direct-truncated multiplier but also decrease the
area of standard Booth multiplier.

So as to compare the performance in real applications, our fixed-width multiplier is
employed in 128-point FFT architecture. Compare to the direct-truncated multiplier, the

proposed multiplier has higher SQNR with only 2% increase in circuit overhead.

1.2 Thesis Organization

The organization of this thesis is*'described. ‘as follows. In chapter 2, three existed
fixed-width multipliers are introduced. Chapter 3 shows the proposed fixed-width multiplier .
The applications of proposed fixed-width multiplier are described in chapter 4. In which, the
proposed multiplier is employed in 128-point FFT architecture. The design and chip
implementation are shown in Chapter 5. The structure of DDR register which can reduce the

operation frequency is also described in Chapter 5. Finally, Chapter 6 is the conclusion.



Chapter2 Existed Fixed-Width Multipliers

For lower computations area, the multiplications of DSP applications are usually have the
fixed-width property. In other words, the bits right of decimal point are commonly omitted.
Fig 2-1 shows the partial products of 8-bit Booth multiplier, it is divided into two parts, the
low part (LP) and the high part (HP). The signal “Carry” means the carry from LP to HP. The
adder cells required for the computation of LP in Fig 2-1 are usually truncated in DSP
application. Because the carry from low part to high part was also skipped (Carry = 0), the

significant truncation errors will be produced since no any error-compensation bias is

employed.
HP | LP
- > - >
A :": LP major
E__E:_azri' ! - LP minor -
PO_8 IP0_7 P06 PO_S P04 P03 P02 PO_1 POO
I |
P18 P17 PI6!P1.5 P4 PI.3 P12 P11 P10 n0
I |
P2 8 P27 P26 P25 P2 4 :F’Z_3:F2_2 P21 P20 nl
I |
P3.8 P37 P36 P35 P3.4 P3.3 P3.2'P3_11P3.0 n2
|

|
: n3
I
pl5 pl4d pl3 pl2 opll pld 9 D& p’/ pb ph pd p3 D2 pl pl}

Fig 2-1: Partial product of 8-bit Booth multiplier
Many schemes are presented to calculate the error-compensation bias. In [1]-[3], a constant
error-compensation bias is used to the retained cells. Because the bias do not adapt to the
input signals, the truncation errors of these methods are large. In [4] and [5], an adaptive
error-compensation bias approach which is obtained from the column of partial products
adjacent to the truncated LSB is used to reduce the truncation error. In this chapter, three

existed approach of fixed-width multiplier, S-J Jou approach, K-J Cho approach, and L-D Van
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approach, will be introduced. These schemes can not only reduce the truncation error but also

decrease the area of multiplications efficiently.

2.1 S-J Jou Approach

In this section, the S-J Jou approach [6] [7] which is based on Booth multiplier will be
introduced. The error-compensation bias of S-J Jou approach is generated using statistical
analysis and linear regression analysis. The process of S-J Jou is represented as follows.

Fig 2-2 shows the partial product of 6 x 8 Booth multiplier. The partial product is divided
into two parts, the six least-significant columns are the low part (LP) and the eight
most-significant columns are the high part (HP). And the signal, Carrys, means the carry from
LP to HP. Now, we want to truncate the P and to keep the HP. It will curse Carrys equal to 0
and produce the significant truncation errors. In order to reduce the truncation errors, the

error-compensation bias must be-added to the HP.

HP [ LP

A
Y
A
Y

PO_6 -EPD_S P04 P0O_3 PO_2 PO_1 PO_O
|
P1.6 P1.5 P1.4 P1.3 P1.2 P11 PLO
|
P26 P25 P24 P23 P22 \P2_1 P20
|

P36 P3.5 P34 P3.3 P32 P3_1 P30 :

pl3 pl2 pll pl0 p9 pé p7 pb p5 pd p3 p2 pl p0

Fig 2-2: Example of 6 x 8 Booth multipliers
The carry from LP to HP can be obtained by Equation (2.1), where |_XJ represents the

largest integer less than or equal to the number x.



Carry, =| 27'(P, ;+P ;+P, )+27(R, ,+P ,+P, )
+27(R, s +P D+27 (R ,+P ) (2.1)
+27P, |+ 2°¢ P ol
In general, Equation (2.1) can be written as Equation (2.2). The value of T means the

number of columns of LP which will be truncated.

Carry, , = |_2_1(P0_r—l +P st P(r/ﬂfu)

+272(Pojfz + P1;74 Tt Pﬁ/z}-l_o)
1 (2.2)
+-4+27R  +27R |
= Lz’lﬂ + lJ
As seen in Equation (2.2), the carry is composed of B and A.
B= Po_ ot Pl_r—3 oot P{r/ﬂ—l_l (2.3)

A= 2—2(P07F2 +B ¥ P|—T/2-\—170) PN, BICE B, +27P,

Where |_X_| represents the smallest integer that s larger than or equal to the number x. The

value of f means the total number of “1” in the(z - 1)y column. If the value of A can be
expressed in terms of B and t, the error-compensation bias can be obtained in terms of only 3
and 1. Before we introduce the process of S-J Jou approach, we assume that the probability of
each input data bit equaling “1” is 0.5 and the probability of each partial product bit P; ;

equaling “1” 1s P(P; ;). According to the P(P; ;) concept, the equation of A can be rewritten as

22771 1 XP(Pij)X(r—k—l 2.4)

The values of P(P; ;) are different for different B and t. By using statistical analysis and

linear regression line analysis, P(P; ;) can be approximated as a first-order polynomial.

PP ) =22 £4+0.58(0.01x 7 +0.37) 2:5)
T

Taking Equation (2.4) and Equation (2.5) into Equation (2.3), the error-compensation bias can

-5-



be obtained by Equation (2.6).

Carry._, :[21ﬂ+{§#{0-41IB+0‘58(0.012'+0.37)[%—H}+0.5‘| (2.6)

k=1 T

The probable values of Carry,.; for different t are listed in Table 2-1. It is obviously that

the best error-compensation bias is 3 for any .

Table 2-1: Probable values of Carry-.; with different values of p and t

Expected

T p+2 p+1 Y/ p-1 p-2 p-3
Value

4 0 2.34% | 85.94% | 11.72% 0 0 p-0.09
6 1.27% | 36.35% | 56.88% 12:5.49% 0 0 p+0.33
8 2.11% | 37.06%2 53.05% ||:7.75% | 0.04% 0 p+0.33
10 | 3.23% | 36.78%:{ 50:30% | 9.54% { 0.14% 0 B+0.33
12 | 4.38% | 36.24% | 47.97%++11.09% | 0.31% | 3.58E-7 | p+0.33
14 | 5.52% | 35.66% | 45.88% | 12.38% | 0.55% | 1.20E-5 | f+0.33

HA HA FA
|¢/¢/¢/¢m¢/¢/¢/¢k|/
I 7 I T 3 7 7 I

Py P Py By Py B, Py P

Fig 2-3: 6 x 8 fixed-width multiplier with S-J Jou approach



The circuit of 6 x 8 fixed-width Booth multiplier with S-J Jou approach is shown in Fig 2-3.
As seen in Fig 2-4, the adder cells of LP are omitted and the carry from LP to HP is replaced

by B(Pos+Pi3+Pyy).

2.2 K-J Cho Approach

The S-J Jou approach is introduced in last section. In which, the error-compensation bias
is generated using statistical analysis and linear regression analysis. And the probability of
each partial product bit P; jequaling “1” is different for different B and t. In this section, the
second approach, K-J Cho approach [8] [9], will be introduced. In this approach, the
error-compensation bias is obtained by using Booth encoder outputs. And the probability of
each partial product bit P; j equaling ‘:171s'1/2 for any 3 and t.

Table 2-2 shows the values of partial product of 8-bit Booth multipliers. Where

by = 2o, b+ by (2.4)

i+1

If the value of b;’ is zero, each bit of partial product “P;” will be zero. Otherwise, the value

of partial product “P;” will be based on input data “A”.

Table 2-2: Partial product for each encoded y;” withn =8

b’ | Pis Pis Pis Pis P4 Piz Pio P Pio| nm

1 a, a, a a; a, & a, a a 0
-1 a a, a a; a, a, a, a, a, 1
2 & a a; a, 8, a, a 8 0 0
-2 a, 3 a; a, a, a, 4 a, 1 1




From Fig 2-1, the carry from low part from high part can be expressed as

1
Carry, = bﬂ + /IJ (2.5)
,B = Po_e + P1_4 + Pz_z + P3_0 (2.6)

A=27(P s+PB ;+P, )+27(P, ,+P ,+P, ;+n,)
+ 2’4(P073 +B )+27(R ,+P ,+n) (2.7)
+27°(R, D+27(R, ,+n,)
The value of B is sum of the elements in LP major and the value of A is the sum of the
elements in LP_minor.
Fig 2-4 shows the structure of K-J Cho approach. The adder cells of LP_minor are omitted

and the error-compensation bias of lowspatt'is'defined as follow.
1
Carry,_, =C; {E,B+CA[A]} (2.8)

Where Cg[t] represents the exact carry-value-of-t and Ca[t] means the approximate carry value

of t. So, Ca[A] means the approximate carry. from LP_minor to LP_major.

Exact Approximate
carry carry

v

HP LP_major LP_minor

Fig 2-4: Structure of K-J Cho scheme

In order to find the error-compensation bias, to define y;” as

y Lif y/#0 50
Y= 0, otherwise (2.9)

For example, if the value of y3”y2”’y1’yo” is 1000, the coded number y3’y>’y:’yo’ should have
-8-



four possible values: 1000, 2000, -1000, and -2000. There are only three 8-bit numbers which

can have y3”y>”y1”yo” = 1000. Table 2-3 shows the three 8-bit numbers.

Table 2-3: 8-bit numbers with y3”y,”y:”ys” = 1000

8-bit number y3’oy2 oyl yo

For the case y3”y2"y:’yo” = 0001, there are also only three possible values of 8-bit numbers,
which are shown as follow
0000000 1(0) =y yay:y, = 0001
11111110(0) -S1y4yay, yi'= 0002 (2.10)
TTT1ETL(0) —> YAVAYIYE =000 1
The partial products for the thtee multiplier coefficients corresponding to y3”y2"y1”yo” =
0001 is shown in Fig 2-5. As we have assumed in last section, the probability of each input bit

equaling “1” is 0.5. That is

Efa]- .11

1
2
Thus, the rounded value of E[A] for each of the three cases in Fig 2-5 can be computed as

follows:

rer !

{E [l]}r = {0’ for Y3Y, 1Yo = 0001

= - 2.12
1, for yiy,y,y, = 0002, 0001 (2.12)

Where {t}. means rounding operation for t.
In equation (2.12), there are two cases that {E[A]}; = 1 and one case that {E[A]}; = 0. In

other words, the probability of {E[A]};equaling “1” is 2/3 which is bigger than 1/2. So, the
9.



value of {E[A]}; can be set to 1 for y3”’y2’y1”yo” = 0001.
Notice that E[A] is always zero for the three 8-bit numbers with y3”y,”’y,”ye” = 1000.
Because no element of the partial product corresponding to y3’ is included in LP_minor as can

be seen in Fig 2-1. In general, the element of the partial product corresponding to yrg/fl is not
2

included in LP_minor for any input width “n”.

01 23 456 7,8 910111213 14

Vivsvivy =0001 ! 0
a, a;\as s G, a; a, 4 a,

—— 1
vy =0001 1
Uy ;)\ g s Ty Ty Ty G

= L]
wvivavive=0002 . 1
y g\ T, s Ty T T |

HP ' LP

Fig 2-5: Partial prodiicts for y3’y>’y:”’yo” = 0001
From previous discussions, 1t is-obvious that the value of E[A] is calculated by the
LP minor of partial products By.»usmg= KsJ* Cho approach, to determine the
error-compensation bias is more easily. ‘Because the carry from LP_minor to LP_major is
replaced by {E[A];}, we only need to calculate the values of {E[A],} for each case of

yg/ , yg/ , - Yo - Then, the circuit of carry generation can be designed based on the values of
27 27

{E[M]r}

The procedure of K-J Cho approach is explained in the following example.

Example 1: In this example, it will show the process of K-J Cho approach by using a
10 x 10 Booth multiplier. First, we should calculate the values of {E[A]}, for all the possible
values of y3”y>"y:”yo” and the values of {E[A]}, are shown in Table 2-4. Notice that y) is
not shown in Table 2-4 since there is no any element of the partial product corresponding to

y4’ is included in LP_minor.
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Table 2-4: Rounded value of E[A] for n =10

va'vs 'y vy (# of cases)| JE[A]} ] (# of cases)
Qo000 ) 0 (4)
0001 C12) 0 (4} 1 {8)
D010 C12) 0 (4) L {8)
0011 (360 1 (36)
0100 C12) 0 (4) L (5)
0101 (36) 1 (36)
0110 (36 1 (36D
0111 (108 1 (52) 2 (56)
1 OO0 C12) 0 (4) L {8)
1001 (360 L {36)
1310 (36) 1 (36
1311 {1008 1 (52) 2 (56G)
1 100 (36 1 (36D
1101 {1085 1 (52) 2 (563
1110 (108 L ({52) 2 {56)
1111 (324) 2 (324

Table 2-5: Representation of approximate carry values

Rounded value |LP_carry_O|LP_carry_1
0 §] 0
1 1 L]
2 1 1

In Table 2-4, the biggest Value: of carr}‘i is | two. Thus, two approximate carry signals
(LP carry 0 and LP carry 1) are ‘jneedﬂe‘d‘t‘o rébrésept fhe values of {E[A]}.. The values of the
two carry signals are shown in Table 2-5. We‘cari obtain the circuit of the approximate carry
signals by using Karnaugh map as shown in Fig 2-6. In Fig 2-6, the values of approximate
carry signals can be determined using probability analysis. For example, for ys3”y,2"y:”yo” =
0001, P[{E[A]}=0] = 4/12 and P[{E[A]}=1] = 8/12. Thus, the value of approximate carry
signals is determined to be 1. Then, LP carry 0 and LP carry 1 signals can be simplified
from each map as

LP _carry _0=yi+y;+y/+Y, (2.13)

14 14

LP_carry _1=y3y;(y;+Yo) +Yi¥o(¥s +Y3)
Fig 2-7 shows the circuit of equation (2.13) which is the approximate carry signals from
LP _minor to LP_major. The approximate carry signals are added to LP_major. Then, the
resulted carry signals from LP_major are added to HP as error-compensation bias.
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Fig 2-6: Karnaugh map representation for (a)LP_carry 0 and
(b)LP_carry 1 forn=10

Z} LP_carry_0)

Dy

) O
1o

)

Bs

Fig 2-7: Circuit of approximate carry for n = 10

The procedure of Example 1 is illustrated as below:

I. For given input width “n”, the number of approximate carry signals is determined as

Nac = I_n/4J

II. The approximate carry signals are denoted as LP carry 0, LP carry 1,

LP carry (Nac-1)

II1. To calculate the rounded values of {E[A];} for each case of yg/ R yg/ s Yo
2" 2"

IV. By applying Karnaugh map to the result in step III, approximate carry generation circuit

can be designed.
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To perform the exhaustive simulation for large width of input data will take a lot of time. A
statistical analysis for obtaining the approximate carry values is introduced as below.
Given y;” 1s 1, it can be shown that E[P; ;] = 1/2. If y,”’y1”yo” = 100 in Fig 2-1, E[A] can be
computed by using equation (2.5)
E[A]=E[2" (R, )+ 2"2(P2_0 +n,)]
=2 E[P, ]+ 2’2(E[P270] +E[n,])

=2'2"H+2-227"+27)
=2

(2.14)

By the same way, it can be shown that E[A] is also equal to 1/2 for y,”y;”y¢” = 010 and 001.

So, for n =&, E[A] can be expressed as
E[A]=27'(y; + ¥+ Y;) (2.15)

In general, E[A] can be computed by equation (2.14)

E[4]= 2_1(yr,1'/2—2 + yr'1'/273 + 8 + yg)
n/2-2 (2.16)

"

=" Z Yi

i=0
In the following example, the procedure of this scheme for n = 10 is explained.

Example 2: Forn=10
E[A]=27(y; + Y, + Y+ ¥p) (2.17)

The maximum rounded value of E[A] is 2. Hence, two signals are needed to represent the
rounded value.

If the number of y;” equaling “1” are one or two, the rounded value is equal to 1. Else if the
number of y;” equaling “1” are more than three, the rounded value is equal to 2. Then, the
approximate carry generation circuit for n = 10 can be obtain as shown in Fig 2-8(a). Using

the same scheme, the approximate carry circuit for n = 14 is shown in Fig 2-8(b).
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3 j| }"l .'[]" }R }4 Vs 3"2“ jlI_I.u }.”ru
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] ]
FA  |a— FA |

LP carry_1 i LP carry_2 L
(a) (b)

Fig 2-8: Approximate carry generation circuits (a)n =10 (b)n = 14
The procedure of Example 2 described as below:

I. The signals in the {y’ no2 y, e .Yy } are divided into groups of three signals. If the

number of signals in the set is 3N + k (k = 1, 2), the last group contains only k signals.

II. The 3N signals are added using N FAs: For k = 2, the two signals in the last group are
added using a HA. For k = 1, the signal in the last group is passed to the next stage. The
N (or N+1 for k = 2) carry-signals from €ach adder are approximate carry signals.

III. The sum signals generatedin step Tt -are-added using the same principle as in step II.
Then, the carry signals from each"adder are approximate carry signals. The new sum
signals are passed to the next stage.

IV. Repeat step II until only one sum signal is left.

V. Add “1” to the last adder.

The circuit of 8 x 8 fixed-width multiplier with K-J Cho approach is shown in Fig 2-9.
From Fig 2-9, we can find that the adder cells of low part are skipped. The carry from low
part to high part is replaced by the approximate carry signals (LP_carry 0 and LP carry 1)

which are generated by Fig 2-8(a).
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Fig 2-9: Fixed-width multiplier with K-J Cho approach for n =8

2.3 L-D Van Approach

In this section, the fixed-width multiplier proposed by L-D Van will be introduced [10] [11].
The L-D Van approach is based on Baugh-Wooley Array multiplier [12]. Fig 2-10 shows the
partial product of 8-bit Baugh-Wooley Array multiplier. It can be divided into two parts, HP

and LP, as the same as Booth multiplier.

HP : LP
- > | -
L IXE, X5 X% K GG X8 KT K
FAAEAD AP A A IS AR AP A4
TT, LLIXT, X5, L XY, X XY,
XY, Xy X\ Xals Xo¥y Xo¥s XY, Kol

XI
|
XY ¥y Ashy X ¥y X4 X0 XY, Al
|
XY XY XY XX\ XY XY XY,

X7

75

X7

]

I LY XYy XY X5 XY XL XJ{;IXDY?

|
Kol Xshy Xa¥y A5¥, Ao¥p Xi¥ Ak
|

Ps Py Py Py Py By By Pow Py B By B B P P B
Fig 2-10 Partial product of 8-bit Baugh-Wooley Array multiplier
In general, the carry from low part to high part of Baugh-Wooley Array multiplier can be

defined as Equation (2.18). The two elements, 3 and A, are represented in equation (2.19) and

(2.20), respectively.
-15 -



Carry_, = B/B’ + /1} (2.18)

r

p= XYt XYt X 5y, o+ X Y0+ XY (2.19)

A=27(X LYo+ X3 Yy Feet X Yo) ot 27X Y, (2.20)

Before we introduce L-D Van approach, the terminology, Oindex:, should be indicated. It
signifies the binary value of LP_major for different values of T, where T means to keep (n + 1)
most-significant columns of partial product and to truncate the (t — 1), least-significant
columns. The value of Oingex: 1S indicated in Equation (2.21) and the binary parameters
Oy 9yp,--- G, arebelongto {0, 1}.

eindex,r (qn—l—r b qn—z—r 2000 qo) i

(2.21)
<X > AT ST 4 4+ <X >
n-1-z yO FE2e yl e 0 yn—l—r

Equation (2.22) illustrates the operation of “< X >*

Cse | X 4SO (2.22)
X, ‘otherwise '

In which X means the complement of the binary number X. For n = 8, the 129y, index under

keeping eight columns, Oingex=129.1=0, can be written as

9index:129,r:0 = X7 yO + X6 yl + XS yZ + X4 y3 + X3 y4 + X2 y5 + Xl y6 + XO y7 (223)

In the following discussion, two calculated methods of error-compensation bias for T = 0
will be explained.

According to the derivation result in [10], equation (2.18) can be rewritten as
1
Carryr—l = eindex,r:O + [EIB - eindex,r:O + ﬂ’]r (224)

It can be replaced by
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Carry, ;= (<X, >™7 + <X 3Y, >T 44 <X Y, > +[K], (2.25)

1
K=< Xn—l yO >qnil +< Xoyn—l >q0 +Eﬂ_eindex,r:0 +4 (226)

In Equation (2.25), the first term can be easily determined while the index is decided. And
the second term, [K];, can be approached by the expected value which can obtain by full
search. In order to get more accurate error-compensation bias, two types of carry-estimation

formula are proposed. The formulas are shown in Equation (2.27) and (2.28), separately.

(KX, LY > +<X Y, >+ 4 <Xy, >")+[K,],, if =0

index

carry,,, = { (2.27)

(KXY, >+ <X, LY, > 4+ <X Y, > +[K, ], if 6,40

index

(<X,.,Y, > 4 < X3 Y > 4ot < XYoo >ql)+[K3]r’ if gindex <n (2.28)
(<X, Y, >+ <xa3y, >+ < Xy, L, >") +[K,],, if 6,,,.=n '

index

Carrytypez = {

Where K, K;, K3, and K4 are the-average value of K for different range of 0ipgex

By full search simulation, we ‘can get the-values of K; and K, for each index. In order to
reduce the complexity of circuit design, to choose the indices which satisty [K;].€ {0, 1} and
[k2]r€ {0, 1} is a good idea. For the 6 x 6 multiplier, there are three indices to satisfy the
conditions, [K;];€ {0, 1} and [ky];€ {0, 1}. However, these indices do not always satisfy the
conditions while the width “n” is changed. In order to find the fixed value of K for different

width “n”, the second approach “Type 2” is proposed. By using exhaustive search simulation

generated from n =4 to n = 12, we can find that the specific index 6 is satisfy [Ks];

ndex=2""+1

= 1 and [k4]; = 0. Because the error-compensation bias is shown as Equation (2.25) and

O iy = %Yo T XY T T XY, t XY, it can be described as Equation

(2.29) forn < 12.
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O O q
(KXY > + <X LY, > <X Y, ., >")+],
<n
index=2""+1
C:arryTypez,index=2“"+1 - [T Ons a (229)
(< Xn—2y1> +<Xn—3y2> +."+<len—2> )9
lf eindeXZZ"'l-%—l -n

To perform the exhaustive simulation for large width “n” will take a lot of time. In the

following discussion, “Type 2 approach for large width “n” will be introduced. Two cases of

<n and @&

index=2""+1

“Type 2” approach, 6 =n will be explained, separately.

ndex=2""+1

Casel: 0

index=2""+1

<n

We have assumed that the probability of each bit of input data equaling “1” is 1/2. Hence,

the value of E[xY;] and E[Tyj] are‘equal to 1/4 and 3/4. According to the values of

E[xy;] and E[Tyj] , the expected value of % [ can be represented as

Eﬁ¢ﬂ:lxﬁi+%+%xm—2ﬂ

2 2..\4
(2.30)
n 1
=—+4—
8 2
Similarly, the expected value of A can be shown as
I 1 1 1 1 1
E[1]==x=x("N=1)+—=x—=x(N=2)+---+—x—x1
A= ggxnr < (=2) 2" 4
11 1 1
=—| =x(n=-D+—=x(N=2)+---+—+1
4(f (N=D+=5x(n-2) o j (2.31)

LI T
8 4

From equation (2.26), the value of [K;], for index = 2" + 1 is indicated as
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(K1, =[E[K1],

1
= |:E[Xn—1 Yo+ X¥na _Eﬂ+ﬂ~]:|

(2.32)

r

Hence, we can obtain the error-compensation bias for large width “n” without using

exhaustive search scheme. Equation (2.33) shows the error-compensation bias for

oo, <N which is the same as equation (2.29)

Carry_ = (<X LY, >+ <X LY, > e <X Y, L, >+

if 0

index=2""+1

ype2,index=2""+1
(2.33)
<n

Case2: 0

index=2""+1

=N

The case &

index=2""+1

=n is met only when X y. , =X ,y,=1and XYy,, = XY, ; = -
= XY, = 1. So, the expected value of % B_.canbe represented as
1 1 1
E[-f]=—=xIxn=—n 2.34
5A1=7 5 (2.34)
And the expected value of A can be shown as

1(1 1(1
E[A]=—] = xIx2+1x(n=3) |+—| =x1x2+1x(n—-4
1= btz o 2Ltz rno-a)

+oo 4 14 l><1><2 +L l><1><1 (2.35)
2n 3 2n 9

:ln—é, ifn>4
2 3

According to Equation (2.34) and (2.35), the value of [K4]; for index = 2™ + 1 is illustrated in

Equation (2.36).
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[K, ], =[ELK1],

1 (2.36)
= E[anl)Io + X0 ¥Yn _E:B"'/l] =0

The error-compensation bias for case 2 is shown in Equation (2.37) which is the same as

Equation (2.29)
— U2 Un-3 G
CarryTypez,in ooy = (S XY >+ <X Y, >0 A <X Y, > ),
) (2.37)
if eindex:2"'l e

Fig 2-11 shows the circuit of 8-bit fixed-width multiplier with the 129, index. The function

of A-A cell is to judge whether the value of 6

index=2""+1

y0

yl

y2

¥3

v

is equal to n or not.

x7 x6 x5 x4 3 X2 %1 x0
¥ X
MDD
N[ A-A
v
ND | |AFA| | A-aA
‘* + A-A ND-ND SN
ND AFA AFA A=A
x= :
AR o s
ML AFA AlA AlA A-A . +
" " ¥ ! Cou  Sou
ND AFA | |AFa| |AFA| |AFA A-h _—
v Y Y Y Y
ND AFA AFA AFA AFA AFA A=A
I I W AN A
A NEFA NEFA NEA NIA NEFA NFA \ll;
v v v Y Y Y v
INV FA FA FA Fa | Fa FA FA | 1
Y v Y Y Y Y v v
P15 P14 P13 P12 P11 P10 PO P2

Fig 2-11: Fixed-width multiplier with L-D VAN approach for n =8
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Chapter3 Proposed Self-Compensation
Multiplier

In chapter 2, three existed Fixed-width multiplier are introduced, S-J Jou approach, K-J
Cho approach, and L-D Van approach. S-J Jou approach and K-J Cho approach are based on
Booth multiplier and the L-D Van approach is based on Baugh-Wooley Array multiplier. In
this chapter, a new approach of fixed-width multiplier which is based on Booth multiplier will
be introduced. The error-compensation bias of proposed approach is produced by the
carry-estimation equations. In order to reduce the truncation error, the carry-estimation
equations are adapted for n = 8 to n =16. These equations for different n can be analyzed by
few logic gates. Hence, the citcuit cemplexity of proposed approach is closed to
direct-truncation approach.

The error-compensation bias «is: introduced - in section 3.1 and the circuit of proposed
structure is illustrated in section 3:2. Finally, the comparison of performance for each

approach is shown in section 3.3.

3.1 Calculation of Error-compensation bias

Fig 3-1 shows the partial product of 8-bit Booth multiplier and the partial product is divided
into two parts, low part (LP) and high part (HP). The LP can be further divided into two parts,
the first column of LP is LP_major and the remaining columns of LP are LP_minor. The
carry-out bit from LP to HP is written as equation (3.1), where B the sum of LP_major and A is

the sum of LP_minor.

Carry, =Eﬂ+lJ 3.1
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p= P0_7 + P1_5 + P2_3 + P3_1 (3.2)

A= 272(P0_6 + P1_4 + Pz_z + P3_0 + n3)+ 273(Po_5 + P1_3 + PZ_I)
+ 24(P074 + PLZ + P270 + nz) + 2_5(P073 + Pu)
+276(Po_2 + Pl_O + n1)+277(Po_1)

+ 2_E;(F)ofo +1y)

(3.3)

In order to find the error-compensation bias, LP_major index, 6, is defined as equation

follow.
0= P0_7 +21°P1_5 +22°P2_3 +23'P3_1 (3.4

the values of 0 for different values of LP_major are shown in Table 3-1.

Table 3-1: The values gf 0 fordifferent values of P3 ¢P; 2P 4Py ¢

i Foz Py g F‘;--._ ? L=
i 1l [2] (0] [n]
[} ) 0l 1 1
4] i 1 ] 2
9] 11 | 1 3
18] 1 4] ¥ <}
n] 1 (4] 1 =5
18] 1 1 9] L=
5] 1 1 1 7
1 L] [ ] =
1 i [ 1 Q)
1 ] 1 u) 141
1 ] 1 1 11
1 1 [4] o 12
1 1 4] 1 13
1 1 1 a] 14
1 1 l 1 15
HP | Lp
) o P majr i
I | -
:__Ffu_r]_'f'_! ; - LF_minor -
PO_8 P07 'PO6 POS P04 P03 P02 PO_1 PO
|
|
P18 PI_7 PI_6|P1_5 P4 P13 PI_2 Pl P10 no
I |
P28 P27 P26 P25 P2.41P23|P22 P21 P2.0 nl
|
P38 P37 P36 P3S P34 P33 P32 P31 P30 12
|
l n3

pls pl4 pl3 pl2 pll pl0 p@ p8 p7 p6 p5 M p3 p2 pl pl

Fig 3-1: Partial product of 8-bit Booth multiplier
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It is obviously that if one value of 6 is selected, the value of B is fixed. For example, if the
value of 0 is equal to 7, the value of B must be equal to 3. We can obtain the average carry for
each value of 0 by using full search simulation. Because the value of f is fixed, we only need
to calculate the average carry from LP_minor to HP (X). The results of full search simulation

for n = 8 are represented in Table 3-2.

Table 3-2: The average carry for each value of 0

Aoverngre Conrry

N I] YA A [V B o] fol

=
2
1y

P

Wb b | b b B ba] = B | = [ Bd) = = | =

1 F N T B

Now, we can get the error-compensation bias by ‘using look-up table method. The input of
table is the four elements of LP_major and three approximate carry signals are needed to
represent the values of error-compensation bias. The block diagram of error-compensation

bias is illustrated in Fig 3-2.
PU_'." Pl 5 PE_E- P3_l

SEIRER R

Error-compensation Table = Carry_|1
—» Carry_2

Fig 3-2: The error-compensation table for n = 8
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As mentioned in former discussion, the values of approximate carry signals are obtained by
looking up table. But the area of error-compensation table will increase when n is large.
Hence, it is unwise to obtain the error-compensation bias by this method. The new approach
should be proposed to improve the hardware complexity of look-up table method.

In order to find the new approach, we try to find the rule between average carry and 0.
Fortunately, the average carry is related to the number of “1” in LP_major which is the value
of B. If the values of 6 have the same number of “1” in LP_major, the values of average carry
for these 0 will be all equally. For example, the values of average carry are all equal to 1 for 0
=1, 2,4, and 8 in which the number of “1” in LP_major is all equal to 1. The relation between

average carry and the number of “1” in LP_major is shown in Table 3-3 for n= 8.

Table 3-3: The values of Average carry for each p for n =8

; o [
0 0 l
| 1, 2,4, 8 l
2 3.5,6,9,10, 12 2
3 Yo 11,13, 14 2
A 15 3

From Table 3-3, we can derive a carry-estimation equation which can computed the average

carry for n = 8. The carry-estimation equation is written as

Carry, = {gJ +1 (3.5

The results of this equation are the error-compensation bias for n = 8. Table 3-4 shows the

results of carry-estimation equation for n = 8.
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Table 3-4: The results of carry-estimation equation for n = 8

B 0O(1]2
Average Carry

C'.::rry?=\"';iJ+1 | | 2

[
it I I N T P
L

As seen in Table 3-4, the results of carry-estimation equation are all equal to the values of
average carry which are obtain by full search simulation. Hence, we can calculate the
error-compensation bias by equation (3.5). The carry-estimation equations for different width
“n” can be obtained by similarly process. Equation (3.6) and equation (3.7) show the
carry-estimation equations for n = 10 to n = 16. And the results of these carry-calculate

equations are represented in Table 3-5.

Carry%fl = {_ﬂ;1J+1, forn =10, 12, and 14 (3.6)

Carry,i = {gJ +2; ~forn=16 (3.7)

However, the values of carry-estimation equations do not always match the values of
average carry. For example, the result of carry-estimation equation is equal to 2 for n = 10 and
B = 1. But the value of average carry is equal to 1. In order to derive the influence of the
truncation error caused by this inequality situation, the probability of the mismatch situation is
calculated. First, the number of cases for each value of  is computed. Equation (3.8) shows

the equation which can calculate the number of cases for each f.

N, =C}? (3.8)
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Table 3-5: The results of carry-estimation equation for
@n=10(b)n=12(c)n=14(d)n=16

Jid 0|1 |2 (3]4]S5

Average Carry 1 (112334

Carry, = {/5 +%J+1 1121233 |4
(a)

Jij O(1(2|3|4|5]|6

Average Carry 112121313414

Carmy, =| P15 11 1|2 2|3 |3 |44

(b)
Y (1213|4567
Average Carry 112121334515

carmn, = | B+ |41 12 2(3 |3 (4|45

(c)
i Of1(2]3 506178
Average Carry |1 |2(2(3 415(15|6
Carryl,={f%J+2 2(213|3|4(4|5]5]|6

(d)

Table 3-6 shows the numbers of cases for each f with n = 10. It is obviously that, the

probability of B equaling “1” is only %2. In other words, the probability of the mismatch

condition is only %2 (15%) for n = 10. Thus, the increase of the truncation error caused by

the mismatch situation will be few.
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Table 3-6: The numbers of cases for each § with n =10

B o1 |23 [4]5

# of cases I [ s |wl]1w]s5 |1

Similarly, the mismatch condition occurs for f = 6 and n = 14. We can also find the
number of cases for each B by using equation (3.8). Table 3-7 shows the numbers of cases for

each B with n = 14.

In Table 3-7, we can see that the probability of B equaling “6” is only %28' That is, the

probability of the mismatch condition is only %28 (5.4%). Hence, the increase of the

truncation error caused by inequality condition is also very little for n = 14.

Table 3-7: The numbers of cases for each p with n = 14

i 011 (2134|567
#ofcases | 1 | 7 1211351351217 | 1

The inequality situation is also occurred for n = 16. There are two conditions, f = 0 and
B = 2, that the results of carry-estimation equation are not equal to average carry. By using

equation (3.8), the numbers of cases for each 3 with n = 16 can be obtained from Table 3-8.

Table 3-8: The numbers of cases for each p withn =16

Ji] 011121314 |5|6]|7]S8
#ofcases | 1 | 8 |28 (56|70 (56 (28| 8 | 1

The probability of the inequality condition is only 11%. Hence, the increase of the truncation
error for n =16 is still very little.
In former discussion, we can know that the error-compensation bias can be obtained by

using the carry-estimation equations for n = 8§ to n = 16. And the results of the
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carry-estimation equations are almost the same as average carry which is obtained by full

search simulation.

3.2 Proposed Structure

In this section, the circuits of carry-estimation equations for n = 8 to n = 16 are introduced.

The carry-estimation equation for n = 8 is shown in equation (3.5) which is composed by

L’% J and “plus 1”. The function of {’% J can be calculated by the carry of LP_major.

The process of calculation of L'% J is shown as follow. First, the elements of LP_major are

summed by some full adders and half adders. The carry signals from each adder are the carry
from LP_major to HP, and the sum signals are added. The new carry signals from the added
sum signals are also the carry fron:LP major to HP. Repeat former steps until only one sum
signal is left. As regards the functionof plus “1*’, we only need to assign the third carry signal
“Carry[2]” equal to 1 for n = 8. Fig 3-3 illustrates the circuit of carry-estimation equation for

n=_.

r:'{]_'.‘ r 1_5 .P_?'_ 3

Full Adder

k]
P,

Carry [0 l I

Half Adder

Carrv[1] — ¢

Carry[2] = 1
Fig 3-3: Circuit of carry-estimation equation for n =8
As seen in Fig 3-3, the circuit only needs one full adder and one half adder. Thus, the
penalty of area for computed error-compensation bias is very small.

Fig 3-4 illustrates the circuit of 8-bit Booth multiplier with proposed approach. In Fig 3-4,
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the adder cells required for LP are all omitted, and the carry-out from LP to HP is estimated
by equation (3-5) which corresponds to Carry[0], Carry[1], and Carry[2] in Fig 3-4. There are
eight full adders, seven half adders, and one 8-bit CPA in this multiplier. The ratio of area
between the circuit of carry-estimation equation and the circuit of 8 x 8 booth multiplier is
very small. Thus, the area of proposed multiplier is only a bit larger than the area of

direct-truncated multiplier.

Fig 3-4: Circuit of 8-bit Booth-multiplier with proposed approach

Fig 3-5 shows the circuits of carry-estimation equations for n =10 to n = 16. We can see
that the required adders do not increase much as the width “n” increases. The required adders
are three full adders for n = 12. Even for n = 16, the required adders are only four full adders
which are one more full adder than the condition of n = 12. According to the few required
adders for large width “n”, the influence of the increased area coursed by the circuit of
carry-estimation equation can be skipped for large width “n”. Thus, the ratio of area between

proposed multiplier and direct-truncated multiplier is almost equal to “1” for large width “n”.

That is, the area of proposed approach is close to the area of direct-truncated multiplier.
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3.3 Performance Analysis

The performance of different approaches will be represented in this section. The
performance is evaluated in terms of average error, the variance of errors, and gate count.
Note that the comparison of gate counts only contains the approach based on Booth multiplier.
However, the approach proposed by L-D Van [11] is based on Baugh-Wooley Array multiplier,
it does not include in the comparison of gate counts.

The absolute error between the standard Booth multiplier and fixed-width multiplier is

defined as

c=|P

Standard ~ Pixed-width (3.9

where Pgundard represents the computational result of standard Booth multiplier and Prixed-width
represents the result of fixed-width:multiplier:

The average error is defined as equation (3.10) where E[x] is the expected value of x.
g=E[g] (3.10)

Besides the comparison of average error, the variance of error for each approach is

compared, too. The computation of the variance of error is described as equation (3.11).
v=E[(¢-8)*] (3.11)

It is obvious that the fixed-width multiplier with smaller truncation error has more accurate
results. Similarly, the approach with smaller variance of error has stable results.

The comparison of average error and the variance of error are represented in Table 3-9 and
Table 3-10, respectively. And the comparison of gate counts is shown in Table 3-11. From
Table 3-9, the error of proposed approach is only 11% of direct-truncated multiplier for n = 16.
Besides average error, the variances of our multiplier are only 4.9% of direct-truncated

multiplier. It means that the proposed approach is more stable than direct-truncated multiplier.
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The comparisons of gate counts are based on Booth multiplier. The gate count of proposed
approach is a bit larger than S-J Jou approach but is smaller than K-J Cho approach. For large

width “n”, the gate count of our approach is very close to S-J Jou approach, because the

number of adder for carry-estimation equation is very small.

In conclusion, the proposed approach has three features:

I. Low average error

II. More stable than other approach

II1. Area efficient

Table 3-9: Comparison results of average error

n=2_§ n=10 n=12 n=16
Direct-Truncated {513{?32; ('2%?2?51 (13.13?:] f;m {'ZITOB[ES}
S-I Jou Approach 18.59% | 16.94% | 15.65% 13.76%
K-J Cho Approach | 14.79% | 12.50% | 11.00% 11.31%
L-D Van Approach 18.22% | 16.20% 14.33% 12.41%
Proposed Approach | 15.14% | 16.26% 12.41% | 11.22%
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Table 3-10: Comparison results of variance of error

n=2_8 n=10 n=12 n=16

Direct-Truncated 100% 100% 1005% 100%
(54284) | (1172842) [(23650942)[(8561689532)

S-J Jou Approach 11.67% 10.70% 10.15% 8.37%

K-J Cho Approach 7.02% 5.53% 4.81% 4.72%

L-D Van Approach 11.11% 9.56% 8.66% 7.63%

Proposed Approach | 7.35% 9.05% 6.10% 4.89%

Table 3-11|C0mp‘£l’ilsl)lleSHItS of gate counts

n==§ n=10 n=12 n=16

o 100% 100% 100% 100%

Booth Multiplier 1 671y | (925) | (168D | (2948)

S-J Jou Approach 52.75% 61.33% 50.70% 59.74%

K-J Cho Approach 62.20% 72.58% 55.05% 70.42%

Proposed Approach | 60.24% 62.62% 54.94% 6().72%
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Chapter4 Application of Fixed-Width
Multipliers in FFT

The low-error area efficient fixed-width multiplier is proposed in chapter 3. The average
error of proposed structure is only about 15% of direct-truncated multiplier. As well as the
area of proposed one is only about 60% of standard Booth multiplier. In order to reduce the
hardware complexity, the multiplication operations in FFT usually have the fixed-width
property. Thus, the proposed fixed-width multiplier is employed in the 128-point FFT
architecture [13]. The truncation errors will be introduced because of the usage of the
fixed-width multiplier and it will decrease the performance of the 128-point FFT. In section
4.1, the 128-point FFT algorithm will be introduced. Then the architecture of 128-point FFT
will be introduced in section 4.2:"Finally, the performance of 128-point FFT is shown in

section 4.3.

4.1 Introduction to 128-Point FFT

In this section, the 128-point FFT algorithm proposed by Y-W Lin [13] will be introduced.

Given a sequence x(n), the N-point DFT is defined as

X(k)=ZN:x(n)WNk” (k=0,1,---,N—=1) 4.1)

n=0

Where x(n) and X(k) are complex numbers. And the values of W," is

W™ = cos(27 n%l )— jsin(27 n%l ) (4.2)

In equation (4.1) the computational complexity is O(N?) through directly performing the
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required computation. The computational complexity can be reduced to O(Nlog') by using

the radix-r FFT algorithm. In general, higher-radix FFT algorithm has less number of complex
multiplications while compared with radix-2 FFT algorithm. Hence, the radix-8 FFT
algorithm is employed in the 128-point FFT. But the 128-point FFT is not the power of 8, the
mixed-radix FFT algorithm which include radix-2 FFT and radix-8 FFT algorithm should be
chosen. The mixed-radix 128-point FFT algorithm is derived as below.

First, let the constant in equation (4.1) as

N =128
n, =0,1
n=64n +n,
n,=0,1,---,63 4.3)
k =0,1
k =k, +2k, 1
K,,=0,1,---,63

Then, equation (4.1) can be rewritten as

63 1
X (2K, +k) = DT> XG4 G k)

n, =0 ;=0

63 1
= Z Z X(64n1 +n, )Wznlkl ngizk] WsZZkZ
—

n,=0 | n,=0

(4.4)

twiddle factor

2 point DFT

64 point DFT

63 )
= Z BUz(klvnz Wﬁrf ’

n,=0

In equation (4.4), the 128-point DFT can be considered as a two-dimensional DFT, 2-point
DFT and 64-point DFT. The inputs of 128-point DFT are computed by radix-2 FFT algorithm
at first. Then, the results of radix-2 FFT are multiplied by twiddle factor. Finally, the results of
multiplication should be calculated by 64-point DFT algorithm which can decomposed into
8-point DFT recursively 2 times. In order to derived the 64-point FFT algorithm by using
radix-2°> FFT algorithm, the constant n, and k; in equation (4.3) can be defined as
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n, =32a, +16a, +8a;, +a,, a,a,,a,=0,L;a,=0,1,---,7

k,=8+2B,+4B,+8p,, BBy, By =015, =0,L---,7
Using equation (4.5), equation (4.4) can be rewritten as

X(Z(ﬂ1+2ﬁ2+4ﬁ3+8ﬁ4)+k1):
i i 21: 21: BU, (k,,32¢, +16c, + 8, + )

;=0 03=0 a, =0 o, =0

><W6(432051 +16a, +8as+0y ) B +2 B +4 S3+8B,)

Where the twiddle factor can be decomposed as
W6$2a1+16a2+8a3+a4)(ﬁ1+2ﬂ2+4ﬂ3+8ﬂ4) —
ABANS BN @ BN @ B2 BN B BAN] Fa (B2 oA B NN @B
W21 1W4 2 1W2 2 2W8 3\ 2)\/\/2 3 3W644 1 2 3)\/\/8 4P4

Thus, equation (4.6) becomes

X (2B +28,+45,+8B,) +K ) = 27: BU, (K., B, By, at W™

a,=0
Where

BU,(k,, B, By, Bs ) =

1 1 1

Z z z BU 5 (kl , al , az , a3 , a4 )W2a1ﬂ1W4a2ﬂl Wzazﬂzwg% (Bi+25,) W;‘zﬁzwé? (Bi+28,+453)

U3 Q= A= Ist step

2nd step

3rd step

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

In equation (4.9), the 8-point DFT are divided into three steps by using radix-2 index map.

Fig 4-1 shows the signal flow graph of the radix-8 FFT algorithm. In which, the radix-8

algorithm is decomposed into three steps. Each step has four butterfly operations. After the

butterfly operations, the multiplications of twiddle factors in each step should be performed.

There are only three twiddle factors, -j, W, , and W, in radix-8 algorithm. The

multiplication of “-j” only needs to exchange the real part with imaginary part. Thus, it does

not need any multiplier. The multiplications of the twiddle factors, W, and W,', can be
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replaced by some additions. Because the twiddle factors can be written as V2 / 2(1-j) and
—(\/5/2(1— j)), respectively. The value of \/5/2 is equal to 0.70710678 which can be

written as 27 +27° +2*+27°+2° can be complemented only by five shifters and four

adders .

=iep 1 Step 2 Step 3

Fig 4-1: The signal flow graph of radix-8 FFT algorithm

The signal flow graph of 128-point mixed-tadix FFT algorithm is shown as Fig 4-2. In
which, the 128-point FFT is composed by three stage.-The first stage is performed by radix-2
FFT algorithm and the radix-8 FFT-algorithm shown in Fig 4-1 is employed in the second and
third stages. The black point in each stage means that one twiddle factor will be multiplied at
that point. In the first stage, there are sixty-four butterfly units and the two inputs of in
butterfly unit are iy, and (64+i)y, input data where i = 0 ~ 63. Then the results of first stage
should be calculated by the second and third stages. There are sixteen radix-8 FFT units in the
second and third stages, respectively. The orders of radix-8 FFT inputs are different in each
stage. In the second stage, the inputs of each radix-8 FFT unit are shown as below

{(64i + ) (641 + | +8),, (641 + j+16),,,(64i + j+24),,, }

(641 + ] +32),,(641 + ] +40),,(64i + j+48),,,(64i+ j+56),
1=0,1;j=0,1,---,7;  for (8i+ j), radix-8 FFT unit

(4.10)

But in the third stage, the eight inputs are (81)g ~ (81 + 7)w, input data fori=0 ~ 15.
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Fig 4-2: The signal flow graph of 128-point mixed-radix FFT algorithm

4.2 128-Point FFT Architecture

In order to reduce the area of 128-point FFT, the proposed multiplier is employed in the
128-point FFT architecture. The 128-point FFT architecture proposed by Y-W Lin’s [13] is
introduced in this section.

Fig 4-3 shows the 128-point FFT architecture which is divided into three modules. The first
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module is complemented by radix-2 FFT algorithm, and the radix-8 FFT algorithm is used in
the second and the third modules. In this architecture, the high throughput rate is achieved by
using four parallel data paths; the order of the output sequence is the bit reversal of the order

of the input sequence as seen in Fig 4-3.

o - e -
Data —s={ Modulel e Module? ——m= Module3 |—= Data
In —™ radix-2 = radix-2 0™ radix-2 /= Out
—— - ——— [
- Time - Time
124 120 ---4 O 31 15 ---16 0O
125121 51 95 79 - B0 64
126 122 -6 2 63 47 ---48 32
127123 ---7 3 127111 ---112 96
The order of input sequence The order of output seguence
Fig 4-3: Block diagram of 128-point FFT
4.2.1 Module 1

Fig 4-4 shows the architecture-of Module 1 which consists of 128 registers which can store
64 complex data, four two-input. butterfly=units (BU), two complex multipliers, and two
ROMs. The ROMs are used to store the twiddle factors. The 128 registers are used to store
inputs data and the outputs of BU. The operations of BU are the complex addition and the
complex subtraction from two input data. Because the two inputs of each BU are in(i) and
in(64+1) where i is from 0 to 63. This is corresponds to the first stage of Fig 4-2. The order of
four parallel input sequences in Module 1 is in(4m), in(4m+1), in(4m+2), and in(4m+3) where
m is from 0 to 31. Thus, the 64 input data at first 16 cycles should be stored in the register file.
At next 16 cycles, the eight inputs of the four BU are received from the register file and the
inputs data, respectively. Then eight outputs data are generated by the four BU. The four
outputs of the complex addition are sent to the Module 2 directly, and the other four outputs
of complex subtraction are stored in the register file. Before the four outputs are stored, two of

them are multiplied by twiddle factors. After 32 cycles, the other two outputs are multiplied
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by twiddle factors. Then, the four outputs are fed into the Module 2. By this multiplication
approach can not only reduce the four complex multipliers to two complex multipliers but

also achieve 100% utilization of the complex multipliers.

Eegister File

Reg_out Reg_in

2 .
—L>’:|ﬂ|: ,E* Data_in
—BUH ; M
o 50 v
Data > x| Olitput

[Data

::> Means four-data path ~ —= —— -
-

—
—»  DMeans one-data path 8l

Fig 4-4: Block diagram of the Module 1
4.2.2 Module 2

The block diagram of the Mbdule ‘2 is illustrated in Fig 4-5. It consists of four BU 8
structures and four complex multipliers." The architecture of BU 8 is directly mapped from
3-step radix-8 FFT algorithm as seen in Fig 4-1. And the numbers of registers in each step are
eight, four, and tow, respectively. These registers are used to store the input of two-input BU

until the other available input is received. The outputs of two-input BU in first and second

steps should be multiplied by the twiddle factors, 1, -j, W, , and W, . As mentioned in

Section 4.1, the multiplications of these twiddle factors can be implemented without any
multipliers. But the four outputs of BU 8 need to be multiplied by the nontrivial twiddle

factors with four complex multipliers.
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Fig 4-5: Block diagram of the Module 2
4.2.3 Module 3

The Module 3 is also realized by radix-8 FFT algorithm. Fig 4-6 shows the block diagram
of the Module 3. The structure of the Module 3 is different from that of Module 2, because the
orders of input data of the Module 2 and‘the -Module 3 are different. The structure should be

adapted for the different orders of output qs shown in Flg 4-6. The outputs data in first and

second steps only need to be multlphed by the tw1ddle factors, 1, -j, W, , and W;'. Thus, no

any multiplier is used in the Moduie,S: N

BLI_2 -

BU_2 =

Fig 4-6: Block diagram of the Module 3
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4.3 Simulation Results

The algorithm and architecture of 128-point FFT are introduced in section 4.1 and section
4.2, respectively. In this section, the performance of 128-point FFT will be represented. Table
4-1 shows the SQNR of different 128-point FFT approaches. The first column indicates what
kinds of multipliers are used in the 128-point FFT architecture. “Booth” means the traditional
Booth multiplier; “Direct t” means the direct-truncated multiplier; and “Proposed” means the
128-point FFT with proposed multiplier. The first row shows the width of twiddle factors and
input data. Because there are 2 bits right of decimal point of twiddle factors. The
truncation-bit is only n - 2 bits. For example, if the width of twiddle factors is 10, the
truncation-bit is only 8 bits which are left of decimal point. In Table 4-1, the SQNR of
proposed approach is only 1dB less than the'traditional Booth multiplier. But it is about 10dB

larger than the direct-truncated multiplien:

Table 4-1: SQNR of 128-point’ FFT with different multiplier approach

18 16 14 12 10
Booth 80.43dB | 68.38dB | 56.33dB | 44.33dB | 33.33dB
Direct_t 68.20dB | 57.27dB | 46.82dB | 35.55dB | 24.24dB
Proposed 79.09dB | 67.79dB | 55.52dB | 43.04dB | 32.40dB

Table 4-2 represents the gate count of 128-point FFT with the three different multipliers for
n = 10. Compare to the traditional Booth multipliers, our approach improves by 10%
reduction in gate count. And it is only 2% bigger than the direct-truncated multiplier.

As mentioned in section 4.1, the 128-point mixed-radix FFT algorithm is divided into three
stages. The multiplications of twiddle factors should be performed in the end of each stage. In
Fig 4-2, the multiplications should be performed in the end of first stage and the end of

second stage. Because the fixed-width multipliers which cause the truncation errors are
-42 -



employed, the multiplications of twiddle factors will reduce the performance of FFT. The
computations of twiddle factors will increase, if the points of FFT are raised. Thus, the more
point of FFT is needed; the less performance will be expected. In order to observe the
performance of high-point FFT by using Fixed-width multipliers, the proposed approach is
employed in the 8192-point FFT algorithm [14]. Table 4-3 shows the simulation results of
8192-point FFT.

The SQNR of proposed approach is about 2dB less than the standard Booth multiplier. But

it is still larger than the direct-truncated multiplier approach.

Table 4-2: Gate count of 128-point FFT for n =10

Combinational Sequential Total
Booth 57397(1) 35923 93320(1)
Direct_t 47768(0.83) 35021 82789(0.88)
Proposed 48850(0.85) 35612 B4462(0.90)

Table 4-3: SQNR of 8192-point FFT with different multiplier approach

18 16 14 12 10
Booth 87.63dB | 75.55dB | 63.23dB | 51.57dB | 39.53dB
Direct_t 80.87dB | 69.06dB | 57.40dB | 46.35dB | 35.20dB
Proposed 85.00dB | 72.34dB | 59.59dB | 48.49dB | 37.45dB
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Chapter5 Implementation Results for
128-point FFT

This chapter will describe the CHIP implementation and its design methodology. In section
5.1, the implementation of 128-point FFT with proposed multiplier is introduced. In section
5.2, the implementation of approach 2 is described. The architecture of approach 2 is the same
as approach 1. But the registers of approach 2 are replaced by DDR (Double Data Rate)
registers can catch data not only in positive edge clock but also in negative edge clock. The
function of DDR registers will be introduced in section 5.2. Finally, the simulation result of

two proposed architecture are represented in section 5.3.

5.1 Approach 1

The proposed approach 1 implements the 128-point FFT architecture with proposed
fixed-width multiplier. The structure of approach.1 has been described in section 4.2. The
width of input data and twiddle factors are 10-bit and the width of output data is 14-bit. In
order to avoid the overflow of computations of BU, the outputs of BU is 1-bit larger than the
inputs of BU. In the 128-point FFT algorithm, seven computations of BU are needed. Thus,
the outputs of 128-point FFT are 7-bit larger than the inputs. In the cause of low hardware
complexity, the least significant 3-bit of the four outputs of stage2 as seen in Fig 4.3 are
truncated. The bits of outputs of first, second, and third stages are, 11-bit, 14-bit, and 14-bit,
respectively.

As mentioned in section 4.2, four data path is employed in our 128-point FFT architecture.
Thus, the 14 x 256-bit SRAM is used to save the chip pins. The inputs data are stored serially
in the SRAM from the 10-bit chip input pins before the operation of calculation. Then the four

complex data in parallel are fed to the 128-point FFT structure. After the computations of
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128-point FFT, the four complex outputs of 128-point FFT are stored in the SRAM. Finally,
the outputs of 128-point FFT are read serially from the SRAM.

This 128-point FFT architecture is implemented by 0.18um one-poly six-metal (1P6M)
standard cell technology. Fig 5-1 shows the layout view of approach 1.

Table 5-1 shows the chip summary of approach 1. The total gate count is about 164K with
test module 81K and the maximum clock rate is 195 MHz. And, the core size is 1.46 x 1.46
mm®. The maximum power consumption is 500mW at clock rate 195 MHz. The chip is

packaged in a 128 CQFP package.

Fig 5-1 Layout view of approach 1
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Table 5-1: The chip summary of approach 1 architecture

Memory size 13 x 256 bits
Core area (mm?) 1.46mm x 1.46mm
83K
Total gate count
+ 81K Test Module
Maximum Operating Frequency 195 MHz
1.2G*
Date rate (ample/s)
780M**
363mW@300MHz*
Average Power
246mW @ 195MHz**

* Typical Case 1.8V

** Worst Case 1.62V

5.2 Approach 2

The structure of approach 2 is almost the same as approach 1 besides the registers. The
DDR registers are employed in approach 2. The proposed DDR registers can catch data either
at positive edge clock or at negative edge clock. Thus, two operations can be computed during
one clock cycle. We can achieve the same throughput rate as D Flip-Flop structure at half
operation frequency by using DDR registers. Fig 5.2 shows the structure of DDR register

which is composed by two parallel latches.
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Fig 5-2: Structure of DDR register
The function of latch is shown in Table 5-2. If OE = 0, the state of the latch is “Z” and the
output, Q[n+1], is high impedance. Else if OE = 1 and G = 1, the state of the latch is “Store”
and Q[n+1] is equal to input, D. Otherwise, the state of the latch is “Latch” and Q[n+1] is

equal to the last output, Q[n].

Table 5-2: Function of Latch

OF C | Qn+1]
0 x X <
1 ] 0 0
1 1 1 1
1 (] o4 ]

The operation of proposed DDR register at CLK = 0 is shown in Fig 5-3(a). At CLK = 0,
the state of Latch 1 is “Latch” and the output, Q,, is equal to Q,[n]. The state of Latch 2 is “Z”
and the output, Q,, is high impedance. Thus, the output of proposed DDR register is equal to
Qi[n]. By the same way, the state of Latch 1 and Latch 2 are “Z”, and “Latch” respectively
when CLK = 1. So, the output of DDR register is equal to Q;[n] . Fig 5-4 is an example of

proposed DDR register. And the function of proposed DDR register is described in Table 5-3.
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Fig 5-4: Example of proposed DDR register
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Table 5-3 Function of proposed DDR register

In CLEK Out[n+1]

0

I

(0

TR

1

Approach 2 is also implemented by 0.18um one-poly six-metal (1P6M) standard cell
technology. Fig 5-5 shows layout view of approach 2.

Table 5-4 shows the chip summary of approach 2. The total gate count is about 222K with
test module 108K, and the maximum clock rate is 90 MHz. Because the DDR registers are
employed and the number of data paths is four, the data rate is 720M samples/sec. The core
size is 2.24 x 2.24 mm®. The average power consumption is 533mW at clock rate 90 MHz.

The chip is packaged in a 128 CQFP package.
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Table 5-4: The chip‘sﬁl‘r'lm‘ai"y of approach 2 architecture

Memory size 13 x 256 bits

Core area (mmz) 2.24mm x 2.24mm

113K
Total gate count
+ 108K Test Module

Maximum Operating Frequency 90 MHz
Date rate (M samples/s) 720
Average Power 533mW (Include RAM)
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5.3 Comparison

Table 5-5 lists the comparisons of various 128-point FFT approaches. The proposed
approach is simulated in 0.18um (1P6M) worst case. From this table, it is obviously that

Approach 1 has the minimum core size. And the power is smaller than Booth approach.

Table 5-5: Comparison of various 128-point FFT architectures

Y-W Lin[13] K-H Lin[15] Booth Approach 1
Process | 0.18 y m 1P6M 0.18 £ m 1P6M 0.18 x m 1P6M 0.18 x m 1P6M
Input
10-bit 8-bit 10-bit 10-bit
width
SQNR 30dB 31dB 33dB 32dB
Data path 4 4 4 4
Maximu
1.2G sample/s* 1.2G sample/s*
m 1G sample/s 800M sample/s**
780M sample/s** | 780M sample/s**
Data rate
443mW 336mW
Average 175mW 127mW @300MHz* @300MHz*
Power @250MHz @132MHz** 286mW 246mW
@195SMHz** @195SMHz**
1.18 x 1.18
Chip size 1.76 x 1.76 1.56 x 1.56
1.24x 1.24 (1.46 x 1.46
(mm?2) (include RAM) (include RAM)
include RAM))

* Typical Case 1.8V

** Worst Case 1.62V

-51-



Chapter6 Conclusion

In this paper, the low-error area-efficient fixed-width multiplier is proposed. The proposed
fixed-width multiplier can not only reduce the truncation error but also decrease the circuit
complexity. The average error of proposed fixed-width multiplier is only 15% of
direct-truncated multiplier. And the area of our approach is only 60% of the standard Booth
multiplier.

In order to observe the performance in real applications, our multiplier is used in 128-point
FFT architecture. The SQNR of our approach is only 1dB less than the traditional Booth
multiplier. Compared to the direct-truncated multiplier approach, our approach has 10dB
SQNR improvement with only 2% increased in ¢€ircuit overhead. In conclusion, our approach
can not only achieve the low-area approximated:to the direct-truncated multiplier but also
reach the high-performance close to the Beoth multiplier approach.

In order to reduce the operation frequency, the DDR register structure is employed. It can
reduce the operation frequency to only 50% of Flip-Flop structures.

Finally, the structure of approach 1 and approach 2 are implemented by 0.18um 1P6M

CMOS technology as shown in Section 5.1 and Section 5.2, separately.
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