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指導教授 : 張錫嘉 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

 
摘 要       

 

在本論文中，我們提出一個利用自我補償方法的固定長度乘法器架構。

在這個架構中，藉由進位估算方程式，只需要少量的全加器就能夠計算所

需要的進位補償值。為了減少因為刪除運算元件所造成的誤差，我們的架

構會根據不同的乘法器長度而有其相對應的進位估算方程式，以達到最佳

的效果。經由模擬結果發現，使用所提出的乘法器架構，刪除誤差可以降

低到只有 Direct-truncated 乘法器的 15%，在面積部份，則是縮小到只有傳

統 Booth 乘法器的 60%。此外，我們也將這個乘法器架構應用在 128 點 FFT

中，和使用 Direct-truncated 乘法器的 128 點 FFT 架構相比，我們的 SQNR 

(Signal to Quantization Noise Ratio)高出了 10dB，而面積只增加了 2%左右;

相較於傳統的 Booth 乘法器架構，我們可以降低 10%的面積，而且只減少

約 1dB 的 SQNR。 
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Multiplier and Its Applications 

 

Student: Hong-An Huang  

Advisor: Hsie-Chia Chang 

 

Institute of Electronics 
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ABSTRACT 

 
This thesis introduces a self-compensation method for fixed-width multiplier which 

receives two n-bit inputs and produces an n-bit product. The truncated part that produces the 

carry-out bit is replaced with carry-estimation equations. In order to reduce the truncation 

errors, different input-width multipliers will correspond to different carry-estimation 

equations.  Simulation results show that our self-compensation method can lead to 85% 

reduction of truncation errors while compared with direct-truncated multipliers, as well as 

40% reduction in area of a multiplier while compared with traditional Booth multipliers. In 

contrast with the 128-FFT using direct-truncated multipliers, our 128-FFT approach has 10dB 

SQNR improvement and only 2% circuit penalty. 
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Chapter 1 Introduction 

 

1.1 Motivation 

In many DSP applications, the multiplication operations have the fixed-width property. 

That is, the outputs and the inputs data have the same bit widths. For example, if an n-bit 

integer multiplicand is multiplied by an n-bit decimal, it will produce a 2n-bit product which 

is composed of n-bit integer and n-bit decimal. In order to reduce the hardware complexity, 

the n-bit decimal is usually truncated. Fig 1-1 shows the 8-bit Booth multiplier. Assume that, 

the two inputs of this multiplier is 8-bit integer, A (a7 ~ a0), and 8-bit decimal, B (b7 ~ b0). For 

fixed-width multiplications, the 8 least-significant bits (LSBs) of the product, p7 ~ p0, is 

usually truncated. 

 

Fig 1-1: 8-bit Booth multiplier   

In order to reduce the area of multiplications, we can directly truncate the 8 least-significant 

columns of the partial products in Fig 1-1. By the direct-truncated method, the significant 

truncation errors will be introduced since the carry from the 8 least-significant columns to the 

9th column is omitted. Thus, the error-compensation bias should be employed to decrease the 
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truncation errors.  

In this thesis, the low-error area-efficient fixed-width multiplier based on Booth multiplier 

is proposed. The error-compensation bias of proposed approach is produced by the 

carry-estimation equations. The equations are adapted for different input width “n”. And these 

equations can be analyzed by few full adders. Thus, the area penalty caused by 

error-compensation is very small. By simulation results, the proposed fixed-width multiplier 

can not only reduce the truncation errors of direct-truncated multiplier but also decrease the 

area of standard Booth multiplier. 

So as to compare the performance in real applications, our fixed-width multiplier is 

employed in 128-point FFT architecture. Compare to the direct-truncated multiplier, the 

proposed multiplier has higher SQNR with only 2% increase in circuit overhead. 

 

1.2 Thesis Organization 

The organization of this thesis is described as follows. In chapter 2, three existed 

fixed-width multipliers are introduced. Chapter 3 shows the proposed fixed-width multiplier . 

The applications of proposed fixed-width multiplier are described in chapter 4. In which, the 

proposed multiplier is employed in 128-point FFT architecture. The design and chip 

implementation are shown in Chapter 5. The structure of DDR register which can reduce the 

operation frequency is also described in Chapter 5. Finally, Chapter 6 is the conclusion.  
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Chapter2 Existed Fixed-Width Multipliers 

 

For lower computations area, the multiplications of DSP applications are usually have the 

fixed-width property. In other words, the bits right of decimal point are commonly omitted. 

Fig 2-1 shows the partial products of 8-bit Booth multiplier, it is divided into two parts, the 

low part (LP) and the high part (HP). The signal “Carry” means the carry from LP to HP. The 

adder cells required for the computation of LP in Fig 2-1 are usually truncated in DSP 

application. Because the carry from low part to high part was also skipped (Carry = 0), the 

significant truncation errors will be produced since no any error-compensation bias is 

employed.   

 

Fig 2-1: Partial product of 8-bit Booth multiplier 

Many schemes are presented to calculate the error-compensation bias. In [1]-[3], a constant 

error-compensation bias is used to the retained cells. Because the bias do not adapt to the 

input signals, the truncation errors of these methods are large. In [4] and [5], an adaptive 

error-compensation bias approach which is obtained from the column of partial products 

adjacent to the truncated LSB is used to reduce the truncation error. In this chapter, three 

existed approach of fixed-width multiplier, S-J Jou approach, K-J Cho approach, and L-D Van 
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approach, will be introduced. These schemes can not only reduce the truncation error but also 

decrease the area of multiplications efficiently. 

 

2.1 S-J Jou Approach  

In this section, the S-J Jou approach [6] [7] which is based on Booth multiplier will be 

introduced. The error-compensation bias of S-J Jou approach is generated using statistical 

analysis and linear regression analysis. The process of S-J Jou is represented as follows.  

Fig 2-2 shows the partial product of 6 x 8 Booth multiplier. The partial product is divided 

into two parts, the six least-significant columns are the low part (LP) and the eight 

most-significant columns are the high part (HP). And the signal, Carry5, means the carry from 

LP to HP. Now, we want to truncate the LP and to keep the HP. It will curse Carry5 equal to 0 

and produce the significant truncation errors. In order to reduce the truncation errors, the 

error-compensation bias must be added to the HP.  

  

Fig 2-2: Example of 6 x 8 Booth multipliers 

The carry from LP to HP can be obtained by Equation (2.1), where x⎢ ⎥⎣ ⎦  represents the 

largest integer less than or equal to the number x. 
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1 2
5 0_ 5 1_ 3 2 _1 0_ 4 1_ 2 2_ 0

3 4
0 _ 3 1_1 0 _ 2 1_ 0

5 6
0_1 0_ 0

2 ( ) 2 ( )

2 ( ) 2 ( )

2 2

Carry P P P P P P

P P P P

P P

− −

− −

− −

= + + + + +

+ + + +

+ +

 (2.1)

In general, Equation (2.1) can be written as Equation (2.2). The value of τ means the 

number of columns of LP which will be truncated.  

1
1 0_ 1 1_ 3 / 2 1_1

2
0_ 2 1_ 4 / 2 1_ 0

( 1)
0 _1 0_ 0

1

2 ( )

2 ( )

2 2

2

Carry P P P

P P P

P P

τ τ τ τ

τ τ τ

τ τ

β λ

−
− − − −⎡ ⎤⎢ ⎥

−
− − −⎡ ⎤⎢ ⎥

− − −

−

= + + +

+ + + +

+ + +

⎢ ⎥= +⎣ ⎦

"

"

"
 (2.2)

As seen in Equation (2.2), the carry is composed of β and λ. 

0 _ 1 1_ 3 / 2 1_1

2 ( 1)
0_ 2 1_ 4 0 _1 0 _ 0/ 2 1_ 02 ( ) 2 2

P P P

P P P P P
τ τ τ

τ τ
τ τ τ

β

λ

− − −⎡ ⎤⎢ ⎥

− − − −
− − −⎡ ⎤⎢ ⎥

= + + +

= + + + + + +

"

" "
 (2.3) 

Where x⎡ ⎤⎢ ⎥  represents the smallest integer that is larger than or equal to the number x. The 

value of β means the total number of “1” in the (τ - 1)th column. If the value of λ can be 

expressed in terms of β and τ, the error-compensation bias can be obtained in terms of only β 

and τ. Before we introduce the process of S-J Jou approach, we assume that the probability of 

each input data bit equaling “1” is 0.5 and the probability of each partial product bit Pi_j 

equaling “1” is P(Pi_j). According to the P(Pi_j) concept, the equation of λ can be rewritten as 

1

_1
1

1 ( )
2 2i jk

k

kP P
τ τλ

−

+
=

−⎡ ⎤= × × ⎢ ⎥⎢ ⎥
∑

 
(2.4)

The values of P(Pi_j) are different for different β and τ. By using statistical analysis and 

linear regression line analysis, P(Pi_j) can be approximated as a first-order polynomial. 

_
0.41( ) 0.58(0.01 0.37)i jP P β τ
τ

= × + × +
 

(2.5)

Taking Equation (2.4) and Equation (2.5) into Equation (2.3), the error-compensation bias can 
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be obtained by Equation (2.6). 

1
1

1 1
1

1 0.412 0.58(0.01 0.37) 0.5
2 2k

k

kCarry
τ

τ
τβ β τ

τ

−
−

− +
=

⎢ ⎥⎧ ⎫⎡ − ⎤⎡ ⎤= + + + +⎢ ⎨ ⎬ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦
∑

 
(2.6)

The probable values of Carryτ - 1 for different τ are listed in Table 2-1. It is obviously that 

the best error-compensation bias is β for any τ.   

Table 2-1: Probable values of Carryτ-1 with different values of β and τ 

τ  2β +  1β +  β  1β −  2β − 3β −  
Expected 

Value 

4 0 2.34% 85.94% 11.72% 0 0 β - 0.09 

6 1.27% 36.35% 56.88% 5.49% 0 0 β + 0.33 

8 2.11% 37.06% 53.05% 7.75% 0.04% 0 β + 0.33 

10 3.23% 36.78% 50.30% 9.54% 0.14% 0 β + 0.33 

12 4.38% 36.24% 47.97% 11.09% 0.31% 3.58E-7 β + 0.33 

14 5.52% 35.66% 45.88% 12.38% 0.55% 1.20E-5 β + 0.33 

 

 

Fig 2-3: 6 x 8 fixed-width multiplier with S-J Jou approach 
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The circuit of 6 x 8 fixed-width Booth multiplier with S-J Jou approach is shown in Fig 2-3. 

As seen in Fig 2-4, the adder cells of LP are omitted and the carry from LP to HP is replaced 

by β (P0_5 + P1_3 + P2_1). 

 

2.2 K-J Cho Approach  

 The S-J Jou approach is introduced in last section. In which, the error-compensation bias 

is generated using statistical analysis and linear regression analysis. And the probability of 

each partial product bit Pi_j equaling “1” is different for different β and τ. In this section, the 

second approach, K-J Cho approach [8] [9], will be introduced. In this approach, the 

error-compensation bias is obtained by using Booth encoder outputs. And the probability of 

each partial product bit Pi_j equaling “1” is 1/2 for any β and τ.  

Table 2-2 shows the values of partial product of 8-bit Booth multipliers. Where   

'
2 1 2 2 12i i i ib b b b+ −= − + +i  (2.4)

If the value of bi’ is zero, each bit of partial product “Pi” will be zero. Otherwise, the value 

of partial product “Pi” will be based on input data “A”.  

Table 2-2: Partial product for each encoded yi’ with n = 8 

bi’ Pi_8 Pi_7 Pi_6 Pi_5 Pi_4 Pi_3 Pi_2 Pi_1 Pi_0 ni 

0 0 0 0 0 0 0 0 0 0 0 

1 7a  7a  6a  5a  4a  3a  2a  1a  0a  0 

-1 7a  7a  6a  5a  4a  3a  2a  1a  0a  1 

2 7a  6a  5a  4a  3a  2a  1a  0a  0 0 

-2 7a  6a  5a  4a  3a  2a  1a  0a  1 1 
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 From Fig 2-1, the carry from low part from high part can be expressed as  

7
1
2

Carry β λ⎢ ⎥= +⎢ ⎥⎣ ⎦  
(2.5)

0_ 6 1_ 4 2 _ 2 3_ 0P P P Pβ = + + +  (2.6)

2 3
0 _5 1_ 3 2_1 0_ 4 1_ 2 2_ 0 2

4 5
0_ 3 1_1 0 _ 2 1_ 0 1

6 7
0_1 0 _ 0 0

2 ( ) 2 ( )

 2 ( ) 2 ( )

 2 ( ) 2 ( )

P P P P P P n

P P P P n

P P n

λ − −

− −

− −

= + + + + + +

+ + + + +

+ + +

 (2.7)

The value of β is sum of the elements in LP_major and the value of λ is the sum of the 

elements in LP_minor.  

Fig 2-4 shows the structure of K-J Cho approach. The adder cells of LP_minor are omitted 

and the error-compensation bias of low part is defined as follow.  

[ ]1
1
2E ACarry C Cτ β λ−

⎡ ⎤= +⎢ ⎥⎣ ⎦
 (2.8)

Where CE[t] represents the exact carry value of t and CA[t] means the approximate carry value 

of t. So, CA[λ] means the approximate carry from LP_minor to LP_major. 

 

Fig 2-4: Structure of K-J Cho scheme 

In order to find the error-compensation bias, to define yi” as 

1, 0
0,

i
i

if y
y

otherwise
′ ≠⎧′′= ⎨

⎩
 (2.9)

For example, if the value of y3”y2”y1”y0” is 1000, the coded number y3’y2’y1’y0’ should have 
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four possible values: 1000, 2000, -1000, and -2000. There are only three 8-bit numbers which 

can have y3”y2”y1”y0” = 1000. Table 2-3 shows the three 8-bit numbers. 

Table 2-3: 8-bit numbers with y3”y2”y1”y0” = 1000 

8-bit number y3’ y2’ y1’ y0’

0 1 0 0 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 0 0 -2 0 0 0 

1 1 0 0 0 0 0 0 -1 0 0 0 

For the case y3”y2”y1”y0” = 0001, there are also only three possible values of 8-bit numbers, 

which are shown as follow 

3 2 1 0

3 2 1 0

3 2 1 0

00000001(0) 0001

11111110(0) 0002

11111111(0) 000 1

y y y y

y y y y

y y y y

′ ′ ′ ′→ =

′ ′ ′ ′→ =

′ ′ ′ ′→ =

 (2.10)

The partial products for the three multiplier coefficients corresponding to y3”y2”y1”y0” = 

0001 is shown in Fig 2-5. As we have assumed in last section, the probability of each input bit 

equaling “1” is 0.5. That is  

[ ] 1
2iE a =

 
(2.11)

Thus, the rounded value of E[λ] for each of the three cases in Fig 2-5 can be computed as 

follows: 

[ ]{ } 3 2 1 0

3 2 1 0

0,  for y y y y 0001             
1,  for y y y y 0002,  000 1 r

E λ
′ ′ ′ ′ =⎧

= ⎨ ′ ′ ′ ′ =⎩
 (2.12)

Where {t}r means rounding operation for t.  

In equation (2.12), there are two cases that {E[λ]}r  = 1 and one case that {E[λ]}r  = 0. In 

other words, the probability of {E[λ]}r equaling “1” is 2/3 which is bigger than 1/2. So, the 
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value of {E[λ]}r  can be set to 1 for y3”y2”y1”y0” = 0001. 

Notice that E[λ] is always zero for the three 8-bit numbers with y3”y2”y1”y0” = 1000. 

Because no element of the partial product corresponding to y3’ is included in LP_minor as can 

be seen in Fig 2-1. In general, the element of the partial product corresponding to 
12

ny
−

′  is not 

included in LP_minor for any input width “n”.  

 

Fig 2-5: Partial products for y3”y2”y1”y0” = 0001 

From previous discussions, it is obvious that the value of E[λ] is calculated by the 

LP_minor of partial product. By using K-J Cho approach, to determine the 

error-compensation bias is more easily. Because the carry from LP_minor to LP_major is 

replaced by {E[λ]r}, we only need to calculate the values of {E[λ]r} for each case of 

n -22
 y′′ n -32

 y′′ … 0y′′ . Then, the circuit of carry generation can be designed based on the values of 

{E[λ]r}.  

The procedure of K-J Cho approach is explained in the following example. 

Example 1: In this example, it will show the process of K-J Cho approach by using a    

10 x 10 Booth multiplier. First, we should calculate the values of {E[λ]}r for all the possible 

values of y3”y2”y1”y0” and the values of {E[λ]}r are shown in Table 2-4. Notice that 4y′′  is 

not shown in Table 2-4 since there is no any element of the partial product corresponding to 

y4’ is included in LP_minor.  
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Table 2-4: Rounded value of E[λ] for n = 10 

 

Table 2-5: Representation of approximate carry values 

 
In Table 2-4, the biggest value of carry is two. Thus, two approximate carry signals 

(LP_carry_0 and LP_carry_1) are needed to represent the values of {E[λ]}r. The values of the 

two carry signals are shown in Table 2-5. We can obtain the circuit of the approximate carry 

signals by using Karnaugh map as shown in Fig 2-6. In Fig 2-6, the values of approximate 

carry signals can be determined using probability analysis. For example, for y3”y2”y1”y0” = 

0001, P[{E[λ]}r=0] = 4/12 and P[{E[λ]}r=1] = 8/12. Thus, the value of approximate carry 

signals is determined to be 1. Then, LP_carry_0 and LP_carry_1 signals can be simplified 

from each map as 

3 2 1 0

3 2 1 0 1 0 3 2

_ _ 0
_ _1 ( ) ( )

LP carry y y y y
LP carry y y y y y y y y

′′ ′′ ′′ ′′= + + +
′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= + + +

 (2.13)

Fig 2-7 shows the circuit of equation (2.13) which is the approximate carry signals from 

LP_minor to LP_major. The approximate carry signals are added to LP_major. Then, the 

resulted carry signals from LP_major are added to HP as error-compensation bias. 
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Fig 2-6: Karnaugh map representation for (a)LP_carry_0 and 
(b)LP_carry_1 for n = 10 

 

Fig 2-7: Circuit of approximate carry for n = 10 

The procedure of Example 1 is illustrated as below: 

I. For given input width “n”, the number of approximate carry signals is determined as         

NAC = / 4n⎢ ⎥⎣ ⎦  

II. The approximate carry signals are denoted as LP_carry_0, LP_carry_1, … , 

LP_carry_(NAC - 1) 

III. To calculate the rounded values of {E[λ]r} for each case of n -22
y′′ n -32

 y′′ … 0y′′ .   

IV. By applying Karnaugh map to the result in step III, approximate carry generation circuit 

can be designed. 
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To perform the exhaustive simulation for large width of input data will take a lot of time. A 

statistical analysis for obtaining the approximate carry values is introduced as below.  

Given yi” is 1, it can be shown that E[Pi_j] = 1/2. If y2”y1”y0” = 100 in Fig 2-1, E[λ] can be 

computed by using equation (2.5)  

1 2
2 _1 2_ 0 2

1 2
2_1 2_ 0 2

1 1 1 1

1

[ ] [2 ( ) 2 ( )]

2 [ ] 2 ( [ ] [ ])

2 (2 ) 2 2(2 2 )
2

E E P P n

E P E P E n

λ − −

− −

− − − −

−

= + +

= + +

= + − +

=

 (2.14)

By the same way, it can be shown that E[λ] is also equal to 1/2 for y2”y1”y0” = 010 and 001. 

So, for n = 8, E[λ] can be expressed as 

1
2 1 0[ ] 2 ( )E y y yλ − ′′ ′′ ′′= + +  (2.15)

In general, E[λ] can be computed by equation (2.14) 

1
/ 2 2 / 2 3 0

/ 2 2
1

0

[ ] 2 ( )

2

n n

n

i
i

E y y y

y

λ −
− −

−
−

=

′′ ′′ ′′= + + +

′′= ⋅ ∑

"
 (2.16)

In the following example, the procedure of this scheme for n = 10 is explained. 

Example 2: For n = 10 

1
3 2 1 0[ ] 2 ( )E y y y yλ − ′′ ′′ ′′ ′′= + + +  (2.17)

The maximum rounded value of E[λ] is 2. Hence, two signals are needed to represent the 

rounded value. 

If the number of yi ” equaling “1” are one or two, the rounded value is equal to 1. Else if the 

number of yi” equaling “1” are more than three, the rounded value is equal to 2. Then, the 

approximate carry generation circuit for n = 10 can be obtain as shown in Fig 2-8(a). Using 

the same scheme, the approximate carry circuit for n = 14 is shown in Fig 2-8(b). 



 
 

- 14 -

 

Fig 2-8: Approximate carry generation circuits (a)n = 10 (b)n = 14 

The procedure of Example 2 described as below: 

I. The signals in the {
22

ny
−

′′
32

ny
−

′′ … 0y′′ } are divided into groups of three signals. If the 

number of signals in the set is 3N + k (k = 1, 2), the last group contains only k signals.  

II. The 3N signals are added using N FAs. For k = 2, the two signals in the last group are 

added using a HA. For k = 1, the signal in the last group is passed to the next stage. The 

N (or N+1 for k = 2) carry signals from each adder are approximate carry signals. 

III. The sum signals generated in step II are added using the same principle as in step II. 

Then, the carry signals from each adder are approximate carry signals. The new sum 

signals are passed to the next stage. 

IV. Repeat step II until only one sum signal is left. 

V. Add “1” to the last adder. 

 

The circuit of 8 x 8 fixed-width multiplier with K-J Cho approach is shown in Fig 2-9. 

From Fig 2-9, we can find that the adder cells of low part are skipped. The carry from low 

part to high part is replaced by the approximate carry signals (LP_carry_0 and LP_carry_1) 

which are generated by Fig 2-8(a). 
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Fig 2-9: Fixed-width multiplier with K-J Cho approach for n = 8 

 

2.3 L-D Van Approach  

In this section, the fixed-width multiplier proposed by L-D Van will be introduced [10] [11]. 

The L-D Van approach is based on Baugh-Wooley Array multiplier [12]. Fig 2-10 shows the 

partial product of 8-bit Baugh-Wooley Array multiplier. It can be divided into two parts, HP 

and LP, as the same as Booth multiplier.  

 

Fig 2-10 Partial product of 8-bit Baugh-Wooley Array multiplier 

In general, the carry from low part to high part of Baugh-Wooley Array multiplier can be 

defined as Equation (2.18). The two elements, β and λ, are represented in equation (2.19) and 

(2.20), respectively. 
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1
1
2 r

Carryτ β λ−
⎡ ⎤= +⎢ ⎥⎣ ⎦

 (2.18)

1 2 1 3 2 1 2 0 10 ...n n n n nx y x y x y x y x yβ − − − − −= + + + + +  (2.19)

2
2 0 3 1 0 2 0 02 ( ... ) ... 2 n

n n nx y x y x y x yλ − −
− − −= + + + + +  (2.20)

 Before we introduce L-D Van approach, the terminology, θindex,τ, should be indicated. It 

signifies the binary value of LP_major for different values of τ, where τ means to keep (n + τ) 

most-significant columns of partial product and to truncate the (τ – 1) least-significant 

columns. The value of θindex,τ is indicated in Equation (2.21) and the binary parameters 

1nq τ− − 2nq τ− − … 0q  are belong to {0, 1}.    

  
1 2 0

, 1 2 0

1 0 2 1 0 1

( , ,..., )

                 ...n n

index n n

q q q
n n n

q q q

x y x y x yτ τ

τ τ τ

τ τ τ

θ
− − − −

− − − −

− − − − − −

=

< > + < > + + < >
 (2.21)

Equation (2.22) illustrates the operation of qX< >   

  
,   if q = 0   
,   otherwise

q X
X

X
⎧

< > = ⎨
⎩

 (2.22)

In which X  means the complement of the binary number X. For n = 8, the 129th index under 

keeping eight columns, θindex=129,τ=0, can be written as 

  129, 0 7 0 6 1 5 2 4 3 3 4 2 5 1 6 0 7index x y x y x y x y x y x y x y x yτθ = = = + + + + + + +  (2.23)

In the following discussion, two calculated methods of error-compensation bias for τ = 0 

will be explained. 

According to the derivation result in [10], equation (2.18) can be rewritten as  

  1 , 0 , 0
1[ ]
2index index rCarryτ τ τθ β θ λ− = == + − +  (2.24)

It can be replaced by 
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  2 3 1
1 2 1 3 2 1 2( ... ) [ ]n nq q q

n n n rCarry x y x y x y Kτ
− −

− − − −= < > + < > + + < > +  (2.25)

  1 0
1 0 0 1 , 0

1
2

nq q
n n indexK x y x y τβ θ λ−

− − ==< > + < > + − +  (2.26)

In Equation (2.25), the first term can be easily determined while the index is decided. And 

the second term, [K]r, can be approached by the expected value which can obtain by full 

search. In order to get more accurate error-compensation bias, two types of carry-estimation 

formula are proposed. The formulas are shown in Equation (2.27) and (2.28), separately. 

2 3 1

2 3 1

2 1 3 2 1 2 1 index
1

2 1 3 2 1 2 2 index

( ) [ ] ,  if =0
( ) [ ] ,  if >0

n n

n n

q q q
n n n r

type q q q
n n n r

x y x y x y K
Carry

x y x y x y K
θ
θ

− −

− −

− − −

− − −

⎧ < > + < > + + < > +
= ⎨

< > + < > + + < > +⎩

"
"

 (2.27)

2 3 1

2 3 1

2 1 3 2 1 2 3 index
2

2 1 3 2 1 2 4 index

( ) [ ] ,  if <n
( ) [ ] ,  if =n

n n

n n

q q q
n n n r

type q q q
n n n r

x y x y x y K
Carry

x y x y x y K
θ
θ

− −

− −

− − −

− − −

⎧ < > + < > + + < > +
= ⎨

< > + < > + + < > +⎩

"
"

 (2.28)

Where K1, K2, K3, and K4 are the average value of K for different range of θindex  

By full search simulation, we can get the values of K1 and K2 for each index. In order to 

reduce the complexity of circuit design, to choose the indices which satisfy [K1]r∈{0, 1} and 

[k2]r∈{0, 1} is a good idea. For the 6 x 6 multiplier, there are three indices to satisfy the 

conditions, [K1]r∈{0, 1} and [k2]r∈{0, 1}. However, these indices do not always satisfy the 

conditions while the width “n” is changed. In order to find the fixed value of K for different 

width “n”, the second approach “Type 2” is proposed. By using exhaustive search simulation 

generated from n = 4 to n = 12, we can find that the specific index 12 1nindex
θ −= +

 is satisfy [K3]r 

= 1 and [k4]r = 0. Because the error-compensation bias is shown as Equation (2.25) and 

12 1nindex
θ −= +

 = 1 0nx y−  + 2 1nx y−  + … + 1 2nx y −  + 0 1nx y − , it can be described as Equation 

(2.29) for n ≤  12.  
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2 3 1

n-1

1
2 3 1

2 1 3 2 1 2

index=2 +1
2, 2 1

2 1 3 2 1 2

( ) 1,  
                                                        if <n

( ),       
          

n n

n
n n

q q q
n n n

Type index q q q
n n n

x y x y x y

Carry
x y x y x y

θ

− −

−
− −

− − −

= +
− − −

< > + < > + + < > +

=
< > + < > + + < >

"

"
n-1index=2 +1

                                              if =nθ

⎧
⎪
⎪
⎨
⎪
⎪
⎩

 (2.29)

To perform the exhaustive simulation for large width “n” will take a lot of time. In the 

following discussion, “Type 2” approach for large width “n” will be introduced. Two cases of 

“Type 2” approach,  12 1nindex
nθ −= +

<  and  12 1nindex
nθ −= +

=  will be explained, separately. 

 

Case 1: 12 1nindex
nθ −= +

<  

We have assumed that the probability of each bit of input data equaling “1” is 1/2. Hence, 

the value of [ ]i jE x y  and [ ]i jE x y  are equal to 1/4 and 3/4. According to the values of 

[ ]i jE x y  and [ ]i jE x y , the expected value of 1
2

β  can be represented as  

1 1 3 3 1[ ] ( 2)
2 2 4 4 4

1
8 2

E n

n

β ⎛ ⎞= × + + × −⎜ ⎟
⎝ ⎠

= +
 (2.30)

Similarly, the expected value of λ can be shown as 

2 3

2 3

1 1 1 1 1 1[ ] ( 1) ( 2) 1
2 4 2 4 2 4
1 1 1 1( 1) ( 2) 1
4 2 2 2

1 ,   if n 4
8 4

n

n

E n n

n n

n

λ = × × − + × × − + + × ×

⎛ ⎞= × − + × − + + +⎜ ⎟
⎝ ⎠

≅ − ≥

"

"  (2.31)

From equation (2.26), the value of [K3]r for index = 2n-1 + 1 is indicated as 
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[ ]3

1 0 0 1

[ ] [ ]

1[ ]
2

3 3 1 1 1
4 4 8 2 8 4

r r

n n
r

r

K E K

E x y x y

n n

β λ− −

=

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

⎡ ⎤= + − − + − =⎢ ⎥⎣ ⎦

 
(2.32)

Hence, we can obtain the error-compensation bias for large width “n” without using 

exhaustive search scheme. Equation (2.33) shows the error-compensation bias for 

12 1nindex
nθ −= +

<  which is the same as equation (2.29) 

2 3 1
1

n-1

2 1 3 2 1 22, 2 1

index=2 +1

( ) 1,  

                                                                                          if <n

n n
n

q q q
n n nType index

Carry x y x y x y

θ

− −
− − − −= +

= < > + < > + + < > +"
 (2.33)

 

Case 2: 12 1nindex
nθ −= +

=  

The case 12 1nindex
nθ −= +

=  is met only when 0 1nx y − = 1 0nx y− = 1 and 1 2nx y −  = 2 3nx y −  = "  

= 2 1nx y−  = 1. So, the expected value of 1
2

β  can be represented as 

1 1 1[ ] 1
2 2 2

E n nβ = × × =  (2.34)

And the expected value of λ can be shown as 

2 2

-1

1 1 1 1[ ] 1 2 1 ( 3) 1 2 1 ( 4)
2 3 2 3

1 1 1 1  1 2 1 1
2 3 2 9

1 5 ,   if n 4
2 3

n n

E n n

n

λ ⎛ ⎞ ⎛ ⎞= × × + × − + × × + × −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ + × × + × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − ≥

"  (2.35)

According to Equation (2.34) and (2.35), the value of [K4]r for index = 2n-1 + 1 is illustrated in 

Equation (2.36). 
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[ ]4

1 0 0 1

[ ] [ ]

1[ ] 0
2

r r

n n
r

K E K

E x y x y β λ− −

=

⎡ ⎤= + − + =⎢ ⎥⎣ ⎦

 (2.36)

The error-compensation bias for case 2 is shown in Equation (2.37) which is the same as 

Equation (2.29)  

2 3 1
1

n-1

2 1 3 2 1 22, 2 1

index=2 +1

( ),  

                                                                                          if =n

n n
n

q q q
n n nType index

Carry x y x y x y

θ

− −
− − − −= +

= < > + < > + + < >"
 (2.37)

Fig 2-11 shows the circuit of 8-bit fixed-width multiplier with the 129th index. The function 

of A-A cell is to judge whether the value of 12 1nindex
θ −= +

 is equal to n or not. 

 

Fig 2-11: Fixed-width multiplier with L-D VAN approach for n = 8 
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Chapter3 Proposed Self-Compensation 
Multiplier 

 

In chapter 2, three existed Fixed-width multiplier are introduced, S-J Jou approach, K-J 

Cho approach, and L-D Van approach. S-J Jou approach and K-J Cho approach are based on 

Booth multiplier and the L-D Van approach is based on Baugh-Wooley Array multiplier. In 

this chapter, a new approach of fixed-width multiplier which is based on Booth multiplier will 

be introduced. The error-compensation bias of proposed approach is produced by the 

carry-estimation equations. In order to reduce the truncation error, the carry-estimation 

equations are adapted for n = 8 to n =16. These equations for different n can be analyzed by 

few logic gates. Hence, the circuit complexity of proposed approach is closed to 

direct-truncation approach.  

The error-compensation bias is introduced in section 3.1 and the circuit of proposed 

structure is illustrated in section 3.2. Finally, the comparison of performance for each 

approach is shown in section 3.3. 

 

3.1 Calculation of Error-compensation bias 

Fig 3-1 shows the partial product of 8-bit Booth multiplier and the partial product is divided 

into two parts, low part (LP) and high part (HP). The LP can be further divided into two parts, 

the first column of LP is LP_major and the remaining columns of LP are LP_minor. The 

carry-out bit from LP to HP is written as equation (3.1), where β the sum of LP_major and λ is 

the sum of LP_minor. 

7
1
2

Carry β λ⎢ ⎥= +⎢ ⎥⎣ ⎦  
(3.1)
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0 _ 7 1_ 5 2_ 3 3_1P P P Pβ = + + +  (3.2)

2 3
0 _ 6 1_ 4 2_ 2 3_ 0 3 0_ 5 1_ 3 2_1

4 5
0_ 4 1_ 2 2_ 0 2 0 _ 3 1_1

6 7
0_ 2 1_ 0 1 0_1

8
0_ 0 0

2 ( ) 2 ( )

 2 ( ) 2 ( )

 2 ( ) 2 ( )

 2 ( )

P P P P n P P P

P P P n P P

P P n P

P n

λ − −

− −

− −

−

= + + + + + + +

+ + + + + +

+ + + +

+ +

 (3.3)

In order to find the error-compensation bias, LP_major index, θ, is defined as equation 

follow. 

  1 2 3
0_ 7 1_ 5 2_ 3 3_12 2 2P P P Pθ = + + +i i i  (3.4)

the values of θ for different values of LP_major are shown in Table 3-1. 

Table 3-1: The values of θ for different values of P3_0P2_2P1_4P0_6 

 

 

Fig 3-1: Partial product of 8-bit Booth multiplier 
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It is obviously that if one value of θ is selected, the value of β is fixed. For example, if the 

value of θ is equal to 7, the value of β must be equal to 3. We can obtain the average carry for 

each value of θ by using full search simulation. Because the value of β is fixed, we only need 

to calculate the average carry from LP_minor to HP (λ). The results of full search simulation 

for n = 8 are represented in Table 3-2. 

Table 3-2: The average carry for each value of θ 

   

Now, we can get the error-compensation bias by using look-up table method. The input of 

table is the four elements of LP_major and three approximate carry signals are needed to 

represent the values of error-compensation bias. The block diagram of error-compensation 

bias is illustrated in Fig 3-2. 

 

Fig 3-2: The error-compensation table for n = 8 
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As mentioned in former discussion, the values of approximate carry signals are obtained by 

looking up table. But the area of error-compensation table will increase when n is large. 

Hence, it is unwise to obtain the error-compensation bias by this method. The new approach 

should be proposed to improve the hardware complexity of look-up table method. 

In order to find the new approach, we try to find the rule between average carry and θ. 

Fortunately, the average carry is related to the number of “1” in LP_major which is the value 

of β. If the values of θ have the same number of “1” in LP_major, the values of average carry 

for these θ will be all equally. For example, the values of average carry are all equal to 1 for θ 

= 1, 2, 4, and 8 in which the number of “1” in LP_major is all equal to 1. The relation between 

average carry and the number of “1” in LP_major is shown in Table 3-3 for n= 8. 

Table 3-3: The values of Average carry for each β for n = 8 

  
 

From Table 3-3, we can derive a carry-estimation equation which can computed the average 

carry for n = 8. The carry-estimation equation is written as  

 

  7 1
2

Carry β⎢ ⎥= +⎢ ⎥⎣ ⎦
 (3.5)

 

The results of this equation are the error-compensation bias for n = 8. Table 3-4 shows the 

results of carry-estimation equation for n = 8. 
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Table 3-4: The results of carry-estimation equation for n = 8 

 

As seen in Table 3-4, the results of carry-estimation equation are all equal to the values of 

average carry which are obtain by full search simulation. Hence, we can calculate the 

error-compensation bias by equation (3.5). The carry-estimation equations for different width 

“n” can be obtained by similarly process. Equation (3.6) and equation (3.7) show the 

carry-estimation equations for n = 10 to n = 16. And the results of these carry-calculate 

equations are represented in Table 3-5. 

 

  
12

1 1,    for n = 10, 12, and 14
2nCarry β

−

+⎢ ⎥= +⎢ ⎥⎣ ⎦
 (3.6)

  15 2,    for n = 16
2

Carry β⎢ ⎥= +⎢ ⎥⎣ ⎦
 (3.7)

 

However, the values of carry-estimation equations do not always match the values of 

average carry. For example, the result of carry-estimation equation is equal to 2 for n = 10 and 

β = 1. But the value of average carry is equal to 1. In order to derive the influence of the 

truncation error caused by this inequality situation, the probability of the mismatch situation is 

calculated. First, the number of cases for each value of β is computed. Equation (3.8) shows 

the equation which can calculate the number of cases for each β. 

      2nN Cβ β=  (3.8)

 



 
 

- 26 -

Table 3-5: The results of carry-estimation equation for                             
(a) n = 10 (b) n = 12 (c) n = 14 (d) n = 16 

 

Table 3-6 shows the numbers of cases for each β with n = 10. It is obviously that, the 

probability of β equaling “1” is only 5
32 . In other words, the probability of the mismatch 

condition is only 5
32  (15%) for n = 10. Thus, the increase of the truncation error caused by 

the mismatch situation will be few.  
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Table 3-6: The numbers of cases for each β with n = 10 

 

 Similarly, the mismatch condition occurs for β = 6 and n = 14. We can also find the 

number of cases for each β by using equation (3.8). Table 3-7 shows the numbers of cases for 

each β with n = 14. 

In Table 3-7, we can see that the probability of β equaling “6” is only 7
128. That is, the 

probability of the mismatch condition is only 7
128 (5.4%). Hence, the increase of the 

truncation error caused by inequality condition is also very little for n = 14. 

Table 3-7: The numbers of cases for each β with n = 14 

  

The inequality situation is also occurred for n = 16. There are two conditions, β = 0 and   

β = 2, that the results of carry-estimation equation are not equal to average carry. By using 

equation (3.8), the numbers of cases for each β with n = 16 can be obtained from Table 3-8. 

Table 3-8: The numbers of cases for each β with n = 16 

 

The probability of the inequality condition is only 11%. Hence, the increase of the truncation 

error for n =16 is still very little. 

In former discussion, we can know that the error-compensation bias can be obtained by 

using the carry-estimation equations for n = 8 to n = 16. And the results of the 
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carry-estimation equations are almost the same as average carry which is obtained by full 

search simulation. 

 

3.2 Proposed Structure 

In this section, the circuits of carry-estimation equations for n = 8 to n = 16 are introduced. 

The carry-estimation equation for n = 8 is shown in equation (3.5) which is composed by 

2
β⎢ ⎥

⎢ ⎥⎣ ⎦
 and “plus 1”. The function of 2

β⎢ ⎥
⎢ ⎥⎣ ⎦

 can be calculated by the carry of LP_major. 

The process of calculation of 2
β⎢ ⎥

⎢ ⎥⎣ ⎦
 is shown as follow. First, the elements of LP_major are 

summed by some full adders and half adders. The carry signals from each adder are the carry 

from LP_major to HP, and the sum signals are added. The new carry signals from the added 

sum signals are also the carry from LP_major to HP. Repeat former steps until only one sum 

signal is left. As regards the function of plus “1”, we only need to assign the third carry signal 

“Carry[2]” equal to 1 for n = 8. Fig 3-3 illustrates the circuit of carry-estimation equation for 

n = 8. 

 

Fig 3-3: Circuit of carry-estimation equation for n = 8 

As seen in Fig 3-3, the circuit only needs one full adder and one half adder. Thus, the 

penalty of area for computed error-compensation bias is very small.  

Fig 3-4 illustrates the circuit of 8-bit Booth multiplier with proposed approach. In Fig 3-4, 
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the adder cells required for LP are all omitted, and the carry-out from LP to HP is estimated 

by equation (3-5) which corresponds to Carry[0], Carry[1], and Carry[2] in Fig 3-4. There are 

eight full adders, seven half adders, and one 8-bit CPA in this multiplier. The ratio of area 

between the circuit of carry-estimation equation and the circuit of 8 x 8 booth multiplier is 

very small. Thus, the area of proposed multiplier is only a bit larger than the area of 

direct-truncated multiplier. 

 

 

Fig 3-4: Circuit of 8-bit Booth multiplier with proposed approach 

 

Fig 3-5 shows the circuits of carry-estimation equations for n =10 to n = 16. We can see 

that the required adders do not increase much as the width “n” increases. The required adders 

are three full adders for n = 12. Even for n = 16, the required adders are only four full adders 

which are one more full adder than the condition of n = 12. According to the few required 

adders for large width “n”, the influence of the increased area coursed by the circuit of 

carry-estimation equation can be skipped for large width “n”. Thus, the ratio of area between 

proposed multiplier and direct-truncated multiplier is almost equal to “1” for large width “n”. 

That is, the area of proposed approach is close to the area of direct-truncated multiplier. 
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Fig 3-5: Circuits of carry-estimation equations for (a) n = 10 (b) n = 12 (c) 
n = 14 (d) n = 16 
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3.3 Performance Analysis 

The performance of different approaches will be represented in this section. The 

performance is evaluated in terms of average error, the variance of errors, and gate count. 

Note that the comparison of gate counts only contains the approach based on Booth multiplier. 

However, the approach proposed by L-D Van [11] is based on Baugh-Wooley Array multiplier, 

it does not include in the comparison of gate counts. 

The absolute error between the standard Booth multiplier and fixed-width multiplier is 

defined as 

      Standard Fixed-widthP Pε = −  (3.9)

where Pstandard represents the computational result of standard Booth multiplier and PFixed-width 

represents the result of fixed-width multiplier.  

The average error is defined as equation (3.10) where [ ]E x  is the expected value of x. 

      [ ]Eε ε=  (3.10)

Besides the comparison of average error, the variance of error for each approach is 

compared, too. The computation of the variance of error is described as equation (3.11).  

      2[( ) ]Eν ε ε= −  (3.11)

It is obvious that the fixed-width multiplier with smaller truncation error has more accurate 

results. Similarly, the approach with smaller variance of error has stable results.  

The comparison of average error and the variance of error are represented in Table 3-9 and 

Table 3-10, respectively. And the comparison of gate counts is shown in Table 3-11. From 

Table 3-9, the error of proposed approach is only 11% of direct-truncated multiplier for n = 16. 

Besides average error, the variances of our multiplier are only 4.9% of direct-truncated 

multiplier. It means that the proposed approach is more stable than direct-truncated multiplier. 
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The comparisons of gate counts are based on Booth multiplier. The gate count of proposed 

approach is a bit larger than S-J Jou approach but is smaller than K-J Cho approach. For large 

width “n”, the gate count of our approach is very close to S-J Jou approach, because the 

number of adder for carry-estimation equation is very small.  

In conclusion, the proposed approach has three features:  

I. Low average error 

II. More stable than other approach 

III. Area efficient 

 

 

Table 3-9: Comparison results of average error 
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Table 3-10: Comparison results of variance of error 

 
 

Table 3-11: Comparison results of gate counts 
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Chapter4 Application of Fixed-Width 
Multipliers in FFT 

 

The low-error area efficient fixed-width multiplier is proposed in chapter 3. The average 

error of proposed structure is only about 15% of direct-truncated multiplier. As well as the 

area of proposed one is only about 60% of standard Booth multiplier. In order to reduce the 

hardware complexity, the multiplication operations in FFT usually have the fixed-width 

property. Thus, the proposed fixed-width multiplier is employed in the 128-point FFT 

architecture [13]. The truncation errors will be introduced because of the usage of the 

fixed-width multiplier and it will decrease the performance of the 128-point FFT. In section 

4.1, the 128-point FFT algorithm will be introduced. Then the architecture of 128-point FFT 

will be introduced in section 4.2. Finally, the performance of 128-point FFT is shown in 

section 4.3. 

 

4.1 Introduction to 128-Point FFT 

In this section, the 128-point FFT algorithm proposed by Y-W Lin [13] will be introduced. 

Given a sequence x(n), the N-point DFT is defined as  

      0
( ) ( )    ( 0,1, , 1)

N
kn

N
n

X k x n W k N
=

= = −∑ "
 

(4.1)

Where x(n) and X(k) are complex numbers. And the values of kn
NW  is  

      2 2cos( ) sin( )nk
N

nk nkW jN N
π π= −  (4.2)

In equation (4.1) the computational complexity is 2( )O N  through directly performing the 
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required computation. The computational complexity can be reduced to ( log )N
rO N  by using 

the radix-r FFT algorithm. In general, higher-radix FFT algorithm has less number of complex 

multiplications while compared with radix-2 FFT algorithm. Hence, the radix-8 FFT 

algorithm is employed in the 128-point FFT. But the 128-point FFT is not the power of 8, the 

mixed-radix FFT algorithm which include radix-2 FFT and radix-8 FFT algorithm should be 

chosen. The mixed-radix 128-point FFT algorithm is derived as below. 

First, let the constant in equation (4.1) as 

       

1
1 2

2

1
1 2

2

128
0,1          

64   
0,1, ,63

0,1           
2    

0,1, ,63
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n n n
n

k
k k k

k

=

=⎧
= + ⎨ =⎩
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(4.3)

Then, equation (4.1) can be rewritten as 

       N
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(4.4)

In equation (4.4), the 128-point DFT can be considered as a two-dimensional DFT, 2-point 

DFT and 64-point DFT. The inputs of 128-point DFT are computed by radix-2 FFT algorithm 

at first. Then, the results of radix-2 FFT are multiplied by twiddle factor. Finally, the results of 

multiplication should be calculated by 64-point DFT algorithm which can decomposed into 

8-point DFT recursively 2 times. In order to derived the 64-point FFT algorithm by using 

radix-23 FFT algorithm, the constant n2 and k2 in equation (4.3) can be defined as 
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      2 1 2 3 4 1 2 3 4

2 1 2 3 4 1 2 3 4

32 16 8 ,   , , 0,1; 0,1, ,7
2 4 8 ,       , , 0,1; 0,1, ,7

n
k

α α α α α α α α
β β β β β β β β

= + + + = =
= + + + = =

"
"

 (4.5)

Using equation (4.5), equation (4.4) can be rewritten as 

 

( )

4 3 2 1

1 2 3 4 1 2 3 4

1 2 3 4 1

7 1 1 1

2 1 1 2 3 4
0 0 0 0

(32 16 8 )( 2 4 8 )
64

2( 2 4 8 )

( ,32 16 8 )

X k

BU k

W
α α α α

α α α α β β β β

β β β β

α α α α
= = = =

+ + + + + +

+ + + + =

+ + +

×

∑ ∑ ∑ ∑  (4.6)

Where the twiddle factor can be decomposed as 

1 2 3 4 1 2 3 4

3 1 2 3 3 4 1 2 31 1 2 1 2 2 4 4

(32 16 8 )( 2 4 8 )
64

( 2 ) ( 2 4 )
2 4 2 8 2 64 8

W

W W W W W W W

α α α α β β β β

α β β α β α β β βα β α β α β α β

+ + + + + +

+ + +

=
 (4.7)

Thus, equation (4.6) becomes 

( ) 4 4

4

7

1 2 3 4 1 8 1 1 2 3 4 8
0
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α
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3 1 2 3 3 4 1 2 31 1 2 1 2 2

1 0

8 1 1 2 3 4

1
( 2 ) ( 2 4 )

2 1 1 2 3 4 2 4 2 8 2 64

1  

2  

3  

( , , , , )

( , , , , )
st step

nd step

rd step

BU k

BU k W W W W W Wα β β α β α β β βα β α β α β

α

β β β α

α α α α
=

+ + +

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

�������	������

����������	���������

��������������	�������������


3 0 2 0

1 1

α α= =

∑∑∑  (4.9)

In equation (4.9), the 8-point DFT are divided into three steps by using radix-2 index map. 

Fig 4-1 shows the signal flow graph of the radix-8 FFT algorithm. In which, the radix-8 

algorithm is decomposed into three steps. Each step has four butterfly operations. After the 

butterfly operations, the multiplications of twiddle factors in each step should be performed. 

There are only three twiddle factors, -j, 1
8W , and 3

8W  in radix-8 algorithm. The 

multiplication of “-j” only needs to exchange the real part with imaginary part. Thus, it does 

not need any multiplier. The multiplications of the twiddle factors, 1
8W  and 3

8W , can be 
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replaced by some additions. Because the twiddle factors can be written as 2 2(1 )j−  and 

( )2 2(1 )j− − , respectively. The value of 2 2  is equal to 0.70710678  which can be 

written as 1 3 4 6 82 2 2 2 2− − − − −+ + + +  can be complemented only by five shifters and four 

adders .  

 

Fig 4-1: The signal flow graph of radix-8 FFT algorithm 

The signal flow graph of 128-point mixed-radix FFT algorithm is shown as Fig 4-2. In 

which, the 128-point FFT is composed by three stage. The first stage is performed by radix-2 

FFT algorithm and the radix-8 FFT algorithm shown in Fig 4-1 is employed in the second and 

third stages. The black point in each stage means that one twiddle factor will be multiplied at 

that point. In the first stage, there are sixty-four butterfly units and the two inputs of ith 

butterfly unit are ith and (64+i)th input data where i = 0 ~ 63. Then the results of first stage 

should be calculated by the second and third stages. There are sixteen radix-8 FFT units in the 

second and third stages, respectively. The orders of radix-8 FFT inputs are different in each 

stage. In the second stage, the inputs of each radix-8 FFT unit are shown as below 

(64 ) , (64 8) , (64 16) , (64 24) ,
 

(64 32) , (64 40) , (64 48) , (64 56)
0,1; 0,1, ,7;        (8 )  -8  

th th th th

th th th th

th

i j i j i j i j
i j i j i j i j

i j for i j radix FFT unit

+ + + + + + +⎧ ⎫
⎨ ⎬+ + + + + + + +⎩ ⎭

= = +"
 (4.10)

But in the third stage, the eight inputs are (8i)th ~ (8i + 7)th input data for i = 0 ~ 15.  
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Fig 4-2: The signal flow graph of 128-point mixed-radix FFT algorithm 

 

4.2 128-Point FFT Architecture 

In order to reduce the area of 128-point FFT, the proposed multiplier is employed in the 

128-point FFT architecture. The 128-point FFT architecture proposed by Y-W Lin’s [13] is 

introduced in this section.  

Fig 4-3 shows the 128-point FFT architecture which is divided into three modules. The first 
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module is complemented by radix-2 FFT algorithm, and the radix-8 FFT algorithm is used in 

the second and the third modules. In this architecture, the high throughput rate is achieved by 

using four parallel data paths; the order of the output sequence is the bit reversal of the order 

of the input sequence as seen in Fig 4-3.  

  

Fig 4-3: Block diagram of 128-point FFT 

4.2.1 Module 1 

Fig 4-4 shows the architecture of Module 1 which consists of 128 registers which can store 

64 complex data, four two-input butterfly units (BU), two complex multipliers, and two 

ROMs. The ROMs are used to store the twiddle factors. The 128 registers are used to store 

inputs data and the outputs of BU. The operations of BU are the complex addition and the 

complex subtraction from two input data. Because the two inputs of each BU are in(i) and 

in(64+i) where i is from 0 to 63. This is corresponds to the first stage of Fig 4-2. The order of 

four parallel input sequences in Module 1 is in(4m), in(4m+1), in(4m+2), and in(4m+3) where 

m is from 0 to 31. Thus, the 64 input data at first 16 cycles should be stored in the register file. 

At next 16 cycles, the eight inputs of the four BU are received from the register file and the 

inputs data, respectively. Then eight outputs data are generated by the four BU. The four 

outputs of the complex addition are sent to the Module 2 directly, and the other four outputs 

of complex subtraction are stored in the register file. Before the four outputs are stored, two of 

them are multiplied by twiddle factors. After 32 cycles, the other two outputs are multiplied 
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by twiddle factors. Then, the four outputs are fed into the Module 2. By this multiplication 

approach can not only reduce the four complex multipliers to two complex multipliers but 

also achieve 100% utilization of the complex multipliers. 

 

Fig 4-4: Block diagram of the Module 1 

4.2.2 Module 2 

The block diagram of the Module 2 is illustrated in Fig 4-5. It consists of four BU_8 

structures and four complex multipliers. The architecture of BU_8 is directly mapped from 

3-step radix-8 FFT algorithm as seen in Fig 4-1. And the numbers of registers in each step are 

eight, four, and tow, respectively. These registers are used to store the input of two-input BU 

until the other available input is received. The outputs of two-input BU in first and second 

steps should be multiplied by the twiddle factors, 1, -j, 1
8W , and 3

8W . As mentioned in 

Section 4.1, the multiplications of these twiddle factors can be implemented without any 

multipliers. But the four outputs of BU_8 need to be multiplied by the nontrivial twiddle 

factors with four complex multipliers. 
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Fig 4-5: Block diagram of the Module 2 

4.2.3 Module 3 

The Module 3 is also realized by radix-8 FFT algorithm. Fig 4-6 shows the block diagram 

of the Module 3. The structure of the Module 3 is different from that of Module 2, because the 

orders of input data of the Module 2 and the Module 3 are different. The structure should be 

adapted for the different orders of output as shown in Fig 4-6. The outputs data in first and 

second steps only need to be multiplied by the twiddle factors, 1, -j, 1
8W , and 3

8W . Thus, no 

any multiplier is used in the Module 3. 

  

Fig 4-6: Block diagram of the Module 3 
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4.3 Simulation Results 

The algorithm and architecture of 128-point FFT are introduced in section 4.1 and section 

4.2, respectively. In this section, the performance of 128-point FFT will be represented. Table 

4-1 shows the SQNR of different 128-point FFT approaches. The first column indicates what 

kinds of multipliers are used in the 128-point FFT architecture. “Booth” means the traditional 

Booth multiplier; “Direct_t” means the direct-truncated multiplier; and “Proposed” means the 

128-point FFT with proposed multiplier. The first row shows the width of twiddle factors and 

input data. Because there are 2 bits right of decimal point of twiddle factors. The 

truncation-bit is only n - 2 bits. For example, if the width of twiddle factors is 10, the 

truncation-bit is only 8 bits which are left of decimal point. In Table 4-1, the SQNR of 

proposed approach is only 1dB less than the traditional Booth multiplier. But it is about 10dB 

larger than the direct-truncated multiplier.     

Table 4-1: SQNR of 128-point FFT with different multiplier approach 

 

Table 4-2 represents the gate count of 128-point FFT with the three different multipliers for 

n = 10. Compare to the traditional Booth multipliers, our approach improves by 10% 

reduction in gate count. And it is only 2% bigger than the direct-truncated multiplier.  

As mentioned in section 4.1, the 128-point mixed-radix FFT algorithm is divided into three 

stages. The multiplications of twiddle factors should be performed in the end of each stage. In 

Fig 4-2, the multiplications should be performed in the end of first stage and the end of 

second stage. Because the fixed-width multipliers which cause the truncation errors are 
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employed, the multiplications of twiddle factors will reduce the performance of FFT. The 

computations of twiddle factors will increase, if the points of FFT are raised. Thus, the more 

point of FFT is needed; the less performance will be expected. In order to observe the 

performance of high-point FFT by using Fixed-width multipliers, the proposed approach is 

employed in the 8192-point FFT algorithm [14]. Table 4-3 shows the simulation results of 

8192-point FFT. 

The SQNR of proposed approach is about 2dB less than the standard Booth multiplier. But 

it is still larger than the direct-truncated multiplier approach. 

 

Table 4-2: Gate count of 128-point FFT for n = 10 

 

 

Table 4-3: SQNR of 8192-point FFT with different multiplier approach 
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Chapter5 Implementation Results for 
128-point FFT 

This chapter will describe the CHIP implementation and its design methodology. In section 

5.1, the implementation of 128-point FFT with proposed multiplier is introduced. In section 

5.2, the implementation of approach 2 is described. The architecture of approach 2 is the same 

as approach 1. But the registers of approach 2 are replaced by DDR (Double Data Rate) 

registers can catch data not only in positive edge clock but also in negative edge clock. The 

function of DDR registers will be introduced in section 5.2. Finally, the simulation result of 

two proposed architecture are represented in section 5.3. 

 

5.1 Approach 1 

The proposed approach 1 implements the 128-point FFT architecture with proposed 

fixed-width multiplier. The structure of approach 1 has been described in section 4.2. The 

width of input data and twiddle factors are 10-bit and the width of output data is 14-bit. In 

order to avoid the overflow of computations of BU, the outputs of BU is 1-bit larger than the 

inputs of BU. In the 128-point FFT algorithm, seven computations of BU are needed. Thus, 

the outputs of 128-point FFT are 7-bit larger than the inputs. In the cause of low hardware 

complexity, the least significant 3-bit of the four outputs of stage2 as seen in Fig 4.3 are 

truncated. The bits of outputs of first, second, and third stages are, 11-bit, 14-bit, and 14-bit, 

respectively.  

As mentioned in section 4.2, four data path is employed in our 128-point FFT architecture. 

Thus, the 14 x 256-bit SRAM is used to save the chip pins. The inputs data are stored serially 

in the SRAM from the 10-bit chip input pins before the operation of calculation. Then the four 

complex data in parallel are fed to the 128-point FFT structure. After the computations of 
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128-point FFT, the four complex outputs of 128-point FFT are stored in the SRAM. Finally, 

the outputs of 128-point FFT are read serially from the SRAM. 

This 128-point FFT architecture is implemented by 0.18µm one-poly six-metal (1P6M) 

standard cell technology. Fig 5-1 shows the layout view of approach 1.   

Table 5-1 shows the chip summary of approach 1. The total gate count is about 164K with 

test module 81K and the maximum clock rate is 195 MHz. And, the core size is 1.46 x 1.46 

mm2. The maximum power consumption is 500mW at clock rate 195 MHz. The chip is 

packaged in a 128 CQFP package. 

 

 

Fig 5-1 Layout view of approach 1 
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Table 5-1: The chip summary of approach 1 architecture 

Memory size 13 x 256 bits 

Core area (mm2) 1.46mm x 1.46mm 

Total gate count 
83K  

+ 81K Test Module 

Maximum Operating Frequency 195 MHz 

Date rate (ample/s) 
1.2G* 

780M** 

Average Power  
363mW@300MHz* 

246mW@195MHz** 

* Typical Case  1.8V 

** Worst Case  1.62V 

 

5.2 Approach 2 

The structure of approach 2 is almost the same as approach 1 besides the registers. The 

DDR registers are employed in approach 2. The proposed DDR registers can catch data either 

at positive edge clock or at negative edge clock. Thus, two operations can be computed during 

one clock cycle. We can achieve the same throughput rate as D Flip-Flop structure at half 

operation frequency by using DDR registers. Fig 5.2 shows the structure of DDR register 

which is composed by two parallel latches.  
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Fig 5-2: Structure of DDR register 

The function of latch is shown in Table 5-2. If OE = 0, the state of the latch is “Z” and the 

output, Q[n+1], is high impedance. Else if OE = 1 and G = 1, the state of the latch is “Store” 

and Q[n+1] is equal to input, D. Otherwise, the state of the latch is “Latch” and Q[n+1] is 

equal to the last output, Q[n]. 

Table 5-2: Function of Latch 

 
The operation of proposed DDR register at CLK = 0 is shown in Fig 5-3(a). At CLK = 0, 

the state of Latch 1 is “Latch” and the output, Q1, is equal to Q1[n]. The state of Latch 2 is “Z” 

and the output, Q2, is high impedance. Thus, the output of proposed DDR register is equal to 

Q1[n]. By the same way, the state of Latch 1 and Latch 2 are “Z”, and “Latch” respectively 

when CLK = 1. So, the output of DDR register is equal to Q2[n] . Fig 5-4 is an example of 

proposed DDR register. And the function of proposed DDR register is described in Table 5-3. 
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Fig 5-3: Operations of proposed DDR register at (a) CLK = 0 (b) CLK = 1 

 

 

Fig 5-4: Example of proposed DDR register 
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Table 5-3 Function of proposed DDR register 

 

Approach 2 is also implemented by 0.18µm one-poly six-metal (1P6M) standard cell 

technology. Fig 5-5 shows layout view of approach 2.  

Table 5-4 shows the chip summary of approach 2. The total gate count is about 222K with 

test module 108K, and the maximum clock rate is 90 MHz. Because the DDR registers are 

employed and the number of data paths is four, the data rate is 720M samples/sec. The core 

size is 2.24 x 2.24 mm2. The average power consumption is 533mW at clock rate 90 MHz. 

The chip is packaged in a 128 CQFP package. 
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Fig 5-5 Layout view of approach 2 

Table 5-4: The chip summary of approach 2 architecture 

Memory size 13 x 256 bits 

Core area (mm2) 2.24mm x 2.24mm 

Total gate count 
113K  

+ 108K Test Module 

Maximum Operating Frequency 90 MHz 

Date rate (M samples/s) 720 

Average Power  533mW (Include RAM) 



 
 

- 51 -

5.3 Comparison  

Table 5-5 lists the comparisons of various 128-point FFT approaches. The proposed 

approach is simulated in 0.18µm (1P6M) worst case. From this table, it is obviously that 

Approach 1 has the minimum core size. And the power is smaller than Booth approach. 

Table 5-5: Comparison of various 128-point FFT architectures 

  Y-W Lin[13] K-H Lin[15] Booth Approach 1 

Process 0.18μm 1P6M 0.18μm 1P6M 0.18μm 1P6M 0.18μm 1P6M 

Input 

width 
10-bit 8-bit 10-bit 10-bit 

SQNR 30dB 31dB 33dB 32dB 

Data path 4 4 4 4 

Maximu

m 

Data rate 

1G sample/s 800M sample/s**
1.2G sample/s* 

780M sample/s** 

1.2G sample/s* 

780M sample/s**

Average 

Power 

175mW 

@250MHz 

127mW 

@132MHz** 

443mW 

@300MHz* 

286mW 

@195MHz** 

336mW 

@300MHz* 

246mW 

@195MHz** 

Chip size 

(mm2) 

1.76 x 1.76 

(include RAM) 

1.56 x 1.56 

(include RAM) 
1.24 x 1.24  

1.18 x 1.18 

(1.46 x 1.46 

 include RAM))

*  Typical Case  1.8V 

**  Worst Case   1.62V 
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Chapter6 Conclusion 

 

In this paper, the low-error area-efficient fixed-width multiplier is proposed. The proposed 

fixed-width multiplier can not only reduce the truncation error but also decrease the circuit 

complexity. The average error of proposed fixed-width multiplier is only 15% of 

direct-truncated multiplier. And the area of our approach is only 60% of the standard Booth 

multiplier.  

In order to observe the performance in real applications, our multiplier is used in 128-point 

FFT architecture. The SQNR of our approach is only 1dB less than the traditional Booth 

multiplier. Compared to the direct-truncated multiplier approach, our approach has 10dB 

SQNR improvement with only 2% increased in circuit overhead. In conclusion, our approach 

can not only achieve the low-area approximated to the direct-truncated multiplier but also 

reach the high-performance close to the Booth multiplier approach.        

In order to reduce the operation frequency, the DDR register structure is employed. It can 

reduce the operation frequency to only 50% of Flip-Flop structures.  

Finally, the structure of approach 1 and approach 2 are implemented by 0.18µm 1P6M 

CMOS technology as shown in Section 5.1 and Section 5.2, separately.  
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