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摘            要 

 

隨著奈米製程的演進，現今的電路佈局技術將面臨更多的挑戰，

例如﹕大量的不同尺寸的單元佈局、繞線複雜度、延遲、雜訊等。

目前晶片設計市場的競爭日益激烈，大家都希望能用更短的時

間，更小的面積，更簡易的繞線作出產品。因此現今的單晶片系

統設計將需要更快速且更有效的大型積體電路佈局方法。我們將

鄰近單元的交換方法應用到多層架構的二元樹電路佈局演算法當

中，與過去的演算法相比，能夠在更短的時間內得到更好的佈局

結果。 
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Abstract 
 

In nanometer IC technologies and SoC (System on Chip) design flow, existing 
placement approaches face many serious challenges, including large size(billions 
of transistors), mix-size cell placement, wire congestion, and more complex 
design constraints (delay, noise, manufacturability, etc.). Since the IC design 
market is more and more competitive, it is necessary to have faster time to market, 
smaller silicon area utilization, and less wire length for layout. Efficient and 
effective design methodologies of large scale design placement are essential for 
modern SoC designs. We improve the ε-neighborhood and λ-exchange to fit in 
the large-scale circuit placement and use it in the refinement stage of the MB*-tree 
algorithm to gain a better solution efficiently. 
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Chapter 1

Introduction

Modern system designs become more and more complex due to the progress of

VLSI manufacturing technologies. In nanometer IC technologies and SoC (System

on Chip) design flow, existing placement approaches face many serious challenges,

including large size(billions of transistors), mix-size cell placement, wire congestion,

and more complex design constraints (delay, noise, manufacturability, etc.). Since

the IC design market is more and more competitive, it is necessary to have faster time

to market, smaller silicon area utilization, and less wire length for layout. Efficient

and effective design methodologies of large scale design placement are essential for

modern SoC designs.

Many placement methods have been presented in the literature[1,2,3,4,5,6,7,8,9].

However, because of inflexibility in representing non-slicing placement and non-

hierarchical data structures, the performance of traditional placement algorithms

was not very good. Until recently, the B*-tree representation[1] provided an efficient,

effective, and flexible data structure for non-slicing placement. Further, the MB*-

tree algorithm[10] has shown a hierarchical and divide-and-conquer framework which

is more facilitating to solve placement problem.

On the other hand, the ε-neighborhood and λ-exchange algorithm, first presented

in [11], was used for standard cell based placement. This method, for permuting cells
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with wire length driven approach, gave better performance compared with randomly

interchanges of cells. This limited trial permutation enable us to find a good local

optimum solution more efficient.

In this thesis, we transform the ε-neighborhood and λ-exchange to fit in the

large-scale circuit placement and use it in the refinement stage of the MB*-tree

algorithm. This method searches the solutions in the whole permutation of the

selected cells. Although our method ε-neighborhood and λ-exchange takes much

time for one perturbation (since it needs to search in all permutations), its efficiency

will compensate for the computation time by comparing with randomly interchanges.

1.1 Organization of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives a brief overview

on the B*-tree representation, describes the history of ε-neighborhood and λ-exchange

refinement method, and formulates the large-scale circuit floorplanning/placement

problem. Chapter 3 presents our two-stage algorithm, clustering followed by declus-

tering, also shows a refinement method, and some heuristic methods. Chapter 4

shows the experimental results. Chapter 5 presents the conclusion and future works.
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Chapter 2

Large-Scale Circuit Placement
with Neighborhood Exchange

There were already many approach to solve the large-scale circuit floorplan/placement

issue years ago. For example, in floorplanning, there was MB*-tree[10] which ex-

tended from B*-tree[1]; in placement such as MPL[12].

2.1 B*-tree Representation

Given a compacted placement P that can neither move down nor move left called

an admissible placement, we can represent it by a unique B*- tree T [1]. (See Figure

2.1(b) for the B*-tree representing the placement of Figure 2.1(a).) A B*-tree is an

ordered binary tree whose root corresponds to the module on the bottom-left corner.

Using the depth-first search (DFS) procedure, the B*- tree T for an admissible

placement P can be constructed in a recursive fashion. Starting from the root, we

first recursively construct the left subtree and then the right subtree. Let Ri denote

the set of modules located on the right-hand side and adjacent to mi. The left child

of the node ni corresponds to the lowest module in Ri that is unvisited. The right

child of ni represents the lowest module located above mi, with its x-coordinate

equal to that of mi.

The B*-tree keeps the geometric relationship between two modules as follows. If
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Figure 2.1: An admissible placement and its corresponding B*-tree.

node nj is the left child of node ni, module mj must be located on the right-hand

side of mi, with xj = xi + wi. Besides, if node nj is the right child of ni, module

mj must be located above module mi, with the x-coordinate of mj equal to that of

mi; i.e., xj = xi. Also, since the root of T represents the bottom-left module, the

coordinate of the module is (xroot, yroot) = (0, 0).

Inheriting from the nice properties of ordered binary trees, the B*-tree is simple,

efficient, effective, and flexible for handling non-slicing floorplans. It is particularly

suitable for representing a non-slicing floorplan with various types of modules and

for creating or incrementally updating a floorplan. What is more important, its

binary-tree based structure directly corresponds to the framework of a hierarchical

scheme, which makes it a superior data structure for multilevel large-scale building

module floorplanning/placement.
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2.2 MB*-tree

In [10], a multilevel floorplanning/placement framework based on the B*-tree repre-

sentation, called MB*-tree, is presented to handle the floorplanning and packing for

large-scale building modules. The MB*-tree adopts a two-stage technique, cluster-

ing followed by declustering. The clustering stage iteratively groups a set of modules

based on a cost metric guided by area utilization and module connectivity, and at

the same time establishes the geometric relations for the newly clustered modules by

constructing a corresponding B*-tree for them. The declustering stage iteratively

ungroups a set of the previously clustered modules (i.e., perform tree expansion)

and then refines the floorplanning/placement solution by using a simulated anneal-

ing scheme. In particular, the MB*-tree preserves the geometric relations among

modules during declustering, which makes the MB*-tree an ideal data structure for

the multilevel floorplanning/placement framework.

2.3 Performance-Driven Module Perturbation

Those approaches were first bring forth in [11], and promoted in [12]. But they

are all about gate array based placement. We first review those approaches in this

subsection, then later show our improvement in our framework for efficient large-

scale circuit placement.

2.3.1 Unidirectional Circulation Form

Let us consider a board on which every module is placed. Pick one module, denote

it by M . Move only module M on the board, while the other modules remain

fixed. The wirelength of a signal net does not change, as long as the signal net is

not connected to module M . Therefore, we only need to consider the signal nets

connected to module M and the sum of the wirelength of these signal nets. This

5



value is referred to as the wirelength associated with module M .

We now define the median of module M. Module M may be placed on m×n

different positions (like Figure 2.3). The median of module M is defined as a position

where the routing length associated with module M is minimum. Next, sort all the

wirelengths associated with module M with respect to the module M position in

ascending order. In this order, choose ε elements from the minimum one. The set

of these ε positions is defined as the ε-neighborhood for median of module M .

Let S be the set of all feasible solutions of this placement and let x be a feasible

solution, x ∈ S. Consider the neighborhood of x, denoted by X(x), which is a subset

of S. In the first step, x is set to a feasible solution and a search is made in X(x)

for a better solution x’ to replace x. This process, which is referred to hereafter as

a local transformation, is repeated until no such x’ can be found. A solution x” is

said to be a local optimum if x” is better than any other elements of X(x).

Many definitions may be considered for the neighborhood of a solution. The

set of solutions transformable from x by exchanging not more than λ elements is

regarded as the neighboorhood of x. A solution x is said to be λ-optimum if x is

better than any other solutions in the neighborhood in this sense. Although the

λ-optimum solution gets better as λ increases, the computation time can easily go

beyond the acceptable limit when an exhaustive search is performed for large λ.

Therefor we present the following method which does not examine all the elements

in the neighborhood, nor does it guarantee a λ-optimum solution. However, it is

very efficient in the sense that it can be applied for a large value of λ with limited

searches in the neighborhood.

The search procedure is illustrated along with the search tree shown in Figure 2.2,

where each node represents a module and each edge represents a trial transformation.

The root node of the tree A is a module chosen to initiate the trial interchange, which
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is referred to as the primary module. A path connecting node A and one of the other

nodes defines a possible interchange. For example, the path A→B→E→O refers to

the trial interchange of four modules, as shown in Figure 2.3. Here, module A is

placed on the slot of B, B is placed on E, E on O, and O on A, in a round robin

sequence. Although this transformation is a quadruple interchange, it includes a

pairwise interchange as a special case, i.e., paths A→B, A→C, and A→D, as shown

in Figure 2.4. Value λ indicates the number of modules to be interchanged.

Figure 2.2: The search tree of unidirectional circulation form, and each node repre-
sents a module and each edge represents a trial transformation.

The search tree is examined as follows. In this example, ε is fixed as 3. First,

module A is interchanged with either one of the modules on trial in the ε-neighborhood

of A median (λ = 2). The ε-neighborhood modules are B, C, and D, thus pairwise

interchanges between A and B, A and C, and A and D are performed (Figure 2.4).

The trial interchange is accepted if it results in the reduction on the total wirelength.

If more than one reduction occurs in these transformations, the interchange with

the greatest reduction is selected for acceptance. If no interchange contributes to

reducing the total routing length, the next step (λ = 3)is initiated.

Module A is placed on the slot of B, Then the median of B and its ε-neighborhood

are calculated. In this case, the ε-neighborhood module are E, F , and G. Thus
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Figure 2.3: Trial interchange of modules, A→B→E→O→A (λ=4).

interchanges A→B→E, A→B→F, and A→B→G are tried, as shown in Figure 2.5.

Figure 2.4: Trial interchange of modules, A→B→A (λ=2).

These trial interchanges are accepted if one of them results in the reduction

on the total routing length. Otherwise, we consider the three interchanges of paths
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Figure 2.5: Trial interchange of modules, A→B→E→A (λ=3).

A→B→E, A→B→F, and A→B→G, and choose the best one (least total wirelength)

for the later tree search. In Figure 2.5, A→B→E is chosen.

The solid lines in the tree search shown in Figure 2.2 indicate which searches are

to be continued. Broken lines show the searches which are to be terminated. There-

fore, no more search efforts are made along paths A→B→F and A→B→G. There is

only one solid line under any node, except for root node A. Triple interchanges are

performed for the other ε-neighborhood modules, C and D, of root node A. Tree

search will be continued following J or L, whereas no search will be accomplished

through H, I, K, and M . The tree search is continued, i.e., a path from node A is

extended as long as λ is no greater than λ*, which is given as a parameter.

2.3.2 Permutation Form

This algorithm is based on the concepts from previous form. Assuming all modules

except v are fixed in their current locations, we can compute v’s optimal slot loca-

tions. Suppose v’s optimal slot location is (r,c) where r is the row index and c is
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column index in our grid. Modules located in slots at (i,j), where |i-r|+|j-c| 5 ε, are

called ε-neighbors of module v. For instance, in Figure 2.6, suppose the optimal slot

location of module A is occupied by module B. A’s 1-neighbors (ε = 1) are {B, C,

D, E, F}. Similarly, assuming that D’s optimal slot is taken by G, we say module

D’s 1-neighbors are {G, H, I, J, K}.

Figure 2.6: A’s 1-neighbors {B, C, D, E, F} and D’s 1-neighbors {G, H, I, J, K}.

Figure 2.7: Search tree from A.

This algorithm uses a different λ-exchange algorithm from previous form. In

unidirectional circulation form, starting from a module v1, we compute all of its

10



ε-neighbors. This procedure generates a search tree, each leaf defines a module-

exchange sequence. We use part of the search tree from module A as example, as

shown in Figure 2.7. With ε=1 and λ=3, we use the following exchange sequence

for leaf K: A→D→K→A, i.e., move module A to D’s slot, move D to K’s slot,

and move K to A’s slot. The best module exchange sequence will be chosen, or no

exchange is made when the original placement has a smaller cost. This method has

two major drawbacks. First, the size of the search tree grows very quickly with slight

increase of ε and λ. Second, the module exchange sequence may not be the best

possible. Intuitively, moving a module into its ε-neighborhood has a high probability

of reducing the objective function value, but in the last step, moving module vλ to

the slot of v1, may not be good in reducing cost.

To address these problems, we revise the λ-exchange procedure as follows. Sup-

pose v1 is the first module to be moved. We compute its ε-neighbors and randomly

pick one module, say v2, among these modules. Then for v2, we compute its ε-

neighbors, and randomly pick one module, and continue in this fashion until we

have λ modules. For the λ modules, we try all of their placement permutations (the

total number is λ!) and exchange modules according to the least cost permutation.

For example, suppose we pick modules A, D, and K. All six permutations will be

tried: no exchange, A↔D, A↔K, D↔K, A→D→K→A, A→K→D→A. The number

of solutions we search still goes exponentially with λ, but not with ε.

The benefit of randomly selecting ε-neighbors of the optimal slot is that it sup-

ports multiple passes across the placement region. Experimental results show that

unidirectional circulation form algorithm quickly gets stuck at a local minimum,

while permutation form algorithm has a higher probability of finding better solu-

tions.
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2.4 Problem Formulation

The problem we concerned about is described as follows. Let M = {m1,m2,...,mn}
be a set of n rectangular modules. Each module mi ∈ M is associated with a two

tuple (hi, wi), where hi and wi denote the width and height of mi, respectively. The

area Ai of mi is given by hiwi. Let N = {n1,n2,...,nk} be a set of k net. Each net

ni ∈ N is a set of modules which are connected together, like {mi1,mi2,...} ∈ ni.

A placement (floorplan) P = {(xi, yi) | mi ∈ M} is an assignment of rectangular

modules mi’s with the coordinates of their bottomleft corners being assigned to

(xi, yi)’s so that no two modules overlap. The objective of placement/floorplanning

is to minimize a specified cost metric such as a combination of the area Atot and

wirelength Wtot induced by the assignment of mi’s, where Atot is measured by the

final enclosing rectangle of P and Wtot is the summation of half the bounding box

of pins for each net.

There were already many works that manipulated multilevel or hierarchical ap-

proach to disentangle the large scale issue in VLSI years ago. For example, in

graph/circuit partitioning such as Chaco[13], hMetis[14], and ML[15]; in placement

such as MPL[12]; in routing such as MRS[16], MR[17], and MARS[18]; in floor-

planning, there was MB*-tree[10] which extended from B*-tree[1]. Because of the

simplicity and identity, we choose B*-tree for easily representing the non-slicing

placement and quickly computing the half-perimeter wirelength of nets.

Therefore, we decide to keep the multilevel hierarchy and the B*-tree repre-

sentation of MB*-tree, but replace its simulated annealing refinement method by

ε-neighborhood and λ-exchange algorithm for better performance. Because this al-

gorithm combines the MB*-tree and ε-neighborhood and λ-exchange methods, we

called our approach MBNE algorithm.
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Chapter 3

The MBNE Algorithm

In this chapter, we present our MBNE algorithm for multilevel large-scale build-

ing module floorplanning/placement. This algorithm adopts a two-stage approach,

clustering followed by declustering, by using the B*-tree representation. Figure 3.1

shows the MBNE algorithm flow.

The clustering operation results in two types of modules, namely primitive mod-

ules and cluster modules. A primitive module m is a module given as an input (i.e.,

m ∈ M) while a cluster one is created by grouping two or more primitive modules.

Each cluster module is created by a clustering scheme {mi, mj}, where mi (mj)

denotes a primitive or a cluster module.

In the following subsections, we give a detailed review on clustering and declus-

tering algorithms in MB*-tree[10] and our refinement approaches in declustering

phase to improve the packing results.

3.1 The Clustering Phase

In this stage, we iteratively group a set of (primitive or cluster) modules until a

single cluster is formed (or until the number of cluster modules is smaller than a

threshold) based on a cost metric of area and connectivity. The clustering metric

is defined by the two criteria: area utilization (dead space) and the connectivity

13



Figure 3.1: The MBNE algorithm flow. Clustering followed by declustering and
using our refinement approaches in declustering phase to improve the packing results.

density among modules.

• Dead space: The area utilization for clustering two modules mi and mj can be

measured by the resulting dead space sij, representing the unused area after

clustering mi and mj. Let stot denote the dead space in the final floorplan

P . We have stot = Atot -
∑

mi∈M Ai, where Ai denotes the area of module mi

and Atot the area of the final enclosing rectangle of P . Since
∑

mi∈M Ai is a

constant, minimizing Atot is equivalent to minimizing the dead space stot.

• Connectivity density: Let the connectivity cij denote the number of nets be-

tween two modules mi and mj . The connectivity density dij between two

(primitive or cluster) modules mi and mj is given by

dij = cij/(ni + nj) (3.1)
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where ni (nj) denotes the number of primitive modules in mi (mj). Often a

bigger cluster implies a larger number of connections. The connectivity density

considers not only the connectivity but also the sizes of clusters between two

modules to avoid possible biases.

Obviously, the cost function of dead space is for area optimization while that of

connectivity density is for timing and wiring area optimization. Therefore, the met-

ric for clustering two (primitive or cluster) modules mi and mj, φ : {mi,mj}→<+
⋃{0},

is then given by

φ({mi, mj}) = αŝij +
βK

d̂ij

(3.2)

where ŝij and K/d̂ij are respective normalized costs for sij and K/dij, α, β and K

are user-specified parameters/constants.

Based on φ, we cluster a set of modules into one at each iteration by applying

the aforementioned methods until a single cluster containing all primitive modules

is formed or the number of modules is smaller than a given threshold (and thus can

be easily handled by the classical program). During clustering, we record how two

modules mi and mj are clustered into a new cluster module mk. If mi is placed

left to (below) mj , then mi is horizontally (vertically) related to mj , denoted by

mi→(↑)mj. If mi→(↑)mj, then nj is the left (right) child of ni in its corresponding

B*-tree.(See Figure 3.2.) The relation for each pair of modules in a cluster is es-

tablished and recorded in the corresponding B*-subtree during clustering. It will be

used for determining how to expand a node into a corresponding B*-subtree during

declustering.

3.2 The Declustering Phase

We first introduce the metric for refining floorplan/placement solutions. The declus-

tering metric is defined by the two criteria: area utilization (dead space) and the
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Figure 3.2: The relation of two modules and their clustering.[10] (a) Two candidate
modules mi and mj. (b) The clustering and the corresponding B*-subtree for the
case where mi is horizontally related to mj. (c) The clustering and the corresponding
B*-subtree for the case where mi is vertically related to mj.

wirelength among modules.

• Dead space: Same as that defined in Section 3.1.

• Wire length: The wirelength of a net is measured by half the bounding box of

all the pins of the net, or by the length of the center-to-center interconnections

between the modules if no pin positions are specified. The wirelength for

clustering two modules mi and mj , wij, is measured by the total wirelength

interconnecting the two modules. The total wirelength in the final floorplan P ,

wtot, is the summation of the length of the wires interconnecting all modules.

Obviously, the cost function of dead space is for area optimization while that

of wirelength is for timing and wiring area optimization. Therefore, the metric

for refining a floorplan solution during declustering, ψij:{mi,mj}→<+
⋃{0}, is then

given by

ψij = γŝij + δŵij (3.3)

where ŝij and ŵij are respective normalized costs for sij and wij, and γ and δ are

user-specified parameters.

The declustering stage iteratively ungroups a set of previously clustered modules

(i.e., expand a node into a subtree according to the B*-tree constructed at the
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clustering stage) and then refines the floorplan solution based on the ε-neighborhood

and λ-exchange method.

Figure 3.3 shows the algorithm for declustering a cluster module mk into two

modules mi and mj that are clustered into mk at the clustering stage. Without loss

of generality, we make mi right to or below mj . In Algorithm Declustering (see

Figure 3.3), parent(ni), right(ni), and left(ni) denote the parent, the right child, and

the left child of node ni in a B*-tree, respectively. Line 1 updates the parent of nk

as that of ni. Lines 2-5 make ni a left (right) child if nk is a left (right) child. Lines

6-13 deal with the case where mi is horizontally related to mj. If mi→mj, then nj

is the left child of ni and thus we update the corresponding links in Line 7. Lines

8-10 (11-13) update the links associated the right (left) child of nk. Similarly, lines

14-23 cope with the case where mi is vertically related to mj.

Figure 3.3: The declustering algorithm.[10]
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3.3 Our Refinement Method In Declustering Phase

At all levels of declustering, we apply the ε-neighborhood and λ-exchange method to

refine the floorplan for gaining a better solution. This algorithm is inspired by the

[11][12] mentioned in Section 2.3, but these two papers are for standard cell based

placement. Since we focus on the large-scale circuit placement, we redefine the ε

and λ to adjust the B*-tree representation.

The original definition of ε-neighborhood of module v in [11] is the modules

located in slots at row i, column j where |i-r|+|j-c|5 ε and (r,c) is the optimal slot

location of v. But in the non-slicing placement of large-scale circuit, the optimal slot

location is hard to compute and it will shift when perturbing the modules. Hence

we redefine the ε-neighborhood of module v as the modules away from v within ε

branches in B*-tree. The Figure 3.4(a) is an example of 1-neighborhood of module

n2, and Figure 3.4(b) shows 2-neighborhood of module n2.

Figure 3.4: The definition of ε-neighborhood in our refinement method.

In our refinement algorithm, first we choose a starting module A, and select the

module B which in the same net with module A. We then randomly pick the module

Bλ in the ε-neighborhood of module B, so we have A and Bλ for 2-exchange now.
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Furthermore, we can continue selecting the module C which in the same net with

A and B, and randomly pick the module Cλ in ε-neighborhood of module C for

3-exchange. Do this sequence until we have λ modules for λ-exchange. (See Figure

3.5.)

Figure 3.5: An example of λ-exchange, λ=4.

After we get all the λ modules, we try all of their placement permutations. Since

this is a large-scale circuit placement, modules normally have different heights and

widths. Therefore the rotation of modules will affect the placement’s result. The

total number of permutations is λ! × 2λ. Finally, we keep the permutation with the

lowest cost and start the next turn of refinement.

3.3.1 Null Module Insertion For Further Movement

The ε-neighborhood and λ-exchange refinement can rotate and/or swap the modules

to perturb the placement, but it can not move a module to another place. Thus,

we replace one of the λ-exchange modules by null module for permutations. The
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null module does not connect to any module, and its height and width are equal to

zero. When we decide to use null module by some probability, we insert it to be the

replaced λ-exchange module’s child. When a module swap with the null module, it

is equivalent moving the module to be the replaced module’s child. Figure 3.6 is an

example of null module insertion for refinement.

Figure 3.6: An example of null module insertion for refinement. (a)Insert modele
N to replace modele B for swaping. (b)After swap, A→D→C→N→A. (c)Delete
module N .

We have applied the null module in the ε-neighborhood and λ-exchange refine-

ment, so we can combine the following three operations to perturb the placement

into the lowest cost one.

• Op1: Rotate a module.

• Op2: Move a module to another place.

• Op3: Swap two modules.

3.4 Floorplanner Flow

The MBNE algorithm integrates the aforementioned three algorithms. We first per-

form clustering to reduce the problem size level by level and then enter the declus-

tering stage. In the declustering stage, we perform floorplanning for the modules at

each level using the ε-neighborhood and λ-exchange algorithm for refinement.
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Figure 3.7 illustrates an execution of the MBNE algorithm. For explanation, we

cluster three modules each time in Figure 3.7. Figure 3.7(a) lists seven modules

to be packed, mi’s, 1≤i≤7. Figure 3.7(b)-(d) illustrates the execution of the clus-

tering algorithm. Figure 3.7(b) shows the resulting configuration after clustering

m5, m6, and m7 into a new cluster module m8 (i.e., the clustering scheme of m8 is

{{m5,m6},m7}). Similarly, we cluster m1,m2, and m4 into m9 by using the cluster-

ing scheme {{m2, m4}, m1}. Finally, we cluster m3,m8, and m9 into m10 by using

the clustering scheme {{m3, m8}, m9}. The clustering stage is done, and the declus-

tering stage begins, in which ε-neighborhood and λ-exchange method are applied to

refine the coarse floorplan. In Figure 3.7(e), we first decluster m10 into m3, m8, and

m9 (i.e., expand the node n10 into the B*-subtree illustrated in Figure 3.7(e)). We

then move m8 to the top of m9 (perform Op2 for m8) during ε-neighborhood and

λ-exchange refinement (see Figure 3.7(f)). As shown in Figure 3.7(g), we further

decluster m9 into m1, m2, and m4, and then rotate m2 and move m3 on top of

m2 (perform Op1 on m2 and Op2 on m3), resulting in the configuration shown in

Figure 3.7(h). Finally, we decluster m8 shown in Figure 3.7(i) to m5, m6, and m7,

and move m4 to the right of m3 (perform Op2 for m4), which results in placement

with good quality shown in Figure 3.7(j).
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Figure 3.7: An example of MBNE algorithm.[10]
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Chapter 4

Experimental Results

We implement the MBNE algorithm in C++ programming language. The platform

is Intel Pentium 4 2.4GHz CPU with 1.5GB memory. We make the comparisons

with the MB*-tree algorithm on benchmarks including industry[10], MCNC[19]

and GSRC[20] suites for area, wirelength and simultaneous area and wirelength

optimizations.

4.1 Industry with MB*-tree (Area, Wirelength,

Area/Wirelength)

The circuit industry is a 0.18µm, 1GHz industrial design with 189 modules, 20

million gates and 9,777 center-to-center interconnections. It is a large chip design

and consists of three modules with aspect ratios greater than 19 and as large as 36.

In each entry of the table, we list the best/average values obtained in ten runs of

MBNE and MB*-tree.

Table 4.1 shows the results of MBNE compared with MB*-tree. For area op-

timization, MBNE can obtain a dead space of only 1.99% while MB*-tree results

in a dead space of 2.32%. For wirelength optimization, MBNE can obtain a total

wirelength of only 53723 mm while MB*-tree requires a total wirelength of 55971

mm. For simultaneous area and wirelength optimization, MBNE can obtain a dead
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space of 9.95% and wirelength of 63583 mm while MB*-tree requires 14.45% and

67179 mm.

Area optimization Wirelength optimization
Area Dead space Time Wirelength Time

Package
(mm2) (%) (min) (mm) (min)

MBNE 671.32/674.57 1.99/2.45 4.00/3.47 53723/58585 150.28/150.18
MB*-tree 673.60/679.41 2.32/3.15 3.95/3.84 55971/59759 180.45/184.54

Simultaneous area and wirelength optimization
Area Dead space Wirelength Time

Package
(mm2) (%) (mm) (min)

MBNE 730.70/742.07 9.95/11.30 63583/63956 150.12/150.10
MB*-tree 769.10/797.28 14.45/17.37 67179/66407 153.96/159.19

Table 4.1: Comparisons for area optimization alone, wirelength optimization alone,
and simultaneous area and wirelength optimization between MBNE and MB*-tree
based on the circuit industry.

4.2 MCNC - ami49 1-200 with MB*-tree (Area)

The ami49 is the largest MCNC benchmark circuit, and we created seven synthetic

circuits, named ami49 x, by duplicating the modules of ami49 by x times to test

the capability of our algorithm. The largest circuit ami49 200 contains 9800 mod-

ules. Table 4.2 shows the result of MBNE compared with MB*-tree. The MBNE

obtains 0.3%-1.34% improvement in dead space compared with MB*-tree for the

seven ami49 x circuits.

4.3 GSRC - n100-300 with MB*-tree (Area, Wire-

length)

The n100, n200, and n300 are the three GSRC benchmark circuit. We used them

to compare the MBNE with MB*-tree for area and wirelength optimizations. Table

4.3 shows the number of modules, number of nets, and total area of the GSRC

benchmark.
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# Total MB*-tree MBNE Improvement

modules area Area Dead space Time Area Dead space Time in dead space
Circuit

(mm2) (mm2) (%) (min) (mm2) (%) (min) (%)

ami49 49 35.445 36.46 2.79 1.19 36.22 2.14 1.00 0.65

ami49 4 196 141.780 146.86 3.46 6.29 144.86 2.12 5.00 1.34

ami49 20 980 708.908 732.19 3.18 10.21 727.81 2.60 10.08 0.58

ami49 60 2940 2126.724 2211.75 3.84 16.73 2195.76 3.14 15.17 0.70

ami49 100 4900 3544.540 3704.65 4.32 20.47 3681.56 3.72 20.18 0.60

ami49 150 7350 5316.750 5590.95 4.90 26.77 5560.33 4.38 25.58 0.52

ami49 200 9800 7089.808 7478.55 5.21 31.65 7454.86 4.91 30.13 0.30

Table 4.2: Comparisons for area, dead space, and runtime between MBNE and
MB*-tree with the MCNC benchmark.

Table 4.4 shows the results of MBNE compared with MB*-tree. For area op-

timization, MBNE can obtain dead space of only 1.64%, 2.09% and 2.08% while

MB*-tree results in dead space of 2.62%, 2.39% and 2.20%. For wirelength opti-

mization, MBNE can obtain total wirelength of only 110.982 mm, 241.696 mm and

388.162 mm while MB*-tree requires total wirelength of 111.819 mm, 244.233 mm

and 391.651 mm.

4.4 Efficiency with MB*-tree

We choose four circuits from the industry, MCNC, and GSRC benchmark to com-

pare for efficiency between MBNE and MB*-tree algorithm. We set the runtime

of MBNE equal to 70% runtime of MB*-tree algorithm for four circuits. Table 4.5

shows the results of area, dead space and runtime of MBNE and MB*-tree. MBNE

obtains dead space of 2.34%, 2.11%, 2.89% and 2.32% while MB*-tree requires dead

space of 2.32%, 2.62%, 3.18% and 3.84% in these four circuits.
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Circuit # of modules # of nets Total area (0.001mm2)
n100 100 885 179.50
n200 200 1585 175.70
n300 300 1893 273.17

Table 4.3: The number of modules, number of nets, and total area of the GSRC
benchmark.

Area optimization Wirelength optimization
Area Dead space Time Wirelength Time

n100
(0.001mm2) (%) (min) (mm) (min)

MBNE 182.490 1.64 5.00 110.982 10.03
MB*-tree 184.338 2.62 5.17 111.819 10.89

Area optimization Wirelength optimization
Area Dead space Time Wirelength Time

n200
(0.001mm2) (%) (min) (mm) (min)

MBNE 179.452 2.09 7.00 241.696 15.37
MB*-tree 180.000 2.39 7.78 244.233 15.94

Area optimization Wirelength optimization
Area Dead space Time Wirelength Time

n300
(0.001mm2) (%) (min) (mm) (min)

MBNE 278.964 2.08 10.01 388.162 20.40
MB*-tree 279.310 2.20 10.17 391.651 21.45

Table 4.4: Comparisons for area and wirelength optimization between MBNE and
MB*-tree with the GSRC benchmark.

# Total MB*-tree MBNE Improvement

modules area Area Dead space Time Area Dead space Time in time
Circuit

(0.001mm2) (0.001mm2) (%) (min) (0.001mm2) (%) (min) (%)

industry 189 657,984 673,600 2.32 3.95 673,731 2.34 2.77 29.9

n100 100 179.500 184.338 2.62 5.17 183.365 2.11 3.61 30.2

ami49 20 980 708,908 732,190 3.18 10.21 729,982 2.89 7.57 25.9

ami49 60 2940 2,126,724 2,211,750 3.84 16.73 2,199,793 3.32 11.73 29.9

Table 4.5: Comparisons for efficiency between MBNE and MB*-tree with four bench-
mark.
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Chapter 5

Conclusion and Future Works

In this thesis, we have shown the approaches on the multilevel hierarchical floor-

plan/placement for large-scale circuits. With the MBNE algorithm, we can choose to

optimize area only, wirelength only, or simultaneous area and wirelength with any ra-

tio of the placement. Our MBNE algorithm combines the B*-tree representation and

multilevel framework of MB*-tree, and the improved format of ε-neighborhood and

λ-exchange refinement method. Experimental results have shown that the MBNE

algorithm has better performance compared with the MB*-tree, state of the art

floorplanner, in several benchmarks.

For future improvement of our placement method, developing the locally per-

turbation of later declutering level may solve the scalability of increased number of

modules. Or we can adopt the ε-neighborhood and λ-exchange refinement method

to another framework of algorithm, this may improve its performance.
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