
國立交通大學 
 

電子工程學系 電子研究所碩士班  

 

碩 士 論 文 
 

 

可重組化RSA密碼系統之設計與實作 

 

Design and Implementation of  
Reconfigurable RSA Cryptosystems  

 

 

 

研究生:陳允律 

指導教授:張錫嘉 

 

中華民國九十五年七月



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

可重組化RSA密碼系統之設計與實作 
Design and Implementation of  

Reconfigurable RSA Cryptosystems 
 

學生：陳允律                      Student : Yun-Lu Chen 

指導教授：張錫嘉                  Advisor : Hsie-Chia Chang 

 

國立交通大學 

電子工程學系 電子研究所碩士班  

碩士論文 

 

 

A Thesis 

Submitted to Department of Electronics Engineering & Institute of Electronics 

College of Electrical and Computer Engineering 

National Chiao Tung University 

In Partial Fulfillment of the Requirements 

for the Degree of Master 

In 

Electronics Engineering 

 

July  2006 

Hsinchu, Taiwan, R.O.C. 

 

中華民國九十五年七月



 iii 

可重組化RSA密碼系統之設計與實作 

 

學生 : 陳允律                           指導教授 : 張錫嘉 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

 
摘 要       

 

本論文提出了在 RSA 密碼系統上可重組化的實作方法。RSA 在許多安

全性的應用上常被使用，像是智慧型卡片。而一造安全性的層級不同，RSA

模數的區塊大小也不盡相同。在大多數的智慧型卡片的應用上，RSA 密碼

系統通常被設計在 512/1024/2048/4096 位元模數區塊大小的加解密下工

作。為了能工作在大多數的智慧型卡片的應用上，本篇論文中的演算法是

在可重組化和縮減面積下由蒙哥馬利模數乘法演算法改進而來，為了縮減

面積，在架構上也利用五個記憶體區塊來減小龐大的暫存器數量。在這樣

的設計之下可利用Xilinx Vertex2 XC2V8000的五個記憶體區塊和 6783個 slices

來達到 512模數下 99kb/s，1024模數下 26kb/s，2048模數下 6.8kb/s，4096

模數下 1.7kb/s。 



 iv 

 

Design and Implementation of  
Reconfigurable RSA Cryptosystems 

 

Student: Yun-Lu Chen            Advisor: Hsie-Chia Chang 

 

 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

 

ABSTRACT 

 

This thesis introduces a reconfigurable approach to the hardware implementation of the 

RSA cryptosystem. RSA is a well used algorithm in many security applications, such as smart 

card. The modulus block sizes are different for different level of security. For the majority 

applications of smart card, the RSA cryptosystem would be designed to work with 

512/1024/2048/4096-bit RSA encryption/decryption. The algorithm of this thesis is modified 

by the Montgomery modular multiplication algorithm to be reconfigurable and reduce area. In 

order to reduce area, there are five memory blocks to substitute the large amount of registers. 

As such the design can used five memory blocks and 6783 slices to achieve the baud rate of 

99kb/s for 512-bit modulus, 29kb/s for 1024-bit modulus, 6.8kb/s for 2048-bit modulus and 

1.7kb/s for 4096-bit with Xilinx Vertex2 XC2V8000. 

 

 

 



 v 

誌 謝       

要完成一本論文，除了作者本身的努力與付出，旁人的幫助也是不可或缺的。 在研

究生的學涯裡我的指導教授張錫嘉博士無論是在研究方面、工作方面，亦或是生活方

面，無不給予作者極大的幫助，研究方面像嚴師，工作方面像前輩，生活方面像朋友，

這就是老師給我的感覺，真的是非常感謝老師。再來要感謝的就是林建青學長，每當我

遇到問題時，學長總是不厭其煩的幫我解答，讓我在研究的路上，能更加的順暢。 

此外，當然也要感謝我的家人，無論是在精神上或是物質上給予的支持，使我可以無

後顧之憂完成學業，最後也要感謝OASIS和SUN實驗室的同學、學弟們，沒有你們，這

段時光不會如此值得回憶，僅以此篇論文與你們共同分享這份喜悅。 

 

 

 

 

 



Contents

1 Introduction 1

1.1 Secret-key Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Public-key Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 RSA Cryptosystem 8

2.1 Mathematics Foundation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Montgomery’s Method . . . . . . . . . . . . . . . . . . . . . . 11

2.2 RSA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 RSA Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Modular Exponentiation . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Modular Multiplication . . . . . . . . . . . . . . . . . . . . . . 17

3 Proposed Reconfigurable RSA Architecture 24

3.1 Overview of the Proposed Architecture . . . . . . . . . . . . . . . . . 24

3.1.1 I/O Description . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Main Modules Description . . . . . . . . . . . . . . . . . . . . 26

3.2 Operation Mode Description . . . . . . . . . . . . . . . . . . . . . . . 30

i



4 Implementation 34

4.1 Implementation with cell base design . . . . . . . . . . . . . . . . . . 34

4.2 Implementation on FPGA . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 37

ii



List of Figures

1.1 Information Communication Model . . . . . . . . . . . . . . . . . . . 2

1.2 Secret-key Cryptosystem Model . . . . . . . . . . . . . . . . . . . . . 3

1.3 Public-key Cryptosystem Model . . . . . . . . . . . . . . . . . . . . . 5

1.4 Public-key Cryptosystem Model with Digital Signature . . . . . . . . 6

3.1 I/O pins of the proposed RSA cryptosystem . . . . . . . . . . . . . . 25

3.2 Block diagram of proposed RSA cryptosystem . . . . . . . . . . . . . 26

3.3 Processing Element used in figure. 3.4 . . . . . . . . . . . . . . . . . 27

3.4 Processing Element Array and FIFO . . . . . . . . . . . . . . . . . . 28

3.5 Load mode type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Configuration completion . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Correct output data stored . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Read correct output data . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Encryption/Decryption finish . . . . . . . . . . . . . . . . . . . . . . 33

iii



List of Tables

3.1 Mode Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 The synthesized results with cell base design . . . . . . . . . . . . . 35

4.2 The verification results on FPGA . . . . . . . . . . . . . . . . . . . . 36

5.1 Comparison with other 1024-bits implementations with cell base de-

sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Comparison with other 512-bits implementations on FPGA . . . . . 39

5.3 Comparison with other 1024-bits implementations on FPGA . . . . . 39

iv



Chapter 1

Introduction

As time goes on, the internet has become as popular as possible. The communica-

tion between people and people is originally need face-to-face, but can carry on the

remote communication with some tools now. The convenient means of communica-

tion are depended on the prosperity of the internet. People depend on the internet

sending message that may be secret or important. If the hacker gets the message

which has no protector, the secret is not secret. Informant security is more and

more important in the internet age.

Cryptography [1] is a knowledge to research how to avoid that the hacker gets

the real message. As the increase of the computer performance, there are much

difference between conventional and modern cryptography. For the general infor-

mation communication model that is shown in Fig. 1.1, there are the sender, receiver

and hacker. Before beginning, we define some terms. The original intelligible mes-

sage that the sender sends is known as the plaintext. The coded message that has

scrambled by cryptosystem is called the ciphertext. Reversibility is the fundamental

need for the cryptosystem. Generally speaking, the cryptosystem supply following

functions to depend on the application.

Confidentiality : It is to avoid that the hacker gets plaintext.

Authentication : It is to ensure that the receiver can verify the source of message.

1



Figure 1.1: Information Communication Model
.

Integrity : It is to know that the message has been modified in transmission or

not.

Nonrepudiation : It can prevent either sender or receiver from denying a trans-

mitted message.

There are two kinds of commonly used encryption/decryption ways:

1. Conventional: Secret-key encryption/decryption

2. Modern: Public-key encryption/decryption

The conventional cryptography usually focus on the confidentiality of the in-

formation, but the modern cryptography also considers that the authentication,

integrity and nonrepudiation of the information are more important for the appli-

cation of the commerce.

2



Figure 1.2: Secret-key Cryptosystem Model
.

1.1 Secret-key Cryptosystem

In conventional cryptography, there is a key pair E,D. Usually, the key E and the

key D are the same, or it is easy to find one if another is known. A secret-key

cryptosystem model is shown in Fig. 1.2. The sender uses the key E to encrypt the

plaintext, and the receiver uses the key D to decrypt the ciphertext. This method

is known as secret-key or symmetric cryptosystem. All secret-key cryptosystems

are based on substitution and transposition. Substitution is mean mapping from

one field to anther and transposition is mean replace the element of the message.

Because of that the hardware of substitution and transposition is very easy, secret-

key cryptosystem is much faster than public-key cryptosystem in general. There

are many algorithms proposed for the secret-key cryptosystem, such as DES(Data

Encryption Standard) and AES(Advanced Encryption Standard).

A secret-key cryptosystem has several drawback listed below:

• How to manage the keys when the number of key pairs is large?

– If there are n subscribers in a network, then everyone have to hold n− 1

keys to communicate with others. For example, If there are 1000 sub-

3



scribers in a network, then the number of key pairs is 499× 500. It is too

hard to manage such many key pairs.

• How to get the key pair between the sender and receiver?

– A secure channel is needed between the sender and receiver who have

never meet before, but how to get this channel? This problem is called

the key distribution problem.

• How to ensure the Authentication and Nonrepudiation?

– In symmetric cryptosystem, the sender and receiver both have the same

key for encryption and decryption. Thus the sender may deny sending

the message that has sent before because it is impossible to ensure that

the message is not make by the receiver.

1.2 Public-key Cryptosystem

The concept of public-key cryptography evolved from an attempt to solve the prob-

lems of symmetric encryption. Public-key algorithms rely on one key for encryption

and a different but related key for decryption. These algorithms have the following

important characteristic.

• It is computationally infeasible to determine the decryption key given only

knowledge of the cryptographic algorithm and the encryption key.

In addition, some algorithms also exhibit the following characteristic.

• Either of the two related keys can be used for encryption, with the other used

for decryption.

The equations can be written as follow:

4



Figure 1.3: Public-key Cryptosystem Model
.

C = EC(EJ ,M)

M = DC(DJ , C)

A secure communication using a public-key cryptosystem is shown in Fig. 1.3,

and the essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption

of messages.

2. Each user places one of the two keys in a public register or other accessible

file. This is the public key. The companion key is kept private. Each user

maintains a collection of public keys obtained from others.

3. If Tom wishes to send a confidential message to John, Tom encrypts the mes-

sage using John’s public key.

4. When John receives the message, he decrypts it using his private key. No other

recipient can decrypt the message because only John knows John’s private key.

In this approach, all participants can access to public keys, and private keys are

generated locally by each participant and therefore need never be distributed. As

5



Figure 1.4: Public-key Cryptosystem Model with Digital Signature
.

long as a system controls its private key, its incoming communication is secure. At

any time, a system can change its private key and publish the companion public key

to replace its old public key.

It is important to emphasize that the encryption process just described does not

provide confidentiality. That is, the message begin sent is safe from alteration but

not from eavesdropping.

The public-key cryptosystem model with digital signature is shown in Fig. 1.4.

It is impossible to provide both the authentication function and confidentiality by

a double use of the public-key scheme.

S = EC(DT ,M)

C = EC(EJ , S)

S = DC(DJ , C)

M = DC(ET , S)

In this case, we begin as before by encrypting a message, using the sender’s

private key. This provides the digital signature. Next, we encrypt again, using the

receiver’s public key. The final ciphertext can be decrypted only by the intended

receiver, who alone has the matching private key. Thus, confidentiality is provided.

The disadvantage of this approach is that the public-key algorithm, which is com-

6



plex, must be exercised four times rather than two in each communication.

Depending on the application, the sender uses either the sender’s private key

or the receiver’s public key, or both, to perform some type of cryptographic func-

tion. In broad terms, we can classify the use of public-key cryptosystems into three

categories:

• Encryption/decryption : The sender encrypts a message with the recipient’s

public key.

• Digital signature : The sender signs a message with its private key. Signing

is achieved by a cryptographic algorithm applied to the message or to a small

block of data that is a function of the message.

• Key exchange : Two sides cooperate to exchange a session key. Several differ-

ent approaches are possible, involving the private key of one or both parties.

7



Chapter 2

RSA Cryptosystem

2.1 Mathematics Foundation

2.1.1 Number Theory

In modern cryptosystem, the encryption processes are mathematical operations that

turn the input numerical values into output numerical values. The must important

mathematical tool is number theory, especially the theory of congruences.

Congruences

One of the most basic and useful in number theory is modular arithmetic, or

congruences. Let a, b, n be integers with n 6= 0. If a and b differ by a multiple of

n, a is congruent to b mod n.

a ≡ b (mod n)

It can be rewritten as

a ≡ b + nk

for some integer k

Primitive Roots

8



In general, when p is a prime, a primitive root mod p is a number whose powers

yield every nonzero class mod p. There are φ(p − 1) primitive roots mod p. Let g

be a primitive root for the prime p.

• If i is an integer, then gi ≡ 1 (mod p) if and only if i ≡ 0 (mod p-1 ).

• If j and k are integers, then gj ≡ gk (mod p) if and only if j ≡ k (mod p-1 ).

Fermat’s Theorem

Fermat’s theorem states the follows:If p is prime and a is a positive integer not

divisible by p, then

ap−1 ≡ 1 mod p (2.1)

We know that if all of the elements of Zp, where Zp is the set of integers

{0, 1, ..., p − 1}, are multiplied by a, modulo p, the result consists of all of the

elements of Zp in some sequence. Furthermore, a × 0 ≡ 0 mod p. Therefore, the

(p − 1) numbers {a mod p, 2a mod p,...,(p − 1)a mod p} are just the numbers

{1, 2, ..., (p − 1)} in some order. Multiplying the numbers in both sets and taking

the result mod p yields

1× 2× ...× (p− 1) ≡ (a mod p)× (2a mod p)× ...× ((p− 1)a mod p)

(p− 1)! mod p ≡ (p− 1)!ap−1

We can cancel the (p − 1)! term because it is relatively prime to p. This yields

Equation 2.1.

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity

in number theory, referred to as Euler’s totient function and written φ(n), where

9



φ(n) is the number of positive integers less than n and relatively prime to n. It

should be clear that for a prime number p,

φ(p) = p− 1

There are two prime numbers p and q, with p 6= q. Then, for n = pq,

φ(n) = φ(pq) = φ(p)× φ(q) = (p− 1)× (q − 1) (2.2)

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

aφ(n) ≡ 1 mod n (2.3)

Equation 2.3 is true if n is prime, because in that case φ(n) = (n − 1) and

Fermat’s theorem holds. However, it also holds for any integer n. Recall that φ(n)

is the number of positive integers less than n that are relatively prime to n. Consider

the set of such integers, labeled as follows:

R = {x1, x2, ..., xφ(n)}

Now multiply each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n), ..., (axφ(n) mod n)}

The set S is a permutation of R, by the following line of reasoning:

1. Because a and xi are relatively prime to n, axi must also be relatively prime

to n. Thus, all the elements of S are integers less than n that are relatively

prime to n.

10



2. There are no duplicates in S. If axi mod n = axj mod n, then xi = xj.

Therefore,

φ(n)∏
i=1

(axi mod n) =

φ(n)∏
i=1

xi

φ(n)∏
i=1

axi ≡
φ(n)∏
i=1

xi( mod n)

aφ(n) ×
φ(n)∏
i=1

xi ≡
φ(n)∏
i=1

xi( mod n)

aφ(n) ≡ 1 mod n

An alternative form of the theorem is also useful:

akφ(n)+1 ≡ a mod n (2.4)

2.1.2 Montgomery’s Method

In 1985, P. L. Montgomery introduced an efficient algorithm for computing R =

a · b mod n where a, b, and n are k-bit binary numbers. The algorithm is particu-

larly suitable for implementation on general-purpose computers which are capable

of performing fast arithmetic modulo a power of 2. The Montgomery reduction

algorithm computes the resulting k-bit number R without performing a division by

the modulus n. Via an ingenious representation of the residue class modulo n, this

algorithm replaces division by n operation with division by a power of 2. This op-

eration is easily accomplished on a computer since the numbers are represented in

binary form. Assuming the modulus n is a k-bit number, i.e., 2k−1 < n < 2k, let

r be 2k. The Montgomery reduction algorithm requires that r and n be relatively

prime, i.e., gcd(r, n) = gcd(2k, n) = 1. This requirement is satisfied if n is odd. The

basic idea of the Montgomery reduction algorithm was showed as following.

11



Given an integer a < n, we define it’s n-residue with respect to r as

a ≡ a · r mod n

It is straightforward to show that the set

{i · r mod n|0 ≤ i ≤ n− 1}

is a complete residue system, i.e., it contains all numbers between 0 and n−1. Thus,

there is a one-to-one correspondence between the numbers in the range 0 and n− 1

and the numbers in the above set. The Montgomery reduction algorithm exploits

this property by introducing a much faster multiplication routine which computes

the n-residue of the product of the two integers whose n-residues are given. Given

two n-residues a and b, the Montgomery product is defined as the n-residue

R ≡ a · b · r−1 mod n

where r−1 is the inverse of r modulo n, i.e., it is the number with the property

r−1 · r ≡ 1 mod n.

The resulting number R is indeed the n-residue of the product

R ≡ a · b mod n

since

R ≡ a · b · r−1 mod n

≡ a · r · b · r · r−1 mod n

≡ a · b · r mod n

12



2.2 RSA Algorithm

The pioneering paper by Diffie and Hellman introduced a new approach to cryp-

tography and, in effect, challenged cryptologists to come up with a cryptography

algorithm that met the requirements for public-key systems. One of the first of the

responses to the challenge was developed in 1977 by Ron Rivest, Adi Shamir, and

Len Adleman at MIT and first published [2] in 1978. The Rivesr-Shamir-Adleman

(RSA) scheme has since that time reigned supreme as the most widely accepted and

implemented general-purpose approach to public-key encryption.

2.2.1 RSA Scheme

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers

between 0 and n − 1 for some n which is usually between 512 and 4096. The flow

of RSA is showed as following:

Key Generation

Select p, q p and q both prime, p 6= q

Calculate N and φ(N) N = p× q, φ(N) = (p− 1)(q − 1)

Select integer E gcd(φ(N), E) = 1; 1 < E < φ(N)

Calculate D D ≡ E−1 mod φ(N)

Public key KU = {E, N}

Private key KR = {D, N}

Encryption

Plaintext M M < N

Ciphertext C C = ME mod N

Decryption

13



Ciphertext C C

Plaintext M M = CD mod N = MDE mod N = M mod N

Let p and q be two distinct large random primes. The modulus N is the product

of these two primes: N = pq. Euler’s totient function of N is given by

φ(N) = (p− 1)(q − 1)

Now, select a number 1 < E < φ(N) such that

gcd(φ(N), E) = 1,

and compute D with

D ≡ E−1 mod φ(N).

Here, {E, N} is the public key and {D, N} is the private key. The value of D and

the prime numbers p and q are kept secret. Encryption is performed by computing

C = ME mod N ,

where M is the plaintext such that 0 ≤ M < N . The number C is the ciphertext

from which the plaintext M can be computed using

M = CD mod N .

The correctness of the RSA algorithm follow from Euler’s theorem: Let N and a be

positive, relatively prime integers. Then

aφ(N) ≡ 1 mod N .

14



Since ED is equal to 1 mod φ(N), It meet that ED is equal to 1 + kφ(N) for some

integer k.

CD ≡ (ME)
D

mod N

≡ MED mod N

≡ M1+kφ(N) mod N

≡ M × (Mφ(N))k mod N

≡ M × 1 mod N

2.2.2 Modular Exponentiation

In RSA cryptosystem, the modular exponentiation is the basic operation for encryp-

tion, decryption or signing. The simple and direct way to compute ME mod N is

to multiply M sequentially for E times. Since all the operands in RSA operation

(M, N, E, D) are typically large than 512 bits and it is too hard to store the result

that was computed ME. It is need to find some efficient methods. There are two

common algorithms which can be used: the L-R binary method and the R-L binary

method.

L-R Algorithm

ME mod N ≡ M (en−1×2n−1+...+e1×21+e0×20) mod N

≡ (M e0 × (M e1 × (...× (M en−2 × (M en−1 mod N)2 mod N)2...)2 mod N)2 )mod N

In the L-R algorithm [3] , the square and performed sequentially. It does mean

that both the square and multiply operations can be performed in the same single

15



hardware multiplier, thus saving on area.

LREM{M,E}

{

S = 1

for (i = n− 1 downto 0)

{

S = S2modN

S = S ×M eimodN

}

return S

}

R-L Algorithm

ME mod N ≡ M (en−1×2n−1+...+e1×21+e0×20) mod N

≡ M en−1×2n−1 × (M en−2×2n−2 × (...× (M e1×21 × (M e0×20

mod N)...) mod N) mod N

In the R-L algorithm, the square and multiply operations are independent, and

may be performed in parallel. Thus, 50% less clock cycles are required to complete

the exponentiation. However, two physical hardware multipliers are required to

achieve this speed up.

16



RLEM{M, E}

{

S = 1, P = M

for (i = 0 to n− 1)

{

S = S × P eimodN,P = P 2modN

}

return S

}

2.2.3 Modular Multiplication

Original Montgomery Multiplication

Montgomery’s Algorithm [4] computes the modular multiplication without trial

division. It turns the modular multiplication into iterations of n-bit addition and

shifting and reduces the complexity of modular multiplication to constant time oper-

ations. This is the key point why Montgomery’s algorithm is so popular in hardware

implementation. However, the S, B, and N are n-bit integers, each iteration of the

above procedure needs to accumulate three n-bit integers and divide the result by

2.

Given A = (an−1, an−2, ..., a1, a0) and B = (bn−1, bn−2, ..., b1, b0) are two n-bit

integers, and N is a n-bit prime, where 0 ≤ A,B < N .

17



MM{A,B, N}

{

S = 0

for (i = 0 to n− 1)

{

t0 = (S + aiB) mod 2

S =
(S + aiB + t0N)

2

}

return S

}

There are two n-bit addition in each iteration. The result of above algorithm is

in the range 0 ≤ S < N + B, not in the correct range 0 ≤ S < N . It is needed to

subtract S by N and the result can be expressed as

S or S −N ≡ A×B × 2−n mod N .

18



Chen’s Modified Montgomery Multiplication

CMMM{A,B,N}

{

C = A×B = c2n−12
2n−1 + c2n−22

2n−2 + ... + c12
1 + c02

0

S = 0

for (i = 0 to 2n− 1)

{

t0 = (S + ci) mod 2

S =
(S + ci + t0N)

2

}

return S

}

In order to improve the disadvantage of original Montgomery’s algorithm. Chen

made a new consideration in 1996. The result of Montgomery’s algorithm is in the

range 0 ≤ S < N + B. However, if B = 1, the range becomes 0 ≤ S < N + 1 ≤ N .

S will be equal to N only when A × B is a multiple of N , which is impossible in

RSA scheme. In order to achieve this, the multiplication, A× B, can be computed

before the loop. For hardware implementation with pipeline, modular operation

can work without waiting the final result of A×B. This means that multiplication

and modulus can be work in parallel. The disadvantage of Chen’s algorithm is the

number of iteration that is two times than Montgomery’s. However, there is only

one n-bit addition in each iteration in Chen’s. The result can be expressed as

S ≡ A×B × 2−n mod N. (2.5)

19



Yang’s Modified Montgomery Multiplication

Y MMM{A,B, N}

{

C = A×B = c2n−12
2n−1 + c2n−22

2n−2 + ... + c12
1 + c02

0 = CU × 2n + CL;

(0 ≤ CU , CL < 2n, CL = cn−12
n−1 + cn−22

n−2 + ... + c12
1 + c02

0

S = 0

for (i = 0 to n− 1)

{

t0 = (S + ci) mod 2

S =
(S + ci + t0N)

2

}

S = S + CU

return S

}

In order to reduce the number of the iterations in Chen’s algorithm, Yang [5] pro-

posed a modified algorithm in 1998. This algorithm split the result of A × B into

two parts.

A×B × 2−n mod n ≡ C × 2−n mod n

≡ (c2n−12
2n−1 + c2n−22

2n−2 + ... + c12
1 + c02

0)× 2−n mod n

≡ (CU × 2n + CL)× 2−n mod n

≡ (CU + CL × 2−n) mod n

CU has the same weight as S, it means that CU can be added after the loop. The

result of Yang’s algorithm is expressed as

20



S ≡ A×B × 2−n mod N, 0 ≤ S < 2n + N < 2n+1.

Yang’s algorithm reduces half cycles than Chen’s, and there is only one n-bit addition

in each iteration in Yang’s algorithm.

Proposed Modified Montgomery Multiplication

PMMM{A,B, N}

{

X = 2B, Y = 2B + N

S = 0

for (i = 0 to n)

{

t0 = S mod 2

case (t0, ai)

2′b00 : S = S;

2′b01 : S = S + X;

2′b10 : S = S + N ;

2′b11 : S = S + Y ;

endcase

S =
S

2

}

return S

}

The proposed algorithm is modified with word-base algorithm[6]. After computing

S + B, it is need To determine that add N or not. If it turns B to 2B, the result of

21



S + 2B mod 2 is equal to S mod 2. Equation. 2.5 can be modified as following:

S ≡ A×B × 2−n mod N

≡ A× 2B × 2−(n+1) mod N

It shows that the cost is adding one iteration.

The disadvantage of above algorithm is the same with original Montgomery’s

algorithm. The range of S is not between 0 and N . In order to make proposed

algorithm working correct, there have some conditions to observe.

Given prime N = nt−12
t−1 + nt−22

t−2 + ... + n12
1 + n02

0, nt−1 6= 0;

and the loop input M = mk−12
k−1 + mk−22

k−2 + ... + k12
1 + k02

0;

1. M < 2N

2. N + 2M < 2t + 2k+1 < 2n

3. N + 2−(n−k)2M < 2t + 2−n−k)2k+1 ≤ 2k

=⇒ t = n− 2; k = n− 2;

First, the input M of each iteration would be less and equal to two times N . Second,

there only have n-bit addition. The last means that the output of each iteration

cannot large than the maximal value of M of each iteration.

22



PEM{M, E,N}

{

P = PMMM(M, 22n, N);

S = 1;

for (i = 0 to n− 1)

{

if(ei = 1)

S = PMMM(P, S, N);

else

S = S;

endif

P = PMMM(P, P,N)

}

return S

}

23



Chapter 3

Proposed Reconfigurable RSA
Architecture

3.1 Overview of the Proposed Architecture

In order for the RSA cryptosystem to be considered secure, the key sizes should be

long enough. It is impossible that all data of the key transmit in parallel.

3.1.1 I/O Description

Figure. 3.1 show the input signals and output signals of the proposed architecture.

The clk, reset, enable and in are input signals. The busy, out valid, out enable and

in are output signals. The data bandwidth of the proposed architecture is defined

as 16-bits and the total bandwidth of input signals and output signals is 38-bits.

The I/O pins are described detail as following:

1. clk : This is the input pin of operation clock.

2. reset : This is in order to make initialization in the beginning of the cryptosys-

tem work.

3. enable: This is the control signal to indicate that the data of the in signal is

valid.

24



Figure 3.1: I/O pins of the proposed RSA cryptosystem
.

4. in: This is the data input. There may carry exponent E or D, modulus N,

pre-compute coefficient R2modN and operation mode type on the in signal.

5. busy : When the busy signal is high, it means the RSA cryptosystem is busy

for another process.

6. out enable: When the out enable is high, it meets that the correct output data

has been stored in the memory and ready for loading.

7. out valid : When the out valid is high, there is the correct result in the out

signal.

8. out : The out shows the correct result of the encryption/decryption of RSA.

25



Figure 3.2: Block diagram of proposed RSA cryptosystem
.

3.1.2 Main Modules Description

In order for the less bandwidth, the storage of data and the redundant cycles are

needed. There are five memory block, processing element array, adjustment unit

and 4096-bits FIFO, illustrated in figure. 3.2. The main modules are described

detail as following:

1. Memory Block :

There are five memory block for using. The exponent E or D is stored in

the ”key” memory. The modulus N is stored in the ”N” memory and the

pre-compute coefficient 22nmodN is stored in the ”R2 mod N” memory. The

temporary values M2i
and M j are stored in the ”S” and ”P” memories.

2. PE Array :

The processing element array is composed of 16 level processing elements.

Each processing element has two-stage pipeline, as shown in the figure. 3.3.

26



Figure 3.3: Processing Element used in figure. 3.4
.

There are 16-bits ripple adder and 5 × 16-bits registers in each processing

element. It takes 32 clock cycles to pass the PE array.

3. 224 ∗ 16-bits FIFO :

There are only 16-stages PE array. If the proposed RSA cryptosystem work

with 4096-bits RSA encryption/decryption, it is not enough to store the tem-

porary data. In order to make the proposed RSA cryptosystem work regular

with 4096-bits RSA encryption/decryption, the registers are needed to store

4096− 32 ∗ 16 = 224 ∗ 16 date.

4. Adjustment Adder :

In order to get the correct result, the output of the PE array would be

subtracted by modulus N with adjustment adder in the finish of encryp-

27



Figure 3.4: Processing Element Array and FIFO
.28



tion/decryption.

5. Complete Detector :

It can compute the key length k of E or D and decide the iteration number

of Montgomery modular exponentiation.

29



3.2 Operation Mode Description

When the enable signal turns from low to high, as shown in figure. 3.5, there is

the message of the in signal with reference to mode type. Table. 3.1 indicates that

there have three type of operation and four variety of block length. Three type

of operation, which are encryption/decryption, configuration and result, depend on

the in[5:4] signal. Encryption is the action to convert plaintext to ciphertext, and

decryption is the action to convert ciphertext to plaintext. Configuration is the

action to store the key into the memory. Result is the action to transmit the data

of the memory to the out signal.

Figure 3.5: Load mode type
.

When the out enable signal and out valid signal are both idle and the enable

signal is high, it means that there have no useful plaintext or ciphertext in the

memory and it can work at the Configuration or encryption/decryption mode.

30



Table 3.1: Mode Type

4096 bits 2048 bits 1024 bits 512 bits
(in[3:0]=4’b1000) (in[3:0]=4’b0100) (in[3:0]=4’b0010) (in[3:0]=4’b0001)

En/Decryption
(in[5:4]=2’b00)

(001000)2 (000100)2 (000010)2 (000001)2

Configuration
(in[5:4]=2’b01)

(011000)2 (010100)2 (010010)2 (010001)2

Result
(in[5:4]=2’b10)

(101000)2 (100100)2 (100010)2 (100001)2

Figure 3.6: Configuration completion
.

31



Figure 3.7: Correct output data stored
.

Figure. 3.6 shows the state of configuration completion. When the operation

mode type is Configuration, the busy signal turns from high to low after the enable

signal turning from high to low. In this case, it is ready for the encryption/decryption

mode. The busy signal is still high after the enable signal turning from high to low,

if the RSA cryptosystem works at the encryption/decryption mode.

Figure. 3.7 shows that the out enable signal is asserted and the out valid signal

is idle. That meets that the correct output data has been stored in the memory

and ready for loading. The correct output data is ready for reading until the enable

has been asserted. The Result mode indicates transmitting the correct output data

form the memory block to the output signal, as shown in figure. 3.8. If the data of

the output signal is correct, the out valid signal will be asserted. When the Result

mode is complete, as shown in figure. 3.9, the busy, out valid and out enable signals

will turn from high to low.

32



Figure 3.8: Read correct output data
.

Figure 3.9: Encryption/Decryption finish
.

33



Chapter 4

Implementation

4.1 Implementation with cell base design

The synthesized result is given bellow. The cycle time is set to 2.7ns and the

synthesis standard library is UMC 0.18µm technology. The operation time for en-

cryption/decryption depends on the efficient key length of E 1024. For example, if

E 1024=(0...010001)2=17, the efficient key length of E 1024 is 5, and if E 1024=(010...01)2

=21022 + 1, the efficient key length of E 1024 is 1023. Number of clock cycles for each

modular product is given by

n× (n + 4),

n is encryption/decryption block size.

The operation time for encryption/decryption is given by

2.7× k × n

16
× (

n

16
+ 4) (ns),

k is the efficient key length of E or D.

The data throughput rate is given by

109 × n

2.7× k × n
16
× ( n

16
+ 4)

(bit/sec),

34



Table 4.1: The synthesized results with cell base design

Design Cell base design

Length (bits) (key and text) 512 1024 2048 4096

Technology UMC 0.18µm

Clock frequency 370 MHz

Gate count 175.8k

Baud (kb/s) 314 83 21 5.4

For example, if n=512 and k=17, the data throughput rate is

109 × 512

2.7× 17× 512
16
× (512

16
+ 4)

= 9.7× 106 (bit/sec)

= 9.23 (Mb/s).

If n=512 and k=512, the data throughput rate is

109 × 512

2.7× 512× 512
16
× (512

16
+ 4)

= 321.5× 103 (bit/sec)

= 314 (kb/s).

The proposed RSA cryptosystem was implemented using Verilog. The logic synthesis

is performed with Synopsys Design Aalyzer using UMC 0.18µm CMOS standard-cell

technologies.

35



Table 4.2: The verification results on FPGA

Design FPGA

Length (bits) (key and text) 512 1024 2048 4096

FPGA card iProve xc2v8000

Clock frequency 116.7 MHz

Number of RAMB16s 5

Number of slices 6783

Total equivalent gate count 445,596

Baud (kb/s) 99 26 6.8 1.7

The clock frequency is set to 370MHz and the evaluate gate count is 175.8k. The

detail value is shown as table. 4.1.

4.2 Implementation on FPGA

The verification is given by an integrated FPGA system. The proposed RSA cryp-

tosystem was implemented onto the Xilinx Virtex2: XC2V8000. Table. 4.2 shows

that the synthesis frequency is set to 116.7Mhz and the number of slices is 6783.

36



Chapter 5

Conclusion

An implementation of proposed reconfigurable RSA cryptosystem has been pre-

sented in this paper. It is feasible to complete the 512, 1024, 2048 and 4096-bit

RSA encryption/decryption with the proposed reconfigurable RSA cryptosystem

on FPGA. This uses thirty-four 16-bit ripple adders, two 4096-bit FIFO and five

256*16-bit memory block. There are only 38 bits I/O that are 19 bits input and 19

bits output. The baud rate is 99kb/s for 512-bit, 29kb/s for 1024-bit, 6.8kb/s for

2048-bit and 1.7kb/s for 4096-bit RSA encryption/decryption. The number of slices

is 6783.

Table. 5.1 shows the comparison with other 1024-bit RSA implementations with

cell base design. The gate count without registers of the proposed architecture

is smaller than [7], but the baud rate of the proposed architecture is higher than

[7]. Table. 5.3 shows the comparison with other 1024-bit RSA implementations

on FPGA. Fournaris [8] uses 1024-stages PE to implement the RSA cryptosystem.

The word length of each PE is one bit. Nibouche [9] implements the multipliers

of the RSA cryptosystem with the systolic array. McIvor’s [10] another approach

uses CRT(Chinese Remainder Theorem) to speed up. Tang [11] implement the RSA

cryptosystem with radix-217.

As the table. 5.3 shows, the proposed RSA cryptosystem is small and slow,

37



Table 5.1: Comparison with other 1024-bits implementations with cell base design

Authors Proposed Su [12] Cho [7] Mukaida [13]

Technology (µm) .18 .18 .18 .18

Methodology Reconfigurable Coprocessor not Montgomery CRT and radix232

Clock Frequency 370 83 40 200
(MHz) (synthesis result) (measurement result) (synthesis result) (synthesis result)

Total gate count 175.8k 120k 230k 965k

?Combinational gate count 37.1k 34k 156k 755k

?Register gate count 138.7k 86k 74k 210k

Baud Rate (kb/s) 83 67 78.8 5000

? is indicated that the value is estimated.

but it can work with 512/1024/2048/4096-bit RSA encryption/decryption. For the

application of smart cards, it is a nice choice to reduce area.

38



Table 5.2: Comparison with other 512-bits implementations on FPGA

Authors Proposed Shao [14] Blum [15] McIvor [10] Tang [11]

Platform XC2V8000 XC2V XC2V4000 XC2V6000 XC2V3000

Methodology reconfigurable Booth N.A. CRT radix217

Clock Frequency (MHz) 116.7 100 95 116 99

Total number of slices 6783 N.A. 4440 13910 8235

?Number of slices (w/o registers) 1673 N.A. 1840 N.A. 5163

?Number of slices (registers) 5110 N.A. 2600 N.A. 3072

Baud Rate (kb/s) 99 355 86 887 1680

? is indicated that the value is estimated.

Table 5.3: Comparison with other 1024-bits implementations on FPGA

Authors Proposed Fournaris [8] Nibouche [9] McIvor [10] Tang [11]

Platform XC2V8000 N.A. XC2V8000 XC2V6000 XC2V3000

Methodology reconfigurable n-stage PE systolic CRT radix217

Clock Frequency (MHz) 116.7 129 78 97 90

Total number of slices 6783 7873 19900 26136 14334

?Number of slices (w/o registers) 1673 2241 N.A. N.A. 8190

?Number of slices (registers) 5110 5632 N.A. N.A. 6144

Baud Rate (kb/s) 26 119 148 376 429

? is indicated that the value is estimated.

39



Bibliography

[1] W. Stallings, Cryptography and Network Security: Principles and Practice.

Prentice Hall, 2002.

[2] R. L. Rivest, A. Shamir, and L. M. Adelman, “A method for obtaining digital

signatures and public key cryptosystems,” Communication of the ACM, vol. 21,

no. 2, pp. 120–126, 1978.

[3] K. Koc, “High-speed rsa implementation,” tech. rep., RSA Laboratories, 1994.

[4] P. L. Montgomery, “Modular multiplication without trial division,” Mathemat-

ics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[5] C. C. Yang, T. S. Chang, and C. W. Jen, “A new rsa cryptosystem hardware

design based on montgomerys algorithm,” in IEEE Trans. on Circuits and

Systems - II: Analog and Digital Signal Processing, vol. 45, pp. 908–913, July

1998.

[6] C. H. Wang, C. P. Su, C. T. Huang, and C. W. Wu, “A word-based rsa crypto-

processor with enhanced pipeline performance,” pp. 218–221, Aug 2004.

[7] K. S. Cho, J. H. Ryu, and J. D. Cho, “High-speed modular multiplication

algorithm for rsa cryptosystem,” IEEE Industrial Electronics Society (IECON),

vol. 1, no. 6, pp. 479–483, 2001.

[8] A. P. Fournaris and O. Koufopavlou, “A new rsa encryption architecture and

hardware implementation based on optimized montgomery multiplication,” in

40



proceedings of 2005 IEEE International Symposium on Circuits and Systems

(ISCAS 2005), vol. 5, pp. 4645–4648, May 2005.

[9] O. Nibouche, M. Nibouche, A. Bouridane, and A. Belatreche, “Fast architec-

tures for fpga-based implementation of rsa encryption algorithm,” in Proceed-

ings of the 2003 IEEE International Conference on Field Programmable Tech-

nology (FPT), pp. 271–278, Dec 2004.

[10] C. McIvor, M. McLoone, and J. V. McCanny, “Modified montgomery modular

multiplication and rsa exponentiation techniques,” in IEE Proceedings Com-

puters and Digital Techniques, vol. 151, pp. 402–408, Nov 2004.

[11] S. H. Tang, K. S. Tsui, and P. H. W. Leong, “Modular exponentiation using

parallel multipliers,” in Proceedings of the 2003 IEEE International Conference

on Field Programmable Technology (FPT), pp. 52–59, Dec 2003.

[12] C. P. Su, C. H. Wang, K. L. Cheng, C. T. Huang, and C. W. Wu, “Design and

test of a scalable security processor,” in Proc. Asia and South Pacific Design

Automation Conf. (ASP-DAC), vol. 1, pp. 372–375, Jan 2005.

[13] K. Mukaida, M. Takenaka, N. Torii, and S. Masui, “Design of high-speed and

area-efficient montgomery modular multiplier for rsa algorithm,” IEEE Symp.

VLSI Circuits, pp. 320–323, Jun 2004.

[14] J. Shao and S. Kort, “A high speed 512-bit modular multiplier for a rsa chip,”

IEEE international Northeast Workshop on Circuits and Systems (NEWCAS),

pp. 237–240, Jun 2004.

[15] T. Blum and C. Paar, “Montgomery modular exponentiation on reconfigurable

hardware,” in Proc. 14th IEEE Symposium on Computer Arithmetic (ARITH-

14), pp. 70–77, 1999.

41



 
 

- 42 - 

作者簡介 

姓名: 陳允律 

出生: 台北縣 

 

學歷 : 安坑國小  竹林中學  師大附中 

      85.9 ~ 89.6 國立中央大學電機工程學系  

      92.9 ~ 95.7 國立交通大學 電子研究所 (oasis lab) 

 


