e st sl E Pl kAL §

A 16-bit AS-DSP for Forward Error Correction

Applications

P EARAY eS8

B WHF{ L]0 gk

>

?I(‘ %u@—%
A 16-bit AS-DSP for Forward Error Correction
Applications
F= ;L" gt

Student : Tien-Yuan Hsiao

Advisor : Hsie-Chia Chang

B ZuRgil ~ F
T IEE LR FRT A
A

A Thesis
Submitted to Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Electronics Engineering

July 2005

Hsinchu, Taiwan, Republic of China

PEARA e &Y

Bt XHEFLLBN6 AR AT TR

A Vil R EHE L

&

A v Ao AWK - BRI T HEFL LB 16 AR FiEt
JJZE o Y RSE B i B4 £ ¥ g SRl i Peehd Ao AR eh ko] o SRR L
WHEOFARS G A e BT8R AR TR 2O 5 P E Y e R
i B o i % 0.18um 1P6M WAZF i ¥ 0 139.4K B BHER > & & e) 9 5 7.73mm?
He & 77 18k oazelity e afE2 4097 2 4 fr convolutional codes P¥ e + #
Fop4s s 141mW e fod i 4Rt R { T R F1K 3 lic R BLASE Bt lrAs R 0 Bfe
A G L 50% 0 AFALAE FH A T 66Y%

A 16-bit Digital Signal Processor for FEC Applications

Student : Tein-Yuan Hsiao Advisor : Dr. Hsie-Chia Chang

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

In this thesis, an application specific .digital signal processor (AS-DSP) for channel
coding is presented. The proposed AS-DSP features vector operations, which can improve
both the performance of memory“accesses and program code density. The special function
units and datapaths for channel decoding accelerate the decoding speed and facilitate
algorithm implementation. The processor had been fabricated in a 0.18um CMOS 1P6M
technology. The gate count after synthesis is 139.4k and the chip size is 7.73mm? including
18k bits embedded memory. The power consumption is 141mW while decoding
Reed-Solomon code and convolutional code. In contrast with general purpose processor
designs, the results show this chip has at least 50% improvement in code density and 66%

data rate enhancement.

N2
=

&

I:B-Emiﬁ—l i;}’_‘;%_._—r,,“T,:m@) s

LEBGER AR o d X FRES S o F
3T

R SE A i“&@ﬁ%%ﬁ%ﬁ%ﬁJ
o A pEPFRASIERSFYE S e 8
RS BY o2 i1 rmﬁﬂiﬁ—zd o F b Ay BRI KR T Y A
AR e R OE BAFTARAG AR LR R Bt FA S F
PomEARF RS S AHARRMHREFFE - AP TERY T REFE RET S
Bk Bfd ARPEHAET BRBEIFFADFAACN 2 0 FARF| R A

Contents

CHAPTER L INTRODU CT ION oo 1
1.1 MOTIVATION ...ttt e e e e e ettt e aee e e e e e e te e aaeeeeeee et aaaanaaaseeeseeesnnnaaaseeeaanes 1
1.2 THESIS ORGANIZATION ...ttt et e e e et e e e e e e e e e e e e e e eeaaaeeenenaaeeeeaaaeeeennaaeeennns 3

CHAPTER 2 OVERVIEW OF FORWARD ERROR CORRECTIONccccooieieiiae 4
2.1 INTRODUCTION TO CONVOLUTIONAL CODEu ettt e eeeeeeeeeeeeeeeeenn 4

2.1.1 Convolutional Code ENCOOBI . ..o i ettt e e e e e e e e e e eaaaa 5
2.1.2 Convolutional Code DECOTET b et ee e e e e e e 6
2.2 INTRODUCTION TO REED-SOLOMON CODE......uuueeeeeeeeeiiieeeeeeeeeeeeeeeeeeeeeeeeeeennnaeneees 8
2.2.1 Reed-Solomon COUe ENCOUBYeeeeee et 9
2.2.2 Reed-SolomMON COUE DECOUETeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeennennenees 10
2.2.3 Montgomery Multiplication Algorithm..........cccccoeoiieii e, 13

CHAPTER 3 PROPOSED AS-DSPARCHITECTUREco oot 17

3.1 6-STAGED PIPELINE ARCHITECTURE ...ceuuteeteee e et e e e e e eeeeeeeeeeeaeeeeeeaeeeeeenaaeeenennns 17
Instruction Cache (I-CaChe)cooiiiiiiii e 20
Serial Peripheral INterface (SPI)ocvcii ot 22

3.2 INSTRUCTION SET & REGISTER FILE......iiiitttttieeeeee et e e 23

33 FUNCTION UNITS ittt ettt e e e et e e te e e e e e e e s e ae e et e et e s eaneeennesennas 28
3.31 A S ettt annttttttnnnntnnnrnnnn 28

3.3.2 Finite field MUIIPHEr.......c.oooiieeee e 30

34 VECTOR INSTRUCTIONS ...ccoutvieiiieeeireeeieeesireesseeessseeessseesssseesssseesnssesssseesnssesssseessnnes 31
34.1 Vector instruction for general applications.............cccocveveiieiiicve e 31
3.4.2 Vector instruction for FEC appliCations..........c.ccocviiiiiiiinenene s 34

CHAPTER 4 CHIP IMPLEMENTATION & FEC APPLICATIONScccoviiieiieienenn 40

4.1 VITERBI DECODING USING AS-DISP ...ttt 41
4.1.1 Some details in Viterbi decodingcccoovvevveieiiiii e 41
4.1.2 Decoding procedure and data rate for Viterbi decoding..........c.ccocvvviveiinrnenn 43

4.2 RS DECODING USING AS-DSP ..ottt e e e e e 45

4.3 CHIP SPECIFICATIONutteiuteeesuteeenuseeensseessseessseesssseesseeesssesessseesnssesssssessnssesssseessssees 48

4.4 COMPARISON WITH OTHER SIMILAR WORKvvvieeeiiieeeeeirieeeenirreeeeseereeeesnseeeesnnnees 50

CHAPTER 5 CONCLUSION AND FUTURE WORKcccoiiiiiiiieeee e 52
5.1 CONCLUSION ..eeivvvee s foteeee b b oiae e e e thaab e sseeeeassseeeesnsseeeesssnsaeesassssesessssssesssnssens 52
5.2 FUTURE WORK ..ot ittt i i e e iteeeieeeseteeeseteeeeaeeensaaeensaeesnsaeesnneeennnes 52

BIBLIOGRAPHY ...ttt sttt sttt et e st et e tesnaesneenteeneesreeseaneens 53

PUBLISHED PAPER ...ttt 56

il

List of Figures

F1G. 1.1: LAYERS OF PROCESSING IN THE FEC FROM ITU-T J.83B SPEC.cceeveeviieeeeiieee e, 1
FIGURE 2.1 : ENCODING PROCEDURE OF DVB-T......ooiiiiiiiiiiiiiieeeee e 4
FIGURE 2.2 (A): (2, 1, 2) CONVOLUTIONAL CODE ENCODER.0cceiiuieeiiieeenieeenireeeneeesseeesseeennns 5
(B): FINITE STATE MACHINE OF (A).1eetutteietteeiuieesiuteeeneteesstteesseeesseeessseeessseeenssesssssesssssessssessssseesnns 5
FIGURE 2.3 : TRELLIS DIAGRAM OF (2, 1, 2) CONVOLUTIONAL CODE ENCODER..........cccc0eerreenne. 6
FIGURE 2.4: TRELLIS DIAGRAM AND DECISION BITS OF (2, 1, 2) CONVOLUTIONAL CODE.............. 7
FIGURE 2.5: TRACE BACK OPERATION.AND DECODED BITS.......ccccvtteeeiiiieeeneiieeeenireeeesnenreeeennnnns 8
FIGURE 2.6: ENCODER OF REED-SOLOMON-CODES...... 00 cuveeeiteeeniieeeireeeereesnsreesssseessseeessseeenns 10
FIGURE 2.7: DECODING FLOW OF REED=SOLOMON CODES........ccccuvtieeruiiieeesireeeeesraeeeessssneeeennes 11
FIGURE 3.1: BLOCK DIAGRAM OF AS-DSP.....ccctiiiiiiiiiicceeee et 18
FIGURE 3.2: PIPELINE STRUCTURE OF AS-DSP.ooiiiiiiiiiiie ettt 19
FIGURE 3.3: PIPELINE FORWARDING OF AS-DSP.......oooiiiiiiiiiiiiiee e 20
FIGURE 3.4: STRUCTURE OF I-CACHE. ...cuutttiieeiiiieeeeiiieeeeeiteeeeeiveeeeeaaeeesssveaeesnsaaeessnssneeeennes 21
FIGURE 3.5: BLOCK DIAGRAM OF SPL.ooiiiiiiiiiiiee ettt 22
FIGURE 3.6: TRANSITION OF CONVOLUTION CODE.uvtieiiiiireeeiireeeeeerreeeenssseeesssssseeesssssseessnnes 29
FIGURE 3.7: THE FUNCTION UNIT ACS. ..oiiitiiiiiiieeiie ettt esieeeeteeesiteeeiveeeiveesaaeesnsneesnneeesnsaeens 29
FIGURE 3.8 (A): BLOCK DIAGRAM OF FINITE FIELD MULTIPLIERS.ccuvteeitiieetieeerreeereeeeveeenns 30
FIGURE 3.9: BLOCK DIAGRAM OF VECTOR OPERATIONS.uuvieiiieeeriieeeiieeeireeenreennneesneeessseeens 32
FIGURE 3.10: BLOCK DIAGRAM OF DMAL. ...ooiiiiiiiiieiiie ettt et e e vae e s eaaee e 34
FIGURE 3.11: ENCODER OF 64 STATE CONVOLUTION CODE.cuteeiiteeireeenireeenreesnreesneeesssneenns 35

il

FIGURE 3.12: ARCHITECTURE OF BM-LUT. ..ot eeeeeaeeeeeen 35

FIGURE 3.13: ACS VECTOR OPERATIONS DIAGRAM.uuvieiuiieereieeenireeeireeeereesnnseessneessseeessseeens 36
FIGURE 3.14: ARCHITECTURE OF VECTOR ACS INSTRUCTION.......cueteerurrreeesereeeeannrreeeennnneeeennns 37
FIGURE 3.15: DATAPATH OF FMUL WHEN CALCULATING SYNDROME.cccuvttiiuieeniieenrieenneeenns 39
FIGURE 4.1: DESIGN FLOW CHART.......ceeetittteeeeiurieeeesirreeeessseeeesssssseesssssseesessssesssssssssesssssseesssnes 40
FIGURE 4.2: THE SURVIVAL PATH OF CONVOLUTIONAL CODES.....cccccvtteriteerireeerireennreenneeensseeenns 42
FIGURE 4.3: THE IDEAL OF MODULO NORMALIZATION.cccuvtteeeiuiieeeennieeeeennreeeessnsneeesssnsneeesnnes 42
FIGURE 4.4: DATA RATE OF (255,239)RS ON BPSK CHANNEL.ooiiiiiiiiiiieniiiieeniceeeeeen 48
FIGURE 4.5: THE MICROPHOTO OF THE CHIP.uuvvtieeeivieeeesieeeeeestreeesensseeesssseeeesssssseesssssseesannes 50

v

List of Tables

TABLE 1.1: DIFFERENCE OF FEC SPECIFICATION BETWEEN 3GPP AND 3GPP2 STANDARDS. 2
TABLE 3.1 SIMULATION RESULT OF [-CACHE.ccccvtiiiiieiiieeeiieeeieeeieeeiveeeivee e e siaeesnee e 21
TABLE 3.2 INSTRUCTION SET OF AS-DSP ..ottt 23
TABLE 3.3 GENERAL PURPOSED REGISTERS OF AS DSPooiiiiiiiieieeeeeeeeeee e 25
TABLE 3.4 SPECIAL PURPOSED REGISTERS OF AS DSP ...cociiiiiiiiiieeceeeee 26
TABLE 3.5 FUNCTIONALITY OF SPR RA7 ..oooiiiiiiieee ettt 27
TABLE 3.6 VIRTUAL REGISTERS OF AS-DSPooiiiiiiiiie ettt 28
TABLE 3.7 EXAMPLES OF VECTOR INSTRUCTION FOR‘GENERAL APPLICATION.ccvvuveerrreennne 31
TABLE 3.8 CYCLES OF CALCULATING . SYNDROMEWITH AND WITHOUT DMAccccvvveenee. 33
TABLE 4.1 THE LIST OF INITIALIZATION 6% evurssessnsenss e+ s 4s¥eessveesnseesssseeessseesssneessssesssssesssssesssseesnnses 43
TABLE 4.2 THE COEFFICIENT OF VITERBEDECODING.ccceeiiurieeeeirreeeeeinrreeeesnreeeeannnreeesnnnnes 44

TABLE 4.3 OPERATION CYCLES AND DATA RATE AT DIFFERENT STATE NUMBERS FOR

CONVOLUTIONAL CODE (L=3). woiiiiiiieiie ettt e e e e e ane e 45
TABLE 4.4 THE LIST OF INITIALIZATION. ...eetttuuuueeeeeeeeetuunneeeeseeeeeeennnneaeeseeseerennnnaeesssesssennnnnneneess 46
TABLE 4.5 THE COEFFICIENT OF VITERBI DECODING.ueetttueeeeteeeeeeeeaeeeeeeaeseeeeaeseeeeaeeeennnaaeees 46

TABLE 4.6 OPERATION CYCLES AND DATA RATE AT DIFFERENT ERROR NUMBER FOR (255, 239)RS

(L3 ettt ettt ettt e e be e aa e et e e etaeebe e rbeenraeeaaeenreenns 47
TABLE 4.7 OPERATION CYCLES FOR EACH STEPS WHEN ERROR NUMBER =8...........ccccevuvvereennnnen. 48
TABLE 4.8 SUMMARY OF THE CHIP.ccecuvtteeeiutieeeeireeeeeearseeesssseeesssssseeesssssseesssssseesssssssesssssssees 49
TABLE 4.9 VITERBI PERFORMANCE COMPARES WITH TMS320C FAMILY.ccceeiuvieeeerieeeennen. 51
TABLE 4.10 PERFORMANCE OF SYNDROME CALCULATION COMPARES WITH TMS320C64X...... 51

Chapter 1
Introduction

1.1 Motivation

Forward error correction (FEC) is preservative in many digital communication and
storage systems for its feasibility between performance and complexity. FEC can be separated
as four parts at many applications: randomization, Reed-Solomon (RS) coding, interleaving,
and trellis (convolutional) coding..For example, the FEC in ITU-T J.83 annex B is

demonstrated in Figure 1.1. [1]

Reed- .
. Trellis
— Solomon » Interleaver » Randomizer >
encoder
encoder
Channel
. . Reed-
Viterbi . .
S — - De-randomizer |« De-interleaver |« Solomon 4—‘
decoder
decoder

Fig. 1.1: Layers of processing in the FEC from ITU-T J.83B Spec.

As listed in Table 1.1, many coding schemes have developed for different systems
according to their essentials and channel characteristics. FEC can recover data from non-ideal
channel effects such as thermal noise, interference, and fading. The performance strongly

depends on the minimum free distance which is proportional to codeword length.

Table 1.1: Difference of FEC specification between 3GPP and 3GPP2 standards.

Applications Coding Schemes Max Data Rate
(Mbpl/s)

3GPP2 Convolution code and turbo code 1,3.1

DVB-T Convolution code and Reed-Solomon code 28

ITU-T J.83 Cable Modem | Convolution code and Reed-Solomon code 8

IEEE 802.11g WLAN Convolution code >4

DVD Reed-Solomon product code 4

For maximum likelihood decoding, the complex algorithm requires massive
computations and a large volume of memory accesses. The sub-optimal solutions are also
computationally intensive. Hence most of thé systems prefer dedicated hardware solution in

terms of cost, power consumption‘and decoding speed.

For different applications, EEC can be implemented by ASIC chips, reconfigurable ASIC
chips, application specific digital signal processors (AS-DSP) and general purpose processors.
ASIC chips have to be redesigned for different specification, which takes time and design
effort. General purpose processors can realize various codes by software programming but

will be uneconomic in power consumption and cost, especially for the wearable devices.

A 16-bit AS-DSP is proposed here to provide a good tradeoff among flexibility, decoding
speed and cost. Due to the special function units (FUs) and datapaths that accelerate most
critical computations, most code designs can be implemented with better performance. The
memory organization is also optimized to increase the bandwidth efficiency through vector
operations which take advantages of the data locality. Optimizing the critical part in
computations and memory accesses, the overall decoding speed can be enhanced with

reasonable cost and power dissipation.

1.2 Thesis Organization

The thesis will be organized as follows. In chapter 2, the algorithms of FEC are
introduced including convolutional codes and Reed-Solomon codes. Chapter 3 discusses the
proposed AS-DSP including the instruction set and the hardware architecture. Chapter 4
details the applications of FEC decoding by proposed AS-DSP. The specifications of our
implemented chip and comparisons with other similar works are also provided here. Finally,

conclusion and future work are made in chapter 5.

Chapter 2
Overview of Forward Error Correction

As mentioned in Figure 1.1, randomization and interleaving can be regarded as
exchanging the data address. Figure 2.1 demonstrates the encoding flow of DVB-T, the
encoding procedure also contains RS code and convolutional code. So the proposed AS-DSP
concentrates at the RS coding and trellis coding parts. This chapter introduces the encoder and

decoder for RS codes and convolutional codes.

MUX
Adaptation, _ Outer 2 Outer _ Inner
Energy “| Encoder | Interleaver “| Encoder
Dispersal Channel
Scrambler (204,188) (12,17) Convolutional code

+
Puncuring

RS code Interleaver

Figure 2.1 *Encoding procedure of DVB-T.

2.1 Introduction to Convolutional Code

An (N, K, M) convolutional code encodes K-bit message and outputs N-bit encoded data.
It contains M bits memory and has K/N code rate. The Viterbi algorithm is a straightforward
implementation of maximum likelihood (ML) decoding and is the most powerful and popular
algorithm for decoding convolutional codes [2] [3]. For instance, the data of IEEE 802.11a
has to be coded with a convolutional encoder of code rate 1/2, 2/3, or 3/4 corresponding to the
desired data rate. The encoder has generator polynomials go(x) = 1335 and g;(x) = 171g, of

rate 1/2. Higher rates are drive from it by employing “puncturing”. Puncturing is a procedure

for omitting some of the encoded data bits in the transmitter (thus increasing the coding rate)
and inserting a dummy bit into the convolutional decoder on the receive side. Therefore, we

concentrate at the 1/2 code rate of convolutional code.

2.1.1 Convolutional Code Encoder

An example of (2, 1, 2) convolutional code is illustrated in Figure 2.2 (a). The generator
polynomials go(x) = 111, and g;(x) = 101,. The convolutional encoder can be considered as a

finite state machine (FSM) which has 2™ states.

Output
{} Data A
Input - \\.
Data .
1/01
3 input data,
Output £ 0—
Data B (a) (b)

Figure 2.2 (a): (2,1, 2) convolutional code encoder.

(b): Finite state machine of (a).

Since the convolutional encoder is a FSM, Figure 2.2 (b) demonstrates the state diagram
of Figure 2.2 (a). To encode input data, the convolutional encoder should be initialized with
all-zero state by initializing the memory as zero. Then the state of Figure 2.2 (b) starts at state
“00”. If the input data is 1, the next state will be “10” and the encoder outputs two bit (data A
and data B) encoded data “11”. If the input data is 0, the next state will be “00” and the
encoder outputs encoded data “00”. The encoding procedure with time indexes can be
represented as trellis diagram. Figure 2.3 shows the trellis diagram of the encoder in Figure

2.2.

008<— — —-@— —> — >0 >
~ ~ ~ ~ A S ~
s _ 11~ M~ _ 11~ s hNR
\\ \\ ~ ~ 1 ~ 1 N
4 4 l 4 1 4 4
100 01 01 01 01 .01 e
D D 2V N 27V R N ,
\ \ ' \ 7 7 \ 7
N\ ~ ~ Pre 3
\
010 . 00 00 “00 N
0, 10, - 10, 100 \
1))) N |/ i
, y 9 \ \'
1 o of T o T o T T T o
t=0 t=1 t=2 t=3 t=4 t=5 t=6

Figure 2.3 : Trellis diagram of (2, 1, 2) convolutional code encoder.

2.1.2 Convolutional Code Decoden::, .

At each time index, the decoder compljltesrand :éqmpares the metrics of all branches that
entering the state. The branch Wiﬂ’l the mmlmum meitric and its corresponding decision bit
will be preserved and others w111 be ellmlnatedThe history record of the decision bits is
called survivor. According to the minimum path metric (PM) at each time index, the
maximum likelihood sequence can be estimated. The steps of Viterbi algorithm can be

expressed as follow:

1. Calculate the branch metrics between each state according to the received data.

2. Sum the previous PM (I") and corresponding branch metrics (A) then compare the
new PM with another that converges to the same state. The summation which has the
smallest distance is updated as the new PM and the decision bit of selecting PM is
stored into survivor memory. The operations above are called add-compare-select

(ACS).

3. Decode the message sequence according to the minimum PM and the survivor

memory (find the ML path).

In practice, the register exchange (RE) approach and trace back (TB) approach are useful
methods for survivor path storage management in Viterbi decoder architecture. The RE costs
great area and power dissipation but has less operation time. The TB approach is more
suitable for DSP applications although it has the lower operation speed.

The TB approach is a technique to trace the maximum likelihood sequence in the
survivor memory. The convolutional code in Figure 2.2 is taken as an example. The trellis
diagram and decision bit of each state is shown in Figure 2.4. In this figure, the point
represents one state and the dotted line shows the eliminated path. At each state, if the ACS
selects the upper sum (path), the decision bit will be “0”. Otherwise, if the ACS selects the

lower sum (path), the decision bit will be “1”".

Soo @ 72 =0
. f
So1 . 1 r=3
':'.\‘/. 1
oS >, ‘\‘\‘0
Sio 2@ =2
4 4
S, @ & —@ I'=3
1 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 1 0 0 1 1
0 1 0 0 1 1 1

Figure 2.4: Trellis diagram and decision bits of (2, 1, 2) convolutional code.

The path metrics accumulate in every time index and the minimum one indicates the
maximum likely state. The corresponding sequence is the maximum likelihood sequence. The

TB operation starts from the state of minimum PM and updates the state by shifting the state

left and replacing the Isb by the chosen decision bit. The TB operation of Figure 2.4 is
demonstrated in Figure 2.5 and the decoded bits are the decision bit selected during TB

operation.

1 0 0 0 0 1 1
0 0 0 0 0 1 1
0 0 1 0 0 1 1
0 T 0 0 1 1 1

Figure 2.5: Trace back-operation and decoded bits.

Due to the supporting stage is quite large (up to 512 states) and TB approach has less
address calculations, our proposed AS-DSP adopts the TB approach to increase the decoding

performance.

2.2 Introduction to Reed-Solomon Code

RS codes are adopted in many communication and storage systems applications such as
digital TV system, cable modem, compact disk (CD), and digital versatile disk (DVD).
Reed-Solomon (RS) codes have been widely used for error control due to its superior
capability for bust error correction, the feasibility for VLSI implementation and the lower

redundancy comparing with other FEC codes. A (N, K) RS code over GF(2™) contains N

8

symbols of codeword with K message symbols. The maximum correctable error number is t,

t= L(N -K)/ ZJ. The operations of RS codes are constructed by multiplication (FFM) and

finite field addition (FFA) over GF(2™). FFM takes many operation cycles in traditional DSP.

2.2.1 Reed-Solomon Code Encoder

The message polynomial of RS has K symbols (M, _;,M,_,,---,M) and is expressed as

follow:
M(X):MK_IXK"+MK_2XK‘2+---+ M, 2.1

Let o be a primitive element in GF(2™). The generator polynomial g(X) of a

*' as all its roots. It has degree of 2t and can be

t-error-correcting RS code has «a.,a’, -, «
represented as follows:
g =X+ @)X+ a*) =(x+a’)
(2.2)
= (o F O Xt -+ Oop Xy T Xy
Since ar,a’,-+-,a* are roots of X%'—1,=2" and g(x) divides X%"' —1. Therefore,
g(X) generates a Q-array cyclic code of length N =q-1 with exactly 2t parity-check
symbols. The encode process multiplies M(x) and X* then divides the product by the
generator polynomial to obtain a remainder polynomial r(x):
M (X)x* = q(x)g(x)+r(x) (2.3)
Where

r(X)=r, X7 +1, X7 + o+, (2.4)

The codeword polynomial C(x) with systematic form is:

C(X) =M X)X +r(x) 05

K+2t-1 2t 2t-1
=M, X +o+MXT 0 X7 T

The encoding of RS can be implemented by a systematic feedback shift register encoder

as shown in Figure 2.6.

First K cycles ticks to closed

Last N-K cycles ticks to open

Y

9 9, 9, Oss 95t

Input
Message

§< Output

Codeword

First K cycles ticks down

Last N-K cycles ticks up

Figure 2.6: Encoder of Reed-Solomon codes.

2.2.2 Reed-Solomon Code Decoder

Assume the received polynemial is R(X) and the-corresponding error polynomial is e(x).
After translating, the received polynomialis;
R(X) = c(X)+e(X) (2.6)
The error polynomial is:

e(x) =R(X)—-c(x)
_ _ _ 2.7
=ex"+e, x> +---+ex",0<v<t,0<j <), <<), <n-1

where e ,e,,---,, are error values and X*,x*”,.--,x! are the error locations. Hence, we

need to know the error locations X’ and the error values € to determine e(x).

The RS decoder can be separated into four parts as shown in Figure 2.7:
1. Syndrome calculator
2. Key equation solver

3. Chien search

4. Error value evaluator

10

The syndrome calculator calculates the syndrome S;~S;; from received polynomial. The
key equation solver generates the error locator polynomial o(X) and error value evaluator
polynomial Q(X) from syndrome. The error locations and error values are produced by
Chien search and error value evaluator. We accelerate these operations by the vector
instruction rssyn in AD-DSP since the syndrome calculator and Chien search operate

regularly and determine the decoding speed. This will be discussed later.

FIFO (Delay Buffers)

G (X)
———»{ Chien Search
RO\, |Syndrome S| _ K&Y _ |
Calculator ' g | Q(x) Data
OWVeT 3 Error Value Evaluator

Figure 2.7::'Decodingflow of Reed-Solomon codes.

With S, =R(a') for 1<i<2t and R(X)=c(X)+e(X), the syndrome can be represented

as:
S, =R(a)=¢e(a)=¢a’ +e,a"” +---+e,a"

S, =R(@*) =e(a’)=ea’ +e,a’" +---+g,a’*

(2.8)
S, =R(@")=e(a™)=ea™ +e,a™" +---+e,a™
Then the syndrome polynomial is:
S(X)=S,+S,X+-+-+ S, x*" (2.9)

After syndrome calculator, the key equation solver has to find out the error locator

polynomial o(X) and error evaluator polynomial Q(X).The key equation is defined as:

11

Q(x) = S(X)o(X) mod x™ (2.10)
The key equation can be solved by Euclidean algorithm [4] and Berlekamp-Massey
algorithm [5]. The Euclidean algorithm requires many finite field divisions, leading to the
reducing of decoding speed. Since the Euclidean algorithm makes the programming more
difficult than BM algorithm does, the BM algorithm has been chosen to implement the RS
decoder by AS-DSP.
The inversionless Berlekamp-Massey algorithm [6] without erasure locator calculator
which has 2t iterations is shown as follow:
Initialization:
APX)=LAPX)=L1=0k=1y=1 (2. 11)

Computation:

for(k =LK <2t;k++){

AP ()= xAY(X)

|
& ZA,-“’)Sk-;

o
AC© =AU + AP (X)
If (5=0and 2l <k-1){ (2. 12)
AYX)=APX),I=k-1,y=5
}
A (x)=A"(x)
}

The element ¢ is the discrepancy which is the convolution of syndrome polynomial
and error locator polynomial. The dummy discrepancy y keeps the value of previous
non-zero discrepancy. The discrepancy is used to verify that the linear feedback shift
register generates corresponding syndrome sequence at each step. If the discrepancy is equal
to zero, the error locator polynomial and the dummy discrepancy remain.

After the computation above, the polynomial A'®(x) is equal to o(X). The Chien search

12

can find out the roots of o(X) which are the error location numbers.

The methodology of Chien search is substitution of error locator polynomial with finite

field elements to find out the roots of o(X).

k=0
if (o(a™) == 0){
_ (2. 13)
po=a' k++
b
According to the Forney algorithm [7], the error value &, atlocation S, 1is given by
_ -1
O = —Q(ﬁ_ﬂ) (2. 14)
o (B)
Where
. d d
X) = —0(X) = — 1- X
o (X) dXO-() dxl;[(£ix)
; . (2. 15)
=2 A [[a=6%
=1 izl
And
Q(x) =S, +(S,#6,SPX+(S; +7,S, +7,5,)X° 2. 16)

+-+(S,+0,S, ++0o, S)x""

2.2.3 Montgomery Multiplication Algorithm

An element of the field GF(p™) with a prime p can be interpreted as the polynomial
representation. The polynomial multiplication in GF(p™) corresponds to the multiplication
of polynomials modulo an irreducible polynomial of degree m. Suppose A and B are two
elements in GF(p™), and u(x) is the corresponding irreducible polynomial of degree m. By the
polynomial representation, the multiplicative operation C=AB can be expressed as follows:

C(xX) = A(X)B(x)mod x(x) (2.17)

Where C is also an element of GF(p™).

13

Actually, the finite field addition and subtraction are just XOR operations. Therefore,
what we interest is the multiplication and division (or say, the inverse operation) in finite field.
According to the modulo operations in (2.17), we can adopt Montgomery multiplication
algorithm to calculate the product C(x). The Montgomery multiplication algorithm has been
proven that this algorithm can replace the modular operation with a series multiplication.

The following equation defines the Montgomery product of A and B:
C(x) = AX)B(X)R*(X) mod z(x) (2. 18)

The polynomial R’(x) here is a fixed element of GF(p™) satisfying R(x)R’(x) =1 mod p(x)

while R(x)=x". Note that R(x) and pu(x) must be mutually prime. It has been proven by [8]

that the result é(x) of (2.18) can be obtained by following equations:
Q(x)= ABYB(X) 2 (X) - mod R(x) (2.19)

C(x) = FAQIBOO+ Q) 1)1/ R(X) (2.20)

The polynomial],t*(X) in (2.19) is defined as u(x)p*(x)Zl mod R(x). As compared with
(2.18), it is evident that modulo p(x) operation is replaced by modulo R(x) and division by
R(x) operations. Since R(x)=x", implementation of (2.19) and (2.20) are much easier than that
of (2.18). Furthermore, as A is interpreted in polynomial form and R"(x)= x ™ mod p(x), (2.18)

can be rewritten as:

C(x) =[a,,BO)X ' mod u(x)]+[a, ,B(X)X* mod (x)]

m 2.21)
+...+[a,B(X)Xx™" mod x(X)]
Rearrange this equation, an iterative representation comes out:
C00=1a,,B00+1.1a,BOO+ (3,800 mod w0l

mod z(x)]...]x~ mod z(X)
Based on this equation and the transformation from (2.20) to (2.22), the Montgomery

14

multiplication algorithm is derived as:

Montgomery multiplication algorithm

So(x) =0;
for(i=0;1 <m;i++){
£ () = [(S;(x) +aB0)) (x)]mod x;
S (X) =[S;(X) +aB(X) + p; (X) (X)]/ X; (2.23)
h
C(x) = S, (%);

The term p'(x) is the multiplicative inverse of u(x) under modulo x multiplication.

In GF(2™), elements are often represented. in binary digits, and the coefficients a; are
referred to the bits of A. The binary representation will cause some reductions to Montgomery
multiplication algorithm. Since i(x). is irreducible, the results of p(x) mod x and p (x) mod x
are both equal to 1. The p'(x) term in ithe Montgomery multiplication algorithm can be
eliminated, which leads pi(x) to equal the least significant bit of the sum S;(x)+ a;B(x).

The number of recursive operation in Montgomery multiplication depends on the field
degree m. However, some modification can be proposed to remove the effect of unexpected
variable m. In equation (2.19) and (2.20), R(x) is modified to be Ry(x)=x’, and d is a
constant integer such that d=m. Since the result of R 4(x) mod w(x) is an element of GF(p™),
there exists an element R'y(x) in the field GF(p™) that satisfies Rg(x)R a(x)=1 mod x.
Therefore, the modified Montgomery multiplication (MM) algorithm for GF(2™) with m=d is

constructed:

Modified Montgomery multiplication algorithm

15

MM (A(x), B(X), £(X)){
SO(X) =0,
for(i=0;i <d;i++){
if (1>m) a, =0
T(X) =S;(x) +aB(x); (2. 24)
Sia () =[T(X)+t,u(X)]/ X
}
C(x) =S4 (X);
}

The term ty is the least significant bit of the temporal element T(x). If the field degree is
less than d, the most significant bits of A is set to zero .The final result will be multiplying the
normal finite field product A(x)B(x), by a constant element R 4(x) of GF(2™). The output of
Montgomery multiplier involves a cohstant factor. R 4(x) mod p(x) with the standard product.
Such constant factor can be canceled by applying one additional Montgomery multiplier.

Calculation of the product C(x)=A(x)B(X) can be expressed as:

K(x) = x*® mod z(X) (2. 25)
C(x) = MM (A(X), B(X), (X)) (2. 26)
C(x) = MM (C(x), K(X), (X)) 2.27)

where K(x) is treated as a constant value for a given p(x).

16

Chapter 3
Proposed AS-DSP Architecture

Since the channel decoding algorithms induce large memory bandwidth requirement and
many computationally intensive operations, they become the critical parts of system
throughput in general digital signal processors (DSPs). The operations such as finite field
multiplication (FFM) and finite field inversion (FFI) also require many instruction cycles for
conventional DSPs. Besides, the complex datapaths and data control degrade the performance
and make programming of channel decoding more difficult. Special FUs are used in the
proposed architecture to accelerate the decoding- speed. The decoding algorithm can be
efficiently implemented with higher throughput and, less program size as a result of the
proposed datapaths and data flow contrel—Moreover, the programs written in vector
instructions are suitable for almost specifications. for the same decoding scheme by adjusting

the coefficients. Thus, programming in vector instructions is efficient and reusable.

3.1 6-Staged Pipeline Architecture

Figure 3.1 shows the block diagram of the processor. System controller manages the
pipeline flow, FUs and access of internal memories (i-RAM). The power saving controller,
power unit, is also designed to reduce power consumption by means of closing components
without operation. The external memories including program memory and data memory are
controlled by instruction cache (I-cache) and memory management unit (MMU), respectively.
Note that a direct memory access (DMA) controller is used to improve the performance of

data memory. Furthermore, considering the link with other devices, we added a serial

17

peripheral interface (SPI) as a serial interface connecting to external serial bus. The hardware

architecture will be introduced in this section.

| i-RAM |
. I
I Bank(Bank1 Bank2 Bank?3 FUHCI:IOH SyStem I
| Units Controller |
| I
S | A r
I
: system bus |
]l 1 I
| I
I
| Tcache DMA < MMU SPI Power |
I Unit |
= S I -
Program Data Serial
Memory Memory Bus

Figure 3.1: Block diagram of AS-DSP.

As shown in Figure 3.2, the processor has 6 pipeline stages: instruction fetch (IF),
instruction decode (ID), i-RAM read (IMR), execution (EX), data memory access (MEM),

and write back (WB).

18

» BM-LUT
I
= = ? S ACS - Function N
> e Units
Trellis L]
Controller SBOX |— —>
| Address || | (g SR [Sl FMUL
A A Calculator } , Ly MMA 8 K> MMB |
I > - >
DZI ' EMAG > \ .
______ e e
v #» e ___ §_______MLJ|_-;
_— > > > | MUL1}—» » MUL2 [l—»
et |
Icache i-RAM IY— L % DR SEE— I —
—» RF > > -t |
U
> i
L] ALU| || o
» » DMA
A _
AL MMU »
B B [Status 553 I_> A
IF ID IMR EX MEM WB

Figure 3:2: Pipeline structure of AS-DSP.

The instructions are fetched from I-cache-in-IF stage. In ID stage, the operands should be
read from register file (RF) that is composediof 32 general purpose registers. IMR stage has
four 256x16-bit embedded SRAMs controlled by embedded memory address generator
(EMAG). The addresses of each SRAM are generated according to instructions, SPRs, and
system controllers. EX stage contains several FUs: ACS, SBOX, finite field multiplier
(FMUL), 32-bit arithmetic multiplier (MUL), and arithmetic logic unit (ALU). To increase
throughput, FMUL is divided into MMA and MMB whereas MUL is pipelined to MUL1 and
MUL2. The data from external memories will be accessed in MEM stage with access time

determined by SPRs. The results should be written back to RF and i-RAM in WB stage.

System Controller

Since the AS-DSP is a pipelined architecture and the executed instructions might have

19

the data dependency. The system controller detects the dependencies and either stalls the
operations or forwards the dependent data. Figure 3.3 is the timing graph of several
instructions with data dependency to Ins 1. The dotted lines represent the data path that need

be executed and the black line is the forwarding path.

Execute
order

Ins 1 IF 1D IMR

Ins 2 -

Ins 3 IF

Ins 4

Y Ins 5 IF 1D IMR EX — ‘[MEM — — WB

Figure 3.3: Pipeline forwarding of AS-DSP.

The system controller also manages the configuration of FUs for different datapaths and
applications according to the instructions and SPRs. For instance, system controller can
change the finite field number for rssyn instruction base on the GPRs, r47[5]. To get the
higher through, system controller enable the other two finite field multipliers and open the

datapath for them.

Instruction Cache (1-Cache)

Cache technology is used for almost every processor to improve system performance by

reducing the external memory accessing. Because of the spatial locality of programs,

20

instruction cache can significantly diminish the load operation from program memory
especially when the loop condition occurred. Consider area and speed, the instruction cache
(I-Cache) of AS-DSP has 128 entries for 16-bit width; it based on two-set-associative scheme

as shown in Figure 3.4.

‘ tag ‘ index ‘
|
USED ¥, TAG, V) TAG;
— Instruction
Memory
L v
v \/
HIT INSTRUCTION

Figure 3.4: Structure of [-Cache.

The miss penalty of [-Cache is five cycles because the latency of access external
program memory. Table 3.1 lists the simulation result of I-cache when decoding a period of
64 states convolutional code using Viterbi algorithm. The program can decode 40 bits which

calculates 80 period of trellis and traces back 40 times.

Table 3.1 Simulation result of I-Cache.

21

Number of instructions 120

Number of executing instructions 2537
Number of hit instructions 2400
Hit rate 94.6

Average cycle per instruction (CPI) 1.216

Serial Peripheral Interface (SPI)

Since the interface to communicate with other system is needed and the data rate of FEC
decoding is not too high, the proposed AS-DSP uses a serial interface SPI. The block diagram

of SPI is shown in Figure 3.5.

SPI
| 2

\ SPI Control Register 1|
BIDIROE

\ SPI Control Register 2 | 2
SPCO |

‘ SPI Status Register ‘ Slave

o SPTEF-:— Control CPOLl—o—l CPHA MOSI
Phase +/scKin - Lt
Interrupt Control T Slave Baud Rate | Polarity [

SPI Control MISO
Interrupt Master Baud Rale[Phase + scK out - -
Request Polari > Port | o

Lonlio Control SCK
Baud Rate Generator Master Logic | _
~| Control - o
, 5§
Bus Clock, | | ~prescaier |[Clock Selectaud Rate shift sample = >
Clock Clock
SPPRL3 SPR1 3 Yy v
$ } : Shifter
‘SPI Baud Rate Reglsteﬂ data in
LSBFE=1-- LSBFE=D-- -
| |
: 8 o LSBFE=1
| SPIDataRegister || 4 |msB > 158
- 7 LSBFE=0
| |
LSBFE=0--\ LSBFE=1-- data out

Figure 3.5: Block diagram of SPI.

22

The SPI module allows a duplex, synchronous, serial communication between the MCU
and peripheral devices. It has these distinctive features as fellow:
® Master mode and slave mode
® Bi-directional mode
® Slave select output
® Double buffered data register

® Serial clock with programmable polarity and phase

According to the document, the maximum transmission rate is 1/2 clock rate. For

example, the maximum data rate of SPI is 66.5Mbp/s if the operating frequency is 133MHz.

3.2 Instruction Set & Register. File

The instruction set of proposed processor is listed in Table 3.2. The general instructions
support the basic functions such®as arithmetic'operations, logical operations, and finite field
multiplication. They also control the ‘programs by register transfer, load/store, and branch
instructions. Note that the special instruction for advance encryption standard (AES) is a
hardware lookup table called SBOX in its algorithm [9]. The Viterbi result instructions output
the decoded data to external memory or to the serial bus. The vector instructions have six

kinds of operations including two kinds for FEC applications and they will be discussed later.

Table 3.2 Instruction Set of AS-DSP

General Instructions

Arithmetic add, sub, addi, subi, add32, sub32, shift, arishift, mul,
mac, mac32

Logic And, or, xor, not, inv

AES sbox, sboxi

Finite field multiplication | fmul

23

Register transfer move, movie, set

Branch Jump, jumpi, beq, beqi, bne, bnei, call, return, loop,

Load/store Load, store

Viterbi result Vviso, vistore
Vector Instructions

Arithmetic vaddv, vsubv, vaddr, vsubr, vmac, vmin, vmax,
vmulv

Logic vandv, vorv, vxorv, vnot,

Load/store vpload, vnload, vostore, vnstore

Finite field multiplication vimac, vfmulv

Viterbi viacs, viacsm, vitb

RS rssyn

The general instructions have three addressing modes (a), (b) and (c). The Rd, Rsl, Rs2
represent destination Register, source register 1 and source register 2, respectively. The

operation of each addressing mode.is decided.by the field “OP code” and “Func”.

Addressing mode (a), Rd = operation (RslyRs2)

15 12 | 11 9718 6 |5 211 0

OP code Rd Rsl1 Rs2 Func

Addressing mode (b), Rd =operation (Rd,constant)

15 12 | 11 9 |8 110

OP code Rd Constant Func

Addressing mode (c), Rd = operation (constant)

15 12 | 11 1 0

OP code Constant Func

24

The vector instructions have two addressing mode (d) and (e). The Vd, Vsl, Vs2 represent

destination vector, source vector 1 and source vector 2, respectively. Addressing mode (d) is

designed for vector memory access and (e) is the vector operations. Section 3.4 details the

vector operations and gives some examples to show how the vector operations work.

Addressing mode (d),

Vd[i % 256]=operation (data _memory[i+ Rsl]), i € (R32+0) ~ (R32+Rs2-1)

15 12 |11 10 9 |8 6 |5 21 0
OP code Reserved | Vd Rsl Rs2 Func

Addressing mode (e),

Vd[i % 256]=operation (Vs[i],Vs2[i]), 1 € (R32+0 ~ R32+Rs2-1)

15 12 |11 10 49 8 | 7 6|5 2 11 0
OP code Vd or Rd Vsl Vs2 or Rsl Rs2 Func

The register file (RF) composes 32 general purpose registers (GPRs) and 16 special

purpose registers (SPRs). The functions of RF are listed at Table 3.3 and Table 3.4. The

contents of SPRs configure the Function units, i-RAM, datapaths, and status of processor.

SPRs are only writable for programmers by using register transfer instruction, “set”.

Table 3.3 General purposed registers of AS DSP

GPRs

r0~rl3 GPRs
rl4 GPRs, (vmin, vmax index register)
rl5 GPRs, (mul result [31:16])
rl6 GPRs

25

rl7 GPRs , (compare register of beqi, bnei)
r18~1r27 GPRs

28 GPRs, (result of rssyn {S3,S2})

29 GPRs , (pointer of survival memory)

r30 GPRs, (pointer of trace back)

31 Zero

Table 3.4 Special purposed registers of AS DSP

SPRs

r32 i-RAM starting address

r33 g1(x) of convolutional code [8:0]
r34 g2(x) of convolutional code [8:0]
35 Viterbi constraint length

36 PmO00

37 PmO0T

38 Pm10

39 Pml1

r40 k(x) of Montgomery mul, [7:0]

41 k(x) of Montgomery mul, [7:0]

42 The register of jump

43 Loop size

r44 Trace back length

45 RS alpha 1

46 RS alpha 2

47 Processor status control register

26

The SPR R47 controls the statuses of processor such as I-cache, cycles of accessing
external memory and decoding method for FEC applications. The detail functionality of R47

is shown at Table 3.5.

Table 3.5 Functionality of SPR R47

0: use min pm to trace back

r47[0] Trace back control
1: use max pm to trace back
0: use 8-bit, [7:0]
r47[1] RS data type
1: use 16-bit, [15:0]
0: decode 1-bit/vitb
r47[2] Trace back method
1: decode N-bit/vitb
0: R28=R28
r47[3] Read serial in data

1: R28=serial input data

Finite field multiplierstatus-for | 0: use 1 stage of FMUL

r47[4]
rssyn instruction 1: use 2 stage of FMUL
Finite field multiplier number | 0: use 2 FMULs
r47[5]
for rssyn instruction 1: use 4 FMULs
r47[11:6] Reserved Reserved
0: Off
r47[12] Cache enable
1: On
0: 1 cycle per fetch
r47[15:13] Data memory access cycle :

7: 8 cycles per fetch

In order to control the serial interface SPI, the virtual register is designed to index the

SPCR, SPSR, SPDR, and SPER [11]. Actually, the register SPDR is the index for two FIFO

27

buffer; input buffer and output buffer. The corresponding virtual registers for SPI are listed at

Table 3.6.

Table 3.6 Virtual registers of AS-DSP

48 SPI control register, SPCR

49 SPI status register, SPSR

r50 SPI data register, SPDR (serial output data register)
r51 SPI extension register, SPER

r52~r53 Reserved

SPI data register, SPDR (write dummy data to fetch
r54
serial input data)

r55 Reserved

3.3 Function Units

Function units of AS-DSP include ACS, SBOX, arithmetic multiplier (MUL), and finite
field multiplier (FMUL).

The ACS unit is used to speed up the operation of Viterbi decoding. SBOX is the
nonlinear substitution of AES which is usually designed as a ROM or lookup table. The
SBOX block in processor is implemented by composite field [10] and saves 20% area as
compared with ROM.

The processor contains a 16-bit natural number multiplier which can perform 32-bit
result. The multiplier is pipelined as two stages (MUL1 and MUL2) to increase operating

speed.

3.3.1 ACS

Add-compare-select (ACS) calculates sums of path metrics and branch metrics then
28

compare them to select a probable decision. Figure 3.6 represents a period of 4 states
convolutional code. There are two butterflies in one transition in Figure 3.6, and each one has

two ACS operations.

00 6—29 59 00 00
M
1060 /1 2010 01
% :>
0
11 5011 11

Figure 3.6: Transition of convolution code.

The function unit ACS is compesed.of four adders and two comparators as shown in

Figure 3.7, and therefore it providestwo. ACS operations per cycle.

TMO Cc
M Decision0
_V._I

PMO;

™1 — »
u PMO;.
X

P
TM2 — c
M T~—> Decision1
P 1
TM3 — L\ »
& s | cmm— U PM1J+1
PM1,- X

Figure 3.7: The function unit ACS.

29

3.3.2 Finite field multiplier

The Montgomery algorithm provides a universal and simple modular operation.
Montgomery multiplication (MM) function is used to implement multiplication of A and B in
finite field GF(2™) as (1). In (2), another MM block is used to normalize (1) by multiplying a
constant K, or the inverse of K. The m of FMUL is small than or equal to 8, and | is
primitive polynomial.

(§=A><K*mod,u 3. 1)
C=Ax BmOdﬂ (3 2)

MMA and MMB are the same,function blocks in Figure 3.8. Both of them contain two
8-bit (m =8) Montgomery multipliers (MM), one. is for bit 7~0 and another is for bit 15~8.
The block diagram of FMUL is shown in“Figure-3.8 (&). In order to reach the higher operation

speed, the FMUL is pipelined to two stages as shown in Figure 3.8 (b).

~MMA____MMB_
s)
HS MM §J>MM ;§—>c1
Bl K+
c L
A0+ ' |
I >MM §j>ww| %§—>co
BOﬂE» KJ:’
() i L | (b)

Figure 3.8 (a): Block diagram of finite field multipliers.

(b): Datapath of two 8-bit finite field multipliers.

30

3.4 Vector Instructions

Most of decoding algorithms involve sequentially operations on a series of data. The
regularity of computation will simplify the memory access and data flow control. To
efficiently process such operations, the vector instructions have been included in the processor.
These instructions benefit many computations such as syndrome calculation in RS decoding
and ACS operations in Viterbi decoding.

The vector operations require multiple accesses of i-RAM and configuration of datapaths.
EMAG calculates the appropriate addresses for vector operations to simplify the executions.
Furthermore, the automatic control of operations improves both the throughput and the size of

programs.

3.4.1 Vector instruction for general applications

The general applications include arithmetic, logic, load/store, and finite field
multiplication. Vector instructions of the AS-DSP are listed in Table 3.2. The character “V”
means vector and “R” represents register. For instance, the instruction “vaddv e2 el €0 r7;”
expresses vector]l (embedded memory 1) adds vector(then stores the results to vector2. It can
be denoted ase,[i]=¢[i]+¢,[i],i€(r32)~(r32+r7—-1)mod256 . The register 132 is the
initial index of vector operations. Because the memory of i-RAM has 256 entries, the register
r32 and r7 here must less than or equal to 256. Table 3.7 takes some vector instructions as

examples and explains their functions.

Table 3.7 Examples of vector instruction for general application.

Kind Instruction Function Index i* Index j

Arithmetic | vaddv e2 el e0r7; | e2[i] =el[i]teO[i] | r32~r32+r7-1 | N.A.

31

vaddvre2 el 10 17;

e2[i] =el[i]+r0

1r32~1r32+r7-1

N.A.

r3 =max(e0[i])

vmax 13 e0 r7; r32~r32+r7-1 | N.A.
r14=i, e0[i]=max
vpload el r6 r7; e0[i]=memory[j] | r32~r32+r7-1 | r6~16+r7-1
Load/store
vnload el r6 17, eO[i]l=memory[j] | r32~r32-r7+1 | r6~r6+r7-1

*:1=1mod 256 when it is bigger than 256.

Figure 3.9 represents the vector operations of arithmetic, logic, and finite field
multiplication. The EMAG generates the addresses and controls the read/write operation for 4

banks of i-RAM due to different instructions; it also manages the selector to choose the

appropriate data to support two read and two write at most in one cycle.

Enable &
Read/write v
signal
Bank0 Datad -
Address | FUs
Data1l | N o
> Bank1 o
EMAG @
g Bank2 Data2 | 5 |«
gl -
Bank3 Data3 <
i-RAM

Figure 3.9: Block diagram of vector operations.

The load/store of vector operations is moving a serial of data from/to the external data
memory. Because the data is continue, the processor can only calculate the initial address and
access data serially. Thus, the DMA technology is used to automatically access data for

1-RAM. In order to reduce idle cycles when accessing a block of data from external memory,

32

the memory accesses and other operations are designed to execute simultaneously. Hence the
AS-DSP can be used efficiently. Table 3.8 shows the operations of syndrome calculation with

and without DMA. With out DMA, the AS-DSP loads the received polynomial to i-RAM than

*
calculate the syndrome and takes N + N7t cycles. With DMA, the received
Number of FMUL

N *t

polynomial can be loaded when calculating last syndrome and takes only
Number of FMUL

cycles.

Table 3.8 Cycles of calculating syndrome with and without DMA

(204,188)RS syndrome calculation (cycle)

2 FMUL 1020 816
AS-DSP

4 FMUL 612 408

The instruction and addreéssing mode (d) of-'load/store for vector operations are
mentioned in section 3.1. Figure 3:10.1s the block diagram of DMA. FIFO buffer stores the
information for DMA form the instruction as follows.
® Values of Rs1[15:0], Rs2[7:0] and r32[7:0].
® L/S, P/N decoded from OP code and Func.
® Vd, Rsl and Rs2.

The index Vd, Rs1 and Rs2 of each DMA access will be compared by system controller.
The DMA stall signal will be assert if there is any dependence between vector memory access
and others. The controller in DMA asserts the Buffer Full signal if the FIFO Buffer is full then

the system controller will stall the processor.

33

FIFO Buffer

qufer L/S vd P/IN 132 Rsl Rs2
pointer
L4 4 I8 718 116
A 1 T2 T Y
Buffer Full 3 1]z 1 3 \ .
- 8 "] Address

controller [« # Calculator [15
DMA stall Enable

11

Enable &
Read/write Us v address

signal
»/
> Bank0 e H
Address ;
batal Data out 16-bit
. Bank1 el P> address External
> EMAG y @ MMU Data
. Bank2 I—M S+ Memory
Data in ﬁ
‘i Bank3 |_| Data3 16-bit
> | data bus

i-RAM

Figure 3.10: Block diagram of DMA.

3.4.2 Vector instruction for FEC-applications

In this section, the vector instruction for Reed-Solomon (RS) and Viterbi decoding are

introduced here.

3.4.2.1. Viterbi Decoding

The Viterbi algorithm [12] consists of three parts: branch metric calculation (BM),
add-compare-selection (ACS), and survival memory (SM). In BM, the DSP will calculate
branch metrics for each state transition in the trellis. Since branch metrics have only four
different values in 1/2 code rate convolutional code, the Branch metric look-up-table

(BM-LUT) approach is proposed to reduce unnecessary calculations.

34

Next State

Current State

Figure 3.11: Encoder of 64 state convolution code.

The branch metric are the encode results of convolutional code and convolutional encoder
can be regarded as a finite state machine as shown in Figure 3.11. So the BM-LUT can
calculate the branch metric by theqstate" transitions and the generator polynomial. The
architecture of BM-LUT is illustrated in-Figure. 3.12. The constraint length and generator
polynomial decides the input of modulo-twoe adder. The outputs of modulo-two adder control
the multiplex, MUX and select branch metric form pm0O~pm11 which are the values of four

different branch metric.

G1(x)
(r33) 7
——>
9 G2x_
r34
Current State - pmOO0 (r36) —»
8 | M
Next State -+ pmoO1 (r37) U o BM
Constraint 8 . pm10 (r38) X
length (r35) pm1l (r39) —

Figure 3.12: Architecture of BM-LUT.

The vector ACS operation performs two ACS operations according to the BM-LUT and

35

saves the decisions to external memory. For instance, the instruction “viacs e2 e0 el r7”
represents one vector ACS operation in Figure 3.13. BankO and Bank]1 store the path metric
and their indexes are the current states. The trellis controller generates the address of

BankO~Bank3 which are the current states and next states in Figure 3.13.

BM-LUT
BankO I Bank?2
(read) 00 00 (write)
Bank3
o
10 0
Bank1 01 o7 “00 o1
(read) One vector
operation
110 011
current:state next state

Figure 3.13: ACS vector operations diagram.

Figure 3.14 represents the architecture of vector ACS instruction. The trellis controller
generates read and write addresses which are the current and next state. The BM-LUT
calculates branch metric for each ACS then ACS Unit computes the new path metric and store
them to Bank2 and Bank3 in this case. The decisions during ACS operation are buffered and
stored into the external memory. The GPRs 129 which is the stack pointer of survival memory

are automatically update when the decisions are stored.

36

Trellis BM-
_>
Controller LUT

16-bit
__ACSUnit__ gstack Buffer
MO BMO : Q ,\CA - EDecisionO D
BankO |:>|\/|1]J. i ! i 1 i TR
M1 L» MY | D]
| . 16
Bank2 ||« - | i External
i ﬁ .. Ddcision] Mmory
Bank3 ||e— | pl[i D
| % - | D
-RAM BMS : '\)Lé' i PM1j:,

Figure 3.14: Architecture of vector ACS instruction.

After the last ACS operation, the most probable state is decided by the minimum or
maximum path metric. Trace back operation is used for SM, and the survival path can be

found through external memory accesses.

3.4.2.2. RS Decoding

The syndrome calculator and Chien search constitute over 50% computations of RS
decoding, and both of them are similar operations [13]. The syndrome calculator generates a
set of syndromes S;~S,; from received polynomial R(x). The representation of syndromes

calculation is as following. The received polynomial can be written as (3.5) by Horner’s rule.

S, =R(a™), iel~2t (3.3)

N-1 _
R(X) =D Ry =R+ RX+R,X* +---+Ry_x"" (3.4

=0

37

R(x) = Nz_‘i Rj.xj =((Ry_ X+ Ry ,)X+R)X+--+R)) 3.5)

j=0

The Montgomery multiplier of R;and a ' can be written as (3.6) according (), and the

result should be normalized by MMB as Figure 3.8 (a). Function (3.6) can be represented as

“M o avoid normalizing K'. Without normalization,

(3.7) if a'is replaced by «
multiplications in syndrome calculation can be executed by a single MM block, MMA or

MMB.
C(x)=a'R,a " mod u(x), K’ =" (3. 6)

C(X)=a"™R.a ™ mod (X
(X) R H(X) (3.7
=a 'R; mod x(X)

—1 -2 -1 -2t
Because ' ~a ! and @™ ~ ¢ ?""

are constants and m is fixed, the replacement
requires no extra computations. Each MM block.can calculates one syndrome itself, and

therefore the execution time in syndrome caleulating is two time faster than traditional works.

—MM +»S3

|
\IN | MM Y

| |
IRAM | MM >S50 | MM >3

38

Figure 3.15: Datapath of FMUL when calculating syndrome.

Figure 3.8 (b) is the datapath of calculating finite field multiplication and Figure 3.15 is
the datapath when calculating syndrome. The register r45[15:8], r45[7:0], r46[15:8] and
r46[7:0] represent constantsar ", &', a " and @™ " ,respectively. For example, the instruction
“rssyn r0 e0 r7;” represents syndrome calculation. The receive polynomial has to be stored in
BankO and r7 must equals to N. The final results SO and S1 will write back to register r0
according to the instruction. Furthermore, the results S2 and S3 will write back to the register
r28 as shown in Table 3.3.

At the first cycle, the multiplexers in Figure 3.15 select the input from iRAM by setting

control signal to zero. Then the function block MM calculates the product of

Ry & ',ie0~3(r, is the firstsoutput_of iRAM). At the second cycle, the value of

modulo-2 adders can be represented as Si =Ry & +R,_,,i € 0~ 3. The multiplexers selects

the values SO~S3 after the first cycle.. The syndrome-S0~S3 will be calculated after N cycles.
Two 8-bit FFM are implemented in this design. Because of the designed datapaths, FFM can

be easily added according to the applications, and calculation speed will rise linearly.

39

Chapter 4
Chip Implementation & FEC

Applications

This chapter discusses the details of implement RS decoding and Viterbi decoding by
AS-DSP. Before the discussion, the design flow will be introduced. The Design flow chart is

illustrated in Figure 4.1.

C, Matlab Assembly

simulation |—code coding =
results ¢
Assembler

v

Machine code

Y

» Simulator

correct
Pre-layout RTL coding
» Simulation of |« of AS-DSP
AS-DSP

A

correct

Figure 4.1: Design flow chart.

40

At first, we simulate the FEC algorithm by software (C or Matlab) and record the results
for each decoding steps. After finishing the assembly codes, the translator translates them to
machine codes. To ensure the accuracy of the assembly codes and machine codes, the
simulator compares the machine codes with assembly codes. Besides, the simulator can
calculate the values of every register, i-RAM and external memory for each instruction and
represent them if user wants. After comparing with the results of software and simulator, the
machine codes will be test in the pre-layout simulation of AS-DSP. If the comparison is not

correct, we need to check out the RTL coding until.

4.1 Viterbi decoding using AS-DSP

4.1.1 Some details in Viterbi deceding

In section 2.1.2, we introduced the Viterbi decoder and explain why we select the TM
approach. Here we discuss otherissues in Viterbi decoding.

In the real applications, thé. length of received symbols may be quite long. It is
impossible to store the decision bits if we start to trace back after received all symbols. Thus,
a suitable TB length (or called truncation length) should be defined without serious
performance degradation. The rule of thumb is that truncation length is about five times of
constraint length.

In Viterbi algorithm, the path metric accumulates at each time index; and undoubtedly
increasing as time goes by. The path metric must be limited in a range so that it can be
expressed with finite bits. There are several approaches such as reset, rescaling subtraction,
shift, and modulo normalization. The modulo normalization approach (also called two’s
complement arithmetic approach) is more efficient than others. As shown in Figure 4.2, the
maximum difference between time constant t=k and t=2k-L is B x L; where B and L are

maximum value of branch metrics and truncation length, respectively.

41

t=0 t=k t=2k-L t=2k

Figure 4.2: The survival path of convolutional codes.

The concept of modulo normalization is not to avoid overflow but to accommodate.

Figure 4.3 demonstrates the ideal ofimeodulo nermalization. M1 and M2 are both positive

number and |M 1-M 2| < 2%"; where C is the bit humber representing path metric.

ml =M1 mod 2°
4.1)
m2 = M 2'mod 2°
Thus, m1 and m2 can be presented on half cycle without confusing their difference. The

penalty of modulo normalization is to increase one bit [14].

) increase
m1 C
211
0
_20-1
decrease

Figure 4.3: The ideal of modulo normalization.

42

The AS-DSP has 16-bit data type, which means it can tolerate the maximum difference
about 2'°-1. The huge range of path metric can implement every spec. of convolutional code
without error when normalizing.

As shown in Figure 4.2, the truncation length is L. It means that the decoded data has the
acceptable accuracy if we track back at least L length then decode the data. The AS-DSP has
two decoding strategies for different decoding speed. Strategy one is decoding one bit data
after tracing back L length and Strategy two is decoding k bits data. Take Figure 4.2 as
example. Since we can ensure the accuracy before time index k, we can trace back form time
index t = 2k to t = 0. Then the data form O~k can be decoded and the decoding speed is k

times as fast as strategy one.

4.1.2 Decoding procedure and data rate for Viterbi decoding

This section talks about the notice of-Viterbi decoding using AS-DSP and takes the
convolutional code of 802.11a as*an example.“The following steps are the decoding procedure
of Viterbi decoding:

1. Initializing the AS-DSP.

The FUs and states of processor should be initialized by setting the SPR r47. The
detail of r47 is listed in Table 3.2. For this example, we enable the cache and set the
access cycle as 3 (base on the spec. of asynchronous RAM [15]). Table 4.1 lists the

fields that need to be initialized.

Table 4.1 The list of initialization.

SPR Value Function

r47[0] 0 Use min PM to trace back

43

r47(2] 1 Decode N-bit/vitb N=trace back length

r47[12] 1 Enable the I-Cache

r47[15:13] 2 3 cycles for accessing external memory

2. Setting the coefficient of Viterbi decoding

In this step, we setup the coefficient of Viterbi decoding. First, we set the trace back
control and trace back method as “1”. The trace back control is to find the maximum
likelihood path by selecting the minimum or maximum path metric according to different
applications. The trace back method was talked before; it can decode k bit data when it
setting as 1. Second, we setup the generator polynomial gl(x) and g2(x), constraint
length and trace back length. ThesPMssstored in i-RAM have to be initialized, too.

Tables 4.2 lists the coefficient and explain their function.

Table 4.2 The coefficient of Viterbi decoding.

GPR Value Function
129 2000pex Pointer of survival memory
33 1335 Generator polynomial gl(x)
r34 1715 Generator polynomial g2(x)
35 7 Constraint length
r44 40 Trace back length (truncation length)

3. Execute ACS operations.

After initializing the AS-DSP and setting the coefficient, we start the Viterbi

decoding. The first step of ACS operation is to calculate the branch metrics

44

(pm00~pm11). After that, the instruction viacs updates the new PMs, survival memory

and pointer of survival memory automatically.

4. Trace back operation.

The instruction Vvith can trace back according the minimum PM then decode the
information data. Since we set the trace back method as “1” and the track back length is
40. We get 40 information bits after 80 (40 x 2) memory accessing. Thus, it takes 2 x L

cycles for generating one information bit in vitb operation.

The N states convolutional code needs N ACS operations for one time index. Since the
instruction viacs performances two ACS operations per cycle, it takes N/2+8+L+2L cycles to
decode one information bit. The 8+L is the cycles when updating the branch metrics and 2L is
the average cycles when tracingzback. Table 4.3-is the average operation cycles for decoding

one information bit and corresponding data rate when working at 133MHz.

Table 4.3 Operation cycles and data rate at different state numbers of convolutional code
(L=3).

State number 4 8 16 32 64 128 256 512

Operation cycles 19 21 25 33 49 81 145 273

Data Rate at
7.00 6.33 5.32 4.03 2.71 1.64 0.92 0.48
133MHz (Mbp/s)

4.2 RS decoding using AS-DSP

The decoding procedure is similar to the decoding procedure of Viterbi decoding. We

take the (255, 239)RS code as an example here. The decoding step is illustrates as follow:

45

1. Initializing the AS-DSP.

Table 4.4 list the fields that need to be initialized.

Table 4.4 The list of initialization.

SPR Value Function
r47[1] 0 Use 8-bit data type
r47[4] 1 Use two stage of FMUL
r47[5] 0 Use two FMULs
r47[12] 1 Enable the I-Cache
r47[15:13] 2 3 cycles for accessing external memory

2. Setting the coefficient of Viterbi decoding

Tables 4.5 lists the coefficient and €xplain their function.

Table 4.5 The coefficient of Viterbi decoding.

GPR Value Function
R40 8Ehex k(x) of Montgomery mul
R41 4Chex P(x) of Montgomery mul

3. RS decoding

The decoding flow is introduced in chapter 2. The decoder is implemented

according to the decoding flow.

46

Table 4.6 is the operation cycles at different error numbers and corresponding data rate

of (255,239)RS. The maximum correctable error is t = 255-239 =8. The codeword will not

be corrected if error number is bigger than 8. Figure 4.4 demonstrate the corresponding data

rate of Table4.6 in different SNR.

Table 4.6 Operation cycles and data rate at different error number for (255, 239)RS (L=3)

Error Operation Data rate at
number(s) cycles 133MHz (Mbp/s)
0 2265 112.27
1 12250 20.76
2 12945 19.64
3 13705 18.55
4 14526 17.51
5 15409 16.50
6 16354 15.55
7 17361 14.65
8 18430 13.80
>8 13611 18.68

47

120

100

o0
o
T

~
(@]
T

Data Rate(Mbps)
(@)
(e>)

[\
o

(=)

SNR(dB)

Figure 4.4: Data Rate of (255,239)RS on BPSK channel.

Table 4.7 is the cycles of each steps whenrerror number = 8. The syndrome calculation

and Chien search are accelerated by the instruction rssyn.

Table 4.7 Operation.cycles for each steps when error number =8.

Syndrome calculation 2240
Key equation 8745
Chien search 2161
Error value 4906
Correction 378

If we use the 16-bit data type for RS decoding, the decoder can decode two codeword
simultaneously. Thus, the data rate will be almost twice as fast as 8-bit data type. The data rate

of (255, 239)RS is 27 Mbp/s when error number = 8.

4.3 Chip specification

48

The processor is implemented with the 0.18pum CMOS standard cell library and 0.18um
1P6M process. The chip size is 7.73mm? while the core occupies 3.5mm’. The processor has
18k bits embedded SRAM and the total gate count is 139.4k. After static timing analysis (STA)
and post-layout simulation, the processor can work successfully at 133MHz under 1.62V and
worst speed condition. While working at 1.98 supply and 133MHz, the power dissipation is

about 141mW, and the worst IR drop is 0.14V. Table 4.8 summarizes the chip features.

Table 4.8 Summary of the chip.

Purposed ASDSP
Technology 0.18um 1P6M
Package CQFP144
Supply Voltage 1.8V
Work Frequency 133MHZz(1.62V;125°C, worst process)
Chip Size 2.78x2-78mm’
Core Size 1.87x1.87mm’
Gate Count 139.4k
Embedded SRAM 18k bits
Power Dissipation 141mW (1.98V)

49

iz 2 nle e ule)el e e

Figure 4.5: The microphoto of the chip.

4.4 Comparison with other similar work

Table 4.9 shows the performance comparisons with TI’s TMS320C64X and
TMS320C54X DSP families. As compared with TMS320C64X family, the data rate has about

15 times improvement when decoding 512 states convolutional code.

50

Table 4.9 Viterbi performance compares with TMS320C family.

TMS320C64X | TMS320C54X 16-bit ASDSP
Technology 0.13um N.A. 0.18um
Clock rate (MHz) 500~700 100~160 133
M support 5~9 N.A. 2~9
32 states convolutional code N.A. 444 Bytes 110 Bytes
32 states convolutional code 3.1Mb/s 4.03Mb/s
N.A.
(160MHz) (133MHz)
512 states convolutional code 32Kb/s 480Kb/s
N.A.
(500MHz) (133MHz)

Table 4.10 demonstrates the: operation cyeles for each syndrome calculation. The
TMS320C64X has eight finite field- multipliers-and takes 470 cycles to finish one syndrome.

The execution cycle number usSing oneFhEM=is 3760. The proposed processor has two

multipliers and needs 816 cycles to complete this work.

Table 4.10 Performance of syndrome calculation compares with TMS320C64X.

TMS320C64X | 16-bit ASDSP
(204,188)RS syndrome execution cycles 470 816
(8 FFMs) (2 FFMs)
(204,188)RS syndrome code size (Bytes) 1100 48

51

Chapter 5
Conclusion and Future Work

5.1 Conclusion

The design and implementation of a 16-bit AS-DSP supporting various FEC applications
is proposed. The architecture using the vector operations with optimized internal memory
organization is proposed to increase the memory bandwidth efficiency. The datapaths also
simplify the data flow control and improve both system throughput and program code size.
After implemented by 0.18um 1P6M.€EMOS préeess, the chip can provide at least 7Mb/s data
rate for 4 state convolutional® code decoding and 13.8Mb/s data rate for (255,239)

Reed-Solomon decoding respectively.

5.2 Future Work

As shown in Table 1.1, the data rate of DVB-T and 802.11a are 28Mbp/s and 54Mbp/s,
respectively. The data rates of corresponding decoding process of AS-DSP are 25Mbp/s and
2.71Mbp/s, respectively. The decoding speed is not high enough to support every spec. We
have to better our design in two directions, software and hardware. Since the programs for
AS-DSP are only translated by a simple translator, the non-optimized machine codes reduce
the performance. The compiler is needed to improve system performance. Besides, the
datapath for FEC applications have to be more flexibility and powerful to speed up the

decoding process.

52

Bibliography

[1] ITU-T, Telecommunication Standardization Sector of ITU, “Digital multi-programme
systems for television sound and data services for cable distribution”- Digital

transmission of television signals, ITU-T Recommendation J.83, Apr. 1997.

[2] S. Lin and D. J. Costello, Jr., Error Control Coding, Fundamentals and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

[3] G. D. Forney, Jr., “Convolutional Code II: Maximum likelihood decoding,” Information
and Control, 25, pp 222-226, July 1974.

[4] R. Blahut, Theory and Pratice of Errar control Codes. Boston: Addison-Wesley, 1983
[5] T.-K. T. J.-H Jeng, “On decoding of both errors and erasures of a Reed-Solomoncode
using an inverse-free Berlekamp-Massey algorithm,” IEEE Trans. Comput.,vol. 47, pp.

1488-1494, Oct. 1999.

[6] H.C. Chang, C.B. Shung, and C.Y. Lee, ”A RS-PC decoder chip for DVD applications,”
IEEE J. Solid-State Circuits, vol. 36, no. 2, pp.229-238, February 2001.

[71 G. Forney, “On decoding BCH codes,” IEEE Trans. Inform. Theory, vol. IT-11, pp.
549-557, Oct. 1965

[8] C.K.Koc and T Acar, “Fast Software Exponentiation in GF(2¥)”, 13th IEEE Symposium
on Computer Arithmetic, pp. 225-231, 1997.

[9] J. Daemen and V. Rijmen., “AES Proposal: Rijndael,” submitted to NIST AES, June
1998.

[10] V. Rijmen, "Efficient implementation of the Rijndael S-bos" Available:

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ .

[11] SPI Block Guide V04.00, Freescale Semiconductor, Inc. S12SPIV4/D 21 Jun. 2004.

53

[12] G. Fettweis, H. Meyr, “A 100 Mbit/s Viterbi-decoder chip: Novel architecture and its
realization,” IEEE International Conf. Communication (ICC'90) vol. 2, pp: 463-467, April
1990

[13] C.C. Lin, F.K. Chang, H.C. Chang, and C.Y. Lee, “An Universal VLSI Architecture for
Bit-Parallel Computation in GF(2™),” in IEEE Asia Pacific Conf. on Circuits and System,
2005.

[14] Andries P. Hekstra, “An Alternative to Metric Rescaling in Viterbi Decoders,” |IEEE
Trans. on Communications, vol. 37, No 11, pp 1220-1222, Nov. 1989.

[15] uPD4443362 data sheet, NEC Inc.

[16] G. Fettweis , H. Meyr, “Parallel Viterbi algorithm implementation : Breaking the
ACS-Bottleneck,” IEEE Trans. Commun. ,8-89, 785-90; also paper 23.5, Proc. IEEE
ICC’88, 719-23

[17] G. Fettweis , H. Meyr, “High.rate Viterbi processor : a systolic array solution, ” IEEE J.
SAC, Oct.] 1990.

[18] G. Fettweis , H. Meyr, “Cascaded feedforward architecture for parallel Viterbi decoding ,”
IEEE ICSAS,978-81,1990; subm. Kluwer J. VLSI Sig.Proc.

[19] TMS320C64x DSP Core Application Report, Texas Instrument Inc. SPRA686 -
December 2000

[20] TMS320C54x DSP Core Application Report, Texas Instrument Inc. SPRAO71A - January
2002

[21] G. Fettweis , H. Meyr,” Minimized method Viterbi decoding : 600Mbit/s per chip,
Global Telecommunications Conference, 1990, and Exhibition. '‘Communications:
Connecting the Future', GLOBECOM '90., IEEE , 2-5 Dec. 1990 Page(s): 1712 -1716
vol.3

[22] H. Dawid,G. Fettweis , H. Meyr, “A CMOS IC for Gb/s Viterbi Decoding: System Design

and VLSI Implement, ” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, Volume: 4 Issue: 1, March 1996 Page(s): 17 -31

54

[23] C. B. Shung, P. H. Siegel, G. Ungerboeck and H. K. Thapar, “VLSI architectures for
metric normalization in the Viterbi algorithm,” IEEE International Conference on
Communications, vol. 4, pp.1723-1728, Apr. 1990.

[24] J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-decision Outputs and its
Applications,” in IEEE GLOBE-COM, Dallas, TX, pp. 47.1.1-47.1.7, Nov. 1989.

55

Published Paper

Tien-Yuan Hsiao, Chien-Ching Lin, Hsie-Chia Chang, “An AS-DSP for Forward Error
Correction Applications,” IEEE SIPs, 2-4 Nov. 2005.

R 1993.9~1996.6
1996. 9 ~ 1999. 6
1999. 9 ~2003. 6

2003.9 ~2005. 6

FCFI AR P F

A EE Al I A

TEAET AT ke AL

B

-—\\

1Lt FER >R EHREFPGA i ;‘lﬁ% Xilinx # 3 #7e 4F il

LLz82R FEARICK

B i3 %I‘iiﬁ%

