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摘要 

 

本論文主旨擬在於設計一個應用於前端錯誤更正機制的 16 位元特殊應用數位訊號

處理器。此處理器的向量指令可以改善記憶體存取的表現和程式的大小，針對錯誤更正

機制設計的特殊功能單元和對應的資料運算流程使演算法的實現更為簡單且加速解碼

的速度。使用 0.18µm 1P6M 製程實現晶片，139.4K 個邏輯閘，晶片的大小約為 7.73mm2，

其中包含了 18k 位元的記憶體。在解里德所羅門碼和 convolutional codes 時的最大功

率消耗為 141mW。和其他針對前端錯誤更正機制設計的數位訊號處理器比較起來，在程

式大小方面改善了 50%，在資料處理量上增大了 66%。 
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ABSTRACT 
 

In this thesis, an application specific digital signal processor (AS-DSP) for channel 

coding is presented. The proposed AS-DSP features vector operations, which can improve 

both the performance of memory accesses and program code density. The special function 

units and datapaths for channel decoding accelerate the decoding speed and facilitate 

algorithm implementation. The processor had been fabricated in a 0.18µm CMOS 1P6M 

technology. The gate count after synthesis is 139.4k and the chip size is 7.73mm2 including 

18k bits embedded memory. The power consumption is 141mW while decoding 

Reed-Solomon code and convolutional code. In contrast with general purpose processor 

designs, the results show this chip has at least 50% improvement in code density and 66% 

data rate enhancement. 
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Chapter 1  
Introduction 
 

1.1 Motivation 
 Forward error correction (FEC) is preservative in many digital communication and 

storage systems for its feasibility between performance and complexity. FEC can be separated 

as four parts at many applications: randomization, Reed-Solomon (RS) coding, interleaving, 

and trellis (convolutional) coding. For example, the FEC in ITU-T J.83 annex B is 

demonstrated in Figure 1.1. [1] 

 

 

Fig. 1.1: Layers of processing in the FEC from ITU-T J.83B Spec. 

 

As listed in Table 1.1, many coding schemes have developed for different systems 

according to their essentials and channel characteristics. FEC can recover data from non-ideal 

channel effects such as thermal noise, interference, and fading. The performance strongly 

depends on the minimum free distance which is proportional to codeword length. 
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Table 1.1: Difference of FEC specification between 3GPP and 3GPP2 standards. 

Applications Coding Schemes Max Data Rate 
(Mbp/s) 

3GPP2 Convolution code and turbo code 1, 3.1 

DVB-T Convolution code and Reed-Solomon code 28 

ITU-T J.83 Cable Modem Convolution code and Reed-Solomon code 8 

IEEE 802.11g WLAN Convolution code 54 

DVD Reed-Solomon product code 4 

 

For maximum likelihood decoding, the complex algorithm requires massive 

computations and a large volume of memory accesses. The sub-optimal solutions are also 

computationally intensive. Hence most of the systems prefer dedicated hardware solution in 

terms of cost, power consumption and decoding speed. 

For different applications, FEC can be implemented by ASIC chips, reconfigurable ASIC 

chips, application specific digital signal processors (AS-DSP) and general purpose processors. 

ASIC chips have to be redesigned for different specification, which takes time and design 

effort. General purpose processors can realize various codes by software programming but 

will be uneconomic in power consumption and cost, especially for the wearable devices. 

A 16-bit AS-DSP is proposed here to provide a good tradeoff among flexibility, decoding 

speed and cost. Due to the special function units (FUs) and datapaths that accelerate most 

critical computations, most code designs can be implemented with better performance. The 

memory organization is also optimized to increase the bandwidth efficiency through vector 

operations which take advantages of the data locality. Optimizing the critical part in 

computations and memory accesses, the overall decoding speed can be enhanced with 

reasonable cost and power dissipation. 
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1.2 Thesis Organization 
The thesis will be organized as follows. In chapter 2, the algorithms of FEC are 

introduced including convolutional codes and Reed-Solomon codes. Chapter 3 discusses the 

proposed AS-DSP including the instruction set and the hardware architecture. Chapter 4 

details the applications of FEC decoding by proposed AS-DSP. The specifications of our 

implemented chip and comparisons with other similar works are also provided here. Finally, 

conclusion and future work are made in chapter 5. 
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Chapter 2  
Overview of Forward Error Correction 
 
 As mentioned in Figure 1.1, randomization and interleaving can be regarded as 

exchanging the data address. Figure 2.1 demonstrates the encoding flow of DVB-T, the 

encoding procedure also contains RS code and convolutional code. So the proposed AS-DSP 

concentrates at the RS coding and trellis coding parts. This chapter introduces the encoder and 

decoder for RS codes and convolutional codes. 

 

 
Figure 2.1 : Encoding procedure of DVB-T. 

 

 

2.1 Introduction to Convolutional Code 
 An (N, K, M) convolutional code encodes K-bit message and outputs N-bit encoded data. 

It contains M bits memory and has K/N code rate. The Viterbi algorithm is a straightforward 

implementation of maximum likelihood (ML) decoding and is the most powerful and popular 

algorithm for decoding convolutional codes [2] [3]. For instance, the data of IEEE 802.11a 

has to be coded with a convolutional encoder of code rate 1/2, 2/3, or 3/4 corresponding to the 

desired data rate. The encoder has generator polynomials g0(x) = 1338 and g1(x) = 1718, of 

rate 1/2. Higher rates are drive from it by employing “puncturing”. Puncturing is a procedure 
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for omitting some of the encoded data bits in the transmitter (thus increasing the coding rate) 

and inserting a dummy bit into the convolutional decoder on the receive side. Therefore, we 

concentrate at the 1/2 code rate of convolutional code.  

 

2.1.1 Convolutional Code Encoder 

An example of (2, 1, 2) convolutional code is illustrated in Figure 2.2 (a). The generator 

polynomials g0(x) = 1112 and g1(x) = 1012. The convolutional encoder can be considered as a 

finite state machine (FSM) which has 2M states.  

 

Figure 2.2 (a): (2, 1, 2) convolutional code encoder. 

 (b): Finite state machine of (a). 

 

Since the convolutional encoder is a FSM, Figure 2.2 (b) demonstrates the state diagram 

of Figure 2.2 (a). To encode input data, the convolutional encoder should be initialized with 

all-zero state by initializing the memory as zero. Then the state of Figure 2.2 (b) starts at state 

“00”. If the input data is 1, the next state will be “10” and the encoder outputs two bit (data A 

and data B) encoded data “11”. If the input data is 0, the next state will be “00” and the 

encoder outputs encoded data “00”. The encoding procedure with time indexes can be 

represented as trellis diagram. Figure 2.3 shows the trellis diagram of the encoder in Figure 

2.2.  
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Figure 2.3 : Trellis diagram of (2, 1, 2) convolutional code encoder. 

 

2.1.2 Convolutional Code Decoder 

At each time index, the decoder computes and compares the metrics of all branches that 

entering the state. The branch with the minimum metric and its corresponding decision bit 

will be preserved and others will be eliminated. The history record of the decision bits is 

called survivor. According to the minimum path metric (PM) at each time index, the 

maximum likelihood sequence can be estimated. The steps of Viterbi algorithm can be 

expressed as follow: 

1. Calculate the branch metrics between each state according to the received data. 

2. Sum the previous PM ( Γ ) and corresponding branch metrics ( λ ) then compare the 

new PM with another that converges to the same state. The summation which has the 

smallest distance is updated as the new PM and the decision bit of selecting PM is 

stored into survivor memory. The operations above are called add-compare-select 

(ACS). 

3. Decode the message sequence according to the minimum PM and the survivor 

memory (find the ML path). 
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In practice, the register exchange (RE) approach and trace back (TB) approach are useful 

methods for survivor path storage management in Viterbi decoder architecture. The RE costs 

great area and power dissipation but has less operation time. The TB approach is more 

suitable for DSP applications although it has the lower operation speed.  

The TB approach is a technique to trace the maximum likelihood sequence in the 

survivor memory. The convolutional code in Figure 2.2 is taken as an example. The trellis 

diagram and decision bit of each state is shown in Figure 2.4. In this figure, the point 

represents one state and the dotted line shows the eliminated path. At each state, if the ACS 

selects the upper sum (path), the decision bit will be “0”. Otherwise, if the ACS selects the 

lower sum (path), the decision bit will be “1”.  
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Figure 2.4: Trellis diagram and decision bits of (2, 1, 2) convolutional code. 

 

The path metrics accumulate in every time index and the minimum one indicates the 

maximum likely state. The corresponding sequence is the maximum likelihood sequence. The 

TB operation starts from the state of minimum PM and updates the state by shifting the state 
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left and replacing the lsb by the chosen decision bit. The TB operation of Figure 2.4 is 

demonstrated in Figure 2.5 and the decoded bits are the decision bit selected during TB 

operation. 

 

 

Figure 2.5: Trace back operation and decoded bits. 

 

Due to the supporting stage is quite large (up to 512 states) and TB approach has less 

address calculations, our proposed AS-DSP adopts the TB approach to increase the decoding 

performance. 

 

2.2 Introduction to Reed-Solomon Code 
RS codes are adopted in many communication and storage systems applications such as 

digital TV system, cable modem, compact disk (CD), and digital versatile disk (DVD). 

Reed-Solomon (RS) codes have been widely used for error control due to its superior 

capability for bust error correction, the feasibility for VLSI implementation and the lower 

redundancy comparing with other FEC codes. A (N, K) RS code over GF(2m) contains N 
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symbols of codeword with K message symbols. The maximum correctable error number is t, 

( ) / 2t N K= −⎢ ⎥⎣ ⎦ . The operations of RS codes are constructed by multiplication (FFM) and 

finite field addition (FFA) over GF(2m). FFM takes many operation cycles in traditional DSP.  

 

2.2.1 Reed-Solomon Code Encoder 

 The message polynomial of RS has K symbols ( 1 2 0, , ,K KM M M− − ) and is expressed as 

follow: 

1 2
1 2 0( ) K K

K KM x M x M x M− −
− −= + + +                   (2. 1) 

 Let α  be a primitive element in (2 )mGF . The generator polynomial ( )g x  of a 

t-error-correcting RS code has 2 2, , , tα α α  as all its roots. It has degree of 2t and can be 

represented as follows: 

2 2

0 1 2 1 2 1 2

( ) ( )( ) ( )

       

t

t t t

g x x x x

g g x g x x

α α α

− −

= + + +

= + + + +
                   (2. 2) 

 Since 2 2, , , tα α α are roots of 1 1, 2q mX q− − =  and ( )g x  divides 1 1qX − − . Therefore, 

( )g x  generates a q-array cyclic code of length 1N q= −  with exactly 2t parity-check 

symbols. The encode process multiplies M(x) and X2t then divides the product by the 

generator polynomial to obtain a remainder polynomial r(x): 

2( ) ( ) ( ) ( )tM x x q x g x r x= +                        (2. 3) 

Where 

2 1 2 2
2 1 2 2 0( ) t t

t tr x r x r x r− −
− −= + + +                     (2. 4) 

 The codeword polynomial C(x) with systematic form is: 

2

2 1 2 2 1
1 0 2 1 0

( ) ( ) ( )

        

t

K t t t
K t

C x M x x r x

M x M x r x r+ − −
− −

= +

= + + + + +
             (2. 5) 

 The encoding of RS can be implemented by a systematic feedback shift register encoder 
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as shown in Figure 2.6. 

 

0g 2g1g 2 2tg − 2 1tg −

Input 
Message

Output 
Codeword

First K cycles ticks to closed
Last N-K cycles ticks to open

First K cycles ticks down
Last N-K cycles ticks up  

Figure 2.6: Encoder of Reed-Solomon codes. 

 

2.2.2 Reed-Solomon Code Decoder 

 Assume the received polynomial is R(x) and the corresponding error polynomial is e(x). 

After translating, the received polynomial is: 

( ) ( ) ( )R x c x e x= +                           (2. 6) 

The error polynomial is: 

1 2
1 2 1 2

( ) ( ) ( )

       ,0 ,0 1j j jv
v v

e x R x c x

e x e x e x v t j j j n

= −

= + + + ≤ ≤ ≤ ≤ ≤ ≤ ≤ −
       (2. 7) 

where 1 2, , , ve e e  are error values and 1 2, , ,j j jvx x x  are the error locations. Hence, we 

need to know the error locations ijx  and the error values ie  to determine e(x). 

 The RS decoder can be separated into four parts as shown in Figure 2.7: 

1. Syndrome calculator 

2. Key equation solver 

3. Chien search 

4. Error value evaluator 
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 The syndrome calculator calculates the syndrome S1~S2t from received polynomial. The 

key equation solver generates the error locator polynomial ( )xσ  and error value evaluator 

polynomial ( )xΩ  from syndrome. The error locations and error values are produced by 

Chien search and error value evaluator. We accelerate these operations by the vector 

instruction rssyn in AD-DSP since the syndrome calculator and Chien search operate 

regularly and determine the decoding speed. This will be discussed later. 

 

 

Figure 2.7: Decoding flow of Reed-Solomon codes. 

 

 With ( ) for 1 2i
iS R i tα= ≤ ≤  and ( ) ( ) ( )R x c x e x= + , the syndrome can be represented 

as: 

1 2

1 2

1 2

1 1 2

22 22 2
2 1 2

22 22 2
2 1 2

( ) ( )

( ) ( )

                                  

( ) ( )

v

v

v

jj j
v

jj j
v

tjtj tjt t
t v

S R e e e e

S R e e e e

S R e e e e

α α α α α

α α α α α

α α α α α

= = = + + +

= = = + + +

= = = + + +

              (2. 8) 

Then the syndrome polynomial is: 

2 1
1 2 2( ) t

tS x S S x S x −= + + +                       (2. 9) 

 After syndrome calculator, the key equation solver has to find out the error locator 

polynomial ( )xσ  and error evaluator polynomial ( )xΩ . The key equation is defined as: 
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2( ) ( ) ( ) mod tx S x x xσΩ =                        (2. 10) 

 The key equation can be solved by Euclidean algorithm [4] and Berlekamp-Massey 

algorithm [5]. The Euclidean algorithm requires many finite field divisions, leading to the 

reducing of decoding speed. Since the Euclidean algorithm makes the programming more 

difficult than BM algorithm does, the BM algorithm has been chosen to implement the RS 

decoder by AS-DSP. 

 The inversionless Berlekamp-Massey algorithm [6] without erasure locator calculator 

which has 2t iterations is shown as follow: 

Initialization: 

( ) ( )( ) 1, ( ) 1, 0, 1, 1b ax x l k γΛ = Λ = = = =                   (2. 11) 

Computation: 

( ) ( )

( )

0

( ) ( ) ( )

( ) ( )

( ) ( )

( 1; 2 ; ){

    ( ) ( )

    

    ( ) ( ) ( )

     ( 0  2 1){

        ( ) ( ), ,

    }

    ( ) ( )

}

a a

l
b

j k j
j

c b a

a b

b c

for k k t k

x x x

S

x x x

If and l k

x x l k l

x x

δ

γ δ

δ

γ δ

−
=

= ≤ + +

Λ = Λ

= Λ

Λ = Λ + Λ

≠ ≤ −

Λ = Λ = − =

Λ = Λ

∑

                 (2. 12) 

 The element δ  is the discrepancy which is the convolution of syndrome polynomial 

and error locator polynomial. The dummy discrepancy γ  keeps the value of previous 

non-zero discrepancy.  The discrepancy is used to verify that the linear feedback shift 

register generates corresponding syndrome sequence at each step.  If the discrepancy is equal 

to zero, the error locator polynomial and the dummy discrepancy remain. 

After the computation above, the polynomial ( ) ( )c xΛ  is equal to ( )xσ . The Chien search 
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can find out the roots of ( )xσ  which are the error location numbers.  

 The methodology of Chien search is substitution of error locator polynomial with finite 

field elements to find out the roots of ( )xσ . 

1

0

( ( ) 0){

,

}

i
k

k

if

k

σ α

β α

−

=

==

= + +
                         (2. 13) 

According to the Forney algorithm [7], the error value kδ  at location kβ  is given by 
1

' 1

( )
( )

k
k

k

βδ
σ β

−

−

−Ω
=                            (2. 14) 

Where 

'

1

1 1,

( ) ( ) (1 )
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2.2.3 Montgomery Multiplication Algorithm 

 An element of the field GF(pm) with a prime p can be interpreted as the polynomial 

representation.  The polynomial multiplication in GF(pm) corresponds to the multiplication 

of polynomials modulo an irreducible polynomial of degree m. Suppose A and B are two 

elements in GF(pm), and µ(x) is the corresponding irreducible polynomial of degree m. By the 

polynomial representation, the multiplicative operation C=AB can be expressed as follows: 

( ) ( ) ( ) mod ( )C x A x B x xµ=                    (2. 17) 

Where C is also an element of GF(pm).  
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 Actually, the finite field addition and subtraction are just XOR operations. Therefore, 

what we interest is the multiplication and division (or say, the inverse operation) in finite field.  

According to the modulo operations in (2.17), we can adopt Montgomery multiplication 

algorithm to calculate the product C(x). The Montgomery multiplication algorithm has been 

proven that this algorithm can replace the modular operation with a series multiplication.  

The following equation defines the Montgomery product of A and B: 

)(mod)()()()(ˆ * xxRxBxAxC µ=                   (2. 18) 

 The polynomial R*(x) here is a fixed element of GF(pm) satisfying R(x)R*(x) =1 mod µ(x) 

while R(x)=xm. Note that R(x) and µ(x) must be mutually prime. It has been proven by [8] 

that the result ˆ ( )C x of (2.18) can be obtained by following equations: 

)(mod)()()()( * xRxxBxAxQ µ=                  (2. 19) 

)(/)]()()()([)(ˆ xRxxQxBxAxC µ+=                (2. 20) 

 The polynomial µ*(x) in (2.19) is defined as µ(x)µ*(x)=1 mod R(x). As compared with 

(2.18), it is evident that modulo µ(x) operation is replaced by modulo R(x) and division by 

R(x) operations. Since R(x)=xm, implementation of (2.19) and (2.20) are much easier than that 

of (2.18). Furthermore, as A is interpreted in polynomial form and R*(x)= x-m mod µ(x), (2.18) 

can be rewritten as:  

)](mod)([...

)](mod)([)](mod)([)(ˆ

0

2
2

1
1

xxxBa

xxxBaxxxBaxC
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mm
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−
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−
−

++

+=
        (2. 21) 

Rearrange this equation, an iterative representation comes out: 

)(mod)]...](mod

)]](mod)([)([..[)([)(ˆ
1

11
011
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µµ

µ
−

−−
− ++=

       (2. 22) 

Based on this equation and the transformation from (2.20) to (2.22), the Montgomery 
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multiplication algorithm is derived as:  

 

Montgomery multiplication algorithm 

 

);()(ˆ
}

;/)]()()()([)(
;mod)]())()([()(

){;;0(
;0)(

1

*

0

xSxC

xxxxBaxSxS
xxxBaxSx

imiifor
xS

m

iiii

iii

=

++=
+=

++<=
=

+ µρ
µρ

          (2. 23) 

 

The term µ*(x) is the multiplicative inverse of µ(x) under modulo x multiplication. 

 In GF(2m), elements are often represented in binary digits, and the coefficients ai are 

referred to the bits of A. The binary representation will cause some reductions to Montgomery 

multiplication algorithm. Since µ(x) is irreducible, the results of µ(x) mod x and µ*(x) mod x 

are both equal to 1. The µ*(x) term in the Montgomery multiplication algorithm can be 

eliminated, which leads ρi(x) to equal the least significant bit of the sum Si(x)+ aiB(x).  

The number of recursive operation in Montgomery multiplication depends on the field 

degree m. However, some modification can be proposed to remove the effect of unexpected 

variable m.  In equation (2.19) and (2.20), R(x) is modified to be Rd(x)=xd, and d is a 

constant integer such that d≧m. Since the result of R*
d(x) mod µ(x) is an element of GF(pm), 

there exists an element R*
d(x) in the field GF(pm) that satisfies Rd(x)R*

d(x)=1 mod x. 

Therefore, the modified Montgomery multiplication (MM) algorithm for GF(2m) with m≦d is 

constructed: 

 

Modified Montgomery multiplication algorithm 
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The term t0 is the least significant bit of the temporal element T(x). If the field degree is 

less than d, the most significant bits of A is set to zero .The final result will be multiplying the 

normal finite field product A(x)B(x) by a constant element R*
d(x) of GF(2m). The output of 

Montgomery multiplier involves a constant factor R*
d(x) mod µ(x) with the standard product. 

Such constant factor can be canceled by applying one additional Montgomery multiplier. 

Calculation of the product C(x)=A(x)B(x) can be expressed as: 

)(mod )( 2 xxxK d µ=                      (2. 25) 

))(),(),(()(ˆ xxBxAMMxC µ=                    (2. 26) 

))(),(),(ˆ()( xxKxCMMxC µ=                   (2. 27) 

where K(x) is treated as a constant value for a given µ(x). 
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Chapter 3  
Proposed AS-DSP Architecture 
 
 Since the channel decoding algorithms induce large memory bandwidth requirement and 

many computationally intensive operations, they become the critical parts of system 

throughput in general digital signal processors (DSPs). The operations such as finite field 

multiplication (FFM) and finite field inversion (FFI) also require many instruction cycles for 

conventional DSPs. Besides, the complex datapaths and data control degrade the performance 

and make programming of channel decoding more difficult. Special FUs are used in the 

proposed architecture to accelerate the decoding speed. The decoding algorithm can be 

efficiently implemented with higher throughput and less program size as a result of the 

proposed datapaths and data flow control. Moreover, the programs written in vector 

instructions are suitable for almost specifications for the same decoding scheme by adjusting 

the coefficients. Thus, programming in vector instructions is efficient and reusable. 

 

3.1 6-Staged Pipeline Architecture 
Figure 3.1 shows the block diagram of the processor. System controller manages the 

pipeline flow, FUs and access of internal memories (i-RAM). The power saving controller, 

power unit, is also designed to reduce power consumption by means of closing components 

without operation. The external memories including program memory and data memory are 

controlled by instruction cache (I-cache) and memory management unit (MMU), respectively. 

Note that a direct memory access (DMA) controller is used to improve the performance of 

data memory. Furthermore, considering the link with other devices, we added a serial 
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peripheral interface (SPI) as a serial interface connecting to external serial bus. The hardware 

architecture will be introduced in this section. 

 

 

Figure 3.1: Block diagram of AS-DSP. 

 

As shown in Figure 3.2, the processor has 6 pipeline stages: instruction fetch (IF), 

instruction decode (ID), i-RAM read (IMR), execution (EX), data memory access (MEM), 

and write back (WB). 
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Figure 3.2: Pipeline structure of AS-DSP. 

 

The instructions are fetched from I-cache in IF stage. In ID stage, the operands should be 

read from register file (RF) that is composed of 32 general purpose registers. IMR stage has 

four 256x16-bit embedded SRAMs controlled by embedded memory address generator 

(EMAG). The addresses of each SRAM are generated according to instructions, SPRs, and 

system controllers. EX stage contains several FUs: ACS, SBOX, finite field multiplier 

(FMUL), 32-bit arithmetic multiplier (MUL), and arithmetic logic unit (ALU). To increase 

throughput, FMUL is divided into MMA and MMB whereas MUL is pipelined to MUL1 and 

MUL2.  The data from external memories will be accessed in MEM stage with access time 

determined by SPRs. The results should be written back to RF and i-RAM in WB stage.  

 

System Controller 

Since the AS-DSP is a pipelined architecture and the executed instructions might have 
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the data dependency. The system controller detects the dependencies and either stalls the 

operations or forwards the dependent data. Figure 3.3 is the timing graph of several 

instructions with data dependency to Ins 1. The dotted lines represent the data path that need 

be executed and the black line is the forwarding path. 

 

 

Figure 3.3: Pipeline forwarding of AS-DSP. 

 

The system controller also manages the configuration of FUs for different datapaths and 

applications according to the instructions and SPRs. For instance, system controller can 

change the finite field number for rssyn instruction base on the GPRs, r47[5]. To get the 

higher through, system controller enable the other two finite field multipliers and open the 

datapath for them.  

 

Instruction Cache (I-Cache) 

Cache technology is used for almost every processor to improve system performance by 

reducing the external memory accessing. Because of the spatial locality of programs, 
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instruction cache can significantly diminish the load operation from program memory 

especially when the loop condition occurred. Consider area and speed, the instruction cache 

(I-Cache) of AS-DSP has 128 entries for 16-bit width; it based on two-set-associative scheme 

as shown in Figure 3.4. 

 

 

Figure 3.4: Structure of I-Cache. 

 

 The miss penalty of I-Cache is five cycles because the latency of access external 

program memory. Table 3.1 lists the simulation result of I-cache when decoding a period of 

64 states convolutional code using Viterbi algorithm. The program can decode 40 bits which 

calculates 80 period of trellis and traces back 40 times. 

 

Table 3.1 Simulation result of I-Cache. 
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Number of instructions 120 

Number of executing instructions 2537 

Number of hit instructions 2400 

Hit rate 94.6 

Average cycle per instruction (CPI) 1.216 

 

Serial Peripheral Interface (SPI) 

Since the interface to communicate with other system is needed and the data rate of FEC 

decoding is not too high, the proposed AS-DSP uses a serial interface SPI. The block diagram 

of SPI is shown in Figure 3.5.  

 

 

Figure 3.5: Block diagram of SPI. 
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The SPI module allows a duplex, synchronous, serial communication between the MCU 

and peripheral devices. It has these distinctive features as fellow: 

 Master mode and slave mode 

 Bi-directional mode 

 Slave select output 

 Double buffered data register 

 Serial clock with programmable polarity and phase 

 

According to the document, the maximum transmission rate is 1/2 clock rate. For 

example, the maximum data rate of SPI is 66.5Mbp/s if the operating frequency is 133MHz. 

 

3.2 Instruction Set & Register File 
The instruction set of proposed processor is listed in Table 3.2. The general instructions 

support the basic functions such as arithmetic operations, logical operations, and finite field 

multiplication. They also control the programs by register transfer, load/store, and branch 

instructions. Note that the special instruction for advance encryption standard (AES) is a 

hardware lookup table called SBOX in its algorithm [9]. The Viterbi result instructions output 

the decoded data to external memory or to the serial bus. The vector instructions have six 

kinds of operations including two kinds for FEC applications and they will be discussed later. 

 

Table 3.2 Instruction Set of AS-DSP 

General Instructions 
Arithmetic add, sub, addi, subi, add32, sub32, shift, arishift, mul, 

mac, mac32 
Logic And, or, xor, not, inv 
AES sbox, sboxi 
Finite field multiplication fmul 
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Register transfer move, movie, set 
Branch Jump, jumpi, beq, beqi, bne, bnei, call, return, loop, 
Load/store Load, store 
Viterbi result viso, vistore 

Vector Instructions 
Arithmetic vaddv, vsubv, vaddr, vsubr, vmac, vmin, vmax, 

vmulv 
Logic vandv, vorv, vxorv, vnot,  
Load/store vpload, vnload, vostore, vnstore 
Finite field multiplication vfmac, vfmulv 
Viterbi viacs, viacsm, vitb 
RS rssyn 

 

The general instructions have three addressing modes (a), (b) and (c). The Rd, Rs1, Rs2 

represent destination Register, source register 1 and source register 2, respectively. The 

operation of each addressing mode is decided by the field “OP code” and “Func”.  

 

Addressing mode (a), ( 1, 2)Rd operation Rs Rs=  

 15          12  11         9  8          6  5            2  1   0

OP code Rd Rs1 Rs2 Func 

 

Addressing mode (b), )constant,( RdoperationRd =  

 15          12  11         9  8                              1  0 

OP code Rd Constant Func

 

Addressing mode (c), )constant( operationRd =  

 15          12  11                                           1  0 

OP code Constant Func
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The vector instructions have two addressing mode (d) and (e). The Vd, Vs1, Vs2 represent 

destination vector, source vector 1 and source vector 2, respectively. Addressing mode (d) is 

designed for vector memory access and (e) is the vector operations. Section 3.4 details the 

vector operations and gives some examples to show how the vector operations work.  

 

Addressing mode (d), 

[  % 256]  ( _ [ 1]),  ( 32 0) ~ ( 32 2 1)Vd i operation data memory i Rs i R R Rs= + ∈ + + −  

15          12 11 10  9 8          6 5            2 1   0 

OP code Reserved Vd Rs1 Rs2 Func 

 

Addressing mode (e), 

[  % 256]  ( 1[ ], 2[ ]),  ( 32 0 ~ 32 2 1)Vd i operation Vs i Vs i i R R Rs= ∈ + + −  

15          12 11    10 9     8  7      6 5            2 1   0 

OP code Vd or Rd Vs1 Vs2 or Rs1 Rs2 Func 

  

 The register file (RF) composes 32 general purpose registers (GPRs) and 16 special 

purpose registers (SPRs). The functions of RF are listed at Table 3.3 and Table 3.4. The 

contents of SPRs configure the Function units, i-RAM, datapaths, and status of processor. 

SPRs are only writable for programmers by using register transfer instruction, “set”. 

 

Table 3.3 General purposed registers of AS_DSP 

r0~r13 GPRs 

r14 GPRs, (vmin, vmax index register) 

r15 GPRs, (mul result [31:16]) 

GPRs

r16 GPRs 
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r17 GPRs , (compare register of beqi, bnei) 

r18~r27 GPRs 

r28 GPRs , (result of rssyn {S3,S2}) 

r29 GPRs , (pointer of survival memory) 

r30 GPRs , (pointer of trace back) 

r31 Zero 

 

Table 3.4 Special purposed registers of AS_DSP 

r32 i-RAM starting address 

r33 g1(x) of convolutional code  [8:0] 

r34 g2(x) of convolutional code  [8:0] 

r35 Viterbi constraint length 

r36 Pm00 

r37 Pm01 

r38 Pm10 

r39 Pm11 

r40 k(x) of Montgomery mul, [7:0] 

r41 k(x) of Montgomery mul, [7:0] 

r42 The register of jump 

r43 Loop size 

r44 Trace back length 

r45 RS alpha 1 

r46 RS alpha 2 

SPRs

r47 Processor status control register 
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 The SPR R47 controls the statuses of processor such as I-cache, cycles of accessing 

external memory and decoding method for FEC applications. The detail functionality of R47 

is shown at Table 3.5. 

 

Table 3.5 Functionality of SPR R47 

0: use min pm to trace back 
r47[0] Trace back control 

1: use max pm to trace back 

0: use 8-bit, [7:0] 
r47[1] RS data type 

1: use 16-bit, [15:0] 

0: decode 1-bit/vitb 
r47[2] Trace back method 

1: decode N-bit/vitb 

0: R28=R28 
r47[3] Read serial in data 

1: R28=serial input data 

0: use 1 stage of FMUL 
r47[4] 

Finite field multiplier status for 

rssyn instruction 1: use 2 stage of FMUL 

0: use 2 FMULs 
r47[5] 

Finite field multiplier number 

for rssyn instruction 1: use 4 FMULs 

r47[11:6] Reserved Reserved 

0: Off 
r47[12] Cache enable 

1: On 

r47[15:13] Data memory access cycle 
0: 1 cycle per fetch
               
7: 8 cycles per fetch

 

 

 In order to control the serial interface SPI, the virtual register is designed to index the 

SPCR, SPSR, SPDR, and SPER [11]. Actually, the register SPDR is the index for two FIFO 
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buffer; input buffer and output buffer. The corresponding virtual registers for SPI are listed at 

Table 3.6. 

 

Table 3.6 Virtual registers of AS-DSP 

r48 SPI control register, SPCR 

r49 SPI status register, SPSR 

r50 SPI data register, SPDR (serial output data register) 

r51 SPI extension register, SPER 

r52~r53 Reserved 

r54 
SPI data register, SPDR (write dummy data to fetch 

serial input data) 

r55 Reserved 

 
3.3 Function Units 
 Function units of AS-DSP include ACS, SBOX, arithmetic multiplier (MUL), and finite 

field multiplier (FMUL).  

 The ACS unit is used to speed up the operation of Viterbi decoding. SBOX is the 

nonlinear substitution of AES which is usually designed as a ROM or lookup table. The 

SBOX block in processor is implemented by composite field [10] and saves 20% area as 

compared with ROM. 

 The processor contains a 16-bit natural number multiplier which can perform 32-bit 

result. The multiplier is pipelined as two stages (MUL1 and MUL2) to increase operating 

speed. 

3.3.1 ACS 

Add-compare-select (ACS) calculates sums of path metrics and branch metrics then 
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compare them to select a probable decision. Figure 3.6 represents a period of 4 states 

convolutional code. There are two butterflies in one transition in Figure 3.6, and each one has 

two ACS operations.  

 

Figure 3.6: Transition of convolution code. 

 

The function unit ACS is composed of four adders and two comparators as shown in 

Figure 3.7, and therefore it provides two ACS operations per cycle. 

 

 

Figure 3.7: The function unit ACS. 
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3.3.2 Finite field multiplier 

 The Montgomery algorithm provides a universal and simple modular operation. 

Montgomery multiplication (MM) function is used to implement multiplication of A and B in 

finite field (2 )mGF as (1). In (2), another MM block is used to normalize (1) by multiplying a 

constant K, or the inverse of K*. The m of FMUL is small than or equal to 8, and µ is 

primitive polynomial. 

*ˆ modC A B K µ= × ×                          (3. 1) 

modC A B µ= ×                                                       (3. 2) 

MMA and MMB are the same function blocks in Figure 3.8. Both of them contain two 

8-bit (m≦8) Montgomery multipliers (MM), one is for bit 7~0 and another is for bit 15~8. 

The block diagram of FMUL is shown in Figure 3.8 (a). In order to reach the higher operation 

speed, the FMUL is pipelined to two stages as shown in Figure 3.8 (b). 
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Figure 3.8  (a): Block diagram of finite field multipliers. 

       (b): Datapath of two 8-bit finite field multipliers. 
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3.4 Vector Instructions 
 Most of decoding algorithms involve sequentially operations on a series of data. The 

regularity of computation will simplify the memory access and data flow control. To 

efficiently process such operations, the vector instructions have been included in the processor. 

These instructions benefit many computations such as syndrome calculation in RS decoding 

and ACS operations in Viterbi decoding.  

 The vector operations require multiple accesses of i-RAM and configuration of datapaths. 

EMAG calculates the appropriate addresses for vector operations to simplify the executions. 

Furthermore, the automatic control of operations improves both the throughput and the size of 

programs. 

 

3.4.1 Vector instruction for general applications 

 The general applications include arithmetic, logic, load/store, and finite field 

multiplication. Vector instructions of the AS-DSP are listed in Table 3.2. The character “V” 

means vector and “R” represents register. For instance, the instruction “vaddv e2 e1 e0 r7;” 

expresses vector1 (embedded memory 1) adds vector0 then stores the results to vector2. It can 

be denoted as 2 1 0[ ] [ ] [ ], ( 32) ~ ( 32 7 1) mod 256e i e i e i i r r r= + ∈ + − . The register r32 is the 

initial index of vector operations. Because the memory of i-RAM has 256 entries, the register 

r32 and r7 here must less than or equal to 256. Table 3.7 takes some vector instructions as 

examples and explains their functions.  

 

Table 3.7 Examples of vector instruction for general application. 

Kind Instruction Function Index i* Index j 

Arithmetic vaddv e2 e1 e0 r7; e2[i] =e1[i]+e0[i] r32~r32+r7-1 N.A. 
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vaddvre2 e1 r0 r7; e2[i] =e1[i]+r0 r32~r32+r7-1 N.A. 

vmax r3 e0 r7; 
r3 =max(e0[i]) 

r14=i, e0[i]=max 
r32~r32+r7-1 N.A. 

vpload e1 r6 r7;  e0[i]=memory[j] r32~r32+r7-1 r6~r6+r7-1 
Load/store 

vnload e1 r6 r7; e0[i]=memory[j] r32~r32-r7+1 r6~r6+r7-1 

*: i = i mod 256 when it is bigger than 256. 

 

Figure 3.9 represents the vector operations of arithmetic, logic, and finite field 

multiplication. The EMAG generates the addresses and controls the read/write operation for 4 

banks of i-RAM due to different instructions; it also manages the selector to choose the 

appropriate data to support two read and two write at most in one cycle. 

 

 

Figure 3.9: Block diagram of vector operations. 

 

 The load/store of vector operations is moving a serial of data from/to the external data 

memory. Because the data is continue, the processor can only calculate the initial address and 

access data serially. Thus, the DMA technology is used to automatically access data for 

i-RAM. In order to reduce idle cycles when accessing a block of data from external memory, 
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the memory accesses and other operations are designed to execute simultaneously. Hence the 

AS-DSP can be used efficiently. Table 3.8 shows the operations of syndrome calculation with 

and without DMA. With out DMA, the AS-DSP loads the received polynomial to i-RAM than 

calculate the syndrome and takes *
Number of FMUL

N tN +  cycles. With DMA, the received 

polynomial can be loaded when calculating last syndrome and takes only *
Number of FMUL

N t  

cycles. 

 

Table 3.8 Cycles of calculating syndrome with and without DMA 

 (204,188)RS syndrome calculation (cycle) 

2 FMUL 1020 816 
AS-DSP 

4 FMUL 612 408 

 

The instruction and addressing mode (d) of load/store for vector operations are 

mentioned in section 3.1. Figure 3.10 is the block diagram of DMA. FIFO buffer stores the 

information for DMA form the instruction as follows. 

 Values of Rs1[15:0], Rs2[7:0] and r32[7:0]. 

 L/S, P/N decoded from OP code and Func. 

 Vd, Rs1 and Rs2. 

The index Vd, Rs1 and Rs2 of each DMA access will be compared by system controller. 

The DMA stall signal will be assert if there is any dependence between vector memory access 

and others. The controller in DMA asserts the Buffer Full signal if the FIFO Buffer is full then 

the system controller will stall the processor. 
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Figure 3.10: Block diagram of DMA. 

 

 

3.4.2 Vector instruction for FEC applications 

 In this section, the vector instruction for Reed-Solomon (RS) and Viterbi decoding are 

introduced here. 

 

3.4.2.1. Viterbi Decoding 

The Viterbi algorithm [12] consists of three parts: branch metric calculation (BM), 

add-compare-selection (ACS), and survival memory (SM). In BM, the DSP will calculate 

branch metrics for each state transition in the trellis. Since branch metrics have only four 

different values in 1/2 code rate convolutional code, the Branch metric look-up-table 

(BM-LUT) approach is proposed to reduce unnecessary calculations.  
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Figure 3.11: Encoder of 64 state convolution code. 

 

The branch metric are the encode results of convolutional code and convolutional encoder 

can be regarded as a finite state machine as shown in Figure 3.11. So the BM-LUT can 

calculate the branch metric by the state transitions and the generator polynomial. The 

architecture of BM-LUT is illustrated in Figure 3.12. The constraint length and generator 

polynomial decides the input of modulo-two adder. The outputs of modulo-two adder control 

the multiplex, MUX and select branch metric form pm00~pm11 which are the values of four 

different branch metric. 
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Figure 3.12: Architecture of BM-LUT. 

 

The vector ACS operation performs two ACS operations according to the BM-LUT and 
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saves the decisions to external memory. For instance, the instruction “viacs e2 e0 e1 r7” 

represents one vector ACS operation in Figure 3.13. Bank0 and Bank1 store the path metric 

and their indexes are the current states. The trellis controller generates the address of 

Bank0~Bank3 which are the current states and next states in Figure 3.13. 

 

 
Figure 3.13: ACS vector operations diagram. 

 

Figure 3.14 represents the architecture of vector ACS instruction. The trellis controller 

generates read and write addresses which are the current and next state. The BM-LUT 

calculates branch metric for each ACS then ACS Unit computes the new path metric and store 

them to Bank2 and Bank3 in this case. The decisions during ACS operation are buffered and 

stored into the external memory. The GPRs r29 which is the stack pointer of survival memory 

are automatically update when the decisions are stored. 
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Figure 3.14: Architecture of vector ACS instruction. 

 

After the last ACS operation, the most probable state is decided by the minimum or 

maximum path metric. Trace back operation is used for SM, and the survival path can be 

found through external memory accesses. 

 

3.4.2.2. RS Decoding 

 The syndrome calculator and Chien search constitute over 50% computations of RS 

decoding, and both of them are similar operations [13]. The syndrome calculator generates a 

set of syndromes S1~S2t from received polynomial R(x). The representation of syndromes 

calculation is as following. The received polynomial can be written as (3.5) by Horner’s rule. 

( ),  1 ~ 2i
iS R i tα −= ∈                          (3. 3) 

1
2 1

0 1 2 1
0

( )
N

j N
j N

j
R x R x R R x R x R x

−
−

−
=

= = + + + +∑               (3. 4) 
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 The Montgomery multiplier of jR and jα − can be written as (3.6) according (), and the 

result should be normalized by MMB as Figure 3.8 (a). Function (3.6) can be represented as 

(3.7) if jα − is replaced by j mα − +  to avoid normalizing K*. Without normalization, 

multiplications in syndrome calculation can be executed by a single MM block, MMA or 

MMB. 

*ˆ ( ) mod ( ),  i m m
jC x R x Kα α µ α− − −= =                   (3. 6) 

ˆ ( ) mod ( )

        mod ( )

i m m
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i
j

C x R x

R x

α α µ

α µ

− + −

−

=

=
                      (3. 7) 

 Because 1 2~ tα α− − and 1 2~m t mα α− + − + are constants and m is fixed, the replacement 

requires no extra computations. Each MM block can calculates one syndrome itself, and 

therefore the execution time in syndrome calculating is two time faster than traditional works. 
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Figure 3.15: Datapath of FMUL when calculating syndrome. 

 

 Figure 3.8 (b) is the datapath of calculating finite field multiplication and Figure 3.15 is 

the datapath when calculating syndrome. The register r45[15:8], r45[7:0], r46[15:8] and 

r46[7:0] represent constants 0jα − , 1jα − , 2jα − and 3jα − ,respectively. For example, the instruction 

“rssyn r0 e0 r7;” represents syndrome calculation. The receive polynomial has to be stored in 

Bank0 and r7 must equals to N. The final results S0 and S1 will write back to register r0 

according to the instruction. Furthermore, the results S2 and S3 will write back to the register 

r28 as shown in Table 3.3. 

 At the first cycle, the multiplexers in Figure 3.15 select the input from iRAM by setting 

control signal to zero. Then the function block MM calculates the product of 

1 , 0 ~ 3ij
NR iα −

− ∈ ( 1Nr − is the first output of iRAM). At the second cycle, the value of 

modulo-2 adders can be represented as 1 2 , 0 ~ 3ij
N NSi R R iα −

− −= + ∈ . The multiplexers selects 

the values S0~S3 after the first cycle. The syndrome S0~S3 will be calculated after N cycles. 

Two 8-bit FFM are implemented in this design. Because of the designed datapaths, FFM can 

be easily added according to the applications, and calculation speed will rise linearly. 
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Chapter 4  
Chip Implementation & FEC 
Applications 

 
This chapter discusses the details of implement RS decoding and Viterbi decoding by 

AS-DSP. Before the discussion, the design flow will be introduced. The Design flow chart is 

illustrated in Figure 4.1.  

 

 

Figure 4.1: Design flow chart.  
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At first, we simulate the FEC algorithm by software (C or Matlab) and record the results 

for each decoding steps. After finishing the assembly codes, the translator translates them to 

machine codes. To ensure the accuracy of the assembly codes and machine codes, the 

simulator compares the machine codes with assembly codes. Besides, the simulator can 

calculate the values of every register, i-RAM and external memory for each instruction and 

represent them if user wants. After comparing with the results of software and simulator, the 

machine codes will be test in the pre-layout simulation of AS-DSP. If the comparison is not 

correct, we need to check out the RTL coding until. 

 

4.1 Viterbi decoding using AS-DSP 

4.1.1 Some details in Viterbi decoding 

In section 2.1.2, we introduced the Viterbi decoder and explain why we select the TM 

approach. Here we discuss other issues in Viterbi decoding. 

In the real applications, the length of received symbols may be quite long. It is 

impossible to store the decision bits if we start to trace back after received all symbols. Thus, 

a suitable TB length (or called truncation length) should be defined without serious 

performance degradation. The rule of thumb is that truncation length is about five times of 

constraint length. 

In Viterbi algorithm, the path metric accumulates at each time index; and undoubtedly 

increasing as time goes by. The path metric must be limited in a range so that it can be 

expressed with finite bits. There are several approaches such as reset, rescaling subtraction, 

shift, and modulo normalization. The modulo normalization approach (also called two’s 

complement arithmetic approach) is more efficient than others. As shown in Figure 4.2, the 

maximum difference between time constant t=k and t=2k-L is B x L; where B and L are 

maximum value of branch metrics and truncation length, respectively. 
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Figure 4.2: The survival path of convolutional codes.  

 

The concept of modulo normalization is not to avoid overflow but to accommodate. 

Figure 4.3 demonstrates the ideal of modulo normalization. M1 and M2 are both positive 

number and 11 2 2cM M −− < ; where C is the bit number representing path metric. 

c

c

1 1 mod 2

2 2 mod 2

m M

m M

=

=
                          (4. 1) 

Thus, m1 and m2 can be presented on half cycle without confusing their difference. The 

penalty of modulo normalization is to increase one bit [14]. 

 

 

Figure 4.3: The ideal of modulo normalization.  
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The AS-DSP has 16-bit data type, which means it can tolerate the maximum difference 

about 215-1. The huge range of path metric can implement every spec. of convolutional code 

without error when normalizing. 

As shown in Figure 4.2, the truncation length is L. It means that the decoded data has the 

acceptable accuracy if we track back at least L length then decode the data. The AS-DSP has 

two decoding strategies for different decoding speed. Strategy one is decoding one bit data 

after tracing back L length and Strategy two is decoding k bits data. Take Figure 4.2 as 

example. Since we can ensure the accuracy before time index k, we can trace back form time 

index t = 2k to t = 0. Then the data form 0~k can be decoded and the decoding speed is k 

times as fast as strategy one. 

 

4.1.2 Decoding procedure and data rate for Viterbi decoding 

This section talks about the notice of Viterbi decoding using AS-DSP and takes the 

convolutional code of 802.11a as an example. The following steps are the decoding procedure 

of Viterbi decoding: 

1. Initializing the AS-DSP. 

 The FUs and states of processor should be initialized by setting the SPR r47. The 

detail of r47 is listed in Table 3.2. For this example, we enable the cache and set the 

access cycle as 3 (base on the spec. of asynchronous RAM [15]). Table 4.1 lists the 

fields that need to be initialized. 

 

Table 4.1 The list of initialization. 

SPR Value Function 

r47[0] 0 Use min PM to trace back 
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r47[2] 1 Decode N-bit/vitb N=trace back length 

r47[12] 1 Enable the I-Cache 

r47[15:13] 2 3 cycles for accessing external memory 

 

2. Setting the coefficient of Viterbi decoding 

 In this step, we setup the coefficient of Viterbi decoding. First, we set the trace back 

control and trace back method as “1”. The trace back control is to find the maximum 

likelihood path by selecting the minimum or maximum path metric according to different 

applications. The trace back method was talked before; it can decode k bit data when it 

setting as 1. Second, we setup the generator polynomial g1(x) and g2(x), constraint 

length and trace back length. The PMs stored in i-RAM have to be initialized, too. 

Tables 4.2 lists the coefficient and explain their function. 

 

Table 4.2 The coefficient of Viterbi decoding. 

GPR Value Function 

r29 2000hex Pointer of survival memory 

r33 1338 Generator polynomial g1(x) 

r34 1718 Generator polynomial g2(x) 

r35 7 Constraint length 

r44 40 Trace back length (truncation length) 

 

3. Execute ACS operations. 

After initializing the AS-DSP and setting the coefficient, we start the Viterbi 

decoding. The first step of ACS operation is to calculate the branch metrics 
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(pm00~pm11). After that, the instruction viacs updates the new PMs, survival memory 

and pointer of survival memory automatically. 

 

4. Trace back operation. 

The instruction vitb can trace back according the minimum PM then decode the 

information data. Since we set the trace back method as “1” and the track back length is 

40. We get 40 information bits after 80 (40 x 2) memory accessing. Thus, it takes 2 x L 

cycles for generating one information bit in vitb operation. 

 

The N states convolutional code needs N ACS operations for one time index. Since the 

instruction viacs performances two ACS operations per cycle, it takes N/2+8+L+2L cycles to 

decode one information bit. The 8+L is the cycles when updating the branch metrics and 2L is 

the average cycles when tracing back. Table 4.3 is the average operation cycles for decoding 

one information bit and corresponding data rate when working at 133MHz. 

 

Table 4.3 Operation cycles and data rate at different state numbers of convolutional code 
(L=3). 

State number 4 8 16 32 64 128 256 512 

Operation cycles 19 21 25 33 49 81 145 273 

Data Rate at 

133MHz (Mbp/s)
7.00 6.33 5.32 4.03 2.71 1.64 0.92 0.48 

 

4.2 RS decoding using AS-DSP 
The decoding procedure is similar to the decoding procedure of Viterbi decoding. We 

take the (255, 239)RS code as an example here. The decoding step is illustrates as follow: 
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1. Initializing the AS-DSP. 

 Table 4.4 list the fields that need to be initialized.  

 

Table 4.4 The list of initialization. 

SPR Value Function 

r47[1] 0 Use 8-bit data type 

r47[4] 1 Use two stage of FMUL 

r47[5] 0 Use two FMULs 

r47[12] 1 Enable the I-Cache 

r47[15:13] 2 3 cycles for accessing external memory 

 

2. Setting the coefficient of Viterbi decoding 

 Tables 4.5 lists the coefficient and explain their function. 

 

Table 4.5 The coefficient of Viterbi decoding. 

GPR Value Function 

R40 8Ehex k(x) of Montgomery mul 

R41 4Chex P(x) of Montgomery mul 

 

3. RS decoding 

The decoding flow is introduced in chapter 2. The decoder is implemented 

according to the decoding flow. 
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Table 4.6 is the operation cycles at different error numbers and corresponding data rate 

of (255,239)RS. The maximum correctable error is 255 239 8
2

t −
= = . The codeword will not 

be corrected if error number is bigger than 8. Figure 4.4 demonstrate the corresponding data 

rate of Table4.6 in different SNR. 

 

Table 4.6 Operation cycles and data rate at different error number for (255, 239)RS (L=3) 

Error 

number(s) 

Operation 

cycles 

Data rate at 

133MHz (Mbp/s) 

0 2265 112.27 

1 12250 20.76 

2 12945 19.64 

3 13705 18.55 

4 14526 17.51 

5 15409 16.50 

6 16354 15.55 

7 17361 14.65 

8 18430 13.80 

>8 13611 18.68 
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Figure 4.4: Data Rate of (255,239)RS on BPSK channel. 

 

Table 4.7 is the cycles of each steps when error number = 8. The syndrome calculation 

and Chien search are accelerated by the instruction rssyn. 

 

Table 4.7 Operation cycles for each steps when error number =8. 

Syndrome calculation 2240 

Key equation 8745 

Chien search 2161 

Error value 4906 

Correction 378 

 

If we use the 16-bit data type for RS decoding, the decoder can decode two codeword 

simultaneously. Thus, the data rate will be almost twice as fast as 8-bit data type. The data rate 

of (255, 239)RS is 27 Mbp/s when error number = 8. 

 

4.3 Chip specification 
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The processor is implemented with the 0.18µm CMOS standard cell library and 0.18µm 

1P6M process. The chip size is 7.73mm2 while the core occupies 3.5mm2. The processor has 

18k bits embedded SRAM and the total gate count is 139.4k. After static timing analysis (STA) 

and post-layout simulation, the processor can work successfully at 133MHz under 1.62V and 

worst speed condition. While working at 1.98 supply and 133MHz, the power dissipation is 

about 141mW, and the worst IR drop is 0.14V. Table 4.8 summarizes the chip features. 

 

Table 4.8 Summary of the chip. 

 Purposed ASDSP 

Technology 0.18µm 1P6M 

Package CQFP144 

Supply Voltage 1.8V 

Work Frequency 133MHz (1.62V,125°C, worst process) 

Chip Size 2.78x2.78mm2 

Core Size 1.87x1.87mm2 

Gate Count 139.4k 

Embedded SRAM 18k bits 

Power Dissipation 141mW (1.98V) 
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Figure 4.5: The microphoto of the chip. 

 

 

4.4 Comparison with other similar work 
Table 4.9 shows the performance comparisons with TI’s TMS320C64X and 

TMS320C54X DSP families. As compared with TMS320C64X family, the data rate has about 

15 times improvement when decoding 512 states convolutional code. 



 51

Table 4.9 Viterbi performance compares with TMS320C family. 

  TMS320C64X TMS320C54X 16-bit ASDSP 

Technology 0.13um N.A. 0.18um 

Clock rate (MHz) 500~700 100~160 133 

M support 5~9 N.A. 2~9 

32 states convolutional code N.A. 444 Bytes 110 Bytes 

32 states convolutional code 
N.A. 

3.1Mb/s 

(160MHz) 

4.03Mb/s 

(133MHz) 

512 states convolutional code 32Kb/s 

(500MHz) 
N.A. 

480Kb/s 

(133MHz) 

 

Table 4.10 demonstrates the operation cycles for each syndrome calculation. The 

TMS320C64X has eight finite field multipliers and takes 470 cycles to finish one syndrome. 

The execution cycle number using one FFM is 3760. The proposed processor has two 

multipliers and needs 816 cycles to complete this work. 

 

Table 4.10 Performance of syndrome calculation compares with TMS320C64X. 

 TMS320C64X 16-bit ASDSP 

(204,188)RS syndrome execution cycles 470 

(8 FFMs) 

816 

(2 FFMs) 

(204,188)RS syndrome code size (Bytes) 1100 48 
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Chapter 5  
Conclusion and Future Work 
 
5.1 Conclusion 

The design and implementation of a 16-bit AS-DSP supporting various FEC applications 

is proposed. The architecture using the vector operations with optimized internal memory 

organization is proposed to increase the memory bandwidth efficiency. The datapaths also 

simplify the data flow control and improve both system throughput and program code size. 

After implemented by 0.18µm 1P6M CMOS process, the chip can provide at least 7Mb/s data 

rate for 4 state convolutional code decoding and 13.8Mb/s data rate for (255,239) 

Reed-Solomon decoding respectively. 

 

5.2 Future Work 
As shown in Table 1.1, the data rate of DVB-T and 802.11a are 28Mbp/s and 54Mbp/s, 

respectively. The data rates of corresponding decoding process of AS-DSP are 25Mbp/s and 

2.71Mbp/s, respectively. The decoding speed is not high enough to support every spec. We 

have to better our design in two directions, software and hardware. Since the programs for 

AS-DSP are only translated by a simple translator, the non-optimized machine codes reduce 

the performance. The compiler is needed to improve system performance. Besides, the 

datapath for FEC applications have to be more flexibility and powerful to speed up the 

decoding process. 
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