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摘            要 

 

隨著製程的進步，越來越多的電路可以整合進去單一的晶片裡面，這

同時也代表在現今的設計裡面需要越來越多的輸出輸入單元。覆晶式

設計跟傳統的週遭式焊接線設計相比，它更適合需要大量輸出輸入的

設計，在這篇論文裡面我們提出了一個覆晶式設計的輸入輸出緩衝器

區塊與核心單元擺置的演算法，可針對面積、接線長度、信號的不對

稱做優化，這個演算法可以銜接既有的擺置方法，將原來的擺置做成

覆晶式的設計，實驗數據顯示我們的方法跟傳統週遭式焊接線設計有

更好的效能，特別是在擁有更多的輸出輸入單元的設計上。 
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Abstract 

 

 As silicon technology scales, we can integrate more and more circuits on a single 
chip, which means more I/Os are needed in modern designs. The flip-chip design is 
better than the typical peripheral wire-bond design in the increase in I/O count. In this 
thesis, we develop an I/O buffer block placer algorithm in area, wirelength and signal 
skew optimization for flip-chip design. We can add this step to an existing design 
flow to convert the initial peripheral wire-bond I/O design to area array I/O design. 
Experimental results have shown that our algorithm has better performance compared 
with peripheral design in high I/O count circuits. 
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Chapter 1

Introduction

As silicon technology scales, we can integrate more and more circuits even entire

electronic system on a single chip (SoC). Since more circuits are integrated on one

single chip, that means more I/Os are needed in modern designs. Many high-

performance ICs and microprocessors are built with more I/O connections than in

the past [1]. [2] showed the trend in the increase in I/O count and the reduction of

die size when the typical peripheral wire-bond design was replaced by the flip-chip

design. As a result, the flip-chip design shown in Figure 1.1 is considered a better

choice [3,4]. There are some more advantages of flip-chip design:

• Minimizes size of electrostatic discharge (ESD) structure for intra-package IO

• Improved signal integrity due to power and ground pad structure

Since flip-chip design allows I/O buffers to be placed anywhere on the die, we

need to focus on the change to better the design and the cost for placing I/O buffer

blocks into the design. Many approaches and methodologies have been presented in

the literature [5,6,7,8,10], dealing with I/O placement and electrical checking using

flip-chip technology. In [9], they utilized flip-chip design to minimize interconnect

length which is the major concern in I/O placement. Recently, [14] further consider

the building cost of I/O buffer blocks.
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Figure 1.1: Area-array footprint ASIC. The Vdd and Gnd bumps are uniformly
distributed across the die with signal bumps in fixed interspersed locations. I/O
buffers are associated with some specified signals bump and connected by pad trans-
fer metal.[14]

I/O buffers usually come with peripheral circuitry such as testing logic and ESD

structure. There is a required minimal spacing between ESD structures and active

devices due to the foundry rules [16], forming a clearance region between standard

cells and I/O buffer blocks. Once we clustered I/O buffers in one single block,

the clearance region is shared. In addition, the design cost for power routing to the
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buffer block is reduced as well. Comparing to the approaches which place I/O buffers

in greedy ways [7,10], the design cost can be apparently reduced. Therefore, the

tradeoff between performance and cost in I/O buffer placement should be seriously

considered.

For most flip-chip designs, like microprocessors, there are a large number of

input/output pins used as data bus. For such designs, we must control the signal

skew problem carefully. In other words, we have to make sure that signals arrive

in the core simultaneously. This can be achieved by adjust the positions of bump

balls. input/output buffer blocks and cells.

In this thesis, we study the problem of I/O buffer placement for flip-chip design.

We built up a simple model for I/O buffer block and propose a placement algorithm

to minimize interconnection length and reduce signal skew.

1.1 Organization of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 describes the I/O

buffer placement considerations, our model for I/O buffer block, force-directed place-

ment flow and problem formulation. Chapter 3 presents our four-stage algorithm

with a legalization, a numerical analysis method, and some heuristic methods. Chap-

ter 4 shows the experimental results. Chapter 5 presents the conclusion and future

works.
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Chapter 2

Area Array I/O Buffer Block
Placement

Flip-chip technology allows our design to be built with many more I/O connections

and power bumps than in the past. As a result, the design will counter many other

problems such as long interconnection path [9] and hot-spot problem [15]. While

performing area array I/O buffer block placement, we can place those buffer blocks

anywhere in the design, the minimal spacing between ESD structures and active

devices will become a problem. We need to focus on those problem to better our

design while performing I/O buffer placement.

In the following, we will introduce the way we model our I/O buffer block,

force directed placement flow for our buffer block placer, our I/O buffer placement

methodology and problem formulation.

2.1 I/O Buffer Modeling

There is an example for flip-chip style design shown in Figure 2.1 [16]. This chip

adopted flip-chip design to reduce 20% of die area comparing to the peripheral pad

design with 114 standard I/O pads along the perimeter. Although flip-chip design

allows I/O buffer can be placed anywhere on the die, the design grouped the most

part of I/O buffers at the center of the die to avoid the cost caused by the forbidden
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minimal spacing between ESD structures and active devices due to the foundry

rules.

Figure 2.1: Annotated photomicrograph of DES IC with I/O buffer blocks grouped
at the center of the chip [16].

We treat our I/O buffer blocks as I/O macros which may contain with several

signals, ESD protection structure, latch-up ring and some testing logics, as shown

in Figure 2.2. We also adopt some of the I/O regimes from [17] for our I/O buffer

block model :

• I/O buffer block can be placed anywhere on the die, and any I/O buffer block

can be connected to any pad.

• No two I/O buffer blocks can occupy the same location, but they can be

5



clustered in one single I/O buffer block.

• For a design with I/O buffers and a rectangular core layout region, we fix pad

locations with an array of locations spaced uniformly within the core layout

region.

The detail will be described in Chapter 3.

Figure 2.2: The structure of I/O buffer block and signal pad [16].

2.2 Force Directed Placement Flow

Once we model our I/O buffer blocks, we need to develop a placement flow to place

I/O buffer blocks into the design. We adopt force directed placement to determine

the location where we place I/O buffer blocks.

Force directed placement was first proposed in the literature [18, 19]. This

placement method applies an iterative placement procedure. The process starts

with an initial placement and then selects a cell at a time to place the cell at it’s

zero-force position which is computed numerically according to the connection with

other cells. There is an example in Figure 2.3 for the force on a cell A connected with
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four cells. The numerical analysis considers forces in x- and y-direction separately.

In force directed placement, optimal solution corresponds to :

• Force equilibrium :
∑

j Cij · (Xj - Xi) = 0 for all cell i

If the zero-force location is occupied by other cell, the placer will move the cell

to another ideal location which is free to move in or move the cell which occupies the

zero-force location to another ideal location. In particular, force directed placement

improve placement by moving cells iteratively.

Figure 2.3: The force on a cell A connected with four cells
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2.3 Area Array I/O Buffer Placement Methodol-

ogy

In order to keep up the advantages in flip-chip design, current design flow and

methodology are applied to satisfy system specification including many aspects such

as placement [5], chip packaging [12, 13] and pad assignment[11]. We want to develop

a methodology combined with I/O buffer modeling and buffer placement, and add

this step to an existing design flow in Figure 2.4 [10] (similar to [14]) to present a

more complete methodology in design cost and performance optimization.

2.4 Problem Formulation

Performance of a digital system is measured by its cycle time. Shorter cycle time

means higher performance. With considering the performance of a design at the

layout level, signal propagation time and signal skew are two main factors. signal

propagation time is defined as the path delay of the signal. Signal skew is defined

as the difference of the delay between longest path and shortest path. In order to

better the performance of the design, it is desirable to minimize the longest path

delay and the signal skew.

Our experiment focuses on I/O buffer placement in flip-chip design. We perform

our placement in row-based design. We assume all signal bump can assign to any

bump balls which are placed at pre-defined location. All the input/output signals

are connected to cells through the I/O buffer blocks. The problem we concerned

about is described as follows. Given an initial standard cell placement, a set of

I/O buffers(which has corresponding set of signal bumps) IO = {io1,...,ion}, a set of

signal bumps S = {s1,...,sn}, a user-specified skew range, a certain models for I/O

buffer blocks, and a set of nets N = {n1,...,nm}, find a solution to simultaneously

reduce the cell wirelength, the I/O wirelength and signal skew from signal bumps

8



Figure 2.4: Intrinsic area-array pad placement and routing flow from [10], and pro-
posed modeling and placement step.
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to cells via buffer blocks.

To achieve the goal, this problem requests to minimize the following objective

functions Γ1 and Γ2:

Γ1 =
n∑

j=1

dio
j +

m∑
j=1

dj (2.1)

Γ2 = | max
1≤j≤n

dio
j − min

1≤j≤n
dio

j | (2.2)

Γ1 gives the sum of wirelength of I/O nets and cell nets. dio
j is the wirelength from

signal bumps to cells via buffer blocks in the I/O net. dj is the wirelength between all

cells in the net. The wirelength is determined by the Manhattan distance between

two points.

W = |X1 −X2|+ |Y1 − Y2| (2.3)

Γ2 gives the input/output signal skew by the absolute value between longest path

and shortest path in I/O nets. dio
j is the wirelength from signal bumps to cells via

buffer blocks in the I/O net the same as Equation 2.1. In our experiment, we use

the linear delay model same as wirelength to determine the path delay.
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Chapter 3

The I/O Buffer Block Placer
Algorithm

In this chapter, we present our I/O buffer block placer algorithm for I/O buffer

placement and signal bump planning in flip-chip design. Our algorithm provides a

new methodology which can be added to an existing non flip-chip design flow. We

take a given initial standard cell placement, model the size of each I/O buffer block,

place I/O buffer blocks into the design and assign signal bump to every I/O buffer

block to achieve demands of flip-chip design.

There are four stages of process in our I/O Buffer Block Placer Algorithm. In

the process of buffer modeling, we model the size of each buffer according to the

numbers of cells it connected. In the process of buffer block placer, we place those

buffer blocks into the chip by squeezing the cells away from the position it occupied.

In addition, we minimize longest path in the design and reduce the overhead of

the wire length while adding those buffer blocks into the initial placement. During

legalization, we move a set of costless cell from the longest row to the shortest

row in order to maintain the rectangular shape of our placement. In signal bump

assignment, we select a signal bump candidate which will not exceed a user-specific

skew range for every I/O buffer to get a minimum skew design.

The flow chart of our I/O buffer block placer algorithm is shown in Figure 3.1.

11



Figure 3.1: The flow chart of our buffer block placer algorithm

We will explain each part of our algorithm in the following sections.

3.1 Buffer Modeling

In this stage, we build a lookup table for various type of buffer blocks based on the

number of the cells it connected. As mentioned in Chapter 2, buffer blocks can share

the clearance region for minimal spacing between ESD structures and active devices

because of foundry rules. As a result, a buffer block with more single buffer grouped

12



together can reduce more area cost. In order to fit with the style of standard cell

design and simplify the problem, we build our I/O buffer blocks with the same hight

as the original row height of standard cell design, although real I/O buffer block may

exceed the row height of standard cell design. The way we model our I/O buffer

block is shown in Figure 3.2. For example, the I/O buffer block which clustered 4

buffers mean a signal buffer block which is able to drive 4 cells.

Figure 3.2: The model of our I/O buffer block

In the process of buffer modeling, we select the type of buffer block for every

input/output based on the number of cells it connected. For example, an input

pin connected with 8 cells will select a buffer block which is fit with the ability

to drive 8 cells. In real design issue, the I/O buffer for output usually has bigger

area than input because of the requirement for driven ability. In our buffer model,

we simply treat those two kind of I/O buffer block as the same type. The size of

each buffer block comes with two part. One is the minimal spacing between ESD

structures and active devices. The other is the area of the buffer block itself with

13



ESD structure, latch-up ring, testing logic and driver circuit. The size of buffer

block used in MCNC benchmark struct is shown in Figure 3.3.

Figure 3.3: The size of buffer block used in MCNC benchmark struct

3.2 BufBlockPlacer

In execution of this buffer block placer, we first compute the geometry center of each

net then we order the nets by the position of their geometry center from bottom to

top then left to right. Second, we determine the size of the buffer block of each net

by the table we made in buffer modeling. We place buffer blocks at the geometry

center of every net to minimize the longest path from cells to the buffer block and

also reduce the interconnection length on the side. We have three operations to

place those I/O buffer blocks into the core :

• Cell Squeeze : squeeze away the cell which occupied the location

• Buffer Merge : merge two nearby buffer blocks into a single buffer block

• Local Legalization : legalize the row length of the local rows

14



We use Squeeze to squeeze the cell away from it’s location and place the buffer

in that location until we get enough free space. We use Merge to merge two buffer

blocks into one buffer block if they are physically neighbored. Merging two different

buffer block together can reduce the total area by our look-up table. After some

operations of Squeeze or Merge, the local rows may exceed the constraint of the

length of row. We can use Wave to adjust them to maintain the rectangular shape

of the chip.

3.2.1 Cell Squeeze

Once we determine the location of the buffer block, we have to move out the cell

which occupied the target location. We focus on the movement of the cell while it

is been squeezing away. We define that our Squeeze operation has three directions

to squeeze cells right, up and down. If we squeeze the cell right, all the cells on the

right side of it including the cell itself will shift right. If we squeeze the cell up or

down, the cell will move to the target row and take the same operation like squeeze

right. The offset distance of shift right is the width of the cell which squeezes. The

operation of the Squeeze is shown in Figure 3.4.

We calculate the cost of Squeeze in all three directions by summing up the weight

of every cell which have been moved. If the movement of the cell has changed the

boundary box of the net it connected, the weight is recorded. The calculation of the

weight is shown in Figure 3.5. Squeeze will choose the less cost direction to squeeze

the cell. After the operation of Squeeze, the position of cell and free space will be

updated to let BufBlockPlacer calculate the free space needed for the buffer block

to be placed in. If the free space needed is less than the width of the cell we plan

to squeeze, we will simply shift the cells right for the distance of free space needed

instead of choosing which direction to squeeze. Once we get enough free space for

the buffer block, we place the I/O buffer block into the free space.

15



Figure 3.4: The Squeeze has three direction to squeeze cells right, up and down

Figure 3.5: Moving the cell at the boundary of the net will change wire length of
the net

3.2.2 Local Legalization

After some operations of Squeeze, the length of the certain rows may exceed the

constraint of the length of row. We develop a local legalization process which is
16



inspired by the method used in Mongrel [20] to fix this problem. Once we squeeze

some cells away from the positions they belong, we use Wave to move cells in the

nearby area to reduce the impact on the change of length of the row caused by

the operation of Squeeze. In our legalization procedure, we start with the initial

placement (after Squeeze) and then sequentially move each less cost cell to it’s

relaxed target location. The key point is that after each move we produce a feasible

placement with free space for our buffer block.

In the process of Wave, we set up a wave zone by the x-coordinate of the cell

which has been squeezed in and the user-specified parameter WaveRange. If there

is any buffer block in the wave zone, we redefine the range of the wave zone to

avoid those buffer blocks. As shown in Figure 3.6, we sequentially move each less

connectivity cell from the longest row to the shortest row. Every selected cell will

move up/down to the cell in the next row and squeeze right the cells which are on

the right side of it. The order we squeeze the cell is from bottom to top then left to

right. As a result, the move in Wave will not affect the position of the buffer blocks

which have been placed.

The method we evaluate the weight of the cell which will be moved up or down

are similar to the method we used in Figure 3.5. There are two sources of the weight

while moving cell up/down. First, when we move out one cell from the row the cells

on the right side of it should be pulled left. At the same time, when this cell move

in the next row, the cells on the right side of it should be pushed right. The way

we evaluate the weight of first part is shown in Figure 3.7. Second, the width of the

cell which will be moved to the other row will affect the efficiency of legalization.

Moving big cell out of the longest row means less legalization process will be needed.

As a result, bigger cell will get lesser weight. We set up a parameter to adjust the

ratio of weight between run time and wirelength reduction. We calculate the weight

of every cell in the row then we can choose a less cost cell to move up/down.

17



Figure 3.6: Wave sequentially move cells from min row to max row in the wave zone

Figure 3.7: The weight in wave calculate the wire length cost in the operation pull
and push

3.2.3 Buffer Merge

In BufBlockPlacer, some operations like Squeeze and Merge may encounter that two

buffers are physically neighbored. In order to reduce as much area as possible, we

18



use Merge to merge two buffer blocks into one. Due to the share of the clearance

region of minimum spacing between ESD structures and active devices, the area of

the merged single buffer block is less than the sum of two individual buffer blocks.

We use look-up table to determine the size of the merged buffer block.

3.2.4 The BufBlockPlacer Algorithm

In this section, we present a force-directed algorithm to place the buffer blocks into

the location where the longest path from buffer block to the cells is minimized and

the connection length is reduced as well. We place the buffer blocks in the order

from bottom to top then left to right. As a result, every operation of cell squeeze,

local legalization and buffer merge will not affect each other and the position of

the placed buffer block will not be modified by the later move.The algorithm of the

BufBlockPlacer is shown in Figure 3.8.

3.3 Global Legalization

After performing BufBlockPlacer, the placement may still violate the constraint of

the length of row. We use the same method as we mention in Section 3.2.2 to solve

the problem. In stead of local wave zone in Wave, this procedure deal with the whole

chip. We sequentially move each less cost cell to the next row from the longest row

to the shortest row. This iterative process finish when there is no violations on the

constraint of the length of row or the number of iteration exceeds an user-specified

count.

3.4 Signal Bump Assignment

Once we finish the placement of buffer blocks, we have to assign signal bumps to

those buffer blocks. Since we adopt the flip-chip design, the location of the signal
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Figure 3.8: The BufferPlacer algorithm

bump are uniformly over the chip. In the beginning of this process, we build up a

set of locations in a gird for signal bumps to select. We apply two steps to determine

the critical signal path. First, we handle the longest path from buffer block to the

cell it connected in the design as a maximum delay path. Second, we select a closest

signal bump location to that maximum delay path to minimize the delay of the

maximum delay path. Here we get a maximum signal delay called MaxDelay for all

other input/output nets. 1 2 We set a parameter called USSR (user-specified skew

1Note that the input/output net in our signal bump assign is a net with input/output signal,
the buffer block and the cell it connected.

2And the skew is the difference in wirelength between input/output net and the longest in-
put/output net.

20



range) to control the skew for all input/output net. After we finish the signal bump

assignment for the net with longest path, we continue the next assignment for the

net with the longest path to the rest of nets until all nets are assigned.

For instance, there are five cells in in Figure 3.9 cell 1, cell 2, cell 3, cell 4 and

cell5. Cell 1, cell 2 and cell 3 are in the same net, so they all connect to the same

buffer block. Cell 4 and cell 5 are in another net, so they connect to another buffer

block. Cell 1 to it’s buffer block is the longest path in this example, so we set it as

MaxDelay. We assign a signal bump A for it. Cell 5 is the longest path in another

net, so we assign sign bump B to it without exceed USSR compared with MaxDelay.

Figure 3.9: An example for signal bump assignment

3.5 Summary of Our Algorithm

In this chapter, we propose an I/O buffer placement method with four-stage ap-

proach. In the stage of buffer modeling, we model the size of each buffer according
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to the number of cells it connected. In buffer block placement, we place those buffer

blocks into the chip by squeezing the the cells away from the location it occupied.

During global legalization, we move a set of less cost cell from the longest row to

the shortest row in order to maintain the rectangular shape of our placement. In

order to consider skew constraint, we select a signal bump candidate which may not

exceed an user-specific skew range. We use an example to show how our algorithm

work. The placement results are shown in Figure 3.10, 3.11, 3.12 and 3.13, respec-

tively.

Figure 3.10: The initial placement, those rectangles represent cells.
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Figure 3.11: The placement placed with buffer blocks after the execution of Buf-
BlockPlacer, dark rectangles represent buffer blocks and those lines represent the
connection of the cells.

Figure 3.12: A fine tuned placement after the process of Local legalization
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Figure 3.13: The final placement after the process of Signal Bump Assignment, those
squares over the cells represent signal bumps.
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Chapter 4

Experimental Results

We implemented the I/O buffer placer algorithm in C++ programming language.

The platform is Intel Pentium 4 2.4GHz CPU with 1.5GB memory. The initial

placements based on some MCNC benchmarks(in Table 4.1) are obtained from

the placer FENG SHUI [21], with aspect ratio 1.0. The number of signal bumps of

the flip-chip design are scaled from IBM SA-27E area-array copper technology[5].

The I/O buffer block model of flip-chip design has been described in Chapter 2 and

Chapter 3.

We compare our results with the peripheral design for area and wirelength. The

pad size of the peripheral design is 100 × 100um and the pad pitch is 100um[22].

The minimum space between I/O pads and the core in peripheral design is set the

same as the row height of the standard cell. Table 4.2 shows the experimental results

in area on MCNC benchmarks summarized in Table 4.1. The width of the area in

flip-chip design is equal to the length of longest row. Since industry2 is a big design

Table 4.1: Number of cells, nets and I/O terminals in some MCNC standard cell
placement benchmarks.

Benchmark Cells Nets I/Os
struct 1952 1920 64
biomed 6514 7052 97

industry2 12637 13419 495
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Table 4.2: Area comparisons between our approach and the peripheral design with
the MCNC benchmark.

# Initial Peripheral design BufBlockPlacer Improvement

of area Area Area in area
Circuit

cells (um2) (um2) (um2) (%)

struct 1952 11.47E+6 15.91E+6 13.22E+6 16.91
biomed 6514 52.48E+6 61.57E+6 55.33E+6 10.13

industry2 12639 10.45E+7 16.96E+7 10.90E+7 35.73

Table 4.3: Wirelength comparisons between our approach and the peripheral design
with the MCNC benchmark and the result of signal skew.

# # Peripheral design BufBlockPlacer Improvement

of of Wirelength Wirelength Skew in wirelength
Circuit

nets signals (um) (um) (um) (%)

struct 1920 64 656856 613726 5250 6.57
biomed 7052 97 2.992E+6 2.605E+6 13094 12.94

industry2 13419 495 1.416E+7 9.074E+6 19564 35.92

with more than 400 I/Os, the size of initial peripheral design is not compatible

with such amount of I/Os, we increase the space between I/O pads and the core for

industry2 in peripheral design to fit the amount of the I/O pad.

Table 4.3 shows the experimental result in wirelength and skew on MCNC bench-

marks summarized in Table 4.1. The estimation of wirelength and skew has been

described in Chapter 2. We obtain better I/O timing performance by smaller I/O

wirelength. The wirelength from I/O nets to pads in peripheral design are estimated

by the average distance from the net to the boundary of I/O pads.

Table 4.4 shows the experimental result in run time on MCNC benchmark

industry2. The run time of our placer mainly comes from the legalization pro-

cess. We adjust the parameter of the weight between wirelength and run time in

the legalization process to see how it affects the run time and the performance of

our placer.

The final result for these circuits for both peripheral and flip-chip design are
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Table 4.4: Run time comparisons for our I/O buffer placer with the MCNC bench-
mark industry2, we adjust the parameter of the weight to make legalization process
consider wirelength only or both wirelength and run time.

industry2 with Area Wirelength Run time
legalization consideration (um2) (um) (sec)

Wirelength only 11.08E+7 8.942E+6 2156
Wirelength and run time 10.90E+7 9.074E+6 427

shown from Figure 4.1 to 4.4. From the result shown in Table 4.2 and Table 4.3, we

can see that a significant improvement in chip size and wirelength can be achieved

by using our I/O buffer placer methodology. Table 4.4 shows that we can trade a

few cost in wirelength for a decent improvement in run time.
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Figure 4.1: The placement of struct with peripheral design (from the placer FENG
SHUI [21]).

Figure 4.2: The final result of struct with BufBlockPlacer.
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Figure 4.3: The placement of biomed with peripheral design.

Figure 4.4: The final result of biomed with BufBlockPlacer.
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Figure 4.5: The placement of industry2 with peripheral design.

Figure 4.6: The final result of industry2 with BufBlockPlacer.
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Chapter 5

Conclusion and Future Works

In this thesis, we have present our I/O buffer placer algorithm in design cost and

performance optimization for high-end flip-chip design. Our methodology combined

with I/O buffer modeling and buffer placement. We can add this step to an existing

design flow to convert the initial design to flip-chip design. Experimental results

have shown that our algorithm has better performance compared with peripheral

design in high I/O count circuits.

For future improvement of our placement method, developing a complete place-

ment flow with I/O buffer floorplanning for flip-chip design will be a better way

to optimize the performance of placement in flip-chip design and add some more

constraints into our placement algorithm like power supply noise or voltage drop

threshold violation cause by IR drop. We also need to develop a better algorithm

to further reduce the signal skew.

31



Bibliography

[1] A. Chandrakasan, W.J. Bowhill, and F. Fox, “Design of High-Performance

Microprocessor Circuits,” IEEE Press,, 2001.

[2] P. Dehkordi and D. Bouldin, “Design for Packageability: The Impact of Bond-

ing Technology on the Size and Layout of VLSI Dies,” Proc. of Multi-Chip

Module Conference, pp. 153-159 , 1993.

[3] V. Maheshwari, J. Darnauer, J. Ramirez, and W.W.-M. Dai, “Design of FPGAs

with Area I/O for Field Programmable MCM,” In Proceedings ACM Sympo-

sium on Field Programmable Gate Arrays, pp. 17-23, 1995.

[4] P.A. Sandborn, M.S. Abadir, and C.F. Murphy, “The Tradeoff Between Pe-

ripheral and Area Array Bonding of Components in Multichip Modules,” IEEE

Transactions on Components, Packaging, and Manufacturing Technology - Part

A, pp. 249-256, 1994.

[5] P.H. Buffet, J. Natonio, R.A. Proctor, Y.H. Sun, and G. Yasar, “Methodology

for I/O cell Placement and Checking in ASIC Designs Using Area-Array Power

Grid,” In IEEE Custom Integrated Circuits Conference, pp. 125-128, 2000.

[6] G. Yasar, C. Chiu, R.A. Proctor, and J.P. Libous, “I/O Cell Placement and

Electrical Checking Methodology for ASICs with Peripheral I/Os,” In IEEE

International Symposium on Quality Electronic Design, pp. 71-75, 2001.

32



[7] R. Farbarik, X. Liu, M. Rossman, P. Parakh, T. Basso, and R. Brown, “CAD

Tools for Area-Distributed I/O Pad Packaging,” In IEEE Multi-Chip Module

Conference, pp. 125-129, 1997.

[8] P.S. Zuchowski, J.H. Panner, D.W. Stout, J.M. Adams, F. Chan, P.E. Dunn,

A.D. Huber, and J.J. Oler, “I/O Impedance Matching Algorithm for High-

Performance ASICs,” In IEEE International ASIC Conference and Exhibit, pp.

270-273, 1997.

[9] R.J. Lomax, R.B. Brown, M. Nanua, and T.D. Strong, “Area I/O Flip-Chip

Packaging to Minimize Interconnect Length,” In IEEE Multi-Chip Module Con-

ference, pp. 2-7, 1997.

[10] C. Tan, D. Bouldin, and P. Dehkordi, “Design Implementation of Intrinsic Area

Array ICs,” In Proceedings 17th Conference on Advanced Research in VLSI,

pp. 82-93, 1997.

[11] Joel Mcgrath, “Chip/Package Co-Design: The bridge between chips and sys-

tems,” In Advanced Packaging, June 2001.

[12] J.C. Parker, R.J. Sergi, D. Hawk, and M. Diberardino, “IC-

Package Co-Design Supports Flip-Chips,” EE Times, November 2003.

http://www.eedesign.com/story/OEG20031113S0055.

[13] K.-Y. Chao and D.F. Wong, “Signal Integrity Optimization on the Pad As-

signment for High-Speed VLSI Design,” In Proceedings IEEE International

Conference on Computer-Aided Design, pp. 720-725, 1995.

[14] H.-M. Chen, I.-M Liu, D.F. Wong, M. Shao, L.-D. Huang, “I/O Clustering

in Design Cost and Performance Optimization for Flip-Chip Design,” In Pro-

ceedings the IEEE International Conference on Computer Design, pp. 562-567,

2004

33



[15] J.N. Kozhaya, S.R. Nassif, and F.N. Najm, “I/O Buffer Placement Methodology

for ASICs,” In IEEE International Conference on Electronics, Circuits and

Systems, pp. 245-248, 2001.

[16] T. Schaffer, A. Glaser, and P.D. Franzon, “Chip-Package Co-Implementation

of a Triple DES Processor,” IEEE Transactions on Advanced Packing, pp. 194-

202, 2004.

[17] A.E. Caldwell, A.B. Kahng, S. Mantik, and I.L. Markov, “Implications of Area-

Array I/O for Row-Based Placement Methodology,” In IEEE Symposium on

IC/Package Design Integration, pp. 93-98, 1998.

[18] M. Hanan and J.M. Kurtzberg, “Placement Techniques,” In M.A. Breuer, Ed-

itor, Design Automation of Digital Systems, Prentice -Hall Inc, Englewood

Cliffs, New Jeresey, pp. 213-282, 1972.

[19] Quinn, Jr and Breuer, “A Force Directed Component Placement Procedure for

Printed Circuit Boards,” IEEE Transactions on Circuits and Systems, June

1979.

[20] S.-W. Hur and J. Lillis, “Mongrel: hybrid techniques for standard cell place-

ment,” In Proceedings IEEE International Conference on Computer-Aided De-

sign, pp. 165-170, 2000.

[21] P.H. Madden, “Reporting of Standard Cell Placement Results,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 21(2):240-

247, February 2002.

[22] C. Tan, D. Bouldin and P. Dehkordi, “An intrinsic area-array pad router for

ICs,” In Proceedings of Tenth Annual IEEE International ASIC Conference,

pp. 265-269, Sept. 1997.

34



作者簡歷 

張加易，民國六十七年二月出生於嘉義縣。大學畢業於國立中正大學

電機工程學系。民國九十二年九月進入國立交通大學電子研究所就

讀，從事 VLSI 實體設計自動化方面相關研究。民國九十四年六月取

得碩士學位。 


