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摘 要

許多疾病的病程包含數種以上的風險，例如乳癌患者可能會經歷癌細胞的復發，轉

移甚至病情嚴重導致死亡。當研究者感興趣的主題事件為非終端事件時(例如癌細胞

的復發)，若終端事件先發生，就無法觀察到主題事件。在存活分析的架構下，死亡

被視為復發事件的競爭風險。此時如何推估主題事件的發生機率是個熱門的研究主

題。本篇論文在迴歸的架構下探討自變數對主題事件發生機率的影響。

分析實證資料中常會因設限(censoring)而只能記錄到不完整的資訊。針對此現

象，本論文提出兩種偏誤修正的方法以估計迴歸模式的參數。第一個方法利用設限

機率的倒數做為權數以改正因設限造成的偏誤，稱之為 IPCW；第二個方法則以缺失

值的條件期望值做為填補不完整的資訊，稱之為 Imputation。論文中我們推導迴歸

參數估計量的大樣本性質，並藉由模擬以驗證所提出的估計方法在有限樣本時的表

現。本論文亦將所提的迴歸模型和估計方法應用在史丹佛心臟移植資料和非典型肺

炎(SARS)資料做為實例的佐證。

關鍵字：競爭風險，累積發生率函數，加權法，補插法，估計方程式



Abstract

In the dissertation, we consider regression analysis for the cumulative incidence proba-

bility under the framework of competing risks. Instead of modeling the whole function

which usually involves making stronger assumptions, we investigate the effect of covari-

ates on the cumulative incidence rate at a pre-specified time point.

The information of incidence may be missing due to censoring. We apply two ap-

proaches to handle incomplete data. The first method utilizes the technique of the

inverse probability of censoring weighting (IPCW) to correct the sampling bias. The

other approach is to impute missing variables by an estimate of its conditional mean.

Both methods are popular and useful tools in handling missing data. Large-sample prop-

erties of the proposed methods are also derived. Simulations are performed to examine

finite-sample performances of the proposed methods. The Stanford Heart Transplant

data and the severe acute respiratory syndrome (SARS) data are analyzed to illustrate

the applicability of the proposed model and inference methods.

Key words : Cause-specific hazard; Mixture model; Transformation model; Imputation;

Cumulative incidence function; Inverse probability of censoring; Imputation; Logistic

regression; Missing Data
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Chapter 1

Introduction

In biomedical studies, researchers may encounter analysis of multiple events data which

are often formulated under the framework of competing risks. Here a competing risk

is defined as an event whose occurrence prevents the occurrence of other events. For

example, when the relapse of leukemia is the outcome of interest, death without relapse is

a competing risk event. Other examples can be found in clinical trials in which subjects

are usually subject to multiple risks. In breast cancer studies, a patient may experience

multiple events, such as local recurrence, distant metastasis, a second primary cancer

other than the original one and death. Researchers are sometimes more concerned about

an event of particular type.

Under the framework of competing risks, let T be the failure time and B̃ be the

corresponding cause of failure taking values in the set {1, . . . , J}. Competing risks data

can be summarized naturally by the following two quantities. One is the cause-specific

hazard function defined as

λj(t) = lim
∆t→0

Pr(T ∈ [t, t + ∆t), B̃ = j|T ≥ t)

∆t

which is the rate of occurrence for type-j failure in the presence of all causes of failure.

The other is the cumulative incidence function or the crude failure probability defined

as

Fj(t) = Pr(T ≤ t, B̃ = j)
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which describes the cumulative probability of developing type-j failure by time t (Pepe

and Mori, 1993). Note that both quantities make no assumption about the relation-

ship between the competing risks events and hence can be estimated nonparametrically.

The cause-specific hazard function is useful in quantifying the instantaneous risk of a

particular cause for alive individuals. However when the interest is on cumulative or

overall risks of a particular cause, the cumulative incidence function is more intuitively

appealing and easily explained to the clinicians.

We aim to study the effect of covariates on the cumulative incidence function. There

exist several regression models which are constructed based on different decompositions

of Fj(t). Some authors including Cheng, Fine and Wei (1998) suggested making inference

for the cumulative incidence function by modeling the cause-specific hazards of all causes.

Specifically, they considered the following decomposition

Fj(t) =

∫ t

0

λj(u) exp

[
−

∫ u

0

J∑
j=1

λj(v)dv

]
du.

However, since the effect of a covariate on λj(t) can be very different from its effect on

Fj(t), such an indirect approach can be misleading. Also the parameters in the models

for the cause-specific hazards may lack a simple interpretation in terms of the crude

failure probabilities.

In this dissertation we review existing papers which are more closely related to our

framework based on a mixture formulation. This approach has also received growing

attention due to its relation with cure models. Section 2 contains a review of related

models. In Section 3, we review inference methods which have been developed for

handling incomplete data. Our proposal is presented in Section 4, and simulations, the

analysis of Stanford Heart Transplant data and the analysis of severe acute respiratory

syndrome (SARS) data are presented in Section 5. The SARS example highlights the

applicability of the proposed regression model. The proposed inference methods are

useful when complete data are not available. For example, when the epidemic disease is

still ongoing, interim analysis based on incomplete data is still useful for making timely

decision.
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Chapter 2

Models for Cumulative Incidence
Function
– A Review

2.1 Transformation Models

In recent years, statistical analysis based on transformation models has received sub-

stantial attention due to its wide applicability. Under the classical formulation without

competing risk (i.e., J = 1), the model can be expressed as

m(T ) = −ZT γ + ε,

where m(t) is an unspecified strictly increasing function mapping from (0,∞) to (−∞,∞),

Z is a p × 1 vector of covariates, γ is the corresponding vector of parameters and ε is

a random error with a completely known distribution Fε. Alternatively, the model can

also be expressed as

H(Pr(T ≤ t|Z)) = m(t) + ZT γ, (2.1)

where H = F−1
ε . This class of models contains useful members. For example if Fε

is the extreme value distribution with Fε(s) = 1 − exp{− exp(s)}, H(·) becomes a

complementary log-log link and model (2.1) is the Cox proportional hazard model. If

Fε is the standard logistic distribution, H(·) becomes the logit link and the model is the
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proportional odds model.

The class of transformation models mentioned above has been modified to describe

the covariate effect on the cumulative incidence function. When J > 1, the model

assumes that

H(F1(t|Z)) = m(t) + ZT θ, (2.2)

where H is an increasing link function mapping from (0, 1) to (−∞,∞), θ is the p× 1

vector of parameters and m(t) is the baseline function. It is easy to see that m(t) =

H{F0(t)} in which F0(t) represents the baseline cumulative incidence function when

Z = 0p×1 or θ vanishes. Model (2.2) describes the situation that under a suitable

transformation, the cumulative incidence functions for subjects with different covariate

values are “parallel” over the entire time span with distance being measured by a linear

combination of θ.

Depending on whether F0 is specified in an explicit form or not, model (2.2) can

be classified as a parametric or semi-parametric transformation model. Fine and Gray

(1999) first proposed the semi-parametric transformation model under the complemen-

tary log-log link function with H(u) = log[− log(1 − u)]; Fine (2001) and Klein and

Andersen (2005) extended the class of H to include any well-defined monotone function,

say the logistic function, H(u) = log[u/(1−u)]. Jeong and Fine (2006) proposed a para-

metric transformation model by specifying the baseline F0(t) with the improper Gom-

pertz distribution, B(t; ρ, ψ) = 1− exp{ψ[1− exp(ρt)]/ρ} where ρ < 0 and 0 < ψ < ∞,

and adopted the odds rate transformation as the link function,

H(v; φ) =





log
[

(1−v)−φ−1
φ

]
if φ 6= 0,

log[− log(1− v)] if φ = 0,

which includes the complementary log-log link and the logistic link when φ = 0 and

φ = 1, respectively.

Model (2.2) can be viewed under the context of a cure model (Fine and Gray, 1999;

Fine, 2001) in which F1(t|Z) is the distribution function of the improper failure time

T1 = T · I(B̃ = 1) +∞ · I(B̃ 6= 1). (2.3)
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Note that Pr(T1 ≤ t|Z) = Pr(T ≤ t, B̃ = 1|Z) = F1(t|Z). The difference between

T1 and the usual failure time is that Pr(T1 = ∞) > 0 which measures the proportion

of individuals failing from causes other than the first type. The way of treating other

competing risks as “cure” or “immune” sometimes lacks interpretability. Specifically,

consider the “hazard” of the improper variable T1 defined by

λ̃1(t|Z) = −d log[1− F1(t|Z)]/ dt =
dF1(t|Z)/dt

1− F1(t|Z)

which is also called the subdistribution hazard. We find that the denominator in the

last identity which indicates the at-risk probability for failure of the first type at time t,

always includes the quantity Pr(B̃ 6= 1). It seems not very sensible to view those who

have failed from other causes as always being “at risk” later on for a failure type that

will never occur.

2.2 Mixture Models

The cumulative incidence function can also be written as the mixture form,

Fj(t) = πj[1−Qj(t)], j = 1, . . . , J, (2.4)

where πj = limt→∞ Fj(t) = Pr(B̃ = j) measures the marginal probability of type-j

failure, and 1−Qj(t) = Pr(T ≤ t|B̃ = j) describes the corresponding latency distribution

for the sub-population with B̃ = j. Such a mixture formula was originally developed for

the improper distribution function encountered in analysis of failure time with long-term

survivors (Maller and Zhou, 1996). Nonparametric analysis of model (2.4) based on the

competing risks data has been studied by Betensky and Schoenfeld (2001) in which

the acute respiratory distress syndrome (ARDS) data with two competing events (cure

or death) was used as an example, and by Wang (2003) under a two-path framework.

In presence of right censoring, it has been mentioned that nonparametric maximum

likelihood estimators of πj and Qj(t) are consistent only if the support of failure time is

shorter than the support of censoring time. That is, the follow-up must be long enough

so that failure times of all individuals have positive probabilities to be observed.
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Maller and Zhou (2002) called such a condition “sufficient follow-up” which assesses

how “heavy” the tail of the censoring distribution is, relative to the survival distribution,

while still permitting consistent estimation. Specifically, define the endpoint of the

support of failure time T as τT =sup{t: Pr(T > t) > 0} and that of censoring time

C as τC =sup{t: Pr(C > t) > 0}. Under model (2.4), the “sufficient follow-up” for

nonparametric analysis is τT ≤ τC . When τT > τC which happens in most longitudinal

studies, additional assumptions are needed to avoid underestimation of πj and Qj(t).

Wang (2003) assumed that Pr(B̃ = j|T > τC) = Pr(B̃ = j) and then derived the

estimators of πj and Qj(t). However, such an assumption is quite subjective and hard

to check empirically. The “sufficient follow-up” assumption can be much relaxed if one

imposes a parametric or semiparametric model on the latency distribution. Maller and

Zhou (2002) showed that under the parameterization that Qj(t) = Q(t; ϕj), consistent

estimators of πj and ϕj can be obtained through the maximum likelihood approach if

1 − Q(τC ; ϕj) > 0 for j = 1, . . . , J, which only requires that each cause of failure has

positive probability to be observed. The parameterization of Qj(t) can also be extended

to a regression setting. See Ghitany, Maller and Zhou (1994) and Vu, Maller and Zhou

(1998) for further references.

Model (2.4) can be expressed under the following regression framework,

Fj(t|Z) = πj(Z)[1−Qj(t|Z)]. (2.5)

Larson and Dinse (1985) assumed a multinomial logit model for πj(Z) and a parametric

proportional hazards model for Qj(t|Z) with

Qj(t|Z) = exp

[
−

∫ t

0

hj(u) exp(ZT ϕ)du

]
,

where the baseline hazard hj(t) is specified as a piecewise exponential function. Kuk

(1992) and Ng and McLachlan (2003) generalized the mixture model of Larson and

Dinse (1985) by assuming hj(t) is unknown. To remedy the support problem, Fine

(1999) considered the representation

Fj(t ∧ τ) = Pr(T ≤ τ, B̃ = j) Pr(T ≤ t|T ≤ τ, B̃ = j)

= Fj(τ)[1−Qj(t|τ)],
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where U∧V = min(U, V ) and τ is a pre-determined time point located inside the support

of the observed time variable. Statistical inference of Fj(τ) and Qj(t|τ) are no longer

subject to the potential problem of non-identifiability if τ is chosen properly such that

Pr(T ∧ C > τ) > 0. Accordingly one can consider the regression model

Fj(t ∧ τ |Z) = Pr(T ≤ τ, B̃ = j|Z)Pr(T ≤ t|T ≤ τ, B̃ = j,Z)

= Fj(τ |Z)[1−Qj,Z(t|τ)]. (2.6)

Fine (1999) assumed a binary regression model, namely the logistic model, for Fj(τ |Z)

and the transformation model stated in (2.1) for the latency distribution 1−Qj,Z(t|τ).
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Chapter 3

Review of Inference Methods in the
Presence of Right Censoring

In this section we review inference methods that have been applied to solving incomplete

data due to right censoring. In Section 3.1, we review how the maximum likelihood

approach is applied to the analysis of mixture models. In Sections 3.2 and 3.3, we

review two moment-based approaches which use different techniques to handle missing

data. From this section on, the notations are unified as follows. Let Z be the p × 1

vector of covariates, T be the failure time with the survival function S(t) = Pr(T > t)

and C be the censoring time with G(t) = Pr(C ≥ t). In the presence of right censoring,

one observes (X, δ,Z), where X = T ∧ C and δ = I(T ≤ C).

3.1 Likelihood Estimation

In presence of right censoring, the competing risks data can be denoted as

(X, B,Z) = {(Xi, Bi,Zi) : i = 1, . . . , n}, (3.1)

where B = B̃ · δ. Note that B = 0 refers to the censored case in which the value of B̃

is unknown. Assuming that T and C are independent given Z, the likelihood function
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based on the data in (3.1) can be written as

LF =
n∏

i=1

{[
J∏

j=1

fj(Xi;Zi)
I(Bi=j)

]
S(Xi;Zi)

I(Bi=0)

}
, (3.2)

where fj(t;Z) = dFj(t;Z)/ dt and S(t;Z) = Pr(T > t|Z) = 1 −∑J
j=1 Fj(t;Z). Due to

censoring, the likelihood function has to combine the information of failure of all types

and can not be factored into separate pieces for each type as in the case of complete data.

When the mixture model (2.5) is assumed, the likelihood function can be expressed as

LM =
n∏

i=1





J∏
j=1

[πj(Zi)qj(Xi;Zi)]
I(Bi=j)

[
J∑

j=1

πj(Zi)Qj(Xi;Zi)

]I(Bi=0)


 ,

where qj(t;Z) = −dQj(t;Z)/ dt and
∑J

j=1 πj(Z) = 1. Because the summation term

within the products on the right-hand side makes the maximization of LM very difficult,

Larson and Dinse (1985) suggested to apply the EM algorithm to facilitating maximum

likelihood estimation. This algorithm has also been utilized by Kuk (1992) and Ng

and McLachlan (2003) in estimation of the semi-parametric proportional hazard/logistic

mixture model.

To illustrate the use of the EM algorithm, it is assumed temporarily that indicators

of the failure types (i.e., B̃i’s) are available and the likelihood based on such pseudo-

observations is given by

Ls ∝
n∏

i=1

J∏
j=1

{
πj(Zi) [qj(Xi;Zi)]

δi [Qj(Xi;Zi)]
1−δi

}I(B̃i=j)

.

The algorithm consists of two steps. First, the E-step is to compute

ls = E
(

log(Ls)
∣∣∣X,B,Z, (π

(m)
j , Q

(m)
j ) for j = 1, . . . , J

)
,

=
n∑

i=1

J∑
j=1

{
I(Bi = j) · log[hj(Xi;Zi)] + w

(m)
i,j · log[πj(Zi)Qj(Xi;Zi)]

}
,

where hj(t;Z) = qj(t;Z)/ Qj(t;Z), (π
(m)
j , Q

(m)
j ) denotes the model expressions for πj(Z)

and Qj(t;Z) with the parameters being replaced by the corresponding estimated values
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obtained at the mth iteration, and

w
(m)
i,j = E

(
I(B̃i = j)

∣∣∣X, B,Z, (π
(m)
j , Q

(m)
j ) for j = 1, . . . , J

)
,

= I(Bi = j) + I(Bi = 0) · π
(m)
j (Zi)Q

(m)
j (Xi;Zi)∑J

k=1 π
(m)
k (Zi)Q

(m)
k (Xi;Zi)

. (3.3)

Note that the last term of w
(m)
i,j is the conditional probability that the ith patient will

experience the event of type j given that the failure of all types not occurred by time

Xi. Next, the M-step of the algorithm involves maximizing, regarding w
(m)
i,j as fixed, the

log-likelihood ls which can be expressed as

ls = lπ + lQ1 + · · ·+ lQJ
,

where

lπ =
n∑

i=1

J∑
j=1

w
(m)
i,j log[πj(Zi)]

and

lQj
=

n∑
i=1

{
I(Bi = j) log[hj(Xi;Zi)] + w

(m)
i,j log[Qj(Xi;Zi)]

}
.

The EM procedure is iterative in a way that the estimates obtained previously are used

to update the value of w
(m)
i,j in the current maximization step. One of its attractive

features is that J + 1 components of ls can be maximized separately. The convergence

properties of the estimators obtained from the EM procedure have been discussed in

Dempster et al. (1977), Wu (1983) and Louis (1982).

3.2 Inverse Probability of Censoring Weighting (IPCW)

Under right censoring, individuals with larger failure times have more chance to be

censored than those with smaller ones. However, uncensored observations are still useful

proxies if their bias can be corrected. The inverse probability of censoring weighting

(IPCW) has been used to correct such bias. Let Ṽ be a function of failure time T , say

Ṽ = I(T ≤ t, B̃ = j) or I(T ≤ t). Denote V = Ṽ δ which can be viewed as an observed
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proxy of Ṽ . Assume that T and C are independent and the support of T is shorter than

the support of C, it can be shown that

E

(
V

G(X)

)
= E

(
Ṽ E

(
I(T ≤ C)

G(T )

∣∣∣∣ T

))

= E
(
Ṽ

)
, (3.4)

which implies that by taking an inverse-probability-weighting adjustment on V , we can

obtain an unbiased proxy of Ṽ . This idea has been applied to sample surveys. Specifi-

cally, if we know the sampling scheme well, we can correct the sampling bias and make

valid inference about the true population.

For the following discussions, we refer to Ĝ(t) as the Kaplan-Meier estimator of G(t).

Many well-known nonparametric estimators in survival analysis can be re-expressed in

terms of weighted averages. For example, the Kaplan-Meier estimator of the survival

function of T , ŜKM(t), can be expressed as

ŜKM(t) = 1− 1

n

n∑
i=1

I(Xi ≤ t)δi

Ĝ(Xi)
. (3.5)

For the competing-risks analysis, nonparametric maximum likelihood estimators of cu-

mulative incidence functions can be written as the following explicit expression:

F̂NPMLE
j (t) =

1

n

n∑
i=1

I(Xi ≤ t, Bi = j)

Ĝ(Xi)
. (3.6)

The technique of IPCW also plays a useful role in the regression analysis for survival

data. Consider the following linear transformation model

m(T ) = ZT γ + ε,

where m(·) is an unknown strictly increasing function and ε has a completely known

distribution function Fε. Under independent censoring and the assumption that the

censoring distribution is independent of Z, it can be shown that

E

(
δjI(Xi ≥ Xj)

G2(Xj)

∣∣∣∣Z
)

= E

(
I(Ti ≥ Tj) E

(
δjI(Ci ≥ Tj)

G2(Tj)

∣∣∣∣ Ti, Tj

)∣∣∣∣Z
)

= Pr(Ti ≥ Tj|Z) = Pr(εi − εj ≥ ZT
ijγ)
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if G(t) > 0 for any t located within the support of T , where Zij = Zj − Zi. Based

on the equation mentioned above, Cheng, Wei and Ying (1995) proposed the following

estimating function of γ

U(γ) =
n∑

i=1

∑

j 6=i

[
δjI(Xi ≥ Xj)

Ĝ2(Xj)
− η(ZT

ijγ)

]
w(ZT

ijγ)Zij, (3.7)

where w(·) is a positive weight function and η(ZT
ijγ) = Pr(εi − εj ≥ ZT

ijγ). Jung (1996)

considered the regression analysis for the long-term survival probability in which the

word “long-term” refers to a patient having successfully survived over the specified

interval. He constructed an estimating function of the regression parameters by utilizing

the technique of IPCW. Chen et al. (2005) analyzed the mean residual life model in a

similar way.

Despite that the technique of IPCW is a convenient tool and easy to be understood,

it has some drawbacks. The first is that this method highly depends on a consistent

estimator of G. When the censoring time depends on continuous covariates, a consistent

estimator of G is not easy to be obtained and usually requires using smoothing techniques

or making additional model assumptions. Another crucial point is about the support

condition. Let τC denote the endpoint of the support of C. Then we have

E

(
δ

G(X)

∣∣∣∣ T

)
=

{
E ( I(T ≤ C)/ G(T )|T ) = 1 if T < τC ,

0 otherwise,

and accordingly

E

(
V

G(X)

)
= E

(
I(T < τC)Ṽ

)
≤ E(Ṽ ).

That is, when Pr(T ≥ τC) > 0 which results in a heavier tail of ŜKM , the quantity

V/G(X) is no longer an unbiased proxy for Ṽ and consequently any estimating function

constructed based on equation (3.4), such as equation (3.7), may not lead to a consistent

estimator of γ.

To overcome this problem, one may consider the following related equation

E

(
I(X ≤ τ)V

G(X)

)
= E(I(T ≤ τ)Ṽ ),
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where τ is pre-specified such that Pr(X > τ) > 0. Fine, Ying and Wei (1998) suggested

to modify the estimating function (3.7) as

U(γ) =
n∑

i=1

∑

j 6=i

[
δjI(Xi ∧ τ ≥ Xj)

Ĝ2(Xj)
− ηα(ZT

ijγ)

]
w(ZT

ijγ)Zij,

where α = m(τ) and ηα(ZT
ijγ) =

∫ α

−∞[1−Fε(t−ZT
i γ)]dFε(t−ZT

j γ). Such a modification

is no longer subject to the support problem.

3.3 Imputation

Another popular method for handling missing data is by imputation. Specifically, cen-

sored (or missing) variables can be imputed by their conditional means given the ob-

served data and the statistical analysis can be proceeded based on the imputed values.

This approach has been widely used in the analysis of missing or censored data. For

example, Buckley and James (1979) considered the following linear regression model,

T = ZT γ + ε,

where T may be the transformed failure time. When the value of T is not observed, it

can be imputed by an estimator of

E(T |X, δ,Z) = δX + (1− δ)
[
ZT γ + E(ε|ε > X − ZT γ, X,Z)

]

= δX + (1− δ)

[
ZT γ −

∫ ∞

X−ZT γ

u dSε(u)

/
Sε(X − ZT γ)

]
,

where Sε is the survival function of the error term ε. To estimate γ, Buckley and

James (1979) proposed a self-consistency approach in which the estimators γ̂ and Ŝε

are updated iteratively until the convergence criterion is obtained. Li, Wang and Chen

(1999) applied the sliced inverse regression (SIR) to analyze right censored data in which

the sliced mean of a specified interval [tj, tj+1), denoted as E[ZI(tj ≤ T < tj+1)], was

estimated by utilizing the following relationship

E[ZI(T ≥ t)|X, δ,Z] = ZI(X ≥ t) + (1− δ)ZI(X < t)
Pr(T ≥ t|Z)

Pr(T > X|Z)
.
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In the regression analysis for the long-term survival probability at a given time point,

Jung (1996) suggested to use the IPCW approach while Subramanian (2001) proposed

the imputation approach. It implies that these two methods may be applied to solving

the same inference problem.

Wang (2003) considered a nonparametric setting under the framework of a two-

path model. To illustrate, consider a study of bone marrow transplants for leukaemia

patients in which some patients will experience recurrence of the malignancy before

death but others may die without relapse. Let T1 and T2 be the times to recurrence, an

intermediate state, and to death, a terminal endpoint, respectively. Then I(T1 ≤ T2)

denotes the path indicator in which 1 refers to the path of recurrence and 0 refers to

the path of death without relapse. In presence of right censoring, observed data can be

expressed as (X1, X2, δ1, δ2), where X1 = T1 ∧ T2 ∧C, X2 = T2 ∧C, δ1 = I(T1 ≤ T2 ∧C)

and δ2 = I(T2 ≤ C). Under the assumption that (T1, T2) and C are independent,

Wang (2003) proposed a nonparametric procedure for estimating the path probability

Pr(T1 ≤ T2) which imputes I(T1 ≤ T2) by an estimator of

E[I(T1 ≤ T2)|X1, X2, δ1, δ2] = I(δ1 = 1) + I(δ1 = δ2 = 0)p(C),

where p(C) is the conditional path probability which can be further expressed as

p(x) = Pr(T1 ≤ T2|T1 ∧ T2 > x),

=
1

D(x)
[Pr(x < T1 ≤ τC , T1 ≤ T2) + D(τC) Pr(T1 ≤ T2|T1 ∧ T2 > τC)]

=
1

D(x)

[∫ ∞

x

Pr(X1 ∈ [v, v + dv), δ1 = 1)

G(v)
+ D(τC)p(τC)

]
(3.8)

with D(x) = Pr(T1∧T2 > x) and τC being the endpoint of the support of censoring time

C. All the components in equation (3.8) are estimable nonparametrically except for the

last term p(τC) which is not identifiable if τC < τT1 . To overcome this problem, Wang

(2003) made an additional assumption that p(τC) = Pr(T1 ≤ T2) and then derived an

explicit estimator of the path probability.
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Chapter 4

The Proposed Approach

4.1 Model Assumption

In this proposal, we consider model (2.6) in which the marginal failure probability is the

focus and the latency distribution is of less interest and hence not specified. Without

loss of generality, we consider only two causes of failures, namely B̃ = 1 or 2. Suppose

that failure of the first type is of main interest. Specifically, we consider the following

regression formulation:

F1(t ∧ τ |Z) = Pr(T ≤ τ, B̃ = 1|Z)Pr(T ≤ t|T ≤ τ, B̃ = 1,Z)

= π(Z̃T β(τ))[1−Q1,Z(t|τ)], (4.1)

where Z̃ = (1,ZT )T is the (p+1)×1 vector of covariates, π(·) is a known function mapping

from (−∞,∞) to (0, 1), β(τ) is a (p + 1) × 1 vector of parameters and τ lies within

the data support such that Pr(T ∧ C > τ |Z) > 0. The main objective is to estimate

β(τ) which measures the covariate effect on the cumulative probability of incidence by

time τ . The severe acute respiratory syndrome (SARS) provides an example for the

motivation. SARS is an epidemic and life-threatening acute disease that resulted in a

global outbreak in 2003. Clinicians and the pubic were most concerned with finding out

which characteristics of a patient would affect his/her probability of being discharged

from the hospital and alive by a target time point.
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Comparing the regression formulation in (2.2) with that in (4.1), we find that set-

ting t = τ and H(u) = π−1(u), model (2.2) coincides with model (4.1) and β(τ) =

[m(τ), θT ]
T
. In other words, model (4.1) fits the data at a single time point τ while

model (2.2) considers modeling the entire time span. If model (2.2) is appropriate, then

the last p components of β(τ) derived from model (4.1) will be similar for different

choices of τ . Therefore results obtained from model (4.1) can be used to verify the

assumption of model (2.2) or help choosing time-dependent covariates in that model.

Figure 4.1 provides a graphical illustration to highlight the difference of the two models

with a binary covariate. In Figures 4.1(b) and 4.1(c), F1(t|0) and F1(t|1) have a crossing

point which obviously violates model (2.2). Model (4.1) can include all the three situa-

tions. Therefore the dependency of β(τ) on τ is not a subjective restriction but provides

the flexibility to detect possible change of covariate effect on the cumulative incidence

probability at different time points.

Figure 4.1: Illustration of the cumulative incidence function, F1(t|Z), for a binary Z.
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4.2 Proposed Inference Methods

4.2.1 Preliminary

Without loss of generality, we consider only two causes of failures, namely B̃ = 1 or

2. Suppose that failure of the first type is of main interest. Denote {(Ti, B̃i, Z̃i) : i =

1, . . . , n} as a random sample of (T, B̃, Z̃). Let ∆ji = I(Ti ≤ τ, B̃i = j) for i = 1, . . . , n

and j = 1, 2. Under model (4.1), we have E(∆1i|Z̃i) = π(Z̃T
i β), where β = β(τ) is the

parameter of interest. With the complete data, the likelihood function of β is given by

L̃(β) =
n∏

i=1

[
π(Z̃T

i β)
]∆1i

[
π̄(Z̃T

i β)
]1−∆1i

, (4.2)

where π̄(t) = 1− π(t), and the resulting score function becomes

Ũ(β) =
n∑

i=1

[
∆1i − π(Z̃T

i β)
] πφ(Z̃

T
i β)

π(Z̃T
i β)π̄(Z̃T

i β)
Z̃i, (4.3)

where πφ(t) = ∂π(t)/∂t.

Under right censoring, observed variables can be written as {(Xi, Bi, Z̃i) : i =

1, . . . , n}, which are i.i.d. replications of (X, B, Z̃), where B = B̃ · I(T ≤ C) and

X = T ∧ C. Note that the value of ∆1i may be unknown due to censoring. It

turns out that the likelihood function of β becomes very complicated and involves

specification of several nuisance functions such as Pr(T > t|B̃ = j, T ≤ τ,Z) and

Pr(T > t|B̃ = j, T > τ,Z) for j = 1, 2. We propose to directly modify the score function

Ũ(β) by applying two useful principles to handling missing data.

The first approach utilizes observable proxies of ∆1i by applying the technique of

the IPCW to adjusting for their biases. The second proposal adopts the imputation

approach which imputes ∆1i by an estimator of E(∆1i|Xi, Bi,Zi). Both methods are

popular and useful tools for handling missing data in statistical literature. We assume

that, given Z, C is independent of (T, B̃). To simplify the analysis, T and C are both

continuous variables.
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4.2.2 Inverse Probability Weighting

Assume temporarily that the distribution of C does not depend on Z. That is, Pr(C ≥
t|Z) = Pr(C ≥ t) = G(t). We will discuss possible modifications when this assumption

does not hold. In the presence of right censoring, we can find observable proxies of ∆1i

and then apply the technique of IPCW to correcting their biases. Specifically, it follows

that

E

(
I(X ≤ τ, B = 1)

G(X)

∣∣∣∣Z
)

= E

(
I(T ≤ τ, B̃ = 1)E

(
I(T ≤ C)

G(T )

∣∣∣∣T, B̃,Z

)∣∣∣∣Z
)

= E
(

I(T ≤ τ, B̃ = 1)
∣∣∣Z

)
= π(Z̃T β) (4.4)

and

E

(
I(X > τ)

G(τ+)
+

I(X ≤ τ, B = 2)

G(X)

∣∣∣∣Z
)

= 1− π(Z̃T β) = π̄(Z̃T β), (4.5)

where G(τ+) = Pr(C > τ). These two moment conditions can be utilized to construct

estimating functions of β. Set

H1i =
I(Xi ≤ τ, Bi = 1)

G(Xi)
− π(Z̃T

i β) (4.6)

and

H2i =
I(Xi > τ)

G(τ+)
+

I(Xi ≤ τ, Bi = 2)

G(Xi)
− π̄(Z̃T

i β) (4.7)

for i = 1, . . . , n. Replacing G(t) with the Kaplan-Meier estimator

Ĝ(t) =
∏
u<t

[
1−

∑n
k=1 I(Xk = u, Bk = 0)∑n

k=1 I(Xk ≥ u)

]
, (4.8)

the resulting estimating functions become

Uw1(β) =
n∑

i=1

Ĥ1i
πφ(Z̃

T
i β)

V1i

Z̃i (4.9)

and

Uw2(β) =
n∑

i=1

Ĥ2i
πφ(Z̃

T
i β)

V2i

Z̃i, (4.10)
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where Ĥji are Hji (j = 1, 2) with G being replaced by Ĝ and Vji is a weight function,

which measures the variation of Ĥji. A natural choice for Vji is V ar(Hji|Zi). Specifically,

V ar(H1i|Zi) = E

(
I(Xi ≤ τ, Bi = 1)

G2(Xi)

∣∣∣∣Zi

)
− π2(Z̃T

i β), (4.11)

which however involves some unknown quantity which does not have an analytic ex-

pression. Based on the first-order Taylor expansion, the first term in (4.11) can be

approximated by

E

(
1

G(Xi)

∣∣∣∣Zi

)
E

(
I(Xi ≤ τ, Bi = 1)

G(Xi)

∣∣∣∣Zi

)
≈ E

(
1

G(Xi)

)
π(Z̃T

i β).

Although E (1/G(X)) can be estimated by its moment estimator, this quantity is too

sensitive to the tail behavior of Ĝ which may be unstable. Hence we suggest using a

related but more robust quantity instead such as the sample median of {1/Ĝ(Xi) : i =

1, . . . , n}, denoted as MG. Accordingly, we suggest to set V1i = π(Z̃T
i β)(MG− π(Z̃T

i β)),

and by the same argument, we choose V2i = π̄(Z̃T
i β)(MG − π̄(Z̃T

i β)).

The two estimating functions mentioned above may be combined by utilizing the

method of constructing the optimal estimating function discussed in Heyde (1997, Chap-

ter 2). Let Hi = (H1i, H2i)
T for i = 1, . . . , n, the optimal estimating function of β based

on H = (HT
1 , . . . ,HT

n )T is given by

E

(
−∂HT

∂β

∣∣∣∣Z
)

Σ−1
H

H =
n∑

i=1

E

(
−∂HT

i

∂β

∣∣∣∣Zi

)
Σ−1

Hi
Hi, (4.12)

where Σ
H

= E(HHT |Z) and

ΣHi
= E(HiH

T
i |Zi) =

[
V ar(H1i|Zi) −π(Z̃T

i β)π̄(Z̃T
i β)

−π(Z̃T
i β)π̄(Z̃T

i β) V ar(H2i|Zi)

]
.

Replacing V ar(Hji|Zi) by Vji whose forms have been suggested earlier, we obtain the

following estimating function

Uw∗(β) =
n∑

i=1

[
(V2i − V3i)Ĥ1i − (V1i − V3i)Ĥ2i

] πφ(Z̃
T
i β)

V1iV2i − V 2
3i

Z̃i, (4.13)

where V3i = π(Z̃T
i β)π̄(Z̃T

i β).
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The three estimating functions in equations (4.9), (4.10) and (4.13) all reduce to

Ũ(β) in absence of right censoring. With censored data, it is reasonable to suspect that

Uw∗(β) is the most efficient one since it utilizes more information. It is interesting to note

that the estimating function proposed by Fine (1999) actually has the form of Uw1(β)

with a different weight V1i = π(Z̃T
i β)π̄(Z̃T

i β) which does not account for the effect of

censoring. Via the simulations, we will see how these different weight assignments affect

the resulting estimators of β.

Denote the solution to Uw∗(β) = 0(p+1)×1 as β̂w∗ and β̂wj as the solution to Uwj(β) =

0(p+1)×1 for j = 1, 2. In Appendices A and B, we prove the asymptotic normality of

Uw∗(β0) and β̂w∗ , where β0 is the true value of β. Note that an asymptotic expression

of n1/2(β̂w∗ − β0) is obtained as

n1/2(β̂w∗ − β0) = [Aw∗(β0)]
−1 n−1/2Uw∗(β0) + op(1),

where

Aw∗(β0) = − lim
n→∞

1

n

∂Uw∗(β)

∂βT

∣∣∣∣
β=β0

.

Hence n1/2(β̂w∗−β0) has an asymptotically normal distribution with mean 0(p+1)×1 and

covariance matrix

Vw∗ = [Aw∗(β0)]
−1 Γw∗ [Aw∗(β0)]

−1 , (4.14)

where Γw∗ is the asymptotic covariance matrix of n−1/2Uw∗(β0).

If the censoring variable C depends on discrete covariates, the Kaplan-Meier esti-

mator Ĝ(t) can be evaluated for each covariate group. If the related covariate is con-

tinuous, we suggest two different ways of modification. In Section 4.2.3, we illustrate

using a nonparametric smoothing technique, namely the kernel method, to estimate

Pr(C ≥ t|Z̃ = z). The other approach, which can avoid the curse of dimensionality, is to

impose some parametric or semi-parametric model which describes the covariate effect

on C.
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4.2.3 Imputation by Conditional Mean

Alternatively, to handle possible incompleteness of ∆1 = I(T ≤ τ, B̃ = 1) due to

censoring, one may impute its value by an estimate of the conditional mean given the

data. Specifically, E(∆1|X, B,Z) equals

I(X ≤ τ, B = 1) + I(X ≤ τ, B = 0)pZ(X),

where pz(x) = Pr(T ≤ τ, B̃ = 1|T > x,Z = z). Two estimators of pz(x), denoted as

p̂
(j)
z (x) for j = 1, 2, will be proposed and their formulae will be derived later. Replacing

∆1i by

∆̂
(j)
1i = I(Xi ≤ τ, Bi = 1) + I(Xi ≤ τ, Bi = 0)p̂

(j)
Zi

(Xi),

in the score function (4.3), we can obtain the following estimating functions of β

UIj(β) =
n∑

i=1

[
∆̂

(j)
1i − π(Z̃T

i β)
] πφ(Z̃

T
i β)

π(Z̃T
i β)π̄(Z̃T

i β)
Z̃i (4.15)

for j = 1, 2 depending on which p̂
(j)
z (x) will be used in.

The first proposed estimator p̂
(1)
z (x), is derived under a purely nonparametric set-

ting which generalizes the nonparametric results in Wang (2003) and Satten and Datta

(2001). Their ideas are roughly summarized in Appendix C. With covariates, it follows

that

pz(x) = Pr(T ≤ τ, B̃ = 1|T > x,Z = z) =
Pr(x < T ≤ τ, B̃ = 1|Z = z)

Sz(x)
, (4.16)

where Sz(t) = Pr(T > t|Z = z). When Z takes only discrete values, a model-free

estimator of pz(x) is given by

p̂(1)
z (x) =

1

Ŝz(x)

∑n
i=1 I(x < Xi ≤ τ, Bi = 1,Zi = z)/ Ĝ(Xi)∑n

i=1 I(Zi = z)
, (4.17)

where Ĝ is obtained in equation (4.8) and

Ŝz(t) =
∏
u≤t

[
1−

∑n
i=1 I(Xi = u,Bi 6= 0,Zi = z)∑n

i=1 I(Xi ≥ u,Zi = z)

]
. (4.18)
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A nonparametric way of handling continuous Z is to utilize some smoothing technique.

Using the idea of Dabrowska (1987) in the nonparametric regression, we obtain

p̂(1)
z (x) =

1
∑n

i=1

[
I(Xi>x,Bi=1)

Ĝ(Xi)
+

I(Xi>X(m))

Ĝ(X(m)+)

]
Bn,i(z)

n∑
i=1

I(x < Xi ≤ τ, Bi = 1)

Ĝ(Xi)
Bn,i(z),

(4.19)

where X(m) is the largest observed failure time and Bn,i(z) is a random set of non-

negative weights. Candidates of Bn,i(z) include kernel-type weights, nearest neighbors

or local linear weights. For example, one can use the kernel-type weight

Bn,i(z) =
K(a−1

n (z − Zi))∑n
`=1 K(a−1

n (z − Z`))
, (4.20)

where K(·) is an appropriate kernel function and an is the bandwidth.

The second proposed estimator, p̂
(2)
z (x), utilizes the model assumption in equation

(4.1). Specifically, equation (4.16) can be expressed as pz(x; β, Q1,z(·|τ), Q2,z(·|τ), Sz(τ))

which equals

Q1,z(x|τ)π(z̃T β)

Q1,z(x|τ)π(z̃T β) + Q2,z(x|τ){1− Sz(τ)− π(z̃T β)}+ Sz(τ)
, (4.21)

where z̃ = (1, zT )T and Qj,z(t|τ) = Pr(T > t|T ≤ τ, B̃ = j,Z = z) for j = 1, 2.

The previous equation still involves nuisance functions, namely Qj,z(t|τ) for j = 1, 2

and Sz(τ). Here we suggest to estimate these quantities in a nonparametric way. To

simplify the presentation, we give the formula which includes both types of covariates

by setting Bn,i(z) = I(Zi = z) for discrete covariates and the formula in equation (4.20)

for continuous covariates. The proposed estimator Q̂1,z(t|τ) can be written as

∏
u≤t

{
1−

∑n
i=1 I(u = Xi ≤ τ, Bi = 1)Bn,i(z)∑n

i=1[I(u ≤ Xi ≤ τ, Bi = 1) + I(u ≤ Xi ≤ τ, Bi = 0)p̂
(1)
z (Xi)]Bn,i(z)

}
,(4.22)

where the formula of p̂
(1)
z (x) is given in (4.17) or (4.19) for discrete and continuous Z,

respectively. The estimator of Q2,z(t|τ), denoted as Q̂2,z(t|τ), has a similar expression

as Q̂1,z(t|τ) with Bi = 1 being replaced by Bi = 2 in the corresponding formula. The

proposed estimator of Sz(τ) is given by

∏
u≤τ

{
1−

∑n
i=1 I(Xi = u,Bi 6= 0)Bn,i(z)∑n

i=1 I(Xi ≥ u)Bn,i(z)

}
. (4.23)

24



The solution to UIj(β) = 0(p+1)×1 is denoted as β̂Ij for j = 1, 2. These two es-

timating functions differ in the way of estimating pz(x). Via simulations, we will ex-

amine whether the second proposal which utilizes the model information has better

performance. Since UI2(β) is a more complicated function of β, to simplify the root-

finding procedure, one may treat ∆̂
(2)
1i as a fixed number in the mth iteration by using

pz(x; β̂
(m−1)

, Q̂1,z(·|τ), Q̂2,z(·|τ), Ŝz(τ)) instead, where β̂
(m−1)

is the solution in the previ-

ous step. The final solution is obtained via an iterative procedure with m = 1, 2, . . ., etc.

The modified equation is a simpler function of β and thus convergence can be achieved

by only few steps of iterations.

In Appendix D, we prove the asymptotic normality of n−1/2UI1(β0) and that of

n1/2(β̂I1 − β0) when Z is discrete. Similar arguments can be applied to establishing

asymptotic properties of n−1/2UI2(β0) and n1/2(β̂I2 − β0). For continuous covariates,

asymptotic analysis is not provided since the method involves kernel smoothing which

is a technical issue and not of our main focus. However, due to the complexity of the

plugged-in nonparametric estimators, for both types of covariates, we suggest to utilize

the bootstrap re-sampling technique for variance estimation.
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Chapter 5

Numerical Studies

5.1 Simulation Analysis

Finite-sample performances of the proposed estimators were evaluated via simulations.

The covariate Z was generated from three distributions. For the discrete case, we set Z ∼
Bernoulli(0.5). For the continuous case, we set Z ∼ Normal(0, 1) or Z ∼ Unif(−3, 3).

Let ∆j = I(T ≤ τ, B̃ = j) for j = 1, 2. Given Z, we set ∆1 ∼Bernoulli(π(β0 + β1Z))

with

π(β0 + β1Z) =
exp(β0 + β1Z)

1 + exp(β0 + β1Z)
.

If ∆1 = 1, then ∆2 = 0; and if ∆1 = 0, ∆2 is generated from a Bernoulli(p2), where p2

may depend on Z but its form is not of interest. Given (∆1, ∆2), the failure time T is

generated from a distribution with density function fT which can be expressed as

fT (t) =





f1(t|τ, Z) if (∆1, ∆2) = (1, 0)
f2(t|τ, Z) if (∆1, ∆2) = (0, 1)
f3(t|τ, Z) if (∆1, ∆2) = (0, 0),

where fj(t|τ, Z), j = 1, 2, are density functions with supports no greater than τ and

f3(t|τ, Z) is a density function whose value exceeds τ . In the simulations, we set

fj(t|τ, Z) =
fYj

(t|Z)

1− SYj
(τ |Z)

I(t ≤ τ) for j = 1, 2 and f3(t|τ, Z) =
fY3(t|Z)

SY3(τ |Z)
I(t > τ),
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where fYj
(t|Z) and SYj

(t|Z) are the density and survival functions of Yj which follows

the accelerated failure-time model. Specifically, we set

log Yj = γ0,j + γ1,jZ + σj ·Wj, (5.1)

where γ0,j, γ1,j and σj are (nuisance) parameters and Wj has the pre-specified error

distribution.

The censoring variable is generated from Unif(c0, c0 + c1), where (c0, c1) are pre-

specified constants making the censoring proportion to achieve the target value (i.e.,

30% or 40%). Denoted {(∆1i, ∆2i, Ti, Zi, Ci) : i = 1, . . . , n} as a random sample of

(∆1, ∆2, T, Z, C). Note that

I(Xi ≤ τ, Bi = j) = ∆ji · I(Ti ≤ Ci)

for j = 1, 2, where Xi = Ti ∧ Ci. The proposed methods can be implemented based on

{Xi, I(Ti ≤ Ci), I(Xi ≤ τ, Bi = 1), I(Xi ≤ τ, Bi = 2)}

for i = 1, . . . , n. The value of τ is set to be 2.5. The sample size n was set to be 100 or

300.

The parameters of interest are β = (β0, β1)
T . Besides the three proposed estimators

β̂w∗ = (β̂w∗,0, β̂w∗,1)
T , β̂I1 = (β̂I1,0, β̂I1,1)

T and β̂I2 = (β̂I2,0, β̂I2,1)
T and, for comparison,

we also evaluated the estimator proposed by Fine (1999), denoted as β̂F = (β̂F,0, β̂F,1)
T ,

which solves UF (β) = 02×1. Recall that UF (β) has the form of Uw1(β) with V1i =

π(Z̃T
i β)π̄(Z̃T

i β). Based on 1000 replications, we report the average bias (BS), the stan-

dard error (SE) and the mean squared errors (MSE) for β̂w∗,i, β̂I1,i, β̂I2,i and β̂F,i for

i = 0, 1 respectively. We also report the relative efficiency (RE) which is defined as

the ratio of the mean square errors of β̂F,i to that for the other three estimators, β̂w∗,i,

β̂I1,i and β̂I2,i for i = 0, 1. The criteria mentioned above are used to assess the per-

formance of different point estimators of β0 and β1. For each case, we also evaluate

the accuracy of the proposed variance estimators. The criteria include the average of

the square root of proposed variance estimates (SVE) and the corresponding empirical
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coverage probabilities of nominal 95% confidence intervals for βi (CP) for i = 0, 1 based

on 1000 replications. For the reference of comparison, we also report SE, which is the

standard error calculated based on 1000 replications. The variance estimates of β̂w∗ and

β̂F were computed using the formula given in equation (A.4) which can handle Z of both

discrete and continuous types. Although equation (A.4) can be applied to estimating

the variance of β̂I1, it is complicated and becomes intractable analytically when Z is

continuous. Thus we used the bootstrap re-sampling method for variance estimation

for β̂Ij for j = 1, 2. Specifically, 1000 sub-samples were drawn with replacement from

the original sample, and for the kth sub-sample, we obtained β̂
(k)

Ij = (β̂
(k)
Ij,0, β̂

(k)
Ij,1)

T by

solving UIj(β) = 02×1 for j = 1, 2 and k = 1, . . . , 1000. Then the variance of β̂Ij,i can be

estimated by calculating the variance of β̂
(k)
Ij,i for j = 1, 2, i = 0, 1 and k = 1, . . . , 1000.

Tables 5.1 lists the results when Z is binary and in Tables 5.2 and 5.3, we report

the results when Z follows the standard normal and uniform distributions respectively.

The results show that all the proposed estimators are more efficient than β̂F especially

when Z is continuous. Furthermore, β̂I1 and β̂I2, obtained based on the imputation

approach, perform better than β̂w∗ and β̂F which utilize the weighting approach. We

also observe larger bias of β̂F especially when the sample size is small. As in Table

5.2, β̂F still has large bias even when n = 300. We found that the IPCW technique,

which utilizes I(Xi ≤ τ, Bi = 1)/Ĝ(Xi) as a proxy of I(Ti ≤ τ, B̃i = 1), would make

an observation with larger Xi to be more influential in the estimation. Our proposal by

setting V1i = π(Z̃T
i β)(MG−π(Z̃T

i β)) somewhat offset the influence of these observations.

In contrast, Fine (1999) did not adjust the effect of censoring in his proposal of V1i and

hence β̂F was less stable.

Finally, we investigated whether the proposed methods remain robust when C ac-

tually depends on Z. We set log(C) = γ0,c + γ1,cZ + σcWc, where γ0,c, γ1,c and σc are

nuisance parameters and Wc has the pre-specified error distribution. In the computation

of the proposed estimators, we evaluated two estimators of G(t) = Pr(C ≥ t). One is the

Kaplan-Meier estimator given in equation (4.8) and the other is a kernel-type smooth-

ing estimator which simply replaces Bi 6= 1 by Bi = 0 in equation (4.23). Note that
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the former is based on the wrong assumption that C does not depend on Z. Table 5.4

lists the results when Z is binary or follows the standard normal distribution. We only

present the analysis for the estimation of β1 since the results for β0 are similar and hence

omitted. It turns out that the results based on the Kaplan-Meier estimator of G(t) are

biased while the kernel approach yields less biased estimators. Generally speaking, it

seems that the misspecification of Ĝ(t) has more influence on the bias term (BS) and

less on the standard error (SE). All the proposed estimators are relatively more robust

than β̂F under such a model mis-specification.
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Table 5.1: Finite-sample comparison for four estimators of (β0, β1) = (0.8,−1.24) when
the covariate Z is binary.

Sample % Comparison criteria
size censored Estimators BS SE SVE CP(%) MSE RE

β̂w∗
β̂w∗,0 0.009 0.367 0.361 96.5 0.135 1.184

β̂w∗,1 -0.015 0.519 0.515 95.9 0.270 1.208

β̂I1

β̂I1,0 0.006 0.361 0.374 96.2 0.130 1.229

100 30
β̂I1,1 0.000 0.507 0.530 97.2 0.257 1.267

β̂I2

β̂I2,0 0.006 0.360 0.377 96.6 0.130 1.232

β̂I2,1 -0.001 0.507 0.523 97.0 0.257 1.267

β̂F

β̂F,0 0.017 0.399 0.401 97.6 0.160 1

β̂F,1 -0.028 0.570 0.580 96.8 0.326 1

β̂w∗
β̂w∗,0 0.049 0.464 0.440 94.5 0.218 1.405

β̂w∗,1 -0.083 0.598 0.581 94.4 0.365 1.498

β̂I1

β̂I1,0 0.044 0.456 0.499 97.2 0.210 1.457

100 40
β̂I1,1 -0.061 0.579 0.613 96.7 0.339 1.610

β̂I2

β̂I2,0 0.042 0.456 0.478 96.8 0.210 1.460

β̂I2,1 -0.060 0.579 0.630 96.3 0.339 1.613

β̂F

β̂F,0 0.061 0.550 0.561 97.0 0.306 1

β̂F,1 -0.111 0.731 0.739 96.9 0.546 1

β̂w∗ β̂w∗,0 0.007 0.230 0.230 94.8 0.053 1.154

β̂w∗,1 -0.011 0.306 0.297 95.1 0.094 1.208

β̂I1 β̂I1,0 0.007 0.227 0.234 95.9 0.052 1.188

300 30
β̂I1,1 -0.010 0.301 0.300 95.3 0.091 1.248

β̂I2 β̂I2,0 0.001 0.225 0.231 95.7 0.051 1.213

β̂I2,1 0.001 0.297 0.296 95.2 0.088 1.283

β̂F β̂F,0 0.009 0.248 0.254 96.0 0.061 1

β̂F,1 -0.013 0.336 0.334 96.0 0.113 1

β̂w∗ β̂w∗,0 0.019 0.279 0.268 94.6 0.079 1.331

β̂w∗,1 -0.028 0.338 0.338 94.8 0.115 1.411

β̂I1 β̂I1,0 0.019 0.277 0.277 95.7 0.077 1.353

300 40
β̂I1,1 -0.027 0.334 0.346 95.1 0.112 1.443

β̂I2 β̂I2,0 0.019 0.276 0.275 95.5 0.077 1.362

β̂I2,1 -0.026 0.333 0.340 95.3 0.112 1.447

β̂F β̂F,0 0.024 0.323 0.319 95.9 0.105 1

β̂F,1 -0.033 0.401 0.411 96.4 0.162 1
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Table 5.2: Finite-sample comparison for four estimators of (β0, β1) = (0, 1.8) when the
covariate Z follows the standard normal distribution.

Sample % Comparison criteria
size censored Estimators BS SE SVE CP(%) MSE RE

β̂w∗
β̂w∗,0 0.023 0.306 0.294 95.5 0.094 1.406

β̂w∗,1 0.134 0.498 0.446 94.1 0.266 2.317

β̂I1

β̂I1,0 -0.012 0.292 0.295 96.5 0.085 1.552

100 30
β̂I1,1 -0.070 0.455 0.474 94.0 0.212 2.909

β̂I2

β̂I2,0 -0.020 0.288 0.294 95.8 0.084 1.581

β̂I2,1 -0.073 0.455 0.444 93.4 0.212 2.906

β̂F

β̂F,0 -0.019 0.363 0.373 96.5 0.132 1

β̂F,1 0.134 0.774 0.841 93.4 0.617 1

β̂w∗
β̂w∗,0 0.009 0.338 0.325 94.8 0.114 1.455

β̂w∗,1 0.138 0.541 0.479 94.3 0.312 3.742

β̂I1

β̂I1,0 -0.003 0.325 0.341 97.0 0.106 1.577

100 40
β̂I1,1 -0.079 0.475 0.476 95.3 0.231 5.044

β̂I2

β̂I2,0 -0.005 0.326 0.345 96.8 0.106 1.569

β̂I2,1 -0.077 0.474 0.481 95.7 0.231 5.062

β̂F

β̂F,0 -0.013 0.408 0.426 96.2 0.166 1

β̂F,1 0.157 1.069 1.549 96.1 1.167 1

β̂w∗ β̂w∗,0 0.006 0.171 0.169 94.9 0.029 1.738

β̂w∗,1 0.038 0.257 0.252 94.4 0.067 4.689

β̂I1 β̂I1,0 -0.002 0.159 0.163 95.4 0.025 2.013

300 30
β̂I1,1 -0.025 0.249 0.247 95.7 0.063 5.035

β̂I2 β̂I2,0 -0.003 0.158 0.165 96.2 0.025 2.027

β̂I2,1 -0.025 0.248 0.251 96.0 0.062 5.098

β̂F β̂F,0 0.030 0.223 0.219 96.9 0.051 1

β̂F,1 0.097 0.553 0.566 93.8 0.316 1

β̂w∗ β̂w∗,0 0.006 0.188 0.182 94.7 0.035 1.871

β̂w∗,1 0.048 0.280 0.270 95.1 0.081 6.940

β̂I1 β̂I1,0 -0.003 0.180 0.180 95.0 0.032 2.037

300 40
β̂I1,1 -0.065 0.251 0.252 93.5 0.067 8.322

β̂I2 β̂I2,0 -0.003 0.180 0.182 95.5 0.032 2.045

β̂I2,1 -0.064 0.253 0.258 94.0 0.068 8.212

β̂F β̂F,0 0.022 0.256 0.276 97.2 0.066 1

β̂F,1 0.101 0.742 0.792 96.2 0.560 1
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Table 5.3: Finite-sample comparison for four estimators of (β0, β1) = (1.23, 0.86) when
the covariate Z follows the uniform distribution.

Sample % Comparison criteria
size censored Estimators BS SE SVE CP(%) MSE RE

β̂w∗
β̂w∗,0 0.063 0.371 0.362 93.8 0.142 3.388

β̂w∗,1 0.041 0.291 0.261 93.3 0.086 3.330

β̂I1

β̂I1,0 0.067 0.421 0.406 96.8 0.181 2.643

100 30
β̂I1,1 0.037 0.259 0.264 97.0 0.068 4.211

β̂I2

β̂I2,0 0.060 0.394 0.406 97.0 0.159 3.023

β̂I2,1 0.032 0.258 0.270 97.2 0.068 4.259

β̂F

β̂F,0 0.116 0.684 0.719 93.6 0.481 1

β̂F,1 0.090 0.529 0.607 93.2 0.288 1

β̂w∗
β̂w∗,0 0.111 0.494 0.432 92.8 0.256 3.759

β̂w∗,1 0.073 0.347 0.308 93.5 0.126 3.568

β̂I1

β̂I1,0 0.092 0.448 0.471 97.1 0.209 4.607

100 40
β̂I1,1 0.049 0.311 0.317 96.4 0.099 4.521

β̂I2

β̂I2,0 0.091 0.445 0.466 97.5 0.206 4.675

β̂I2,1 0.044 0.308 0.313 96.0 0.097 4.626

β̂F

β̂F,0 0.181 0.965 1.107 92.6 0.964 1

β̂F,1 0.127 0.657 0.891 93.3 0.448 1

β̂w∗ β̂w∗,0 0.009 0.198 0.203 96.2 0.039 3.312

β̂w∗,1 0.019 0.143 0.146 95.1 0.021 4.303

β̂I1 β̂I1,0 0.023 0.194 0.206 95.5 0.038 3.410

300 30
β̂I1,1 -0.028 0.124 0.140 96.5 0.016 5.543

β̂I2 β̂I2,0 0.024 0.193 0.207 97.0 0.038 3.442

β̂I2,1 -0.030 0.122 0.131 96.1 0.016 5.664

β̂F β̂F,0 0.060 0.355 0.358 94.4 0.130 1

β̂F,1 0.059 0.293 0.292 94.2 0.089 1

β̂w∗ β̂w∗,0 0.043 0.252 0.243 95.3 0.065 5.619

β̂w∗,1 0.028 0.172 0.163 94.2 0.030 6.892

β̂I1 β̂I1,0 0.042 0.244 0.249 95.7 0.062 5.956

300 40
β̂I1,1 0.015 0.167 0.168 95.6 0.028 7.443

β̂I2 β̂I2,0 0.041 0.242 0.250 96.0 0.060 6.062

β̂I2,1 -0.015 0.163 0.170 95.5 0.027 7.777

β̂F β̂F,0 0.139 0.589 0.611 93.9 0.367 1

β̂F,1 0.099 0.447 0.495 94.6 0.209 1
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Table 5.4: Robustness analysis when the censoring variable depends on Z. When Z is
binary, β1 = −1.24 and when Z ∼ N(0, 1), β1 = 1.8.

Sample size = 300, % censored = 30
Estimators

type of covariate Ĝ Criteria β̂w∗,1 β̂I1,1 β̂I2,1 β̂F,1

Binary

Kernel-type
BS -0.029 -0.015 -0.001 -0.037

SE 0.319 0.316 0.315 0.323

MSE 0.103 0.100 0.099 0.105

Kaplan-Meier
BS 0.092 0.083 0.081 -0.989

SD 0.326 0.318 0.318 0.471

MSE 0.114 0.108 0.108 1.199

Standard
Kernel-type

BS -0.073 -0.066 -0.064 0.098

Normal

SD 0.254 0.245 0.244 0.260

MSE 0.070 0.064 0.064 0.077

Kaplan-Meier
BS -0.191 -0.106 -0.103 2.775

SD 0.258 0.248 0.246 1.058

MSE 0.103 0.073 0.071 8.823
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5.2 Analysis of Heart Transplant Data

The proposed inference procedures are applied to the Stanford Heart Transplant data

(Crowley and Hu, 1977, pp.∼ 28-29). Larson and Dinse (1985) also analyzed this data set

in the context of model (2.5). Following Larson and Dinse, we consider only the subset of

65 patients who received a transplant and had complete data on the covariates of interest.

Deaths were attributed to transplant rejection (B̃ = 1) or other causes (B̃ = 2). Among

the 65 heart recipients, there were 29 rejected deaths; 12 deaths were from other causes

and 24 patients were censored. The covariates include the waiting time from acceptance

to surgery (w); the age at surgery (age) and a continuous mismatch score (m). Both m

and age are transformed to have zero mean and unit variance, and w was recorded as

a binary variable according to whether or not the waiting time exceeded 31 days. The

survival time T (in days) was measured from the date of transplant surgery. The main

objective is to explore the relationship between certain covariates and the cause of death

due to transplant rejection.

To assess if the censoring time C depends on the selected covariates, the Cox pro-

portional hazard model was fitted for C on each covariate separately. All p-values are

larger than 0.1, hence we assume that the distribution of C does not depend on Z. The

quantity of interest is F1(τ) = Pr(T ≤ τ, B̃ = 1), the cumulative incidence probability

of rejection by time τ . We set τ = 250, 500, 900, 1800 (days). For each covariate, we ran

simple logistic regression under the model:

log

[
F1(τ)

1− F1(τ)

]
= b0(τ) + b1(τ)z,

where z is one of the covariates. The waiting time w was not significant at all values

of τ . The effect of the mismatch score m was insignificant for small values of τ and

then became more obvious as τ increases. The covariate age is significant for all values

of τ . Excluding w, we fitted a multiple logistic regression model which contained the

covariates age and m. In Table 5.5, we see that age still played an important role for all

values of τ , but the effect of mismatch score became insignificant when it is considered

jointly with age. We conclude that age was the determining factor of F1(τ). That is,
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a patient with a younger age at the transplant surgery tended to have lower chance to

develop the transplant rejection.

Larson and Dinse (1985) analyzed the same dataset under the framework of model

(2.5). It was assumed that Pr(B̃ = 1), the incidence rate of dying from transplant

rejection, follows a logistic model and the latency distribution 1 − Qj(t) = Pr(T ≤
t|B̃ = j) follows a proportional hazard model for j = 1, 2 with

Pr(T > t|B̃ = j,Z) = exp

[
−

∫ t

0

hj(u) exp(ZT γj)du

]
,

where hj(t) is specified as a piece-wise exponential function. Their analysis showed that

no covariates have significant effect on Pr(B̃ = 1) but both age and m were important

for the latency distribution associated with transplant rejection. Our result coincides

with that of Larson and Dinse (1985) in that age plays an important role for F1(t).

However Larson and Dinse (1985) attributed the influence of age on F1(t) to the latency

distribution 1 − Q1(t). In contrast, our analysis showed that the effect of age on F1(τ)

persisted throughout all selected values of τ . It is reasonable to expect that such effect

might continue to Pr(B̃ = 1), which however, conflicts with the conclusion of Larson

and Dinse (1985).

To investigate this contradiction, we divide the data set into three age groups such

that group j represents the group with age ≤ 45, ∈ (45, 51) and > 51 for j = 1, 2, 3

respectively. By the formula (3.6), nonparametric estimators of F1(t) for each age group

can be obtained. For comparison, we also applied the mixed logistic/proportional hazard

model of Larson and Dinse (1985) for the grouping age variable and the model-based

estimators of F1(t) can be obtained by (2.5) with plugging in estimates of corresponding

regression parameters. Figure 5.1 lists plots of both types of estimators of F1(t) in

which the nonparametric estimators, F̂NP
1 (t) were obtained as stepped functions and

the model-based ones, F̂LD
1 (t) were illustrated by thinner curves.

We look at the curves of F̂NP
1 (t) first. The curves of the two elder groups differed

at the beginning but then became closer as the time passed by, suggesting that the

two elder groups have similar rates of dying from rejection but different evolutions. On
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the other hand, the youngest group had lower cumulative incidence probability of dying

from rejection throughout the entire study period which illustrates an evidence of lower

incidence rates of rejected death of the younger than that of the elder. Plots of F̂LD
1 (t)

seem to agree with that of F̂NP
1 (t) within the range of study period.

Table 5.5: Multiple Regression analysis for Heart Transplant data. In each cell, the
estimated parameter and its standard error (in parenthesis) are given. Items with p-
value < 0.05 are marked by a.

Covariate τ = 1800 τ = 900 τ = 500 τ = 250

Uw∗

int 0.545 (0.463) -0.037 (0.374) -0.653 (0.311) -1.016 (0.333)
age 1.561 (0.542)a 1.279 (0.382)a 0.970 (0.310)a 1.070 (0.351)a

m 0.727 (0.549) 0.786 (0.496) 0.691 (0.392) 0.672 (0.386)

UI1

int 0.139 (0.470) -0.136 (0.410) -0.775 (0.336) -1.087 (0.375)
age 1.357 (0.569)a 1.208 (0.518)a 0.927 (0.370)a 1.052 (0.442)a

m 0.665 (0.629) 0.790 (0.654) 0.563 (0.432) 0.601 (0.452)

UI2

int 0.137 (0.464) -0.152 (0.410) -0.760 (0.333) -1.076 (0.378)
age 1.329 (0.527)a 1.197 (0.458)a 0.921 (0.380)a 1.047 (0.438)a

m 0.598 (0.580) 0.696 (0.553) 0.543 (0.410) 0.588 (0.451)

UF

int 0.420 (0.484) -0.061 (0.370) -0.657 (0.308) -1.002 (0.330)
age 1.624 (0.748)a 1.265 (0.412)a 0.949 (0.307)a 1.080 (0.356)a

m 0.416 (0.603) 0.570 (0.502) 0.613 (0.395) 0.634 (0.394)
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Figure 5.1: Plot of the cumulative incidence function of rejected death versus survival
time for three groups with age≤ 45 (−·−·−), 45 <age≤ 51 (−−−) and 51 <age (——).
Step functions are nonparametric estimators and thinner curves comes from Larson and
Dinse (1985)’s mixture model.
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5.3 Analysis of SARS Data

5.3.1 Data Description

The Taiwan nationwide Laboratory-confirmed SARS database was kindly provided by

Dr. Mei-Shiang Ho and her colleagues in the institute of Biomedical Sciences, Academia

Sinica. Patients with SARS had to be isolated in the hospital until recovery or death.

The process can be described using the framework of competing risks. Here we define

B̃ = 1 to indicate that a patient was cured from the disease (being discharged from the

hospital and alive) and B̃ = 2 to indicate that a patient was not cured (died during

the hospitalization period). Because this infectious disease has been eventually under

control in Taiwan, the database contains complete information about the two outcomes

and the corresponding failure time. There are 258 infected patients in which 58 subjects

were dead during the hospitalization period and 200 subjects were discharged from the

hospital and alive.

Possible covariates include age, gender, disease, PCR, viral load, where age denotes

a patient’s age by years; disease is a binary variable indicating whether a patient had

suffered from other diseases before getting infected of SARS (1: yes, 0: no); PCR is

an indicator of whether the Polymerase Chain Reaction (PCR) test detected the SARS

virus (1: yes, 0: no) and viral load measures the viral load detected by the PCR test.

Note that if PCR equals 0, the individual had a negative virus titer, meaning that the

patient has anti-body but zero viral load, and then the viral load is set as zero.

5.3.2 Analysis of the Original Complete Data

The function F1(t) = Pr(B̃ = 1, T ≤ t) measures the probability of being discharged

from the hospital (cured) by time t. We first present nonparametric analysis for each

covariate group. Then we perform simple regression analysis for each covariate group

using the LOGISTIC procedure in SAS.
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Figures 5.2-5.6 depict the empirical estimators of F1(t) based on the covariate groups.

The continuous variable age was first divided into three groups, age < 30, 30 ≤ age ≤ 50

and age > 50. Figure 5.2 shows that the two younger groups (age < 30 and 30 ≤ age

≤ 50) have similar patterns, while the older group (age > 50) has much lower chance

of recovery at every t. At the end, the cure proportions of three age groups (from the

youngest to the oldest) are 0.925, 0.879 and 0.443, respectively. The patterns of F1(t)

for the gender groups and disease groups are similar such that the curves associated

with different covariate values have no crossings. At the end, the female group (cure

proportion = 0.842) had better recovery than the male group (cure proportion = 0.656).

Individuals without previous diseases (cure proportion = 0.845) also revealed better

recovery than those in presence of other disease (cure proportion = 0.444).

The curves based on different groups of PCR and viral load behave differently than

the former covariates. Note that viral load, originally measured continuously, was strat-

ified into four groups: no viral load detected, ≤ 103, ∈ (103, 105], and > 105. The first

group includes those with PCR = 0 (cure proportion = 0.946) and the last three groups

are those with PCR = 1 (cure proportions equal 0.763, 0.648 and 0.526, respectively).

At the end, the larger the level of viral load, the lower chance of recovery. However the

four empirical curves have intersections in some middle time points.

We conducted several simple regression analyses based on the model

logit [F1(τj)] = β0,j + β1,j Z, (5.2)

where Z is a selected covariate and βk,j are simplifications of βk(τj) (k = 0, 1) for j =

1, . . . , 5. In the analysis, age was divided into two groups (≤ 50 and > 50) and viral load

was transformed into the scale of log10 to stabilize the effect caused by extreme large

values. We set τ1 = 14, τ2 = 21, τ3 = 28, τ4 = 35 and τ5 to be the maximum length of

hospitalization for the cure satisfying F1(τ5) = Pr(B̃ = 1). The results are summarized

in Table 5.6. Here we discuss the effect of age for illustration. Treating the younger

group (age ≤ 50) as the baseline, the odds ratios along the time eβ̂1,j ’s are 0.466, 0.221,

0.158, 0.146 and 0.090. This implies that the effect of age on the odds of F1(τj) tends to
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be more influential as τj gets larger. Notice that age has substantial effect on F1(τ5), the

final chance of recovery. For comparison, we analyze the data under model (2.2) which

assumes β1,1 = . . . = β1,5 = β1. The overall odds ratio eβ̂1 is 0.147 which seems very

different from the separate odds ratios reported above. To formally examine whether

the effect of age is time independent, a score test for assessing the difference between the

reduced and the full model (with four degree of freedom) was performed. The resulting

p-value is 0.006 which implies that model (2.2) is not suitable for measuring the influence

of age on F1(t). Table 5.6 also shows that each covariate has a significant effect on F1(τj)

for larger τj. In general, younger females, who did not have other diseases and had lower

viral load, had the best chance of recovery from SARS. Note that the effect of gender

remained the same along the time. In fact, Figure 5.3 shows that the curves for the male

and the female do not intersect. However the two curves with different disease status

have no crossing but the test of time homogeneity is rejected.

Although our paper does not study whether a covariate affects the latency distribu-

tion Q1(t|τ), here we illustrate how to conduct further analysis if this is also of some

interest. Let us use age again for illustration. We fit Q1(t|τ5) by the accelerated failure

time model with a Weibull distribution, the estimated regression parameter for age is

0.276 (p-value = 0.004). The result implies that, for older patients (age > 50) who were

eventually cured, they also needed longer time to get recovery (Figure 5.7).
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Figure 5.2: The cumulative incidence function of cure for three age groups:
age< 30 (−·−·−), 30 ≤age≤ 50 (——) and 50 <age (−−−).
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Figure 5.3: The cumulative incidence function of cure for two groups of different gender:
female (−·−·−) and male (——).

duration time

C
IF

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

41



Figure 5.4: The cumulative incidence function of cure for two groups with/without other
diseases: “without disease” (−·−·−) and “with disease” (——).
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Figure 5.5: The cumulative incidence function of cure for groups with/without PCR:
PCR = 1 (——) and PCR = 0 (−·−·−).
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Figure 5.6: The cumulative incidence function of cure for groups with different level of
virus load (vl): vl = 0 (−···−), 0 < vl < 103 (−−−), 103 < vl < 105 (−·−·−) and
105 < vl (——).
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Figure 5.7: The latency survival function of cure for two age groups: age ≤ 50 (−·−·−)
and age > 50 (——).
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Table 5.6: Output for SARS analysis for different τ ’s, spaced by one week but staring
at two weeks. Items with p-values < 0.05 are marked by a.

p-value of
testing

Covariate β̂1,1 β̂1,2 β̂1,3 β̂1,4 β̂1,5 β̂1 homogeneity

age
> 50 -0.763 -1.510a -1.843a -1.926a -2.409a -1.914a 0.006

(0.439) (0.340) (0.307) (0.308) (0.341) (0.276)

gender
male -0.313 -0.707a -0.811a -0.825a -1.031a -0.755a 0.476

(0.361) (0.273) (0.268) (0.276) (0.305) (0.234)

disease
with disease -0.312 -1.093a -1.494a -1.725a -1.920a -1.568a 0.007

(0.474) (0.384) (0.349) (0.350) (0.355) (0.312)

PCR
positive 0.172 -0.753a -1.328a -1.758a -2.260a -0.934a < 0.001

(0.341) (0.258) (0.286) (0.330) (0.454) (0.229)

log10viral load -0.064 -0.207a -0.293a -0.370a -0.461a -0.264a < 0.001
(0.075) (0.059) (0.061) (0.066) (0.078) (0.051)
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5.3.3 Analysis of Censored SARS Data

In practice, interim analysis based on incomplete data provides timely information for

decision making. Although the original SARS dataset contains complete information

about the value of (T, B̃), it is worthy to investigate how the proposed methods behave if

this dataset is subject to further censoring. Here we generated a censoring variable which

has a uniform distribution taking values from 0 to 70 making the censoring proportion

to be around 30%.

Based on a censored version of the SARS data, we applied the proposed methods

to fit a simple logistic regression for each covariate group and found that each covariate

was statistically significant since time τ2. Then we included all the covariates in the

multiple logistic regression model which showed that the covariates gender and PCR

became insignificant at all values of τ . The final fitted model is

logit[F1(τ)] = β0(τ) + β1(τ) age + β2(τ) disease + β3(τ) log10(viral load).

Table 5.7 lists the detail results of the above analysis based on a single run using the

artificial censoring scheme. Note that in the table we also report the previous results

obtained from solving Ũ(β) = 04×1, the score equation based on the original complete

data. With the additional censoring, the proposed methods yield similar point estimates

but larger standard deviations, as expected. Table 5.8 list the average results by repeat-

ing the censoring scheme 300 times. The patterns are similar to that in a single run.

Note that the proposed estimators also produce more precise results compared with the

estimator of Fine (1999).
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Table 5.7: Multiple logistic regression analysis for SARS data subject to a single run of
artificial censoring. In each cell, the estimated parameter and the estimated standard
error (in parenthesis) are given. Items with p-value < 0.05 are marked by a and with
p-value < 0.1 are marked by b.

Covariate τ2 = 21 τ3 = 28 τ4 = 35 τ5 = 92

Ũ
age > 50 -1.240 (0.370)a -1.478 (0.343)a -1.486 (0.355)a -2.066 (0.414)a

with disease -0.400 (0.435) -0.654 (0.417) -0.904 (0.427)a -0.854 (0.470)b

log10(viral load) -0.158 (0.061)a -0.251 (0.065)a -0.338 (0.072)a -0.464 (0.093)a

Uw∗

age > 50 -1.237 (0.462)a -1.647 (0.430)a -1.566 (0.435)a -1.885 (0.464)a

with disease -0.581 (0.521) -0.633 (0.485) -0.805 (0.460)b -0.837 (0.507)b

log10(viral load) -0.181 (0.068)a -0.286 (0.073)a -0.396 (0.082)a -0.473 (0.090)a

UI1

age > 50 -1.276 (0.435)a -1.646 (0.373)a -1.568 (0.414)a -1.925 (0.488)a

with disease -0.500 (0.567) -0.757 (0.462) -1.110 (0.509)a -1.113 (0.530)a

log10(viral load) -0.173 (0.078)a -0.251 (0.067)a -0.360 (0.090)a -0.398 (0.089)a

UI2

age > 50 -1.277 (0.435)a -1.655 (0.376)a -1.569 (0.410)a -1.947 (0.479)a

with disease -0.488 (0.556) -0.767 (0.468) -1.015 (0.502)a -1.050 (0.527)a

log10(viral load) -0.179 (0.077)a -0.259 (0.064)a -0.361 (0.087)a -0.408 (0.091)a

UF

age > 50 -1.222 (0.459)a -1.364 (0.449)a -1.291 (0.521)a -1.714 (0.639)a

with disease -0.399 (0.516) -0.505 (0.517) -0.869 (0.568) -0.910 (0.675)
log10(viral load) -0.215 (0.075)a -0.327 (0.092)a -0.443 (0.123)a -0.497 (0.181)a
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Table 5.8: Multiple logistic regression analysis for SARS data by repeating artificial
censoring 300 times. In each cell, the average of the parameter estimates and the average
of the standard-error estimates are reported.

Covariate τ2 = 21 τ3 = 28 τ4 = 35 τ5 = 92

Ũ
age > 50 -1.240 (0.370) -1.478 (0.343) -1.486 (0.355) -2.066 (0.414)

with disease -0.400 (0.435) -0.654 (0.417) -0.904 (0.427) -0.854 (0.470)

log10(viral load) -0.158 (0.061) -0.251 (0.065) -0.338 (0.072) -0.464 (0.093)

Uw∗

age > 50 -1.279 (0.450) -1.507 (0.417) -1.530 (0.440) -2.116 (0.506)

with disease -0.393 (0.487) -0.672 (0.454) -0.941 (0.478) -1.170 (0.537)

log10(viral load) -0.158 (0.069) -0.250 (0.075) -0.339 (0.085) -0.500 (0.102)

UI1

age > 50 -1.269 (0.486) -1.502 (0.442) -1.538 (0.462) -2.115 (0.520)

with disease -0.402 (0.557) -0.699 (0.509) -0.993 (0.526) -1.174 (0.585)

log10(viral load) -0.156 (0.071) -0.247 (0.076) -0.331 (0.088) -0.442 (0.100)

UI2

age > 50 -1.270 (0.487) -1.500 (0.438) -1.540 (0.463) -2.114 (0.515)

with disease -0.404 (0.550) -0.685 (0.498) -0.989 (0.521) -1.173 (0.585)

log10(viral load) -0.157 (0.071) -0.241 (0.076) -0.333 (0.086) -0.433 (0.099)

UF

age > 50 -1.265 (0.469) -1.483 (0.480) -1.500 (0.553) -2.365 (1.099)

with disease -0.410 (0.535) -0.711 (0.550) -0.990 (0.602) -1.246 (0.955)

log10(viral load) -0.156 (0.075) -0.250 (0.098) -0.345 (0.126) -0.587 (0.346)
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Chapter 6

Concluding Remarks

In the thesis, we apply two useful techniques, namely inverse probability censoring

weighting and imputation, to handle missing responses in analysis of a logistic regres-

sion model. The proposed estimating functions based on the weighting approach further

consider efficiency improvement by taking the censoring effect into account and utiliz-

ing more data information. The imputation approach has better performance in the

simulations but it also involves estimating more nuisance quantities. In the thesis, we

demonstrate that these nuisance functions can be handled nonparametrically by apply-

ing the results of Wang (2003) to the current regression setting which however may need

to use smoothing techniques and hence is quite technically involved. Furthermore if

the dimension of the continuous covariates is high, kernel smoothing may not work well

unless the sample size is substantially large. In such a case, one may try to reduce the

dimension of Z based on preliminary analysis or impose additional model assumptions

on the latency distributions to avoid the curse of dimensionality.

The logistic model assumption on π(ZT
i β) is specified only for a chosen value of τ .

However if the analysis will be implemented at several time points, we may want to let

the form of π(·) to vary at different values of τ . For example, we can impose a parametric

link family and then test the corresponding parameter value which also serves as a way

of selecting the most fitted link at a given time. For example, the logistic link can be

viewed as a member of the family g(u; ρ) = log [{(1/(1− u))ρ − 1}/ ρ] with ρ = 1. A
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common way of testing ρ = ρ0 is via the deviance of the likelihood function which is

not suitable for our purpose. We may adopt the idea of Pregibon (1980) to test ρ = ρ0

via a score test constructed based on the estimating function without specifying the

likelihood.

Our proposed methods can be directly modified to incorporate the transformation

model given in (2.2). We start with a grid of time points, τ1, . . . , τL. At these grid

points, model (2.2) can be expressed as

F1(τ`|Z) = π
(
m(τ`) + ZT θ

)
= π

(
α` + ZT θ

)
, ` = 1, . . . , L (6.1)

where π = H−1. Let µT = (α1, . . . , αL,θT ). We can construct estimating functions of

µ by the same steps in Sections 4.2.2 and 4.2.3. For example, we can reconstruct (4.6)

and (4.7) as

H`,1i =
I(Xi ≤ τ`, Bi = 1)

G(Xi)
− π(α` + ZT

i θ) (6.2)

and

H`,2i =
I(Xi > τ`)

G(τ`+)
+

I(Xi ≤ τ`, Bi = 2)

G(Xi)
− π̄(α` + ZT

i θ) (6.3)

for i = 1, . . . , n. The resulting estimating function of µ is

Uw3(µ) =
n∑

i=1

−E

(
∂H̃i

∂µ

)
V −1

i (µ) H̃i (6.4)

where

H̃i =

[
Ĥ1,1i, . . . , ĤL,1i

Ĥ2,1i, . . . , ĤL,2i

]

in which Ĥ`,ji are H`,ji (j = 1, 2) with G being replaced by Ĝ defined in (4.8) and Vi(µ)

is a working covariance matrix. We can select a reasonable covariance matrix for Uw3 in

the same way as did for Uw∗ . Estimating functions based on the imputation approach

can be also obtained in a similar way.

Now we briefly illustrate how to use model (4.1) to verify the “parallel-lines” as-

sumption of model (2.2) or help choosing time-dependent covariates in that model. For
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selected grid points, we reparameterize model (4.1) as

F1(τ`|Z) = π(Z̃T β(τ`)) = π
(
α` + ZT θ + ZT η1φ1 + · · ·+ ZT ηL−1φL−1

)
, ` = 1, . . . , L

(6.5)

where ηh is a dummy variable with value equal to 1 if h = ` or 0 otherwise and φh’s

are extra parameters measuring interactions between time and covariates. In this sense

model (2.2) can be viewed as a reduced model of model (4.1) and hence the parallel

lines assumption can be verified by testing the null hypothesis φ1 = · · · = φL−1 = 0.

We can construct a score test for testing this hypothesis. Let φT = (φ1, . . . , φL−1) and

γT = (µT ,φT ) in which µT = (α1, . . . , αL, θT ). Denote the estimating function of γ

by US(γ). For the IPCW approach, we can obtain US(γ) in the same form of (6.4)

with H`,ji (j = 1, 2) are evaluated under model (6.5). Then US(γ) may be shown to

be asymptotically normally distributed with mean-zero and variance Γ, where Γ can

be partitioned according to γT = (µT ,φT ). Denote this partition as Γ = (Γkl) for

k, l = 1, 2. The score statistic for testing the above hypothesis is

Q = n−1UT
S (γ̂)(Γ̂22 − Γ̂21Γ̂

−1
11 Γ̂12)

−1US(γ̂),

where γ̂ and Γ̂kl are evaluated under the null hypothesis. Under the null hypothesis, Q

is asymptotically chi-squared with L−1 degrees of freedom. One can refer to the papers

by Chen (1983) and Li (1991) for details.
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Appendix

Appendix A: Asymptotic properties of Uw∗(β)

Assume that the true value β0 is located in the interior of the parameter space, which

is a bounded convex region and πφ(·) is bounded. The estimating function Uw∗(β) in

Section 4.2.2 can be written as

Uw∗(β) =
n∑

i=1

[(V2i − V3i)H1i − (V1i − V3i)H2i]
πφ(Z̃

T
i β)

V1iV2i − V 2
3i

Z̃i + B2n(β),

where

B2n(β) =
n∑

i=1

{[
I(Xi ≤ τ, Bi = 1)

G(Xi)

V2i − V3i

V1iV2i − V 2
3i

πφ(Z̃
T
i β)Z̃i

]
G(Xi)− Ĝ(Xi)

Ĝ(Xi)

−
[
I(Xi ≤ τ, Bi = 2)

G(Xi)

V1i − V3i

V1iV2i − V 2
3i

πφ(Z̃
T
i β)Z̃i

]
G(Xi)− Ĝ(Xi)

Ĝ(Xi)

−
[
I(Xi > τ)

G(τ+)

V1i − V3i

V1iV2i − V 2
3i

πφ(Z̃
T
i β)Z̃i

]
G(τ+)− Ĝ(τ+)

Ĝ(τ+)

}
.

To derive the asymptotic distribution of n−1/2Uw∗(β0), we first express the Kaplan-Meier

estimator Ĝ(t) as the following integral form,

G(t)− Ĝ(t)

G(t)
=

n∑
i=1

∫ t

0

Ĝ(u−)

G(u)

dMC,i(u)

Ȳ (u)
,

where

MC,i(u) = I(Xi ≤ u,Bi = 0)−
∫ u

0

I(Xi ≥ s)dΛC(s),

Ȳ (u) =
∑n

i=1 I(Xi ≥ u) and ΛC(s) is the cumulative hazard function of C. By the

uniform convergence of the Kaplan-Meier estimator, we can write n−1/2B2n(β0) as

1√
n

n∑
i=1

∫ ∞

0

[q1(t; β0)− q2(t; β0)− q3(t; β0)]

(
Ȳ (t)

n

)−1

dMC,i(t) + op(1),

where

q1(t; β0) =
1

n

n∑

k=1

I(Xk ≥ t)

[
I(Xk ≤ τ, Bk = 1)

G(Xk)

]
v2k − v3k

v1kv2k − v2
3k

πφ(Z̃
T
k β0)Z̃k, (A.1)
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q2(t; β0) =
1

n

n∑

k=1

I(Xk ≥ t)

[
I(Xk ≤ τ, Bk = 2)

G(Xk)

]
v1k − v3k

v1kv2k − v2
3k

πφ(Z̃
T
k β0)Z̃k, (A.2)

q3(t; β0) =
1

n

n∑

k=1

I(τ ≥ t)

[
I(Xk > τ)

G(τ+)

]
v1k − v3k

v1kv2k − v2
3k

πφ(Z̃
T
k β0)Z̃k, (A.3)

v1k = π(Z̃T
k β0)(M̃ − π(Z̃T

k β0)), v2k = π̄(Z̃T
k β0)(M̃ − π̄(Z̃T

k β0)), v3k = π̄(Z̃T
k β0)π(Z̃T

k β0)

and M̃ is the median of the random variable 1/G(X).

Therefore n−1/2Uw∗(β0) can be expressed as n−1/2
∑n

i=1 ξi + op(1), where

ξi =

{[
I(Xi ≤ τ, Bi = 1)

G(Xi)
− π(Z̃T

i β0)

]
(v2i − v3i)

−
[
I(Xi > τ)

G(τ+)
+

I(Xi ≤ τ, Bi = 2)

G(Xi)
− π̄(Z̃T

i β0)

]
(v1i − v3i)

}
πφ(Z̃

T
i β0)

v1iv2i − v2
3i

Z̃i

+

∫ ∞

0

q(t; β0)

y(t)
dMC,i(t),

y(t) = limn→∞ Ȳ (t)/n and q(t; β0) = limn→∞[q1(t; β0) − q2(t; β0) − q3(t; β0)]. Since

{ξi (i = 1, ..., n)} are mean-zero independent random variables, by the multivariate

central limit theorem, n−1/2Uw∗(β0) has an asymptotic normal distribution with mean

0 and covariance matrix Γw∗ = limn→∞ n−1
∑n

i=1 ξiξ
T
i .

Appendix B: Asymptotic properties of β̂w∗

Recall that β̂w∗ is the solution to Uw∗(β) = 0. Since Uw∗(β) is differentiable with

respect to β and has a bounded derivative, consistency of β̂w∗ follows. By a Taylor

expansion of n−1/2Uw∗(β) with respect to β0, we can write

0 = n−1/2Uw∗(β̂w∗) = n−1/2Uw∗(β0)− Aw∗(β0) n1/2(β̂w∗ − β0) + op(1),

where

Aw∗(β0) = − lim
n→∞

1

n

∂Uw∗(β)

∂βT

∣∣∣∣
β=β0

.

It follows that

n1/2(β̂w∗ − β0) = [Aw∗(β0)]
−1 n−1/2Uw∗(β0) + op(1). (A.4)
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Hence n1/2(β̂w∗ − β0) has an asymptotically normal distribution with mean 0 and co-

variance matrix Vw∗ = [Aw∗(β0)]
−1 Γw∗ [Aw∗(β0)]

−1.

Replacing β0, G, y(t) and dΛC(t) by the corresponding estimates, β̂w∗ , Ĝ, Ȳ (t)/n

and dNC(t)/Ȳ (t), where NC(t) =
∑

k I(Xk ≤ t, Bk = 0), respectively, ξ̂i equals
{[

I(Xi ≤ τ, Bi = 1)

Ĝ(Xi)
− π(Z̃T

i β̂w∗)

]
(v̂2i − v̂3i)

−
[

I(Xi > τ)

Ĝ(τ+)
+

I(Xi ≤ τ, Bi = 2)

Ĝ(Xi)
− π̄(Z̃T

i β̂w∗)

]
(v̂1i − v̂3i)

}
πφ(Z̃

T
i β̂w∗)

v̂1iv̂2i − v̂2
3i

Z̃i

+
nI(Bi = 0)q̂(Xi; β̂w∗)∑n

k=1 I(Xk ≥ Xi)
−

n∑
j=1

nI(Bj = 0, Xi ≥ Xj)q̂(Xj; β̂w∗)

(
∑n

k=1 I(Xk ≥ Xj))
2 ,

where v̂1i = π(Z̃T
i β̂w∗)(MG − π(Z̃T

i β̂w∗)), v̂2i = π̄(Z̃T
i β̂w∗)(MG − π̄(Z̃T

i β̂w∗)),

v̂3i = π̄(Z̃T
i β̂w∗)π(Z̃T

i β̂w∗), q̂(t; β̂w∗) = q̂1(t; β̂w∗)− q̂2(t; β̂w∗)− q̂3(t; β̂w∗),

and q̂j(t; β̂w∗) (j = 1, 2, 3) are obtained by using β̂w∗ , Ĝ and (v̂1k, v̂2k, v̂3k) instead of

β0, G and (v1k, v2k, v3k) in (A.1)−(A.3). It follows that the covariance matrix Γw∗ can

be estimated by Γ̂w∗ = n−1
∑n

i=1 ξ̂iξ̂i

T
and then

V̂w∗ =
[
Âw∗(β̂w∗)

]−1

Γ̂w∗

[
Âw∗(β̂w∗)

]−1

where

Âw∗(β̂w∗) =
n∑

i=1

1

n

[
v̂1i + v̂2i − 2v̂3i

v̂1iv̂2i − v̂2
3i

π2
φ(Z̃

T
i β̂w∗)Z̃iZ̃

T
i

]
.

Appendix C: Previous nonparametric results of Wang (2003)

Modifying the idea of Wang (2003), we can estimate pj(x) = Pr(T ≤ τ, B̃ = j|T > x)

by

p̂j(x) =
1

nŜ(x)

n∑
i=1

I(x < Xi ≤ τ, Bi = j)

Ĝ(Xi)
,

where Ŝ(x) is the Kaplan-Meier estimator of S(x) which, according to Satten and Datta

(2001), can be re-expressed as an average of inverse probability of censoring given by

1

n

n∑
i=1

[
I(Xi > x,Bi 6= 0)

Ĝ(Xi)
+

I(Xi > X(m))

Ĝ(X(m)+)

]
,
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where X(m) denotes the largest observed failure time. Based on Wang’s idea, Qj(t|τ)

can be estimated by

∏
u≤t

{
1−

∑n
i=1 I(u = Xi ≤ τ, Bi = j)∑n

i=1 [I(u ≤ Xi ≤ τ, Bi = j) + I(u ≤ Xi ≤ τ, Bi = 0)p̂j(Xi)]

}
.

Appendix D: Asymptotic properties of UI1(β)

Suppose that Z̃ takes K distinct values, z1, . . . , zK . Original data are partitioned

into K mutually exclusive subsets,
{(

∆j
1k, X

j
k, B

j
k

)
(k = 1, . . . , nj)

}
, which corresponds

to the set of {i : (∆1i, Xi, Bi, Z̃i = zj) (i = 1, . . . , n)} and nj =
∑n

i=1 I(Z̃i = zj). We

have pzj
(Xj

k) = E(∆j
1k

∣∣ Xj
k, B

j
k = 0, Z̃ = zj), which can be estimated by

p̂zj
(Xj

k) =
1

njŜzj
(Xj

k)

nj∑

h=1

I(Xj
k < Xj

h ≤ τ, Bj
h = 1)

Ĝzj
(Xj

h)
,

where Ŝzj
(t) and Ĝzj

(t) are Kaplan-Meier estimators of Szj
(t) = Pr(T > t|Z̃ = zj) and

Gzj
(t) = Pr(C ≥ t|Z̃ = zj). The estimating equation UI1(β) can be re-expressed as

UI1(β) =
K∑

j=1

{
nj∑

k=1

[
∆̂j

1k − π(zT
j β)

] πφ(z
T
j β)

π(zT
j β)π̄(zT

j β)
zj

}
,

where ∆̂j
1k = I(Bj

k = 1, Xj
k ≤ τ) + I(Bj

k = 0, Xj
k ≤ τ)p̂zj

(Xj
k).

To derive asymptotic distribution of n−1/2UI1(β0), we first express it as sum of the

following two terms,

1√
n

UI1(β0) =
K∑

j=1

√
nj

n

{
1√
nj

nj∑

k=1

[
Ej

k − π(zT
j β0)

]
Ψzj

(β0)

}

+
K∑

j=1

√
nj

n

{
1√
nj

nj∑

k=1

I(Bj
k = 0)

[
p̂zj

(Xj
k)− pzj

(Xj
k)

]
Ψzj

(β0)

}
(A.5)

where

Ej
k = E

(
∆j

1k

∣∣ Xj
k, B

j
k; Z̃ = zj

)
= I(Bj

k = 1, Xj
k ≤ τ) + I(Bj

k = 0, Xj
k ≤ τ)pzj

(Xj
k)

and

Ψzj
(β0) =

πφ(z
T
j β0)

π(zT
j β0)π̄(zT

j β0)
zj.
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Denote the last part of (A.5) by C2(β0), by the strong consistency of Kaplan-Meier

estimators, we have

C2(β0) =
K∑

j=1

{√
nj

n
Ψzj

(β0)
[
Cj

2.1 + Cj
2.2

]}
+ op(1),

where

Cj
2.1 =

1√
nj

nj∑

k=1

[
I(Bj

k = 0)

njSzj
(Xj

k)

nj∑

h=1

I(Xj
k < Xj

h ≤ τ, Bj
h = 1)

(
1

Ĝzj
(Xj

h)
− 1

Gzj
(Xj

h)

)]
,

Cj
2.2 =

1√
nj

nj∑

k=1

[
I(Bj

k = 0)

(
1

Ŝzj
(Xj

k)
− 1

Szj
(Xj

k)

)
1

nj

nj∑

h=1

(
I(Xj

k < Xj
h ≤ τ, Bj

h = 1)

Gzj
(Xj

h)

)]
.

Interchanging the summations in Cj
2.1, we get

Cj
2.1 =

1√
nj

nj∑

h=1

[
D(Xj

h)
I(Xj

h ≤ τ, Bj
h = 1)

Gzj
(Xj

h)

Ĝzj
(Xj

h)−Gzj
(Xj

h)

Gzj
(Xj

h)

]
+ op(1)

where

D(Xj
h) = lim

nj→∞
1

nj

nj∑

k=1

I(Bj
k = 0, Xj

k < Xj
h)

Szj
(Xj

k)
.

One can write
Ĝzj

(t)−Gzj
(t)

Gzj
(t)

=

nj∑

l=1

∫ t

0

Ĝzj
(u−)

Gzj
(u)

dM j
C,l(u)

Ȳ j(u)

where

Ȳ j(u) =

nj∑
i=1

I(Xj
i ≥ u), M j

C,l(u) = I(Xj
l ≤ u, Bj

l = 0)−
∫ u

0

I(Xj
l ≥ s)dΛj

C(s),

and Λj
C(s) is the cumulative hazard function of C given Z̃ = zj. It follows that

Cj
2.1 =

1√
nj

nj∑

l=1

∫ ∞

0

qj(u)

pj(u)
dM j

C,l(u) + op(1),

where

qj(u) = lim
nj→∞

1

nj

nj∑

h=1

D(Xj
h)

I(u ≤ Xj
h ≤ τ, Bj

h = 1)

Gzj
(Xj

h)
and pj(u) = lim

nj→∞
Ȳ j(u)

nj

.
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Similarly, one can write

Cj
2.2 =

1√
nj

nj∑

l=1

∫ ∞

0

rj(u)

pj(u)
dM j

T,l(u) + op(1),

where

rj(u) = lim
nj→∞

1

nj

nj∑

k=1

I(Bj
k = 0, Xj

k ≥ u)Pzj
(Xj

k)

Szj
(Xj

k)
,

Pzj
(Xj

k) = lim
nj→∞

1

nj

nj∑

h=1

I(Bj
h = 1, Xj

k < Xj
h ≤ τ)

Gzj
(Xj

h)
,

and

M j
T,l(u) = I(Xj

l ≤ u,Bj
l 6= 0)−

∫ u

0

I(Xj
l ≥ s)dΛj

T (s),

Λj
T (s) is the cumulative hazard function of T given Z̃ = zj.

In summary, we have

1√
n

UI1(β0) =
K∑

j=1

√
nj

n

(
1√
nj

nj∑

k=1

ζj
k

)
Ψzj

(β0) + op(1)

where

ζj
k = Ej

k − π(zT
j β0) +

∫ ∞

0

qj(u)

pj(u)
dM j

C,k(u) +

∫ ∞

0

rj(u)

pj(u)
dM j

T,k(u).

Notice that (ζj
1 , . . . , ζ

j
nj

) are zero-mean independent random variables for each j where

j = 1, . . . , K. By the multivariate central limit theorem, 1√
n
UI1(β0) has an asymptotical

normal distribution with mean 0 and covariance matrix

ΓI1 = lim
n→∞

n−1

K∑
j=1

nj∑

k=1

(ζj
k)

2 Ψzj
(β0)Ψ

T
zj

(β0).

Let β̂I1 be the solution of UI1(β) = 0. Asymptotic properties of β̂I1 can be obtained

as of β̂w∗ stated in Appendix B. According to (A.4), n1/2(β̂I1−β0) has an asymptotically

normal distribution with mean 0 and covariance matrix VI1 = [AI1(β0)]
−1ΓI1[AI1(β0)]

−1

where

AI1(β0) = E

[
π2

φ(Z̃
T β0)

π(Z̃T β0)π̄(Z̃T β0)
Z̃Z̃T

]
.
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