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Abstract

In the dissertation, we consider regression analysis for the cumulative incidence proba-
bility under the framework of competing risks. Instead of modeling the whole function
which usually involves making stronger assumptions, we investigate the effect of covari-

ates on the cumulative incidence rate at a pre-specified time point.

The information of incidence may be missing due to censoring. We apply two ap-
proaches to handle incomplete data. The first method utilizes the technique of the
inverse probability of censoring weighting (IPCW) to correct the sampling bias. The
other approach is to impute missing variables by an estimate of its conditional mean.
Both methods are popular and useful tools in handling missing data. Large-sample prop-
erties of the proposed methods are also derived. Simulations are performed to examine
finite-sample performances of the proposed methods. The Stanford Heart Transplant
data and the severe acute respiratory syndrome (SARS) data are analyzed to illustrate

the applicability of the proposed model and inference methods.

Key words : Cause-specific hazard; Mixture model; Transformation model; Imputation;
Cumulative incidence function; Inverse probability:of censoring; Imputation; Logistic

regression; Missing Data
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Chapter 1

Introduction

In biomedical studies, researchers may encounter analysis of multiple events data which
are often formulated under the framework of competing risks. Here a competing risk
is defined as an event whose occurrence prevents the occurrence of other events. For
example, when the relapse of leukemia is theroutcome of interest, death without relapse is
a competing risk event. Other examples canbedound in clinical trials in which subjects
are usually subject to multiple risks, In breast.cancer-studies, a patient may experience
multiple events, such as local recurrence; distant metastasis, a second primary cancer
other than the original one and death. Researchersare sometimes more concerned about

an event of particular type.

Under the framework of competing risks, let T" be the failure time and B be the
corresponding cause of failure taking values in the set {1,..., J}. Competing risks data
can be summarized naturally by the following two quantities. One is the cause-specific

hazard function defined as

Pr(T At), B =j|T >

which is the rate of occurrence for type-j failure in the presence of all causes of failure.
The other is the cumulative incidence function or the crude failure probability defined

as



which describes the cumulative probability of developing type-j failure by time ¢ (Pepe
and Mori, 1993). Note that both quantities make no assumption about the relation-
ship between the competing risks events and hence can be estimated nonparametrically.
The cause-specific hazard function is useful in quantifying the instantaneous risk of a
particular cause for alive individuals. However when the interest is on cumulative or
overall risks of a particular cause, the cumulative incidence function is more intuitively

appealing and easily explained to the clinicians.

We aim to study the effect of covariates on the cumulative incidence function. There
exist several regression models which are constructed based on different decompositions
of F;(t). Some authors including Cheng, Fine and Wei (1998) suggested making inference
for the cumulative incidence function by modeling the cause-specific hazards of all causes.

Specifically, they considered the following decomposition

Fi(t) = /Ot Aj(u) exp {— /Ouigkj(v)dv] du.

However, since the effect of a covariate onsi(t).can be very different from its effect on
F;(t), such an indirect approach ean.be misleading: ‘Also the parameters in the models
for the cause-specific hazards may lack a“simple interpretation in terms of the crude

failure probabilities.

In this dissertation we review existing papers which are more closely related to our
framework based on a mixture formulation. This approach has also received growing
attention due to its relation with cure models. Section 2 contains a review of related
models. In Section 3, we review inference methods which have been developed for
handling incomplete data. Our proposal is presented in Section 4, and simulations, the
analysis of Stanford Heart Transplant data and the analysis of severe acute respiratory
syndrome (SARS) data are presented in Section 5. The SARS example highlights the
applicability of the proposed regression model. The proposed inference methods are
useful when complete data are not available. For example, when the epidemic disease is
still ongoing, interim analysis based on incomplete data is still useful for making timely

decision.



Chapter 2

Models for Cumulative Incidence
Function
— A Review

2.1 Transformation Models

In recent years, statistical analysis based on transformation models has received sub-
stantial attention due to its wide-applicability. Under-the classical formulation without

competing risk (i.e., J=1), the model ¢an be expressed as
m(T) = —Z"~ + ¢,

where m(t) is an unspecified strictly increasing function mapping from (0, 0o) to (—o0, 00),
Z is a p x 1 vector of covariates, 7 is the corresponding vector of parameters and e is
a random error with a completely known distribution F,. Alternatively, the model can
also be expressed as

H(Pr(T < t|Z)) = m(t) + Z7+, (2.1)

where H = F_'. This class of models contains useful members. For example if F,
is the extreme value distribution with F.(s) = 1 — exp{—exp(s)}, H(-) becomes a
complementary log-log link and model (2.1) is the Cox proportional hazard model. If
F. is the standard logistic distribution, H(-) becomes the logit link and the model is the



proportional odds model.

The class of transformation models mentioned above has been modified to describe
the covariate effect on the cumulative incidence function. When J > 1, the model
assumes that

H(F\(t|Z)) = m(t) + Z"9, (2.2)
where H is an increasing link function mapping from (0, 1) to (—oo,00), 6 is the p x 1
vector of parameters and m(t) is the baseline function. It is easy to see that m(t) =
H{Fy(t)} in which Fy(t) represents the baseline cumulative incidence function when
Z = 0px; or 0 vanishes. Model (2.2) describes the situation that under a suitable
transformation, the cumulative incidence functions for subjects with different covariate
values are “parallel” over the entire time span with distance being measured by a linear

combination of 0.

Depending on whether Fj is specified in an explicit form or not, model (2.2) can
be classified as a parametric or semi-parametrie transformation model. Fine and Gray
(1999) first proposed the semi-parametri¢ transformation model under the complemen-
tary log-log link function with H(u) = log{=log(1l — u)]; Fine (2001) and Klein and
Andersen (2005) extended the class of H toificliude any well-defined monotone function,
say the logistic function, H(u) = log[u/(1— u)].-Jeong and Fine (2006) proposed a para-
metric transformation model by specifying the baseline Fy(t) with the improper Gom-
pertz distribution, B(t; p,v) =1 — exp{¢[1 — exp(pt)]/p} where p < 0 and 0 < ¢ < o0,

and adopted the odds rate transformation as the link function,
log [%] if ¢ #0,

log[—log(1 —wv)] if ¢ =0,
which includes the complementary log-log link and the logistic link when ¢ = 0 and

H(v;¢) =

¢ = 1, respectively.

Model (2.2) can be viewed under the context of a cure model (Fine and Gray, 1999;
Fine, 2001) in which F}(t|Z) is the distribution function of the improper failure time

Ty=T-1(B=1)+o00-I(B#1). (2.3)

6



Note that Pr(Ty < t|Z) = Pr(T < t,B = 1|Z) = F\(t|Z). The difference between
T} and the usual failure time is that Pr(7; = oo) > 0 which measures the proportion
of individuals failing from causes other than the first type. The way of treating other
competing risks as “cure” or “immune” sometimes lacks interpretability. Specifically,

consider the “hazard” of the improper variable T defined by

Au(t12) = ~dlogll - Fi(e2))/ de = TG 2

which is also called the subdistribution hazard. We find that the denominator in the
last identity which indicates the at-risk probability for failure of the first type at time ¢,
always includes the quantity Pr(f? # 1). It seems not very sensible to view those who

have failed from other causes as always being “at risk” later on for a failure type that

will never occur.

2.2 Mixture Models

The cumulative incidence function can-also be written as the mixture form,
Fi(t) =m[1 = Qi(8)], —j =1,...,J, (2.4)

where 7; = lim,_, F;(t) = Pr(B = j).measures the marginal probability of type-j
failure, and 1—Q;(t) = Pr(T < t|B = j) describes the corresponding latency distribution
for the sub-population with B = j. Such a mixture formula was originally developed for
the improper distribution function encountered in analysis of failure time with long-term
survivors (Maller and Zhou, 1996). Nonparametric analysis of model (2.4) based on the
competing risks data has been studied by Betensky and Schoenfeld (2001) in which
the acute respiratory distress syndrome (ARDS) data with two competing events (cure
or death) was used as an example, and by Wang (2003) under a two-path framework.
In presence of right censoring, it has been mentioned that nonparametric maximum
likelihood estimators of 7; and @;(¢) are consistent only if the support of failure time is
shorter than the support of censoring time. That is, the follow-up must be long enough

so that failure times of all individuals have positive probabilities to be observed.

7



Maller and Zhou (2002) called such a condition “sufficient follow-up” which assesses
how “heavy” the tail of the censoring distribution is, relative to the survival distribution,
while still permitting consistent estimation. Specifically, define the endpoint of the
support of failure time T as mp=sup{t: Pr(T" > t) > 0} and that of censoring time
C as 7¢ =sup{t: Pr(C > t) > 0}. Under model (2.4), the “sufficient follow-up” for
nonparametric analysis is 70 < 7. When 74 > 7o which happens in most longitudinal
studies, additional assumptions are needed to avoid underestimation of 7; and Q,(?).
Wang (2003) assumed that Pr(B = j|T' > 7¢) = Pr(B = j) and then derived the
estimators of 7; and Q;(¢). However, such an assumption is quite subjective and hard
to check empirically. The “sufficient follow-up” assumption can be much relaxed if one
imposes a parametric or semiparametric model on the latency distribution. Maller and
Zhou (2002) showed that under the parameterization that Q;(t) = Q(t; ¢;), consistent
estimators of m; and ¢; can be obtained through the maximum likelihood approach if
1 —Q(re; ;) > 0 for j = 1,...,J, which only requires that each cause of failure has
positive probability to be observed. The paramieterization of ();(t) can also be extended
to a regression setting. See Ghitany, Mallér/and.Zh6u (1994) and Vu, Maller and Zhou
(1998) for further references.

Model (2.4) can be expressed under the-following regression framework,
F;(t|2) = m{Z)[1 = Q;(t|Z)]. (2:5)

Larson and Dinse (1985) assumed a multinomial logit model for 7;(Z) and a parametric

proportional hazards model for Q);(¢|Z) with

t
Q;(t|Z) = exp [—/ h;(u) exp(Z* p)du|

0
where the baseline hazard h;(t) is specified as a piecewise exponential function. Kuk
(1992) and Ng and McLachlan (2003) generalized the mixture model of Larson and
Dinse (1985) by assuming h;(t) is unknown. To remedy the support problem, Fine
(1999) considered the representation

Fi(tAT) = Pr(T<7,B=j)Pr(T <tT <7,B=j)
= Fi(n)[1 = Q)]

8



where UAV = min(U, V') and 7 is a pre-determined time point located inside the support
of the observed time variable. Statistical inference of Fj(7) and @,;(¢|7) are no longer
subject to the potential problem of non-identifiability if 7 is chosen properly such that

Pr(T'AC > 1) > 0. Accordingly one can consider the regression model

Fi(tAT|Z) = Pr(T <7,B=j|Z)Pr(T <t|T<7,B=3j7)

— F(r|Z)[1 - Qz(t7)). (2.6)

Fine (1999) assumed a binary regression model, namely the logistic model, for F}(7|Z)

and the transformation model stated in (2.1) for the latency distribution 1 — Q; z(¢|7).



Chapter 3

Review of Inference Methods in the
Presence of Right Censoring

In this section we review inference methods that have been applied to solving incomplete
data due to right censoring. In Section 3.1, we review how the maximum likelihood
approach is applied to the analysis, of mixture 'models. In Sections 3.2 and 3.3, we
review two moment-based approachesiwhich use different techniques to handle missing
data. From this section on, the notations are unified as follows. Let Z be the p x 1
vector of covariates, T' be the failure timeswith-the survival function S(¢) = Pr(T > )
and C' be the censoring time with G(t):= Pr(C.>¢). In the presence of right censoring,
one observes (X,6,Z), where X =T AC and 6 = I(T < C).

3.1 Likelihood Estimation

In presence of right censoring, the competing risks data can be denoted as
(X,B,Z) ={(X;,Bi,Z;) :i=1,...,n}, (3.1)

where B = B -§. Note that B = 0 refers to the censored case in which the value of B

is unknown. Assuming that 7" and C' are independent given Z, the likelihood function

10



based on the data in (3.1) can be written as

n J
Lp= H { [H [5(X; Zi)I(Bl:j)

i=1 j=1

S(XZ, Zi)I(BiZO)} y (32)

where f;(t;Z) = dF;(t;Z)/dt and S(t;Z) = Pr(T > t|Z) = 1 — 37, F;(t;Z). Due to
censoring, the likelihood function has to combine the information of failure of all types
and can not be factored into separate pieces for each type as in the case of complete data.

When the mixture model (2.5) is assumed, the likelihood function can be expressed as

n J I(BZ:O)
Lar = [T T1 (mi(Z)a; (355 Z0)) P [Z% Qi (XiZ; >] ,
i=1 | j=1
where ¢;(t;Z) = —dQ;(t;Z)/dt and ijl 7;(Z) = 1. Because the summation term

within the products on the right-hand side makes the maximization of L,; very difficult,
Larson and Dinse (1985) suggested to apply the EM algorithm to facilitating maximum
likelihood estimation. This algorithm hassalso been utilized by Kuk (1992) and Ng
and McLachlan (2003) in estimation‘of the semi-parametric proportional hazard/logistic

mixture model.

To illustrate the use of the EM algorithmy7itiis assumed temporarily that indicators
of the failure types (i.e., Bl-’s) are available and the likelihood based on such pseudo-

observations is given by

LS | 5\ [(Bi=d)
Lo TTTT {2 6 2 1@y 2}
The algorithm consists of two steps. First, the E-step is to compute

I, = E(log(LS)

,(W](m),ng)) for j = 1,...,J>,

S {1(B; = ) -1oglhy (X Z0)] + 0} loglmy(2)Q,(X: 2]}

=1 j=1

where hi(t;Z) = q;(t; Z)/ Q;(t; Z), (’/T](-m), Qg-m)) denotes the model expressions for 7;(Z)

and Q;(t; Z) with the parameters being replaced by the corresponding estimated values

11



obtained at the mth iteration, and
wlt = B(1B =[x, B2, (:.Q) for j=1,...,7),

W(m)(zi)Q(m) (Xi' Zi)
= I(Bi=j)+I(B;=0)- 1 L .
! S A (Z0)Q) (X Z)

Note that the last term of wZ(?) is the conditional probability that the ¢th patient will

(3.3)

experience the event of type j given that the failure of all types not occurred by time
X;. Next, the M-step of the algorithm involves maximizing, regarding wz(?) as fixed, the

log-likelihood s which can be expressed as
ls=10+1g +---+lg,

where
n J

L= > i} loglm;(Z,)

i=1 j=1

and
lo, = > {1(B: = j) loglh s CTZN R 0 108(Q,(X 2]}
=1

The EM procedure is iterative in a way that the estimates obtained previously are used

) in the curfent maximization step. One of its attractive

to update the value of wa
features is that J+ 1 components of [;"canibe maximized separately. The convergence
properties of the estimators obtained from the EM procedure have been discussed in

Dempster et al. (1977), Wu (1983) and Louis (1982).

3.2 Inverse Probability of Censoring Weighting (IPCW)

Under right censoring, individuals with larger failure times have more chance to be
censored than those with smaller ones. However, uncensored observations are still useful
proxies if their bias can be corrected. The inverse probability of censoring weighting
(IPCW) has been used to correct such bias. Let V be a function of failure time T, say
V =I(T <t,B=7j)or I(T <t). Denote V = V§ which can be viewed as an observed

12



proxy of V. Assume that T and C are independent and the support of T is shorter than
the support of C, it can be shown that

“(arm) = = (7= (Mo 7))
- B(V), (34)

which implies that by taking an inverse-probability-weighting adjustment on V', we can
obtain an unbiased proxy of V. This idea has been applied to sample surveys. Specifi-
cally, if we know the sampling scheme well, we can correct the sampling bias and make

valid inference about the true population.

For the following discussions, we refer to G(t) as the Kaplan-Meier estimator of G(t).
Many well-known nonparametric estimators in survival analysis can be re-expressed in
terms of weighted averages. For example, the Kaplan-Meier estimator of the survival
function of T, SEM(¢), can be expressed as

A T~ L(X; < 1)6;
SEMH s — — N = 3.5
" f ; G(X;) 39
For the competing-risks analysis,-nonparametric maximum likelihood estimators of cu-

mulative incidence functions can be writtenrasithe following explicit expression:

A Ie~d(X;'<t,B;, =)

FNPMLE ) = = = : 3.6
O Z G(X) &0

The technique of IPCW also plays a useful role in the regression analysis for survival

data. Consider the following linear transformation model
m(T) =2Z"y+e,

where m(-) is an unknown strictly increasing function and e has a completely known

censoring distribution is independent of Z, it can be shown that

6;1(X; > X;)
b ( G2(X;)

distribution function F,. Under independent censoring and the assumption that the
5,1(C: > T))

) - e(mene (45}
= Pu(T; > Tj|Z) = Pr(ei—¢; > Z;)

v

13



if G(t) > 0 for any ¢ located within the support of T', where Z;; = Z; — Z,. Based
on the equation mentioned above, Cheng, Wei and Ying (1995) proposed the following

estimating function of ~

5,1(X; > X,)
Z > — 0(Zy) | w(Ziy)Zaj, (3.7)
=1 j#i )
where w(-) is a positive weight function and 7(Z;7) = Pr(e; — ¢; > Z[~). Jung (1996)

considered the regression analysis for the long-term survival probablhty in which the
word “long-term” refers to a patient having successfully survived over the specified
interval. He constructed an estimating function of the regression parameters by utilizing
the technique of IPCW. Chen et al. (2005) analyzed the mean residual life model in a

similar way.

Despite that the technique of IPCW is a convenient tool and easy to be understood,
it has some drawbacks. The first is that this method highly depends on a consistent
estimator of G. When the censoring time depends on continuous covariates, a consistent
estimator of GG is not easy to be obtained and usually requires using smoothing techniques
or making additional model assumptions. Another crucial point is about the support
condition. Let 7o denote the endpointpofthe support-of C'. Then we have

o {aielr) - * w1 12

and accordingly

Vv 5 5
E( e ) = E(IT < 7)V) < B(V),
(grg) — £ (1 <7e)¥) < £V
That is, when Pr(T > 7¢) > 0 which results in a heavier tail of SKM the quantity
V/G(X) is no longer an unbiased proxy for V and consequently any estimating function
constructed based on equation (3.4), such as equation (3.7), may not lead to a consistent

estimator of ~.

To overcome this problem, one may consider the following related equation

(I(X <)V

) = BT <)

14



where 7 is pre-specified such that Pr(X > 7) > 0. Fine, Ying and Wei (1998) suggested

to modify the estimating function (3.7) as

9;1( X AT > X
Z Z ) - na(zl‘],}/) (szy)zija
i=1 j#i )

where oo = m(7) and no(Z]~y) = [ [L— F.(t — Z]y)]dF.(t — Z1 ). Such a modification

is no longer subject to the support problem.

3.3 Imputation

Another popular method for handling missing data is by imputation. Specifically, cen-
sored (or missing) variables can be imputed by their conditional means given the ob-
served data and the statistical analysis can be proceeded based on the imputed values.
This approach has been widely used in the analysis of missing or censored data. For

example, Buckley and James (1979) eonsidered the following linear regression model,
T = 71 el

where T may be the transformed failure titae-TWhen the value of T is not observed, it

can be imputed by an estimator of

E(T|X,6,7)

60X +(1—-0)[Z"y+ E(ele > X —Z", X, Z)]

= 6X +(1-9) [ZTV - /OOZTWU dSe(u)/Se(X - ZTW)] )

X-
where S, is the survival function of the error term e. To estimate v, Buckley and
James (1979) proposed a self-consistency approach in which the estimators 4 and S.
are updated iteratively until the convergence criterion is obtained. Li, Wang and Chen
(1999) applied the sliced inverse regression (SIR) to analyze right censored data in which
the sliced mean of a specified interval [¢;,¢;4+1), denoted as E[ZI(t; < T < tj41)], was
estimated by utilizing the following relationship

Pr(T > t|Z)

BIZIT 2 1)|X,0,2] = ZI(X 2 0)+ (1= )ZI(X < )5 7 =Cios.

15



In the regression analysis for the long-term survival probability at a given time point,
Jung (1996) suggested to use the IPCW approach while Subramanian (2001) proposed
the imputation approach. It implies that these two methods may be applied to solving

the same inference problem.

Wang (2003) considered a nonparametric setting under the framework of a two-
path model. To illustrate, consider a study of bone marrow transplants for leukaemia
patients in which some patients will experience recurrence of the malignancy before
death but others may die without relapse. Let 77 and 75 be the times to recurrence, an
intermediate state, and to death, a terminal endpoint, respectively. Then I(7} < T5)
denotes the path indicator in which 1 refers to the path of recurrence and 0 refers to
the path of death without relapse. In presence of right censoring, observed data can be
expressed as (X7, Xo,01,02), where Xi =Ty ANTLoANC, Xo =To NC, 6 = I(T1 <ToANC)
and 6o = I(Ty < C). Under the assumption that (77,7) and C are independent,
Wang (2003) proposed a nonparametric procedure for estimating the path probability
Pr(7T) < T3) which imputes I(77 < T%) by an estimator of

EI(Ty < T3)| X1, X9501502] = {0y =1) £ 1(6, = 02 = 0)p(C),
where p(C') is the conditional pathi.probability which' can be further expressed as

p(r) = Pr(Ty <T|Th ATy > z),

= ﬁ [Pr(z < Ty <70, 11 <Ts)+ D(1c) Pr(Ty < To|Ty ATy > 7¢)]
_ sz) [ /°° Pr(X; € [v,g(;dv),él = | pirelp(re) 5)

with D(x) = Pr(T; ATy > x) and 7¢ being the endpoint of the support of censoring time
C'. All the components in equation (3.8) are estimable nonparametrically except for the
last term p(7¢) which is not identifiable if 7o < 7r,. To overcome this problem, Wang
(2003) made an additional assumption that p(7¢) = Pr(7} < T3) and then derived an

explicit estimator of the path probability.

16



Chapter 4

The Proposed Approach

4.1 Model Assumption

In this proposal, we consider model (2.6) in which the marginal failure probability is the
focus and the latency distribution is ofiléss interest and hence not specified. Without
loss of generality, we consider onlyitwo caliées6f failures, namely B = 1 or 2. Suppose
that failure of the first type is ofimain interest: Specifically, we consider the following

regression formulation:

Fi(tAT|Z) = Pr(T <7 B=WZPr(T <t|T <7,B=1,27)
= w(ZTB(M)[1 - Qualt)], (4.1)

where Z = (1,Z7)7 is the (p+1)x 1 vector of covariates, 7 (-) is a known function mapping
from (—o0,00) to (0,1), B(7) is a (p + 1) x 1 vector of parameters and 7 lies within
the data support such that Pr(T" A C' > 7|Z) > 0. The main objective is to estimate
B(7) which measures the covariate effect on the cumulative probability of incidence by
time 7. The severe acute respiratory syndrome (SARS) provides an example for the
motivation. SARS is an epidemic and life-threatening acute disease that resulted in a
global outbreak in 2003. Clinicians and the pubic were most concerned with finding out
which characteristics of a patient would affect his/her probability of being discharged

from the hospital and alive by a target time point.
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Comparing the regression formulation in (2.2) with that in (4.1), we find that set-
ting t = 7 and H(u) = 7 !(u), model (2.2) coincides with model (4.1) and B(7) =
[m(r), 87]". In other words, model (4.1) fits the data at a single time point 7 while
model (2.2) considers modeling the entire time span. If model (2.2) is appropriate, then
the last p components of B(7) derived from model (4.1) will be similar for different
choices of 7. Therefore results obtained from model (4.1) can be used to verify the
assumption of model (2.2) or help choosing time-dependent covariates in that model.
Figure 4.1 provides a graphical illustration to highlight the difference of the two models
with a binary covariate. In Figures 4.1(b) and 4.1(c), F3(¢|0) and Fi(t|1) have a crossing
point which obviously violates model (2.2). Model (4.1) can include all the three situa-
tions. Therefore the dependency of B(7) on 7 is not a subjective restriction but provides
the flexibility to detect possible change of covariate effect on the cumulative incidence

probability at different time points.

Figure 4.1: Illustration of the cumulatiye incidence function, F}(t|Z), for a binary Z.

CIF
CIE
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4.2 Proposed Inference Methods

4.2.1 Preliminary

Without loss of generality, we consider only two causes of failures, namely B = 1 or
2. Suppose that failure of the first type is of main interest. Denote {(73, B, Zl) e
1,...,n} as a random sample of (T,B,Z). Let Aj; = I(T; < mBi=j) fori=1,....n
and j = 1,2. Under model (4.1), we have E(Ay;|Z;) = n(ZT3), where 8 = 3(7) is the
parameter of interest. With the complete data, the likelihood function of 3 is given by

n

L) =11 =@ ™ [rars)] ™. (42)
i=1
where 7(t) = 1 — w(t), and the resulting score function becomes
7 _ - 75T 7T¢(Z;[5) 7
T8 =3 b= nZIB)| g B (43)

where m4(t) = on(t)/0t.

Under right censoring, observed variables ean be written as {(X;, B;,Z;) : i =
1,...,n}, which are i.i.d. replications of (X,B,Z), where B = B - I(T < C) and
X = T AN C. Note that the value’of Ay may be unknown due to censoring. It
turns out that the likelihood function of B becomes very complicated and involves
specification of several nuisance functions such as Pr(T > t|B = j,T < 7,Z) and
Pr(T > t|B = j,T > 7,7Z) for j = 1,2. We propose to directly modify the score function
U (B3) by applying two useful principles to handling missing data.

The first approach utilizes observable proxies of Aj; by applying the technique of
the IPCW to adjusting for their biases. The second proposal adopts the imputation
approach which imputes Aj; by an estimator of F(Ay;|X;, B;,Z;). Both methods are
popular and useful tools for handling missing data in statistical literature. We assume
that, given Z, C' is independent of (7 B) To simplify the analysis, T" and C are both

continuous variables.
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4.2.2 Inverse Probability Weighting

Assume temporarily that the distribution of C' does not depend on Z. That is, Pr(C >
t|Z) = Pr(C > t) = G(t). We will discuss possible modifications when this assumption
does not hold. In the presence of right censoring, we can find observable proxies of Ay;

and then apply the technique of IPCW to correcting their biases. Specifically, it follows

that
(582 - s{ar -5
:z%uTgaéznﬂ)zmTﬁ) (4.4)
and

E(%§;;X+“XEQ£ZQWZ)zl—w@Uﬂ:w@ﬂ%, (4.5)

where G(7+) = Pr(C > 7). These two moment conditions can be utilized to construct

estimating functions of 3. Set

I(X; <7.Bi=1)
G(X)

Hy; = - W(Z?:@) (4.6)

and
[(Xi>7') I(XzST,BzZQ)
G(t+) G(X;)

for i =1,...,n. Replacing G(t) with the Kaplan-Meier estimator

Ha; = — (2] B) (4.7)

A ZZ—I I(Xk = u, Bk :O>
G(t) = I , 4.8
0-T1[- =570 )
the resulting estimating functions become
~ o mo(Z1B)
Uy = Hy,—————7; 4.9
1(8) ;1 I (4.9)
and _
~ - m(ZB);
Uw2(B) = ) Hai Z;, 4.10
2(8) =) H» s (4.10)

i=1
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where H ;i are Hy; (7 = 1,2) with G being replaced by G and Vji is a weight function,
which measures the variation of H ;i A natural choice for Vj; is Var(Hj;|Z;). Specifically,

vartiufz) = 5 (1 S50 7)) - @) (.11

which however involves some unknown quantity which does not have an analytic ex-

pression. Based on the first-order Taylor expansion, the first term in (4.11) can be
approximated by

2 (ao|%) F (o ’ 2) =5 gy ) "8

Although E (1/G(X)) can be estimated by its moment estimator, this quantity is too

sensitive to the tail behavior of G which may be unstable. Hence we suggest using a
related but more robust quantity instead such as the sample median of {1/G(X;) : i =
1,...,n}, denoted as M. Accordingly, we suggest to set Vi; = 7(Z7 8) (Mg — n(ZTB3)),
and by the same argument, we choose Vy; = 7(Z7B)(Mg — 7(Z73)).

The two estimating functions mentioned-abovesmay be combined by utilizing the
method of constructing the optimal estimating function discussed in Heyde (1997, Chap-
ter 2). Let H; = (Hy;, Hy)? for i = 1, ... 7%; the.optimal estimating function of 3 based
on H= (HT, ... HI)T is given by

oH” N oHT .
E(— 35 z) > H_;E(— 3B zi) Sa Hi, (4.12)
where ¥, = F(HH?|Z) and
_ T | Var(HulZ;) —m(ZI'B)7(Z1B)
s = stz = | VR e

Replacing Var(H;;|Z;) by V;; whose forms have been suggested earlier, we obtain the

following estimating function

Uw+(B) = Xn: [(Vm — Vai)Hyy — (Vi; — Vi) Ho MZ’ (4.13)
ViiVay — Vi 7

i=1

where Vi, = 7(ZT8)7 (2T B).
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The three estimating functions in equations (4.9), (4.10) and (4.13) all reduce to
U (B) in absence of right censoring. With censored data, it is reasonable to suspect that
Uy (B) is the most efficient one since it utilizes more information. It is interesting to note
that the estimating function proposed by Fine (1999) actually has the form of Uy (/)
with a different weight Vi; = 7(Z78)7(Z73) which does not account for the effect of
censoring. Via the simulations, we will see how these different weight assignments affect

the resulting estimators of 3.

Denote the solution to Uy« (8) = O(p41)x1 as B, and BW]- as the solution to Uy;(3) =
Op+1)x1 for 7 = 1,2. In Appendices A and B, we prove the asymptotic normality of
Uy (B,) and BW*, where 3, is the true value of 3. Note that an asymptotic expression
of n'/%(B,,. — By) is obtained as

nl/Q(Bw* — By) = [Aw- (50)]_1 7171/2Uw* (Bo) +0,(1),

where

o,
A (By) == lim —# .

Hence n'/?(B,,. — B,) has an asymptotically normal distribution with mean 0, 1y,; and

covariance matrix
Vi = [AW* (/30)]_1 L'y [AW* (BO)]_l > (4-14)

where T'y- is the asymptotic covariance matrix of n=/2U,-(3,).

If the censoring variable C' depends on discrete covariates, the Kaplan-Meier esti-
mator G(t) can be evaluated for each covariate group. If the related covariate is con-
tinuous, we suggest two different ways of modification. In Section 4.2.3, we illustrate
using a nonparametric smoothing technique, namely the kernel method, to estimate
Pr(C > t|Z = z). The other approach, which can avoid the curse of dimensionality, is to
impose some parametric or semi-parametric model which describes the covariate effect

on C.
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4.2.3 Imputation by Conditional Mean

Alternatively, to handle possible incompleteness of Ay = I(T < B = 1) due to
censoring, one may impute its value by an estimate of the conditional mean given the

data. Specifically, F(A;|X, B, Z) equals
(X <7,B=1)+I(X <1 B=0)pz(X),

where p,(z) = Pr(T < 7,B = 1|T > z,Z = z). Two estimators of p,(z), denoted as
pz ( ) for j = 1,2, will be proposed and their formulae will be derived later. Replacing
Ay by

~

AV =1(X, <7,Bi=1) + I(X; < 7, B; = 0)py) (X)),
in the score function (4.3), we can obtain the following estimating functions of 3

Ur;(B) = Z [Ag) - n(ZiB )] 7T(Z7;’¢ﬁ()Zfir(BZ)TB)Z'

(4.15)

for = 1,2 depending on which p(] )( ) will be used in.

The first proposed estimator p( )( ), is‘derived under a purely nonparametric set-
ting which generalizes the nonparametrie results in' Wang (2003) and Satten and Datta
(2001). Their ideas are roughly summarized-inAppendix C. With covariates, it follows
that

Pr(z < T <7,B=1|Z=2)

p.(z)=Pr(T <7, B=1T>u2,Z==z)= e ,
2\ T

(4.16)

where S.(t) = Pr(T > t|Z = z). When Z takes only discrete values, a model-free

estimator of p,(z) is given by

M (z) = 3 tm) > Iz < Xzé_jjle_l,j = Z)/G(Xl)’ (4.17)

where G is obtained in equation (4.8) and

A " i — U, Dj ,Zi =z
so-[[-=glinnass ] e
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A nonparametric way of handling continuous Z is to utilize some smoothing technique.

Using the idea of Dabrowska (1987) in the nonparametric regression, we obtain

n

1 I X, <1,B; =1
o0 (2) y fe=f=nh=lp ()

n I(Xi>$,Bi=1) I(Xi>X(m)) ) . é XZ
Zi:l G(Xz) é’(X(m>+) i| Bn,z(z) =1 ( )

(4.19)
where X(,) is the largest observed failure time and B, ;(z) is a random set of non-
negative weights. Candidates of B, ;(z) include kernel-type weights, nearest neighbors
or local linear weights. For example, one can use the kernel-type weight

K(ay'(z — Zy))

2 Klag'(z = Zy))
where K (-) is an appropriate kernel function and a,, is the bandwidth.

B,i(2) (4.20)

The second proposed estimator, ]322) (x), utilizes the model assumption in equation

(4.1). Specifically, equation (4.16) can be expressed as p,(z; 3, Q1,.(-|7), Q2,.(:|7), S:(T))

which equals

Qua(@lF)r(£ 3)
Quz(z[7)7 (27 8) + Qap(z|T){lmaS(F), — 7(278)} + Su(7)
where 2 = (1,27)T and Q;.(t|7) = PT > HL.<L 7, B-= j,Z = z) for j = 1,2.

(4.21)

The previous equation still invelves nisance functions, namely Q; . (t|7) for j = 1,2
and S,(7). Here we suggest to estimate these quantities in a nonparametric way. To
simplify the presentation, we give the formula which includes both types of covariates
by setting B, ;(z) = I(Z; = z) for discrete covariates and the formula in equation (4.20)
for continuous covariates. The proposed estimator Q17z(t|7') can be written as

ST Tw< X <7 B =1)+I(u<X; <7,B; = 0)p (X)) Boaz) |

u<t
where the formula of ﬁgl)(:c) is given in (4.17) or (4.19) for discrete and continuous Z,
respectively. The estimator of Q. (¢|7), denoted as Q. (t|7), has a similar expression
as Q17z(t|7') with B; = 1 being replaced by B; = 2 in the corresponding formula. The

proposed estimator of S,(7) is given by

S I(Xi = u, B; # 0)By(2)
L1 {1 LIz w)B(2) } ' (4.23)

u<Tt
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The solution to Ur;j(B8) = Opi1)x1 is denoted as BI]- for 7 = 1,2. These two es-
timating functions differ in the way of estimating p,(z). Via simulations, we will ex-
amine whether the second proposal which utilizes the model information has better
performance. Since Upy(3) is a more complicated function of 3, to simplify the root-
finding procedure, one may treat Aﬁf) as a fixed number in the mth iteration by using
p.(x; B(m_l), Q17z(-|7'), Q27Z(-|7'), gz(r)) instead, where B(m_l) is the solution in the previ-
ous step. The final solution is obtained via an iterative procedure with m = 1,2, ..., etc.
The modified equation is a simpler function of 8 and thus convergence can be achieved

by only few steps of iterations.

In Appendix D, we prove the asymptotic normality of n~'/2Up(B,) and that of
n/ Q(B 11 — By) when Z is discrete. Similar arguments can be applied to establishing
asymptotic properties of n=2U5(8,) and n'/2(3,, — B,). For continuous covariates,
asymptotic analysis is not provided since the method involves kernel smoothing which
is a technical issue and not of our main focus. However, due to the complexity of the
plugged-in nonparametric estimators; for both types of covariates, we suggest to utilize

the bootstrap re-sampling technique for variance estimation.
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Chapter 5

Numerical Studies

5.1 Simulation Analysis

Finite-sample performances of the proposed estimators were evaluated via simulations.
The covariate Z was generated from three distributions. For the discrete case, we set Z ~
Bernoulli(0.5). For the continuous’case, weé/set'/ & Normal(0,1) or Z ~ Unif(—3,3).
Let A; = I(T < 7,B = j) for j =52 Giveri Z,"we. set A, ~Bernoulli(r(fy + 17))
with

wrexp(By k51 2)
b+ P L+exp(By + 51 Z)

If Ay =1, then Ay = 0; and if A; =0, Ay is generated from a Bernoulli(ps), where po
may depend on Z but its form is not of interest. Given (A;, Ay), the failure time 7T is

generated from a distribution with density function fr which can be expressed as
1,0
fT(t) = fg(t|7’, Z) if (Al, Ag) = (O, 1)
i 0,0

where f;(t|7,Z), j = 1,2, are density functions with supports no greater than 7 and

fs(t|T, Z) is a density function whose value exceeds 7. In the simulations, we set

(2 . _ fw(Z)
[t Z) = Tj(ﬂz)l(t <7) for j=1,2 and f5(t|7,2) = W!(t > T),
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where fy,(t|Z) and Sy,(t|Z) are the density and survival functions of Y; which follows

the accelerated failure-time model. Specifically, we set
log¥j =10, + 142 +0;-W; (5.1)

where 7, 71,; and o; are (nuisance) parameters and W; has the pre-specified error

distribution.

The censoring variable is generated from Unif(cy, co + ¢1), where (co, ;) are pre-
specified constants making the censoring proportion to achieve the target value (i.e.,
30% or 40%). Denoted {(Ay, Ao, T;, Z;,C;) =i = 1,...,n} as a random sample of
(A1, Ay, T, Z,C). Note that

I(X; <7,Bi=j) =05 - [(T; < C)
for j = 1,2, where X; = T; A C;. The proposed methods can be implemented based on

for i = 1,...,n. The value of 7 ig=Set-to be 2.5¢. The sample size n was set to be 100 or

300.

The parameters of interest are 3= (,/81)*+ Besides the three proposed estimators
BW* = (Bw*,Oan*,l)T; Bn = (Bn,oﬂn;)T and Bm = (BIz,mBm,l)T and, for comparison,
we also evaluated the estimator proposed by Fine (1999), denoted as ,@F = (ﬁAEO, BF,I)T,
which solves Up(B) = 02x1. Recall that Up(3) has the form of Uy(B) with Vy; =
7(ZTB)7(ZT B). Based on 1000 replications, we report the average bias (BS), the stan-
dard error (SE) and the mean squared errors (MSE) for BW*J-, BAILZ-, B[g}i and Bp,i for
i = 0,1 respectively. We also report the relative efficiency (RE) which is defined as
the ratio of the mean square errors of BRZ- to that for the other three estimators, Bw*ﬂ-,
BAH’Z» and ﬁAmﬂ- for © = 0,1. The criteria mentioned above are used to assess the per-
formance of different point estimators of 3y and ;. For each case, we also evaluate
the accuracy of the proposed variance estimators. The criteria include the average of

the square root of proposed variance estimates (SVE) and the corresponding empirical
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coverage probabilities of nominal 95% confidence intervals for 3; (CP) for i« = 0, 1 based
on 1000 replications. For the reference of comparison, we also report SE, which is the
standard error calculated based on 1000 replications. The variance estimates of BW* and
B  were computed using the formula given in equation (A.4) which can handle Z of both
discrete and continuous types. Although equation (A.4) can be applied to estimating
the variance of B 11, it is complicated and becomes intractable analytically when Z is
continuous. Thus we used the bootstrap re-sampling method for variance estimation
for B r; for j = 1,2. Specifically, 1000 sub-samples were drawn with replacement from
the original sample, and for the kth sub-sample, we obtained Bﬁ'j’ = ([}5’;’)0, B}?’)l)T by
solving Up;(8) = Oaxq for j = 1,2 and k = 1,...,1000. Then the variance of Blj,i can be
estimated by calculating the variance of Bg“{ forj=1,2,i=0,1and k= 1,...,1000.

Tables 5.1 lists the results when Z is binary and in Tables 5.2 and 5.3, we report
the results when Z follows the standard normal and uniform distributions respectively.
The results show that all the proposed estimators are more efficient than 3 # especially
when Z is continuous. Furthermore; B 71.and Bm, obtained based on the imputation
approach, perform better than BW* and B 7 which utilize the weighting approach. We
also observe larger bias of B  especially when the sample size is small. As in Table
5.2, B r still has large bias even whenn'="300. We found that the IPCW technique,
which utilizes I(X; < 7, B; = 1)/G(X,)ras-anproxy of I(T; < 7,B; = 1), would make
an observation with larger X; to be more influential in the estimation. Our proposal by
setting Vi; = m(Z7B)(Mg—m(ZT3)) somewhat offset the influence of these observations.
In contrast, Fine (1999) did not adjust the effect of censoring in his proposal of V}; and

hence 3 » was less stable.

Finally, we investigated whether the proposed methods remain robust when C ac-
tually depends on Z. We set log(C) = v + 71,24 + 0. W., where vy ., 71 and o, are
nuisance parameters and W, has the pre-specified error distribution. In the computation
of the proposed estimators, we evaluated two estimators of G(t) = Pr(C > t). One is the
Kaplan-Meier estimator given in equation (4.8) and the other is a kernel-type smooth-

ing estimator which simply replaces B; # 1 by B; = 0 in equation (4.23). Note that
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the former is based on the wrong assumption that C' does not depend on Z. Table 5.4
lists the results when Z is binary or follows the standard normal distribution. We only
present the analysis for the estimation of (3 since the results for 3y are similar and hence
omitted. It turns out that the results based on the Kaplan-Meier estimator of G(t) are
biased while the kernel approach yields less biased estimators. Generally speaking, it
seems that the misspecification of G (t) has more influence on the bias term (BS) and
less on the standard error (SE). All the proposed estimators are relatively more robust

than 3 p under such a model mis-specification.
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Table 5.1: Finite-sample comparison for four estimators of (o, 51) = (0.8, —1.24) when
the covariate Z s binary.

Sample % Comparison criteria
size  censored Estimators BS SE SVE CP(%) MSE RE
5 Bweo 0009 0367 0361 965 0.135 1.184
w* Bwea -0.015 0519 0515 959 0.270 1.208
3 Bno 0006 0361 0374 962 0.130 1.229
100 30 n Bi1 0.000 0507 0530 97.2  0.257 1.267
3 B0 0.006 0360 0.377 96.6 0.130 1.232
2 Bran  -0.001 0.507 0523 97.0 0.257 1.267
F Bro 0017 0399 0401 97.6 0160 1
F Bp1 -0.028 0570 0.580 96.8 0.326 1
5 Buwo 0049 0464 0440 945 0.218 1.405
w* Buwea -0.083 0598 0581 944  0.365 1.498
3 Bro 0044 0456 0499 972 0210 1.457
100 A0 n 81 -0.061 0579 0.613  96.7 0.339 1.610
3 Broo 0042 0456 0478 968 0.210 1.460
2 B24270:060:,0.579 0.630 963  0.339 1.613
3 Bro 10061 0550 0561  97.0  0.306 1
F Opd 204117 0731 0739 969 0546 1
B, Bueol 0007 0230 0230 948 0.053 1.154
By “00ILT 0306 0.297 951  0.094 1.208
B Bi1g. 000700227 0234 959  0.052 1.188
300 20 ) @zm 20.010 0301 0.300  95.3  0.091 1.248
By Broo 0001 0225 0231 957 0.051 1.213
Brp1 0.001 0297 0296 952 0.088 1.283
Br Bro  0.009 0248 0254 96.0 0.061 1
Bri -0.013 0336 0.334 960 0.113 1
By Buwro 0019 0279 0268 946 0.079 1.331
B -0.028 0.338 0.338 948 0.115 1.411
B Bre 0019 0277 0277 957 0.077 1.353
300 10 A 5}171 20.027 0334 0.346 951  0.112 1.443
B, Bre 0019 0276 0275 955 0.077 1.362
Braq -0.026 0.333 0.340 953  0.112 1.447
B Bro 0024 0323 0319 959 0105 1
Bp1  -0.033 0401 0411 964 0162 1
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Table 5.2: Finite-sample comparison for four estimators of (B, 51) = (0,1.8) when the
covariate Z follows the standard normal distribution.

Sample % Comparison criteria
size  censored Estimators BS SE SVE CP(%) MSE RE
5 B0 0023 0306 0294 955 0.094 1.406
w Beeq 0134 0498 0446 941 0.266 2.317
5 Bro -0.012 0292 0295 965 0.085 1.552
100 20 T Bua -0.070 0455 0474 940 0.212 2.909
5 B0 -0.020 0288 0294 958 0.084 1.581
2 Bran -0.073 0455 0444 934  0.212 2.906
E Bro  -0.019 0.363 0.373 965 0.132 1
" Brr 0134 0774 0841 934 0617 1
3 Byeo  0.009 0338 0.325 948 0.114 1.455
w Byeq 0138 0541 0479 943  0.312 3.742
5 8o -0.003 0325 0341 97.0 0106 1.577
100 0 n Brna -0.079 0475 0476 953 0231 5.044
5 Brao -0.005 0.326 0.345 96.8 0.106 1.569
2 Bt 0.077:,0474 0481 957  0.231 5.062
3 Bro 0013, 0408 0.426 962 0166 1
F Bpd 04570 1.069 1549 96.1 1167 1
B, Byeol 0006 0171 0.169 949 0.029 1.738
By 00387 0257 0.252 944  0.067 4.689
Bn Birg-0.002700.159 0.163 954  0.025 2.013
200 30 Brin -0.025 0249 0247 957  0.063 5.035
Brs Broo -0.003 0.158 0.165 962  0.025 2.027
Br2n -0.025 0248 0251 960 0.062 5.098
Br Bro 0030 0223 0219 969 0.051 1
Bp1 0097 0553 0566 938 0316 1
B, Bwo 0.006 0.188 0.182 947 0.035 1.871
Bweq 0048 0280 0270 951 0.081 6.940
Bn Bro -0.003 0.180 0.180 950 0.032 2.037
300 m ) fni 0065 0251 0252 935 0.067 8322
Bro B0 -0.003 0.180 0.182 955 0.032 2.045
Broi -0.064 0.253 0.258 94.0 0.068 8.212
B Bro 0022 0256 0276 972 0.066 1
Bpy 0101 0742 0.792 962 0560 1
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Table 5.3: Finite-sample comparison for four estimators of (o, /1) = (1.23,0.86) when

the covariate Z follows the uniform distribution.

Sample % Comparison criteria
size  censored Estimators BS SE SVE CP(%) MSE RE
5 B0 0.063 0371 0.362 93.8 0142 3.388
w Buwe1 0041 0291 0261 933  0.086 3.330
3 Bro 0067 0421 0406 968 0.181 2.643
100 30 " Br1 0037 0259 0264 97.0 0.068 4.211
5 Bro0  0.060 0.394 0.406 97.0 0.159 3.023
. Broq 0032 0258 0270 97.2  0.068 4.259
5 Bro 0116 0.684 0.719 93.6 0481 1
" Bri 0.090 0529 0.607 932 0288 1
3 Byeo 0111 0494 0432 928 0256 3.759
W Bwear 0073 0.347 0308 935 0.126 3.568
5 Bro 0092 0448 0471 971  0.209 4.607
100 40 " Bria 0049 0311 0317 964  0.099 4.521
5 Broo  0.091 0.445 0.466 975 0.206 4.675
2 Bt M0.048,,0.308 0313 96.0  0.097 4.626
3 Bro JOA8DL 0,065 1.107 926 0964 1
F Bpd 002770657 0891 933 0448 1
B, Bueo 0009 0.198 0203 962 0.039 3.312
By-n (00107 0343 0146 951 0.021 4.303
Bn Bi197:.0.02370.194 0206 955 0.038 3.410
200 30 Bra -0.028 0.124 0140 965 0.016 5.543
By Bro  0.024 0193 0207 97.0 0.038 3.442
Braa -0.030 0.122 0.131  96.1  0.016 5.664
Br Bro  0.060 0355 0.358 944 0130 1
Bri 0.059 0.293 0.292 942 0.089 1
B, Bueo 0043 0252 0243 953  0.065 5.619
Buweqr 0028 0.172 0.163 942  0.030 6.892
B Brno 0042 0244 0249 957  0.062 5.956
500 10 A Bri 0015 0167 0168 956 0028 7443
Bro Broo  0.041 0242 0250 96.0 0.060 6.062
Broq -0.015 0.163 0.170 955  0.027 7.777
B Bro 0139 0589 0611 939 0367 1
Bri 0.099 0447 0495 946 0209 1
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Table 5.4: Robustness analysis when the censoring variable depends on Z. When Z 1is
binary, 1 = —1.24 and when Z ~ N(0,1), /; = 1.8.

Sample size = 300, % censored = 30

Estimators
type of covariate G Criteria BW*J 511,1 6}2,1 BFJ
BS -0.029 -0.015 -0.001 -0.037
Kernel-type SE 0.319 0.316 0.315 0.323
Binary MSE 0.103 0.100 0.099 0.105
BS 0.092 0.083 0.081 -0.989
Kaplan-Meier SD 0:326 0.318 0.318 0.471

MSE 0114 0.108 0.108 1.199

BS -0.073 -0.066 -0.064 0.098

Kernel-type SD 0.254 0245 0.244 0.260
Standard MSE  0.070 0.064 0.064 0.077
Normal BS  -0.191 -0.106 -0.103 2.775

Kaplan-Meier SD 0.258 0.248 0.246 1.058
MSE  0.103 0.073 0.071 8.823
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5.2 Analysis of Heart Transplant Data

The proposed inference procedures are applied to the Stanford Heart Transplant data
(Crowley and Hu, 1977, pp.~ 28-29). Larson and Dinse (1985) also analyzed this data set
in the context of model (2.5). Following Larson and Dinse, we consider only the subset of
65 patients who received a transplant and had complete data on the covariates of interest.
Deaths were attributed to transplant rejection (B = 1) or other causes (B = 2). Among
the 65 heart recipients, there were 29 rejected deaths; 12 deaths were from other causes
and 24 patients were censored. The covariates include the waiting time from acceptance
to surgery (w); the age at surgery (age) and a continuous mismatch score (m). Both m
and age are transformed to have zero mean and unit variance, and w was recorded as
a binary variable according to whether or not the waiting time exceeded 31 days. The
survival time 7' (in days) was measured from the date of transplant surgery. The main

objective is to explore the relationship between certain covariates and the cause of death

due to transplant rejection.

To assess if the censoring time C depends on the-selected covariates, the Cox pro-
portional hazard model was fitted for ¢ on each covariate separately. All p-values are
larger than 0.1, hence we assume that the distribution of C' does not depend on Z. The
quantity of interest is Fy(7) = Pr(T <'7yBr= 1), the cumulative incidence probability
of rejection by time 7. We set 7 = 250, 500, 900, 1800 (days). For each covariate, we ran

simple logistic regression under the model:

Fl(T)
tos [1 “ R

] = bo(7) + b1(7)2,

where z is one of the covariates. The waiting time w was not significant at all values
of 7. The effect of the mismatch score m was insignificant for small values of 7 and
then became more obvious as 7 increases. The covariate age is significant for all values
of 7. Excluding w, we fitted a multiple logistic regression model which contained the
covariates age and m. In Table 5.5, we see that age still played an important role for all

values of 7, but the effect of mismatch score became insignificant when it is considered

jointly with age. We conclude that age was the determining factor of Fj(7r). That is,
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a patient with a younger age at the transplant surgery tended to have lower chance to

develop the transplant rejection.

Larson and Dinse (1985) analyzed the same dataset under the framework of model
(2.5). It was assumed that Pr(B = 1), the incidence rate of dying from transplant
rejection, follows a logistic model and the latency distribution 1 — Q;(¢t) = Pr(T" <

t|§ = j) follows a proportional hazard model for j = 1,2 with

t
Pr(T > t|B =j,Z) = exp [—/ hj(u) exp(ZTfyj)du ,
0

where h;(t) is specified as a piece-wise exponential function. Their analysis showed that
no covariates have significant effect on Pr(B = 1) but both age and m were important
for the latency distribution associated with transplant rejection. Our result coincides
with that of Larson and Dinse (1985) in that age plays an important role for Fi(t).
However Larson and Dinse (1985) attributed the influence of age on Fi(¢) to the latency
distribution 1 — @;(¢). In contrast, our analysis showed that the effect of age on F(7)
persisted throughout all selected values of 7. Tt i reasonable to expect that such effect

might continue to Pr(B = 1), which however, cenflicts with the conclusion of Larson

and Dinse (1985).

To investigate this contradiction, we divide the data set into three age groups such
that group j represents the group with“age '<"45, € (45,51) and > 51 for j = 1,2,3
respectively. By the formula (3.6), nonparametric estimators of Fj(t) for each age group
can be obtained. For comparison, we also applied the mixed logistic/proportional hazard
model of Larson and Dinse (1985) for the grouping age variable and the model-based
estimators of Fi(t) can be obtained by (2.5) with plugging in estimates of corresponding
regression parameters. Figure 5.1 lists plots of both types of estimators of Fij(t) in
which the nonparametric estimators, FIN P(t) were obtained as stepped functions and

the model-based ones, F LD (t) were illustrated by thinner curves.

We look at the curves of FNF(t) first. The curves of the two elder groups differed
at the beginning but then became closer as the time passed by, suggesting that the

two elder groups have similar rates of dying from rejection but different evolutions. On
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the other hand, the youngest group had lower cumulative incidence probability of dying

from rejection throughout the entire study period which illustrates an evidence of lower

incidence rates of rejected death of the younger than that of the elder. Plots of FEP(t)

seem to agree with that of F’lN P(t) within the range of study period.

Table 5.5: Multiple Regression analysis for Heart Transplant data.

In each cell, the

estimated parameter and its standard error (in parenthesis) are given. Items with p-
value < 0.05 are marked by °.

Covariate 7 = 1800 7 =900 T = 500 T = 250
int 0.545 (0.463)  -0.037 (0.374)  -0.653 (0.311)  -1.016 (0.333)
Uy age 1.561 (0.542)*  1.279 (0.382)*  0.970 (0.310)* 1.070 (0.351)*
m 0.727 (0.549) 0.786 (0.496) 0.691 (0.392) 0.672 (0.386)
int 0.139 (0.470)  -0.136 (0.410) -0.775 (0.336) -1.087 (0.375)
Un age 1.357 (0.569)*  1.208 (0.518)*  0.927 (0.370)*  1.052 (0.442)*
m 0.665 (0.629) 0.790 (0.654) 0.563 (0.432) 0.601 (0.452)
int 0.137 (0.464)  -0.152 (0.410)  -0.760 (0.333) -1.076 (0.378)
Urs age 1.329 (0.527)* 1,197 (0458)* 0.921 (0.380)*  1.047 (0.438)*
m 0.598 (0.580) 0.696_(0.553) 0.543 (0.410) 0.588 (0.451)
int 0.420 (0.484) = -0.06140.370). ' =0.657 (0.308) -1.002 (0.330)
Ur age 1.624 (0.748)% “1.265 (0:412)¢ -0.949 (0.307)*  1.080 (0.356)*
m 0.416 (0.603) 0:570-(0.502) 0.613 (0.395) 0.634 (0.394)
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Figure 5.1: Plot of the cumulative incidence function of rejected death versus survival
time for three groups with age< 45 (—-—-—), 45 <age< 51 (———) and 51 <age ( ).
Step functions are nonparametric estimators and thinner curves comes from Larson and
Dinse (1985)’s mixture model.
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5.3 Analysis of SARS Data

5.3.1 Data Description

The Taiwan nationwide Laboratory-confirmed SARS database was kindly provided by
Dr. Mei-Shiang Ho and her colleagues in the institute of Biomedical Sciences, Academia
Sinica. Patients with SARS had to be isolated in the hospital until recovery or death.
The process can be described using the framework of competing risks. Here we define
B =1 to indicate that a patient was cured from the disease (being discharged from the
hospital and alive) and B = 2 to indicate that a patient was not cured (died during
the hospitalization period). Because this infectious disease has been eventually under
control in Taiwan, the database contains complete information about the two outcomes
and the corresponding failure time. There are 258 infected patients in which 58 subjects

were dead during the hospitalization period and 200 subjects were discharged from the

hospital and alive.

Possible covariates include age, gender; discase, PCR, viral load, where age denotes
a patient’s age by years; disease’is a binary variable indicating whether a patient had
suffered from other diseases before getting infected .0f SARS (1: yes, 0: no); PCR is
an indicator of whether the Polymerase Ghain-Reaction (PCR) test detected the SARS
virus (1: yes, 0: no) and wiral load measures the viral load detected by the PCR test.
Note that if PCR equals 0, the individual had a negative virus titer, meaning that the

patient has anti-body but zero viral load, and then the wviral load is set as zero.

5.3.2 Analysis of the Original Complete Data

The function Fi(t) = Pr(B = 1,7 < t) measures the probability of being discharged
from the hospital (cured) by time ¢. We first present nonparametric analysis for each

covariate group. Then we perform simple regression analysis for each covariate group

using the LOGISTIC procedure in SAS.
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Figures 5.2-5.6 depict the empirical estimators of F}(t) based on the covariate groups.
The continuous variable age was first divided into three groups, age < 30, 30 < age < 50
and age > 50. Figure 5.2 shows that the two younger groups (age < 30 and 30 < age
< 50) have similar patterns, while the older group (age > 50) has much lower chance
of recovery at every t. At the end, the cure proportions of three age groups (from the
youngest to the oldest) are 0.925, 0.879 and 0.443, respectively. The patterns of Fj(t)
for the gender groups and disease groups are similar such that the curves associated
with different covariate values have no crossings. At the end, the female group (cure
proportion = 0.842) had better recovery than the male group (cure proportion = 0.656).
Individuals without previous diseases (cure proportion = 0.845) also revealed better

recovery than those in presence of other disease (cure proportion = 0.444).

The curves based on different groups of PCR and wiral load behave differently than
the former covariates. Note that wviral load, originally measured continuously, was strat-
ified into four groups: no viral load detected, < 10%, € (10%,10°], and > 10°. The first
group includes those with PCR = 0 «eure proportion = 0.946) and the last three groups
are those with PCR = 1 (cure proportions equal 0.763, 0.648 and 0.526, respectively).
At the end, the larger the level of viral load; the lower chance of recovery. However the

four empirical curves have intersections in some middle time points.

We conducted several simple regression analyses based on the model
logit [F1(75)] = B0 + P 2, (5.2)

where Z is a selected covariate and (3 ; are simplifications of fy(7;) (k = 0,1) for j =
1,...,5. In the analysis, age was divided into two groups (< 50 and > 50) and wviral load
was transformed into the scale of log,, to stabilize the effect caused by extreme large
values. We set 71 = 14, 7o = 21, 73 = 28, 74 = 35 and 75 to be the maximum length of
hospitalization for the cure satisfying Fy(75) = Pr(B = 1). The results are summarized
in Table 5.6. Here we discuss the effect of age for illustration. Treating the younger

group (age < 50) as the baseline, the odds ratios along the time ePri’s are 0.466, 0.221,
0.158, 0.146 and 0.090. This implies that the effect of age on the odds of Fi(7;) tends to
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be more influential as 7; gets larger. Notice that age has substantial effect on Fi(75), the
final chance of recovery. For comparison, we analyze the data under model (2.2) which
assumes 11 = ... = Bi15 = 1. The overall odds ratio B is 0.147 which seems very
different from the separate odds ratios reported above. To formally examine whether
the effect of age is time independent, a score test for assessing the difference between the
reduced and the full model (with four degree of freedom) was performed. The resulting
p-value is 0.006 which implies that model (2.2) is not suitable for measuring the influence
of age on Fi(t). Table 5.6 also shows that each covariate has a significant effect on F(7;)
for larger 7;. In general, younger females, who did not have other diseases and had lower
viral load, had the best chance of recovery from SARS. Note that the effect of gender
remained the same along the time. In fact, Figure 5.3 shows that the curves for the male
and the female do not intersect. However the two curves with different disease status

have no crossing but the test of time homogeneity is rejected.

Although our paper does not study whether a covariate affects the latency distribu-
tion Q1 (¢|7), here we illustrate how'to conduct further analysis if this is also of some
interest. Let us use age again for allustration:’ We.fit €, (¢|75) by the accelerated failure
time model with a Weibull distribution, the estimated regression parameter for age is
0.276 (p-value = 0.004). The result implies'‘that; for elder patients (age > 50) who were

eventually cured, they also needed longer time to get recovery (Figure 5.7).
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Figure 5.2: The cumulative incidence function of cure for three age groups:
age< 30 (——-—), 30 <age< 50 (——) and 50 <age (———).
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Figure 5.3: The cumulative 1n01dence functlon of cure ’ﬁor two groups of different gender:
female (——-—) and male (7)
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Figure 5.4: The cumulative incidence function of cure for two groups with /without other

diseases: “without disease” (

) and “with disease” (——).
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Figure 5.5: The cumulative incideﬂce funcjcibfl of cure j‘for groups with/without PCR:
PCR =1 ( A ‘
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Figure 5.6: The cumulative incidence function of cure for groups with different level of

virus load (vl): vl =0 (——), 0 < vl < 10® (———), 10*> < vl < 10° (——-—) and
10° < vl (—).
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Figure 5.7: The latency survival function.of cure for two age groups: age < 50 (——-—)

and age > 50 (——). k-
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Table 5.6: Output for SARS analysis for different 7’s, spaced by one week but staring
at two weeks. Items with p-values < 0.05 are marked by a.

p-value of
testing
Covariate P11 B2 B3 B4 P15 b1 homogeneity
age
> 50 -0.763 -1.510* -1.843* -1.926* -2.409* -1.914¢ 0.006
(0.439)  (0.340)  (0.307)  (0.308)  (0.341)  (0.276)
gender
male -0.313  -0.707% ,%-0.811%, _-0.825% -1.031* -0.755% 0.476
(0.361)  (0.273F  (0:268) - (0.276) = (0.305)  (0.234)
disease
with disease -0.312 -1.093% -1.494% -1.725% = -1.920% -1.568% 0.007
(0.474)  (0.384)% (0:349)  (0.350)+ (0.355)  (0.312)
PCR
positive 0.172  -0.753* -1.328% -1.758% -2.260* -0.934¢ < 0.001

(0.341)  (0.258)  (0.286)  (0.330)  (0.454)  (0.229)

log,gviral load ~ -0.064 -0.207% -0.293% -0.370% -0.461¢ -0.264¢ < 0.001
(0.075)  (0.059)  (0.061)  (0.066)  (0.078)  (0.051)
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5.3.3 Analysis of Censored SARS Data

In practice, interim analysis based on incomplete data provides timely information for
decision making. Although the original SARS dataset contains complete information
about the value of (7, é), it is worthy to investigate how the proposed methods behave if
this dataset is subject to further censoring. Here we generated a censoring variable which
has a uniform distribution taking values from 0 to 70 making the censoring proportion

to be around 30%.

Based on a censored version of the SARS data, we applied the proposed methods
to fit a simple logistic regression for each covariate group and found that each covariate
was statistically significant since time 75. Then we included all the covariates in the
multiple logistic regression model which showed that the covariates gender and PCR

became insignificant at all values of 7. The final fitted model is
logit[F1(7)] = Bo(7) + B1(7) aged Balr) discase + [B5(1) logy,(viral load).

Table 5.7 lists the detail results ¢of the above amalysis based on a single run using the
artificial censoring scheme. Note that in the table we also report the previous results
obtained from solving U (B) = 044, therscoreequation based on the original complete
data. With the additional censoring, the proposed methods yield similar point estimates
but larger standard deviations, as expected. Table 5.8 list the average results by repeat-
ing the censoring scheme 300 times. The patterns are similar to that in a single run.
Note that the proposed estimators also produce more precise results compared with the

estimator of Fine (1999).
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Table 5.7: Multiple logistic regression analysis for SARS data subject to a single run of
artificial censoring. In each cell, the estimated parameter and the estimated standard
error (in parenthesis) are given. Items with p-value < 0.05 are marked by a and with
p-value < 0.1 are marked by b.

Covariate T =21 T3 = 28 74 =35 5 = 92
~age > 50 -1.240 (0.370)* -1.478 (0.343)* -1.486 (0.355)* -2.066 (0.414)
U with disease -0.400 (0.435)  -0.654 (0.417)  -0.904 (0.427)* -0.854 (0.470)"

log,,(viral load) -0.158 (0.061)® -0.251 (0.065)* -0.338 (0.072)* -0.464 (0.093)"

age > 50 -1.237 (0.462)*  -1.647 (0.430)® -1.566 (0.435)% -1.885 (0.464)"
Up+  with disease -0.581 (0.521) _.-0.633 (0.485)  -0.805 (0.460)° -0.837 (0.507)

log,,(viral load) -0.181 (0.068)% -0.286(0.073)* -0.396 (0.082)% -0.473 (0.090)"

age > 50 -1.276 (0.435)® -1.646 (0.373)* -1.568 (0.414)* -1.925 (0.488)"
Un,  with disease -0.500 (0.567), "<0.757-(0.462) -1.110 (0.509)* -1.113 (0.530)

log,(viral load) -0.173 (0:078)%* -0.251 (0.067)* -0.360 (0.090)* -0.398 (0.089)"

age > 50 -1.277 (0.435)*  -1.655 (0.376) -1.569 (0.410)® -1.947 (0.479)
Ur, with disease -0.488 (0.556)  -0.767 (0.468)  -1.015 (0.502)® -1.050 (0.527)*

log,,(viral load) -0.179 (0.077)® -0.259 (0.064)* -0.361 (0.087)% -0.408 (0.091)*

age > 50 -1.222 (0.459)*  -1.364 (0.449)* -1.291 (0.521)® -1.714 (0.639)*
Ur  with disease -0.399 (0.516)  -0.505 (0.517)  -0.869 (0.568)  -0.910 (0.675)

log,,(viral load)

-0.215 (0.075)a

-0.327 (0.092)°

-0.443 (0.123)@

-0.497 (0.181)@
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Table 5.8: Multiple logistic regression analysis for SARS data by repeating artificial
censoring 300 times. In each cell, the average of the parameter estimates and the average
of the standard-error estimates are reported.

Covariate

7'2:21

7'3:28

’7'4:35

T5:92

age > 50
with disease
log,o(viral load)

-1.240 (0.370)
-0.400 (0.435)
-0.158 (0.061)

~1.478 (0.343)
-0.654 (0.417)
-0.251 (0.065)

~1.486 (0.355)
-0.904 (0.427)
-0.338 (0.072)

-2.066 (0.414)
-0.854 (0.470)
-0.464 (0.093)

age > 50
with disease
log,,(viral load)

-1.279 (0.450)
-0.393 (0.487)
-0.158 (0.069)

~1.507 (0.417)
-0.672 (0.454)
L012501(0.075)

~1.530 (0.440)
-0.941 (0.478)
-0.339 (0.085)

-2.116 (0.506)
-1.170 (0.537)
-0.500 (0.102)

age > 50
with disease
log,,(viral load)

-1.269 (0.486)
-0.402 (0.557)
-0.156 (0,071)

11502 (0.442)
0699 (0.509)
“01247(0.076)

-1.538 (0.462)
-0.993 (0.526)
-0.331 (0.088)

-2.115 (0.520)
-1.174 (0.585)
-0.442 (0.100)

age > 50
with disease
log,,(viral load)

~1.270 (0.487)
-0.404 (0.550)
-0.157 (0.071)

~1.500 (0.438)
-0.685 (0.498)
-0.241 (0.076)

~1.540 (0.463)
-0.989 (0.521)
-0.333 (0.086)

-2.114 (0.515)
-1.173 (0.585)
-0.433 (0.099)

age > 50
with disease
log,,(viral load)

-1.265 (0.469)
-0.410 (0.535)
-0.156 (0.075)

~1.483 (0.480)
-0.711 (0.550)
-0.250 (0.098)

-1.500 (0.553)
-0.990 (0.602)
-0.345 (0.126)

-2.365 (1.099)
-1.246 (0.955)
-0.587 (0.346)
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Chapter 6

Concluding Remarks

In the thesis, we apply two useful techniques, namely inverse probability censoring
weighting and imputation, to handle missing responses in analysis of a logistic regres-
sion model. The proposed estimating functions based on the weighting approach further
consider efficiency improvement by takingthe,censoring effect into account and utiliz-
ing more data information. The imputatiensapproach has better performance in the
simulations but it also involves estimating more nuisance quantities. In the thesis, we
demonstrate that these nuisance functions‘can be handled nonparametrically by apply-
ing the results of Wang (2003) to the current regregsion setting which however may need
to use smoothing techniques and hence is quite technically involved. Furthermore if
the dimension of the continuous covariates is high, kernel smoothing may not work well
unless the sample size is substantially large. In such a case, one may try to reduce the
dimension of Z based on preliminary analysis or impose additional model assumptions

on the latency distributions to avoid the curse of dimensionality.

The logistic model assumption on m(Z73) is specified only for a chosen value of 7.
However if the analysis will be implemented at several time points, we may want to let
the form of m(-) to vary at different values of 7. For example, we can impose a parametric
link family and then test the corresponding parameter value which also serves as a way
of selecting the most fitted link at a given time. For example, the logistic link can be

viewed as a member of the family g(u; p) = log [{(1/(1 —u))” — 1}/ p] with p = 1. A
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common way of testing p = py is via the deviance of the likelihood function which is
not suitable for our purpose. We may adopt the idea of Pregibon (1980) to test p = po
via a score test constructed based on the estimating function without specifying the

likelihood.

Our proposed methods can be directly modified to incorporate the transformation
model given in (2.2). We start with a grid of time points, 7y,...,7,. At these grid

points, model (2.2) can be expressed as
Fi(m|Z) =7 (m(r) + Z"0) =7 (y + 276), (=1,...,L (6.1)

where 1 = H™t. Let u? = (ay,...,ar, OT). We can construct estimating functions of
p by the same steps in Sections 4.2.2 and 4.2.3. For example, we can reconstruct (4.6)

and (4.7) as

[(Xz S Tg,BZ’ = 1)

Hyqy = — VA 2
4,13 G(XZ) 7T(Oég + 4; 9) (6 )
and
I(Xi>7'g) I(XlSTg,BZZQ) _ T
Hyo = — Z;: 0 6.3
02 Gl e GO%0) (o +Z; 0) (6.3)
for i = 1,...,n. The resulting estimating-funetion of u is
u OHY -
Uws(p) = ) —F Vil (w) H; (6.4)
i=1 On
where R
] Hl 17 HL 17 :|
H2 — Ll ) <L,
{ HQ,li? R HL,Qi

in which Hy; are Hyj; (j = 1,2) with G being replaced by G defined in (4.8) and V;(u)
is a working covariance matrix. We can select a reasonable covariance matrix for U3 in
the same way as did for Uy~. Estimating functions based on the imputation approach

can be also obtained in a similar way.

Now we briefly illustrate how to use model (4.1) to verify the “parallel-lines” as-

sumption of model (2.2) or help choosing time-dependent covariates in that model. For
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selected grid points, we reparameterize model (4.1) as

Fi(1|Z) = 7(Z"B(m)) = 7 (e + Z"O + ZTn1py + -+ ZTp1¢pr), L=1,...,L

(6.5)
where 7, is a dummy variable with value equal to 1 if h = ¢ or 0 otherwise and ¢3’s
are extra parameters measuring interactions between time and covariates. In this sense
model (2.2) can be viewed as a reduced model of model (4.1) and hence the parallel
lines assumption can be verified by testing the null hypothesis ¢ = --- = ¢, = 0.
We can construct a score test for testing this hypothesis. Let ¢* = (¢1,...,¢_1) and
AT = (uT, @) in which u” = (u,...,ar,0"). Denote the estimating function of ~
by Us(). For the IPCW approach, we can obtain Ug(v) in the same form of (6.4)
with Hyj; (j = 1,2) are evaluated under model (6.5). Then Ug(7y) may be shown to
be asymptotically normally distributed with mean-zero and variance I', where I' can
be partitioned according to 47 = (u”,¢’). Denote this partition as I' = (T'y) for
k,l =1,2. The score statistic for testing the above hypothesis is

Q = n 'UEA) (T 2T E, 'T) 1 Us(3),

where 4 and [ are evaluated wiider the null hypothesis. Under the null hypothesis, ()
is asymptotically chi-squared with ‘L= T-degrees of fréedom. One can refer to the papers

by Chen (1983) and Li (1991) for details.
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Appendix
Appendix A: Asymptotic properties of Uy« (3)

Assume that the true value 3, is located in the interior of the parameter space, which
is a bounded convex region and my(-) is bounded. The estimating function Uy«(3) in

Section 4.2.2 can be written as

n

Ug(B) = > [(Vas — Vai) Hyi — (Vi — Vi) Hai

i=1

where

" {[[(XiST,Bizl) Vai — Vi

Bon(B) = Z (ZTB)Z}

GX) V-2 C:(X)
B [I(Xi <7,B;=2) Vi — V3 X;) — G(X;)
G(Xi) ViiVai — V3, G(X))

. ¢zTﬂZ}
?

[(Xi > 1) Vi Ve T G(r+) — G(r+)
_[ G(t+) Vil = Vig il 2 } G(7+) }

To derive the asymptotic distribution of n=1/2Uy- (B, ),-we first express the Kaplan-Meier

estimator G(t) as the following integral forin,

L 2 G v

where

Mei(u) =1(X; <u,B; =0) — /u I(X; > s)dAc(s),

Y(u) = >0 [(X; > u) and Ac(s) is the cumulative hazard function of C. By the

uniform convergence of the Kaplan-Meier estimator, we can write n~'/2B,,(3,) as

% Z /Ooo [91(t; Bo) — ¢2(t; Bo) — a5(t; Bo)] <%t)> _ dMe (1) + 0,(1),
where
g1y (X, <7,Bi=1] vor—va o7
it o) = S0 2 0 | SRR e @, (A

o1



3

1 I(XkST,BkZQ):| Vik — V3k 5T ~
t8) = =S I(X, >t 7Z78.)Z,, (A2
02t Bo) = 2 (X > t) [ GOX) — ng%( $Bo)Zi,  (A.2)
1 n I(Xk>7'):| Vik — V3 =T ~
BB == I(r>t 77 8,)Z. A3
Q3< /30) n £ (T ) |: G(T+) VipVoh — ng 7T¢( kﬁO) k ( )

Vik = ﬂ-(ZZ/BO)(M - W(Zgﬁo))a Vak = 77(2550)(]\;[ - 7_T<Z£50))> V3k = 7_7(2;{/60)7(2550)
and M is the median of the random variable 1/G/(X).

Therefore n~/2U,-(B,) can be expressed as n=/2>"" & + 0,(1), where

6 — {[[(Xi <7,B;=1)

- W(Zfﬁo)} (Vi — Vs:)

G(X;)
I(Xz > T) I(Xl <rT,B;= 2) AT 7T¢(ZTIBO) ~
- —7(%; i —Vsi) ¢ 5 L
[ G(1+) i G(X;) ™2 Bo) | (s = vai) V1V — V3
> q(t; By)
+ ————=dMc,(t),
;S
y(t) = lim,_o Y (t)/n and q(t; By) = limy—o[q1(t: Bo) — q2(t: Bo) — as(t; By)]- Since
{& (i = 1,...,n)} are mean-zero indepenidénit tandom variables, by the multivariate

central limit theorem, n~'/2U,.(B4) has amjasymptotic normal distribution with mean

0 and covariance matrix Iy- = lit,mee i ' Y1 &€
Appendix B Asymptoticproperties of BW*

Recall that 3,,. is the solution to Uy-(8) = 0. Since U,-(8) is differentiable with
respect to B and has a bounded derivative, consistency of BW* follows. By a Taylor

expansion of n~1/2U,(83) with respect to 3,, we can write

0 =120y (By-) = 1 2Us(By) — Aw+(By) n'/* (B — Bo) + 0,(1),

where

. 10U,
Ay (By) = — lim ——5'3) .

It follows that

0By = Bo) = [Aw- (Bo)] " 072U (By) + 05(1)- (A.4)
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Hence n'/ Q(BW* — ;) has an asymptotically normal distribution with mean 0 and co-

variance matrix Vi« = [Ay~ (Bo)]fl Dy [Ay (60)]71

Replacing By, G, y(t) and dAc(t) by the corresponding estimates, BW*, G, Y (t)/n
and dN¢(t)/Y (), where Ne(t) = 32, I(Xg < t, By = 0), respectively, & equals

{ [[(Xi <7.B =1)

- W(Zfﬁw*)] (F2i — ¥35)

G(X,)
. . < e— ~ A
](%(’L > T) + ‘[(XZ —A T? B’L 2) _ ﬁ(ZZT,BW*) (\/}lz _ \737) 7AT¢(Z /8 2) Z7,
G(T+) G(XZ) V1iVo; — Vgl
nl(Bi = 0)4(Xi; By-) zn: nl(B; = 0,X; > X;)§(X;; By-)
pet 1 (Xk 2 X s (o 1(Xe > X)) 7

~

where vy, = 1(Z7 B, ) (M — 1(ZF B,..)), Yo = T(Z] By ) (Mg — 7(ZT B,,.)),
{/31' - 7_T(Zleéw*)ﬂ-(zzﬂ/éw*)7 q(t7Bw*> - le(tﬂéw*) - 62(t7BW*) - 63(t;BW*)7
and @(t;,@w*) (j = 1,2,3) are obtained by using BW*, G and (Vik, Vok, V3r) instead of

Bo, G and (vig, Vo, var) in (A.1)—(As3): Tt follows that the covariance matrix I'y+ can

R ~ a0
be estimated by I'y- =n'>""  && Jand then

where

3

1 ‘71i+‘72z 2V3z 2 p > 5T
_y 2 7,77 .
SR IR N2B, L

&2
V1;V V3.
i—1 1eV2e — V3;

Appendix C: Previous nonparametric results of Wang (2003)

Modifying the idea of Wang (2003), we can estimate p;(z) = Pr(T < 7, B = JjIT > x)
by

pi(x) = ,

1 KIx<X;<7,B;i=j)
where S(z) is the Kaplan-Meier estimator of S(x) which, according to Satten and Datta
(2001), can be re-expressed as an average of inverse probability of censoring given by

I(X; >xB #£0)  I1(X; > X(m)
2 + ==
Z (Xi) G(X(m)+>
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where X(,,) denotes the largest observed failure time. Based on Wang’s idea, Q;(t|7)

can be estimated by

i I(u=X,; <1,B; =)
H{l_ S [I(uSXigT,Bl—j)+I(u§XiST,BZ-:O)ﬁj(Xi)]}'

u<t i=1

Appendix D: Asymptotic properties of Uri(3)

Suppose that Z takes K distinct values, z,...,2zx. Original data are partitioned
into K’ mutually exclusive subsets, {(A{k, X,z, Bi) (k=1,... ,nj)}, which corresponds
to the set of {i : (A, Xi, B, Zi = 2;) (i = 1,...,n)} and n; = S0 [(Z; = z;). We
have p., (X)) = E(A{k‘ X}, Bl =0,Z = z;), which can be estimated by

pxh) =Ly k< Xisn B =)
n;S., (X3) 15 G, (Xp)

J

where Szj (t) and @Zj (t) are Kaplan-Meier estimators of S, (t) = Pr(T" > t|Z = z;) and
G, (t)=Pr(C > t|Z = z;). The estimatiiig équation U, (8) can be re-expressed as

ms(2] B)
Un(B Z {Z [A )] 7T(ZT¢,)3)7T(2T )Zj} ’

= J J

where AJ, = I(B] = 1, X}, < 1) + (B} =0 X]< 1)p., (X]).

To derive asymptotic distribution of n="2U;,(3,), we first express it as sum of the

following two terms,

{ N Z - W(ZJ'TIBO)} v, (:30)}

1
]Z; AZj Xj Zj 0
{\/n_]kl 0) [p:, (X7) — ps, (XT)] © (B)}( 5)

%Un(ﬁo) = i\/nf]
where

Bl = B (AL XL BLZ = %) = I(BL = 1, X[ < 7) + I(B] = 0, X] < 7)p.,(X])

and

(2] Bo)
m(z ]T/BO) (Z Bo)

o4

‘Ijzj (/30) -




Denote the last part of (A.5) by Cy(8,), by the strong consistency of Kaplan-Meier

estimators, we have

Co(By) = fj{\/%wﬁo) (Cha+ Ca) | + 0,00,

j=1
where
. 1 & | I(B =0) & . . 4 1 1
sy = (B j) I(X]<X]<7,B]=1)| = —— - 7
Vi | Sy (X3 1o G.,(X7) G.(X3)
A 1 & A 1 1 1 K (X <X <7 B =1
Cyy= I(Bi:O)(A —— J>_Z<( < h—7j'> h ))]
\/n_j k=1 SZ]’ (Xk) Szj (Xk) U h=1 GZj (Xh)

Interchanging the summations in C’g_l, we get

: 1 & I(X) <71,Bl =1)G,,(X]) - G.,(X})
¢t = —=3 |pocp = B = DO Z B )
J h=1 GZj(Xh) sz (Xh)
where
} g J 2 xi i
D(X]) = 4dim iZI(B’“ DA < Xi).
700 T 1 Szj (Xk)
One can write . LB ,
sz (t) - GZj (t) . ZJ /t sz (U—) dMé‘,l(u)
GZj (t) =1 70 GZj (u) Yi (u)
where
V) = 31K 2 ), M) = 167 <0, B =0) = [ 104 2 5)dbi(o)
i=1 0

and AZ(s) is the cumulative hazard function of C' given Z = z;. Tt follows that

TR IR W (O
C'2.1 - \/n—JlZI/O pj(u)dMC,l( )+ P(l)a

where

¢ (u) = lim 1 i:D(Xi)I(u s X< B =) and p’(u) = lim j(u)

, ) J . .
n;j—00 n] he1 GZ]' <Xh) n;—00 TL]
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Similarly, one can write

G = =30 [T g 40,00,

J =1 pﬂ u
where _ , . .
. 1 <L I(Bl=0,X] >u)P, (X}
T](U) = lim — Z ( k k —]u) ]( k)’
nj—00 n] P Szj (Xk)
: 1 & I(B=1,X <Xl <
P, (X]) = lim —>" (By =1, kf h—T),
n;—00 N — sz (Xh)
and

M) = 10 <. B #0)— [ 106 2 9)dnj (o)
0
A(s) is the cumulative hazard function of T given Z = z;.

In summary, we have

K 1 nj
0= g v o

where .
. . ¢ (u) .
¢ =F —=n(z'p —|—/ ——~dM?, (u . u).
k k ( j 0) \ pﬂ(u) C.k 0 p](u) T,k( )
Notice that (Cf, e ,Cﬂ;j) are zero-nean. independent random variables for each 5 where

j=1,..., K. By the multivariate central limit theorem, \/LEU 11(B,) has an asymptotical

normal distribution with mean 0 and covariance matrix

I'n= T}Lﬂgon ZZ Ck; U, (Bo)¥ (50)-

71=1 k=1

Let ,@ 71 be the solution of Uy (3) = 0. Asymptotic properties of B 71 can be obtained
as of B, stated in Appendix B. According to (A.4), n*/2(3,,—B,) has an asymptotically
normal distribution with mean 0 and covariance matrix V;; = [A71(8B,)] T [An(8y)] !

where ~
Wi(ZTﬁo) A

AntBo) =B g w2 )

o6
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