
國 立 交 通 大 學

電子工程學系

碩 士 論 文

通訊系統晶片設計之模擬驗證平台

A Modeling and Verification Platform

for Communication SoC Designs

研 究 生：邱大瑜

指導教授： 黃經堯 博士

中 華 民 國 九 十 四 年 七 月

 ii

通訊系統晶片設計之模擬驗證平台

A Modeling and Verification Platform

for Communication SoC Designs

研究生:邱大瑜 Student:Da-Yu Chiu
指導教授:黃經堯 博士 Advisor:Dr. ChingYao Huang

國 立 交 通 大 學

電子工程學系電子研究所碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in
Electronics Engineering

May 2005

HsinChu, Taiwan, Republic of China

中華民國九十四年五月

 iii

摘要

在這篇論文中，我們介紹了一個結合了硬體模擬和通訊系統模擬的

模擬驗證平台。在系統晶片設計流程中，硬體模擬是一個非常重要的

步驟。而通訊系統模擬則是通訊系統研究中不可或缺的工作。這篇論

文提出了一個結合了多項功能的平台，包含了硬體模擬，通訊系統模

擬，以及軟體發展驗證。對於通訊元件的設計實現，這個將可平台提

供一個方便的環境。在論文中，將會對這個平台的各個重要元件的設

計理念及工作方法做詳細的描述。

Abstract
This thesis introduces a development and verification platform that

combines hardware modeling and communication system simulation. The

hardware modeling is an important technology in SoC design process, and

system simulation is an essential process in communication system designs.

This proposed platform enables the use of a single platform for

multiple-purpose designs for communication system designs, including

system simulation, software development and hardware modeling. The

platform is especially useful for the designs of communication components

whose behaviors are highly coupled with transmission medium and other

parallel components. The basic platform components and design strategies

are also described in this thesis.

 v

誌謝

 能夠完成這分論文，首先要感謝我的父母，竭盡能力栽培我。也要

感謝用心的指導教授黃經堯老師不辭辛勞地指導我的論文，指出我的

錯誤、不足，並提供更正確的做法和方向。經過怎數次的會議討論，

黃經堯教授給我的指導都惠我良多。還要感謝實驗室的學長、同學、

學弟們，在我研究時，提供我許多良好的意見，營造愉快的研究氣氛，

讓我有舒適的研究環境，我著實由衷感激。最後要感謝我的女友歐陽

陪我完成這一步人生的里程碑。

邱大瑜 謹誌

2005 年 7 月,Wintech Lab,交通大學,新竹,台灣

 vi

Index
CHAPTER 1 INTRODUCTION...1

1.1 SOC DESIGN PROCESS..1
1.2 HARDWARE MODELING..2
1.3 COMMUNICATION SOC DESIGN..3
1.4 MOTIVATION ..5
1.5 ORGANIZATION ..5

CHAPTER 2 PLATFORM DESIGN METHODOLOGY..7

2.1 OVERVIEW ...7
2.2 EVENT QUEUE..8
2.3 VIRTUAL DEVICES..11
2.4 CHANNEL CONTROLLER...14
2.5 INSTRUCTION SET SIMULATOR ...15
2.6 ISS SHELL..16

CHAPTER 3 A CASE EXAMPLE: UWB MAC ...18

3.1 OVERVIEW ...18
3.2 IEEE 802.15.3 MAC PROTOCOL ...18

3.2.1 The 802.15.3 piconet and its components ..19
3.2.2 The 802.15.3 Superframe Structure ...21
3.2.3 Layer management...23

3.3 MAC FUNCTIONS...24
3.3.1 Overview ..24
3.3.2 Stream output buffer...27
3.3.3 CTA Timing Control ...28
3.3.4 Send and Wait...30
3.3.5 CAP Timing Control...31

3.4 ARMULATOR ...34
3.4.1 A Instruction Set Simulator for ARM ...34
3.4.2 Modeling in ARMulator ...35

3.5 LINK ARMULATOR WITH THE SYSTEM SIMULATION ...37

CHAPTER 4 CONCLUSION AND FUTURE WORKS...40

REFERENCE..41

 vii

Figure List

FIGURE 1.1 PARALLEL DESIGN PROCESS ...2
FIGURE 1.2 PARALLEL SOFTWARE AND HARDWARE DEVELOPMENT3
FIGURE 1.3 COMMUNICATION DEVICE DESIGN ...4
FIGURE 2.1 THE PLATFORM ARCHITECTURE..8
FIGURE 2.2 PARALLEL EXECUTION PROBLEM..9
FIGURE 2.3 TIMING SYNCHRONIZATION PROBLEM ..10
FIGURE 2.4 EVENT QUEUE WORKING FLOW ..11
FIGURE 2.5 A TWO-STEP SOLUTION FOR CODE GENERATION..12
FIGURE 2.6 AN EXTENDED FINITE STATE MACHINE EXAMPLE..14
FIGURE 2.7 COLLISION CONTROL IN CHANNEL CONTROLLER ..15
FIGURE 2.8 DATA EXCHANGING AND SYNCHRONIZATION FLOW ..17
FIGURE 3.1 THE IEEE 802.15.3 PICONET..20
FIGURE 3.2 SUPERFRAME STRUCTURE ..21
FIGURE 3.3 THE REFERENCE MODEL USED IN IEEE 802.15.3 STANDARD23
FIGURE 3.4 MAC FUNCTIONAL STACK ...25
FIGURE 3.5 STREAM OUTPUT BUFFER FUNCTION BLOCK’S STATE DIAGRAM......................28
FIGURE 3.6 CTA TIMING CONTROL FUNCTION BLOCK’S STATE DIAGRAM29
FIGURE 3.7 SEND AND WAIT FUNCTION BLOCK’S STATE DIAGRAM31
FIGURE 3.8 CAP TIMING CONTROL FUNCTION BLOCK’S STATE DIAGRAM33
FIGURE 3.9 ARMULATOR STRUCTURE ...35
FIGURE 3.10 CO WORKING CHART ..38
FIGURE 3.11 A RUNNING SNAP SHOW ..39

 1

Chapter 1 Introduction
1.1 SoC Design process

The increasing technological complexity coupled with requests for high

performance and time-to-market requires for new design methodologies

and tools for System-on-Chip (SoC) products. To meet performance

requirements and to achieve shorter development cycles, the IC design

development process will be different from the traditional ASIC

development process. As shown in Figure 1.1, IC designs have been

extended from the traditional sequential development process to parallel

development process. Usually, SoC design starts from a high abstraction

specification which consist mainly one or a few functional subsystems. The

next step is to create the system simulation and then explore the internal

relationship among subsystems. The hardware/software partition is made

followed by an architecture and interface definition. Implementing the

hardware with hardware description language and transferring software to

executable codes are the next step. Finally, the last step is to integrate all

components into one system.

 2

System
specification

Internal
Relationship

System Implemation

Interface
Software Hardware

Software

Analisis

System
Simulation

Hardware Software partition

Interface
Synthsis

Hardware
Synthsis

Software
Generation

Compilation System
Integration

Figure 1.1 parallel design process

1.2 Hardware Modeling
The major difference between traditional and modern design processes is

that the goal of modern process is to enable parallel software and hardware

development. In order to finish software development and verification prior

to the hardware can be completed, a hardware model becomes essential.

Figure 1.2 shows that the hardware design team provides hardware models

for software development and software design team generates test patterns

for hardware verification. In decade, hardware modeling technologies have

been investigated widely. For general functions running on processor, most

 3

researches, such as [3-4] are focus on instruction set simulators. For a

dedicated functional hardware, there are also lots publications, such as [2]

wants to enable the use of a single model for multiple proposes throughout

a design process, [3] presents two co-simulation methodologies models, [4]

focuses on the timing information of models, [5] addresses the expanding

of the software design cycle to the integrated hardware modeling and

simulation, and [6] presents a fast prototyping method for software and

hardware designs.

SW HW

SW development HW design

Provide model

Test pattern

integrate

Figure 1.2 parallel software and hardware development

1.3 Communication SoC Design

 4

Figure 1.3 Communication device design

For communication SoC designs, the previous studies are not enough.

Above hardware modeling studies concentrate on how to model the

hardware that can not be implemented, but the hardware modeling

technologies are not suitable for a communication system. Because the

main functions of the communication hardware are for exchanging

messages and maintaining the connection with other devices, their

behaviors are highly coupled with not only the hardware itself but also

connection channels and other devices. It is very different from the

conventional hardware which is only used for data processing and provides

service for the processor or other master components. If we just model the

hardware itself, it is impossible to be used to verify the software. Figure 1.3

shows that communication device’s behaviors are coupled with not only

the physical layer itself but also the medium and other devices. Taking

wireless medium access control (MAC) as the example, most functions are

used to control the access of the shared medium by defining rules for

multi-device communication with orderly manner. Therefore, such

 5

functions can only be verified in multi-device environment. As a result, in

conventional design process, verification of communication functions can

only be started at the late of the design flow. To solve this problem, we

propose a simulation platform including hardware modeling. The modeling

platform includes a multi-device communication environment in the

hardware model. Such that, the model can emulate the behavior of

communication devices under shared channels and will interact with other

parallel components. This will provide the benefit of moving the functional

verification to an early design cycle. Before the hardware can be completed,

co-simulating with the hardware model, all communication functions could

then be verified, such as the channel access, channel time management, and

so on.

1.4 Motivation
Hardware modeling is an important issue in SoC design process, and

system simulation is an essential process in communication system designs.

For communication SoC designs, a platform combined these utilities is

especially important. As result, a development and verification platform is

created to enables the use of a single platform for multiple-purpose

communication system designs, including system simulation, software

development, and hardware modeling.

1.5 Organization
This paper is organized as follows: This chapter, we present the

hardware modeling in parallel design process and finger out its drawback

 6

for communication soc design. In chapter 2, the simulation and modeling

platform and the design methodologies of each component are presented.

Chapter 3 shows a case example for the proposed design approach.

Conclusion and possible future works are discussed in chapter 4.

 7

Chapter 2 Platform Design
Methodology

2.1 Overview
Figure 2.1 shows the key components and their connections of the

proposed simulation and modeling platform. The platform is basically

composed of five components: Event Queue, Virtual Devices, Channel

Controller, Instruction Set Simulator, and ISS shell. The first three items

construct the system simulator. With these components, the system

simulation platform can be used to develop new control protocols. The last

two items are key components which perform instruction level simulation

and hardware modeling. The following subsections will present each

component’s design methodology.

 8

Figure 2.1 the platform architecture

2.2 Event Queue
In an effort of performing the multi-device simulation, the most

important features that should be handled are the parallel execution and

 9

timing synchronization. Figure 2.2 shows the parallel execution problem:

all tasks in devices execute parallel, there will be more than two tasks

executing at the same time, and they may be interact with each other.

Whether a task will be triggered may be depended on the other device

which is parallel executed. By intuition, the multi-tasking execution

controls capability provided by the operation system might be useful to

provide parallel execution, such as, multithreading, processes, or pipes.

Taking the advantage of endowing each device with an individual task, we

can perform parallel execution naturally.

Device 1 Device 2

A

D

B

C

timeout
trigger

Device n

E

G

F

Figure 2.2 parallel execution problem

Nevertheless, when we run into the second issue: timing synchronization,

the multi-task application will make this problem more difficult to solve

 10

efficiently. As shown in Figure 2.3, in a simulation, there will be many race

conditions, and different order of events will cause different simulation

result. In order to ensure the accuracy of the simulation, it is necessary to

make all devices have the same timing. Because of this, the platform must

insert a large amount of synchronization points on every task. It leads to a

large leakage of simulation time in context switch and busy waiting.

Device 1 Device 2

A

D

B

C

timeout
trigger

tim
e

Figure 2.3 timing synchronization problem

For the purpose of handling parallel execution and timing

synchronization efficiently, the approach of separating the invocation and

execution of events is adopted to gather all execution of functions and

timer interrupts from different devices, and then form a central event queue.

 11

The queue is a priority queue based on execution delay. Items in the queue

are constructed by an execution delay and a reference of function

invocation. When a device executes a function, it packages the estimated

execution delay and the invocation of the function instead of really

executing, and then pushes it to the event queue. The working flow of an

event queue is illustrated in Figure 2.4, where the event queue is reduced

when system runs and time escapes.

Figure 2.4 event queue working flow

2.3 Virtual Devices
Virtual Devices are the key role of the system simulation. It can be

 12

divided into three modules. The first module is the connection of the upper

layer. Since the target is communication functionalities, we create a traffic

feeder in stead of real applications. The feeder reads traffic files and feeds

them into devices. The second module is the implementation of protocol

functionalities. In the communication protocol specification, functionalities

are always written in natural language and some of them are illustrated

with message sequence charts, as a result, they are plagued by ambiguities

and incompleteness and are always difficult to create executable codes.

Realizing the problems, we adopt a two-step solution, shown in Figure 2.5,

where a medium is introduced between specification and executable codes.

Figure 2.5 a two-step solution for code generation

The medium defines an Extended Finite State Machine Specification and

its description guidelines. Figure 2.6 shows an Extended Finite State

Machine example. The Extended Finite State Machine haves five state

 13

types: input state, output state, waiting state, decision state, and procedure

state. The input states are services for upper or lower layers. The output

states are links to adjacent states. The waiting states are used for

conditional execution. The decision states change the execution’s direction.

The procedure states trigger data process. By transforming the specification

into State Machine, we can overcome problems caused by ambiguities,

replenish lack of specification, and even repair errors. After State Machines

are finished, we just need to follow a regular rule and translate the State

Machine to executable codes. In the future, the translation can be

automatically done by a code generator. This further reduces the software

development time. The third module of virtual devices is the interface to

lower layers. It depends on a specific communication system and its

hardware/software interface. The third module also includes a hardware

model of lower protocol stacks.

 14

Figure 2.6 an Extended Finite State Machine example

2.4 Channel Controller
In the simulation platform, if a device wants to send a message to the

other one, it should pass it through a channel controller. The channel

controller simulates the channel condition which devices will use to

exchange messages. The channel controller simulates the collision, channel

noise, and hidden node effect, and so on. Figure 2.7 shows a basic collision

control in channel controller, it use a channel loading counter to record the

 15

number of device whose transmitter are active, and use the counter to

determine whether the frame will be passed to devices whose receiver is

active or not. With different communication systems and channel

characteristics, the simulated channel controller will be also different.

Figure 2.7 collision control in channel controller

2.5 Instruction Set Simulator
Instruction Set Simulators are software environments which can read

microprocessor instructions and simulate their executions. Most of these

tools can provide simulations results like values in memory and registers,

as well as timing information (e.g. clock cycle statistics). Thus, instruction

set simulator provides an environment for software development on

targeted microprocessor, and allows cycle-accurate benchmarking and

validation of targeted software. Depending on the target microprocessor,

the instruction set simulator in the platform will be different. The proposed

platform can link to many existing instruction set simulator provided by the

microprocessor’s vendor. In order to be used in the platform, the instruction

 16

set simulator should support the following functionalities:

1. exchanging data with outer environment.

2. stop and hold, when writing out a data.

3. resuming after stopped.

4. stop after certain cycles prescheduled.

5. changing internal signals, when stopped. If the emulation board with

real microprocessor supports these functionalities, then it can be

used in our proposed platform.

2.6 ISS Shell
ISS shell is the component which carries out hardware modeling and

connects the Instruction Set Simulator to simulation platform. It is

responsible for modeling the hardware parts, keeping timing

synchronization, and exchanging data between the system and the

Instruction Set Simulator. Data exchanging and synchronization flow are

shown in Figure 2.8.

Running example:

1. Event queue controller reads next event, and then set a break point on

the instruction set simulator based on the time delay of next event.

2. ISS runs and requests for sending data to ISS shell. Then it causes an

active break.

3. The event queue controller updates the system timing and then ISS shell

passes the data to channel controller.

4. System makes the action and the event queue is updated. Base on the

action, the break point is rescheduled.

 17

5. ISS runs and is trapped into a break point. If the channel controller is

going to send data to ISS, it passes the data to ISS through ISS shell.

After above actions, return to step 1 and then repeat the above

procedure.

Figure 2.8 data exchanging and synchronization flow

 18

Chapter 3 A Case Example: UWB

MAC

3.1 Overview
The IEEE 802.15.3 wireless standard is a candidate of wireless personal

area networks and aim to achieve fast connection time, Ad hoc networks,

Data transport with QoS, dynamic membership and efficient data transfer.

Wireless personal area networks (WPANs) are used to convey information

over relatively short distances among a relatively few participants. Unlike

wireless local area networks (WLANs), connections effected via WPANs

involve little or no infrastructure. This allows small, power efficient,

inexpensive solutions to be implemented for a wide range of devices.

Because of this, its MAC design is of great importance and full of

challenge. So, we employ our platform to help its MAC research and

design. First, we use our platform for MAC superframe formation and

channel time management research. Since the device-orient simulation and

effort for efficiency, the simulation is more accurate and even ten times

faster than the old simulator we used. Second, we apply our modeling

platform to assist partition definition and support MAC software

development before hardware is finished.

3.2 IEEE 802.15.3 MAC Protocol

 19

3.2.1 The 802.15.3 piconet and its components
802.15.3 is based on a centralized and connection-oriented ad-hoc

networking topology. This wireless ad hoc data communications system

which allows a number of independent data devices (DEVs) to

communicate with each other is called piconet. A piconet is distinguished

from other types of data networks because communications are normally

confined to a small area around person or object that typically covers at

least 10m in all directions and envelops the person or a thing whether

stationary or in motion. This is in contrast to local area network (LAN),

metropolitan area network (MAN), and wide area network (WAN), each of

which covers a successively larger geographic area, such as a single

building or a campus or that would interconnect facilities in different parts

of a country or of the world.

An 802.15.3 piconet consists of several components, as shown in

Figure 3.1. The basic component is the DEV. One DEV is required to

assume the role of the piconet coordinator of the piconet (PNC). The PNC

provides the basic timing for the piconet with the beacon. Additionally, the

PNC manages the quality of service requirements, power save modes and

access control to the piconet.

 20

Figure 3.1 the IEEE 802.15.3 piconet

The 802.15.3 standard allows a DEV to request the formation of a

subsidiary piconet. The original piconet is referred to as the parent piconet.

The subsidiary piconet is referred to as either a child or neighbor piconet,

depending on the method the DEV used to associate with the parent PNC.

Child and neighbor piconets are also referred to as dependent piconets

since they rely on the parent PNC to allocate channel time for the operation

of the dependent piconet. An independent piconet is a piconet that does not

have any dependent piconets.

 21

3.2.2 The 802.15.3 Superframe Structure
Timing in the 802.15.3 piconet is based on the superframe, which is

illustrated in Figure 3.2. The superframe is composed of three parts:

— The beacon, which is used to set the timing allocations and to

communicate management information for the piconet.

— The contention access period (CAP), which is used to communicate

commands and/or asynchronous data if it is present in the

superframe.

— The channel time allocation period (CTAP), which is composed of

channel time allocations (CTAs), including management CTAs

(MCTAs). CTAs are used for commands, isochronous streams and

asynchronous data connections.

Figure 3.2 superframe structure

The length of the CAP is determined by the PNC and communicated to

the DEVs in the piconet via the beacon. The basic medium access

mechanism during the CAP is carrier sense multiple access with collision

avoidance (CSMA/CA). To minimize collisions, a transmitting DEV is

 22

required to first sense whether the medium is idle for a random length of

time, called “backoff interframe space” (BIFS). Only if the medium is idle

after that time shall the DEV start its transmission. This process of waiting

before transmission is termed “backoff.” The backoff count is random

selected from range (0,BW), where BW means backoff window, which is a

table has values [7, 15, 31, 63]. For the first transmission attempt of a

frame, the BW value is set to the minimum number 7. If collision occurs,

the BW value should be increased to the next larger value until the

maximum value 63. The DEV shall maintain a counter for backoff count

which is decremented only when the medium is idle. Whenever the channel

is busy, the backoff counter shall be suspended. The channel shall be

determined to be idle for the duration of a BIFS period before the backoff

slot countdown is resumed. When the backoff counter reaches zero, the

DEV may transmit a frame.

On the other hand, channel access in the CTAP is based on a TDMA

method. The PNC divides the CTAP into channel time allocations (CTAs).

A DEV that is given a directed CTA is guaranteed that no other DEVs will

compete for the channel during the indicated time duration of the CTA. A

DEV with a CTA may or may not make use of all the allocated time

duration within the CTA. The selection of a stream, command or

asynchronous data for transmission during a CTA is determined locally by

the DEV depending on the number of pending frames and their priorities.

All CTAs have guaranteed start time and duration. The guaranteed start

times enable both power saving and good QoS characteristics. All the

CTAs for the current superframe are broadcast in the beacon.

 23

3.2.3 Layer management
Both MAC and PHY layers conceptually include management entities,

called the MAC sublayer management entity and PHY layer management

entity (MLME and PLME, respectively). These entities provide the layer

management service interfaces for the layer management functions.

Figure 3.3 The reference model used in IEEE 802.15.3 standard

In order to provide correct MAC operation, a device management entity

(DME) should be present within each DEV. The DME is a

layer-independent entity that may be viewed as residing in a separate

management plane or as residing “off to the side.” The exact functionality

of the DME is not specified in this standard, but in general this entity may

 24

be viewed as being responsible for such functions as the gathering of

layer-dependent status from the various layer management entities, and

similarly setting the value of layer-specific parameters. The DME typically

performs such functions on behalf of the general system management

entities and implements standard management protocols. Figure 3.3 depicts

the relationship among the management entities. The various entities

within this model interact in various ways. Certain of these interactions are

defined explicitly within the standard, via a service access point (SAP)

across which defined primitives are exchanged. Other interactions are not

defined explicitly within this standard, such as the interface between the

MAC and the MLME or the interface between the PHY and the PLME.

The specific manner in which these MAC and PHY interfaces are

integrated into the overall MAC and PHY layers are not specified within

this standard. In the thesis, we focus on the implementation of the

MAC/MLME layer. In the next subsection, we will analyze and present

MAC/MLME functions.

3.3 MAC functions

3.3.1 Overview

 25

Channel

setup

RXTX

dispatch

Send and Wait

en
d

ACK

defragmen
tation

CTA
control

retransmis
sion

fragmenta
tion

CAP
control

retransmis
sion

Command
buffer

Stream
output
buffer

Stream
input
buffer

Traffic
generator

request

Beacon
decoder

Command
buffer

CCA

Superfram
e control

Beacon
generator

CTA
managem

ent

Informatio
n element

buffer

request

Figure 3.4 MAC functional stack

 26

In this thesis, we apply our platform to the development of MAC/MLME

layer in IEEE 802.15.3 specification. In the first place, we analyze the

MAC/MLME protocol and partitioned it into the function stack as shown

in Figure 3.4. As Figure 3.4 shows, the output control mechanism in

MAC/MLME can be partition into blocks: output buffer, fragmentation,

retransmission, timing control, acknowledge control, and physical layer

interface. When the MAC layer receives a data transmission request from

its upper layer, the data will be put into the output buffer, the request time

will be recorded at the same time. The output buffer controller will transmit

the data in the front of the output buffer sequentially and setup a

transmission timeout timer which is depend on the request time and delay

bound. The fragmentation control block will fragmentize the data into

slices immediately, when it receive a data from the output buffer. The sizes

of each slice are depended on the device’s system parameter and the data

size. The block following the fragmentation control block is the

retransmission control block. When receiving a request, the retransmission

control block will pass it to its lower layer and start to wait for a result

confirm. If the lower layer confirm with a successful result, the

retransmission control block will confirm the fragmentation control block

with a success result. If the lower layer confirms that the transmission is

failed, the retransmission control block will make the decision to drop the

frame and confirm with false or retransmit and increase the retransmission

counter. The followed block is CTA timing control, the block is used to

make sure that the data transmission is in its CTA time slot. The block will

estimate the total processing time of the data and determinate whether the

 27

data will be transmitted immediately or wait for next CTA time slot.

Send-and-Wait is an acknowledge control block. When a transmission is

finished, it will switch the physical layer to a receive mode, starting to wait

for an ACK from the destination device, and setup a timeout timer. The

input control mechanism in MAC/MLME can be partitioned into blocks:

dispatch, acknowledgement and frame handler of every frame types. When

physical layer receives a frame, it will send an indication to the dispatch

block. After receiving an indication, the dispatch block will decode the

frame and send the frame to its corresponding block. For example, the data

frame will be send to the defragmentation block and trigger the ACK block

to return an ACK to the source device. The following subsection will

introduce some blocks.

3.3.2 Stream output buffer
The stream output buffer is used to serve the request from MAC’s upper

layer. When the MAC receives a data transmission request from its upper

layer, the data will be pushed into the output buffer which is based on

first-in-first-out queue, the request time will be recorded at the same time.

The output buffer controller will transmit the data in the front of the output

buffer and setup a transmission timeout timer which is depend on the

request time and delay bound. If the timeout timer reaches to zero before

the success of the transmission, the block will send a clear request to its

lower layer to drop the unfinished procedure of the data transmission,

popping the front data of the buffer and start to transmit the next data in the

buffer. On the contrary, if the lower layer confirms with a successful result

 28

before the timer reaches to zero, the output controller will stop the timer

and prepare to transmit next data in the buffer. Figure 3.5 shows the state

diagram of the stream output buffer.

so_wait_
cfm

fg_status

so_req

fg_request

Idle:call

call

so_transmit

call

call

wake up

so_finish

fg_cfm

so_cfm

trigger

result

so_wait_
timeout

wake up

make

trigger

call

So_clr

fg_clr

so_timeout

call

so_clear

call

result:fail

Figure 3.5 stream output buffer function block’s state diagram

3.3.3 CTA Timing Control
The CTA Timing Control function block is used to make sure that the

data transmission is in CTA time slot in the superframe. There are two

 29

entries can be used to trigger the mechanism. The first is the transmission

request from the upper layer. When it receives a request, it will estimate

total processing time of the data’s transmission and determine whether the

data will be transmitted or suspended. The second is the CTA timeslot start

indication. When the CTA timeslot start indication is received, the CTA

timing controller will check whether there is a data being suspended or not.

If there is data that was been suspended, it will resume the data

transmission.

sw_status

tc_req

tc_request

Idle: call

call

tc_cfm

tc_cfm

call

make

call

tc_clr

tc_clr

cta_stat

time_enough

Yes: call

tc_transmit

tc_wait_
cfm

wake up

re_finish

trigger

No: wake up
tc_wait_

cta

make

trigger

call

tc_clear

call

tc_wait_
sw

busy: call

make

trigger

Figure 3.6 CTA timing control function block’s state diagram

 30

3.3.4 Send and Wait
In IEEE802.15.3 Specification, if the source device wishes to verify the

delivery of a frame, then the acknowledgement policy is used. The

immediate-ACK policy provides an ACK process in which each frame is

individually ACKed following the reception of the frame. If the source

device does not receive the requested ACK, then it has the option of

retransmitting the frame or dropping the frame. The Send and Wait

controller block is a acknowledge control block used to handle the above

process. When a transmission is finished, it will switch the physical layer

to receive mode, start to wait an ACK from the destination device, and

setup a time exceeded timer. If the requested ACK is received before the

timer reach zero, it will confirm with success transmission result.

Otherwise, it will confirm its upper layer with transmission failed result

and let its upper layer to make the decision to retransmit or drop the frame.

 31

Figure 3.7 Send and Wait function block’s state diagram

3.3.5 CAP Timing Control
The basic medium access mechanism during the CAP is carrier sense

multiple access with collision avoidance (CSMA/CA). To minimize

collisions, a transmitting DEV is required to first sense whether the

medium is idle for a random length of time. Only if the medium is idle

after that time shall the DEV start its transmission. This process of waiting

before transmission is termed “backoff.” The backoff count is random

selected from range (0,BW), where BW means backoff window, which is a

table has values [7, 15, 31, 63]. For the first transmission attempt of a

frame, the BW value is set to the minimum number 7. If collision occurs,

 32

the BW value should be increased to the next larger value until the

maximum value 63. The DEV shall maintain a counter for backoff count

which is decremented only when the medium is idle. Whenever the channel

is busy, the backoff counter shall be suspended. The channel shall be

determined to be idle for the duration of a BIFS period before the backoff

slot countdown is resumed. When the backoff counter reaches zero, the

DEV may transmit a frame.

 33

Back-
off

counter

CCA
status

Wait for
Starting

Back-
off

request CAP
start

Wait for
CAP start

Wait for
counter

equal zeroWait for
channel

busy

Setup

Wait for
Channel

idle

wake up

start

make

trigger

wake up
wake up

mutual

make

Check
channel
statuswake up

trigger

suspend

trigger

Read
profile

trigger

stop
transmittrigger

setup

make

make

Wait for
CAP end

make

CAP
end

make

trigger

frame
wake up

wake up

Suspend
all

trigger

wake up

Figure 3.8 CAP timing control function block’s state diagram

 34

3.4 ARMulator

3.4.1 A Instruction Set Simulator for ARM
The ARMulator is a family of programs which emulate the instruction

sets of various ARM processors and their supporting architectures.

The ARMulator:

· provides an environment for the development of ARM-targeted

software on a range of non-ARM-based host systems

· allows accurate benchmarking of ARM-targeted software (though its

performance is somewhat slow compared to real hardware)

· supports the simulation of prototype ARM-based systems, ahead of

the availability of real hardware, so that software and hardware

development can proceed in parallel.

The ARMulator is transparently connected to the ARM debuggers to

provide a hardwareindependent ARM software development environment.

Communication takes place via the Remote Debug Interface (RDI).

The ARMulator comprises several parts:

· A model of the ARM processor core and cache (if used)

· A base memory model (armflat) incorporating address decoding. This

causes the relevant peripheral model to be accessed when memory

within its registered range is addressed.

· Peripheral models that communicate with the base memory model

and may be enabled or disabled via configuration files.

· An operating system interface to provide an execution environment.

By modifying or rewriting the supplied models, you can model almost

 35

any ARM system and use it to debug code. The following diagram

illustrates this structure1.

Figure 3.9 ARMulator structure

3.4.2 Modeling in ARMulator
ARMulator supports IP designers to design their IP’s hardware model

for simulation. A new device can be designed with C/C++ language using

certain predefined functions interface for the hardware modeling with

ARMulator. The designs are built as dynamic link libraries (DLLs). By

adding IP’s hardware model’s DLL and modifying corresponding

component description parameters, the hardware model can be included

into the simulation.

An ARMulator hardware model must include ARMulator basic model

interface.

 36

A basic model interface includes three parts:

1. Data structure declaration

2. Initialization

3. Finalization

Data Structure Declaration:

Data structure is declared using BEGIN_STATE_DECL() and

END_STATE_DECL() macros. Private data structure is declared as

follow.

These macros declare a data structure:

This data structure includes your private data you put between the macros

and the following predefined data fields:

Initialization

We use BEGIN_INIT() and END_INIT() macros to delineate the

initialization functions of the model. In the initialization function, your

BEGIN_STATE_DECL(YourModel)

/*

* your private data here

*/

END_STATE_DECL(YourModel)

Typedef struct YourModelState

Toolconf config

Const struct RDI_HostInterface *hostif

RDI_ModuleDesc coredesc
RDI_ModuleDesc agentdesc

 37

model

must initialize any private variable and install any callback. Two variables

are provided in the initialization:

 Bool coldboot

TRUE if ARMulator is initializing, FALSE if a new image is being

downloaded from the debugger.

YourModelState *state

A pointer points to the private state data structure. Memory for this is

allocated and declared by the initialization macro, and the predefined data

fields are initialized.

Finalization

We use BEGIN_EXIT() and END_EXIT() macros delineate the

finalization function for the model. The finalization function is called when

ARMulator is closing down. The following local variable is provided in the

finalization function:

Your model must un-install any callbacks in the finalization function. The

END_EXIT() macro frees memory allocated for state.

3.5 Link ARMulator with the system
simulation

To link ARMulator with our simulation platform, there are three key

functions supported by ARMulator are used: TICRegisterAccess,

ARMulif_SetSignal, ARMulif_ScheduleNewTimedCallback. All data

transmission between ARM core and hardware model are through memory

YourModelState *state

 38

map registers. The function TICRegisterAccess is used to deal with the

memory access in the hardware model. When the software running in the

ARM core needs to pass a message to the hardware model, it call

TICRegisterAccess directly with parameters that are used for writing.

When the hardware model needs to pass a message to the software part, it

trigger an interrupt of ARMulator, and ARMulator will call

TICRegisterAccess with parameters that are used for reading mode to read

the message. The ARMulif_SetSignal is the function used to trigger an

interrupt to the ARMulator. ARMulif_ScheduleNewTimedCallback is the

function used to synchronize the ARMulator and our hardware model as

described in subsection 3.6. Figure 3.11 is a running snap show of UWB

MAC running on the platform.

Figure 3.10 co working chart

 39

Figure 3.11 a running snap show

 40

Chapter 4 Conclusion and Future
Works

The beginning of this paper brings up that hardware modeling is an

important part of hardware/software co-design process in the SoC design

trend. Especially for MAC designs, which are highly coupled with other

devices, a platform based on combined multi-device environment and

hardware models is needed and developed. The platform can be partitioned

into five main components: Event Queue, Virtual Devices, Channel

Controller, Instruction Set Simulator, and ISS Shell. The descriptions of

each component and the design strategies are also provided in this thesis.

Combining multi-device environment simulation and hardware modeling,

the platforms provides a hardware model interacting with other parallel

virtual devices. During software development process, designer could use

the platform to do performance prediction and functional verification.

According to the extension of the system-level simulation, the platform

could also verify algorithms at the protocol level by the system-level

simulation. In this thesis, the established simulation platform has been

applied to UWB MAC designs as a example.

The future work is to enhance the platform’s capability and spans its

applications. The possible work will include the employing of SystemC

library to enhance hardware modeling capability, to develop a program

translator to generate software codes automatically and to create a friendly

graphic interface of the platform.

 41

Reference
[1] M. Keating and P. Bricaudr, Reuse Methodology Manual for

System-On-A-Chip Designs, Kluwer Academic Publishers, 2002

[2] Silbermintz, M.; Sahar, A.; Peled, L.; Anschel, M.; Watralov, E.; Miller,

H.; Weisberger, E.; ”SOC modeling methodology for architectural

exploration and software development”, ICECS, pp. 383-386, 2004

[3] Fummi, F.; Martini, S.; Perbellini, G.; Poncino, M.; “Native

ISS-SystemC integration for the co-simulation of multi-processor SoC”

Design, Automation and Test in Europe Conference and Exhibition, pp.

564-569, 2004

[4] Luca Formaggio; Franco Fummi; Graziano Pravadelli;”A

timing-accurate HW/SW co-simulation of an ISS with SystemC”

IEEE/ACM/IFIP international conference, pp. 152-157, 2004

[5] Agrawal, A.; Ledeczi, A.;”Multigranular simulation of heterogeneous

embedded systems”, Engineering of Computer-Based Systems, pp.

3-10, 2003

[6] Hoffmann, A.; Kogel, T.; Meyr, H.;”A framework for fast

hardware-software co-simulation”, Design, Automation and Test in

Europe, pp. 760-764, 2001

[7] Andrei Alexandrescu, Modern C++ Design, Addison-Wesley, 2001

[8] Xiao, Z.; Randhawa, T.S.; Hardy, R.H.S.;”A State-Machine Based

Design of adaptive Wireless MAC Layer”, Vehicular Technology

Conference, pp. 2837-2841 vol.4 2003

[9] ARM Limited, “ARM Developer Suite – Debug Target Guide, Version

1.2”

 42

[10] Oussorov, I.; Raab, W.; Hachmann, U.; Kravtsov, A.; “Integration of

Instruction Set Simulators into SystemC High Level Models”, Digital

System Design, pp. 126-129, 2002

[11] IEEE Standard for Information technology Telecommunications and

information exchange between systems Local and metropolitan area

networks Specific requirements Part 15.3: Wireless Medium Access

Control (MAC) and Physical Layer (PHY) Specifications for High Rate

Wireless Personal Area Networks (WPANs).

[12] ARM Application Note 32: The ARMulator [DAI0032E]

[13] ARM Debug Target Guide [DUI0058D]

[14] DaYu, Chiu; YuChen, Sun; ChingYao, Huang;, “A Modeling and

Verification Platform for Communication SoC designs”, VLSI/CAD

Design 2005.

 43

簡歷

邱大瑜，1981 年 1 月 27 日生於台灣台中縣。畢業於，台中第一高級中

學，交通大學電子工程學系，交通大學電子所。

