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摘要 

 

在這篇論文中，我們介紹了一個結合了硬體模擬和通訊系統模擬的

模擬驗證平台。在系統晶片設計流程中，硬體模擬是一個非常重要的

步驟。而通訊系統模擬則是通訊系統研究中不可或缺的工作。這篇論

文提出了一個結合了多項功能的平台，包含了硬體模擬，通訊系統模

擬，以及軟體發展驗證。對於通訊元件的設計實現，這個將可平台提

供一個方便的環境。在論文中，將會對這個平台的各個重要元件的設

計理念及工作方法做詳細的描述。



Abstract 
This thesis introduces a development and verification platform that 

combines hardware modeling and communication system simulation. The 

hardware modeling is an important technology in SoC design process, and 

system simulation is an essential process in communication system designs. 

This proposed platform enables the use of a single platform for 

multiple-purpose designs for communication system designs, including 

system simulation, software development and hardware modeling. The 

platform is especially useful for the designs of communication components 

whose behaviors are highly coupled with transmission medium and other 

parallel components. The basic platform components and design strategies 

are also described in this thesis. 
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Chapter 1   Introduction 
1.1 SoC Design process  

The increasing technological complexity coupled with requests for high 

performance and time-to-market requires for new design methodologies 

and tools for System-on-Chip (SoC) products. To meet performance 

requirements and to achieve shorter development cycles, the IC design 

development process will be different from the traditional ASIC 

development process. As shown in Figure 1.1, IC designs have been 

extended from the traditional sequential development process to parallel 

development process. Usually, SoC design starts from a high abstraction 

specification which consist mainly one or a few functional subsystems. The 

next step is to create the system simulation and then explore the internal 

relationship among subsystems. The hardware/software partition is made 

followed by an architecture and interface definition. Implementing the 

hardware with hardware description language and transferring software to 

executable codes are the next step. Finally, the last step is to integrate all 

components into one system. 
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Figure 1.1 parallel design process 
 

1.2 Hardware Modeling 
The major difference between traditional and modern design processes is 

that the goal of modern process is to enable parallel software and hardware 

development. In order to finish software development and verification prior 

to the hardware can be completed, a hardware model becomes essential. 

Figure 1.2 shows that the hardware design team provides hardware models 

for software development and software design team generates test patterns 

for hardware verification. In decade, hardware modeling technologies have 

been investigated widely. For general functions running on processor, most 
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researches, such as [3-4] are focus on instruction set simulators. For a 

dedicated functional hardware, there are also lots publications, such as [2] 

wants to enable the use of a single model for multiple proposes throughout 

a design process, [3] presents two co-simulation methodologies models, [4] 

focuses on the timing information of models, [5] addresses the expanding 

of the software design cycle to the integrated hardware modeling and 

simulation, and [6] presents a fast prototyping method for software and 

hardware designs. 

SW HW

SW development HW design

Provide model

Test pattern

integrate

 

Figure 1.2 parallel software and hardware development 

 

1.3 Communication SoC Design 
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Figure 1.3 Communication device design 
 

For communication SoC designs, the previous studies are not enough. 

Above hardware modeling studies concentrate on how to model the 

hardware that can not be implemented, but the hardware modeling 

technologies are not suitable for a communication system. Because the 

main functions of the communication hardware are for exchanging 

messages and maintaining the connection with other devices, their 

behaviors are highly coupled with not only the hardware itself but also 

connection channels and other devices. It is very different from the 

conventional hardware which is only used for data processing and provides 

service for the processor or other master components. If we just model the 

hardware itself, it is impossible to be used to verify the software. Figure 1.3 

shows that communication device’s behaviors are coupled with not only 

the physical layer itself but also the medium and other devices. Taking 

wireless medium access control (MAC) as the example, most functions are 

used to control the access of the shared medium by defining rules for 

multi-device communication with orderly manner. Therefore, such 
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functions can only be verified in multi-device environment. As a result, in 

conventional design process, verification of communication functions can 

only be started at the late of the design flow. To solve this problem, we 

propose a simulation platform including hardware modeling. The modeling 

platform includes a multi-device communication environment in the 

hardware model. Such that, the model can emulate the behavior of 

communication devices under shared channels and will interact with other 

parallel components. This will provide the benefit of moving the functional 

verification to an early design cycle. Before the hardware can be completed, 

co-simulating with the hardware model, all communication functions could 

then be verified, such as the channel access, channel time management, and 

so on. 

 

1.4 Motivation 
Hardware modeling is an important issue in SoC design process, and 

system simulation is an essential process in communication system designs. 

For communication SoC designs, a platform combined these utilities is 

especially important. As result, a development and verification platform is 

created to enables the use of a single platform for multiple-purpose 

communication system designs, including system simulation, software 

development, and hardware modeling. 

 

1.5 Organization 
This paper is organized as follows: This chapter, we present the 

hardware modeling in parallel design process and finger out its drawback 
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for communication soc design. In chapter 2, the simulation and modeling 

platform and the design methodologies of each component are presented. 

Chapter 3 shows a case example for the proposed design approach. 

Conclusion and possible future works are discussed in chapter 4. 
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Chapter 2   Platform Design 
Methodology 

 

2.1 Overview 
Figure 2.1 shows the key components and their connections of the 

proposed simulation and modeling platform. The platform is basically 

composed of five components: Event Queue, Virtual Devices, Channel 

Controller, Instruction Set Simulator, and ISS shell. The first three items 

construct the system simulator. With these components, the system 

simulation platform can be used to develop new control protocols. The last 

two items are key components which perform instruction level simulation 

and hardware modeling. The following subsections will present each 

component’s design methodology. 
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Figure 2.1 the platform architecture 
 

 

2.2 Event Queue 
In an effort of performing the multi-device simulation, the most 

important features that should be handled are the parallel execution and 
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timing synchronization. Figure 2.2 shows the parallel execution problem: 

all tasks in devices execute parallel, there will be more than two tasks 

executing at the same time, and they may be interact with each other. 

Whether a task will be triggered may be depended on the other device 

which is parallel executed. By intuition, the multi-tasking execution 

controls capability provided by the operation system might be useful to 

provide parallel execution, such as, multithreading, processes, or pipes. 

Taking the advantage of endowing each device with an individual task, we 

can perform parallel execution naturally. 

Device 1 Device 2

A

D

B

C

timeout
trigger

Device n

E

G

F

 

Figure 2.2 parallel execution problem 

 

Nevertheless, when we run into the second issue: timing synchronization, 

the multi-task application will make this problem more difficult to solve 
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efficiently. As shown in Figure 2.3, in a simulation, there will be many race 

conditions, and different order of events will cause different simulation 

result. In order to ensure the accuracy of the simulation, it is necessary to 

make all devices have the same timing. Because of this, the platform must 

insert a large amount of synchronization points on every task. It leads to a 

large leakage of simulation time in context switch and busy waiting.  

 

Device 1 Device 2

A

D

B

C

timeout
trigger

tim
e

 

Figure 2.3 timing synchronization problem 

 

For the purpose of handling parallel execution and timing 

synchronization efficiently, the approach of separating the invocation and 

execution of events is adopted to gather all execution of functions and 

timer interrupts from different devices, and then form a central event queue. 
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The queue is a priority queue based on execution delay. Items in the queue 

are constructed by an execution delay and a reference of function 

invocation. When a device executes a function, it packages the estimated 

execution delay and the invocation of the function instead of really 

executing, and then pushes it to the event queue. The working flow of an 

event queue is illustrated in Figure 2.4, where the event queue is reduced 

when system runs and time escapes. 

 

 

Figure 2.4 event queue working flow 

 

2.3 Virtual Devices 
Virtual Devices are the key role of the system simulation. It can be 
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divided into three modules. The first module is the connection of the upper 

layer. Since the target is communication functionalities, we create a traffic 

feeder in stead of real applications. The feeder reads traffic files and feeds 

them into devices. The second module is the implementation of protocol 

functionalities. In the communication protocol specification, functionalities 

are always written in natural language and some of them are illustrated 

with message sequence charts, as a result, they are plagued by ambiguities 

and incompleteness and are always difficult to create executable codes. 

Realizing the problems, we adopt a two-step solution, shown in Figure 2.5, 

where a medium is introduced between specification and executable codes. 

 

 
 

Figure 2.5 a two-step solution for code generation 

 

The medium defines an Extended Finite State Machine Specification and 

its description guidelines. Figure 2.6 shows an Extended Finite State 

Machine example. The Extended Finite State Machine haves five state 
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types: input state, output state, waiting state, decision state, and procedure 

state. The input states are services for upper or lower layers. The output 

states are links to adjacent states. The waiting states are used for 

conditional execution. The decision states change the execution’s direction. 

The procedure states trigger data process. By transforming the specification 

into State Machine, we can overcome problems caused by ambiguities, 

replenish lack of specification, and even repair errors. After State Machines 

are finished, we just need to follow a regular rule and translate the State 

Machine to executable codes. In the future, the translation can be 

automatically done by a code generator. This further reduces the software 

development time. The third module of virtual devices is the interface to 

lower layers. It depends on a specific communication system and its 

hardware/software interface. The third module also includes a hardware 

model of lower protocol stacks. 
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Figure 2.6 an Extended Finite State Machine example 

 

2.4 Channel Controller 
In the simulation platform, if a device wants to send a message to the 

other one, it should pass it through a channel controller. The channel 

controller simulates the channel condition which devices will use to 

exchange messages. The channel controller simulates the collision, channel 

noise, and hidden node effect, and so on. Figure 2.7 shows a basic collision 

control in channel controller, it use a channel loading counter to record the 
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number of device whose transmitter are active, and use the counter to 

determine whether the frame will be passed to devices whose receiver is 

active or not. With different communication systems and channel 

characteristics, the simulated channel controller will be also different. 

 

 

Figure 2.7 collision control in channel controller 

 

2.5 Instruction Set Simulator 
Instruction Set Simulators are software environments which can read 

microprocessor instructions and simulate their executions. Most of these 

tools can provide simulations results like values in memory and registers, 

as well as timing information (e.g. clock cycle statistics). Thus, instruction 

set simulator provides an environment for software development on 

targeted microprocessor, and allows cycle-accurate benchmarking and 

validation of targeted software. Depending on the target microprocessor, 

the instruction set simulator in the platform will be different. The proposed 

platform can link to many existing instruction set simulator provided by the 

microprocessor’s vendor. In order to be used in the platform, the instruction 
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set simulator should support the following functionalities:  

1. exchanging data with outer environment. 

2. stop and hold, when writing out a data.  

3. resuming after stopped.  

4. stop after certain cycles prescheduled.  

5. changing internal signals, when stopped. If the emulation board with 

real microprocessor supports these functionalities, then it can be 

used in our proposed platform. 

 

2.6 ISS Shell 
ISS shell is the component which carries out hardware modeling and 

connects the Instruction Set Simulator to simulation platform. It is 

responsible for modeling the hardware parts, keeping timing 

synchronization, and exchanging data between the system and the 

Instruction Set Simulator. Data exchanging and synchronization flow are 

shown in Figure 2.8.  

Running example: 

1. Event queue controller reads next event, and then set a break point on 

the instruction set simulator based on the time delay of next event. 

2. ISS runs and requests for sending data to ISS shell. Then it causes an 

active break.  

3. The event queue controller updates the system timing and then ISS shell 

passes the data to channel controller. 

4. System makes the action and the event queue is updated. Base on the 

action, the break point is rescheduled. 
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5. ISS runs and is trapped into a break point. If the channel controller is 

going to send data to ISS, it passes the data to ISS through ISS shell. 

After above actions, return to step 1 and then repeat the above 

procedure. 

 

 

 

Figure 2.8 data exchanging and synchronization flow 
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Chapter 3   A Case Example: UWB 

MAC 
 

3.1 Overview 
The IEEE 802.15.3 wireless standard is a candidate of wireless personal 

area networks and aim to achieve fast connection time, Ad hoc networks, 

Data transport with QoS, dynamic membership and efficient data transfer. 

Wireless personal area networks (WPANs) are used to convey information 

over relatively short distances among a relatively few participants. Unlike 

wireless local area networks (WLANs), connections effected via WPANs 

involve little or no infrastructure. This allows small, power efficient, 

inexpensive solutions to be implemented for a wide range of devices. 

Because of this, its MAC design is of great importance and full of 

challenge. So, we employ our platform to help its MAC research and 

design. First, we use our platform for MAC superframe formation and 

channel time management research. Since the device-orient simulation and 

effort for efficiency, the simulation is more accurate and even ten times 

faster than the old simulator we used. Second, we apply our modeling 

platform to assist partition definition and support MAC software 

development before hardware is finished. 

 

3.2 IEEE 802.15.3 MAC Protocol 
 



 19

3.2.1  The 802.15.3 piconet and its components 
802.15.3 is based on a centralized and connection-oriented ad-hoc 

networking topology. This wireless ad hoc data communications system 

which allows a number of independent data devices (DEVs) to 

communicate with each other is called piconet. A piconet is distinguished 

from other types of data networks because communications are normally 

confined to a small area around person or object that typically covers at 

least 10m in all directions and envelops the person or a thing whether 

stationary or in motion. This is in contrast to local area network (LAN), 

metropolitan area network (MAN), and wide area network (WAN), each of 

which covers a successively larger geographic area, such as a single 

building or a campus or that would interconnect facilities in different parts 

of a country or of the world. 

An 802.15.3 piconet consists of several components, as shown in 

Figure 3.1. The basic component is the DEV. One DEV is required to 

assume the role of the piconet coordinator of the piconet (PNC). The PNC 

provides the basic timing for the piconet with the beacon. Additionally, the 

PNC manages the quality of service requirements, power save modes and 

access control to the piconet. 
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Figure 3.1 the IEEE 802.15.3 piconet 

 

The 802.15.3 standard allows a DEV to request the formation of a 

subsidiary piconet. The original piconet is referred to as the parent piconet. 

The subsidiary piconet is referred to as either a child or neighbor piconet, 

depending on the method the DEV used to associate with the parent PNC. 

Child and neighbor piconets are also referred to as dependent piconets 

since they rely on the parent PNC to allocate channel time for the operation 

of the dependent piconet. An independent piconet is a piconet that does not 

have any dependent piconets. 
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3.2.2  The 802.15.3 Superframe Structure 
Timing in the 802.15.3 piconet is based on the superframe, which is 

illustrated in Figure 3.2. The superframe is composed of three parts: 

— The beacon, which is used to set the timing allocations and to 

communicate management information for the piconet.  

— The contention access period (CAP), which is used to communicate 

commands and/or asynchronous data if it is present in the 

superframe. 

— The channel time allocation period (CTAP), which is composed of 

channel time allocations (CTAs), including management CTAs 

(MCTAs). CTAs are used for commands, isochronous streams and 

asynchronous data connections. 

 

 

Figure 3.2 superframe structure 

 

The length of the CAP is determined by the PNC and communicated to 

the DEVs in the piconet via the beacon. The basic medium access 

mechanism during the CAP is carrier sense multiple access with collision 

avoidance (CSMA/CA). To minimize collisions, a transmitting DEV is 
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required to first sense whether the medium is idle for a random length of 

time, called “backoff interframe space” (BIFS). Only if the medium is idle 

after that time shall the DEV start its transmission. This process of waiting 

before transmission is termed “backoff.” The backoff count is random 

selected from range (0,BW), where BW means backoff window, which is a 

table has values [7, 15, 31, 63]. For the first transmission attempt of a 

frame, the BW value is set to the minimum number 7. If collision occurs, 

the BW value should be increased to the next larger value until the 

maximum value 63. The DEV shall maintain a counter for backoff count 

which is decremented only when the medium is idle. Whenever the channel 

is busy, the backoff counter shall be suspended. The channel shall be 

determined to be idle for the duration of a BIFS period before the backoff 

slot countdown is resumed. When the backoff counter reaches zero, the 

DEV may transmit a frame. 

 

On the other hand, channel access in the CTAP is based on a TDMA 

method. The PNC divides the CTAP into channel time allocations (CTAs). 

A DEV that is given a directed CTA is guaranteed that no other DEVs will 

compete for the channel during the indicated time duration of the CTA. A 

DEV with a CTA may or may not make use of all the allocated time 

duration within the CTA. The selection of a stream, command or 

asynchronous data for transmission during a CTA is determined locally by 

the DEV depending on the number of pending frames and their priorities. 

All CTAs have guaranteed start time and duration. The guaranteed start 

times enable both power saving and good QoS characteristics. All the 

CTAs for the current superframe are broadcast in the beacon. 
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3.2.3  Layer management 
Both MAC and PHY layers conceptually include management entities, 

called the MAC sublayer management entity and PHY layer management 

entity (MLME and PLME, respectively). These entities provide the layer 

management service interfaces for the layer management functions. 

 

 

Figure 3.3 The reference model used in IEEE 802.15.3 standard 

 

In order to provide correct MAC operation, a device management entity 

(DME) should be present within each DEV. The DME is a 

layer-independent entity that may be viewed as residing in a separate 

management plane or as residing “off to the side.” The exact functionality 

of the DME is not specified in this standard, but in general this entity may 
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be viewed as being responsible for such functions as the gathering of 

layer-dependent status from the various layer management entities, and 

similarly setting the value of layer-specific parameters. The DME typically 

performs such functions on behalf of the general system management 

entities and implements standard management protocols. Figure 3.3 depicts 

the relationship among the management entities.  The various entities 

within this model interact in various ways. Certain of these interactions are 

defined explicitly within the standard, via a service access point (SAP) 

across which defined primitives are exchanged. Other interactions are not 

defined explicitly within this standard, such as the interface between the 

MAC and the MLME or the interface between the PHY and the PLME. 

The specific manner in which these MAC and PHY interfaces are 

integrated into the overall MAC and PHY layers are not specified within 

this standard. In the thesis, we focus on the implementation of the 

MAC/MLME layer. In the next subsection, we will analyze and present 

MAC/MLME functions. 

 

3.3 MAC functions 
 

3.3.1  Overview 
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Figure 3.4 MAC functional stack 
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In this thesis, we apply our platform to the development of MAC/MLME 

layer in IEEE 802.15.3 specification. In the first place, we analyze the 

MAC/MLME protocol and partitioned it into the function stack as shown 

in Figure 3.4. As Figure 3.4 shows, the output control mechanism in 

MAC/MLME can be partition into blocks: output buffer, fragmentation, 

retransmission, timing control, acknowledge control, and physical layer 

interface. When the MAC layer receives a data transmission request from 

its upper layer, the data will be put into the output buffer, the request time 

will be recorded at the same time. The output buffer controller will transmit 

the data in the front of the output buffer sequentially and setup a 

transmission timeout timer which is depend on the request time and delay 

bound. The fragmentation control block will fragmentize the data into 

slices immediately, when it receive a data from the output buffer. The sizes 

of each slice are depended on the device’s system parameter and the data 

size. The block following the fragmentation control block is the 

retransmission control block. When receiving a request, the retransmission 

control block will pass it to its lower layer and start to wait for a result 

confirm. If the lower layer confirm with a successful result, the 

retransmission control block will confirm the fragmentation control block 

with a success result. If the lower layer confirms that the transmission is 

failed, the retransmission control block will make the decision to drop the 

frame and confirm with false or retransmit and increase the retransmission 

counter. The followed block is CTA timing control, the block is used to 

make sure that the data transmission is in its CTA time slot. The block will 

estimate the total processing time of the data and determinate whether the 
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data will be transmitted immediately or wait for next CTA time slot. 

Send-and-Wait is an acknowledge control block. When a transmission is 

finished, it will switch the physical layer to a receive mode, starting to wait 

for an ACK from the destination device, and setup a timeout timer. The 

input control mechanism in MAC/MLME can be partitioned into blocks: 

dispatch, acknowledgement and frame handler of every frame types. When 

physical layer receives a frame, it will send an indication to the dispatch 

block. After receiving an indication, the dispatch block will decode the 

frame and send the frame to its corresponding block. For example, the data 

frame will be send to the defragmentation block and trigger the ACK block 

to return an ACK to the source device. The following subsection will 

introduce some blocks. 

 

3.3.2  Stream output buffer 
The stream output buffer is used to serve the request from MAC’s upper 

layer. When the MAC receives a data transmission request from its upper 

layer, the data will be pushed into the output buffer which is based on 

first-in-first-out queue, the request time will be recorded at the same time. 

The output buffer controller will transmit the data in the front of the output 

buffer and setup a transmission timeout timer which is depend on the 

request time and delay bound. If the timeout timer reaches to zero before 

the success of the transmission, the block will send a clear request to its 

lower layer to drop the unfinished procedure of the data transmission, 

popping the front data of the buffer and start to transmit the next data in the 

buffer. On the contrary, if the lower layer confirms with a successful result 
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before the timer reaches to zero, the output controller will stop the timer 

and prepare to transmit next data in the buffer. Figure 3.5 shows the state 

diagram of the stream output buffer. 
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Figure 3.5 stream output buffer function block’s state diagram 

 

3.3.3  CTA Timing Control 
The CTA Timing Control function block is used to make sure that the 

data transmission is in CTA time slot in the superframe. There are two 
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entries can be used to trigger the mechanism. The first is the transmission 

request from the upper layer. When it receives a request, it will estimate 

total processing time of the data’s transmission and determine whether the 

data will be transmitted or suspended. The second is the CTA timeslot start 

indication. When the CTA timeslot start indication is received, the CTA 

timing controller will check whether there is a data being suspended or not. 

If there is data that was been suspended, it will resume the data 

transmission. 
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Figure 3.6 CTA timing control function block’s state diagram 
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3.3.4  Send and Wait 
In IEEE802.15.3 Specification, if the source device wishes to verify the 

delivery of a frame, then the acknowledgement policy is used. The 

immediate-ACK policy provides an ACK process in which each frame is 

individually ACKed following the reception of the frame. If the source 

device does not receive the requested ACK, then it has the option of 

retransmitting the frame or dropping the frame. The Send and Wait 

controller block is a acknowledge control block used to handle the above 

process. When a transmission is finished, it will switch the physical layer 

to receive mode, start to wait an ACK from the destination device, and 

setup a time exceeded timer. If the requested ACK is received before the 

timer reach zero, it will confirm with success transmission result. 

Otherwise, it will confirm its upper layer with transmission failed result 

and let its upper layer to make the decision to retransmit or drop the frame. 
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Figure 3.7 Send and Wait function block’s state diagram 

 

3.3.5  CAP Timing Control 
The basic medium access mechanism during the CAP is carrier sense 

multiple access with collision avoidance (CSMA/CA). To minimize 

collisions, a transmitting DEV is required to first sense whether the 

medium is idle for a random length of time. Only if the medium is idle 

after that time shall the DEV start its transmission. This process of waiting 

before transmission is termed “backoff.” The backoff count is random 

selected from range (0,BW), where BW means backoff window, which is a 

table has values [7, 15, 31, 63]. For the first transmission attempt of a 

frame, the BW value is set to the minimum number 7. If collision occurs, 
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the BW value should be increased to the next larger value until the 

maximum value 63. The DEV shall maintain a counter for backoff count 

which is decremented only when the medium is idle. Whenever the channel 

is busy, the backoff counter shall be suspended. The channel shall be 

determined to be idle for the duration of a BIFS period before the backoff 

slot countdown is resumed. When the backoff counter reaches zero, the 

DEV may transmit a frame. 
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Figure 3.8 CAP timing control function block’s state diagram 
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3.4 ARMulator 
 

3.4.1  A Instruction Set Simulator for ARM 
The ARMulator is a family of programs which emulate the instruction 

sets of various ARM processors and their supporting architectures. 

The ARMulator: 

· provides an environment for the development of ARM-targeted 

software on a range of non-ARM-based host systems 

· allows accurate benchmarking of ARM-targeted software (though its 

performance is somewhat slow compared to real hardware) 

· supports the simulation of prototype ARM-based systems, ahead of 

the availability of real hardware, so that software and hardware 

development can proceed in parallel. 

The ARMulator is transparently connected to the ARM debuggers to 

provide a hardwareindependent ARM software development environment. 

Communication takes place via the Remote Debug Interface (RDI). 

The ARMulator comprises several parts: 

· A model of the ARM processor core and cache (if used) 

· A base memory model (armflat) incorporating address decoding. This 

causes the relevant peripheral model to be accessed when memory 

within its registered range is addressed. 

· Peripheral models that communicate with the base memory model 

and may be enabled or disabled via configuration files. 

· An operating system interface to provide an execution environment. 

By modifying or rewriting the supplied models, you can model almost 
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any ARM system and use it to debug code. The following diagram 

illustrates this structure1. 

 

 
 

Figure 3.9 ARMulator structure 

 

3.4.2  Modeling in ARMulator 
ARMulator supports IP designers to design their IP’s hardware model 

for simulation. A new device can be designed with C/C++ language using 

certain predefined functions interface for the hardware modeling with 

ARMulator. The designs are built as dynamic link libraries (DLLs). By 

adding IP’s hardware model’s DLL and modifying corresponding 

component description parameters, the hardware model can be included 

into the simulation. 

An ARMulator hardware model must include ARMulator basic model 

interface. 
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A basic model interface includes three parts: 

1. Data structure declaration 

2. Initialization 

3. Finalization 

Data Structure Declaration: 

Data structure is declared using BEGIN_STATE_DECL() and 

END_STATE_DECL() macros. Private data structure is declared as 

follow. 

 

These macros declare a data structure: 

 
This data structure includes your private data you put between the macros 

and the following predefined data fields: 

 

Initialization 

We use BEGIN_INIT() and END_INIT() macros to delineate the 

initialization functions of the model. In the initialization function, your 

BEGIN_STATE_DECL(YourModel) 

/* 

* your private data here 

*/ 

END_STATE_DECL(YourModel) 

Typedef struct YourModelState 

Toolconf config 

Const struct RDI_HostInterface *hostif 

RDI_ModuleDesc coredesc 
RDI_ModuleDesc agentdesc 
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model 

must initialize any private variable and install any callback. Two variables 

are provided in the initialization: 

 Bool coldboot 

TRUE if ARMulator is initializing, FALSE if a new image is being 

downloaded from the debugger. 

YourModelState *state 

A pointer points to the private state data structure. Memory for this is 

allocated and declared by the initialization macro, and the predefined data 

fields are initialized. 

Finalization 

We use BEGIN_EXIT() and END_EXIT() macros delineate the 

finalization function for the model. The finalization function is called when 

ARMulator is closing down. The following local variable is provided in the 

finalization function: 

 
Your model must un-install any callbacks in the finalization function. The 

END_EXIT() macro frees memory allocated for state. 

 

3.5 Link ARMulator with the system 
simulation 

To link ARMulator with our simulation platform, there are three key 

functions supported by ARMulator are used: TICRegisterAccess, 

ARMulif_SetSignal, ARMulif_ScheduleNewTimedCallback. All data 

transmission between ARM core and hardware model are through memory 

YourModelState *state 
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map registers. The function TICRegisterAccess is used to deal with the 

memory access in the hardware model. When the software running in the 

ARM core needs to pass a message to the hardware model, it call 

TICRegisterAccess directly with parameters that are used for writing. 

When the hardware model needs to pass a message to the software part, it 

trigger an interrupt of ARMulator, and ARMulator will call 

TICRegisterAccess with parameters that are used for reading mode to read 

the message. The ARMulif_SetSignal is the function used to trigger an 

interrupt to the ARMulator. ARMulif_ScheduleNewTimedCallback is the 

function used to synchronize the ARMulator and our hardware model as 

described in subsection 3.6. Figure 3.11 is a running snap show of UWB 

MAC running on the platform. 

 

 

Figure 3.10 co working chart 
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Figure 3.11 a running snap show 
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Chapter 4   Conclusion and Future 
Works 

The beginning of this paper brings up that hardware modeling is an 

important part of hardware/software co-design process in the SoC design 

trend. Especially for MAC designs, which are highly coupled with other 

devices, a platform based on combined multi-device environment and 

hardware models is needed and developed. The platform can be partitioned 

into five main components: Event Queue, Virtual Devices, Channel 

Controller, Instruction Set Simulator, and ISS Shell. The descriptions of 

each component and the design strategies are also provided in this thesis. 

Combining multi-device environment simulation and hardware modeling, 

the platforms provides a hardware model interacting with other parallel 

virtual devices. During software development process, designer could use 

the platform to do performance prediction and functional verification. 

According to the extension of the system-level simulation, the platform 

could also verify algorithms at the protocol level by the system-level 

simulation. In this thesis, the established simulation platform has been 

applied to UWB MAC designs as a example. 

The future work is to enhance the platform’s capability and spans its 

applications. The possible work will include the employing of SystemC 

library to enhance hardware modeling capability, to develop a program 

translator to generate software codes automatically and to create a friendly 

graphic interface of the platform. 
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