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Endophenotypes, which involve the same biological pathways as diseases but presumably are closer to the relevant gene
actions than diagnostic phenotypes, have emerged as an important concept in the genetic studies of complex diseases. In
this report, we develop a formal statistical methodology for validating endophenotypes. The proposed method was
motivated by the conditioning strategy used for surrogate endpoints commonly seen in clinical research. We define an
endophenotype to be ‘‘a trait for which a test of null hypothesis of no genetic heritability implies the corresponding null
hypothesis based on the phenotype of interest’’. An index, the proportion of heritability explained, is used as an operational
criterion of validation. Statistical inferences on this index are also developed. Usefulness of the proposed method is
demonstrated through computer simulations and a study of assessing the Continuous Performance Test as an
endophenotype of the schizophrenia spectrum. Genet. Epidemiol. 33:549–558, 2009. r 2009 Wiley-Liss, Inc.
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INTRODUCTION

Genetic studies based on phenotypes of diseases that do
not follow typical Mendelian inheritance patterns may not
be optimal [Gottesman and Gould, 2003]. These ‘‘com-
plex’’ diseases are influenced by multiple genes, environ-
mental factors, and their interactions on phenotypes.
Additionally, diagnosis of phenotypes is complicated by
the possibility of mild forms of disease, fluctuation of
clinical features of disease over time, and comorbidity
with other diseases [Almasy and Blangero 2001;
Gottesman and Gould, 2003]. As a result, the direct
relationship between the phenotype and the genotype is
disrupted. To facilitate the identification of influential
genes of complex diseases, the endophenotype approach
has been advocated. In the literature, synonyms of
endophenotypes such as intermediate phenotypes, biolo-
gical markers, and sub-clinical traits have been used
interchangeably with slightly different implications. Got-
tesman and Gould [2003] argued that putative endophe-
notypes should provide a means for identifying the
‘‘downstream’’ traits of clinical phenotypes, as well as
the ‘‘upstream’’ consequences of genes. Also see Pan et al.
[2006] that delineates ‘‘upstream intermediate pheno-
types’’ as the equivalent of endophenotypes with

examples related to several complex diseases. Hence,
endophenotypes are closer to underlying genes than
phenotypes in the course of disease’s natural history.
Endophenotype-based genetic analysis is more likely to
succeed than phenotype-based one in terms of search for
susceptibility genes; nevertheless, there are emerging
needs of systematic statistical methods for endopheno-
type-based analysis.

On the other hand, surrogate endpoints have been
frequently utilized in clinical research, when the primary
endpoint is costly or time-consuming to obtain. For
example, psychiatric disorders are often assessed by
applying standardized criteria to patients’ report of
symptoms [Eaton et al., 1989]. Biomarkers are used very
often as substitutes for observing new cases of cancer in
testing treatments for cancer prevention, where event rates
are low and a long time may be needed to obtain cancer
cases [Piantadosi, 1997]. Ultimately, one may demonstrate
the treatment effect on the primary endpoint if a treatment
effect is shown on the surrogate. A good deal of statistical
research in evaluation of surrogate endpoints has been
undertaken for about two decades. Prentice [1989]
presented a landmark definition of surrogate endpoints
and operational criteria for validating them. It has entailed
extensive discussion on stringency and verifiability of the
criteria; see Begg and Leung [2000], De Gruttola et al.
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[2001] and references therein. Freedman et al. [1992]
introduced ‘‘the proportion of treatment effect on the
primary endpoint explained’’ (PTE) by the surrogate to
supplement Prentice’s criteria.

Given that statistical methods for evaluation of surro-
gate endpoints in clinical studies have been relatively well
developed, it would be interesting to (i) examine,
conceptually, the similarities and distinctions between
surrogate endpoints and endophenotypes and (ii) discuss
how methods developed for the former may be utilized
and/or modified for the latter. In general, an endopheno-
type is downstream from genes and upstream from a
phenotype, and a surrogate is an upstream event to a
clinical endpoint as illustrated in Figure 1. Noticeably, the
causal pathway from an intervention to the primary
endpoint via surrogate endpoints in surrogate analysis
can be viewed as an analogy of the pathway from
genotypes to the phenotype via endophenotypes in the
endophenotype-based analysis. This article implements
this connection and develops a formal statistical metho-
dology for assessing the utility of endophenotypes. Our
proposed methodology is especially useful for the situa-
tion where the underlying genotype is unknown and
researchers use endophenotypes to increase opportunities
of finding susceptible disease genes, not to verify whether
specific genes are the cause of a disease.

MODELS

CURRENT CRITERIA FOR AN ENDOPHENO-
TYPE

Gottesman and Gould [2003] suggested the following
five criteria for identification of endophenotypes:

1. The endophenotype is heritable.
2. The endophenotype found in affected family members

is found in non-affected family members at a higher
rate than in the general population.

3. The endophenotype is associated with illness in the
population.

4. Within families, the endophenotype and illness co-
segregate.

5. The endophenotype is primarily state-independent
(manifests in an individual whether or not illness is
active).

Criteria 1 and 2 imply that there are genetic effects
underlying the endophenotype. Criteria 3 and 4 require
the endophenotype to be associated with the phenotype on

both population-and family-levels. These criteria suggest
that the common genetic effects among relatives may
cause this correlation. The reason for requiring criterion 5
is that relatives may be studied before the age of onset and
one would expect the endophenotype to be manifested in
the well relatives for correctly evaluating the relationship
between the endophenotype and the phenotype.

These criteria are straightforward and several research-
ers have proposed designs and analyses to evaluate these
criteria [Waldman, 2005]. However, in determining the
feasibility of candidate endophenotypes, few studies have
met all the criteria listed earlier [Gottesman and Gould,
2003]. Furthermore, they only ‘‘indirectly’’ imply that the
genetic effects underlying the endophenotype can also
affect the phenotype (criteria 3 and 4). It is important to
demonstrate that the endophenotype and the phenotype
share common causal genes because one does not expect
susceptibility genes detected through the endophenotype-
based analysis are only unique to the endophenotype. In
the following section, we first propose our definition of
endophenotypes, which directly addresses the concern of
‘‘common genes’’, and then provide an index for oper-
ationally evaluating the proposed definition.

STATISTICAL VALIDATION OF ENDOPHENO-
TYPES

Endophenotypes are useful for theorizing about clinical
phenotypes and can mark the path between the genotype
and the phenotype. Verification of existence of the path-
way from genotypes to phenotypes via endophenotypes is
the key of validating endophenotypes. Both the endophe-
notype and the surrogate endpoint lie in a biological
pathway, but with two important differences: (i) the
endophenotype is expected to be closer to the upstream
genotype to increase the chance of identifying it, while the
surrogate endpoint intends to substitute the downstream
primary endpoint, and (ii) when the purpose of the study
is to identify responsible genes for the phenotype, the
genotype information is usually unknown, whereas treat-
ment status in validating a surrogate endpoint is known.

Prentice [1989] defined a surrogate endpoint to be ‘‘a
response variable for which a test of null hypothesis of no
relationship to the treatment groups under comparison is
also a valid test of the corresponding null hypothesis
based on the true (clinical) endpoint’’. Prentice’s definition
can be written as

fðSjXÞ ¼ fðSÞ , fðTjXÞ ¼ fðTÞ;

where T denotes the status of a primary endpoint, S
denotes the status of a surrogate endpoint, X is the
treatment variable, f(S) is the distribution of S, and f(S|X)
is the conditional distribution of S given X [Prentice, 1989;
Buyse and Molenberghs, 1998].

By analogy, we define an endophenotype to be ‘‘a trait
for which a test of null hypothesis of no genetic heritability
implies the corresponding null hypothesis based on the
phenotype of interest’’. More specifically, suppose P is the
phenotype of interest, E is the selected endophenotype,
and G represents an underlying genetic structure that
fulfills specified assumptions in calculating heritability,
then the proposed definition is

fðEjGÞ ¼ fðEÞ ) fðPjGÞ ¼ fðPÞ: ð1Þ

Disease
occurs

Surrogate
endpoint

Clinical
endpoint

Treatment

Genotype Endophenotype

Phenotype

Time

Fig. 1. An endophenotype versus a surrogate endpoint in the

disease process.
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Furthermore, the endophenotype that fulfils (1) can share
parts of genes that underlie the phenotype P.

The proposed definition has two important features.
First, ‘‘imply’’ replaces the ‘‘if and only if’’ statement
in Prentice’s definition of surrogate endpoints. This
change places the endophenotype in higher upstream
of the pathway from the genotype to the phenotype,
instead of retaining the relationship between the
genotype and the endophenotype similar to that
between the genotype and the phenotype. Second, genetic
heritability is used as the measure of association
with an underlying genetic structure. Heritability repre-
sents the proportion of variability attributable to genetic
factors and can be obtained in a variance component
approach [Hopper, 2002]. This is a perfect fit to our
situation since it does not require knowledge of specific
culprit genes and allows the likelihood of multiple gene
influences.

We develop an operational criterion of the proposal
definition as follows. Since

fðPjGÞ ¼

Z
fðP;EjGÞdE

¼

Z
fðPjE;GÞfðEjGÞdE;

it follows from fðEjGÞ ¼ fðEÞ in (1) that

fðPjGÞ ¼

Z
fðPjE;GÞfðEÞdE:

If the condition

fðPjE;GÞ ¼ fðPjEÞ ð2Þ

holds, then

fðPjGÞ ¼

Z
fðPjEÞfðEÞdE ¼ fðPÞ:

In pursuit of a feasible approach, we thus take (2) as an
operational criterion for the proposed endophenotype
definition together with the variance component
model as a vehicle for the heritability. It then requires
heritability of the phenotype becomes null, conditioning
on the putative endophenotype; and it implies
genetic heritability of the phenotype is captured by the
endophenotype.

Given a phenotype of continuous measurements, sig-
nificance of (2) can be judged through the following
variance component model for quantitative traits [Burton
and Tobin, 2003]:

Pij ¼ aþ gEij þ tZij þ Gij þ eij;

eij � Normalð0;s2
RÞ;

Gij � Normalð0; ½s2
A þ s2

D þ s2
C�Þ;

CovðGij;GikÞ ¼ 2fij;iks
2
A þ Dij;iks

2
D þ lij;iks

2
C; j 6¼ k;

ð3Þ

where Pij is the observed phenotype of the jth member in
the ith family, Eij is his/her corresponding specified
endophenotype, Zij is his/her other covariates, Gij is the
random effect for the underlying genetic structure, and eij

is the residual error term representing the effect of non-
family factors. The components s2

A, s2
D and s2

C represent
the variance arising from polygenic additive effects,
polygenic dominance effects, and shared environmental
effects, respectively. For two members j and k in the ith

family, fij;ik is the probability of randomly drawing a

single allele in j that is identical by descent to a single allele
at the same locus randomly drawing from k, Dij;ik is the
probability that both alleles at a locus are shared identical
by descent by both members, and lij;ik is the binary
indicator showing both members live together ( 5 1) or
apart ( 5 0). The (broad sense) heritability of Pij, condi-
tional on Eij is

hPjE ¼
s2

A þ s2
D

s2
A þ s2

D þ s2
C þ s2

R

:

A statistically significant result of rejecting the null
hypothesis hPjE ¼ 0 gives an evidence against (2).

For a discrete phenotype of ordinal scale, the liability
threshold model can be used in the preceding
variance component setting [Falconer, 1989; Duggirala
et al., 1997]. The model postulates the existence of an
unobserved continuous trait (i.e., liability Lij), and a set of
thresholds t1; t2; . . . ; tK�1 that partition the liability
distribution into intervals corresponding to distinct
phenotypic states:

Pij ¼

1 if Lijot1;
2 if t1 � Lijot2;

..

. ..
.

K if tK�1 � Lij:

8>>><>>>:
The liability Lij is then assumed to follow the same
distribution as the Pij in model (3) and the heritability can
be obtained based on the liability.

If the endophenotype mediates all effects of the
genotype on the phenotype, hPjE ¼ 0 can imply (2). If the
genotype has a direct effect on the phenotype that is not
mediated through the endophenotype, hPjE ¼ 0 might be
difficult to be satisfied in practice. Similar to validating
surrogate endpoints, various indices can be used. Moti-
vated by the PTE in Freedman et al. [1992], we define the
proportion of heritability explained (PHE) by the endo-
phenotype as

PHE ¼ 1�
hPjE

hP
;

where hP is the heritability calculated from the variance
component model (3) by excluding the endophenotype E
as one covariate. A good endophenotype explains a large
proportion of heritability; thus, the larger the PHE value,
the more likely E is an endophenotype.

INFERENCES

ESTIMATION

Parameters in variance component model (3) can be
estimated by applying generalized estimating equations
approach [Amos, 1994; Almasy and Blangero, 1998]. The
computer package SOLAR (Sequential Oligogenic Linkage
Analysis Routines) [Blangero et al., 2004] can be used to
perform the variance component analysis with (3). As a
result, a nature estimate of PHE is given bydPHE ¼ 1� ðĥPjE = ĥPÞ, where ĥPjE and ĥP are estimates of
hPjE and hP, obtaining from the SOLAR.
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To derive the variance of dPHE, we first reparameterize
variance components ðs2

A;s
2
D;s

2
C;s

2
RÞ as

h1 ¼
s2

A

s2
A þ s2

D þ s2
C þ s2

R

;

h2 ¼
s2

D

s2
A þ s2

D þ s2
C þ s2

R

;

h3 ¼
s2

C

s2
A þ s2

D þ s2
C þ s2

R

;

h4 ¼ s2
A þ s2

D þ s2
C þ s2

R:

Let hð1Þr s and hð2Þr s be the corresponding items from the
variance component model (3) with and without adjusting

for Eij, respectively. Notice that hPjE ¼ hð1Þ1 þ hð1Þ2 and

hP ¼ hð2Þ1 þ hð2Þ2 . The first-order Taylor approximation about

ðEðĥPjEÞ;EðĥPÞÞ [as described in Casella and Berger, 2001] gives

varðdPHEÞ �
1

E2ðĥPÞ
fvarð ĥ

ð1Þ

1 Þ þ varð ĥ
ð1Þ

2 Þ

þ 2covð ĥ
ð1Þ

1 ; ĥ
ð1Þ

2 Þg þ
E2ðĥPjEÞ

E4ðĥPÞ

� fvarð ĥ
ð2Þ

1 Þ þ varð ĥ
ð2Þ

2 Þ þ 2covð ĥ
ð2Þ

1 ; ĥ
ð2Þ

2 Þg

� 2
EðĥPjEÞ

E3ðĥPÞ
fcovð ĥ

ð1Þ

1 ; ĥ
ð2Þ

1 Þ þ covð ĥ
ð1Þ

1 ; ĥ
ð2Þ

2 Þ

þcovð ĥ
ð1Þ

2 ; ĥ
ð2Þ

1 Þ þ covð ĥ
ð1Þ

2 ; ĥ
ð2Þ

2 Þg:

ð4Þ

To obtain approximate covariances of ĥ
ð1Þ

r s and ĥ
ð2Þ

r s, we
apply generalized estimating equations for covariances
[Prentice and Zhao, 1991] to the variance component
analysis (3). Hence, the robust covariance is given by

covðĥ
ðtÞ

r ; ĥ
ðt�Þ

r� Þ

�
XI

i¼1

qVðtÞi

qhðtÞr

 !T

ðWðtÞi Þ
�1 qWðtÞi

qhðtÞr

 !248<:
� ðWðtÞi Þ

�1
ðSðtÞi �VðtÞi Þ

þ
qVðtÞi

qhðtÞr

 !T

ðWðtÞi Þ
�1 qVðtÞi

qhðtÞr

 !359=;
�1

�
XI

i¼1

qVðtÞi

qhðtÞr

 !T

ðWðtÞi Þ
�1
ðSðtÞi �VðtÞi Þ

248<:
�ðSðt

�Þ

i �Vðt
�Þ

i Þ
T
ðWðt

�Þ

i Þ
�1 qVðt

�Þ

i

qhðt
�Þ

r�

 !#)

�
XI

i¼1

qVðt
�Þ

i

qhðt
�Þ

r�

 !T

ðWðt
�Þ

i Þ
�1 qWðt

�Þ

i

qhðt
�Þ

r�

 !248<:
� ðWðt

�Þ

i Þ
�1
ðSðt

�Þ

i �Vðt
�Þ

i Þ

þ
qVðt

�Þ

i

qhðt
�Þ

r�

 !T

ðWðt
�Þ

i Þ
�1 qVðt

�Þ

i

qhðt
�Þ

r�

 !359=;
�1

;

ð5Þ

where t; t� ¼ 1; 2; r; r� ¼ 1; 2; 3; 4; by assuming there are I
families and ni members in the ith family,

SðtÞi ¼ ðr
ðtÞ
i1 rðtÞi1 ; . . . ; r

ðtÞ
i1 rðtÞini

; rðtÞi2 rðtÞi2 ; . . . ; r
ðtÞ
i2 rðtÞini

; . . . ; rðtÞini
rðtÞini
Þ
T, rð1Þij ¼

Pij� ðað1Þ þ gð1ÞEijþ tð1ÞZijÞ, rð2Þij ¼ Pij� ðað2Þ þ tð2ÞZijÞ, VðtÞi ¼

EðSðtÞi Þ is the variance-covariance matrix for phenotypes
among members of the ith family in vector form with its
components for selected relative pairs given in Table I,

and WðtÞi is the ‘‘working’’ variance-covariance matrix

for SðtÞi with the component for the (j,k)th and (l,m)th
pairs being

EðrðtÞij rðtÞil ÞEðr
ðtÞ
ik rðtÞimÞ þ EðrðtÞij rðtÞimÞEðr

ðtÞ
ik rðtÞil Þ

under the Gaussian working model [Prentice and
Zhao, 1991]. Details for obtaining (5) are outlined

in Appendix. We may estimate varðdPHEÞ by replacing

EðĥPjEÞ with ĥPjE, EðĥPÞ with ĥP, and covðĥ
ðtÞ

r ; ĥ
ðt�Þ

r� Þ with its
estimate.

HYPOTHESIS TESTING

To evaluate the importance of the endophenotype, we
perform the following one-sided test:

H0 : PHE ¼ a;
H1 : PHE4a;

�
where a is some pre-specified critical value. Under the
significance level a, we reject H0 if the lower bound of the
one-sided confidence interval of PHE,

dPHE� z1�a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarðdPHEÞ

q
;

is greater than a, where z1�a is the lower 100� ð1� aÞth
percentile of the standard normal distribution.

In the following simulation study, we consider some
different values of a and evaluate appropriateness of the
normality assumption, hopefully, to construct useful
criteria for validating endophenotypes.

TABLE I. The covariance components for relative pairs

Relationship Covariance in s2
i sa Covariance in his

Same person s2
A þ s2

D þ ls2
C þ s2

R h4 � ð1� lÞh3h4

Parent-child 1
2 s

2
A þ ls2

C
1
2 h1h4 þ lh3h4

Full sibling 1
2 s

2
A þ

1
4 s

2
D þ ls2

C
1
2 h1h4 þ

1
4 h2h4 þ lh3h4

Half sibling 1
4 s

2
A þ ls2

C
1
4 h1h4 þ lh3h4

Monozygous twins s2
A þ s2

D þ ls2
C h1h4 þ h2h4 þ lh3h4

Grandparent-
grandchild

1
4 s

2
A þ ls2

C
1
4 h1h4 þ lh3h4

Uncle/aunt-
nephew/niece

1
4 s

2
A þ ls2

C
1
4 h1h4 þ lh3h4

First cousins 1
8 s

2
A þ ls2

C
1
8 h1h4 þ lh3h4

Double first
cousins

1
4 s

2
A þ

1
16s

2
D þ ls2

C
1
4 h1h4 þ

1
16 h2h4 þ lh3h4

Spouses ls2
C lh3h4

al is a binary indicator denoting whether two individuals live
together (l5 1) or apart (l5 0).
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SIMULATION STUDIES

STUDY DESIGN

The simulation studies evaluate the utility of the
proposed index, PHE, under two different scenarios
(Fig. 2). In scenario I, the endophenotype (E) and the
phenotype (P) are influenced by a single disease gene (G).
Scenario II postulates a more complex, but more practical,
situation where E and G share effects from the disease
gene G1, but genes G2 and G3 only have effects on E and P,
respectively

Our simulations assumed both E and P to be continuous
measurements. The quantitative trait y and its influential
genes were assumed to have a linear relation as described
in Almasy and Blangero [1998]:

y ¼ mþ
Xn

i¼1

Zi þ e; ð6Þ

where m is the grand mean, Zi is the random effect of the
ith disease gene, and e represents a random non-family
deviation. Both Zi and e are assumed to be normally
distributed and uncorrelated. In these simulations, dom-
inance effects and shared environmental effects were not
included, and therefore varðZiÞ ¼ s2

Ai
(the variance from

the additive effects of disease gene i). To construct
scenario I, two quantitative traits E and P controlled by
the same gene G were simulated. Each of E and P had the
single-gene contribution from G through the linear model
(6). The non-family deviation of E (eE) and the non-family
deviation of P (eP) were assumed to have a correlation re.
The multiple-gene effects in scenario II included the action
of gene G1 on E and P, the action of G2 on E and the action
of G3 on P.

The simulated data contained 200 nuclear families, each
with two siblings. The disease genes were assumed to be
bi-allelic and the population frequency of the common
allele was 0.9. In scenario I, the heritability of P due to G
(hP(G)) was assumed to be either 0.15 or 0.42 and the
heritability of E due to G (hE(G)) allowed being 0, 0.15, 0.42,
or 0.74. The correlation between non-family deviations of

E and P (re) was 0 or 0.5. In scenario II, the parameter
values can be found in the following result tables.
The correlation between non-family deviations was
assumed to be the same as scenario I. In the simulation,
we fixed the heritability of P on 0.15 and 0.42, to imply that
the phenotype had shown weak and strong genetic
underpinning, respectively. Various heritabilities of E
mimicked unknown relationship among the phenotype,
endophenotype, and genotype. Notice that, in the situation
where the endophenotype’s heritability due to shared
genes is higher than the phenotype’s heritability due to
shared genes (i.e., hEðGÞ4hPðGÞ in scenario I and
hEðG1Þ4hPðG1Þ in scenario II), the linkage or association
studies based on the endophenotype are more likely to
detect these common genes than the studies based on the
phenotype (as shown in Almasy and Blangero [1998] and
Williams et al. [1999]). When evaluating the power of the
proposed hypothesis testing, the significant level a5 0.05
and the critical value was set to be 0, 0.25, 0.5, or 0.75. Two
hundred replications were performed for each specified
situation.

The command ‘‘simqtl’’ of the computer package SOLAR
was used to simulate the data in two scenarios. The
variance component analysis (3) was performed using the
SOLAR command ‘‘polymod". Estimates of the standard
error of dPHE were calculated by using R software.

RESULTS

Table II contains results under scenario I. When the
heritability of P due to G was fixed, the higher the hE(G),
the lower the hPjE and the closer the PHE values to 1. No
matter what the correlation between non-family deviations
of E and P was (either 0 or 0:5), the trend was always

retained. Also, the standard errors of dPHE for the
phenotype showing weak genetic underpinning
(hPðGÞ ¼ 0:15) were larger than the standard errors for

hP(G)

Scenario I

PE

G

hE(G)

Scenario II 

PE

G1

EE PP

G2 G3

hE(G1)

hP(G1)

hE(G2)

hP(G3)

Fig. 2. Two scenarios considered in the simulation studies:

endophenotype (E), phenotype (P), underlying disease genes
(G, G1, G2 and G3), random non-family effects (eE and eP), hE(G0)
means the heritability of E due to G0, hP(G0) means the

heritability of P due to G0, and the correlation between non-

family effects (qe), where G0 may be G, G1, G2 or G3.

TABLE II. Simulation results for parameter estimation
based on scenario I

hP(G) hE(G) re hPjE PHE ESEa CSEb

Weak genetic underpinning for the phenotype
0.15 0 0 0.146 �0.002 0.066 0.227

0.5 0.188 �0.643 1.871 3.851
0.15 0 0.110 0.307 0.219 0.478

0.5 0.053 0.675 0.314 0.351
0.42 0 0.059 0.672 0.239 0.415

0.5 0.024 0.859 0.202 0.357
0.74 0 0.029 0.854 0.170 0.377

0.5 0.031 0.814 0.254 0.389
Strong genetic underpinning for the phenotype
0.42 0 0 0.405 �0.002 0.009 0.025

0.5 0.473 �0.201 0.138 0.215
0.15 0 0.337 0.202 0.079 0.128

0.5 0.269 0.322 0.158 0.151
0.42 0 0.183 0.562 0.138 0.107

0.5 0.075 0.816 0.149 0.087
0.74 0 0.053 0.875 0.125 0.084

0.5 0.028 0.937 0.093 0.075

aESE 5 empirical standard error of PHE based on simulation
replications.
bCSE 5 mean of calculated standard errors of PHE.
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the phenotype showing strong genetic underpinning
(hPðGÞ ¼ 0:42). To check the accuracy of standard error

estimates of dPHE, we compared the mean of estimated

standard errors of dPHE based on (4) and (5) with the

empirical standard error of dPHE based on simulation
replications. When hPðGÞ ¼ 0:15, the proposed method can
overestimate the standard errors. This overestimation may
be partially due to the poor fit of the first-order Taylor

approximation for the variance of dPHE in equation (4). It
has been shown that the first-order Taylor approximation
can overestimate the variance of a ratio of two random
variables when the expectation of the variable in the
denominator is small [Herson, 1975]. When hPðGÞ ¼ 0:42,
we may overestimate or underestimate the standard
errors; nevertheless, both absolute errors of the over-
estimates and the underestimates were small.

Table III shows the results when there existed multiple
disease genes (scenario II). The higher the heritability of E
due to G1 (the shared gene), the larger the PHE values,

which was consistent with scenario I. However, we can
find that the heritabilities due to non-shared genes (hPðG3Þ
and hEðG2Þ) also influenced the PHE values. The higher the
hPðG3Þ or hEðG2Þ, the smaller the PHE values. Besides, if
there existed a correlation between non-family deviations
of E and P (re ¼ 0:5), the PHE values were disrupted. For
standard error estimates of dPHE, a pattern similar to
scenario I was observed.

We used the Shapiro-Wilk test to evaluate the appro-
priateness of normality assumption in establishing a
confidence interval of PHE. One can find that the
normality assumption of PHE estimates did not hold in
most situations under scenario I (Table IV). Under scenario
II, the normality assumption showed better fit in situations
where hEðG1Þ 	 0:42 (Table V). We further examined
histograms of PHE estimates under situations where the
normality assumption did not fit. It seemed that these

distributions of dPHE were usually left skewed (i.e., the left
tail of the distribution was longer). Therefore, the use of
standard normal percentile z1�a in constructing the
confidence interval of PHE can result in a lower bound
smaller than what it should be. As a result, the proposed
hypothesis testing can be conservative in rejecting
H0 : PHE ¼ a when the normality assumption did not fit.

Table IV shows the proportions of simulation replicates
that rejected the hypothesis H0 : PHE ¼ a and preferred
H1 : PHE4a, under various conditions of scenario I. When
the single disease gene G did not have effects on the
putative endophenotype (i.e., hEðGÞ ¼ 0), all replications
accepted H0 under various as. When hEðGÞ 6¼ 0, the
rejection proportion increased dramatically for the critical
value a 5 0. In situations where hPðGÞ ¼ 0:42 and
hEðGÞ 	 hPðGÞ, a ¼ 0:25 can still lead to rejection propor-
tions > 80%. When there existed multiple disease genes,
the proposed testing was especially useful in rejecting the
critical value a ¼ 0 if hPðG1Þ ¼ 0:42 and hEðG1Þ 	 hPðG1Þ

TABLE III. Simulation results for parameter estimation
based on scenario II

hP(G1)/
hE(G1)

hP(G3)/
hE(G2) re hPjE PHE ESEa CSEb

Weak genetic underpinning for the phenotype
0.15/0 0.25/0.3 0 0.397 �0.00005 0.009 0.026

0.5 0.482 �0.226 0.112 0.198
0.25/0.7 0 0.396 0.001 0.009 0.028

0.5 0.458 �0.162 0.072 0.165
0.15/0.15 0.25/0.25 0 0.371 0.064 0.040 0.102

0.5 0.429 �0.092 0.121 0.198
0.25/0.59 0 0.375 0.054 0.041 0.109

0.5 0.437 �0.110 0.094 0.191
0.15/0.42 0.25/0.12 0 0.330 0.171 0.067 0.132

0.5 0.382 0.028 0.127 0.185
0.25/0.23 0 0.334 0.159 0.067 0.134

0.5 0.398 �0.012 0.120 0.189
0.15/0.74 0.25/0.08 0 0.298 0.251 0.085 0.137

0.5 0.359 0.088 0.121 0.174
0.25/0.13 0 0.303 0.237 0.084 0.138

0.5 0.357 0.092 0.115 0.172
Strong genetic underpinning for the phenotype
0.42/0 0.17/0.3 0 0.580 �0.001 0.005 0.012

0.5 0.653 �0.138 0.065 0.101
0.17/0.7 0 0.582 �0.0001 0.006 0.012

0.5 0.639 �0.096 0.047 0.079
0.42/0.15 0.17/0.25 0 0.530 0.093 0.040 0.077

0.5 0.581 �0.004 0.095 0.113
0.17/0.59 0 0.536 0.073 0.041 0.082

0.5 0.613 �0.049 0.074 0.109
0.42/0.42 0.17/0.12 0 0.424 0.273 0.087 0.089

0.5 0.463 0.193 0.112 0.105
0.17/0.23 0 0.434 0.243 0.074 0.093

0.5 0.512 0.132 0.106 0.105
0.42/0.74 0.41/0.08 0 0.682 0.174 0.069 0.053

0.5 0.769 0.057 0.072 0.057
0.17/0.08 0 0.329 0.426 0.109 0.086

0.5 0.408 0.294 0.136 0.097

aESE 5 empirical standard error of PHE based on simulation
replications.
bCSE 5 mean of calculated standard errors of PHE.

TABLE IV. Simulation results for hypothesis testing
based on scenario I

hP(G) hE(G) re P(0)a P(0.25) P(0.5) P(0.75) S.W. P-valueb

Weak genetic underpinning for the phenotype
0.15 0 0 0 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.15 0 0.08 0.005 0 0 o0.001

0.5 0.735 0.53 0.285 0.025 o0.001
0.42 0 0.775 0.385 0.075 0 o0.001

0.5 0.865 0.78 0.5 0.075 o0.001
0.74 0 0.925 0.765 0.38 0.005 o0.001

0.5 0.835 0.735 0.435 0.04 o0.001
Strong genetic underpinning for the phenotype
0.42 0 0 0 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.15 0 0.55 0 0 0 o0.001

0.5 0.715 0.195 0.01 0 0.039
0.42 0 0.99 0.815 0.255 0 0.698

0.5 0.995 0.98 0.825 0.365 o0.001
0.74 0 1 1 0.945 0.52 o0.001

0.5 1 1 0.99 0.78 o0.001

aP(a) 5 proportion of simulation replicates whose lower bound of
the one-sided 95% confidence interval of PHE is greater than the
critical value a.
bS.W. P-value 5 mean of P-values for Shapiro-Wilk test of normality.
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(Table V). In both scenarios, the PðaÞ values (i.e., the
proportions of rejecting H0) for hPðGÞ (or hPðG1Þ) 5 0.15
were smaller than the values for hPðGÞ (or hPðG1Þ) 5 0.42.

This can be caused by the larger dPHE standard errors and

the likelihood to overestimate the dPHE standard errors
when hPðGÞ (or hPðG1Þ) 5 0.15, as seen in Tables II and III.

To evaluate the sample size effect on our estimation, we
had performed the simulation with the number of families

TABLE V. Simulation results for hypothesis testing based on scenario II

hP(G1)/hE(G1) hP(G3)/hE(G2) re P(0)a P(0.25) P(0.5) P(0.75) S.W. P-valueb

Weak genetic underpinning for the phenotype
0.15/0 0.25/0.3 0 0 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.25/0.7 0 0 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.15/0.15 0.25/0.25 0 0.01 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.25/0.59 0 0.005 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.15/0.42 0.25/0.12 0 0.26 0 0 0 0.015

0.5 0.045 0 0 0 0.162
0.25/0.23 0 0.215 0 0 0 0.018

0.5 0.015 0 0 0 0.030
0.15/0.74 0.25/0.08 0 0.62 0.02 0 0 0.080

0.5 0.12 0 0 0 0.087
0.25/0.13 0 0.56 0.01 0 0 0.080

0.5 0.11 0 0 0 0.108
Strong genetic underpinning for the phenotype
0.42/0 0.17/0.3 0 0 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.17/0.7 0 0 0 0 0 o0.001

0.5 0 0 0 0 o0.001
0.42/0.15 0.17/0.25 0 0.275 0 0 0 0.3

0.5 0.04 0 0 0 o0.001
0.17/0.59 0 0.12 0 0 0 o0.001

0.5 0 0 0 0 0.016
0.42/0.42 0.17/0.12 0 0.9 0.09 0 0 0.004

0.5 0.585 0.025 0 0 0.047
0.17/0.23 0 0.845 0.015 0 0 0.555

0.5 0.415 0.02 0 0 o0.001
0.42/0.74 0.41/0.08 0 0.87 0.01 0 0 0.777

0.5 0.35 0 0 0 0.02
0.17/0.08 0 0.97 0.645 0.04 0 0.002

0.5 0.805 0.225 0.015 0 0.07

aP(a) 5 proportion of simulation replicates whose lower bound of the one-sided 95% confidence interval of PHE is greater than the critical
value a.
bS.W. P-value 5 mean of P-values for Shapiro-Wilk test of normality.

TABLE VI. Variance component analysis for the schizophrenia spectrum and the CPT

Response variable Schizophrenia spectrum Undegraded d0 Degraded d0

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Covariatea

Female 0.01 (0.21) 0.01 (0.22) 0.03 (0.21) �0.18 (0.17) �0.08 (0.12) �0.04 (0.20) 0.08 (0.12)
Age �0.003 (0.008) �0.003 (0.008) �0.0003 (0.008) �0.009 (0.006) 0.005 (0.004) �0.03 (0.009) �0.01 (0.005)
Education years �0.05 (0.03) �0.03 (0.03) �0.02 (0.03) 0.12 (0.02) 0.05 (0.01) 0.10 (0.03) �0.003 (0.02)
Undegraded d0 – �0.11 (0.07) – – – – 0.91 (0.06)
Degraded d0 – – �0.12 (0.06) – 0.66 (0.03) – –

Index
Heritability 0.34 (0.32) 0.38 (0.36) 0.49 (0.35) 0.42 (0.09) 0.01 (0.09) 0.86 (0.29) 0.25 (0.36)
PHE – �0.14 (0.15) �0.45 (0.40) – 0.97 (0.11) – 0.71 (0.36)

aThe estimated value is for the regression coefficient in model (3).
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equalling to 500 (data not shown). For both scenarios, the
large sample size did not seem to affect the estimated PHE
values, but can reduce the standard errors of the estimates.
The larger the sample size, the better the normality
assumption for the distribution of dPHE. Also, the large
sample size can increase the rejection proportion in Tables
IV and V.

CONCLUSION

In summary, the PHE index reflects the heritability of
the putative endophenotype due to the genes shared with
the phenotype of interest. The genetic effects that are not
shared between the phenotype and the endophenotype

can adversely reduce the PHE values. Our proposed dPHE
standard error estimate is reasonably accurate when the
phenotype shows sensible genetic underpinning, but the
proposed method can overestimate the standard error
when the phenotype is less heritable.

Rejecting H0 : PHE ¼ 0 implies that parts of the genes
underlying the putative endophenotype can also affect the
phenotype and, thus, the putative endophenotype is
useful in detecting the disease genes. Rejecting H0 : PHE ¼
0:25 reveals strong evidences that the heritability of
the endophenotype due to the genes shared with
the phenotype is higher than the heritability of the phenotype
due to these common genes and, thus, the endophenotype
has greater likelihood of detecting disease genes than
the phenotype. When the phenotype is less heritable and
the sample size is not large enough, the proposed method for
hypothesis testing tends to be conservative in rejecting H0.

EXAMPLE

The Continuous Performance Test (CPT) [Rosvold et al.,
1956] has been widely used to measure sustained attention
deficits in psychotic disorders, and has become an
increasingly important focus in the search for potential
endophenotypes for genetic susceptibility to schizophrenia
[Chen and Faraone, 2000; Cornblatt and Keilp, 1994]. In the
following analyses, we will use the proposed methodology
to assess the CPT as an endophenotype of schizophrenia
based on the data from a family genetic study of
schizophrenia in Northern Taiwan. Details of study design
and eligibility criteria were described previously [Chen
et al., 1998b, 2004; Chang et al., 2002]. Briefly, schizo-
phrenic patients fulfilling some inclusion criteria were
included as the probands of the present family genetic
study. All probands’ first-degree relatives aged 16 years or
older were also included in this family study. In total, 91
schizophrenic probands and 231 first-degree relatives
were included in this analysis.

The phenotype examined in the following analyses was
the schizophrenia spectrum, including schizophrenia and
schizophrenia-related personality disorders as well; the
latter was defined as having a definite or possible
diagnosis of schizotypal, schizoid or paranoid personality
disorder [Chang et al., 2002]. Two different CPT scores
were used as candidate endophenotypes: the index of
sensitivity d0 on the undegraded test and d0 on the 25%
degraded test [Chen et al., 1998a]. Variance component
analysis (3) was then performed using the SOLAR
computer package. More specifically, we fit a liability
threshold model for discrete trait model with additive and

dominance effects [Duggirala et al., 1997]. The shared
environmental effect was not included because the current
nuclear-family data could not appropriately distinguish
this effect from genetic effects; thus the model with both
environmental and genetic effects might result in over
fitting [Hopper and Visscher, 2002]. Since our proband
ascertainment was based on his/her schizophrenia status,
the ascertainment correction provided in the SOLAR was
employed. Covariates gender, age, and education years
were also included in the models to control for possible
confounding.

Results of variance component analyses for the schizo-
phrenia spectrum on the CPT scores are shown in Table VI.
Although the heritability for the schizophrenia spectrum
was 0.34, it was not significantly different from zero.
Heritabilities for both the undegraded and degraded d0

were high and significantly different from zero. PHEs for
evaluating various CPT scores as endophenotypes of the
schizophrenia spectrum were all not significantly greater
than zero. This indicated that the CPT and the schizo-
phrenia spectrum, although both were highly heritable,
might not share common causal genes. The PHE for
evaluating the degraded d0 as an endophenotype of the
undegraded d0 was greater than the PHE for evaluating the
undegraded d0 as an endophenotype of the degraded d0,
and both PHEs were very significant. These results
showed evidence that the degraded d0 was a more
heritable indicator, which mediated almost all effects of
the genotype on the undegraded d0. This is consistent with
previous studies in supporting the proposition that the
more difficult versions of the CPT are stable vulnerability
indicators, whereas the simpler versions might be more
state-dependent [Chen et al., 2004].

Our analyses in assessing various CPT scores as
endophenotypes of the schizophrenia spectrum covering
a variety of personality disorders did not reveal significant
results. To some extent, the results are not surprising. A
previous analysis indicated that schizophrenia-related
personality disorders, though part of schizophrenia
spectrum, do not necessarily lead to a higher statistical
power for future genetic analysis: the value of recurrence
risk ratio by incorporating these personality disorders in
the spectrum became lower than the corresponding figure
for schizophrenia itself [Chang et al., 2002]. We might also
be handicapped by the data structure (nuclear families
only) and/or the sample size (91 schizophrenia families) of
our study. Nevertheless, these results do not rule out the
possibility that CPT performance scores might be endo-
phenotypes for other schizophrenia-related traits, such as
certain symptom dimensions or neurocognitive functions.

DISCUSSION

In this report, we have attempted to provide a criterion for
using to validate an endophenotype. This criterion is
initially motivated by the operational criteria for validat-
ing surrogate endpoints, but these two sets of criteria have
distinct implications. Endophenotypes need to be less
removed from relevant genes than phenotypes and thus
provide greater power for genetic studies, and genotype
information is usually unknown when validating endo-
phenotypes. Simulation results show that the proposed
index is useful in validating endophenotypes. Comparing
with the criteria proposed by Gottesman and Gould [2003],
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our proposal can verify a postulated biological pathway
from genotypes to phenotypes via endophenotypes
directly and provide a formal statistical evaluation of the
significance of the relationship.

To obtain the heritability in validating endophenotypes,
we proposed to fit a liability threshold model for discrete
phenotypes. One possible alternative is to use generalized
linear mixed models (GLMMs) [Breslow and Clayton,
1993; Burton and Tobin, 2003]. When a phenotype is
continuous, GLMMs are the typical variance component
analysis of quantitative traits. For ordinal phenotypes
(traits), GLMMs can be fit by selecting appropriate link
functions. Although GLMMs are flexible, there are two
major challenges in implementing them. First, difficulty
arises when attempting to find an analogue to s2

R in
calculating the heritability. Consequently, it is inappropri-
ate to adopt a heuristic approach, for example: to map the
raw residuals (Pij � EðPijÞ) to the scale of link function and
then to treat the mean square as an analogue to s2

R
[Breslow and Clayton, 1993; Burton et al., 1999]. Second,
readily available software for fitting GLMMs (e.g., R
package: lme4) is not intended for genetic analyses, thus
the within-family covariance matrix can only be updated
as a composite whole; various genetic variance compo-
nents in model (3) cannot be obtained. Burton et al. [1999]
had attempted to reparameterize GLMMs to obtain
various genetic variance components for studies with
nuclear families only. More efforts need to be put on
modifying available software to allow specification of
variance components s2

A, s2
D and s2

C, or on reparameteriz-
ing GLMMs to accommodate general pedigrees of arbi-
trary size and complexity.

There are some possible extensions of the proposed
method. The present study regards the genotype as an
unmeasured random effect. If measured genotype or
markers are available, one can modify equation (3) to
incorporate the measured marker information as done in
equation (1) of Almasy and Blangero [1998] to help detect
candidate genes.
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APPENDIX

DERIVATION OF covðĥ
ðtÞ

r ; ĥ
ðt�Þ

r� Þ

As describing in Amos [1994], hðtÞr can be estimated by
solving the generalized estimating equation for covar-
iances [Prentice and Zhao, 1991]

UðhðtÞr Þ ¼
XI

i¼1

qVðtÞi

qhðtÞr

 !T

ðWðtÞi Þ
�1
ðSðtÞi �VðtÞi Þ ¼ 0;

where SðtÞi , VðtÞi , and WðtÞi ¼WðtÞi ðh
ðtÞ
r Þ are as defined in the

text. Under regularity conditions, we can have

I1=2ðĥ
ðtÞ

r �hðtÞr Þ ¼ �I�1 qUðhðtÞr Þ

qhðtÞr

 !" #�1

� ½I�1=2UðhðtÞr Þ�;

where

qUðhðtÞr Þ

qhðtÞr

¼ �
XI

i¼1

qVðtÞi

qhðtÞr

 !T

ðWðtÞi Þ
�1

�
qWðtÞi

qhðtÞr

 !
ðWðtÞi Þ

�1
ðSðtÞi �VðtÞi Þ

�
XI

i¼1

qVðtÞi

qhðtÞr

 !T

ðWðtÞi Þ
�1 qVðtÞi

qhðtÞr

 !

¼ �
XI

i¼1

Ai �
XI

i¼1

Bi:

Then, we essentially follow Appendix 1 of Prentice and
Zhao [1991] to obtain (5), with an exception of assuming

that I�1
PI

i¼1 Ai converges to a constant, not opð1Þ, as
I!1. This modification can improve the small-sample
distributional approximation.
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