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Chapter 1

Introduction

Due to the growth in enormous design complexity with continuous scaling-down

of technology, circuit sizes are getting much larger than before. To cope with the

increasing design complexity, hierarchical design and reuse IP (Intellectual Property)

modules are widely used [3] [15]. An efficient and effective floorplanning/placement

approach is needed in order to improve solution quality and reduce runtime for

the circuit design. Since the early stage of design will determine the overall chip

performance. (Floorplanning/placement is to decide the positions of circuit blocks

or IP cores on a chip subject to various objectives.)

Meanwhile, increased circuit density and performance compel the need to reduce

power consumption that increases significantly as designers strive to utilize the ad-

vancing silicon capabilities. The consumer product market further drives the need

to minimize chip power consumption [7].

Moreover, the widening requirements of special design applications force we to

consider many more things than ever in floorplanning/placement stage. Among

those requirements we care in very deep sub micron era (DSM), power dissipa-

tion and performance demands are very critical. Energy consumption is recognized

as one of the most important parameters in designing modern portable electronic

systems and wireless electronic systems, low power consideration has become es-
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sential in very large scale integration (VLSI) circuit and system designs today [11].

In CMOS digital circuits, power dissipation mainly consists of dynamic and static

components. Dynamic power and static power both have direct relationship with

supply voltage V dd (dynamic power is proportional to V dd2 and static power is

proportional to V dd), applying as low V dd as possible under the performance re-

quirements is obviously the most effective way to reduce power consumption. There

are many methods discussed before to reduce leakage power or dynamic power, such

as multithreshold-voltage CMOS (MTCMOS) circuit technology [8], body biasing

dual-threshold method [16] and multiple supply and threshold voltages methodology

[4] [12].

One of the techniques to reduce power consumption is ”Voltage Island” method-

ology, as the scale of process technologies shrinks, more and more devices can be

implemented on a single chip. This enables various applications to be realized as

SoC designs by using pre-designed cores. A voltage island is a group of on-chip

cores powered by the same voltage source, independently from the chip-level voltage

supply. This is a concept that the use of voltage islands permits operating different

portions of the design at different supply voltage levels. It can achieve power saving

and this technique becomes more and more popular [1] [6] [10].

Until recently, still few floorplanning/placement are concentrating on voltage is-

lands consideration. Even so, to form good voltage islands property to save power

and solve the critical delay problems (by performance constraints [14] [17]) to main-

tain good connecting between cores and reduce area overhead penalty is really a

important subject.
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1.1 Our Contributions

In SoC design, many cores of different functions are integrated together. If those

individual cores have power characteristics unique of its own (each core can be

applied its supply voltage arbitrarily) from the rest parts of the design and can

be optimized accordingly, we can therefore achieve the best power solution (the

lowest power consumption), but instead of sacrificing the floorplanning/placement

like cobwebs, even worse the power routing complexity will become very large. To

solve this problem, we propose a method in this thesis which can group these cores

(blocks) to form islands that are in the same power supply domain and save power

by applying lowest available supply voltages possible, and simultaneously consider

the trade-off between power and the area/wirelength costs. Our method can be

extended to consider the hierarchical voltage islands application due to the reason

that almost every voltage islands consideration designs need to cluster cores using

the same power supply. Moreover, to address particular design requirements (there

may be high-speed transitions demand or critical paths between some appointed or

particular cores for example), we can impose corresponding position constraints for

the circuit cores in a floorplanning/placement.

In this thesis, we handle the floorplanning/placement with voltage islands and

performance constraints using the B*-Tree representation. The experimental results

show that our method performs well. According to the circuit power table informa-

tion, our method utilizes the idea of location constraint (LC relation)1 to constrain

the nodes relationship between each pair of nodes which exist the parent-child rela-

tionship and group a set of cores using the same supply voltage by clustering their

corresponding nodes in the B*-Tree to form an island-like distribution (we call it

voltage island in the remainder of this thesis for short) to save more power and

1Location constraint is used to ensure that one module abuts against another one which is
proposed in [2].
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reduce power routing cost. We first explore a feasible floorplan/placement2, and

then apply our algorithm that can cluster blocks in the same supply voltage and

place blocks applying performance constraints during each iteration. Finally we can

generate a nice floorplan/placement for voltage islands and performance constraints.

Experimental results based on the MCNC benchmark with the corresponding power

tables and constraints show that our method definitely can meet this kind of re-

quirements.

The remainder of this thesis is organized as follows. In Chapter 2, we briefly

review B*-tree representation [2]. We also discuss the methodology of voltage islands

[10], performance constraints [17] and give the problem formulation. In Chapter 3,

we discuss our method for dealing with voltage islands and performance constraints,

the detailed placement procedure and our algorithm present the detail design flow.

Our experimental results are presented in chapter 4. Finally we give the conclusion

of this thesis and future work in Chapter 5.

2A feasible floorplan/placement is a floorplan/placement that no any two modules overlap each
other.
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Chapter 2

Preliminaries

In this chapter, we briefly review the B*-Tree representation, concepts of voltage

islands, and performance constraints in floorplanning. Then we formulate the lower

power floorplanning/placement methodology considering performance constraints

and voltage island generation.

2.1 Review of the B*-Tree Representation

A B*-Tree [2] is an ordered binary tree whose root corresponds to the module on the

bottom-left corner for modeling a nonslicing floorplan. Given a compacted place-

ment P that can neither move down nor move left (called an admissible placement),

we can construct a unique B*-tree in linear time. we can represent it by a unique

B*-Tree T . Further, given a B*-tree, we can also obtain an admissible placement

by packing the blocks in linear time with a contour structure [5].

In a B*-Tree T , the root of T represents the block on the bottom-left corner,

the x- and y-coordinates of the block associated with the root (xroot,yroot) = (0,0).

If node nj is the left child of node ni, block bj is placed on the right-hand side and

adjacent to block bi in the admissible placement; i.e., xj=xi+wi, wi is the width

of bi. Otherwise, if node nj is the right child of ni, block bj is placed above block

bi, with the x-coordinate of bj equal to that of bi; i.e., xj=xi. With the contour
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Figure 2.1: (a) An admissible placement. (b) The B*-tree representing the place-
ment [17].

structure, we can compute the y-coordinate of a block in constant time.

Figure 2.1 illustrates an admissible placement (a) and its corresponding B*-Tree

(b). Using the depth-first search (DFS) procedure, the B*-Tree T for an admissible

placement P can be constructed in a recursive fashion. We first pick n0, the root

of T , and place b0 on the bottom-left corner. Then we traverse the left child of n0,

n1. Block b1 is placed on the right of b0. Therefore, since n1 does not have a left

child, we traverse n3, the right child of n1. The process continues until all nodes

are traversed, and finally we will have an admissible placement. Inheriting from the

nice properties of ordered binary trees, the B*-Trees is simple, efficient, effective,

and flexible and particularly suitable for representing a nonslicing floorplan with

various types of modules and for creating or incrementally updating a floorplan.

2.2 Voltage Islands Generation Methodology

Voltage Island is a system architecture and chip implementation methodology which

can be used to reduce power consumption for SoC designs [10]. Active (dynamic)
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power is the power consumed by the intended work of the circuit to switch states

and thus execute logic functions. We use the following equation to evaluate dynamic

power: Pactive = C * f * V dd2, where C is the charging/discharging of the capacitance

of the switching nodes. Even if we assume perfect scaling of the capacitance per

unit area and supply voltage V dd, frequency of operation has increased at a faster

rate than the scaling of the silicon process technology, and led to an increase in

power density. In addition to active power, smaller geometries make leakage power

become as important as active power in many applications. Device structures are

improved for lower transistor oxide thickness (Tox) to better transistor performance.

To maintain the reliability, V dd must be lowered as Tox is reduced; and transistor

threshold voltage (Vt) must be reduced as well in order to maintain performance.

The decrease in Vt and Tox drives significant increases in leakage power.

The combination of increasing active power density and leakage currents has

created a power management problem in the semiconductor industry. One sce-

nario shown in Figure 2.2 is an example of ”Voltage Islands” that optimizes the

individual voltage to reduce active power, achieving required performance. Mostly

performance-critical element of the design requires the highest voltage level sup-

ported to maximize the performance, while other function cores coexist on the SoC

may not need this level of voltage, so they can be run at lower voltages to save

significant active power. Furthermore, some functions cores, like embedded analog

cores, are specified at specific voltages, and can be easily accommodated in mixed

voltage systems.

Introducing voltage islands concept makes the chip design process even more

complicated with respect to static timing and power routing. In particular, the

complexity grows significantly with the number of islands. Designs using voltage

islands needs to group the cores powered by the same voltage source and not to

violate other design metrics such as timing and wire congestion. Meanwhile, the
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Figure 2.2: Timing critical Voltage Island methodology. Each of the elements are
identified by their minimum required voltage, and the most performance-critical
elements are placed together and supplied by highest voltage to maximize its per-
formance.

number of voltage islands should be appropriate (not too many) considering sig-

nal translation and communication between different islands, which requires level

converters. We also need to consider power routing complexity [6]. Therefore the

overhead for applying voltage islands methodology with respect to area and delay

is unavoidable.

Figure 2.3 is a voltage island powering and switching control graph from [10].

The whole voltage island are powered from the island voltage, V DDI (VDD-inside),

while the circuits are powered from a supply voltage called V DDO (VDD-outside).

When there are signals traveling between inside and outside of the island, we need

level converters to translate signals’ level in different supply voltages. It is the price

we need to pay when using different supply voltages in a single chip. If we apply

the corresponding lowest supply voltage to each of the functional blocks in tradi-

tional floorplanning/placement strategy and not using voltage island methodology,
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Figure 2.3: Voltage island powering and switching control graph from [10]. The
voltage island is powered from the island voltage (V DDI), while the whole chip is
powered from a supply voltage (V DDO). There are receivers and drivers to handle
converting the voltage level of the signal between inside and outside of the island.

we will get a expensive cost in power routing complexity and area overhead in level

converters.

2.3 During Floorplanning/Placement Performance

Constraints Consideration

Performance constraints is a consideration for the interconnect delay domination

in the circuit performance for DSM VLSI design. Minimizing total wire length, as

traditional floorplanners/placers did, can not guarantee bounded delay for critical

nets. It is desirable to minimize the critical net delay by tightening them together to

optimize performance or to meet the delay constraints by placing them close enough

to each other. To be exact, the constraint requires designated nets (blocks/cores)

to be placed within a pre-defined bounding box nets. Imposing the performance

constraint, we can optimize not only the circuit delay, but also the total wire length.
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Figure 2.4: (a)(b) are both feasible placements of performance blocks b1, b2 and b3.
The rectangle of the dotted line is the bounding box of the blocks. The rectangle
of the dash line is the bounding box with the maximum delay. (c) An infeasible
placement with the blocks falling out of the bounding box associated with the delay
constraint. Note that (a)(b)(c) are applying the same performance constraints. If
the performance constraints are not so tight, (d) is a feasible placement as well.

Figure 2.4 is an example to explain the performance bounding box. We constrain

the blocks’ distance between each other by using a bounding box that the summation

of its’ height and width is bounded, therefore their maximum delay is bounded.

2.4 Problem Formulation

The problem we concern about is described as follow: Let B={b1,b2,...,bn} be a set

of n rectangular modules whose width, height, and area are denoted by Wi, Hi, and

Ai, 15i5n. Let (xi,yi) denote the coordinates of the bottom-left corner of module bi,

15i5n, on a chip. Each module is associated with a power table, a list of matching
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pair that store (supply voltage, power dissipaiton). A floorplan/placement P con-

sidering the performance constraint and voltage islands generation is that according

to the given power table information, an assignment of (xi,yi) for each bi, 15i5n,

such that cores clustered using the same voltage to form appropriate number of

islands achieving low power consumption, while no two modules overlap and the

given performance constraints are satisfied. The goal of floorplanning/placement is

to optimize a specified cost metric, including the area Atot induced by the assign-

ment of bis on the chip or the arbitrary combination of the area, wirelength, power

dissipation and the number of voltage islands.
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Chapter 3

Algorithm for Simultaneously
Considering Voltage Islands
Generation and Performance
Constraints

In this chapter, we first present the solutions for voltage islands generation with

B*-Tree representation. Then, we propose the feasible conditions for B*-Tree with

the performance constraints.

3.1 Floorplanning/Placement for Voltage Islands

We first give an example to show the setup in creating voltage islands in SoCs using

B*-Tree. In Figure 3.1, each core is followed by a number identified the number

of its usable voltages, then associated with a power table; it is a list of matching

pairs that store (supply voltage, power dissipation) which specifies the legal voltage

levels that can be used to work functionally and the corresponding average power

dissipation values. For instance, the block c4 can operate at 1.0, 1.1 or 1.2V , and

its corresponding power consumption are 1.3mW , 1.8mW and 2.6mW .

Because 1.2V is the highest supply voltage of all the eleven blocks, the chip-level

voltage is assumed to be 1.2V (the highest voltage). If we do not need to create
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Figure 3.1: A illustration of a naive approach to generate voltage islands in chip-
level design. If we want the maximized power saving, one obvious way is to operate
each block at its lowest available voltage. Firstly, we partition the blocks by their
lowest supply voltage, we construct the subtrees of those compatible blocks, then
we build the B*-Tree like the final tree shown in the graph, and the corresponding
placement is shown beside the B*-Tree.
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any voltage islands, all the blocks will use their highest voltage as the traditional

floorplanning/placement did. However if we want to minimize the power consump-

tion for whole chip, one obvious way is to operate each block at its lowest voltage,

which means that we need at least 3 voltage islands: one for {c1, c5, c8}, one for

{c2, c3, c10, c11}, and one for {c4, c6, c7, c9}. It is obviously not a perfect solution

because even the power saving is maximized, the price of area/wirelength overhead

may be very high. Sometimes we may be forced to use more islands, or to switch

the supply voltages of some blocks which support two or more legal supply voltages

to one of its higher legal voltages to alleviate the problems.

Our method to create the voltage islands is to constrain the nodes relationship

between each pair of nodes which exist the parent-child relationship in the B*-Tree

representation. In other words, to attain voltage islands requirement, we hope the

blocks which use the same supply voltage (say compatible) can be clustered together,

so we group those blocks to be a subtree in corresponding B*-Tree.

However due to the disadvantage of the B*-Tree representation, not any two

nodes abut in the tree always means that the corresponding two blocks abut. Sim-

ilarly, nodes are not in the same subtree do not mean they do not abut physically.

We give an example in Figure 3.2. Hence we observe that not all the blocks con-

structed in a subtree will be put together to form a voltage island, so we have no

necessary to place a B*-Tree with perfect subtrees. What we want to do is to in-

crease the probability those nodes can be clustered together, then apply a simple

checking method to inspect if they really form a favorable island.

During each iteration in the annealing process, area optimizing makes the mod-

ules getting closer to each other (the dead space is getting smaller), character of

mapping a subtree to a voltage island will be more apparent. The reason is that

because small dead space means that blocks packing is thick, therefore the possibil-

ity of contact between neighboring blocks is increasing. Then, the conditions like

14



Figure 3.2: Example to explain the condition that not any two nodes abut always
represent the situation that the corresponding two blocks abut; and nodes are not
in the same subtree do not mean they do not abut physically. In(a), node c7 is not
in the same subtree with {c2, c4, c5}; but in the floorplanning/placement, block c2,
c5 and c7 are connected. In(b), nodes {c1, c3, c6} form a subtree in the B*-Tree;
but in floorplanning/placement, block c3 is not connected with block c6. There are
extra overhead in this voltage island.
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Figure 3.2(a) will increase, and the conditions like Figure 3.2(b) will decrease.

We develop an idea to generate voltage islands in B*-Tree: When the area cost is

getting lower and the dead space of the total area is becoming smaller, there will be

a visible mapping relationship that if nj is the left child (or right child) of ni in the

B*-Tree representation, then the block bj right (or left) abuts to block bi. So much

so that the probability a node adds to a compatible subtree1 and the subtree grows

and mapping to a favorable voltage island shape will be increased. As the usage of

the concept, our approach to attain to the intent is to randomly choose two nodes

n, p in the tree, V (n) and V (p) denote the adopted voltages of node n and node p.

If the following three situations occur, we change the positions of these two nodes.

• V (p) = V (n): Node p and node n are compatible . This operation let compat-

ible blocks in the subtree or between subtrees can exchange their positions.

• V (p.parent) = V (n): Node p’s parent and node n are compatible. This oper-

ation allows exchanging two nodes to form a good subtree easily.

• V (p.leftchild) = V (n) and V (p.rightchild) = V (n): Node p’s left child and

right child both has the same voltage with node n. This operation allows

exchanging two nodes to form a good subtree easily as well.

Except the three operations considered to add for perturbation during simulated

annealing, we modify two operations when constructing a B*-Tree.

• Delete Node: If we want to delete node n, we raise the child node (n.leftchild

or n.rightchild) which is compatible with node n’s parent. If the children

are in the same situation (both compatible or both not compatible), then we

randomly choose one of them.

1A compatible subtree is a subtree which nodes inside are all in the same voltage with the node.
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Figure 3.3: Three added operations to increase the probability of clustering. (a)
Supply voltages of node n and node p are compatible, V (p) = V (n). We can
maintain the subtree property whose root is node p, even if there is not a subtree,
we just exchange the two nodes in the same supply voltage. No good voltage island
property will be ravaged. (b) Allow the two nodes p, n, V (p.parent) = V (n),
exchanging to let n be the leaf of the subtree or to connect two compatible subtrees
to a larger subtree. (c) Allow the two nodes p, n, V (p.leftchild) = V (n) and
V (p.rightchild) = V (n), exchanging to let n be the root of the subtree or to connect
two compatible subtrees as well.
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Figure 3.4: An illustration of the two modified constructing operations. Node n is
to be deleted from B*-Tree and inserted into the subtree which the root is node p.
Because node n1 and n5 is compatible, we raise n1 to replace the place of node n.
In the subtree whose root is node p, and n3, n4 and n12 are compatible nodes, we
can see from the graph, there are three possible places for node n to join the cluster
of subtree in the same voltage.

• Insert Node: If node n is to be inserted into the subtree whose root is node p

and there exists compatible nodes, it will be placed to join the cluster of the

compatible nodes. We insert node n to abut a node in the subtree that has

the same voltage to cluster them as possible. If there does not exist any node

compatible, then we randomly choose one place to insert into as before.

The reason why we need to remodel the basic procedures in constructing the tree

from before is that former floorplanners/placers only handle ”Position Constraints”.
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Position constraints are concerned on the changes of blocks position, either precise

position, such as pre-placed problems, or the relative position, i.e. alignment or

performance constraints problems. However, for preserving voltage island property,

each node in different supply voltage is in different condition. Nodes in different

supply voltages are ranked to different orders when needed to connect with other

nodes or delete from the B*-Tree.

The subtree construction is just a method to increase the trend that has higher

possibility constructing a good voltage island property, so we need a property check-

ing function to check if there is a favorable voltage island shape. We do it after the

contour updated to make sure the voltage island property is acceptable.

Here we introduce how we perform the voltage island property checking.

A horizontal contour is used in implementing a horizontal B*-Tree representation

to construct corresponding placement, it can be used to reduce the runtime for

finding the y-coordinate of a newly inserted module. Without the contour, the

runtime for placing a new module is linear to the number of blocks. By preserving

the advantage of runtime, we check voltage island property right after the updating

of the horizontal contour when inserting a new block. When a new block is inserted,

a new contour will replace the current contour, and there must be at least one

block contact with the new block. For the example in Figure 3.5, b5 is a newly

added block, it induces a new contour by replacing a segment of the odd contour

which was contributed by blocks b3, b4 and b0, and because of character of B*-

Tree to represent a placement (blocks can not be moved down nor left), so block

b5 must has connection with one of the three blocks. In Figure 3.5, block b5 has

contact with block b3, then we can observe the voltage island property by checking

if they are compatible to each other. They will be in the same voltage island if they

are compatible, or they will be in different voltage islands. With the addition of

the contour record, we can further observe the shape of the island, and preserve a
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Figure 3.5: An illustration of voltage island property checking method. b5 is a newly
added block which replaces a segment of contour contributed from b3, b4 and b0, so
we check the connection between the 3 blocks with block b5, not all of the blocks
inside the placement.

favorable shape in each iteration of simulated annealing if we want. Runtime will

be reduced a lot for we only check blocks on the segment of contour line replaced by

the new added block, not all of the blocks the voltage island property one by one.

Once we find a block contacts with new added block, we do not check other blocks

anymore, because their voltage island property had be constructed already.

3.2 Floorplanning/Placement with Performance

Constraints Blocks

Traditional floorplanners/placers minimize total wirelength but they can not guar-

antee critical nets to meet bounded delay. This becomes more important because

timing convergence is a big issue in DSM design. In order to make critical net de-

lay meets delay constraint, there is a method proposed in [14] [17]. Because actual
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interconnect delay after appropriate buffer insertions will be close to linear in terms

of distance. The concept of the method is to use the linear function in terms of

distance to estimate delay. They assume there are a source at (xs,ys) and a sink at

(xt,yt), their locations are the corner points as far as possible, and the delay of the

net Ds,t,

Ds,t = δ(| xt − xs | + | yt − ys |)

where δ is a constant to scale the distance to timing.

Ds,t is the maximum distance between source and sink equal to the half perimeter

of the bounding box of the two blocks. In [17], they use the delay model to do sub-

placement (to place a set of feasible sub-placements for the performance blocks) by

restricting those performance blocks the longest distance

(| xt − xs | + | yt − ys |) = Ds,t/δ ≤ Dmax/δ

Dmax is the given maximum delay for the distance from the source to the sink.

So given k performance blocks whose areas are Ai, i=1,2,...,k, they can get

some rectilinear super blocks that their width Wperf and height Hperf satisfy the

performance constraint:

Wperf + Hperf = B ≤ Bmax

Bmax is the maximum bounded distance

Among the placements (rectilinear super blocks) meeting the performance con-

straint, they pick the one with the minimum dead space Sperf= u*v-
∑

Ai and fix the

rectilinear block (and thus fix the delay) for further processing with other blocks.

By using the pre-clustered shape-fixed appropriate rectilinear block, they guarantee

that the performance constraint will be satisfied throughout the remaining process-

ing.
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There is a little difference in choosing an appropriate rectilinear super block in

[14]. In [14], they use a method that adjust the Wperf , Hperf dynamically into the

rectilinear super blocks. At higher temperature in annealing process, let Wperf and

Hperf to be half-half

Wperf = Bmax/2

and

Hperf = Bmax/2

Simulated annealing is characterized as chaotic process where a square range-box is

appropriate to use for approximate guidance. And at lower temperature, a specific

range box is almost fixed and can’t be changed easily to exactly capture the meaning

of delay bound.

Our method combines the advantages of the two methods above, using the B*-

Tree representation to handle the floorplanning/placement problems and we keep the

flexibility of the sub-placement for the performance constraint. We do not pick the

minimum dead space sub-placement and fix the shape (or the relational position)

of the performance blocks before processing with other blocks at the beginning.

Instead, we let the performance blocks process with other blocks as if they are

not under restriction, the total area and wirelength can be optimized better (this

phenomenon will be obvious if much more sets of performance constraint blocks

occur), the reason is that we do not tighten but just meet the constraints (so maybe

the distance between the blocks can be not so close to each other), so there is more

space flexibility to handle the overall placed area or wirelength.

When the temperature becomes low, we do not allow a solution that has infeasible

performance constraints even if it has a better cost value, the best solution will be

kept until next feasible solution with better cost.
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3.3 Simultaneous Voltage Island Generation and

Performance Constraints

More than that, the most important voltage islands property can be constructed

better by it, for that supply voltages of the performance blocks are possibly different,

if we tighten the shape at the beginning, we may be forced to arise the supply

voltages of some of them to the higher one to meet voltage island property and we

will lose power benefit; or we will get a disorder B*-Tree structure that the voltage

property is withered.

3.4 Our Methodology

Our floorplanning/placement design algorithm is based on the simulated anneal-

ing method [9]. We only consider hard modules here. The flow of our algorithm

is summarized in Figure 3.6. We perturb a B*-Tree to another by the following

operations:

• Op1: Change the supply voltage of a block. (Except that only one supply

voltage is available.)

• Op2: Rotate a block.

• Op3: Flip a block.

• Op4: Swap two blocks. (The three situations we discussed in Figure 3.3 will

have higher probability to be allowed to do swap, while other situations that

will wither the subtree property will have lower probability.)

• Op5: Move a block to another place. (It is pertinent with the two operations

in Figure 3.4, because moving a block to another place need to delete it from

the tree and then reinsert it into the tree.)
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Figure 3.6: The voltage islands and performance driven design flow.

The first one operation Op1 is designed for blocks’ voltage perturbation. In Op2,

we rotate a block. This action can be applied to any node without changing the

relations between any two nodes except performance constraints blocks. Because

each performance bounding box has a maximum bounded distance Bmax, we should

make sure not to violate the constraints. In Op3 , we flip a block. It can be applied

to any blocks including performance constraints blocks, for we do not tight them

together at the beginning. Op4 and Op5 change the relations of blocks to get a

different placement and B*-Tree structure. The detail procedures of our method is

discussed in Section 3.1.
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Chapter 4

The Experimental Results

Our method can handle circuits that have two or three kinds of supply voltages,

circuits with more than three supply voltages is also processible. If there is only one

supply voltage overall the circuit, then our program will run like original B*-Tree

simulated annealing method, and will not spend extra runtime to handle voltage

island property. We implemented our algorithm in the C++ programming language

on a PC with P4-2.4GHz cpu and 440MB memory. We experiment with our ap-

proach on MCNC circuit benchmark, and compare with [2], the original B*-Tree

with simulated annealing method.

To compare the power routing complexity, and the overhead area due to level

converters, we adopt a simple method to estimate the cost of it. Wire connections

between two blocks in different islands always need level shifters to change its signal

levels, we assume that all level converters are placed on the periphery of voltage

islands (the boundary of the two islands), except for the boundary of the chip. The

main reasons are that, firstly, we preserve a thin layered unit level converter area on

the boundary between two different islands, and it is enough for the required area of

all level converters for the wire connections; secondly, the power pins located on the

outmost periphery (the boundary of the chip), so we do not place level converters

there.
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Moreover, although different types of level converters may need different sizes of

area to implement, we simply assume all level converters are the same size. Based on

above assumptions, we count the boundary length except the outmost side to be the

power routing/overhead area cost. Table 4.1 show the experiment results, columns

1 and 2 give the name of the circuit (the number of blocks) and the power tables

we use, and the power consumption in column 5 is lowest since we use the lowest

available voltages for every block in it, and we compare the power routing/overhead

converter area cost from [2], which are normalized to ours.

We experiment our method by testing with different power tables, which are

comprised of (supply voltage, power dissipation) pairs. They are randomly assigned

in order to simulate the fact that different functional cores may be different in their

power density or supply voltage. Pt2 is the power table that contains 2 different

supply voltages, while pt3, pt3 1, pt3 2 are power tables contains 3 folds. Figure

4.1 is a feasible placement1 result graph of our voltage island generation method.

Note that even we use pt3 (or pt3 1, pt3 2) to construct voltage island, if the area

or wirelength requirement is tight, we may get the placement solution raising the

lower voltage blocks to a higher supply voltage to meet the requirement (we may

finally get a floorplanning/placement that are only 2 folds of voltage supplies even

we use pt3 series power tables to be the power information, an illustration examples

are shown in the Figure 4.2). Figure 4.3 is an example of a placement without

voltage island generation methodology, it is a scrambled placement even the power

consumption is the lowest.

From Table 4.1, we can see that our runtime is about 3 times to an original B*-

Tree method. Although our power consumption is a little more than the lowest power

listed in column 5 (because we assume they use lowest power), but our routing/level

1A feasible placement in B*-Tree representation with performance constraints is a placement
that no any two blocks overlap each other while each block can not be move left or down and
requirement of performance constraints is meet.
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Table 4.1: The comparison between [2] and our approach on power consumption and
power routing cost. The results are obtained from some MCNC benchmarks with
different power tables. Area in mm2, dead space(Dead) in%, power consumption(P)
in mW and runtime(T) in seconds. C is level converters area and routing cost.

Original B*-Tree [2] Ours
Circuit Table

Area Dead P C T Area Dead P C T
pt2 83.7 1.81 9.11 3.10% 86.4 15

hp
pt3

8.95 1.4%
73.4 2.38

4
9.10 2.98% 78.3 18

pt3 113.6 4.52 1.181 2.07% 123.2 89
ami33

pt3-1
1.27 8.94%

131.1 4.76
26

1.183 2.23% 136.3 89
pt2 147.1 4.18 36.67 3.34% 151.5 243
pt3 142 5.43 36.68 3.38% 156.2 234

pt3-1 183.1 6.11 36.75 3.52% 196.4 234ami49

pt3-2

36.8 3.68%

208 5.97

53

36.78 3.64% 222.9

1

240

converters cost is about 16.4% - 55.2% compared with [2].

In order to compare our results with [2] and [17] in similar number of voltage

islands and especially power routing cost, we come up with a heuristic that adjusts

supply voltage of the original B*-Tree results: For a floorplan/placement, we raise

firstly the block that is surrounded by the blocks applying the highest voltage (be-

cause a block that applies highest voltage means that its voltage can not be changed

to other voltage levels) until all the blocks applying highest voltage are connected

together to be a island. We fix the blocks that applying highest voltages, then take

care of the blocks applying second high voltage, the same method is used until they

form a island, too. Voltage islands generation is completed until all voltage level are

considered.

Figure 4.4 is an initial floorplan/placement without voltage island generation

methodology applying the lowest power, and Figure 4.5 is the placement result after

applying the heuristic to raise voltages of some blocks, and 3 - 4 voltage islands with

3 kinds supply voltages is acceptable. Figure 4.6 is an example of raising all lowest

voltage to form a two voltage islands floorplan/placement with 2 kinds of supply
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Table 4.2: The comparisons between power amount that need to be raised to form
a voltage island floorplan/placement. The number of voltage islands and power
routing/level converters area cost are nearly the same for both approaches.

Ours Original B*-Tree [2]
Circuit Table Lowest

Power Percentage Power Percentage
pt2 83.7 86.4 3.2% 97.9 16.7%

hp
pt3 73.4 78.3 6.7% 91.6 24.8%
pt3 113.6 123.2 8.5% 136.8 20.4%

ami33
pt3-1 131.1 136.3 4% 161.7 23.3%
pt2 147.1 151.5 3% 171.4 16.5%
pt3 142 156.2 10% 169.6 19.4%

pt3-1 183.1 196.4 9.7% 239.6 30.1%ami49

pt3-2 208 222.9 7.2% 254.3 22.3%

voltages.

The power in column 4, 6 and the percentage in column 5, 7 are the power

for nearly the same cost in number of voltage islands and the increased percentage

according to the lowest power column 3 of Table 4.2. We can see that at least 10%

- 20% power consumption can be saving by our method, not to mention the good

shape of our generated voltage islands.

Table 4.3 show the comparisons of our results with [17] which considers only

alignment and performance constraints. Our approach considers performance con-

straints and the generation of voltage islands.

Finally, we show Figure 4.7 and 4.8, two placement results that simultaneously

consider voltage island generation and performance constraints. Figure 4.7 is a

placement example applied tighter constraints, while Figure 4.8 is a looser one.
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Table 4.3: Comparisons of the floorplanning/placement results including perfor-
mance constraints with [17].

Perf. Constraint Only[17] Ours
Circuit Table Perf.

Area Dead P C Area Dead P C
pt3 113.6 4.34 1.18 2.02% 121

ami33
pt3-1

3 1.181 2.2%
131.1 4.93 1.181 2.2% 145.1

pt2 147.1 4.5 36.78 3.64% 156
pt3 142 6.33 36.89 3.93% 154.5

pt3-1 183.1 6.89 36.87 3.86% 200.9ami49-2

pt3-2

3 36.56 3.1%

208 6.7 36.89 3.93% 221.9
pt2 147.1 4.48 36.8 3.68% 156.8
pt3 142 6.43 36.98 4.14% 149.7

pt3-1 183.1 6.6 37.1 4.46% 215.9ami49-3

pt3-2

6 36.64 3.3%

208 6.25 37.07 4.38% 223.3

1
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Figure 4.1: A feasible placement of circuit ami33 with 3 usable supply voltages.
Dead space=2.07%, power=123.2mW while the lowest power =113.6mW (since we
want smaller dead space, we must give away some power).
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Figure 4.2: A feasible placement of circuit ami49 with 3 usable supply voltages power
table information, but this placement result only use 2 kinds of supply voltages.
Dead space=3.38%, power=156.2mW while the lowest power =142mW .
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Figure 4.3: A traditional placement of circuit ami33 without voltage island genera-
tion methodology. Dead space=1.47%, and the power routing/level converter area
cost=4.77.
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Figure 4.4: An illustration of circuit ami33 without voltage island methodology.
Dead space=2.12%, power=113.6mW .
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Figure 4.5: An illustration of circuit ami33 applying heuristic of supply voltage
adjusting method for original B*-Tree result in Figure 4.4. We raise some blocks’
supply voltages to reduce some power routing and area overhead due to level con-
verters. Power=136.8mW , a 20.4% increase in power consumption compares to the
lowest power dissipation.
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Figure 4.6: An example of circuit ami33 from Figure 4.4 raising all the lowest supply
voltage and forming two voltage islands finally. Power=146.3mW , a 28.8% increase
in power consumption.

0 500 1000 1500
0

500

1000

1500

 7 

6 

5 

Figure 4.7: A feasible placement result with performance constraints consideration.
Circuit ami33 with blocks 5, 6 and 7 under tighter performance constraints. Dead
space=2.30%, power=116.9mW while the lowest power =113.6mW .
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Figure 4.8: A feasible placement result with performance constraints consideration.
Circuit ami49 with blocks 5, 6 and 7 under looser performance constraints. Dead
space=4.53%, power=146.6mW while the lowest power =142mW .
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Chapter 5

Conclusion and Future Work

In this thesis, we have presented an effective algorithm to deal with the floor-

planning/placement with voltage islands consideration and performance constraints.

The algorithm is based on the B*-tree representation and the simulated annealing

framework. According to the circuit power table information and the idea of location

constraint (LC relation), we can group a set of cores using the same supply voltage

and form a good shape of voltage island. The experimental results have shown the

effectiveness and efficiency of our algorithm.

As the driving of the consumer product market and the growing use of portable

and wireless electronic systems, low power design consideration has become essen-

tial today. There are many techniques to reduce power dissipation at each level

of the design abstraction in [13], many things we need to take into consideration

from other levels of design flow, even some are never been considered in the floor-

planning/placement stage before. To study other low power design methodologies,

and to combine and integrate these methods altogether to reach a whole low power

system consideration will be a good orientation of future trend. We will focus on

this as our future work.
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