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Design of RF CMOS linear Power Amplifier for 802.11a
and UWB Applications

Student: Gi-Time Lin Advisor: Albert Chin
Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University, Hsinchu, Taiwan, R.O.C

Abstract

The rapid growth of the market for portable wireless communication devices has
given great push to the development of a next generation of low power radio
frequency integrated circuits (RFIC) product.. A single chip CMOS transceiver has
been implemented available due.to improve of process, some short range wireless
systems such as IEEE 802.11a/b/g/n, Wireless Local‘Area Network (WLAN), and the
802.15.3a standards have made wireless”computing and other broadband service
possible.

This thesis describes the design: of key RF block in the UWB transceiver- the
power amplifier. In the Chapter3, a power amplifier by using cascode configuration is
designed. The PA allows the maximum output power 22dBm, and has power gain
26dB, P1dB at -3dBm, and total current consumption 204mA at DC supply 3.3V. In
the Chapter4, it describes a 3~10GHz power amplifier for UWB application, by use
inductor-resistor feedback configuration. In practical measurement, we have power
gain 13~0dB, and noise figure 4~7dB from 3~10GHz. The P1dB is 4dBm and PAE is
lower than 3% from 3~6GHz. Total power consumption is 74.4mW with vg 1.2V and
vd 1.2V condition.

All the above mentioned results are from simulation in ADS and using TSMC
0.18um process. The practical measurement is according to NDL RFIC measurement

systems.
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