
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

超寬頻系統

之

快速傅立葉轉換模組設計

Design of FFT/IFFT module

for Ultra Wideband System

研 究 生:林格輝 Ko-Hui Lin

指導教授:溫瓌岸 博士 Dr. Kuei-Ann Wen

中華民國九十四年六月

超寬頻系統之

快速傅立葉轉換模組設計

Design of FFT/IFFT module

for Ultra Wideband System

研 究 生:林格輝 Student：Ko-Hui Lin

指導教授:溫瓌岸 博士 Advisor：Dr. Kuei-Ann Wen

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to the Department of Electronics EngineeringCollege of

Electrical Engineering and Computer Science

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In

Electronic Engineering

June, 2005

HsinChu, Taiwan, Republic of China

中華民國 九十四年六月

I

超寬頻系統之快速傅立葉轉換模

組設計

研究生： 林格輝 指導教授： 溫瓌岸 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

在本論文當中，從系統的需求探討超寬頻系統內的快速富立葉轉換模組的規

格並設定所需要達到的目標，以高效能、高速和低延遲為首要目標。先從演算法

的角度分析各總架構的複雜度，再從電路架構上選擇最佳的實作架構。最終，我

們使用平行管線式架構來實現一個符合 802.15.3a規格的高效能、高速和低延遲

的快速傅立葉轉換，並且作完整的電路驗證。硬體實現上，使用聯電 0.18微米

製程，核心面積為 1564.86 x 1564.64 um2，輸出量可達每秒 800百萬取樣。

I

Design of FFT/IFFT module for
Ultra Wideband System

Student: Ko-Hui Lin Advisor: Dr. Wen Kuei-Ann

Department of Electronics Engineering Institute of Electronics

National Chiao-Tung University, HsinChu, 2005

Abstract
In this thesis, we discuss the spec. of the FFT/IFFT module of the Ultra

Wideband system from system requirement and we make the design target is high

performance, high speed and low latency. We analyze the complexity of each

algorithm and select appropriate circuit architecture to implement. Based on the

system requirements of 802.15.3a Ultra Wideband, we proposed a modified radix-8

pipeline based architecture to implement a high performance, high speed and low

latency FFT/IFFT module. The hardware was implemented using UMC 0.18μm

technology with core size 1564.86 x 1564.64 um2 and throughput is 800M samples

per second.

誌 謝

 首先，第一個要感謝的是指導教授，溫瓌岸教授。感謝老師在兩年研究生涯

中，不斷的給予格輝指導與督促。溫老師的循循教誨，讓學生在學習訓練的路途

上，能夠快速而正確的修正自己的研究方向，並且保持不鬆懈的心態進行研究。

也感謝 TWT_LAB在這兩年中提供的豐富研究資源，讓我在研究上無後顧之憂。

 感謝實驗室的學長們的指導與照顧:彭嘉笙，溫文燊，莊源欣，周美芬，陳

哲生，鄒文安，林立協。感謝兩年來一起打拚的同學:宋兆鈞，黃相霖，趙皓名，

吳健銘，楊富昌。還有實驗室的學弟帶來的快樂時光: 蔡彥凱，廖俊閔，張懷仁，
張書瑋，賴俊憲，洪志德，游振威，卓彥宏。大家在生活上的互相扶持與鼓勵，

讓原本辛苦煩悶的研究工作，也變的輕鬆愉快許多。同時也要感謝實驗室的助理:

何卉蓁，李苑佳，楊怡倩，呂怡華，有妳們幫忙處理實驗室的雜務，才能讓我們

能夠專心致力於研究。

 最後，感謝默默支持我的家人，媽媽，爺爺，奶奶，叔叔和阿姨們。你們不

斷的支持與鼓勵，讓我覺得更需要努力來回報你們。

 最後的最後，感謝我的女朋友文玉，謝謝你陪我一路走來，也感謝你的體諒

與體貼。

 II

Contents

Abstract…..…………………………………………………………………………. I
Contents….………………………..………………………………………………....II
List of Tables……………………..…………………………………………………III
List of Figures……………………..………………………………………………..VI

Chapter 1. Introduction…………………………………………………………..1

1.1. Introduction for Ultra Wideband……………………..……………………...1
1.2. Ultra Wideband physical layer………………………………………….........2
1.3. OFDM overview………………………………………………………….........5
1.4. 128-point FFT for UWB spec………………………………………………....8
1.5. Organization of thisthesis………………………………………………..........9

Chapter 2. FFT algorithm……………………………………………………….10
2.1. Discrete Fourier Transform…………………………………………..……...10
2.2. Complexity comparison………………………………………………..…….11
2.3. 128-point FFT algorithm………………………………………………..…...15
2.4. 64-point FFT algorithm……………………………………………..……….19

Chapter 3. FFT module architectures………………………………………….25
3.1. Introduction…………………………………………………………………..25
3.2. Radix-8 butterfly architecture………………………………………………26
3.3. Twiddle factor multiplication……………………………………………..…27

3.3.1. General complex multiplier……………………………………………...28
3.3.2. CORDIC-Based phased rotator…………………………………………29
3.3.3. MAC-Based complex multiplier………………………………………...32
3.3.4. The comparison of twiddle factor multiplier…………………………...33

3.4. Constant multiplier design……………………………..……………………35
3.5. 128-point FFT circuit design………………………………………………...38
3.6. Design of reorder buffer and output buffer………………………………...42

Chapter 4. Implementation and verification…………………………………...47
4.1. Introduction…………………………………………………………………..47
4.2. Behavior module design……………………………………………………..49
4.3. Verification……………………………………………………………………52
4.4. Timing verification…………………………………………………………...57
4.5. Chip implementation…………………………………………………………58
4.6. FPGA prototyping..…………………………………………………………..60
4.7. Compared with other design………………………………………………...61

 III

Chapter 5. Measurement results………………………………………………..62
5.1. FPGA measurement plan…………………………………………………….62
5.2. FPGA measurement results………………………………………………….64

Chapter 6. Conclusions and Future works……………………………………..67
6.1. Conclusions…………………………………………………………………...67
6.2. Future works. ………………………………………………………………...68

Reference…………………………………………………………………………….69

LIST OF TABLES

Table 1.1 Rate-dependent parameters.…………………………………………….…..2
Table 1.2 Timing-related parameters.…………………………………………...……..3

Table 1.3 PHY layer timing parameters.[2]..…………………………………...……..3

Table 2.1 Multiplicative comparison………………………………………………....12

Table 2.2 Multiplications and additions comparison…………………………………12

Table 2.3 Equation of multiplications and additions comparison……………………13

Table 2.4 The number of switch………………..…………………………………….15

Table 3.1 The comparison of twiddle factor multiplication.…………………………34

Table 3.2 The comparison of the twiddle factor multiplication after retiming………35
Table 3.3 All kinds of combination of 128-point FFT vs. Latency……………..……46
Table 4.1 ADS co-simulation for EVM (dB)…………………………………..…….56

Table 4.2 Synthesis reports…………………………………………..........................58

Table 4.3 The chip summery.…………………………………...……………..……..59

Table 4.4 Xilinx FPGA synthesis report….. …………………………………………60

Table 4.5 Comparison of 128-point FFT…………………………………………..…61

Table 4.6 Comparisons……………………………………………………………….61

Table 5.1 Xilinx FPGA synthesis report for measurement……………………….…..64

 IV

LIST OF FIGURES

Figure 1.1 Function block of Ultra Wideband System…………………………..........4

Figure 1.2 Spectra of an OFDM signal in frequency domain…………………………6

Figure 1.3 Illustration of the 128-point FFT…………...…………………………..….8

Figure 2.1 Complexity comparison of real number multiplication of table 2……......13

Figure 2.2 Complexity comparison of real number addition of table 2.3…………....14

Figure 2.3 Illustration of inter connection in FFT……………………………………15

Figure 2.4 Number of switch versus radix-r………………………………………….15

Figure 2.5 radix-2 butterfly…………………………………………………………..17

Figure 2.6 Signal flow graph of 128-point FFT algorithm.…………………………..18

Figure 2.7 Signal flow graph of 64-point FFT algorithm.……………………...…….19

Figure 2.8 signal flow graph of N-point radix-8 FFT………………………….…..21

Figure 2.9 Radix-8 DIF butterfly…………………………………………...………..22

Figure 2.10 Three step radix-8 DIF butterfly………………………...………….…..23

Figure 3.1 Architecture of Radix-8 butterfly…………………………………......….27

Figure 3.2 Architecture of General complex multiplication……………………..…..29

Figure 3.3 CORDIC-Based phased rotator architecture……………………………..32

Figure 3.4 MAC-Based phase rotator.…………………...…………………………..33

Figure 3.5 Architecture of
1

8W complex multiplier.……………………………..….36

Figure 3.6 Operation of constant multiplier.……………………………………...….37

Figure 3.7 Architecture of constant multiplier………………………..………...……38

Figure 3.8 128-point FFT circuit block diagram…………………….…………...…..39

Figure 3.9 Timing diagram of 128-point FFT ……………….………………………41

 V

Figure 3.10 Output data sequence……………………………………………………42

Figure 3.11 RAM addressing of the reorder buffer…………………………………..43

Figure 3.12 Architecture of the reorder buffer……………………………………….43

Figure 3.13 Architecture of output buffer…………………………………………....44

Figure 3.14 FFT/IFFT reorder…………………………………………………….....44

Figure 3.15 All kinds of combination of 128-point FFT. …………………………....45

Figure 4.1 Design & Verification flow……………………………………………....48

Figure 4.2 MATLAB simulation for word-length decision (1)……………….……..50

Figure 4.3 MATLAB simulation for word-length decision (2)………………...……51

Figure 4.4 FFT and IFFT……………………………………………………………52

Figure 4.5 Self-check test bench…………………………………………………….53

Figure 4.6 ADS co-simulation………………………………………………………54

Figure 4.7 Output histogram…………………………………………….…..………55

Figure 4.8 Compare ideal output and HDL output…………………………………..55

Figure 4.9 Saturated output operation……………………………………….………57

Figure 4.10 Saturated output error vector…………………………………………...57

Figure 4.11 Layout view……………………..……………………….……………..59

Figure 5.1 FPGA measurement plan……………. …………………………………63

Figure 5.2 FPGA measurement environments………………………………………63

Figure 5.3 FPGA input signal (view from Logic Analyzer).………………………..65

Figure 5.4 FPGA output signal (view from Logic Analyzer)……………………….65

Figure 5.5 Verify outputs signal with MATLAB……………………………….…...66

 1

Chapter 1. Introduction.

1.1. Introduction for Ultra Wideband.

The Ultra WideBand (UWB) system is a kind of wireless personal area networks

(WPANs), which also known as in-home networks, WPANs address short-range

(generally within 10~20m) connectivity among portable consumer electronic and

communication devices. They are envisioned to provide high-quality real-time video

and audio distribution, file exchange among storage systems, and cable replacement for

home entertainment systems. UWB technology emerges as a promising physical layer

candidate for WPANs, because it offers high-rates over short range, with low cost, high

power efficiency, and low duty cycle. [11]

 2

1.2. Ultra Wideband physical layer.

The UWB system that utilizes the unlicensed 3.1 ~ 10.6 GHz band. UWB system

provides data payload communication capabilities of 53.3, 55, 80, 106.67, 110, 160,

200, 320, and 480 Mb/, and UWB system employs orthogonal frequency division

multiplexing (OFDM). The system uses a total of 122 sub-carriers that are modulated

using quadrature phase shift keying (QPSK). Forward error correction coding

(convolutional coding) is used with a coding rate of 1/3, 11/32, ½, 5/8, and ¾. The

system also utilizes a time-frequency code (TFC) to interleave coded data over 3

frequency bands. Table 1.1 shows the rate-dependent parameters in each data rate. [2]

Table 1.1 Rate-dependent parameters. [2]

Data
Rate

(Mb/s)

Modula
tion

Coding
rate
(R)

Conjugate
Symmetric

Input to IFFT

Time
Spreading Factor

Overall
Spreading

Gain

Coded bits per
OFDM symbol

(NCBPS)

53.3 QPSK 1/3 Yes 2 4 100

55 QPSK 11/32 Yes 2 4 100

80 QPSK ½ Yes 2 4 100

106.7 QPSK 1/3 No 2 2 200

110 QPSK 11/32 No 2 2 200

160 QPSK ½ No 2 2 200

200 QPSK 5/8 No 2 2 200

320 QPSK ½ No 1 (No spreading) 1 200

400 QPSK 5/8 No 1 (No spreading) 1 200

480 QPSK ¾ No 1 (No spreading) 1 200

In table 1.2, it lists timing-related parameters where the 128-point IFFT/FFT

period is 242.42 ns and an OFDM symbol is TSYM = TCP + TFFT + TGI =312.5 ns. TCP is

 3

the circular prefix which is used in OFDM to mitigate the effects of multipath. The

parameter TGI is the guard interval duration.

Table 1.2 Timing-related parameters. [2]

Parameter Value

NSD: Number of data subcarriers 100

NSDP: Number of defined pilot carriers 12

NSG: Number of guard carriers 10

NST: Number of total subcarriers used 122 (= NSD + NSDP + NSG)

∆F: Subcarrier frequency spacing 4.125 MHz (= 528 MHz/128)

TFFT: IFFT/FFT period 242.42 ns (1/∆F)

TCP: Cyclic prefix duration 60.61 ns (= 32/528 MHz)

TGI: Guard interval duration 9.47 ns (= 5/528 MHz)

TSYM: Symbol interval 312.5 ns (TCP + TFFT + TGI)

In table1.3, the RX-to-TX turnaround time shall be pSIFSTime which is equal to

32 OFDM symbol. The pSIFSTime includes the latency of the RF, PHY and MAC. The

RX-to-TX turnaround time is related to the throughput of the system. If we can reduce

the latency of PHY, we can increase the throughput of the system.

Table 1.3 PHY layer timing parameters.[2]

PHY Parameter Value

pMIFSTime 6*TSYM = 1.875 µs

pSIFSTime 32*TSYM = 10 µs
pCCADetectTime 15*TSYM = 4.6875 µs

pChannelSwitchTime 9.0 ns

In figure 1.1, UWB physical (PHY) layer contain transmitter and receiver, but

IFFT/FFT is both shared with transmitter and receiver. The IFFT/FFT in OFDM system

 4

plays an important role for transform time domain to frequency domain or frequency

domain to time domain. Because IFFT/FFT is a dual mode circuit, we can control its

operation mode and use multiplexer to switch input signal. This UWB spec. [2] don ’t

restrict the receive latency of PHY, but the latency of receiver is a factor of the

performance in communication system. Thus, the latency of receiver must as small as

possible. However, the spec. of Wireless LAN, 802.11a, which restrict PHY to only

have 4 OFDM symbols latency to process receive data.[13] For local property, if we

reduce the latency of each sub-block, then the system latency can be also reduced.

Figure 1.1 Function block of Ultra Wideband System.

 5

1.3. OFDM overview.

OFDM is a special case of multicarrier transmission, where a single data stream is

transmitted over a number of lower rate subcarriers. OFDM can be seen as either a

modulation technique or a multiplexing technique. One of the main reasons to use

OFDM is to increase the robustness against frequency selective fading or narrowband

interference. In a single carrier system, a single fade or interferer can cause the entire

link to fail, but in multicarrier system, only a small percentage of subcarriers will be

affected. Error correction coding can then be used to correct for the few erroneous

subcarriers.[1]

“Orthogonal” means there is mathematical relationship between the frequencies of

the carriers. In conventional FDM (frequency division multiplex) system, guard bands

are introduced between different carriers, so it can still use conventional filters and

demodulators. Unfortunately, it will result in downgrading of spectrum efficiency. It

could be possible that sidebands overlapped and the signal can still avoid interference

from adjacent channel. To achieve this target, the carrier must be mathematically

orthogonal. In eq.(1.0)[10], is a OFDM signal described by mathematical equation,

where with N subcarriers and symbol duration is T, and notice that ()s n is the inverse

Fourier Transform of the ()ix n . In figure 1.2, it illustrates spectra of eq.(1.0);

orthogonal between carriers at any carrier ’s sampling point, and the interference of

 6

adjacent channels is all zero.

1

0
() () exp(2), for 0 ;0

, 0,1, , 1

N

i i
i

i c

As n x n f n n N i N
N

if f i N
T

π
−

=

= ≤ ≤ ≤ ≤

= + = −

∑

 (1.0)

Figure 1.2 Spectra of an OFDM signal in frequency domain.

Further more, to eliminate the banks of subcarriers oscillators and coherent

demodulators required by frequency division multiplex, digital implementation can be

built by a special hardware named FFT (Fast Fourier Transform), which is an efficient

implementation of DFT (Discrete Fourier Transform).

Using this method, both transmitter and receiver can be implemented using FFT

techniques that reduce the number of computational load from N 2 in DFT down to

NlogN [9].

The OFDM transmission scheme has the following advantages:

 7

● OFDM is an efficient way to deal with multipath; for a given delay spread, the

implementation complexity is significantly lower than that of a single carrier system

with equalizer.

● In relatively slow time-varying channels, it is possible to significantly enhance

the capacity by adapting the data rate per subcarriers according to the signal to noise

ratio of that particular subcarriers.

● OFDM is robust against narrowband interference, because interference only

affects a small percentage of subcarriers.

● OFDM make single frequency networks possible, which is especially attractive

for broadcasting applications.

OFDM also has drawbacks:

● OFDM system is sensitive to frequency offset and phase noise.

●OFDM system has relatively large peak to average ratio, which tends to reduce

the power efficiency of the RF amplifier. [1]

 8

1.4. 128-point FFT for UWB spec.

In table 1.2, the 128-point IFFT/FFT period TFFT = 242.42 ns, if we using serial

one sample input and output architecture, the clock period = 242.42 ns/128 = 1.89 ns,

that is, we must operate digital circuit in 528 MHz and that is very critical in 0.18

process, but we use parallel architecture and lower clock frequency to solve this

problem. In figure 1.3, we use parallel 4 input samples and parallel 4 output samples

and 528 MHz divide by 4 equals 132MHz, that is, we can use lower clock rate

(132MHz) to fit UWB spec. by parallel FFT architecture.

Figure 1.3 Illustration of the 128-point FFT

 The resolution of input bits are 5 bits and the resolution of output bits are 8

bits for system required, and we will discuss resolution in chapter 4.

 9

1.5. Organization of this thesis.

The summary of each chapters are listed as follow:

Chapter No. & title Brief introduction

Chapter 2:
 Algorithm

First, we compare the computational complexity
with radix-2, radix-4 and radix-8 algorithm, and
then explain why we make choice of radix-8
algorithm. Finally, we introduce how to transform
128 points DFT to 128 points radix-8 FFT.

Chapter 3:
 FFT module architecture

In this chapter, we introduce the architecture of
128-point FFT by bottom up sequence. The
submodules are introduced first, and they include
radix-8 butterfly, twiddle factor multiplier and
constant multiplier. Then, we assemble all
submodules to 128-point FFT and we show the
timing diagram to illustrate the operational
schedule. Finally, we utilize the reorder buffer to
reorder output signal and we will introduce the
architecture of reorder buffer and how it works.

Chapter 4:
 Implementation and Verification

The design and verification flow is shown first, and
we discuss how to implement this design and how
to verify this design. First in implementation phase,
we discuss the effect of the EVM upon the
word-length and how to select the word-length for
system requirement. Then, we introduce an
efficiency verification method and circuit
performance. Finally, we show the summary of the
chip implementation and compare this design with
other design.

Chapter 5:
 Measurement results

In this chapter, we report the FPGA synthesis
reports and FPGA measurement plan and the
measurement results.

Chapter 6:
 Conclusion and feature works

We make a conclusion of this design and discuss
what can be improving in feature works.

 10

Chapter 2. FFT algorithm.

2.1. Discrete Fourier Transform

The N-point Discrete Fourier Transform (DFT) of a sequence x(n) is defined as

1

0
() () , 0,1 1 (1)

N
nk

N
n

X k x n W k N
−

=

= = −∑

Where x(n) and X(k) are complex numbers. The twiddle factor is

2() 2 2cos() sin() (2)
nkjnk N

N
nk nkW e j

N N
π π π−

= = −

Accord to eq. (1), the computational complexity is O(N2) through directly

performing the required computation. It needs N2 complex multiplications and N(N-1)

complex additions. If using the FFT algorithm, the computational complexity can be

reduced to O(NlogrN), where r means the radix-r FFT. The radix-r FFT can be derived

from DFT by decomposing the N-point DFT into a set of recursively related r-point

transform. There are two basic types of FFT algorithm, decimation in time (DIT) and

decimation in frequency (DIT). The DIT algorithm is to decompose x(n) into radix-r

 11

modules sequence, and the DIF algorithm is to decompose X(k) in the same way.

2.2. Complexity comparison

From table 2.1 [3] and table 2.2 [4], the multiplication and addition of radix-8 have

the lowest complexity compared with radix-2 and radix-4. In table 2.1 radix-8 consist

of constant multiplications and real multiplications. The constant multiplication can be

implemented by shifters and adders whose hardware is simpler than a real

multiplication. Table 2.3 [5] is the complexity equation of multiplications and additions.

The radix-8 type1 algorithm is the original radix-8 FFT algorithm. In radix-8 type2

algorithm, we replaced multiplication of
1

8W into p additions. According to our

discussion in the next section, we set the parameter p to be 3 here. But according to the

large silicon area and power hungry features of complex number multiplier , we only

focus on the number of real number multiplications. In figure 2.1, radix-8 type2 has the

lowest computational complexity, so we choose radix-8 type2 as the building block to

implement 128-points fft.

 12

Table 2.1 Multiplicative comparison [3]

N Radix-2 Radix-4 Radix-8

Mul Mul Mul Mul Const. Mul

8 2 3 0 2

16 10 8 6 4

32 34 31 20 8

64 98 76 48 32

128 258 215 152 64

256 642 492 376 128

512 1538 1239 824 384

1024 3586 2732 2104 768

2048 8194 6487 4792 1536

4096 18434 13996 10168 4096

8192 40962 32087 23992 8192

Table 2.2 Multiplications and additions comparison [4]

 Real Multiplications Real Additions

N Radix-2 Radix-4 Radix-8 Radix-2 Radix-4 Radix-8

16 24 20 152 148

32 88 408

64 264 208 204 1032 976 972

128 720 2054

256 1800 1392 5896 5488

512 4360 3204 13566 12420

1024 10248 7856 30728 28336

 13

Table 2.3 Equation of multiplications and additions comparison [5]

algorithm Real Multiplication Real Addition

Radix-2 8
2
7log

2
3

2 +− NNN .8
2

7log
2

5
2 +−

NNN

Radix-4 33log
8

9
2 +− NNN .33log

8
25

2 +− NNN

Radix-8

type1

4)3(log
24

25
2 +−NN .4

8
25log

24
73

2 +−
NNN

Radix-8

Type2

4
8
25log

24
21

2 +− NNN 4
8
25log

24
738

2 +−
+ NNNp

Figure 2.1 Complexity comparison of real number multiplication of table 2.3

 14

Figure 2.2 Complexity comparison of real number addition of table 2.3

 In figure 2.4, it illustrate the inter connection in radix-2 FFT. We make 8 radix-2

butterfly to be an unit, then 16-point FFT needs 4 times recursive operation which

needs 3 times decimation. The number of switch shows in equation (02), where N is

number of points, r is radix-r, and stage is total stage. The parameter p is the number of

switch in different radix. In table 2.4, we show radix-r from radix-2 to radix-16 when N

is equal to 128. In figure 2.4, we show that radix-8 can provide the less number of

switches. Because the number of switches is related to the complexity of the design, we

chose radix-8 architecture to implement this design.

()1 1 1Number of switch N stage p
r

 = × − × − +

 (02)

 15

Figure 2.3 Illustration of inter connection in FFT.

Table 2.4 The number of switch.

Figure 2.4 Number of switch versus radix-r.

2.3. 128-point FFT algorithm

To develop FFT algorithms, set N in eq. (1) to be power of 2 and consider

 16

computing separately the even-numbered frequency samples and the odd-numbered

frequency samples. The even-numbered frequency samples are

1
(2)

0
(2) () 0,1,....., (/ 2) 1,

N
n r

N
n

X r x n W r N
−

=

= = −∑
 (3)

This can be expressed as

(/ 2 1) 1
(2) (2)

0 / 2
(2) () ()

N N
n r n r

N N
n n N

X r x n W x n W
− −

= =

= +∑ ∑
 (4)

With a substitution of variables in the second summation in (4), than

(/ 2 1) (/ 2) 1
(2) [(/ 2)]2

0 0
(2) () ((/ 2))

N N
n r n n r

N N
n n

X r x n W x n N W
− −

+

= =

= + +∑ ∑
 (5)

Finally, because of the periodicity of
2rn

NW

2 [(/ 2)] 2 2r n n rn rN rn

N N N NW W W W+ = =

Since
2

/ 2N NW W= , (5) can be expressed as

(/ 2 1)

/ 2
0

(2) [() ((/ 2))] , 0,1,....(/ 2) 1,
N

rn
N

n
X r x n x n N W r N

−

=

= + + = −∑
 (6)

From (6) is the (N/2)-point DFT of the (N/2)-point sequence obtained by adding

the first half and the last half of the input sequence. Adding the two halves of the input

sequence represents time aliasing, consistent with the fact that in computing only the

even-numbered frequency samples, that are under sampling the Fourier transform of

x(n). In the same way, we can get the odd-numbered frequency points, given by

(/ 2 1)

/ 2
0

(2 1) [() ((/ 2))] , 0,1,....(/ 2) 1,
N

n rn
N N

n
X r x n x n N W W r N

−

=

+ = − + = −∑
 (7)

 17

 From (6) and (7) let N=128, than the even-numbered frequency samples and the

odd-numbered frequency samples can be divided as eq. (8).

63

64
0

63

64 128
0

(2) [() (64)]

(2 1) [() (64)]

kn

n

kn n

n

X k x n x n W

X k x n x n W W

=

=

= + +

 + = − +

∑

∑
 0,1, ,63n = (8)

 Equation (7) is the 64-point DFT of the sequence obtained by subtracting the

second half of the input sequence from the first half and multiplying the resulting

sequence by
n

NW . Thus, on the basis of (6) and (7), with (9), the DFT can be computed

by first forming the sequence g(n) and h(n), then computing h(n) 128
nW , and finally

computing the 64-point DFTs of these two sequences to obtain the even-numbered

output points, respectively. The procedure suggested by (8) is illustrated by radix-2

butterfly.

() () ()
2

() () ()
2

Ng n x n x n

Nh n x n x n

 = + +

 = − +
 (9)

Figure 2.5 radix-2 butterfly

() () ()
2
Ng n x n x n= + +

() () ()
2
Nh n x n x n= − +()

2
Nx n +

()x n

 18

Figure 2.6 Signal flow graph of 128-point FFT algorithm.

In figure 2.5, a radix-2 butterfly operation is illustrated. In figure 2.6,the signal

flow graph of DIF 128-point FFT algorithm is listed. The first stage is radix-2

butterfly with a twiddle factor multiplication, then the 64-point FFT is the second stage

of 128-point FFT. The signal flow graph of DIF 64-point FFT algorithm is listed in

figure 2.7, we can observe that the 64-point FFT consists of two stages radix-8

 19

butterfly and twiddle factor multiplication. Then we will introduce the 64-point FFT

algorithm at the next section.

Figure 2.7 Signal flow graph of 64-point FFT algorithm.

2.4. 64-point FFT algorithm

We use radix-8 FFT algorithm to conduct 64-point FFT algorithm. The N point

DFT is rewrite at eq. (10), where N is the power of 8.

1

0
() () , 0,1 1,

N
nk

N
n

X k x n W k N
−

′

=

′ ′= = −∑ 8 , aN a N= ∈ (10)

Using the value transform, let 8k k l′ = + and 1 2n n n= + .

 20

0, , 1
 8 8

0,1, ,7

Nk
Let k k l

l

 = −′ = +
 =

 (11)

1

2

0, , 1
 1 2 8

0,1, ,7

Nn
Let n n n

n

 = −= +
 =

 (12)

Replace the k′ and n , the new equation will be

1

1 2

2 1 1

1 2

1 78 ()(8)
8

1 2
0 0

1
78

1 2 8
0 0 8

8 int

int
8

(8) ()
8

()
8

N
Nn n k l

N
n n

N

ln ln kn
N N

n n twiddle factor
po DFT

N po DFT

NX k l x n n W

Nx n n W W W

−
+ +

= =

−

= =

−

−

+ = +

 = + ⋅

∑ ∑

∑ ∑

 (13)

Equation (13) can be considered as two-dimensional DFT. One is 8-point DFT and

the other is N/8-point DFT as shown in figure 2.8. Then, by decomposing the N/8-point

DFT into the 8-point DFT recursively through a-1 times, where a is equal to 8logN , we

can complete the N-point radix-8 DIF FFT algorithm. In (13), the 8-point DFT which is

the basic operation unit, is shown in figure 2.9. A butterfly is also an essential

arithmetic component in an FFT processor. In figure 2.9, it is clearly seen that seven

complex multipliers are need in a butterfly unit by direct mapping approach to

implement 8-point DFT. Radix-8 FFT algorithm is seldom used in single-memory FFT

architecture, because the hardware cost of its butterfly unit is too high to implement. In

order to implement radix-8 FFT algorithm more efficiently, we follow the radix-2 3 DIF

FFT algorithm.[4]

 21

Figure 2.8 signal flow graph of N-point radix-8 FFT

 22

Figure 2.9 Radix-8 DIF butterfly.

To decompose butterfly of radix-8 DIF FFT algorithm into three steps and apply

the radix-2 index map to the radix-8 butterfly.

 From equation (13)

 Let { }3 2 1 3 2 14 2 , , , 0,1l l l l l l l= + + ∈

 And replace the value of (13) we can get

3 2 1 2 3 2 1 1 1

1 2

1 2 2 1

1

1 78
(4 2) (4 2)

3 2 1 1 2 8
0 0 8

1 1 2 1 1 2 2 4

1 1 2 1

(8 4 2) ()
8

4 2 6() () () ()
8 8 8

5 3() () ()
8 8 8

N

l l l n l l l n kn
N N

n n

l l l l

l

NX k l l l x n n W W W

N N Nx n x n W x n x n W W W

N N Nx n x n W x n

−

+ + + +

= =

 + + + = + ⋅

 + + + + + +

 + + + + + + =

∑ ∑

3 2 12 2 1

1

3 2 1 1 1

1
8 (4 2)

1 2 2 4 8

0
8 point DFT

(4 2)

8

 point DFT
8

7()
8

N
l l ll l l

n

l l l n kn
N N

twiddle factor

N

Nx n W W W W

W W

−
+ +

=

+ +

 + +

⋅ ⋅

∑

………(14)

 23

Figure 2.10 Three step radix-8 DIF butterfly.

In (14), we use the radix-2 index map to divide the 8-point DFT into three steps.

Figure 2.10 shows the butterfly of the three-step DIF radix-8 FFT. The twiddle

factors, 1
8W and 3

8W at the first step are trivial complex multiplication, because they

can be written as ()2 12 j− and ()2 12 j− − . Thus, a complex multiplication

with one of the two coefficients can be computed using additions and a real

multiplication, whose hardware can be realized by four shifters and three adders. We

will introduce the hardware architecture in further chapters.

In eq. (14), let N=82=64 and

{ }3 2 10,1, ,7, , , 0,1k l l l= ∈

 24

() ()
() ()

3 2 1 2 3 2 1 1 1

1 2

1 2 2 1

1 2 2 1

7 7
(4 2) (4 2)

3 2 1 1 2 8 64 8
0 0

1 1 2 1 1 2 2 4

(4
1 1 2 1 1 2 2 4 8

(8 4 2) (8)

() (32) (16) (48)

(8) (40) (24) (56)

l l l n l l l n kn

n n

l l l l

ll l l l

X k l l l x n n W W W

x n x n W x n x n W W W

x n x n W x n x n W W W W

+ + + +

= =

 + + + = + ⋅

 + + + + + +
 + + + + + + + + =

∑ ∑

3 2 1

1

3 2 1 1 1

2)7

8 int0
(4 2)

64 8

8 int

l l

po DFTn
l l l n kn

twiddle factor

po DFT

W W

+ +

=

+ +

⋅ ⋅

∑

………(15)

In eq. (15), the 64-point FFT is based on two stage radix-8 butterfly and it needs 49

times complex multiplications exclude from 1
8W , 3

8W and 0
8W . The signal flow is

shown in figure 2.7.

 25

Chapter 3. FFT module architectures.

3.1. Introduction

In the domain of implementation of FFT processor, two architectures are

commonly used. One is pipelined FFT, the other is memory based FFT. The pipelined

architecture consumes a relatively large chip area compared with memory based

architecture, because the pipelined architecture may needs more complex value

multipliers and complex value adders. In chapter 1, we introduce the FFT module spec.

for UWB system, the high speed, low latency and the parallel input and output is

required. Because of the low latency issue, the intermediate memory access is

frequently and that require one time read and two times write at one clock cycle, it is not

appropriate to use RAM for intermediate memory device, so that we use register set to

replace RAM, because the register set is more convenient to use for frequently and high

bandwidth data access. Basically, RAM is more proper to use for input buffer and

 26

output buffer, because of the data of input buffer and output buffer is burst and there is

not any available data in most of the time period. Thus, the memory is better to design

for power saving purpose for most the time the memory cell would be shut down by

disabling the clock. In this chapter, we will introduce the architecture of each

sub-module in detail.

3.2. Radix-8 butterfly architecture

According figure 2.7, we redraw the figure 3.1, and we can see that radix-8

butterfly unit is composed of 12 radix-2 butterfly units and two complex multipliers

1 2 /8
8

jW e π−= ,
3 2 /8

8
jW je π= which we will introduce at chapter 3.4.The multiplication j

is don’t need any multiplication and addition, it only need swap the real part value to

image part and inversed sign of the image part.

 The three step radix-8 butterfly unit is the kernel of the 128-point FFT, thus for

high speed and low latency issue, we must pipeline radix-8 butterfly unit but not too

much stage, because of too many stage pipeline will lead to long latency, that is not we

expect. In figure 3.1 there is shown a critical path of radix-8 butterfly unit, the number

is the number of addition that is used to estimate the timing delay of this critical path. It

totally has 8 adders at this path and the total time delay is 9 ns without pipeline, and that

is not arrival the timing specification. After 3 stage pipeline the timing arrival 3.1 ns

 27

and latency is 3 clock cycle. Notice that the pipeline register is in the middle of complex

multiplication (
1 2 /8

8
jW e π−= and

3 2 /8
8

jW je π=) that is for the architecture required

and balance timing delay which will introduce later.

Figure 3.1 Architecture of Radix-8 butterfly

3.3. Twiddle factor multiplication

After Radix-8 butterfly operation is the twiddle factor multiplication, there is 7

complex multiplications (28 real multiplications) need for twiddle factor multiplication.

Because of the area and latency concern about twiddle factor multiplication, we must

select a compromise between area and latency is very important for 128-point FFT

module design.

 28

 There are three kind of architecture to implement the twiddle factor

multiplication, one is general complex multiplication the other is CORDIC-based

phased rotator [5] and the other is MAC-based complex multiplication [6]. We will

compare the each architecture as follow.

3.3.1. General complex multiplier.

In (16), expend the complex multiplier there are four real multiplications and two

additions. The critical path is multiplication and we use three register to pipeline the

critical path, there are two stages and have three clock cycle latency. Before pipeline the

general complex multiplier can arrival 4.5ns, after pipeline it can arrival 3.15ns.

 29

Figure 3.2 Architecture of General complex multiplication

real part image part

2 2(Re Im) (cos() sin())

2 2 2 2(Re cos() Im sin()) (Re sin() Im cos())

nk nkj j
N N

nk nk nk nkj
N N N N

π π

π π π π

+ × +

= × − × + × + ×

(16)

3.3.2. CORDIC-Based phased rotator.

CORDIC (COrdinate Rotation DIgital Computer) It is a class of shift-add

algorithms for rotating vectors in a plane. In a nutshell, the CORDIC rotator performs

a rotation using a series of specific incremental rotation angles selected so that each is

performed by a shift and add operation. Rotation of unit vectors provides us with a

way to accurately compute trig functions, as well as a mechanism for computing the

magnitude and phase angle of an input vector.

 There is an example for CORDIC algorithm for phased rotate.

Iteration one that is i = 0, and we want rotate vector A to x-axis. After first one

rotation the vector A0 is under x-axis and the angle a0 = tan -1(1) = 45o.

 30

Iteration two that is i = 1, after second rotate A1 is above the x-axis and the angle a1

= tan -1(1/2) = 22.5o.

Iteration two that is i = 2, after third rotate A2 is under the x-axis and the angle a2 =

tan -1(1/4) = 11.125o.

 31

After three times rotate A2 very approach x-axis and total rotate angle a= a 0-a1+a2

=35o, if there are more iteration the more approach to target rotate phase.

 In figure 3.3, the CORDIC-Based phased rotator architecture contain shifter

and adder in each stage, because of the requirement of the resolution, there are N times

iterations needed. If let N =13, that is there are 13 iterations, and there are a very long

critical path for this design, using pipeline to reduce timing delay. In this design have 13

stages and there are 14 clock cycles latency which is very long latency for phased

rotator. The advantage of CORDIC-Based phase rotator is that it doesn’t need any

multiplier and after pipeline can arrival very high speed but it paid high latency for

small area and high speed.

 32

Figure 3.3 CORDIC-Based phased rotator architecture.

3.3.3. MAC-Based complex multiplier.

MAC (multiply and accumulate) is popular used for DSP processor. DSP

processor often have only two real multipliers, but the complex multiplication use four

multiplication that is very not efficiency for complex multiplication, and there is an

algorithm to reduce the number of real multiplier. This algorithm can speed up DSP

processor for complex multiplication by using MAC instruction. Besides, we can use

the way to reduce real multiplication and then reduce area and power.

 We can transmit (16) to (17), there need only three real multiplication and

five additions. In figure 3.4, one addition is performed first and then three

multiplications are performed. Finally, one addition and one subtraction complete the

complex multiplication. In this complex multiplier design, the critical is two additions

and one multiplier which is more timing critical than general complex multiplier.

Before pipeline this design can arrival 5.5 ns, after 3 stages pipeline can arrival 3.17ns,

 33

latency is four clock cycle.

2 2 2Re_out Re cos() sin() (Re Im) sin()

2 2 2Im_out Im cos() sin() (Re Im) sin()

nk nk nk
N N N
nk nk nk

N N N

π π π

π π π

 = × + − + ×
 = × − + + × (17)

Figure 3.4 MAC-Based phase rotator.

3.3.4. The comparison of twiddle factor multiplier.

There are three kind of twiddle factor multiplication, there are some trade off for

those designs. In table 3.1, we can see that CORDIC-Based phased rotator have lower

gate count and high speed, but latency is 14 clock cycles, that is not acceptable for

 34

system. Then, there are general complex multiplier and MAC-based complex multiplier,

the gate count and speed are nearly, but the latency is better in general complex

multiplier. Finally, we decide use general complex multiplier in 128-point FFT

architecture. But why the gate count of MAC-Based complex multiplier is similar to

general complex multiplier, the MAC-based complex multiplier is less real multiplier

than general complex multiplier. Because of the word-length of multiplier in 128-poit

FFT design is only 8 bits, and multiplier can’t dominate the area.

Table 3.1 The comparison of the twiddle factor multiplication.

 Gate count Speed Latency

General complex multiplier 4.2k 3.15ns 3

MAC-Based complex multiplier 4.0k 3.17ns 4

CORDIC-Based phase rotator 2.8k X 14

(PS: The gate count of CORDIC-Based phase rotator is reference form [7])

Because the delay of the multiplier and adder is not balance, we can use design

compiler to retiming the design. The command “set_balance_registers” is suitable for

the sequential design in which register have been inserted or the design have been

pipelined. This command will perform retiming and move the registers in complex

multiplier to the position that will make the circuit having balance delay and minimize

the cycle time. In table 3.2, general complex multiplier can speed up about 0.39ns and

 35

MAC-based complex multiplier can speed up 0.06ns. We use the same timing constrain

to synthesis those designs, but the performance of retiming in general complex

multiplier is better than MAC-based complex multiplier.

 Using retiming to synthesis this design can balance delay, but it has restriction that

we can’t add last stage registers before synthesis. If we need last stage registers, we

must add it manually later.

Table 3.2 The comparison of the twiddle factor multiplication after retiming.

 Gate count Speed Latency

General complex multiplier 4.0k 2.76ns 3

MAC-Based complex multiplier 3.7k 3.11ns 4

(PS : The gate count is not included input and output register)

3.4. Constant multiplier design

In radix-8 butterfly, there are complex multiplication (1 2 /8
8

jW e π−= and

3 2 /8
8

jW je π−= −) which can be implemented by constant multiplier. In (18), we can see

that 3 1
8 8 ()W W j= × − , in the other word 3

8W is 1
8W phase rotate –j (figure 3.4).

1 4
8

3
3 14

8 8

2 2
2 2

2 2 ()2 2

j

j

W e j

W e j W j

π

π

−

−

 = = − ⋅

 = = − − ⋅ = × −

 (18)

 In (19), angle 45o phase rotate need 2
2 constant multiplier and one addition

 36

and one subtraction. Figure 3.5 is a 1
8W complex multiplier, there is a register for

pipeline in the middle of the constant multiplier.

()

()

()

constant multiplication constant multiplication

2 2 Re Im2 2

2 2Re Im Im Re2 2

j j

j

 − ⋅ × + ⋅

= + + ⋅ −
 (19)

Figure 3.4 The twiddle factor of the radix-8 butterfly.

 37

Figure 3.5 Architecture of 1
8W complex multiplier.

 2
2 = 011101 in format 1.5 (the left of the dot is one bit, and the right of the dot

are 5 bits) unsigned statement. To multiply 2
2 is only need shift and adder which

shown in figure 3.7, the adder is 10 bits word-length and four shift and adder is needed.

Because the 1
8W complex multiplier is under critical path, timing is the most important

consideration, and we reduce the word-length of adder and add pipeline register in the

middle of the constant multiplier for increased speed of the circuit. In figure 3.6 we use

6 bits, 8 bits and 9 bits adder to replace 10 bits adder, because the total 16 bits are only

11 bits needed. Reducing word-length of adder not only can speed up circuit but also

can reduce area, but there are some lose of resolution. Considering this trade off, the

error of reducing word-length is 0.1% but it can speed up about 0.2ns, and therefore we

decision to use reducing word-length adder to implement 2
2 constant multiplier.

Figure 3.6 Operation of constant multiplier.

 38

 In figure 3.7, after constant multiplier, there is a output rounding let 11 bits round

to 10 bits in order to make output signal more precise. Rounding circuit only need a

multiplexer and a 10 bits adder, which only need few gate count.

Figure 3.7 Architecture of constant multiplier.

3.5. 128-point FFT circuit design

The main circuit design dominates the totally performance, area, and power

consumption. In order to achieve high speed and low latency, there is more parallel than

the other FFT circuit design. Because of the 4 complex values input, we need 4 radix-2

butterfly units and 4 twiddle factor multiplier, shown in figure 3.8. The input buffer (B1)

is 64-samples memory space and buffer input signal 16 clock cycles, then radix-2

 39

butterfly unit and twiddle factor multiplier can operate.

Figure 3.8 128-point FFT circuit block diagram

In figure 3.9, it shows all the operation of each cycle. Notice that there are 4

twiddle factor multipliers can share with radix-2 and radix-8 butterfly, because there are

no resource confliction for the twiddle factor multiplier of the radix-2 and radix-8. In

128-point FFT circuit, there is only an intermediate register set (temp register B2),

which have 128-samples memory space, then, we use the in-place method to manage

the read/write of the register set. Because there only an intermediate register set, the

read/write of the register set needs a very high band-width for access, thus it can ’t be

replaced by RAM, because RAM can only read or wire at single cycle.

Notice that there are two radix-8 butterfly units in this circuit, which is the purpose

 40

of low latency. The utility of radix-8 butterfly is 50% and complex multiplier is 78.6%.

In figure 3.9, there are four complex multipliers, which are working all the time, utility

is 100%, another three complex multipliers are 50%,and average is 78.6% totally.

 Because of resource conflict between radix-2 and radix-8 butterfly unit, radix-8

can’t share four radix-2 butterfly units for first stage. Thus, we design another four

radix-2 butterfly units for first stage. Specifically, high speed design has a challenge to

backend timing convergence. We consider that timing convergence problem in this

design and make backend timing more easily to met, thus, we add some temp register

and using synthesis constrains in transition time for more strong driving strength. By

the way, those methods must cost more area but can make design more robust.

 41

Figure 3.9 Tim
ing diagram

 of 128-point FFT

 42

3.6. Design of reorder buffer and output buffer.

Output of DIF FFT algorithm is out of order sequence. Thus if we need in order

sequence or duel FFT/IFFT mode, we need the reorder buffer to reorder the output

sequence. The 128-point FFT core is 8 output samples and the output sequence shows

in figure 3.10. We can see that the row of out 0 the sequence 0, 2, 4, 6, 8, 10, 12, 14, 1,

3, 5, 7, 9, 11, 13, 15 is the order of output sequence and the sequence we demanded is 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, thus we use 8 single port RAM to construct

the RAM bank and interleaving each output to different RAM on purpose. In figure

3.11, we use multiplexer to interleave the radix-8 butterfly output data and store in

different address, thus the sequence 0, 1, 2, 3, 4, 5, 6, 7, 8 is in different RAM and for

the same reason the sequence 9, 10, 11, 12, 13, 14, 15 is also interleaved at different

RAM. By the way, reorder buffer must wait all of the radix-8 output data saving into

memory, then it can start dumping output data in 16 clock cycles, that takes 19 clock

cycles latency.

Figure 3.10 Output data sequence.

 43

Figure 3.11 RAM addressing of the reorder buffer.

 Figure 3.12 shows the architecture of the reorder buffer, there are two Rotate

MUX for interleave data and reassembly data. The control signal sel_0 and sel_1

control the rotating order and the rw_addr controls the address of the RAM. The input

and output register set make the output signal more stable.

Figure 3.12 Architecture of the reorder buffer.

 Figure 3.13 shows the architecture of output buffer, the output buffer is only a

parallel-to-serial which makes parallel 8 outputs to parallel 4 outputs. Every 8 points

data only 4 points data are really needed save into the memory. It only needs a very

simple controller to implement the output buffer circuit. The latency of the output

buffer is 3 clock cycles.

 44

Figure 3.13 Architecture of output buffer.

 The different form FFT between IFFT is the sequence of the output order. The

reorder buffer can pre-buffer the fist one output and let control counter to count

backwards, and then we can get the IFFT sequence. Figure 3.14, using a very simple

control to get IFFT sequence.

Figure 3.14 FFT/IFFT reorder.

 45

(a) Only 128-point FFT.

(b) 128-point FFT + output buffer.

(c) 128-point FFT + reorder buffer.

(d) 128-point FFT + reorder buffer + output buffer.

Figure 3.15 All kinds of combination of 128-point FFT.

 46

Table 3.3 All kinds of combination of 128-point FFT vs. Latency

 Output operation Latency

(a) Only 128-point FFT 8 out of order output 50 clock cycles

(b) 128-point FFT + output buffer 4 out of order output 54 clock cycles

(c) 128-point FFT + reorder buffer 8 sequential output 70 clock cycles

(d) 128-point FFT + reorder buffer +

output buffer

4 sequential output 73 clock cycles

 There are many kind of combination of 128-point FFT shown in figure 3.15 and

table 3.3, each combination can be selected as you needed. You can just only change

parameter to define each architecture and there is a verification environment can verify

each architecture.

 47

Chapter 4. Implementation and
verification

4.1. Introduction.

In this chapter we discuss how to modeling a behavior model of the 128-point FFT and

how to verify this design. Behavior model is built by MATLAB which can provide a

complete mathematical and simulation environment. The design flow is illustrate in

figure 4.1, and this is a kind of waterfall models which is worked well up to 100k gate

count design. It is a serial flow from specification survey to post layout simulation and

there integrate a verification flow to verify the design. Notice that function verification

verifies the behavior module and RTL module to check if they have the same function,

and it helps debugging in RTL code that saving a lot of time for debugging. After RTL

code development and function verification there are two way for implement design,

 48

one is ASIC, and the other is FPGA prototyping. FPGA prototyping is for verification

design in general, because FPGA can simulate fastest than simulator and it realizes the

function of the circuit by an easy way. If we want produce ASIC, we will go through

synthesis and Place & Route. We synthesis the design to gate-level netlist by reasonable

design constrain, and verify the timing, area and power. If it arrival out demand, we will

Place & Route our design. After timing, area, power and design rule are all conformed,

we can tape-out.

Figure 4.1 Design & Verification flow

 49

4.2. Behavior module design.

To develop a MATLAB behavior module to simulate a real circuit function, we

need to quantize value after the mathematical operation. In figure 4.2, we illustrate all

of the mathematical operation point and list the each function of the operation point.

There are A, B, C, D, E five operation points in this circuit which are post-addition and

post-multiplication, and column one is the word-length of the intermediate register and

complex multiplier. To discuss the quantization error from the intermediate register and

complex multiplier is that both of then cost most of the area and power consumption

(register about 50%, complex multiplier about 20%) and they directly relate to

quantization error. Let we see the column A, there are two parameter, Scale bit and

Quantize bit, which means how much bits we scaled in this stage and how to quantize

the word-length. In another word, if we want to present 10 bits value by using 8 bits, we

must scale 2 bits and keep maximum side, thus the Scale bit set to 2. The Quantize bit

(7.2) means that we quantize value by 7 bits left of the dot and 2 bits right of dot, and

totally we use 9 bits to present this value, because the twiddle factor is a decimal

fraction.

 50

Figure 4.2 MATLAB simulation for word-length decision (1).

 There are two methods to quantize value, one is “round”, and the other is “floor”.

Notice that the SQNR by “round” is better than “floor” about 6 dB, and figure 4.3

illustrate the simulation results and the simulation condition. We use 5 bits random

signal to input both ideal FFT and practical FFT, and use ideal FFT output value to get

SQNR. Each SQNR was simulated about 1280000 sample points, and we simulate N

from 5 bits to 10 bits to find out the quantization error vs. word-length N. Finally, we

decide to use N = 8 and SQNR = 30dB for system requirement. Because the UWB

system is only QPSK modulation, the SQNR = 30 dB is quite better. Figure 4.3 shows

the SQNR versus word-length.

 51

Figure 4.3 MATLAB simulations for word-length decision (2).

 In figure 4.4, we simulate the quantized response of FFT and IFFT by using QPSK

input value. The performance is that EVM = -17.9681 dB and SQNR = 17.9681 dB.

 52

Figure 4.4 FFT and IFFT

4.3. Verification.

Functional verification usually cost about double time more than develop a RTL code.

If there is a robust method for verify design, we can reduce a lot of time for debugging

design. We have two verification phases of this design, one is debugging phase, and the

other is regression phase. The debugging phase we need fully accessibility and fast

turnaround time, and verilog test bench is very suit to debugging phase. Then, if most of

the bug is removed, we need find out the last bug which is most hard to remove. Using

regression phase to turn off most if the accessible options to increase simulation

efficiency and we can use random generator to generate random pattern for input signal

 53

and we can simulate a large number of cycles efficiently. In this design we use ADS

co-simulation for regression phase debugging.

Figure 4.5 Self-check test bench

 In figure 4.5, it is the structure of verilog test bench in debugging phase. There are

input control and output checker. We can read input signal form Re_in.dat and

Im_in.dat which generate by MATLAB, and output checker can compare 128-point

FFT output signal with MATLAB behavior module output and send correct signal. This

self-check test bench can verify a lot of test patterns and we can check the output signal

if the signal of correct is low, we can open waveform and debugging. This self-check

test bench can save a lot of time to check output signal is correct or incorrect, efficiently.

In chapter 3.6, there are many kind of combination of 128-point FFT, because the

output sequence is very different, but this test bench can detect which kind of

 54

architecture we verify and can auto reorder output data and fit verification condition.

This verification environment can provide a convenient and efficiency condition to

user.

Figure 4.6 ADS co-simulation.

 In figure 4.6, We use ADS (Advance Design System) to run co-simulation,

because ADS is GUI interface, each component can observe in working space. We

compare the HDL FFT with ideal FFT and show output signal waveform in figure 4.8.

Using output histogram which is illustrate in figure 4.7, to decision output bits

resolution, thus we can see that the almost output range is about 7 bits, but we use 8 bits

resolution to prevent overflow. After 100,000 sample points simulation, we can

calculate the EVM that list in table 4.1, the EVM = -30dB.

 55

Figure 4.7 Output histogram.

Figure 4.8 Compare ideal output and HDL output.

 56

Table 4.1 ADS co-simulation for EVM (dB)

 There are some important signal processes in this circuit design; the anti-saturate

circuit can prevent large distortion after round or truncation. Because we present values

by two’s complement, we want round value 127.5 to 128 in 8 bits resolution is

impossible because there can’t have value 128, but rounding will round value 127.5 to

-128 and it will occur a large error. Figure 4.9 shows the anti-saturate operation; we

saturate the output value with 32, but real output value is about 35. Even a large error

occurs but if there isn’t anti-saturate circuit, a very large error will occur. Figure 4.10

shows the saturated output error vector; it is large but we can tolerate.

 57

Figure 4.9 Saturated output operation.

Figure 4.10 Saturated output error vector.

4.4. Timing verification.

In table 4.2, synthesis report for each combination, there are two kind of report,

one is with RAM, and the other is RAM free. We replace RAM by the register set to

synthesis because we can’t calculate the gate count of RAM (RAM is likely an analog

 58

device), so the total report of the gate count is without including RAM. In this design

that can operate up to 300 MHz in synthesis phase, but this don’t include wire load and

interconnect capacitance that we will concern in backend flow.

Table 4.2 Synthesis reports

 Gate count Speed RAM
128-point FFT 87K 3.34ns RA1SH16x40 x1

128-point FFT
+output_buffer

90K 3.34ns RA1SH16x40 x1
RA1SH16x64 x1

128-point FFT
+reorder_buffer
+output_buffer

97K 3.34ns RA1SH16x40 x1
RA1SH16x64 x1
RA1SH16x16 x8

128-point FFT 89K 3.37ns X

128-point FFT
+output_buffer

100K 3.37ns X

128-point FFT
+reorder_buffer
+output_buffer

130K 3.37ns X

Synthesis tools: Synopsys design compiler V-2003.12-SP1

Library: UMC018 generic slow (125oC 1.68V) library

4.5. Chip implementation.

 Figure 4.11 is the new version of 128-point FFT layout view, there are summary of

this chip as follow.

 59

P&R tool : Astor

Timing sign-off tool : Prime time

Power analyze tool : Prime power

Core size 1564.86 x 1564.64 um2

Die size 2554.66 x 2555.125 um2

Timing 5ns = 200 MHz

Power 127 mW @ 132 MHz

 Table 4.3 The chip summery.

Figure 4.11 Layout view

 60

4.6. FPGA prototyping.

We use FPGA to implement design and the synthesis report shows in table 4.4, the

report of the FPGA gate count is very different from the report of the ASIC gate count,

which is only for reference. Because this FPGA is 0.25 technology and the

characteristic of FPGA is for verification, the timing is not very important by FPGA

prototyping.

Table 4.4 Xilinx FPGA synthesis report.

Target Device xcv2000e-bg560-6

Slices 7784

Slices Flip Flops 5088

Gate count 165,537

Post – Map timing 16.578ns (10.215ns logic, 6.363ns route)

= 60.32 MHz

Post- Place & Route timing 25.16ns (9.936ns logic, 14.974ns route) =

39.74 MHz

 61

4.7. Compared with other design.

Table 4.5 Comparison of 128-point FFT

 This design Parallel FFT with CORDIC
[7]

Synthesis speed &
synthesis library

3.34ns with UMC018 slow
library

7.57ns with TSMC025

Synthesis gate count 97K 87K(without
reorder buffer)

53K

Latency 50+19+3+1=73
clock cycle

54 clock cycle
(without reorder

buffer)

99 clock cycle

Synthesis Power 97 mW 109 mW

P&R speed 5 ns NA

P&R core area 1564.86 x 1564.64 um2 NA

P&R power 127 mW (without RAM) NA

IFFT/FFT dual core Yes No

resolution Word length = 8 bits
SQNR=30dB

Word length = 8 bits

Architecture Radix-8 Radix-4
CORDIC

Table 4.6 Comparisons.

 Word
length

Tech. Core
Area

Power Operation
speed

Max
Speed

Latency

Proposed
(128
points)

8 bits UMC
CMOS
0.18μm

2.4 mm2 127 mW
(without
RAM)

132 MHz 200
Mhz

73
clock
cycle

[11]
(64
points)

16 bits IHP
BICMOS
0.25μm

6.8 mm2 41 mW 20 Mhz 38
Mhz

77
clock
cycle

[12]
(128
points)

12 bits CMOS
0.6μm

10 mm2 400 mW 50 Mhz 50
Mhz

150
clock
cycle

 62

Chapter 5. Measurement results

5.1. FPGA measurement plan.

We utilize FPGA phototype to verify this design. In figure 5.1, we add two circuit

for verification, one is S-to-P (serial to parallel), and the other is P-to-S (parallel to

serial). Because the limit of the input/output pin of the instrument, we translate parallel

input/output to serial input/output for convenient measurement. The FPGA synthesis

tool is Xilinx ISE 6.2 and synthesis report shows in table 5.1. This synthesis report is

different from table 4.4; the table 5.1 includes S-to-P and P-to-S but table 4.4 only have

128-point FFT core. So that it contain two clock domains, one is clk that clock is for

S-to-P and P-to-S, and the other is clk4 that clock is for 128-point FFT core. Figure 5.2

shows the measurement environments.

 63

Figure 5.1 FPGA measurement plan

Figure 5.2 FPGA measurement environments.

 64

Table 5.1 Xilinx FPGA synthesis report for measurement.

Target Device xcv2000e-bg560-6
Slices 7827

Slices Flip Flops 5238

Gate count 167,037
clk 4.359ns (2.945ns logic, 1.414ns route)

= 229 MHz
Post – Map timing

clk4
(core
clock)

16.578ns (10.215ns logic, 6.363ns route)
= 60.32 MHz

clk 7.875ns (2.945ns logic, 4.930ns route)
= 132 MHz

Post- Place & Route timing

clk4
(core
clock)

23.848ns (9.715ns logic, 14.133ns route)
= 41.93 MHz

5.2. FPGA measurement results.

We use pattern generator to generate input pattern, figure 5.3 shows the input sin

wave in logic analyzer at clock period = 10 ns (clk= 10 ns clk4 = 40 ns) and figure 5.4

shows the output results. But why we use sin wave for input signal? The answer is that

we want to verify the output saturate operation, because the sin wave input will produce

an impulse in FFT output and this impulse will saturate output.

 65

Figure 5.3 FPGA input signal (view from Logic Analyzer).

Figure 5.4 FPGA output signal (view from Logic Analyzer).

 After using logic analyzer to dump output signal to a file, we want to verify this

output signal is correct or not. Using MATLAB to read data which dump by logic

 66

analyzer we compare FPGA output with ideal 128-point FFT output. Figure 5.5 shows

the results, and the function of the 128-point FFT is work.

Figure 5.5 Verify outputs signal with MATLAB

 67

Chapter 6. Conclusions and Future
works

6.1. Conclusions.

In this thesis, we have the complete analysis of computational complexity and

internal connection complexity, then we select radix-8 algorithm to implement

128-point FFT. In the third chapter, we introduced and analyzed the architecture of

the radix-8 butterfly unit and twiddle factor multiplier, then we introduced the

pipeline operation and the trade-off of the resolution and speed. In chapter 4, we

provide a behavior MATLAB module, test bench and co-simulation environment for

verification, that can help user efficiently verify this design.

 Finally, we design a high speed and low latency 128-point IFFT/FFT for UWB

system. After P&R it remains high speed and can operate at 200 MHz, that is,

 68

throughput is 800 M samples per second. The latency of IFFT/FFT is only about

0.552μs when operate at 132 MHz. Using FPGA prototyping to verify the

functionality and build the measurement environment for this design.

6.2. Future works.

This 128-FFT is design for 802.15.3a UWB and with parallel input and output,

because this architecture is for 0.18μtechnology, if we use 0.13μm or 0.09μm

technology to implement this design we have to adjust this architecture to make it less

parallel and down size this design. Thus, if we can make this design more flexible and

can be modified easily by user, make user just select which architecture he needed. We

also want this design can be an IP and can pass the IP qualify.

 69

References
[1] Richard van Nee and Ramjee Parsad, “OFDM Wireless Multimedia

Communications”: Artech House, 2000
[2] IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

“Multi-band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a”,
March, 2004

[3] Introduction to FFT processors , Chih-Wei Liu, VLSI Signal Processing Lab
Department of Electronics Engineering ,National Chiao-Tung University.

[4] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM
(de)modulation ”, in Proc. URSI Int. Symp. Signals, Systems, and Electronics,
vol. 29, Oct. 1998,pp. 257-262.

[5] Ray Andraka, Andraka Consulting Group, Inc., 16 Arcadia Drive, North
Kingstown, RI “A survey of CORDIC algorithms for FPGA based computers”
ACM Press ,1998 New York, NY, USA.

[6] Jaesung Lee, Jeonghoo Lee, Myung H. Sunwoo, Sangman Moh, and Seongheun
Oh, “A DSP Architecture for High-Speed FFT in OFDM Systems” ETRI Journal,
Volume 24, Number5, October 2002.

[7] Guoping Zhang, Francois Chen ,“Parallel FFT with CORDIC for Ultra wide
band”, IEEE Conference Volume 2, 5-8 Sept. 2004 Page(s):1173 - 1177 Vol.2

[8] A.V. Oppenheim and R.W. Schafer, DISCRETE-TIME SIGNAL PROCESSING,
New Jersey, 2nd Edition, Prentice-Hall, 1999.

[9] J.J. van de Beek, M. Sandell and P.O. Borjesson, “ML estimation of time and
frequency offset in OFDM systems”, IEEE Trans. Signal Processing, Volume: 45
Issue: 7, pp. 1800 -1805, Jul. 1997

[10] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and Practical
Guide, Sams, 2002

[11] Koushik Maharatna, Eckhard Grass, and Ulrich Jagdhold “A 64-Point Fourier
Transform Chip for High-Speed Wireless MAN Application Using OFDM”, IEEE
Journal of Volume 39, Issue 3, March 2004 Page(s):484 – 493

[12] Lihong Jia; Bingxin Li; Yonghong Gao; Tenhunen, H.;Solid-State and Integrated
Circuit Technology “Implementation of a low power 128-point FFT” IEEE
Conference 1998 5th International Conference on 21-23 Oct. 1998 Page(s):369 –
372

[13] IEEE Std. 802.11a-1999, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, High-speed physical layer in the 5GHz band
1999.

 70

簡 歷

姓名 : 林格輝

性別 : 男

籍貫 : 高雄縣

生日 : 民國七十年二月二十五號

地址 :高雄縣鳳山市濱山街 55巷 22號 7F

學歷 : 國立交通大學電子工程研究所碩士班 92/09~94/06

 國立中正大學電機工程學系 88/09~92/06

 省立鳳山高中學 85/09~88/06

論文題目 : Design of FFT/IFFT module for Ultra Wideband system.

 超寬頻系統之快速傅立葉轉換模組設計

	Cover.pdf
	Abstract.pdf
	Thank.pdf
	Contents.pdf
	Text.pdf

