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Abstract

In this thesis, we discuss the spec.:of ‘the FFT/IFFT module of the Ultra
Wideband system from system-requirement-and we make the design target is high
performance, high speed and low latency. We analyze the complexity of each
algorithm and select appropriate circuit architecture to implement. Based on the
system requirements of 802.15.3a Ultra Wideband, we proposed a modified radix-8
pipeline based architecture to implement a high performance, high speed and low
latency FFT/IFFT module. The hardware was implemented using UMC 0.18 ym
technology with core size 1564.86 x 1564.64 um? and throughput is 800M samples

per second.
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Chapter 1. Introduction.

1.1. Introduction for Ultra Wideband.

The UltraWideBand (UWB) system is akind of wireless personal area networks
(WPANS), which also known-as in-home-hetworks, WPANs address short-range
(generally within 10~20m) connectivity among- portable consumer eectronic and
communication devices. They are envisioned to provide high-quality real-time video
and audio distribution, file exchange among storage systems, and cabl e replacement for
home entertainment systems. UWB technology emerges as a promising physical layer
candidate for WPANS, because it offers high-rates over short range, with low cost, high

power efficiency, and low duty cycle. [11]



1.2. UltraWideband physical layer.

The UWB system that utilizes the unlicensed 3.1 ~ 10.6 GHz band. UWB system

provides data payload communication capabilities of 53.3, 55, 80, 106.67, 110, 160,

200, 320, and 480 Mb/, and UWB system employs orthogonal frequency division

multiplexing (OFDM). The system uses atotal of 122 sub-carriers that are modulated

using gquadrature phase shift keying (QPSK). Forward error correction coding

(convolutional coding) is used with a coding rate of 1/3, 11/32, ', 5/8, and %. The

system also utilizes a time-frequency code (TFC) to interleave coded data over 3

frequency bands. Table 1.1 shows the rate-dependent parameters in each datarate. [2]

Table 1.1-Rate-dependent parameters. [2]

Data | Modula | Coding Conjugate Time Overal Coded bits per
Rate tion rate Symmietric Spreading Factor | Spreading | OFDM symbol
(Mb/s) (R) Input to IFFT Gain (Ncaps)
533 | QPsK 13 Yes 2 4 100
55 QPSK 11/32 Yes 2 4 100
80 QPSK Y Yes 2 4 100
106.7 | QPSK 13 No 2 2 200
110 QPSK 11/32 No 2 2 200
160 QPSK Y No 2 2 200
200 QPSK 5/8 No 2 2 200
320 QPSK Va No 1 (No spreading) 1 200
400 QPSK 5/8 No 1 (No spreading) 1 200
480 QPSK Ya No 1 (No spreading) 1 200

In table 1.2, it lists timing-related parameters where the 128-point IFFT/FFT

period is 242.42 nsand an OFDM symbol iSTsym = Tep+ Trer + Tg =312.5ns. Tepis




the circular prefix which is used in OFDM to mitigate the effects of multipath. The

parameter T isthe guard interval duration.

Table 1.2 Timing-related parameters. [2]

Parameter Value
Nsp: Number of data subcarriers 100
Nspp: Number of defined pilot carriers 12
Nse: Number of guard carriers 10
Nsr: Number of total subcarriers used 122 (= Ngp + Ngpp + Nsg)
Dr: Subcarrier frequency spacing 4.125 MHz (= 528 MHz/128)
Teer: IFFT/FFT period 242.42 ns (1/Dy)
Tcp: Cyclic prefix duration 60.61 ns (= 32/528 MH2z)
Tai: Guard interval duration 9.47 ns (= 5/528 MH2z)
Tsym: Symbol interval 3125ns(Tep+ Teer + Ta)

In tablel.3, the RX-to-TX turnaround time shall be pSIFSTime which is equal to

32 OFDM symbol. The pSIFSTimeincludes thelatency of the RF, PHY and MAC. The

RX-to-TX turnaround time is related to the throughput of the system. If we can reduce

the latency of PHY, we can increase the throughput of the system.

Table 1.3 PHY layer timing parameters.[2]

PHY Parameter Value
pMIFSTime 6*Tsym = 1.875 s
pSIFSTime 32*Teym =10 ns

pCCADetectTime 15*Tsym = 4.6875 ns
pChannel SwitchTime 9.0ns

In figure 1.1, UWB physical (PHY) layer contain transmitter and receiver, but

|FFT/FFT is both shared with transmitter and receiver. The IFFT/FFT in OFDM system



plays an important role for transform time domain to frequency domain or frequency

domain to time domain. Because |IFFT/FFT is a dual mode circuit, we can control its

operation mode and use multiplexer to switch input signal. This UWB spec. [2] don’t

restrict the receive latency of PHY, but the latency of receiver is a factor of the

performance in communication system. Thus, the latency of receiver must as small as

possible. However, the spec. of Wireless LAN, 802.11a, which restrict PHY to only

have 4 OFDM symbols latency to process receive data.[13] For local property, if we

reduce the latency of each sub-block, then the system latency can be also reduced.

Figure 1.1 Function block of UltraWideband System.

'y CRC || Scrambler [»| CONvolutional |l nterleaver(t Mapping
encoder —‘
__, | Cyelic prefix &'_,Time-domain_,
d
Pilot & Guar . Guard Interval spreader MU
MAC Preamble
ML IFFT/FFT—* Ll
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I »
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1.3. OFDM overview.

OFDM isaspecia case of multicarrier transmission, where asingle datastreamis
transmitted over a number of lower rate subcarriers. OFDM can be seen as either a
modulation technique or a multiplexing technique. One of the main reasons to use
OFDM isto increase the robustness against frequency selective fading or narrowband
interference. In a single carrier system, a single fade or interferer can cause the entire
link to fail, but in multicarrier system, only a small percentage of subcarriers will be
affected. Error correction coding can then be used to correct for the few erroneous
subcarriers.[1]

“Orthogonal” means there is mathematical relationshi p between the frequencies of
the carriers. In conventional FDM (frequency division multiplex) system, guard bands
are introduced between different carriers, so it can still use conventional filters and
demodulators. Unfortunately, it will result in downgrading of spectrum efficiency. It
could be possible that sidebands overlapped and the signal can still avoid interference
from adjacent channel. To achieve this target, the carrier must be mathematically

orthogonal. In eq.(1.0)[10], is a OFDM signal described by mathematical equation,
where with N subcarriers and symbol durationis T, and notice that (M) jstheinverse

Fourier Transform of the >q(n)_ In figure 1.2, it illustrates spectra of eq.(1.0);

orthogonal between carriers at any carrier’s sampling point, and the interference of



adjacent channelsis all zero.

N-1
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Figure 1.2 Spectra of an'OFDM signal in frequency domain.

Further more, to eliminate the banks of subcarriers oscillators and coherent
demodulators required by frequency division multiplex, digital implementation can be
built by a special hardware named FFT (Fast Fourier Transform), which is an efficient
implementation of DFT (Discrete Fourier Transform).

Using this method, both transmitter and receiver can be implemented using FFT
techniques that reduce the number of computational load from N2in DFT down to
NlogN [9].

The OFDM transmission scheme has the following advantages:



e OFDM is an efficient way to deal with multipath; for a given delay spread, the

implementation complexity is significantly lower than that of a single carrier system

with equalizer.

e |n relatively slow time-varying channels, it is possible to significantly enhance

the capacity by adapting the data rate per subcarriers according to the signal to noise

ratio of that particular subcarriers.

e OFDM is robust against narrowband interference, because interference only

affects a small percentage of subcarriers.

e OFDM make single frequency networks possible, which is especially attractive

for broadcasting applications.

OFDM also has drawbacks:

e OFDM system is sensitive to frequency offset and phase noise.

eOFDM system has relatively large peak to average ratio, which tends to reduce

the power efficiency of the RF amplifier. [1]



1.4. 128-point FFT for UWB spec.

In table 1.2, the 128-point IFFT/FFT period Tger = 242.42 ns, if we using serial
one sample input and output architecture, the clock period = 242.42 ng/128 = 1.89 ns,
that is, we must operate digital circuit in 528 MHz and that is very critical in 0.18
process, but we use parallel architecture and lower clock frequency to solve this
problem. In figure 1.3, we use parallel 4 input samples and parallel 4 output samples
and 528 MHz divide by 4 equals 132MHz, that is, we can use lower clock rate

(132MHz) to fit UWB spec. by parallel FFT architecture.

E:> FET/IFFT % \
4 complex Input Radix-& | | complex 4 complex output
samples Radix-2 | | multiplier samples
clk
reset Temp Control out_enable
In_enable Register unit
FFT/IFFT mode

Figure 1.3 lllustration of the 128-point FFT

The resolution of input bits are 5 bits and the resolution of output bits are 8

bits for system required, and we will discuss resolution in chapter 4.



1.5. Organization of thisthesis.

The summary of each chapters are listed as follow:

Chapter No. & title

Brief introduction

Chapter 2:
Algorithm

First, we compare the computational complexity
with radix-2, radix-4 and radix-8 algorithm, and
then explain why we make choice of radix-8
algorithm. Finaly, we introduce how to transform
128 points DFT to 128 pointsradix-8 FFT.

Chapter 3:
FFT module architecture

In this chapter, we introduce the architecture of
128-point FFT by bottom up sequence. The
submodules are introduced first, and they include
radix-8 butterfly, twiddle factor multiplier and
constant multiplier. Then, we assemble dll
submodules to 128-point FFT and we show the
timng diagram to illustrate the operational
schedule. Finally, we utilize the reorder buffer to
reorder output' signal and we will introduce the
architecture of reorder buffer and how it works.

Chapter 4:
Implementation and Verification

The design and verification flow is shown first, and
we discusshow to implement this design and how
to verify this design. First in implementation phase,
we discuss the effect of the EVM upon the
word-length and how to select the word-length for
system requirement. Then, we introduce an
method and
performance. Finally, we show the summary of the

efficiency  verification circuit
chip implementation and compare this design with

other design.

Chapter 5:
Measurement results

In this chapter, we report the FPGA synthesis
reports and FPGA measurement plan and the
measurement results.

Chapter 6:
Conclusion and feature works

We make a conclusion of this design and discuss
what can be improving in feature works.




Chapter 2. FFT algorithm.

2.1. Discrete Fourier Transform

The N-point Discrete Fourier Transform (DFET) of a sequence x(n) is defined as

X (k) =§1x(n)wgk, k=0,1---N-1 )
n=0

Where x(n) and X (k) are complex-numbers. The twiddle factor is

2p nk
N

2pnk, . .
———)- jsin
N )- jsin(

W =g nkly _ cos( ) )

Accord to eq. (1), the computational complexity is O(N?) through directly
performing the required computation. It needs N complex multiplications and N(N-1)
complex additions. If using the FFT algorithm, the computational complexity can be
reduced to O(Nlog;N), where r means the radix-r FFT. The radix-r FFT can be derived
from DFT by decomposing the N-point DFT into a set of recursively related r-point

transform. There are two basic types of FFT algorithm, decimation in time (DIT) and

decimation in frequency (DIT). The DIT agorithm is to decompose x(n) into radix-r

10



modul es sequence, and the DIF algorithm is to decompose X (k) in the same way.
2.2. Complexity comparison

Fromtable2.1[3] and table 2.2 [4], the multiplication and addition of radix-8 have
the lowest complexity compared with radix-2 and radix-4. In table 2.1 radix-8 consist
of constant multiplications and real multiplications. The constant multiplication can be
implemented by shifters and adders whose hardware is simpler than a real
multiplication. Table 2.3 [5] isthe complexity equation of multiplications and additions.
The radix-8 typel algorithm is the original radix-8 FFT agorithm. In radix-8 type2
W

algorithm, we replaced multiplication of into p additions. According to our

discussion in the next section, we set the parameter p to be 3 here. But according to the
large silicon area and power hungry features of complex number multiplier , we only
focus on the number of real number multiplications. Infigure 2.1, radix-8 type2 hasthe
lowest computational complexity, so we choose radix-8 type2 as the building block to

implement 128-points fft.

11



Table 2.1 Multiplicative comparison [ 3]

N Radix-2 Radix-4 Radix-8
Mul Mul Mul Mul Const. Mul

8 2 3 0 2

16 10 8 6 4

32 34 31 20 8

64 98 76 48 32
128 258 215 152 64
256 642 492 376 128
512 1538 1239 824 384
1024 3586 2732 2104 768
2048 8194 6487 4792 1536
4096 18434 13996 | 10168 4096
8192 40962 32087 "+, 23992 8192

Table 2.2 Multiplications ‘and additions comparison [4]

Real Multiplications Real Additions
N Radix-2 Radix-4 Radix-8 Radix-2 Radix-4 Radix-8
16 24 20 152 148
32 88 408
64 264 208 204 1032 976 972
128 720 2054
256 1800 1392 5896 5488
512 4360 3204 13566 12420
1024 10248 7856 30728 28336




Table 2.3 Equation of multiplications and additions comparison [5]

algorithm Real Multiplication Real Addition
3N 7 5N 7N
Radix-2 —log, N- =N +8 —Ilog, N - +8.
adix 5 109 N -5 5 '09: >
Radix-4 9E;\Ilog2 N-3N+3 258Nlog2 N- 3N +3.
25N 73N 25N
Radix- ——(log, N- 3)+4 ——Ilog, N - +4,
adix-8 24 (log, ) 24 Jd,
typel
+
Radix-8 @IogzN- 25N+4 MIogzN- 25N +4
24 8 8
Type2
Compare Computational Load ( Mult )
* ‘ 1 —o— Radix2
—— Radix4
N 0t S M SO S Radix8 Type1
—=— Radix8 Type2
3 3 —— Split Radix
L I ----------- S §4 point
g L R B S RRLGRETTEETE LR rrrrrrrrrrrrrrrrrrrrr —

Figure 2.1 Complexity comparison of real number multiplication of table 2.3




Compare ADD (log )
] ]

—6— Radix2

—— Radix4
Radix8 Type1

3 o Radix8 Type2

[ R— —+— Split Radix

: 4 — 64 Point

ADD ( 10*log(A(2"))

2" Ponint
Figure 2.2 Complexity comparison of real number addition of table 2.3

In figure 2.4, it illustrate the inter connection in radix-2 FFT. We make 8 radix-2
butterfly to be an unit, then 16-point FFT needs 4 times recursive operation which
needs 3 times decimation. The number of switch showsin equation (02), where N is
number of points, r isradix-r, and stage is total stage. The parameter p isthe number of
switch in different radix. In table 2.4, we show radix-r from radix-2 to radix-16 when N
isequal to 128. In figure 2.4, we show that radix-8 can provide the less number of
switches. Because the number of switchesisrelated to the complexity of the design, we
chose radix-8 architecture to implement this design.

Number of switch=N" igi 19’ (stage- 1)+ pz (02)

1 rg

14



Decimation 1 Decimation 2 Decimation 3

Figure 2.3 lllustration of inter connection in FFT.

Table 2.4 The number of switch.
N=128
Radizr stage number of awitch
2 THiradiz-2) 128*%{(1-1/20%6]]=384

4 S*radiz-d)+1* (radix-2) | 128%{(1-1/4)*341 } =320
3 2*(radiz-8)41 * (radiz-2) | L28* {(1-1/5)*24] } =240
16 1*iradiz-16)+1 *(radiz-3) 128* {2 1=206

430 i —— Mumber of switch
400

350 M
200 e

250 — —
200

150
100
S0

Eadix2 Radi-4 Fadixd Radix-16

Figure 2.4 Number of switch versus radix-r.

2.3.128-point FFT algorithm

To develop FFT agorithms, set N in eg. (1) to be power of 2 and consider
15



computing separately the even-numbered frequency samples and the odd-numbered

frequency samples. The even-numbered frequency samples are

N-1
X(2r) =g x(nw,e r=01...,(N/2)-1
3
This can be expressed as
(N52-1) N1
X(@2r)= a xMW®+ g x(mMwee
n=0 n=N/2 (4)

With a substitution of variables in the second summation in (4), than

(N(/)Z—l) (Néz)—l
X@2r)= a x(MW®'+ g x(n+(N/2)wim e
n=0 n=0 (5)

2rn
Finally, because of the periodicity of W

W’jr[n+(n/2)] :W’jrrwl\rlN =W'\frn

WZ =W,

Since 2 (5) can be expressed as

X (2r) = (Ngl)[x(n) +x(n+(N/2)W,, r=01..(N/2)- 1
"0 (6)

From (6) is the (N/2)-point DFT of the (N/2)-point sequence obtained by adding
thefirst half and the last half of the input sequence. Adding the two halves of the input
sequence represents time aliasing, consistent with the fact that in computing only the
even-numbered frequency samples, that are under sampling the Fourier transform of

x(n). In the same way, we can get the odd-numbered frequency points, given by

X@r+D= 8 [X0)- x(n+(N/2)WWS,,  r=0L..(N/2)-1
n=0 (7)
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From (6) and (7) let N=128, than the even-numbered frequency samples and the

odd-numbered frequency samples can be divided as eqg. (8).

11 X(2k) = g [X(n) + x(n+ 64) WS
i n=0

I X (2k +1) = 2 - 64)WW"
i (2k +12) ilo[x(n) X(n+ 64)W;, W5 N=01....63 ®

Equation (7) isthe 64-point DFT of the sequence obtained by subtracting the

second half of the input sequence from the first half and multiplying the resulting

sequence by Wy . Thus, on the basis of (6) and (7), with (9), the DFT can be computed

by first forming the sequence g(n) and h(n), then computing h(n) ngB, and finally

computing the 64-point DFTs of thesertwo: seguences to obtain the even-numbered
output points, respectively. The procedure suggested by (8) is illustrated by radix-2

butterfly.

%g«o=mm+xm+§)

Th(n) =x() - X(n +’;')

©)
g(n) = X(n) + x(n+ )
x(n) 2
N () - N
s ) () = X()- X(n+)

Figure 2.5 radix-2 butterfly
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Figure 2.6 Signal flow graph of 128-point FFT algorithm.

In figure 2.5, a radix-2 butterfly operation is illustrated. In figure 2.6,the signal
flow graph of DIF 128-point FFT algorithm is listed. The first stage is radix-2
butterfly with atwiddle factor multiplication, then the 64-point FFT isthe second stage
of 128-point FFT. The signal flow graph of DIF 64-point FFT algorithm is listed in

figure 2.7, we can observe that the 64-point FFT consists of two stages radix-8
18



butterfly and twiddle factor multiplication. Then we will introduce the 64-point FFT

algorithm at the next section.

: S = :
e ——— E
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Figure 2.7 Signal flow graph of 64-point FFT algorithm.

2.4. 64-point FFT algorithm

We use radix-8 FFT agorithm to conduct 64-point FFT algorithm. The N point

DFT isrewrite at eq. (10), where N is the power of 8.

N-1

X(k§ =& x(MW™,  ke=01--N-1 N=8, al N (10)

n=0

Using the value transform, let k¢=8k +| and n=nl+n2.
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N

i
Tk=0,--- —-

Let ke=gk+ <0 gt
f1=041-,7
Inzo... N_

Let n=rien2 170 g g
}nZ:O’]_,...,7

Replace the k¢and n, the new equation will be

N
gt Iy +ﬁn +
X8k +1)= 3 é x(ny +En2)W,\(,rh g e
n,=0n,=0 8
N y
14 N f (13)
=a i x(n o mWry W W
m=07] n,=0 T twi cFle’f_aJctor 8
T 8- point DFT p

N point DFT
8

Equation (13) can be considered astwo-dimensional DFT. Oneis 8-point DFT and
the other is N/8-point DFT as shewn in figure 2.8. Then, by decomposing the N/8-point
DFT into the 8-point DFT recursively through'a-1 times, where ais equal to logy' , we
can complete the N-point radix-8 DIF FFT algorithm. In (13), the 8-point DFT whichis
the basic operation unit, is shown in figure 2.9. A butterfly is also an essentid
arithmetic component in an FFT processor. In figure 2.9, it is clearly seen that seven
complex multipliers are need in a butterfly unit by direct mapping approach to
implement 8-point DFT. Radix-8 FFT agorithm is seldom used in single-memory FFT
architecture, because the hardware cost of its butterfly unit istoo high to implement. In
order to implement radix-8 FFT algorithm more efficiently, we follow the radix-2° DIF

FFT agorithm.[4]
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Figure 2.8 signal flow graph of N-point radix-8 FFT

21




xing & =n /@ Zin

x (nt/E) @ =1 AP ¥+

* (NI @ =2 @ L (ntE)
=3

(3N @ @ (kI
= o I=4

x (nHINIE)@ @ X {whdiiE)
=5

 (nHSHIZ)E@ g @ E(HSE)

(NI =7@ X (0

x (n IR O X (n+TE

Figure 2.9 Radix-8 DIF butterfly.
To decompose butterfly of radix=8 DIF FET:a gorithm into three steps and apply
the radix-2 index map to the radix-8 butterfly:
From equation (13)
Let | =4,+2,+1, 1,1,1,7{03

And replace the value of (13) we can get

N
X(Sk +4|3 + 2|2 + Il) 3 l a X(rﬁ +En2)v\/8(4l3+zlz+ll)n2 ]:,JW’\(I4I3+2I2+I1)n1 )V\/Iilml
m= OT n,=0 8 8
i
i g«nl) +x(n, + 7)\,\,'1 o ?(nl + *) +x(n, + 7)\,\,'2 OW'ZW} V i
Nl y
=B 1 )+ WS S i+ S+ + W S UW(4|3+2|2+|1) j
ai & b & b
8 point DFT
,4\/’\(‘4I3+2I2+I1)nl >V\/ﬁkn1
twiddle factor 8
% point DFT
......... (14)
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In (14), we use the radix-2 index map to divide the 8-point DFT into three steps.

Figure 2.10 shows the butterfly jof the three-step -DIF radix-8 FFT. The twiddle

factorsW,- and W, at the first step“are trivial complex multiplication, because they
8 8

can be written as \/54(1 j) and \/54(1 j). Thus, a complex multiplication

with one of the two coefficients can be computed using additions and a red

multiplication, whose hardware can be realized by four shifters and three adders. We

will introduce the hardware architecture in further chapters.

In eq. (14), let N=8?=64 and

1,1, T {0,3)

k:O,l,"',7,
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i gX(nl) +X(n, + 32)V\/2'1 ) + (x(n1 +16) + x(n, + 48)W2|2 )V\/zjzv\dl H }J
I : ¥ +21, + y
} + g(x(nl +8) + x(n, + 40)W2'1) + (x(nl +24) + x(n, +56)W.2 )V\,ZIZWL:1 HW8<4|3 20,+1;) Io

7
=a
mn=0 8pointDFT
(4134205 +; )y kny
XN\, N

twiddle factor

8point DFT

In eg. (15), the 64-point FFT isbased on two stage radix-8 butterfly and it needs 49
times complex multiplications exclude from W, W, and W, . The signa flow is

shown in figure 2.7.
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Chapter 3. FFT module architectures.

3.1. Introduction

In the domain of implementation of FFT. processor, two architectures are
commonly used. One is pipelined FFT, the other is memory based FFT. The pipelined
architecture consumes a relatively large chip area compared with memory based
architecture, because the pipelined architecture may needs more complex value
multipliers and complex value adders. In chapter 1, we introduce the FFT module spec.
for UWB system, the high speed, low latency and the parallel input and output is
required. Because of the low latency issue, the intermediate memory access is
frequently and that require one time read and two timeswrite at one clock cycle, it isnot
appropriate to use RAM for intermediate memory device, so that we use register set to
replace RAM, because the register set is more convenient to use for frequently and high
bandwidth data access. Basically, RAM is more proper to use for input buffer and
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output buffer, because of the data of input buffer and output buffer is burst and thereis
not any available datain most of the time period. Thus, the memory is better to design
for power saving purpose for most the time the memory cell would be shut down by
disabling the clock. In this chapter, we will introduce the architecture of each

sub-module in detail .

3.2. Radix-8 butterfly architecture

According figure 2.7, we redraw the figure 3.1, and we can see that radix-8
butterfly unit is composed of 12 radix-2 butterfly. units and two complex multipliers
W =e®® , W= e which we will introduce at chapter 3.4.The multiplication j
is don’t need any multiplication and addition, it only need swap the real part value to
image part and inversed sign of the image part.

The three step radix-8 butterfly unit is the kernel of the 128-point FFT, thus for
high speed and low latency issue, we must pipeline radix-8 butterfly unit but not too
much stage, because of too many stage pipeline will lead to long latency, that is not we
expect. In figure 3.1 there is shown a critical path of radix-8 butterfly unit, the number
isthe number of addition that is used to estimate the timing delay of thiscritical path. It
totally has 8 adders at this path and the total time delay is9 nswithout pipeline, and that

is not arrival the timing specification. After 3 stage pipeline the timing arrival 3.1 ns
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and latency is 3 clock cycle. Notice that the pipelineregister isin the middle of complex

multiplication ("8

1_ -2pjl8 3_ :.2pjl/8
Wy =e and We' = Je ) that is for the architecture required

and balance timing delay which will introduce later.

Stagel Stage2 Stage3 Twiddle factor

(_L\

. «0

Critical path

\ /Complex
Register for pipeline multiplier

Figure 3.1 Architecture of Radix-8 butterfly

3.3. Twiddlefactor multiplication

After Radix-8 butterfly operation is the twiddle factor multiplication, there is 7

complex multiplications (28 real multiplications) need for twiddle factor multiplication.

Because of the area and latency concern about twiddle factor multiplication, we must

select a compromise between area and latency is very important for 128-point FFT

module design.
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There are three kind of architecture to implement the twiddle factor
multiplication, one is general complex multiplication the other is CORDI C-based
phased rotator [5] and the other is M AC-based complex multiplication [6]. We will

compare the each architecture as follow.

3.3.1. General complex multiplier.

In (16), expend the complex multiplier there are four real multiplications and two
additions. The critical path is multiplication and we use three register to pipeline the
critical path, there are two stages and‘ha\)ethree clock cyclelatency. Before pipelinethe

general complex multiplier can arrival 4.5ris, aiter pipelineit can arrival 3.15ns.

Stagel Stage?
s e

-,

: Critical path

Ziﬁk) ]

Zﬂnk} b
N I

1—‘_‘—‘_‘—*‘_-_‘—‘——_
Register for pipé‘]ﬁ

(5411

sin
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Figure 3.2 Architecture of General complex multiplication

Re+im )’ (cosB) +sin( Y )

P pnky L 2pnk o, . 2pnk , 2p nk

=(R€" cos( N )-Im sm(—l\I )+ J(RE sin( N )+1m” cos( N )
real part image part

(16)
3.3.2. CORDIC-Based phased rotator.

CORDIC (COrdinate Rotation Dlgital Computer) It is a class of shift-add
algorithmsfor rotating vectorsin aplane. In anutshell, the CORDIC rotator performs
arotation using a series of specific incremental rotation angles selected so that each is
performed by a shift and add operation: -Rotation of unit vectors provides us with a
way to accurately compute trig-functions;as well as-a mechanism for computing the
magnitude and phase angle of an input vector;

Thereis an example for CORDIC algorithm for phased rotate.
Iteration one that isi = 0, and we want rotate vector A to x-axis. After first one

rotation the vector Ao is under x-axis and the angle ap = tan (1) = 45°.
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i=0
i, =1

a A ¥ -1 1 ¥0)

Iter

L

o x A = AxA1I + 1
a
@ =tan” (1)

g
JE+ 1

ationtwo that isi = 1, after second rotate A ; isabove the x-axisand theangle a;

= tan }(1/2) = 22.5°.

h

Y i=1
u, =-1
_ [xtz)}[ 1 -1/2 {x(l)}
A“ fomya, @] 12 1 Lo
—a, ,': > A=A x 12+(”2)2
M it a—a-a
a =tan™'(1/2)
PR 4

Iter

"B+ T xy17 + (17 2)°

ationtwo thatisi = 2, after third rotate A , is under the x-axisand theangle a, =

tan “{(1/4) = 11.125°.
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bl A, 4 =axTraiay
‘FE > a=a-a+a
’ a = tan (1/4)
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EA1 VP x U+ /2y
B 4,

P x P U 2) )P+ 4y

After three times rotate A, very approach x-axis and total rotate angle a= ag-ay+a
=35°, if there are more iteration the more approach to target rotate phase.

In figure 3.3, the CORDIE-Based phased rotator architecture contain shifter
and adder in each stage, because of;the requirement of-the resolution, there are N times
iterations needed. If let N =13, that is there are 13 iterations, and there are a very long
critical path for thisdesign, using pipelineto reduce timing delay. In thisdesign have 13
stages and there are 14 clock cycles latency which is very long latency for phased
rotator. The advantage of CORDIC-Based phase rotator is that it doesn’t need any
multiplier and after pipeline can arrival very high speed but it paid high latency for

small area and high speed.
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[ Register for pipeline

Figure 3.3 CORDIC-Based phased rotator architecture.

3.3.3. MAC-Based complex multiplier.

MAC (multiply and accumulate) is popular used for DSP processor. DSP
processor often have only two real multipliers, but the complex multiplication use four
multiplication that is very not efficiency-for complex multiplication, and there is an
algorithm to reduce the number of rea multiplier. This algorithm can speed up DSP
processor for complex multiplication by using MAC instruction. Besides, we can use
the way to reduce real multiplication and then reduce area and power.

We can transmit (16) to (17), there need only three real multiplication and
five additions. In figure 3.4, one addition is performed first and then three
multiplications are performed. Finally, one addition and one subtraction complete the
complex multiplication. In this complex multiplier design, the critical is two additions
and one multiplier which is more timing critical than general complex multiplier.

Before pipeline this design can arrival 5.5 ns, after 3 stages pipeline can arrival 3.17ns,
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latency isfour clock cycle.

Re out = R€ écos(Zpl\lm() (ank)H 8(Re+| m)” sm(2IO nkyd

&

Im out =1Im’ écos(

)
Zpnk, . Zpnk.0 é - i 2PNK O
N )- sin( N )H+8(Re+lm) sin( N )H -

Stagel Stage?2 Stage3
A

Critical path

Im out

Register for pipeline

Figure 3.4 MAC-Based phase rotator.

3.3.4. The comparison of twiddle factor multiplier.

There are three kind of twiddle factor multiplication, there are some trade off for
those designs. In table 3.1, we can see that CORDIC-Based phased rotator have lower
gate count and high speed, but latency is 14 clock cycles, that is not acceptable for
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system. Then, there are general complex multiplier and MAC-based complex multiplier,

the gate count and speed are nearly, but the latency is better in general complex

multiplier. Fnally, we decide use general complex multiplier in 128-point FFT

architecture. But why the gate count of MAC-Based complex multiplier is similar to

general complex multiplier, the MAC-based complex multiplier is less real multiplier

than general complex multiplier. Because of the word-length of multiplier in 128-poit

FFT design isonly 8 bits, and multiplier can’t dominate the area.

Table 3.1 The comparison of the twiddle factor multiplication.

Gatecount Speed L atency

General complex multiplier 4.2k 3.15ns 3
MAC-Based complex multiplier 4.0k 3.17ns 4
CORDIC-Based phaserotator 2.8k X 14

(PS: The gate count of CORDIC-Based phase rotator is reference form [7])

Because the delay of the multiplier and adder is not balance, we can use design
compiler to retiming the design. The command “set_balance registers” is suitable for
the sequential design in which register have been inserted or the design have been
pipelined. This command will perform retiming and move the registers in complex
multiplier to the position that will make the circuit having balance delay and minimize

the cycle time. In table 3.2, general complex multiplier can speed up about 0.39ns and
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MAC-based complex multiplier can speed up 0.06ns. We use the same timing constrain
to synthesis those designs, but the performance of retiming in general complex
multiplier is better than MAC-based complex multiplier.

Using retiming to synthesis this design can balance delay, but it has restriction that
we can’t add last stage registers before synthesis. If we need last stage registers, we
must add it manually later.

Table 3.2 The comparison of the twiddle factor multiplication after retiming.

Gate count Speed L atency

General complex multiplier 4.0k 2.76ns 3

MAC-Based complex multiplier 3.7k 3.11ns 4

(PS : The gate count isnot included.input and output register)

3.4. Constant multiplier design

In radix-8 butterfly, there are complex multiplication (W, = e 1’8

and

W, = - je ?1’®) which can be implemented by constant multiplier. In (18), we can see
that W’ =W, " (- j), inthe other word W, is W, phase rotate - (figure 3.4).

W, :e_j% :g‘eﬁé j xﬁé%

. ) (18)
W =e % :gﬁé_ jx\/zégZVVgl’ -1)

In (19), angle 45° phase rotate need \/54 constant multiplier and one addition
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and one subtraction. Figure 3.5isa W, complex multiplier, there is aregister for

pipelinein the middle of the constant multiplier.

25 - %2, % (Ret i)

: (19)
= \/EA (Re+Im)+ jx \EA (Im- Re)
constant multiplication constant multiplication
fi
W,

Figure 3.4 The twiddle factor of the radix-8 butterfly.

> + \EA Imu|t — Re out

> - \/%Irnult L Tm_out

Register for pipeline
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Figure 3.5 Architecture of W, complex multiplier.

\/54 = 011101 in format 1.5 (the left of the dot is one bit, and the right of the dot
are 5 bits) unsigned statement. To multiply \/54 is only need shift and adder which
shown in figure 3.7, the adder is 10 bitsword-length and four shift and adder is needed.
Becausethe W, complex multiplier isunder critical path, timing is the most important
consideration, and we reduce the word-length of adder and add pipeline register in the
middle of the constant multiplier for increased speed of the circuit. In figure 3.6 we use
6 bits, 8 bits and 9 bits adder to replace 10 bits adder, because the total 16 bits are only
11 bits needed. Reducing word-length of adder not only can speed up circuit but also
can reduce area, but there are some'lose of resolution. Considering this trade off, the
error of reducing word-length is 0.1% but it'can speed up about 0.2ns, and therefore we

decision to use reducing word-length adder to implement ‘/EA constant multiplier.

adder word length

P
- ™
| in[9:4]
f in[9:2] |
| in[9:1] |
| in[9:0] 1'b0
m 9 & 7T 6 5 4 3 7 1 0
. i
g

Qutput word length

Figure 3.6 Operation of constant multiplier.
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In figure 3.7, after constant multiplier, there isaoutput rounding let 11 bits round

to 10 bitsin order to make output signal more precise. Rounding circuit only need a

multiplexer and a 10 bits adder, which only need few gate count.

in[9:4]— T
> i —
09— out[10:0]
i I rounding— OUT([9:0]
n[9:1] —
> +
{in[9:0],1°b1} ——'/
Register for pipeline

Figure 3.7 Architecture of constant multiplier.

3.5. 128-point FFT circuit design

The main circuit design dominates the totally performance, area, and power
consumption. In order to achieve high speed and low latency, thereismore parallel than
the other FFT circuit design. Because of the 4 complex valuesinput, we need 4 radix-2
butterfly units and 4 twiddle factor multiplier, shownin figure 3.8. Theinput buffer (B1)
is 64-samples memory space and buffer input signal 16 clock cycles, then radix-2
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butterfly unit and twiddle factor multiplier can operate.

= 4x Radix-2 BF 2x4 bytes
4x2x5bits i :
. " —‘ l2X4 bytes
4x conmle:mmngigs SRR L'E_‘ ' g
2x4 bytes 4x Complex muliplier > byfes S =

Radix-§8 BF

N . 233 bytes

3x Complex multiplier

% [ 2x8 bytes

& x complex output
samples

Figure 3.8 128+point Flj:lfnci reuit block diagram

]

In figure 3.9, it shows all tﬁéqpaﬂafi;jn' of each cycle. Notice that there are 4
twiddlefactor multipliers can share witf; radi><“;2 and radix-8 butterfly, because there are
no resource confliction for the twiddle factor multiplier of the radix-2 and radix-8. In
128-point FFT circuit, thereis only an intermediate register set (temp register B2),
which have 128-samples memory space, then, we use the in-place method to manage
the read/write of the register set. Because there only an intermediate register set, the
read/write of the register set needs a very high band-width for access, thusit can’t be
replaced by RAM, because RAM can only read or wire at single cycle.

Noticethat there are two radix-8 butterfly unitsin thiscircuit, which isthe purpose
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of low latency. The utility of radix-8 butterfly is 50% and complex multiplier is 78.6%.

In figure 3.9, there are four complex multipliers, which are working al the time, utility

is 100%, another three complex multipliers are 50%,and average is 78.6% totally.

Because of resource conflict between radix-2 and radix-8 butterfly unit, radix-8

can’t share four radix-2 butterfly units for first stage. Thus, we design another four

radix-2 butterfly unitsfor first stage. Specifically, high speed design has a challenge to

backend timing convergence. We consider that timing convergence problem in this

design and make backend timing more easily to met, thus, we add some temp register

and using synthesis constrains in transition timefor more strong driving strength. By

the way, those methods must cost more area btit can make design more robust.
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Figure 3.9 Timing diagram of 128-point FFT
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3.6. Design of reorder buffer and output buffer.

Output of DIF FFT algorithm is out of order sequence. Thus if we need in order
sequence or duel FFT/IFFT mode, we need the reorder buffer to reorder the output
sequence. The 128-point FFT coreis 8 output samples and the output sequence shows
in figure 3.10. We can see that the row of out O the sequence 0, 2, 4, 6, 8, 10, 12, 14, 1,
3,5,7,9,11, 13, 15isthe order of output sequence and the sequence we demanded isO,
1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, thuswe use 8 single port RAM to construct
the RAM bank and interleaving each output to different RAM on purpose. In figure
3.11, we use multiplexer to interleave the radix=8 butterfly output data and store in
different address, thus the sequence0, 1, 2, 3;'4, 5; 6,-7, 8 isin different RAM and for
the same reason the sequence 9,710, 11, 12,13, 14,15 is dso interleaved at different
RAM. By the way, reorder buffer must wait al of the radix-8 output data saving into
memory, then it can start dumping output data in 16 clock cycles, that takes 19 clock

cycles latency.

owto| 02 4 68 10 12 141 3|5 7 9 11 13 15
outl | 16 18 20 22 24 26 28 30 17 19 21 23 25 27 29 3l
, out2 | 32 34 36 38 40 42 44 46 33 35 37 39 41 43 45 47
Radix8 BF| 43|48 50 52 50 56 58 60 62 49 51 53 55 57 59 61 63
output outd |64 66 68 0 T2 T4 76 78 65 67 69 T T3 75 TI T9
out5| 80 82 84 8 88 90 92 04 81 83 85 87 89 91 93 95
out6 | 96 08 100 102 104 106 108 110 97 99 101 103 105 107 109 111
out7 112 114 116 118 120 122 124 126 113 115 117 119 121 123 125 127
fme | 0 1 2 3 4 5 6 7 8 O 10 11 12 13 14 15

Figure 3.10 Output data sequence.
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RAMO| 0 114 100 86 2 58 44 30 17 35 53 71 89 107 125 15
RAM1(16 2 /116 102 88 74 60 46 33 51 69 87 105 123 13 31
RAMZ2 (32 18 4 118 104 90 76 62 49 67 85 103 121 11 29 47
RAMbank )| RAM3|48 34 20 6 120 106 92 78 65 83 101 119 9 27 45 63
RAM4 (64 50 36 22 8 122 108 94 81 99 117 7 25 43 61 79
RAMS (80 66 52 38 24 10 124 110 97 115 5 23 41 59 77 95
RAMG |96 82 68 54 40 26 12 126 113 3 21 39 57 75 93 111
RAM7|112 98 84 70 56 42 28 14 1 19 37 55 73 91 109 127 |
Address| 0 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15

Figure 3.11 RAM addressing of the reorder buffer.

Figure 3.12 shows the architecture of the reorder buffer, there are two Rotate

MUX for interleave data and reassembly data. The control signal sel 0 and sd_1

control the rotating order and the rw_addr controls the address of the RAM. The input

and output register set make the output signal more stable.

mput register output_register

8x RA1SH16xl6
in0 R R R R outQ _
inl | —] : outl
an > > > j‘;.j d out2 |
ﬂi > >Rotate »Rotate > EES >
T |MUX i "[MUX T outs
nd h - J | RAM . R outd .
m7 s 1Sl N i out?
In_enable sel 114 3 put_enable
clk
clk o ~

Figure 3.12 Architecture of the reorder buffer.

Figure 3.13 shows the architecture of output buffer, the output buffer is only a

parallel-to-serial which makes parallel 8 outputs to parallel 4 outputs. Every 8 points

data only 4 points data are really needed save into the memory. It only needs a very

simple controller to implement the output buffer circuit. The latency of the output

buffer is 3 clock cycles.
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input_register

inQ \ .
inl | " output_register
Eg i d N outd
ind > . outl _
in5 RA1SH16x64 MUX " out2 |
in6d B out3 |
in7 | ) .
In enable s RAM . out—_enflble
B o i > clk
clk . SeE
_.,>
4 rw_addr

Figure 3.13 Architecture of output buffer.

The different form FFT between IFFT is the sequence of the output order. The
reorder buffer can pre-buffer the fist one output and let control counter to count
backwards, and then we can get.the | FET. sequencé.‘ Figure 3.14, using a very simple
control to get IFFT sequence.

FFT sequence

0 1| 2| 3 4] 5 6/ 7 8- 120121 122/123|124 125 126 127
- / . AN /
T ' T

0 14 15
IFFT sequence
1] 2| 3| 4/ 5 6 7 8- 120/121/122123/124 125126 127 0
o S o AN
h'd hd e
15 1 0

Figure 3.14 FFT/IFFT reorder.
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(a) Only 128-point FFT.
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(c) 128-point FFT + reorder buffer.

Type B

reorder

buffter

out enable

(d) 128-point FFT + reorder buffer + output buffer.

Figure 3.15 All kinds of combination of 128-point FFT.
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Table 3.3 All kinds of combination of 128-point FFT vs. Latency

Output operation

Latency

(@) Only 128-point FFT

8 out of order output

50 clock cycles

(b) 128-point FFT + output buffer

4 out of order output

54 clock cycles

(c) 128-point FFT + reorder buffer

8 sequentia output

70 clock cycles

(d) 128-point FFT + reorder buffer +

output buffer

4 sequentia output

73 clock cycles

There are many kind of combination of 128-point FFT shown in figure 3.15 and

table 3.3, each combination can be:selected as you needed. You can just only change

parameter to define each architecture and thereisa verification environment can verify

each architecture.
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Chapter 4. Implementation and
verification

4.1. Introduction.

In this chapter we discuss how to'modeling a behavior model of the 128-point FFT and
how to verify this design. Behavior model is built by MATLAB which can provide a
complete mathematical and simulation environment. The design flow is illustrate in
figure 4.1, and thisis akind of waterfall models which isworked well up to 100k gate
count design. It isa seria flow from specification survey to post layout simulation and
thereintegrate a verification flow to verify the design. Notice that function verification
verifies the behavior module and RTL module to check if they have the same function,
and it helps debugging in RTL code that saving alot of time for debugging. After RTL
code development and function verification there are two way for implement design,
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oneis ASIC, and the other is FPGA prototyping. FPGA prototyping is for verification

design in general, because FPGA can simulate fastest than simulator and it realizes the

function of the circuit by an easy way. If we want produce ASIC, we will go through

synthesisand Place & Route. We synthesisthe design to gate-level netlist by reasonable

design constrain, and verify thetiming, areaand power. If it arrival out demand, we will

Place & Route our design. After timing, area, power and design rule are all conformed,

we can tape-out.
—
i | Specification | ! !
1 | i 1
: gurvey n :
|
I ! ¥ :
' | Buildng | :
: Behavior E : :
: module 1! :
1 o 1
: | ¥ :
1 | k4 |
' | RTL code '\ | Functional :
' | development [+ i Verification :
g P : 1 I
! g }
|
: Synthesis [ r—> Timing, FPGA. :
I I o Area, grot%typ?g :
|
i | & Power erification E
! | Verification !
' | Place & Route :i [ Design rule :
1 - . . !
I ¥ verification !
: & I
" l 1! 1
| 1 : 1
|
i Tape-out 0 i
| 1! 1
| Design flow._ 1 _______ Verification flow. ______ }

Figure 4.1 Design & Verification flow
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4.2. Behavior module design.

To develop a MATLAB behavior module to simulate a real circuit function, we
need to quantize value after the mathematical operation. In figure 4.2, we illustrate all
of the mathematical operation point and list the each function of the operation point.
ThereareA, B, C, D, E five operation pointsin this circuit which are post-addition and
post-multiplication, and column one is the word-length of the intermediate register and
complex multiplier. To discuss the quantization error from the intermediate register and
complex multiplier is that both of then cost most of the area and power consumption
(register about 50%, complex muiltiplier about. 20%) and they directly relate to
guantization error. Let we see thecolumn A; there are two parameter, Scale bit and
Quantize bit, which means how much bitswe scaled in this stage and how to quantize
the word-length. In another word, if we want to present 10 bits value by using 8 bits, we
must scale 2 bits and keep maximum side, thus the Scale bit set to 2. The Quantize bit
(7.2) means that we quantize value by 7 bits left of the dot and 2 bits right of dot, and
totally we use 9 hits to present this value, because the twiddle factor is a decimal

fraction.
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Stage A A B E o C D D E E
operation Seale Chuantize Seale hit Cuantize SBeale hit Cluantize HSeale bit Cuantize Seale hit Quantize S0ONR S0ONR

bit bit bit bit bit bit floor( 4B yound

(4E)

5 bits 1 {5.0) 1 (5.0 2 (5.0) 0 (5.0) 1 (5.09 741 1232
& bits 0 6.0) 1 (6.0 2 6.0 0 (6.0) 1 (6.00 1365 | 13.88
7 bits 0 (7.0) 0 7.0y 2 7.0) 0 (7.0) 1 7.0y 1997 | 2558
2 bits 0 (2.0) 0 7.1 1 (2.0 0 (2.0) 1 (200 26.13 | 31.56 ]
9 bits 0 (9.0) 0 7.2 0 (.0 0 (9.0) 1 (.09 3239 | 3827
10 bits 0 ooy | o 1.3 0 @1 0 1) 0 100y | 3842 | 4443

Figure 4.2 MATLAB simulation for word-length decision (1).

There are two methods to quantize value, one‘is “round”, and the other is “floor”.
Notice that the SONR by “round” is better than “floor” about 6 dB, and figure 4.3
illustrate the simulation results and the simulation condition. We use 5 bits random
signal to input both ideal FFT and practical FFT, and use ideal FFT output value to get
SONR. Each SQNR was simulated about 1280000 sample points, and we simulate N
from 5 bits to 10 bits to find out the quantization error vs. word-length N. Finally, we
decide to use N = 8 and SQNR = 30dB for system requirement. Because the UWB
system is only QPSK modulation, the SQNR = 30 dB is quite better. Figure 4.3 shows

the SONR versus word-length.
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Eeference

signal
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—{uantization » Ideal FFT (Quantization sy [ EVM(db)
Input Cutput _
signal p— signal Comparison
Practical i SILEO)
Word-length 1 O_utp ut
. signal
bits
FFT 128 point word length decision
55 T T T T

---€3--- perfect FFT with output quantize with "round" palicy
L —#— Simulation circuit beheaver with "round" policy 4
— Simulation circuit beheaver with "loor palicy

SENR(B)

wiord length M hits

Figure 4.3 MATLAB simulations for word-length decision (2).

In figure 4.4, we simulate the quantized response of FFT and IFFT by using QPSK

input value. The performanceisthat EVM =-17.9681 dB and SONR = 17.9681 dB.
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Figure 4 4°FFT and IFFT

4.3. Verification.

EVld

Comparison

e EVM (db)

P EVM (%)

Functional verification usually cost about double time more than develop a RTL code.

If there is arobust method for verify design, we can reduce alot of time for debugging

design. We have two verification phases of this design, oneis debugging phase, and the

other is regression phase. The debugging phase we need fully accessibility and fast

turnaround time, and verilog test bench isvery suit to debugging phase. Then, if most of

the bug is removed, we need find out the last bug which is most hard to remove. Using

regression phase to turn off most if the accessible options to increase simulation

efficiency and we can use random generator to generate random pattern for input signal
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and we can simulate a large number of cycles efficiently. In this design we use ADS

co-simulation for regression phase debugging.

From Matlab behavior module

Outtput checker
Re out.dat
Im_out.dat

Test bench
Input control Re in.dat
Im_in.dat

v

Re order Address
counter

Address
addr _out
¥
input output
. i
i 128-point fit mem_re_out
addr_in' | mem_re_in mem im out
mem_im_in In_enable - -
olk out_enable
- correct .
In_enable compare
Control
Clock
generator

Figure 4.5 Self-check test bench

In figure 4.5, it is the structure of verilog test bench in debugging phase. There are

input control and output checker. We can read input signal form Re_in.dat and

Im_in.dat which generate by MATLAB, and output checker can compare 128-point

FFT output signa with MATLAB behavior module output and send correct signal. This

self-check test bench can verify alot of test patterns and we can check the output signal

if the signal of correct islow, we can open waveform and debugging. This self-check

test bench can save alot of timeto check output signal is correct or incorrect, efficiently.

In chapter 3.6, there are many kind of combination of 128-point FFT, because the

output sequenceis very different, but this test bench can detect which kind of
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architecture we verify and can auto reorder output data and fit verification condition.

This verification environment can provide a convenient and efficiency condition to

user.

Ideal FFT

Figure 4.6 ADS co-simulation.

In figure 4.6, We use ADS (Advance Design System) to run co-simulation,

because ADS is GUI interface, each component can observe in working space. We

compare the HDL FFT with ideal FFT and show output signal waveform in figure 4.8.

Using output histogram which is illustrate in figure 4.7, to decision output bits

resolution, thus we can see that the amost output range is about 7 bits, but we use 8 hits

resolution to prevent overflow. After 100,000 sample points ssimulation, we can

calculate the EVM that list in table 4.1, the EVM = -30dB.



Use -128~127 (8 bitg) to prevent overflow

v

Almost output range over
-64~64 (7 bits)

000

hist_real

gJ

nist_ima

indep(hist_imaqg)

Figure 4.7 Output histogram.
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Figure 4.8 Compare ideal output and HDL output.
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Complex

real

image

Table 4.1 ADS co-simulation for EVM (dB)

*Simulate about 100,000 samples

p1 pef EVM1 EVMeB+—
79.039 0.079 0032 | ( -30.022
p2 pe2 EVM2 EVMdJB2
39402 0.039 0.032 -29.990
p3 pe3 EVM3 EVMdJB3
39.637 0.039 0.031 730.054

There are some important signal processes in this circuit design; the anti-saturate

circuit can prevent large distortion after round or:truncation. Because we present values

by two’s complement, we want round“value-127.5 to 128 in 8 bits resolution is

impossible because there can’t have value428, but rounding will round value 127.5 to

-128 and it will occur a large error. Figure 4.9 shows the anti-saturate operation; we

saturate the output value with 32, but real output value is about 35. Even alarge error

occurs but if there isn’t anti-saturate circuit, a very large error will occur. Figure 4.10

shows the saturated output error vector; it is large but we can tolerate.
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8 bits output (6.2)
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Figure 4.9 Saturated output operation.
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Figure 4.10 Saturated output error vector.

4.4. Timing verification.

In table 4.2, synthesis report for each combination, there are two kind of report,

one is with RAM, and the other is RAM free. We replace RAM by the register set to

synthesis because we can’t calculate the gate count of RAM (RAM islikely an analog
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device), so the total report of the gate count is without including RAM. In this design

that can operate up to 300 MHz in synthesis phase, but this don’t include wireload and

interconnect capacitance that we will concern in backend flow.

Table 4.2 Synthesis reports

Gate count |Speed HRAM
128-point FFT 87K 3.34ns RA1SH16x40 x1
128-point FFT 90K 3.34ns RA1SH16x40 x1
+output_buffer RA1SH16x64 x1
128-point FFT 97K 3.34ns RA1SH16x40 x1
+reorder_buffer RA1SH16x64 x1
+output_buffer RA1SH16x16 x8
128-point FFT BOK 3.37ns X
128-point FFT 100K 3.37ns X
+output_buffer
128-point FFT 130K 3.37nS X
+reorder_buffer
+output_buffer

Synthesis tools: Synopsys design compiler V-2003.12-SP1

Library: UMCO18 generic slow (125°C 1.68V) library

4.5. Chip implementation.

Figure4.11 isthe new version of 128-point FFT layout view, there are summary of

this chip asfollow.

58



P&R tool : Astor

Timing sign-off tool : Prime time

Power analyze tool : Prime power

Coresize 1564.86 x 1564.64 um?
Diesize 2554.66 x 2555.125 um®
Timing 5ns =200 MHz

Power 127 mW @ 132 MHz

Table 4.3 The chip summery.

Figure 4.11 Layout view
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4.6. FPGA prototyping.

We use FPGA to implement design and the synthesis report showsin table 4.4, the

report of the FPGA gate count is very different from the report of the ASIC gate count,

which is only for reference. Because this FPGA is 0.25 technology and the

characteristic of FPGA is for verification, the timing is not very important by FPGA

prototyping.
Table 4.4 Xilinx FPGA synthesis report.
Target Device xcv2000e-bg560-6
Slices 7784
Slices Hip Hops 5088
Gate count 165,537

Post — Map timing

16.578ns (10.215ns logic, 6.363ns route)

=60.32 MHz

Post- Place & Route timing

25.16ns (9.936ns logic, 14.974ns route)

39.74 MHz
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4.7. Compared with other design.

Table 4.5 Comparison of 128-point FFT

This design Paralel FFT with CORDIC
[7]
Synthesisspeed & | 3.34ns with UMCO18 slow 7.57nswith TSMC025
synthesis library library
Synthesis gate count 97K 87K (without 53K
reorder buffer)
Latency 50+19+3+1=73| 54 clock cycle 99 clock cycle
clock cycle | (without reorder
buffer)

Synthesis Power 97 mwW 109 mwW
P& R speed 5ns NA
P&R core area 1564.86 X 1564.64 Um” NA
P&R power 127 mW (without RAM) NA
IFFT/FFT dual core Yes No

resolution Worddength =8bits Word length = 8 bits
SQNR=30dB
Architecture Radix-8 Radix-4
CORDIC
Table 4.6 Comparisons.
Word | Tech. Core Power Operation | Max | Latency
length Area speed Speed
Proposed | 8 bits | UMC 2.4mm? | 127 mW | 132 MHz | 200 73
(128 CMOS (without Mhz | clock
points) 018« m RAM) cycle
[11] 16 bits | IHP 6.8mm’ | 41mW |20Mhz |38 77
(64 BICMOS Mhz | clock
points) 0.25um cycle
[12] 12 bits | CMOS 10 mm? | 400mW | 50Mhz | 50 150
(128 0.6um Mhz | clock
points) cycle
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Chapter 5. M easurement results

5.1. FPGA measurement plan.

We utilize FPGA phototype ta verify this'design.-In figure 5.1, we add two circuit
for verification, one is S-to-P (serial to paralld), and the other is P-to-S (parald to
serial). Because the limit of the input/output pin of the instrument, we translate parallel
input/output to serial input/output for convenient measurement. The FPGA synthesis
tool is Xilinx ISE 6.2 and synthesis report shows in table 5.1. This synthesis report is
different from table 4.4; the table 5.1 includes S-to-P and P-to-S but table 4.4 only have
128-point FFT core. So that it contain two clock domains, one is clk that clock is for
S-to-Pand P-to-S, and the other is clk4 that clock isfor 128-point FFT core. Figure 5.2

shows the measurement environments.
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Figure 5.1 FPGA measurement plan

Figure 5.2 FPGA measurement environments.
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Table 5.1 Xilinx FPGA synthesis report for measurement.

Target Device xcv2000e-bg560-6
Slices 7827
Slices Hip Hops 5238
Gate count 167,037
Post — Map timing clk 4.359ns (2.945ns logic, 1.414ns route)
=229 MHz
clk4 16.578ns (10.215ns logic, 6.363ns route)
(core | =60.32 MHz
clock)
Post- Place & Routetiming | clk 7.875ns (2.945ns logic, 4.930ns route)
=132 MHz
clk4 23.848ns (9.715ns logic, 14.133ns route)
(core | =41.93MHz
claek)

5.2. FPGA measurement results.

We use pattern generator to generate input pattern, figure 5.3 shows the input sin

wavein logic analyzer at clock period = 10 ns (clk= 10 ns clk4 = 40 ns) and figure 5.4

shows the output results. But why we use sin wave for input signal? The answer is that

we want to verify the output saturate operation, because the sin wave input will produce

an impulse in FFT output and this impulse will saturate output.
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Figure 5.3 FPGA input signal (view from Logic Analyzer).
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Figure 5.4 FPGA output signal (view from Logic Analyzer).
After using logic analyzer to dump output signal to afile, we want to verify this
output signal is correct or not. Using MATLAB to read data which dump by logic
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analyzer we compare FPGA output with ideal 128-point FFT output. Figure 5.5 shows

the results, and the function of the 128-point FFT iswork.

-- ideal output
- FPGA output
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Chapter 6. Conclusionsand Future
works

6.1. Conclusions.

In this thesis, we have the complete analysis of computational complexity and
internal  connection complexity, then we select radix-8 algorithm to implement
128-point FFT. In the third chapter, we introduced and anayzed the architecture of
the radix-8 butterfly unit and twiddle factor multiplier, then we introduced the
pipeline operation and the trade-off of the resolution and speed. In chapter 4, we
provide a behavior MATLAB module, test bench and co-simulation environment for
verification, that can help user efficiently verify this design.

Finaly, we design a high speed and low latency 128-point IFFT/FFT for UWB
system. After P&R it remains high speed and can operate a 200 MHz, that is,
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throughput is 800 M samples per second. The latency of IFFT/FFT is only about
0.552 s when operate at 132 MHz. Using FPGA prototyping to verify the
functionality and build the measurement environment for this design.

6.2. Futureworks.

This 128-FFT is design for 802.15.3a UWB and with parallel input and output,
because this architecture is for 0.18 1. technology, if we use 0.13 zm or 0.09 z m
technology to implement this design we have to adjust this architecture to make it less
parallel and down size this design. Thus, if we can make this design more flexible and
can be modified easily by user, makeuser just select which architecture he needed. We

also want this design can be an IP.and can passthe’|P-qualify.
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