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Chapter 2 
 
Clock and Data Recovery 
Architectures 
 
 

2.1 Principle of Operation 
This chapter discusses the design issues related to the CDR architectures. The 

bang-bang CDR architectures have recently found wide usage in high-speed 

applications [5], [6]. The most common bang-bang CDR is based on Alexander phase 

detector [7], which works at a full-rate clock frequency. To achieve higher operational 

speed in a technology with a low transistor cutoff frequency, a half-rate phase detector 

is necessary to increase the throughput of the system [8]. In this work, the CDR 

contains several major building blocks. 

 

(1) Phase detector: A digital circuit senses the phase difference between the input data 

and the half-rate clock only on data transitions. 

 
(2) Frequency detector: The digital quadricorrelator technique is adopted [9]. At initial 

state, a fundamental property of the digital quadricorrelator 
frequency detector (DQFD) is to produce output signals, 
which control charging and discharging currents according to 
the frequency difference between incoming NRZ data and 
recovered clock. After the frequency detector’s operation, 
pulls in the VCO frequency to a certain range compared with 
the data rate. The frequency detector is automatically disabled 
itself and doesn’t disturb the loop. 
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(3) Voltage-controlled oscillator: A local clock generator which is aligned to the 
incoming NRZ data and provides half-quadrature 
phases for the half-rate frequency detector. 
Recovered clock from the VCO is used to sample 
the incoming NRZ data. 

 

The proposed half-rate CDR circuit consisting of the half-rate DQFD, a 

voltage-controlled oscillator, a half-rate phase detector, and two charge pumps, as 

shown in figure 2-1. At first, both the DQFD and the PD compare the incoming NRZ 

data and recovery at the same time. Secondly, the frequency-locked loop, which is 

constructed from Loop2, detects the frequency difference between the incoming NRZ 

data and the recovered clock. This DQFD pulls the VCO output frequency to the data 

rate. Thirdly, the DQFD automatically disables itself while the frequency is locked. 

This means that the whole loop is dominated by Loop1 and the Loop2 doesn’t disturb 

the whole loop. Finally, the operation is completed and the CDR can achieve fast 

locking and wide pull-in range due to DQFD. 

 
Fig. 2-1 Half-rate CDR architecture 
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2.2 CDR Fundamental 
Generally, the task of the CDR architecture is to recovery the 

phase-and-frequency information from the input by extracting the clock from the 

rising edges of the data stream. Figure 2-2 shows a common half-rate CDR to 

regenerate the data stream in locked state. We can see the CDR sample the data 

stream with rising/falling edges of Clock1 and extract the correct data from the 

outputs of two decision circuits with Clock2. We can discuss the building block in 

detail in the following subsections. 

 
(a) 

 
(b) 

Fig. 2-2 A Data Regeneration (a) scheme, (b) timing diagram 
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2.2.1 Frequency Detector 

The loop bandwidth of CDRs [5], [10]-[12] should be small to improve noise 

performance. However, it will result in small capture and pull-in ranges. CDRs 

without frequency acquisition loops might need either additional reference clock [11] 

or off-chip tuning [12]. Digital quadricorrelator [13], [14] have been widely used in 

frequency acquisition. However, the conventional digital quadricorrelator frequency 

detector [14] could be suitable for CDRs with full-rate clocks. To reduce the power 

consumption, clock relaxing techniques [5]-[6], [10]-[12] have been applied to 

achieve higher transmission rate with lower clock rate. For the half-rate CDR, we 

employ a half-rate frequency detector to improve the capability of frequency 

acquisition [9]. In the initial state, the CDR is out of lock. The digital quadricorrelator 

frequency detector should produce a useful output signal to pull the frequency of 

VCO to the half data rate. When the frequency lock is achieved, the digital 

quadricorrelator frequency detector will disable itself. As shown in Figure 2-3, the 

digital quadricorrelator frequency detector can be realized by eight DFFs, two XOR 

gates, and combinational logics. 
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(a) 

 
(b) 

Fig. 2-3  (a) Schematic of half-rate DQFD (b)Combinational logics 
 

According to the results of 0°, 45°, 90°, and 135°are sampled by input data, each 

half of clock period can be divided in to four states, I, II, III, and IV, as shown in 

figure 2-4. In this quadricorrelator frequency detector, four DFFs (Q5-Q8) triggered 

by clock of 0° will store the sampled values and record the states. There is a rising 

edge of clock of 0° to ensure this state to have been recorded. In other words, all valid 

state transitions have to rotate counterclockwise and cross the arrow in figure 2-4. The 

arrow represents the edge of clock of 0° to rise at the boundary between state IV and 

state I. 
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Fig. 2-4 State representation 
 
 

The operational principle of the half-rate quadricorrelator frequency detector will 

be discussed in the following. For a slow periodic data as shown in figure 2-5(a), 

suppose that the first rising edge of data appears at the boundary between state III and 

state IV. Then the second rising edge appears ate the boundary between state IV and 

state I. The state transition rotated from state IV to state I would be detected. This 

state transition would indicate that the clock rate is faster than the half data rate; i.e., 

frequency DOWN should be active. For a fast periodic data in figure 2-5(b), the first 

rising edge appears at the boundary between state I and state II. The second one 

appears at the boundary between state IV and state I. Then the third one appears at the 

boundary between state III and state IV. We should consider two cases related to the 

operation in fast periodic data. Case 1, the data leads a little; i.e., the first rising edge 

appears at the state I. The state transition rotated from state I to state IV would be 

detected. Case 2, the data lags a little; i.e., the first rising edge appears at the state II. 

We can find the state transition rotated from state I to state IV occur due to the second 

one and third one. This state transition would indicate that the clock rate is slower 

than the half data rate; i.e., frequency UP should be active. Two additional state 
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transitions, such as state transition from state I to state III and state transition from 

state II to state IV, are chosen to aid the speed-up process. Similarly, two additional 

state transitions, such as state transition from state III to state I and state transition 

from state IV to state II, are chosen for the slow-down process.  

 

(a) 
 

 

(b) 
 

Fig. 2-5 Timing diagram for (a) slow periodic data (b) fast periodic data 
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Since the state varies with the input data and four different phase of the VCO 

output, the following state will be any possible state. In order to analyze these state 

conveniently, we define a three-state logic. As shown in figure 2-6. It contains three 

states: Frequency UP, Frequency DOWN, and Don’t care. When state I rotates to 

state III or state IV and state II rotates to state IV, the VCO output frequency goes up. 

When state IV rotates to state I or state II and state III rotates to state I, the VCO 

output frequency goes down. Other cases are “Don’t care”. 

 
 

 

Fig. 2-6 A three-state logic of the half-rate DQFD 
 
 

We have to deal with the diagram of the three-state logic, which decide the 

operations of the half-rate digital quadricorrelator due to the state changes, see in 

Table 2-1. According to the logic table, we can obtain the combinational circuit in 

detail. This type of frequency detector has two major advantages. One is that the 

synchronous processing guarantees the frequency detector automatically disabled 

when the VCO output frequency is equal to the half data rate and there is no need 

additional circuit to turn off the frequency detector in the lock state. It means the 

frequency detector does not disturb the system in the lock state and we can achieve 
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low jitter performance. The other, the half-rate digital quadricorrelator frequency 

detector can detect the frequency difference between the input data stream and the 

VCO clock. There is a considerable issue related to the mismatch between the 

quadrature clocks. The mismatch will affect the operation of the half-rate 

quadricorrelator frequency detector. To improve this issue, additional dummy cells 

should be necessary. 

 
 
 
 

Table 2-1 Logic table of the half-rate DQFD 
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2.2.2 Phase Detector 

The phase detector plays a critical role in determining the purity of the clock data 

recovery from the received data. The phase detector must be able to cope with random 

NRZ data and recover the clock that is associated with the data stream. We usually 

use a linear phase detector or a digital bang-bang phase detector. A linear phase 

detector exhibits low jitter performance in the lock condition, but suffers from 

nonlinearity for non-uniform data patterns and requires an external loop filter. In 

addition, it is difficult to design and is highly sensitive to mismatch. A previously 

proposed linear phase detector [15] uses an unconventional 2.6V supply for a 0.18  

μm CMOS process, and requires an precise signal comparison to generate the phase 

error signal. An alternative phase detector [16] is sensitive to the clock and data duty 

cycle. A digital bang-bang phase detector is less sensitive to data patterns and can be 

fully integrated in a CMOS process. The main problem with such a detector is the 

generation of a high ripple over the control line of the oscillator during the lock 

condition resulting in high jitter [8]. It provides simplicity in design and better phase 

adjustment at high speed in spite of higher jitter [17]. 

In this work, we will employ a four-step digital bang-bang phase detector to 

replace the conventional two-step one to improve the performance of the system [18]. 

The detailed implementation, which was raised earlier in this chapter, will be 

discussed further more in the next chapter. 
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2.2.3 Voltage-Controlled Oscillator 

Generally, the ring oscillator generate a square output waveform with its 

frequency controlled by the control voltage, as shown in figure 2-7(a).Figure 2-7(b) 

shows the characteristic of VCOs, where f1 and f2 are the output frequencies 

corresponding to the control voltages of V1 and V2 respectively, and the slope Kvco 

is the gain of the VCOs. Gain and linearity are most important to CDR systems. We 

will define some specifications of VCO are [18] 

(1) Tuning linearity: An ideal VCO has a constant VCO gain, Kvco, at the entire 

frequency range, as shown in figure 2-7(b). 

 

(2) Tuning range: the range between the minimum and maximum values of the VCO 

frequency 

 

(3) Power supply sensitivity: Some VCOs with relatively low sensitivity to noise on 

the power supply. In 1.25 Gbps clock recovery 

applications with multiple channels on the same die. 

The power supply Vdd will be lower than the nominal 

value when switching activities are frequent [19]. 

Beside, the switching noise introduced by digital 

circuits will also couple to Vdd of a VCO and influence 

its output waveform. Therefore, this effect must be 

reduced as low as possible. 

 

(4) Phase stability: An ideal spectrum of the VCO output should be looked like the 

Dirac-impulse. In other words, the phase noise of the VCO output 

must be as low as possible. 
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Fig. 2-7 Illustration of the VCO (a) model of the oscillator (b) 
characteristic 

 
 
2.2.4 Loop Filter 

The low-pass filter lies between the phase detector output and the voltage control 

line of the VCO. It has a lead-network consisting of a resistor Rp in series with 

capacitor Cp and a capacitor Cs in parallel. The lead-network filter provides a pole in 

the original to provide an infinite DC gain to get the zero static phase error, and a zero 

in the open loop response in order to improve the phase margin to ensure overall 

stability of the loop. The transfer function of the filter is given by 

( )( ) zKh SF s
S

ω× +
=                      (2.1) 

Where 

ωz = 
 1 

 RpCp , Kh = Rp                     (2.2) 

Capacitor C2 is used to provide higher-order roll off for reducing the ripple noise 

to mitigate frequency jump. The total transfer function of the loop filter is 

         ( )( )
(1 )

z

p

Kh sF s ss

ω

ω

× +
=

× +
                         (2.3) 
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Where 
1 , (1 ),z p z

Cp Rp CpKh
RpCp Cs Cp Cs

ω ω ω
×

= = × + =
+

     ( )( ) zKh SF s
S

ω× +
=       (2.4) 

But the adding of the capacitor Cs will make the overall system become 

third-order one and affect the stability of the loop. In general, by setting Cp>20×Cs, 

the third-order can be approximated to second-order loop. 

 

 
Fig. 2-8 A second-order low-pass filter 

 
 

2.3 Loop Performance Analysis 
Since the digital bang-bang phase detector is a nonlinear circuit, it is different 

from the linear phase detector [5], [20], which can be analyzed more effectively and 

directly. Recent years, there are some technical literatures which have provided the 

analysis of a PLL-based CDR with a bang-bang phase detector [21]-[25]. In this work, 

we imitate the analysis of a linear PLL-based CDR since we use the four-step 

bang-bang phase detector, which provides less quantization error than conventional 

bang-bang phase detector [21]. In the loop performance analysis, the frequency 

detector can be neglected because it dose not affect the system as soon as the lock is 

acquired. The approximate model of the CDR with a four-step bang-bang phase 

detector is shown in figure 2-9, where Kpd is the gain of the phase detector , Kvco is 
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the gain of the VCO, an F(s) is the transfer function of the loop filter. We can observe 

the model is similar to the one in the CDR with a linear phase detector.  

 

iθ oθ

 
Fig. 2-9 Model of the CDR 

 
 

Considerable insight can be obtained into the design of the CDR by first 

considering its open-loop response. This response can be derived by breaking the loop 

at the feedback input of the phase detector. The output phase, θo(s), is related to the 

input phase, θi(s), by 

( ) ( ) ( ) Kvcoo s i s Kpd F s
s

θ θ= × × ×                 (2.5) 

The open-loop transfer function of the system is therefore equal to 
( )( ) ( )
( )o

o s KvcoH s Kpd F s
i s s

θ
θ

= = × ×                 (2.6) 

When the loop filter in figure 2-8 is used, Eq. (2.6) becomes 

2 2

1( )
11 1

z
o

p

sKpd Kvco s Rp CpH s K
Cs Cp Rp Cs Cps s s sCs Cp

ω

ω

+× + ⋅ ⋅
= ⋅ = ⋅

+    ⋅ ⋅
+ ⋅ + ⋅    +   

       (2.7) 

where K Kpd Kvco Kh= × ×  is the loop bandwidth of the CDR 
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Figure 2-10 shows the bode plot of the transfer function. We can see the phase of 

Ho(s) is 180° at ω=0, and the zero ωz, and the pole ωp, introduce the phase shift 

of +90° and -90°, respectively. The phase margin could be described as follows 

 

1 1tan ( ) tan ( )
z p

K KPM
ω ω

− −= −                   (2.8) 

 

Another way to approximate this parameter is to ignore the shunt capacitor Cs. Since 

Cp >> Cs, the zero ωz=
 1 

 RpCp , is much smaller than the pole ωp=
 Cs+Cp 

 RpCsCp . 

Therefore, Eq. (2.7) can be re-written as 

2

1( )o
Kpd Kvco s Rp CpH s

Cp s
× + ⋅ ⋅

= ⋅                  (2.9) 

where F(s)=Rp+
 1 

 sCp . 

zω 1pω

0 dB

-180°

Phase Margin

| ( ) |oH s ( )oH s∠

 
Fig. 2-10 Bode plot of the open-loop transfer function 
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In the following, we will discuss the stability factor related to the CDR with a 

bang-bang phase detector [24], [25]. The stability factor determines whether the 

system is stable or not. We ignore the shunt capacitor Cs to analyze the loop. Figure 

2-11 shows the second order bang-bang loop schematic. These are loops labeled 

“proportional path” and “integral path”. The first loop includes the connection of the 

phase detector to the VCO input through the proportional branch of the loop filter, 

while the second loop includes the integral branch of the loop filter. The binary 

control, or “bang-bang” loop, can be considered a phase tracking loop, while the 

integral branch can be viewed as a frequency tracking loop. It is important the two 

branched of the loop should be noninteracting. For this to be true, the phase wall-off 

of the bang-bang branch of the loop, Φbb(t), must dominate over the phase walk-off 

of the integral branch, Φint(t). Taking the ratio of Φbb(t) andΦint(t) at the end of one 

frame update time gives a figure of merit ξ for the loop stability: 

bb updateIcp Rp Kvco TΦ = ⋅ ⋅ ⋅                        (2.10) 

2

int 2
updateIcp T

Kvco
Cp

⋅
Φ = ⋅                          (2.11) 

2

update

Rp Cp
T

ξ
⋅

=                                   (2.12) 

β

1 Vdt
τ ∫

Vb∆

Vi∆
 

Fig. 2-11 Second-order bang-bang loop schematic 



 22 

ξ must be greater than one for the two branched to be considered noninteracting. In 

fact, if ξ becomes significantly less than 1, the “bang-bang” portion of loop will no 

longer stabilize the system. 

 

2.3.1 Approximated Frequency Response with 1st-order RC lowpass filter 

In contrast to the approximated analysis above, the other popular method to 

analysis a CDR is by the closed-loop transfer function which is written in Eq. (2.13) 

and the loop filter transfer function is 1( )F s R
s Cp

= +
⋅

 

 

( ) ( ) ( )( )
( ) 1 ( ) ( )

o o

i o

s H s Kpd F s KvcoG s
s H s s Kpd F s Kvco

θ
θ

⋅ ⋅
= = =

+ + ⋅ ⋅
           (2.13) 

 

or, equivalently, by 

 

2

2 1
( ) ( )( )
( ) 1 ( )

2 . 1

no o

i o

n n

s
s H sG s
s H s s s

ζ
ωθ

θ
ζ

ω ω

 
⋅ ⋅ + 

 = = =
+    

+ ⋅ +   
   

          (2.14) 

 
where ζ, define as the damping factor, is given by 
 

1
2 z

K
ζ

ω
=                                     (2.15) 

 
and nω , define as the natural frequency (rad/s), is given by 
 

n zKω ω= ⋅                               (2.16) 
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The damping factor and natural frequency characterize the close-loop response. 

The close-loop frequency response of the CDR for different values of damping factor 

are normalized to natural frequency as shown in figure 2-12. This figure shows that 

the CDR is a low-pass filter to the phase noise at frequency below ωn. For small 

value of ζ, the curve is shaper than those of large value of ζ. In the CDR design, the 

loop is designed to be over-damping (ζ>1) to avoid the jitter peaking effect. This also 

helps increase the phase margin of the open-loop transfer function [26]. 

 

0.707ζ =

1ζ =

3ζ =

 
Fig. 2-12 The close-loop frequency response of the CDR 

 

Figure 2-13 shows the transient step response of the CDR for different value of 

damping factor and for time normalized to 1

nω
. The step response is generated by 

instantaneously advancing the phase of the input by one radian and observing the 

output for different damping levels in the time domain. The CDR output initially 

responses rapidly but takes a long time to the steady state for the damping factor 

larger than one; i.e., the system is over-damped. We can find that the rate of the initial 
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response increase and the rate of the final response decrease. That is a tradeoff in the 

CDR design. 

 

ζ
ζ
ζ

 
Fig. 2-13 The close-loop transient step response of a CDR 

 
 

2.4 CDR Parameter Design 
Recall our discussion in which loop performance is analyzed. The design of the 

CDR should be set up the loop parameter for the desirable control dynamics. The 

value of the loop parameter must be somehow reasonable for the device parameter 

Kpd, Kvco, Rp, Cp, Cs. In this work, since the capacitor Cp is implemented on-chip, 

to minimize jitter, its size had better be limited within 100pF. The problem of 

selecting device parameter is made more difficult by a number of constraining factor. 

First, loop bandwidth (K) and damping factor (ζ) both depend on all other the 

parameter. Secondly, the maximum value for Cp leads to the minimum current for 

charge pump circuits. Furthermore, all worst case of the parameters due to process 

and temperature variation must lead to acceptable loop performance. A suggested 
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design flow of the CDR is shown as follow: 

 

(1)Determine Kvco: the gain of the VCO can be found from simulation result, and 

experimental results or data sheets when a commercial VCO 

is used. In general, the VCO gain should be too high to avoid 

the additional jitter introduced by the disturbance on the 

control line. 

 

(2)Determine Kpd: the gain of the phase detector can be decided according to the 

current for charge pump circuits [21].  

 

(3)Determine K: the loop bandwidth is then determined depending on the required 

noise and transient characteristics. 

 
(4)Determine Rp: according to the selected K to determine the Rp.  
 

(5)Determine Cp: the decision for Cp primarily depends on the stability factor, phase 

margin, and the damping factor (ζ). 

 

(6)Determine Cs: define the maximum possible phase margin. Setting Cp>20×Cs is a 

general case. 

 
 
 
 
 


