Contents

1	Intr	oduction	1
	1.1	The History of Kondo Effect:	
		Dilute Magnetic Alloys	1
	1.2	Kondo Effect in Tunnel Junctions	3
	1.3	Why We Study Kondo Effect through the $Al/AlO_x/Sc$ Tunnel Junctions?	5
2	The	ory 1896	6
	2.1	Electron Tunneling Spectroscopy	6
		2.1.1 Tunneling between Two Free-Electron Metals	8
		2.1.2 Density of States Effect and Assisted Tunneling	17
	2.2	Kondo Effect in Bulk Samples	26
		2.2.1 Weak Coupling Regime	26
		2.2.2 Strong Coupling Regime	27
	2.3	Kondo Effect in Tunnel Junctions	29
		2.3.1 Weak Coupling Regime	29
		2.3.2 Strong Coupling Regime	39

3	Exp	erime	nt	42
	3.1	Sampl	es Fabrication	42
		3.1.1	Al Films Deposition	42
		3.1.2	The Growth of the AlO_x	43
		3.1.3	Sc Films Deposition	46
		3.1.4	Initial Test of the Junctions	46
	3.2	Measu	rement Circuits	46
		3.2.1	The Principles of the Lock-in Amplifier	46
		3.2.2	The "Send I Measure V " Circuit $\ldots \ldots \ldots \ldots \ldots \ldots$	51
		3.2.3	The "Send V Measure I" Circuit $\ldots \ldots \ldots \ldots \ldots \ldots$	52
	3.3	The 3	He Cryostat	54
		3.3.1	A Brief Description	54
		3.3.2	The Cool Down Process	54
4	Res	ults ar	nd Discussion	58
	4.1	The Q	Quality, Height, and Thickness of the Barrier	58
		4.1.1	The Quality of the Barrier	58
		4.1.2	The Height and Thickness of the Barrier	64
	4.2	Differe	ential Conductance in $Al/AlO_x/Sc$ Tunnel Junctions	65
		4.2.1	G(0,T) vs. T	65
		4.2.2	G(V,T) vs. V	67
	4.3	The D	OOS Effects in the Al and Sc Leads	72
		4.3.1	The DOS Effect in the Al Lead	72
		4.3.2	The DOS Effect in the Sc Lead	77
	4.4	Subtra	acting the Background from the Measured dI/dV Data	80

	4.5	Weak Coupling Regime	36
		4.5.1 $G_{even,data}(V,T)$	36
		4.5.2 $G_{even,data}(0,T)$	99
		4.5.3 $G_{odd,data}(V,T)$)1
	4.6	Strong Coupling Regime)3
	4.7	The Effect of Applying a Magnetic Field	16
	4.8	Summary	19
5	Con	clusions 12	22
\mathbf{A}	The	Proof of $G_{even}^{weak}(V)$ Is an Even Function 12	25
A	The A.1	Proof of $G_{even}^{weak}(V)$ Is an Even Function12 $Q(\omega)$ Is an Even Function12	25 25
A	The A.1 A.2	Proof of $G_{even}^{weak}(V)$ Is an Even Function12 $Q(\omega)$ Is an Even Function12 $G_{even}^{weak}(V)$ Is an Even Function12	25 25 26

List of Tables

4.1 The fitted values of T_K and α in several Al/AlO_x/Sc tunnel junctions. 113

List of Figures

2.1	(a) A M-I-M tunnel junction. (b) The band diagram of the M-I-M	
	tunnel junction.	7
2.2	The integration range of Eq. (2.15)	11
2.3	The asymmetric barrier.	15
2.4	(a) Transfer-Hamiltonian model. (b) $G(V)$ as $T \to 0$	18
2.5	The plots of of $R_{Hamann}(T/T_K)$ and $R_{NRG}(T/T_K)$	30
2.6	A schematic representation of a tunnel junction which contains a	
	magnetic impurity in its barrier	31
3.1	A schematic representation of the glow discharge.	45
3.2	The functional block diagram of the SR830 lock-in Amplifier	50
3.3	The "send I measure V " circuits	51
3.4	The "send V measure I" circuits. \ldots \ldots \ldots \ldots \ldots \ldots	52
3.5	The schematic representation of the IVC of the $^3\mathrm{He}$ fridge	55
4.1	The bias polarity in the tunnel junctions under measurement	59
4.2	The superconducting gap of the Al film.	61
4.3	The zero-bias conductance $G(0,T)$ as a function of temperature	63
4.4	The $G(V,T)$ spectra of two Al/AlO _x /Al junctions	66

4.5	$G(0,T)$ as a function of temperature for $T \lesssim 50$ K	68
4.6	$G(V,T)$ as a function of V at several temperatures of a $\mathrm{Al}/\mathrm{AlO}_x/\mathrm{Sc}$	
	tunnel junction.	69
4.7	G(V,T) as a function of V for several temperatures of another Al/AlO _x /S	с
	tunnel junction	70
4.8	$\rho(T)$ vs. T for an Al film whose $\rho(300 \text{ K}) \approx 15.6 \ \mu\Omega \text{ cm.}$	73
4.9	The $G(V,T)$ spectra of an Al $(15 \ \mu\Omega \ {\rm cm})/{\rm AlO}_x/{\rm Al} \ (15 \ \mu\Omega \ {\rm cm})$ tunnel	
	junction	74
4.10	$\rho(T)$ vs. T for an Al film whose $\rho(300 \text{ K}) \approx 66 \ \mu\Omega \text{ cm} \dots \dots \dots$	76
4.11	The $G(V,T)$ spectra of an Al (15 $\mu\Omega$ cm)/AlO_x/Al (66 $\mu\Omega$ cm) tunnel	
	junction	78
4.12	$\rho(T)$ vs. T for a Sc film whose $\rho(300 \text{ K}) \approx 107 \ \mu\Omega \text{ cm.}$	79
4.13	$G(V,T)$ as a function of V at several temperatures of the 20061002_Al/Al	O_x/Sc
	tunnel junction.	82
4.14	$G_{remainder} (\equiv G_{original} - G_{background})$ of the 20061002_Al/AlO _x /Sc tun-	
	nel junction	83
4.15	$G_{even,data}(V,T)$ as a function of V at several temperatures	84
4.16	$G_{odd,data}(V,T)$ as a function of V at several temperatures	85
4.17	$G_{even,data}(V,T)$ vs. $h(V,T)$ plots at several temperatures	88
4.18	The linear fitting of $G_{even,data}(V,T)$ vs. $h(V,T)$ plots at $T = 32, 24, 16$	
	К	89
4.19	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T=32$ K	90
4.20	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T=24$ K	91
4.21	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T = 16$ K	92

4.22	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T = 12$ K 93
4.23	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T=8$ K 94
4.24	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T=5.5$ K 95
4.25	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T=2.5$ K 96
4.26	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T = 32, 24,$
	and 16 K
4.27	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{weak}(V,T)$ at $T = 12, 8,$
	5.5, and 2.5 K
4.28	The fitting of $G_{even,data}(0,T)$ in terms of $G_{even}^{weak}(0,T)$
4.29	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T=32~{\rm K.}$ 104
4.30	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T=24~{\rm K.}$ 105
4.31	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T = 16$ K 106
4.32	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T = 12$ K 107
4.33	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T = 8$ K 108
4.34	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T=5.5$ K 109
4.35	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T=2.5$ K 110
4.36	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T = 32, 24,$
	and 16 K
4.37	The fitting of $G_{odd,data}(V,T)$ in terms of $G_{odd}^{weak}(V,T)$ at $T = 12, 8,$
	5.5, and 2.5 K
4.38	The fitting of $G_{even,data}(0,T)$ in terms of $G_{NRG}(0,T)$ for several Al/AlO _x /Sc
	tunnel junctions.
4.39	The fitting of $G_{even,data}(V,T)$ in terms of $G_{even}^{strong}(V,T)$ at $T=2.5~{\rm K.}$. 116
4.40	The $G_{even,data}(V,T)$ at $T = 2.5$ K for $H = 0$ and $H = 4$ T

4.41	The $G_{even,data}(V,T)$ at $T = 2.5$ K for $H = 0$ and $H = 4$ T, which is	
	enlarged from Fig. 4.40.	118
B.1	The composite Simpson's rule	128

