
Chapter 2

Theory

2.1 Electron Tunneling Spectroscopy

In classical mechanics, a particle whose total energy is below the energy potential

of a barrier can not penetrate through it. But in quantum mechanics, the particle

has finite probability to pass through the barrier [22].

Consider two metal leads separated by a thin insulator which serves as a potential

barrier as shown in Fig. 2.1 (a). Its band diagram is shown in Fig. 2.1 (b). In Fig.

2.1 (b), a electron wave incident from the left, defined as eikx, suffers partial reflection

with amplitude R at x = 0, is exponential decaying, e−κx, in the interval 0 < x < t,

and emerges for x > t as Teiqx. D, the transmission factor, is defined as the ratio

of the incident probability current ~k/m1 to the transmission probability current

T 2~q/m2. In the case of small transmission, the exact expression for D is [23, 24]:

D(Ex) = ge−2K , (2.1)

where

g =
16kqκ2

(k2 + κ2)(q2 + κ2)
, (2.2)
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Figure 2.1: (a) A M-I-M tunnel junction. (b) The band diagram of the M-I-M tunnel
junction.
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K =

∫ t

0

κ(x,Ex)dx, (2.3)

κ(x,Ex) = (
2m

~2
)1/2[U(x)− Ex]

1/2, (2.4)

Ex =
~2k2

x

2m
. (2.5)

where m is the effective mass of the tunneling electron, U(x) is the potential energy

of the barrier, and Ex and kx are the energy and wavevector of the tunneling electron

in the tunneling direction (the x̂ direction) respectively.

The magnitude of the transmission factor is dependent on the thickness and

height of the barrier. The thicker the barrier thickness or the higher the potential

energy, the smaller the magnitude.

2.1.1 Tunneling between Two Free-Electron Metals

The General Expression for the Tunneling Current

The electrons in either one lead can tunnel through the barrier to the other one.

The net current is obtained by subtracting one from the other. Without any bias,

the magnitudes of these two opposite current are equal, and the net current is zero

since in this case the Fermi energy of these two lead are equal (µ1 = µ2). But if a

nonzero bias voltage is applied between these two leads, the Fermi energy of them

are not equal. In this case the magnitudes of these two opposite current are not

equal and will cause a net current.

As shown in Fig. 2.1 (b), if a positive bias is applied to lead 2 (i.e. treating

lead 1 as ground), it will lower the Fermi level of lead 2 by eV . Here we use the

convention e > 0, i.e., e = 1.6× 10−19 Coul.. Therefore we have

µ2 = µ1 − eV. (2.6)
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The Fermi-Dirac distribution function in these two leads are

f1 =
1

1 + e
E−µ1
kBT

≡ f(E), (2.7)

f2 =
1

1 + e
E−µ2
kBT

=
1

1 + e
E−µ1+eV

kBT

≡ f(E + eV ), (2.8)

and the transmission factor D is a function of Ex and V under nonzero bias, ex-

pressed as D(Ex, V ).

The electrical current density tunneling from lead 1 to lead 2, J1→2, can be

expressed as [23]

J1→2(V ) =
−2e

(2π)3

∫

kx

∫

ky

∫

kz

dkxdkydkzvxD(Ex, V )f(E)[1− f(E + eV )]. (2.9)

Since

dkydkz

(2π)2
= ρtdEt, (2.10)

and

vx =
1

~
∂E

∂kx

, (2.11)

where ρt and Et is the two dimensional density of states and the energy corresponding

to wavevector kt respectively in the transverse direction which is perpendicular to

x̂, substituting these in (2.9), we obtain

J1→2(V ) =
−2eρt

h

∫

Ex

∫

Et

dExdEtD(Ex, V )f(E)[1− f(E + eV )]. (2.12)

Similarly, the electrical current density tunneling from lead 2 to lead 1 can be ex-

pressed as

J2→1(V ) =
−2eρt

h

∫

Ex

∫

Et

dExdEtD(Ex, V )f(E + eV )[1− f(E)]. (2.13)
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The net current density from lead 2 to lead 1, J(V ), can be obtained as

J(V ) ≡ J2→1(V )− J1→2(V )

=
2eρt

h

∫

Ex

∫

Et

dExdEtD(Ex, V )[f(E)− f(E + eV )]. (2.14)

Note that for positive bias applied to lead 2, the net current from lead 2 to lead 1 is

positive which can be seen from (2.14), and this is in agreement with our common

sense.

At low temperature limit, T → 0, all electrons lie below Fermi energy, and only

the electrons whose total energy E (= Ex + Et) is between µ − eV (here we let

µ1 = µ ) and µ can participate in tunneling. In this case, (2.14) can be reduced to

J(V ) =
2eρt

h

∫

Ex

∫

Et

dExdEtD(Ex, V ), (2.15)

and the integral is taken within the range µ − eV ≤ E = Ex + Et ≤ µ. As shown

in Fig. 2.2, the region of integral can be divided into two parts, region 1 and 2.

Therefore (2.15) can be written as

J(V ) =
2eρt

h
[

∫ µ−eV

0

D(Ex, V )dEx

∫ µ−Ex

µ−eV−Ex

dEt Region I

+

∫ µ

µ−eV

D(Ex, V )dEx

∫ µ−Ex

0

dEt] Region II. (2.16)

After performing the transverse integral, (2.16) reduces to

J(V ) =
2eρt

h
[eV

∫ µ−eV

0

D(Ex, V )dEx +

∫ µ

µ−eV

D(Ex, V )(µ− Ex)dEx]. (2.17)

Note that the derivation of (2.17) is based on the assumption T → 0, and the

expression is valid whether the barrier is symmetric or not. Actually, the barrier

information has been included in D(Ex, V ).
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Figure 2.2: The integration range of Eq. (2.15).

Simmon’s Simplification

Simmons [25] calculated (2.17) further. He defined the barrier height φ(x) as

φ(x) = U(x)− µ. (2.18)

For simplification, he roughly estimated the average value φ̄ of the barrier height

φ̄ =
1

t

∫ t

0

φ(x)dx. (2.19)

From (2.3), (2.4), (2.18), and (2.19),

K =

∫ t

0

(2m)
1
2

~
[U(x)− Ex]

1
2 dx

=
(2m)

1
2

~

∫ t

0

[φ(x) + µ− Ex]
1
2 dx

≈ (2m)
1
2 βt

~
(φ̄ + µ− Ex)

1
2 , (2.20)
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where β is a correction factor which is usually near unity.

Under the application of positive V to lead 2, the average value of the barrier

height is

φ̄(V ) =
1

t

∫ t

0

φ(x)− eV x

t
dx

=
1

t

∫ t

0

φ(x)dx− eV

t2

∫ t

0

xdx

= φ̄− eV

2
, (2.21)

and K in (2.20) can be written as

K(V ) ≈ (2m)
1
2 βt

~
[φ̄(V ) + µ− Ex]

1
2

=
(2m)

1
2 βt

~
(φ̄− eV

2
+ µ− Ex)

1
2 , (2.22)

if φ̄ in (2.20) is replaced with φ̄(V ) in (2.21). Using the approximation g ≈ 1 and

substituting (2.22) in (2.1), he obtained

D(Ex) ≈ exp[−(
4πβt

h
)(2m)

1
2 (φ̄− eV

2
+ µ− Ex)

1
2 ]. (2.23)

Substituting (2.23) in (2.17), the tunneling current density as a function of bias

voltage J(V ) is obtained as

J(V ) =
e

2πh(βt)2
{(φ̄− eV

2
)exp[−4πβt

h
(2m)

1
2 (φ̄− eV

2
)

1
2 ]

−(φ̄ +
eV

2
)exp[−4πβt

h
(2m)

1
2 (φ̄ +

eV

2
)

1
2 ]}, (2.24)

which, for low voltages, reduces to

J(V ) = αV + γV 3 + · · · , (2.25)
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where α and γ are given by

α =
(2m)

1
2

t
(
e

h
)2φ̄

1
2 exp(−Aφ̄

1
2 ), (2.26)

γ

α
=

(Ae)2

96φ̄
− Ae2

32φ̄
1
2

. (2.27)

Therefore, the differential conductance can be obtained as

G(V ) ≡ ∂J

∂V
= α + 3γV 2 + · · · , (2.28)

which is a parabolic function of V and is symmetric to zero-bias.

Note that the parabolic behavior in (2.28) is due to the low voltages approx-

imation and its symmetry to zero-bias is due to the average barrier height φ̄(V )

simplification in (2.22) therefore in transmission factor (2.23).

BDR Model

Let us consider a metal-insulator-metal tunnel junction with an asymmetric barrier

as shown in Fig. 2.3. Without application of bias and in thermal equilibrium, the

Fermi levels in metal 1 and in metal 2 are equal as shown in Fig. 2.3. The barrier

height seen from these two leads are different due to their unequal work functions,

and are φ1 from lead 1 and φ2 from lead 2 respectively. According to Simmons’

derivation, the tunneling current J(V ) is asymmetric to V and therefore the dif-

ferential conductance G(V ) is symmetric to V whether the barrier is symmetric or

not, which can be seen in (2.25) and (2.28) respectively. But in our common sense,

the magnitudes of J(V ) and J(−V ) should not be equal (i.e. J(V ) 6= −J(−V )) due

to the asymmetric barrier. For an asymmetric barrier, J(V ) is not asymmetric and

therefore G(V ) is not symmetric. The contradiction comes from Simmons’ φ̄(V )

simplification in (2.21) ∼ (2.24).
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Brinkman, Dynes, and Rowell [26] used a simple model of an asymmetric barrier

(BDR model) as shown in Fig. 2.3. The barrier height measured from the Fermi

level in lead 1 under the application of bias V to lead 2 is

φ(x, V ) = φ1 +
x

t
(φ2 − eV − φ1). (2.29)

After substituting (2.29) in (2.1) to get D(Ex, V ) and then substituting the calcu-

lated D(Ex, V ) in (2.17), they obtained J(V ). Differential conductance G(V ) was

obtained through calculating ∂J/∂V , and they got, for low voltages,

G(V ) = G(0)[1− (
A0∆φ

16φ̄3/2
)eV + (

9A0
2

128φ̄
)(eV )2], (2.30)

where

φ̄ =
φ1 + φ2

2
, (2.31)

∆φ = φ2 − φ1, (2.32)

A0 =
4(2m)1/2t

3~
, (2.33)

and G(0) is the conductance at zero-bias.

Note that in low temperature limit and for low voltages, G(V ) calculated by

BDR model which considered an asymmetric barrier is approximately a parabolic

function of V and its minimum does not occur at zero-bias. For a symmetric barrier,

∆φ = φ1 − φ2 = 0, G(V ) is symmetric to zero-bias which is obvious in (2.30) and

this is in agreement with our common sense.

Thermal Effect

The derivations above (both Simmons’ simplification and BDR model) are under

the T → 0 approximation. What is the temperature dependence of the tunneling
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Figure 2.3: The asymmetric barrier.
(a) V = 0, the Fermi levels in these two leads are equal, µ1 = µ2 = µ. The
barrier height seen from lead 1 is just a function of x, φ(x) = φ1 + x/t(φ2 − φ1) (b)
With a positive bias applied to lead 2, the Fermi level in lead 2 is lowered by eV ,
and the barrier height seen from lead 1 is not only a function of x but also of V ,
φ(x, V ) = φ1 + x/t(φ2 − eV + φ1).
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current? Simmons [27] included the temperature effect in his calculation which was

based on φ̄(V ) simplification, and obtained

J(V, T ) = J(V, 0)
πc1kT

sin(πc1kT )
(2.34)

≈ J(V, 0)[1 +
1

6
(πc1kT )2 + · · ·], (2.35)

where

c1 ≈ βt

~
(
2m

φ̄
)1/2. (2.36)

Therefore,

G(V, T ) ≡ ∂J(V, T )

∂V

=
∂J(V, 0)

∂V

πc1kT

sin(πc1kT )

= G(V, 0)
πc1kT

sin(πc1kT )
(2.37)

≈ G(V, 0)[1 +
1

6
(πc1kT )2 + · · ·]. (2.38)

Although Simmons’ simplification can not explain the offset of the parabolic de-

pendence of G(V ), the temperature dependence (2.39) is correct, in an asymmetric

barrier case. Therefore, combined with BDR model (2.30) (in (2.30), G(0) now

becomes G(0, 0)), we have

G(V, T ) = G(V, 0)
πc1kT

sin(πc1kT )

= {G(0, 0)[1− (
A0∆φ

16φ̄3/2
)eV + (

9A0
2

128φ̄
)(eV )2]} πc1kT

sin(πc1kT )

= G(0, T )[1− (
A0∆φ

16φ̄3/2
)eV + (

9A0
2

128φ̄
)(eV )2], (2.39)

where

G(0, T ) = G(0, 0)
πc1kT

sin(πc1kT )
. (2.40)
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Note that the result (2.39) is based on the assumption that the two leads sep-

arated by the potential barrier are free-electron metals. In addition, (2.39) can be

employed to determine the height and width of a barrier. Fitting the G(V, T ) curve

at some fixed T by (2.39), A0, φ̄, and ∆φ, and therefore the width , φ1, and φ2

(through (2.31) ∼ (2.33)), can be obtained.

2.1.2 Density of States Effect and Assisted Tunneling

In section 2.1.1, we considered the tunneling current in a tunnel junction with two

free-electron metal leads. The transmission factor depended on just the height and

thickness of the barrier and on the energy of the incident electron. The calculation

was carried out using a stationary-state method. If these two leads are not free-

electron metals (the density of states effect should be considered) or some additional

interaction exerting on the tunneling electrons (not only the influence of barrier but

also the contribution of the interaction should be considered), how these affect the

tunneling current?

Transfer Hamiltonian Calculations

Let us consider the tunneling effect in another viewpoint as shown in Fig. 2.4 (a).

The leads are two nearly independent portions separated by the barrier, and the

weak coupling between them can be treated by a perturbing Hamiltonian HC . If

electrons tunnel through a barrier with an additional interaction exerted on them,

HC can be viewed as the superposition of two parts, the contribution due to the

barrier, HB, and due the additional interaction, HInt. The total Hamiltonian can
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Figure 2.4: (a) Transfer-Hamiltonian model. (b) G(V ) as T → 0.
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be expressed as

H = H1 + H2 + HC (2.41)

= H1 + H2 + (HB + HInt), (2.42)

where H1 and H2 are the Hamiltonians of the electrons in lead 1 and lead 2 respec-

tively, and HC = HB +HInt. Then the transition rate WC
k1k2

from a given state |k1〉
in lead 1 with energy ε1 to a state |k2〉 with energy ε2 in lead 2 is

WC
k1k2

=
2π

~
|〈k2|HC |k1〉+ · · · |2δ(εk1 − εk2)

=
2π

~
|〈k2|(HB + HInt)|k1〉+ · · · |2δ(εk1 − εk2)

=
2π

~
|〈k2|HB|k1〉+ 〈k2|HInt|k1〉+ · · · |2δ(εk1 − εk2)

=
2π

~
(|〈k2|HB|k1〉|2 + |〈k2|HInt|k1〉|2 + ∗ ∗ ∗)δ(εk1 − εk2)

= WB,1st
k1k2

+ W Int,1st
k1k2

+ ∗ ∗ ∗, (2.43)

where

WB,1st
k1k2

=
2π

~
|〈k2|HB|k1〉|2δ(εk1 − εk2) = PB,1st

k1k2
δ(εk1 − εk2), (2.44)

W Int,1st
k1k2

=
2π

~
|〈k2|H ′|k1〉|2δ(εk1 − εk2) = P Int,1st

k1k2
δ(εk1 − εk2), (2.45)

are the transition rates in first order from state |k1〉 in lead 1 to state |k2〉 in lead 2

due to the barrier and the additional interaction respectively, PB,1st
k1k2

and P Int,1st
k1k2

are

the corresponding matrix elements’ squares which are proportional to the transition

rates, ”· · ·” represents the second and higher order coefficients in Born’s approxima-

tion and therefore ”∗ ∗ ∗” includes the interference between them.

Under the application of a positive bias V to lead 2, the electrical current density
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tunneling from lead 1 to lead 2, J1→2, can be expressed as [23]

J1→2(V ) = −2e
∑

k1,k2

WC
k1k2

f(εk1)[1− f(εk2 + eV )] (2.46)

≈ −2e
∑

k1,k2

(WB,1st
k1k2

+ W Int,1st
k1k2

)f(εk1)[1− f(εk2 + eV )]

= JB
1→2(V ) + J Int

1→2(V ) (2.47)

where the pre-factor 2 is due to the spin degeneracy, and

JB
1→2(V ) = −2e

∑

k1,k2

WB,1st
k1k2

f(εk1)[1− f(εk2 + eV )], (2.48)

J Int
1→2(V ) = −2e

∑

k1,k2

W Int,1st
k1k2

f(εk1)[1− f(εk2 + eV )]. (2.49)

Here e is the positive electron charge (e = 1.6× 10−19 Coul.), f is the Fermi-Dirac

distribution, V is the applied voltage. Similarly, the electrical current tunneling

from lead 1 to lead 2, J2→1, can be expressed as

J2→1(V ) = JB
2→1(V ) + J Int

2→1(V ) (2.50)

where

JB
2→1(V ) = −2e

∑

k1,k2

WB,1st
k2k1

f(εk2 + eV )[1− f(εk1)], (2.51)

J Int
2→1(V ) = −2e

∑

k1,k2

W Int,1st
k2k1

f(εk2 + eV )[1− f(εk1)]. (2.52)

Subtracting J1→2 from J2→1, we get the net electrical current

J(V ) = J2→1(V )− J1→2(V )

= [JB
2→1(V )− JB

1→2(V )] + [J Int
2→1(V )− J Int

1→2(V )]
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= 2e
∑

k1,k2

WB,1st
k1k2

[f(εk1)− f(εk2 + eV )]

+2e
∑

k1,k2

W Int,1st
k1k2

[f(εk1)− f(εk2 + eV )]

= JB(V ) + J Int(V ), (2.53)

where

JB(V ) = 2e
∑

k1,k2

WB,1st
k1k2

[f(εk1)− f(εk2 + eV )], (2.54)

J Int(V ) = 2e
∑

k1,k2

W Int,1st
k1k2

[f(εk1)− f(εk2 + eV )], (2.55)

are the tunneling current due to the barrier and due to the additional interaction

respectively. In the above derivation, we used the relations WB,1st
k1k2

= WB,1st
k2k1

and

W Int,1st
k1k2

= W Int,1st
k2k1

, which are obvious from (2.44) and (2.45) respectively. Using

(2.44), (2.54) can be expressed as

JB(V ) = 2e

∫ ∫
WB,1st

k1k2
[f(εk1)− f(εk2 + eV )]N1(εk1)N2(εk2 + eV )dεk1dεk2

= 2e

∫ ∫
PB,1st

k1k2
δ(εk1 − εk2)[f(εk1)− f(εk2 + eV )]

N1(εk1)N2(εk2 + eV )dεk1dεk2

= 2e

∫
PB,1st

k1k2
[f(εk1)− f(εk1 + eV )]N1(εk1)N2(εk1 + eV )dεk1

= 2e

∫
PB,1st

k1k2
[f(ε)− f(ε + eV )]N1(ε)N2(ε + eV )dε. (2.56)

Similarly, using (2.45), (2.55) can be expressed as

J Int(V ) = 2e

∫
P Int,1st

k1k2
[f(ε)− f(ε + eV )]N1(ε)N2(ε + eV )dε. (2.57)

For generality, we assume lead 1 and lead 2 may not be free-electron metals, and

the DOS in them can be expressed as the summation of the DOS for a free-electron
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metal (N0) and the corresponding correction (∆N), i.e. N1(ε) = N0
1 (ε) + ∆N1(ε)

and N2(ε) = N0
2 (ε) + ∆N2(ε) respectively. Here N0

1 and N0
2 are the corresponding

DOS for the free-electron metal case, and therefore have little dependence on energy.

Then, the net tunneling current density can be expressed as:

J(V ) = JB(V ) + J Int(B)

= 2e

∫
PB,1st

k1k2
[f(ε)− f(ε + eV )][N0

1 (ε) + ∆N1(ε)]

× [N0
2 (ε + eV ) + ∆N2(ε + eV )]dε

= 2e

∫
PB,1st

k1k2
[f(ε)− f(ε + eV )]N0

1 (ε)N0
2 (ε + eV )dε

+2e

∫
PB,1st

k1k2
[f(ε)− f(ε + eV )]N0

1 (ε)∆N2(ε + eV )dε

+2e

∫
PB,1st

k1k2
[f(ε)− f(ε + eV )]∆N1(ε)N

0
2 (ε + eV )dε

+2e

∫
PB,1st

k1k2
[f(ε)− f(ε + eV )]∆N1(ε)∆N2(ε + eV )dε

+2e

∫
P Int,1st

k1k2
[f(ε)− f(ε + eV )]N0

1 (ε)N0
2 (ε + eV )dε

+2e

∫
P Int,1st

k1k2
[f(ε)− f(ε + eV )]N0

1 (ε)∆N2(ε + eV )dε

+2e

∫
P Int,1st

k1k2
[f(ε)− f(ε + eV )]∆N1(ε)N

0
2 (ε + eV )dε

+2e

∫
P Int,1st

k1k2
[f(ε)− f(ε + eV )]∆N1(ε)∆N2(ε + eV )dε.

(2.58)

As T → 0, (2.58) can be reduced to

J(V ) = 2e

∫ 0

−eV

PB,1stN0
1 (ε)N0

2 (ε + eV )dε

+2e

∫ 0

−eV

PB,1stN0
1 (ε)∆N2(ε + eV )dε
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+2e

∫ 0

−eV

PB,1st∆N1(ε)N
0
2 (ε + eV )dε

+2e

∫ 0

−eV

PB,1st∆N1(ε)∆N2(ε + eV )dε

+2e

∫ 0

−eV

P Int,1stN0
1 (ε)N0

2 (ε + eV )dε

+2e

∫ 0

−eV

P Int,1stN0
1 (ε)∆N2(ε + eV )dε

+2e

∫ 0

−eV

P Int,1st∆N1(ε)N
0
2 (ε + eV )dε

+2e

∫ 0

−eV

P Int,1st∆N1(ε)∆N2(ε + eV )dε

= JB
free(V ) + JB

∆N2
(V ) + JB

∆N1
(V ) + JB

∆N1,∆N2
(V )

+J Int
free(V ) + J Int

∆N2
(V ) + J Int

∆N1
(V ) + J Int

∆N1,∆N2
(V ), (2.59)

where we use the approximation PB,1st
k1k2

= PB,1st and P Int,1st
k1k2

= P Int,1st. Here

JB
free(V ) = 2e

∫ 0

−eV

PB,1stN0
1 (ε)N0

2 (ε + eV )dε, (2.60)

JB
∆N2

(V ) = 2e

∫ 0

−eV

PB,1stN0
1 (ε)∆N2(ε + eV )dε

= 2e

∫ eV

0

PB,1stN0
1 (0)∆N2(ε

′)dε′, (2.61)

JB
∆N1

(V ) = 2e

∫ 0

−eV

PB,1st∆N1(ε)N
0
2 (ε + eV )dε

= 2e

∫ 0

−eV

PB,1st∆N1(ε)N
0
2 (0)dε, (2.62)

JB
∆N1,∆N2

(V ) = 2e

∫ 0

−eV

PB,1st∆N1(ε)∆N2(ε + eV )dε, (2.63)

J Int
free(V ) = 2e

∫ 0

−eV

P Int,1st(ε + eV )N0
1 (ε)N0

2 (ε + eV )dε

= 2e

∫ eV

0

P Int,1st(ε′)N0
1 (0)N0

2 (0)dε′, (2.64)
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J Int
∆N2

(V ) = 2e

∫ 0

−eV

P Int,1st(ε + eV )N0
1 (ε)∆N2(ε + eV )dε

= 2e

∫ eV

0

P Int,1st(ε′)N0
1 (0)∆N2(ε

′)dε′, (2.65)

J Int
∆N1

(V ) = 2e

∫ 0

−eV

P Int,1st∆N1(ε)N
0
2 (ε + eV )dε, (2.66)

J Int
∆N1,∆N2

(V ) = 2e

∫ 0

−eV

P Int,1st∆N1(ε)∆N2(ε + eV )dε, (2.67)

where we use the approximations N0
1 (ε) = N0

1 (0) since the DOS for a free-electron

metal has little dependence on energy, and the the Fermi energy is set to be 0. We

note JB
free(V ), as expressed in (2.60), can be reduced to (2.17) [24] and therefore the

corresponding differential conductance GB
free(V ) is parabolic for low voltages.

Now, we will consider the following two cases.

Case 1:

There is no additional interaction exerted on the tunneling electrons (HInt = 0

and therefore P Int,1st = 0). In this case, J Int
free(V ) = J Int

∆N2
(V ) = J Int

∆N1
(V ) =

J Int
∆N1,∆N2

(V ) = 0, and therefore the net tunneling current density

J(V ) = JB
free(V ) + JB

∆N2
(V ) + JB

∆N1
(V ) + JB

∆N1,∆N2
(V )

≈ JB
free(V ) + JB

∆N2
(V ) + JB

∆N1
(V )

= JB
free(V ) + 2e

∫ eV

0

PB,1stN0
1 (0)∆N2(ε

′)dε′

+2e

∫ 0

−eV

PB,1st∆N1(ε)N
0
2 (0)dε. (2.68)

Here we neglect the term JB
∆N1,∆N2

(V ) since it contains second order correction as

shown in (2.63). The differential conductance

G(V ) ≡ ∂J

∂V
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≈ GB
free(V ) + GB

∆N2
(V ) + GB

∆N1
(V )

= GB
free(V ) + 2e2PB,1stN0

1 (0)∆N2(eV )

+2e2PB,1st∆N1(−eV )N0
2 (0). (2.69)

It means that in this case, through the G(V ) measurements, the obtained spectra

contain the magnitudes of the correction of the DOS in lead 1 and lesd 2 respectively

superposed on a parabolic background, GB
free(V ), as shown in (2.69).

Case 2:

Lead 1 and lead 2 are free-electron metals, and there is an additional interaction

exerted on the tunneling electrons. In this case, ∆N1 = ∆N2 = 0, and therefore

JB
∆N2

(V ) = JB
∆N1

(V ) = JB
∆N1,∆N2

(V ) = J Int
∆N2

(V ) = J Int
∆N1

(V ) = J Int
∆N1,∆N2

(V ) = 0,

which are obvious from (2.61), (2.62), (2.63), (2.65), (2.66), and (2.67), respectively.

Then, the net tunneling current

J(V ) = JB
free(V ) + J Int

free(V )

= JB
free(V ) + 2e

∫ eV

0

P Int,1st(ε′)N0
1 (0)N0

2 (0)dε′. (2.70)

The differential conductance

G(V ) ≡ ∂J

∂V

= GB
free(V ) + GInt

free(V )

= GB
free(V ) + 2e2P Int,1st(eV )N0

1 (0)N0
2 (0). (2.71)

It means that in this case, through the G(V ) measurements, the obtained spec-

trum contains GInt
free(V ), which is proportional to the transition rate due to the

additional interaction exerted on the tunneling electrons, superposed on a parabolic

background, GB
free(V ).
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2.2 Kondo Effect in Bulk Samples

2.2.1 Weak Coupling Regime

In 1964, J. Kondo [7] considered the problem that how free electrons interact with

the dilute localized magnetic impurities. He write the total Hamiltonian as the sum-

mation of the free electron energy, H0, and the interaction between the free electrons

and the localized magnetic impurities, H ′. The interaction between these impurities

can be neglected since the their concentration is dilute. The total Hamiltonian H

can be expressed as

H = H0 + H ′, (2.72)

where

H0 =
∑

kσ

εka
†
kσakσ,

H ′ = J
∑

kk′
[(a†k′↑ak↑ − a†k′↓ak↓)Sz + (a†k′↑ak↓)S− + (a†k′↓ak↑)S+]. (2.73)

Here J > 0 for antiferromagnetic coupling. He treated H ′ as a perturbative term

and calculated the scattering rate (transition rate) from an initial state i to a final

state n, Wi→n, to second order Born’s approximation:

Wi→n ≈ 2π

~
|H ′

ni +
∑
m

H ′
nmH ′

mi

Ei − Em

|2δ(En − Ei) (2.74)

≈ 2π

~
[H ′

niH
′
in + (

∑
m

H ′
nmH ′

miH
′
in

Ei − Em

+ c.c.)]δ(En − Ei), (2.75)

where the first and second terms in the ”| · · · |” of (2.74) are the first and second

order Born’s approximation respectively. The second term in the square brackets of

(2.75) is the interference between the first and second order Born’s approximation.
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After substituting (2.73) in to (2.75), the scattering rate can be calculated, and

therefore the resistance can be obtained as

Rsd(T ) = R1st(1− 2Jρ log
kBT

D
), (2.76)

where ρ is the density of states around Fermi surface in the host metal. D is the

conduction band width in the host metal. R1st is the resistance contributed from

the 1st order Born’s approximation, while R1st2Jρ log(kBT/D) is the resistance

contributed from the interference between the 1st and 2nd Born’s approximation.

Note that R1st is constant to T , and Rsd(T ) has −logT dependence.

2.2.2 Strong Coupling Regime

As mentioned above, for noninteracting localized spins in bulk samples, the addi-

tional resistance Rsd due the s− d exchange interaction can be calculated perturba-

tively to second order Born’s approximation, and can be expressed as (2.76). If we

inspect the second term ”−2Jρ log kBT
D

” in the parentheses of (2.76), we will find it

is positive because J > 0 and log(kBT/D) < 0 (∵ kBT < D), and its magnitude

increases as T decreases. Eventually the second term will be comparable to the first

term at some sufficient low temperature, namely Kondo temperature, TK . TK is

defined as

−2Jρ log
kBTK

D
= 1. (2.77)

Solve (2.77) and we will obtain

TK =
D

kB

e−
1

2Jρ . (2.78)

Below TK , the second term in the parentheses of (2.76) will be larger than the first

term, and the perturbation method starts to lose its validity. Moreover, the second
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term will diverge and cause an infinite resistance as T → 0. The unphysical result is

due to only the leading order in the perturbation calculation was included in (2.76),

and can be avoided by a complete summation of all the orders in the perturbation

[28, 29, 30, 31]. Considering all the parquet diagrams, Hamann [29] obtained an

approximate expression for the resistivity:

RHamann(T ) =
R0

2
{1− ln(T/TK)

[(ln(T/TK))2 + π2S(S + 1)]1/2
}. (2.79)

For T ¿ TK , (2.79) can be expanded to give

RHamann(T )|T¿TK
= R0{1− π2S(S + 1)

4(ln(T/TK))2
+

3(π2S(S + 1))2

16(ln(T/TK))4
+ · · ·}, (2.80)

which is an even function to T , and can be fitted to a simple power law,

RHamann(T )|T¿TK
= R0{1− (

T

θR

)2 + O(
T

θR

)4 + · · ·}

≈ R0[1− (
T

θR

)2]

= a− bT 2. (2.81)

Therefore, in the low temperature limit, the resistance has T 2 dependence, and this

can be explained by the Fermi liquid theory [32].

As T = 0, the system reaches to its ground state. What is the nature of the

ground state? Yosida [9], using variational methods and considering the S = 1/2

model, demonstrated that the ground state is singlet for the antiferromagnetic cou-

pling.

Although Hamann considered all the parquet diagrams, and obtained (2.79)

which can approximately describe the resistance from weak to strong coupling

regime, the more precise results can be acquired by the numerical renormalization
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group (NRG) methods [32, 13, 33]. An empirical expression for the NRG calculation

is [21]:

RNRG,empirical(T ) = R0(
T 2

0

T 2 + T 2
0

)α, (2.82)

where T0 relates to TK through

T0 = TK/
√

21/α − 1, (2.83)

and α ≈ 0.2± 0.01 for the S = 1/2 case.

The expressions (2.79) for S = 1/2 and (2.82) are plotted together in Fig. 2.5.

We can see that for 0.5 . T/TK . 5, these two expressions are very close, but

(2.79) fails at low temperatures. We should note that at low temperatures, these

two expressions both have ”−T 2” dependence as shown in Fig. 2.5.

2.3 Kondo Effect in Tunnel Junctions

2.3.1 Weak Coupling Regime

In 1967 Appelbaum [2] considered the problem what is the influence on the tunneling

current if some magnetic impurities localized inside the barrier as shown in Fig. 2.6.

The Hamiltonian can be written as

H =
∑

i

p2
i

2m
+

∑
i

V (xi) +
1

2

∑

i6=j

W (xi − xj), (2.84)

in second-quantized form it becomes

H = H0 + HI , (2.85)

H0 =

∫
ψ†(x)(

p2

2m
+

∑
i

V (x))ψ(x)d3x, (2.86)

29



1E-4 1E-3 0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

 

 

R
/R

0

T/TK

 R
Hamann

 R
NRG, empirical

 0.979-10000 (T/T
K
)2

 0.984-5.5 (T/T
K
)2

Figure 2.5: The plots of of RHamann(T/TK) and RNRG(T/TK).
For 0.5 . T/TK . 5, these two expressions are very close, but RHamann fails at low
temperatures. We should note that at low temperatures, these two expressions both
have ”−T 2” dependence.
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Figure 2.6: A schematic representation of a tunnel junction which contains a mag-
netic impurity in its barrier.

HI =
1

2

∫
ψ†(x)ψ†(x′)W (x− x′)ψ(x′)ψ(x)d3x, (2.87)

where

ψ(x) =
∑

i

aiψ
a
i (x) +

∑
i

biψ
b
i (x), (2.88)

ψ†(x) =
∑

i

a†iψ
a†
i (x) +

∑
i

b†iψ
b†
i (x). (2.89)

The ψa
i (x) are a complete set of states in the region a of Fig. ?? and the ψb

i (x) are

a complete set of states in the region b. Therefore,

ψ(x) =
∑

k,σ

akσψ
a
kσ(x) +

∑

k′,σ′
bk′σ′ψ

b
k′σ′(x) +

∑
σ

dσψdσ(x) (2.90)

where {ψa
kσ(x)} and {ψa

kσ(x)} are the conduction electron states on side a and b

respectively, and {ψdσ(x)} are the localized electron states. Here only one localized
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state is assumed for simplicity. akσ and bkσ are destruction operators for an electron

with momentum k and spin σ on side a and b respectively, and dσ is the destruction

operator for an electron in a localized state. Substitute ψ(x) and ψ†(x) into (2.85)

∼ (2.87), the following form can be obtained:

H = H1 + H2 + H3 + H4 + · · · , (2.91)

where

H1 =
∑

k,σ

εa
kσa

†
kσakσ +

∑

k,σ

εb
kσb

†
kσbkσ, (2.92)

This is the single-particle conduction-electron energies.

H2 =
∑

k,k′,σ

(Tkk′a
†
kσbk′σ + Tk′kb

†
k′σakσ) (2.93)

+
∑

k,σ

T a
k,d(a

†
kσdσ + d†σakσ) (2.94)

+
∑

k,σ

T b
k,d(b

†
kσdσ + d†σbkσ), (2.95)

H2 arises from single-particle terms in the Hamiltonian. (2.93) is due to the direct

overlap of the conduction electron states on sides a and b as they tail into the barrier.

(2.94) and (2.95) are due to the overlap of the localized d states with the conduction

electrons on the a and b sides respectively.

H3 =
∑

σ

Ednσ + Unσn−σ, (2.96)

where U is the direct Coulomb integral between the localized electrons, Ed is the

appropriate single particle energies for the localized electrons and nσ = d†σdσ.
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H5 =
∑

k,k′,σ,σ′
Wd,k;d,k′d

†
σa
†
kσ′dσ′ak′σ (2.97)

+
∑

V a
k,d(d

†
σakσ + a†kσdσ). (2.98)

Since the localized electron is near to side a, the coupling between electrons on side b

and the localized electron is very small. A term which is first order in this coupling,

the product of three electron operators for side b and one localized electron operator

is retained. Therefore he obtained

H6 =
∑

k,σ

V b
k,d(d

†
σbkσ + b†kσdσ). (2.99)

H7 includes terms in which conduction-electron operators for sides a and b along

with localized electrons operators appears. Among these he retained only

H7 =
∑

k,k′,σ,σ′
Wk,d;k′,da

†
kσd

†
σ′bk′σ′dσ + Hermitian conjugate (2.100)

+
∑

k,k′,σ,σ′
Wk,d;d,k′a

†
kσd

†
σ′dσ′bk′σ + Hermitian conjugate. (2.101)

He replaced the d operator by spin operator in (2.97) and (2.100), obtaining

Ja

∑

k,k′
{Sz(a

†
k↑ak′↑ − a†k↓ak′↓) + S+a†k↓ak′↑ + S−a†k↑ak′↓}

+TJa

∑

k,k′
{Sz[(a

†
k↑bk′↑ + b†k′↑ak↑)− (a†k↓bk′↓ + b†k′↓ak↓)]

+S+(a†k↓bk′↑ + b†k′↓ak↑) + S−(a†k↑bk′↓ + b†k′↑ak↓)}, (2.102)

in addition he had

T
∑

k,k′,σ

(a†kσbk′σ + b†k′σakσ) + Ta

∑

k,k′,σ

(a†kσbk′σ + b†k′σakσ). (2.103)
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The first term of (2.103) is just (2.93), and the second term represents all the

nonexchange mechanisms for the tunneling of an electron from side a to side bin

which the conduction electron interacts with the localized electron. Equations (2.91),

(2.102) and (2.103) together make up the complete model Hamiltonian.

In a magnetic field H, and with a bias voltage V applied to side a, the Hamilto-

nian of the system can be written as

H = H0 + H ′, (2.104)

H0 =
∑

k,σ

ε̃a
kσa

†
kσakσ +

∑

k,σ

εb
k,σb

†
kσbkσ + g|µB|S ·H, (2.105)

H ′ = HT + HI , (2.106)

HT = TJa

∑

k,k′
{Sz[(a

†
k↑bk′↑ + b†k′↑ak↑)− (a†k↓bk′↓ + b†k′↓ak↓)] (2.107)

+S+(a†k↓bk′↑ + b†k′↓ak↑) + S−(a†k↑bk′↓ + b†k′↑ak↓)} (2.108)

+T
∑

k,k′,σ

(a†kσbk′σ + b†k′σakσ) + Ta

∑

k,k′,σ

(a†kσbk′σ + b†k′σakσ), (2.109)

HI = Ja

∑

k,k′
{Sz(a

†
k↑ak′↑ − a†k↓ak′↓) + S+a†k↓ak′↑ + S−a†k↑ak′↓}, (2.110)

where εa
kσ and εb

kσ implicitly include the Zeemann energy and

ε̃a
kσ = εa

kσ + eV. (2.111)

Assume H = Hẑ, the last term in (2.105) takes the form

g|µB|S ·H = ∆Sz, (2.112)

where the Zeemann splitting energy ∆ ≡ gµBH.

The total current Jab between sides a and b can be calculated by multiplying

the current jab which is due to a single magnetic impurity by Na, the number of
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localized spin on side a. jab can be calculated from

jab = e
∑
M

PM

∑

k,k′,σ,σ′
[WkσM ;k′σ′M ′f(εa

kσ)(1− f(εb
k′σ′))] (2.113)

−e
∑

M ′
PM ′

∑

k,k′,σ,σ′
[Wk′σ′M ′;kσMf(εb

k′σ′)(1− f(εa
kσ))], (2.114)

where e is the charge of the electron (e = −1.6 × 10−19 coul.), PM is the statis-

tical probability for Sz = M , and f(εk) is the Fermi-Dirac distribution function.

WkσM ;k′σ′M ′ is the transition probability per unit time that a conduction electron

in state (k, σ) on side a scatters into state (k′, σ′) on side b, with the localized spin

undergoing the transition M → M ′. Since spin is conserved

σ + M = σ′ + M ′ (2.115)

Wk′σ′M ′;kσM has a similar meaning for transition from side b to side a.

In the weak coupling regime, similar to the method used by Kondo [7], Appel-

baum [2] calculated the transition rate W to second order Born’s approximation,

and obtained the tunneling current. The tunneling current contains three parts, the

contribution of the s−d exchange interaction, Jweak
sd , the contribution of the assisted

tunneling due to the existence of localized states (the potential scattering with the

impurities), Jweak
imp , and the contribution of the interference between the former two,

Jweak
interference. Since Jweak

sd and Jweak
imp are odd functions to bias V , they can be com-

bined to Jweak
odd . The corresponding differential conductance, Gweak

even ≡ ∂Jweak
odd /∂V , is

an even function to V . Gweak
even is obtained as

Gweak
even = G(2) + G(3), (2.116)

G(2) =
4πe2

~
ρa(0)ρb(0){T 2 + Na[2TTa + T 2

a + S(S + 1)T 2
Ja
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+T 2
Ja

〈M〉
2

× (tanh
eV + ∆

2kBT
+ tanh

∆− eV

2kBT
)]}, (2.117)

G(3) = G
(3)
1 + G

(3)
2 + G

(3)
3 , (2.118)

G
(3)
1 = C{1− 〈M2〉

S(S + 1)
+

〈M〉
2S(S + 1)

×(tanh
∆− eV

2kBT
) + tanh

∆ + eV

2kBT
} × F (eV ), (2.119)

G
(3)
2 =

C

2
{1 +

〈M2〉
S(S + 1)

+
〈M〉

S(S + 1)
tanh

∆ + eV

2kBT
}

×F (eV + ∆), (2.120)

G
(3)
3 =

C

2
{1 +

〈M2〉
S(S + 1)

+
〈M〉

S(S + 1)
tanh

∆− eV

2kBT
}

×F (eV −∆), (2.121)

where

C = −8πe2

~
S(S + 1)ρa(εF )ρb(εF )NaT

2
JaJaF (eV ). (2.122)

The conductance Gweak
even can be reduced to

Gweak
even = G1(V ) + G2(V ) + G3(V ), (2.123)

where

Gn(V ) =

∫ ∞

−∞
gn(ω)

∂f(ω − V )

∂ω
dω, (2.124)

g1 = a1, (2.125)

g2 = a2[S(S + 1) +
〈M〉

2
(tanh

ω + ∆

2kBT
+ tanh

∆− ω

2kBT
)], (2.126)

g3 = a3(g31 + g32 + g33), (2.127)

g31 = [S(S + 1)− 〈M2〉

+
1

2
〈M〉 × (tanh

ω + ∆

2kBT
+ tanh

∆− ω

2kBT
)]F (ω), (2.128)

g32 =
1

2
[S(S + 1) + 〈M2〉+ 〈M〉 tanh

ω + ∆

2kBT
]F (ω + ∆), (2.129)
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g33 =
1

2
[S(S + 1) + 〈M2〉+ 〈M〉 tanh

−ω + ∆

2kBT
]F (ω −∆). (2.130)

where

F (ω) =

∫ E0

−E0

f(E)− 1
2

ω − E
dE, (2.131)

E0 is a cutoff parameter used to prevent well-known ultraviolate divergence difficul-

ties. And

〈M〉 =
M=S∑

M=−S

PMM

=

{
0, if H = 0
1
2
coth( ∆

2kBT
)− (S + 1

2
) coth[(S + 1

2
) ∆

kBT
], if H 6= 0

(2.132)

〈M2〉 =
M=S∑

M=−S

PMM2

=

{
1
3
S(S + 1), if H = 0
〈M〉2 − (S + 1

2
)2csch2[(S + 1

2
) ∆

kBT
] + 1

4
csch2( ∆

2kBT
), if H 6= 0

(2.133)

In the zero magnetic field, we substitute ∆ = 0, (2.132), and (2.133) in (2.126)

to (2.130), and get

g2 = a2S(S + 1), (2.134)

g31 = [S(S + 1)− 〈M2〉]F (ω), (2.135)

g32 =
1

2
[S(S + 1) + 〈M2〉]F (ω), (2.136)

g33 =
1

2
[S(S + 1)− 〈M2〉]F (ω), (2.137)

g3 = a3(g31 + g32 + g33) = a32S(S + 1)F (ω). (2.138)

Therefore, if H = 0,

G1(V ) =

∫ ∞

−∞
a1

∂f(ω − eV )

∂ω
dω = −a1, (2.139)
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G2(V ) =

∫ ∞

−∞
a2S(S + 1)

∂f(ω − eV )

∂ω
dω = −a2S(S + 1), (2.140)

G3(V ) =

∫ ∞

−∞
a32S(S + 1)F (ω)

∂f(ω − eV )

∂ω
dω

= 2a3S(S + 1)

∫ ∞

−∞
F (ω)

∂f(ω − eV )

∂ω
dω, (2.141)

where

F (ω) =

∫ E0

−E0

f(E)− 1
2

ω − E
dE =

1

2

∫ E0

−E0

1− 2f(ε′)
ε′ − ω

dε′ =
1

2

∫ E0

−E0

tanh( ε′
2kBT

)

ε′ − ω
dε′.

(2.142)

Therefor

G3(V ) = a3S(S + 1)

∫ ∞

−∞
[

∫ E0

−E0

tanh( ε′
2kBT

)

ε′ − ω
dε′]

∂f(ω − eV )

∂ω
dω. (2.143)

And then we can get

Gweak
even (V ) = G1(V ) + G2(V ) + G3(V )

= −a1 − a2S(S + 1)

+a3S(S + 1)

∫ ∞

−∞
[

∫ E0

−E0

tanh( ε′
2kBT

)

ε′ − ω
dε′]

∂f(ω − eV )

∂ω
dω

= A−B

∫ ∞

−∞
[

∫ E0

−E0

tanh( ε′
2kBT

)

ε′ − ω
dε′]

∂f(ω − eV )

∂ω
dω. (2.144)

where A = −a1 − a2S(S + 1), and B = a3S(S + 1). The proof that Gweak
even (V ) is an

even function is left in Appendix A.

After deriving the even conductance, Gweak
even , in the weak coupling regime, we turn

to the interference term. The tunneling current contributed from the interference

effect, Jweak
interference, was calculated as [3]:

Jweak
interference(V ) =

6πeTaTJ

~

∫ ∞

−∞
{[f(ω)− f(ω + eV )]ρb(ω + eV )ρa(ω)

× tanh
ω

2kBT
(1− 6Jρaln| ω

D
|)π2(Jρa)2}dω. (2.145)
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Jweak
interference is an even function to V , and therefore the corresponding differential

conductance, Gweak
odd , is an odd function to V , and can be obtained as:

Gweak
odd (V ) ≡ ∂Jweak

interference

∂V

=
6π3e2TaTJ

~
ρb(0)ρa(0)(Jρa)2

∫ ∞

−∞
{−∂f(ω + eV )

∂(eV )

× tanh
ω

2kBT
(1− 6Jρaln| ω

E0

|)}dω

= α

∫ ∞

−∞

−∂f(ω + eV )

∂(eV )
tanh

ω

2kBT
(1− 6Jρaln| ω

E0

|)dω,

(2.146)

where

α =
6π3e2TaTJ

~
ρb(0)ρa(0)(Jρa)2. (2.147)

2.3.2 Strong Coupling Regime

In the low temperatures limit, the system in in the strong coupling regime and the

perturbation approach used above in not applicative. Appelbaum [3] utilized the

self-consistent solution to the bulk Kondo effect, which was given by Nagaoka [8],

to calculate the tunneling current in the strong coupling regime. Similar to the

weak coupling case, the tunneling current contains three parts, the contribution of

the s − d exchange interaction, Jstrong
sd , the contribution of the assisted tunneling

due to the existence of localized states (the potential scattering with the impurities),

Jstrong
imp , and the contribution of the interference between the former two, Jstrong

interference.

They can be expressed as:

Jstrong
sd (V ) =

4eT 2
J

~π(Jρa)2

∫ ∞

−∞
{[f(ω)− f(ω + eV )]

× ρb(ω + eV )ρa(ω)
∆2

∆2 + ω2
}dω, (2.148)
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Jstrong
imp (V ) =

4πeT 2
a

~

∫ ∞

−∞
{[f(ω)− f(ω + eV )]

× ρb(ω + eV )ρa(ω)
ω2

∆2 + ω2
}dω, (2.149)

Jstrong
interference(V ) =

8eTaTJ

~|Jρa|
∫ ∞

−∞
{[f(ω)− f(ω + eV )]

× ρb(ω + eV )ρa(ω)
∆ω

∆2 + ω2
}dω, (2.150)

respectively. Here ∆ = kBTK .

The corresponding differential conductance can be obtained as:

Gstrong
sd (V ) =

4e2T 2
J

~π(Jρa)2
ρb(0)ρa(0)

∫ ∞

−∞
[
−∂f(ω + eV )

∂(eV )

× ∆2

∆2 + ω2
]dω

=
4e2T 2

J

~π(Jρa)2
ρb(0)ρa(0)

∆2

∆2 + (eV )2
, (2.151)

Gstrong
imp (V ) =

4πe2T 2
a

~
ρb(0)ρa(0)

∫ ∞

−∞
[
−∂f(ω + eV )

∂(eV )

× ω2

∆2 + ω2
]dω

=
4πe2T 2

a

~
ρb(0)ρa(0)

(eV )2

∆2 + (eV )2
, (2.152)

Gstrong
interference(V ) =

8e2TaTJ

~|Jρa| ρb(0)ρa(0)

∫ ∞

−∞
[
−∂f(ω + eV )

∂(eV )

× ∆ω

∆2 + ω2
]dω (2.153)

=
−8e2TaTJ

~|Jρa| ρb(0)ρa(0)
∆eV

∆2 + (eV )2
. (2.154)

It is obvious from (2.152), (2.153) and (2.154) that Gstrong
sd and Gstrong

imp symmetric to

V while Gstrong
interference is asymmetric. Therefore Gstrong

sd and Gstrong
imp can be combined
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to an even function as

Gstrong
even (V ) = Gstrong

sd (V ) + Gstrong
imp (V )

=
a1 × (eV )2 + a2 ×∆2

(eV )2 + ∆2
, (2.155)

where

a1 =
4πe2

~
T 2

a ρa(0)ρb(0),

a2 =
4e2

~π(Jρa)2
T 2

J ρa(0)ρb(0),

∆ = kBTK . (2.156)
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